1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2018-2019 Hisilicon Limited.
11 #include <arpa/inet.h>
12 #include <linux/pci_regs.h>
14 #include <rte_alarm.h>
15 #include <rte_atomic.h>
16 #include <rte_bus_pci.h>
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
22 #include <rte_ether.h>
23 #include <rte_ethdev_driver.h>
24 #include <rte_ethdev_pci.h>
25 #include <rte_interrupts.h>
31 #include "hns3_ethdev.h"
32 #include "hns3_logs.h"
33 #include "hns3_rxtx.h"
34 #include "hns3_regs.h"
35 #include "hns3_intr.h"
39 #define HNS3VF_KEEP_ALIVE_INTERVAL 2000000 /* us */
40 #define HNS3VF_SERVICE_INTERVAL 1000000 /* us */
42 #define HNS3VF_RESET_WAIT_MS 20
43 #define HNS3VF_RESET_WAIT_CNT 2000
45 /* Reset related Registers */
46 #define HNS3_GLOBAL_RESET_BIT 0
47 #define HNS3_CORE_RESET_BIT 1
48 #define HNS3_IMP_RESET_BIT 2
49 #define HNS3_FUN_RST_ING_B 0
51 enum hns3vf_evt_cause {
52 HNS3VF_VECTOR0_EVENT_RST,
53 HNS3VF_VECTOR0_EVENT_MBX,
54 HNS3VF_VECTOR0_EVENT_OTHER,
57 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
59 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
60 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
62 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
63 struct rte_ether_addr *mac_addr);
64 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
65 struct rte_ether_addr *mac_addr);
66 /* set PCI bus mastering */
68 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
72 rte_pci_read_config(device, ®, sizeof(reg), PCI_COMMAND);
75 /* set the master bit */
76 reg |= PCI_COMMAND_MASTER;
78 reg &= ~(PCI_COMMAND_MASTER);
80 rte_pci_write_config(device, ®, sizeof(reg), PCI_COMMAND);
84 * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
85 * @cap: the capability
87 * Return the address of the given capability within the PCI capability list.
90 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
92 #define MAX_PCIE_CAPABILITY 48
98 rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
99 if (!(status & PCI_STATUS_CAP_LIST))
102 ttl = MAX_PCIE_CAPABILITY;
103 rte_pci_read_config(device, &pos, sizeof(pos), PCI_CAPABILITY_LIST);
104 while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105 rte_pci_read_config(device, &id, sizeof(id),
106 (pos + PCI_CAP_LIST_ID));
114 rte_pci_read_config(device, &pos, sizeof(pos),
115 (pos + PCI_CAP_LIST_NEXT));
121 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
126 pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
128 rte_pci_read_config(device, &control, sizeof(control),
129 (pos + PCI_MSIX_FLAGS));
131 control |= PCI_MSIX_FLAGS_ENABLE;
133 control &= ~PCI_MSIX_FLAGS_ENABLE;
134 rte_pci_write_config(device, &control, sizeof(control),
135 (pos + PCI_MSIX_FLAGS));
142 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
144 /* mac address was checked by upper level interface */
145 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
148 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
149 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
150 RTE_ETHER_ADDR_LEN, false, NULL, 0);
152 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
154 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
161 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
163 /* mac address was checked by upper level interface */
164 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
167 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
168 HNS3_MBX_MAC_VLAN_UC_REMOVE,
169 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
172 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
174 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
181 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
183 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
184 struct rte_ether_addr *addr;
188 for (i = 0; i < hw->mc_addrs_num; i++) {
189 addr = &hw->mc_addrs[i];
190 /* Check if there are duplicate addresses */
191 if (rte_is_same_ether_addr(addr, mac_addr)) {
192 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
194 hns3_err(hw, "failed to add mc mac addr, same addrs"
195 "(%s) is added by the set_mc_mac_addr_list "
201 ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
203 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
205 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
212 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
213 __rte_unused uint32_t idx,
214 __rte_unused uint32_t pool)
216 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
217 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
220 rte_spinlock_lock(&hw->lock);
223 * In hns3 network engine adding UC and MC mac address with different
224 * commands with firmware. We need to determine whether the input
225 * address is a UC or a MC address to call different commands.
226 * By the way, it is recommended calling the API function named
227 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
228 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
229 * may affect the specifications of UC mac addresses.
231 if (rte_is_multicast_ether_addr(mac_addr))
232 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
234 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
236 rte_spinlock_unlock(&hw->lock);
238 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
240 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
248 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
250 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
251 /* index will be checked by upper level rte interface */
252 struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
253 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
256 rte_spinlock_lock(&hw->lock);
258 if (rte_is_multicast_ether_addr(mac_addr))
259 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
261 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
263 rte_spinlock_unlock(&hw->lock);
265 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
267 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
273 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
274 struct rte_ether_addr *mac_addr)
276 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
277 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278 struct rte_ether_addr *old_addr;
279 uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
280 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
284 * It has been guaranteed that input parameter named mac_addr is valid
285 * address in the rte layer of DPDK framework.
287 old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
288 rte_spinlock_lock(&hw->lock);
289 memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
290 memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
293 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
294 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
295 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
298 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
299 * driver. When user has configured a MAC address for VF device
300 * by "ip link set ..." command based on the PF device, the hns3
301 * PF kernel ethdev driver does not allow VF driver to request
302 * reconfiguring a different default MAC address, and return
303 * -EPREM to VF driver through mailbox.
306 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
308 hns3_warn(hw, "Has permanet mac addr(%s) for vf",
311 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
313 hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
318 rte_ether_addr_copy(mac_addr,
319 (struct rte_ether_addr *)hw->mac.mac_addr);
320 rte_spinlock_unlock(&hw->lock);
326 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
328 struct hns3_hw *hw = &hns->hw;
329 struct rte_ether_addr *addr;
330 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
335 for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
336 addr = &hw->data->mac_addrs[i];
337 if (rte_is_zero_ether_addr(addr))
339 if (rte_is_multicast_ether_addr(addr))
340 ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
341 hns3vf_add_mc_mac_addr(hw, addr);
343 ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
344 hns3vf_add_uc_mac_addr(hw, addr);
348 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
350 hns3_err(hw, "failed to %s mac addr(%s) index:%d "
351 "ret = %d.", del ? "remove" : "restore",
359 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
360 struct rte_ether_addr *mac_addr)
362 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
365 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
366 HNS3_MBX_MAC_VLAN_MC_ADD,
367 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
370 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
372 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
380 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
381 struct rte_ether_addr *mac_addr)
383 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
386 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387 HNS3_MBX_MAC_VLAN_MC_REMOVE,
388 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
391 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
393 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
401 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
402 struct rte_ether_addr *mc_addr_set,
405 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
406 struct rte_ether_addr *addr;
410 if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
411 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
412 "invalid. valid range: 0~%d",
413 nb_mc_addr, HNS3_MC_MACADDR_NUM);
417 /* Check if input mac addresses are valid */
418 for (i = 0; i < nb_mc_addr; i++) {
419 addr = &mc_addr_set[i];
420 if (!rte_is_multicast_ether_addr(addr)) {
421 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
424 "failed to set mc mac addr, addr(%s) invalid.",
429 /* Check if there are duplicate addresses */
430 for (j = i + 1; j < nb_mc_addr; j++) {
431 if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
432 rte_ether_format_addr(mac_str,
433 RTE_ETHER_ADDR_FMT_SIZE,
435 hns3_err(hw, "failed to set mc mac addr, "
436 "addrs invalid. two same addrs(%s).",
443 * Check if there are duplicate addresses between mac_addrs
446 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
447 if (rte_is_same_ether_addr(addr,
448 &hw->data->mac_addrs[j])) {
449 rte_ether_format_addr(mac_str,
450 RTE_ETHER_ADDR_FMT_SIZE,
452 hns3_err(hw, "failed to set mc mac addr, "
453 "addrs invalid. addrs(%s) has already "
454 "configured in mac_addr add API",
465 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
466 struct rte_ether_addr *mc_addr_set,
469 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
470 struct rte_ether_addr *addr;
477 ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
481 rte_spinlock_lock(&hw->lock);
482 cur_addr_num = hw->mc_addrs_num;
483 for (i = 0; i < cur_addr_num; i++) {
484 num = cur_addr_num - i - 1;
485 addr = &hw->mc_addrs[num];
486 ret = hns3vf_remove_mc_mac_addr(hw, addr);
488 rte_spinlock_unlock(&hw->lock);
495 set_addr_num = (int)nb_mc_addr;
496 for (i = 0; i < set_addr_num; i++) {
497 addr = &mc_addr_set[i];
498 ret = hns3vf_add_mc_mac_addr(hw, addr);
500 rte_spinlock_unlock(&hw->lock);
504 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
507 rte_spinlock_unlock(&hw->lock);
513 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
515 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
516 struct hns3_hw *hw = &hns->hw;
517 struct rte_ether_addr *addr;
522 for (i = 0; i < hw->mc_addrs_num; i++) {
523 addr = &hw->mc_addrs[i];
524 if (!rte_is_multicast_ether_addr(addr))
527 ret = hns3vf_remove_mc_mac_addr(hw, addr);
529 ret = hns3vf_add_mc_mac_addr(hw, addr);
532 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
534 hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
535 del ? "Remove" : "Restore", mac_str, ret);
542 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
543 bool en_uc_pmc, bool en_mc_pmc)
545 struct hns3_mbx_vf_to_pf_cmd *req;
546 struct hns3_cmd_desc desc;
549 req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
552 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
553 * so there are some features for promiscuous/allmulticast mode in hns3
554 * VF PMD driver as below:
555 * 1. The promiscuous/allmulticast mode can be configured successfully
556 * only based on the trusted VF device. If based on the non trusted
557 * VF device, configuring promiscuous/allmulticast mode will fail.
558 * The hns3 VF device can be confiruged as trusted device by hns3 PF
559 * kernel ethdev driver on the host by the following command:
560 * "ip link set <eth num> vf <vf id> turst on"
561 * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
562 * driver can receive the ingress and outgoing traffic. In the words,
563 * all the ingress packets, all the packets sent from the PF and
564 * other VFs on the same physical port.
565 * 3. Note: Because of the hardware constraints, By default vlan filter
566 * is enabled and couldn't be turned off based on VF device, so vlan
567 * filter is still effective even in promiscuous mode. If upper
568 * applications don't call rte_eth_dev_vlan_filter API function to
569 * set vlan based on VF device, hns3 VF PMD driver will can't receive
570 * the packets with vlan tag in promiscuoue mode.
572 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
573 req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
574 req->msg[1] = en_bc_pmc ? 1 : 0;
575 req->msg[2] = en_uc_pmc ? 1 : 0;
576 req->msg[3] = en_mc_pmc ? 1 : 0;
578 ret = hns3_cmd_send(hw, &desc, 1);
580 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
586 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
588 struct hns3_adapter *hns = dev->data->dev_private;
589 struct hns3_hw *hw = &hns->hw;
592 ret = hns3vf_set_promisc_mode(hw, true, true, true);
594 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
600 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
602 bool allmulti = dev->data->all_multicast ? true : false;
603 struct hns3_adapter *hns = dev->data->dev_private;
604 struct hns3_hw *hw = &hns->hw;
607 ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
609 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
615 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
617 struct hns3_adapter *hns = dev->data->dev_private;
618 struct hns3_hw *hw = &hns->hw;
621 if (dev->data->promiscuous)
624 ret = hns3vf_set_promisc_mode(hw, true, false, true);
626 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
632 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
634 struct hns3_adapter *hns = dev->data->dev_private;
635 struct hns3_hw *hw = &hns->hw;
638 if (dev->data->promiscuous)
641 ret = hns3vf_set_promisc_mode(hw, true, false, false);
643 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
649 hns3vf_restore_promisc(struct hns3_adapter *hns)
651 struct hns3_hw *hw = &hns->hw;
652 bool allmulti = hw->data->all_multicast ? true : false;
654 if (hw->data->promiscuous)
655 return hns3vf_set_promisc_mode(hw, true, true, true);
657 return hns3vf_set_promisc_mode(hw, true, false, allmulti);
661 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
662 bool mmap, enum hns3_ring_type queue_type,
665 struct hns3_vf_bind_vector_msg bind_msg;
670 memset(&bind_msg, 0, sizeof(bind_msg));
671 code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
672 HNS3_MBX_UNMAP_RING_TO_VECTOR;
673 bind_msg.vector_id = vector_id;
675 if (queue_type == HNS3_RING_TYPE_RX)
676 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
678 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
680 bind_msg.param[0].ring_type = queue_type;
681 bind_msg.ring_num = 1;
682 bind_msg.param[0].tqp_index = queue_id;
683 op_str = mmap ? "Map" : "Unmap";
684 ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
685 sizeof(bind_msg), false, NULL, 0);
687 hns3_err(hw, "%s TQP %d fail, vector_id is %d, ret is %d.",
688 op_str, queue_id, bind_msg.vector_id, ret);
694 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
701 * In hns3 network engine, vector 0 is always the misc interrupt of this
702 * function, vector 1~N can be used respectively for the queues of the
703 * function. Tx and Rx queues with the same number share the interrupt
704 * vector. In the initialization clearing the all hardware mapping
705 * relationship configurations between queues and interrupt vectors is
706 * needed, so some error caused by the residual configurations, such as
707 * the unexpected Tx interrupt, can be avoid.
709 vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
710 if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
711 vec = vec - 1; /* the last interrupt is reserved */
712 hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
713 for (i = 0; i < hw->intr_tqps_num; i++) {
715 * Set gap limiter/rate limiter/quanity limiter algorithm
716 * configuration for interrupt coalesce of queue's interrupt.
718 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
719 HNS3_TQP_INTR_GL_DEFAULT);
720 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
721 HNS3_TQP_INTR_GL_DEFAULT);
722 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
723 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
725 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
726 HNS3_RING_TYPE_TX, i);
728 PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
729 "vector: %d, ret=%d", i, vec, ret);
733 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
734 HNS3_RING_TYPE_RX, i);
736 PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
737 "vector: %d, ret=%d", i, vec, ret);
746 hns3vf_dev_configure(struct rte_eth_dev *dev)
748 struct hns3_adapter *hns = dev->data->dev_private;
749 struct hns3_hw *hw = &hns->hw;
750 struct hns3_rss_conf *rss_cfg = &hw->rss_info;
751 struct rte_eth_conf *conf = &dev->data->dev_conf;
752 enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
753 uint16_t nb_rx_q = dev->data->nb_rx_queues;
754 uint16_t nb_tx_q = dev->data->nb_tx_queues;
755 struct rte_eth_rss_conf rss_conf;
761 * Hardware does not support individually enable/disable/reset the Tx or
762 * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
763 * and Rx queues at the same time. When the numbers of Tx queues
764 * allocated by upper applications are not equal to the numbers of Rx
765 * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
766 * of Tx/Rx queues. otherwise, network engine can not work as usual. But
767 * these fake queues are imperceptible, and can not be used by upper
770 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
772 hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
776 hw->adapter_state = HNS3_NIC_CONFIGURING;
777 if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
778 hns3_err(hw, "setting link speed/duplex not supported");
783 /* When RSS is not configured, redirect the packet queue 0 */
784 if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
785 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
786 hw->rss_dis_flag = false;
787 rss_conf = conf->rx_adv_conf.rss_conf;
788 if (rss_conf.rss_key == NULL) {
789 rss_conf.rss_key = rss_cfg->key;
790 rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
793 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
799 * If jumbo frames are enabled, MTU needs to be refreshed
800 * according to the maximum RX packet length.
802 if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
804 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
805 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
806 * can safely assign to "uint16_t" type variable.
808 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
809 ret = hns3vf_dev_mtu_set(dev, mtu);
812 dev->data->mtu = mtu;
815 ret = hns3vf_dev_configure_vlan(dev);
819 /* config hardware GRO */
820 gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
821 ret = hns3_config_gro(hw, gro_en);
825 hns->rx_simple_allowed = true;
826 hns->rx_vec_allowed = true;
827 hns->tx_simple_allowed = true;
828 hns->tx_vec_allowed = true;
830 hns3_init_rx_ptype_tble(dev);
832 hw->adapter_state = HNS3_NIC_CONFIGURED;
836 (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
837 hw->adapter_state = HNS3_NIC_INITIALIZED;
843 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
847 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
848 sizeof(mtu), true, NULL, 0);
850 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
856 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
858 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
859 uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
863 * The hns3 PF/VF devices on the same port share the hardware MTU
864 * configuration. Currently, we send mailbox to inform hns3 PF kernel
865 * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
866 * driver, there is no need to stop the port for hns3 VF device, and the
867 * MTU value issued by hns3 VF PMD driver must be less than or equal to
870 if (rte_atomic16_read(&hw->reset.resetting)) {
871 hns3_err(hw, "Failed to set mtu during resetting");
876 * when Rx of scattered packets is off, we have some possibility of
877 * using vector Rx process function or simple Rx functions in hns3 PMD
878 * driver. If the input MTU is increased and the maximum length of
879 * received packets is greater than the length of a buffer for Rx
880 * packet, the hardware network engine needs to use multiple BDs and
881 * buffers to store these packets. This will cause problems when still
882 * using vector Rx process function or simple Rx function to receiving
883 * packets. So, when Rx of scattered packets is off and device is
884 * started, it is not permitted to increase MTU so that the maximum
885 * length of Rx packets is greater than Rx buffer length.
887 if (dev->data->dev_started && !dev->data->scattered_rx &&
888 frame_size > hw->rx_buf_len) {
889 hns3_err(hw, "failed to set mtu because current is "
890 "not scattered rx mode");
894 rte_spinlock_lock(&hw->lock);
895 ret = hns3vf_config_mtu(hw, mtu);
897 rte_spinlock_unlock(&hw->lock);
900 if (frame_size > RTE_ETHER_MAX_LEN)
901 dev->data->dev_conf.rxmode.offloads |=
902 DEV_RX_OFFLOAD_JUMBO_FRAME;
904 dev->data->dev_conf.rxmode.offloads &=
905 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
906 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
907 rte_spinlock_unlock(&hw->lock);
913 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
915 struct hns3_adapter *hns = eth_dev->data->dev_private;
916 struct hns3_hw *hw = &hns->hw;
917 uint16_t q_num = hw->tqps_num;
920 * In interrupt mode, 'max_rx_queues' is set based on the number of
921 * MSI-X interrupt resources of the hardware.
923 if (hw->data->dev_conf.intr_conf.rxq == 1)
924 q_num = hw->intr_tqps_num;
926 info->max_rx_queues = q_num;
927 info->max_tx_queues = hw->tqps_num;
928 info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
929 info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
930 info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
931 info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
932 info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
934 info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
935 DEV_RX_OFFLOAD_UDP_CKSUM |
936 DEV_RX_OFFLOAD_TCP_CKSUM |
937 DEV_RX_OFFLOAD_SCTP_CKSUM |
938 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
939 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
940 DEV_RX_OFFLOAD_SCATTER |
941 DEV_RX_OFFLOAD_VLAN_STRIP |
942 DEV_RX_OFFLOAD_VLAN_FILTER |
943 DEV_RX_OFFLOAD_JUMBO_FRAME |
944 DEV_RX_OFFLOAD_RSS_HASH |
945 DEV_RX_OFFLOAD_TCP_LRO);
946 info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
947 DEV_TX_OFFLOAD_IPV4_CKSUM |
948 DEV_TX_OFFLOAD_TCP_CKSUM |
949 DEV_TX_OFFLOAD_UDP_CKSUM |
950 DEV_TX_OFFLOAD_SCTP_CKSUM |
951 DEV_TX_OFFLOAD_MULTI_SEGS |
952 DEV_TX_OFFLOAD_TCP_TSO |
953 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
954 DEV_TX_OFFLOAD_GRE_TNL_TSO |
955 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
956 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
957 hns3_txvlan_cap_get(hw));
959 info->rx_desc_lim = (struct rte_eth_desc_lim) {
960 .nb_max = HNS3_MAX_RING_DESC,
961 .nb_min = HNS3_MIN_RING_DESC,
962 .nb_align = HNS3_ALIGN_RING_DESC,
965 info->tx_desc_lim = (struct rte_eth_desc_lim) {
966 .nb_max = HNS3_MAX_RING_DESC,
967 .nb_min = HNS3_MIN_RING_DESC,
968 .nb_align = HNS3_ALIGN_RING_DESC,
969 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
970 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
973 info->default_rxconf = (struct rte_eth_rxconf) {
974 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
976 * If there are no available Rx buffer descriptors, incoming
977 * packets are always dropped by hardware based on hns3 network
983 info->default_txconf = (struct rte_eth_txconf) {
984 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
988 info->vmdq_queue_num = 0;
990 info->reta_size = HNS3_RSS_IND_TBL_SIZE;
991 info->hash_key_size = HNS3_RSS_KEY_SIZE;
992 info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
993 info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
994 info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1000 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1002 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1006 hns3vf_disable_irq0(struct hns3_hw *hw)
1008 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1012 hns3vf_enable_irq0(struct hns3_hw *hw)
1014 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1017 static enum hns3vf_evt_cause
1018 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1020 struct hns3_hw *hw = &hns->hw;
1021 enum hns3vf_evt_cause ret;
1022 uint32_t cmdq_stat_reg;
1023 uint32_t rst_ing_reg;
1026 /* Fetch the events from their corresponding regs */
1027 cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1029 if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1030 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1031 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1032 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1033 rte_atomic16_set(&hw->reset.disable_cmd, 1);
1034 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1035 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1036 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1038 hw->reset.stats.global_cnt++;
1039 hns3_warn(hw, "Global reset detected, clear reset status");
1041 hns3_schedule_delayed_reset(hns);
1042 hns3_warn(hw, "Global reset detected, don't clear reset status");
1045 ret = HNS3VF_VECTOR0_EVENT_RST;
1049 /* Check for vector0 mailbox(=CMDQ RX) event source */
1050 if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1051 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1052 ret = HNS3VF_VECTOR0_EVENT_MBX;
1057 ret = HNS3VF_VECTOR0_EVENT_OTHER;
1065 hns3vf_interrupt_handler(void *param)
1067 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1068 struct hns3_adapter *hns = dev->data->dev_private;
1069 struct hns3_hw *hw = &hns->hw;
1070 enum hns3vf_evt_cause event_cause;
1073 if (hw->irq_thread_id == 0)
1074 hw->irq_thread_id = pthread_self();
1076 /* Disable interrupt */
1077 hns3vf_disable_irq0(hw);
1079 /* Read out interrupt causes */
1080 event_cause = hns3vf_check_event_cause(hns, &clearval);
1082 switch (event_cause) {
1083 case HNS3VF_VECTOR0_EVENT_RST:
1084 hns3_schedule_reset(hns);
1086 case HNS3VF_VECTOR0_EVENT_MBX:
1087 hns3_dev_handle_mbx_msg(hw);
1093 /* Clear interrupt causes */
1094 hns3vf_clear_event_cause(hw, clearval);
1096 /* Enable interrupt */
1097 hns3vf_enable_irq0(hw);
1101 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1103 hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1104 hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1105 hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1109 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1111 struct hns3_dev_specs_0_cmd *req0;
1113 req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1115 hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1116 hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1117 hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1121 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1123 struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1127 for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1128 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1130 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1132 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1134 ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1138 hns3vf_parse_dev_specifications(hw, desc);
1144 hns3vf_get_capability(struct hns3_hw *hw)
1146 struct rte_pci_device *pci_dev;
1147 struct rte_eth_dev *eth_dev;
1151 eth_dev = &rte_eth_devices[hw->data->port_id];
1152 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1154 /* Get PCI revision id */
1155 ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1156 HNS3_PCI_REVISION_ID);
1157 if (ret != HNS3_PCI_REVISION_ID_LEN) {
1158 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1162 hw->revision = revision;
1164 if (revision < PCI_REVISION_ID_HIP09_A) {
1165 hns3vf_set_default_dev_specifications(hw);
1166 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1167 hw->intr.coalesce_mode = HNS3_INTR_COALESCE_NON_QL;
1168 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1169 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1170 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1174 ret = hns3vf_query_dev_specifications(hw);
1177 "failed to query dev specifications, ret = %d",
1182 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1183 hw->intr.coalesce_mode = HNS3_INTR_COALESCE_QL;
1184 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1185 hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1186 hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1192 hns3vf_check_tqp_info(struct hns3_hw *hw)
1196 tqps_num = hw->tqps_num;
1197 if (tqps_num > HNS3_MAX_TQP_NUM_PER_FUNC || tqps_num == 0) {
1198 PMD_INIT_LOG(ERR, "Get invalid tqps_num(%u) from PF. valid "
1200 tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
1204 hw->alloc_rss_size = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1209 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1214 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1215 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1216 true, &resp_msg, sizeof(resp_msg));
1218 if (ret == -ETIME) {
1220 * Getting current port based VLAN state from PF driver
1221 * will not affect VF driver's basic function. Because
1222 * the VF driver relies on hns3 PF kernel ether driver,
1223 * to avoid introducing compatibility issues with older
1224 * version of PF driver, no failure will be returned
1225 * when the return value is ETIME. This return value has
1226 * the following scenarios:
1227 * 1) Firmware didn't return the results in time
1228 * 2) the result return by firmware is timeout
1229 * 3) the older version of kernel side PF driver does
1230 * not support this mailbox message.
1231 * For scenarios 1 and 2, it is most likely that a
1232 * hardware error has occurred, or a hardware reset has
1233 * occurred. In this case, these errors will be caught
1234 * by other functions.
1236 PMD_INIT_LOG(WARNING,
1237 "failed to get PVID state for timeout, maybe "
1238 "kernel side PF driver doesn't support this "
1239 "mailbox message, or firmware didn't respond.");
1240 resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1242 PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1247 hw->port_base_vlan_cfg.state = resp_msg ?
1248 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1253 hns3vf_get_queue_info(struct hns3_hw *hw)
1255 #define HNS3VF_TQPS_RSS_INFO_LEN 6
1256 uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1259 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1260 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1262 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1266 memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1267 memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1269 return hns3vf_check_tqp_info(hw);
1273 hns3vf_get_queue_depth(struct hns3_hw *hw)
1275 #define HNS3VF_TQPS_DEPTH_INFO_LEN 4
1276 uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1279 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1280 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1282 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1287 memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1288 memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1294 hns3vf_get_tc_info(struct hns3_hw *hw)
1299 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1300 true, &resp_msg, sizeof(resp_msg));
1302 hns3_err(hw, "VF request to get TC info from PF failed %d",
1307 hw->hw_tc_map = resp_msg;
1313 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1315 uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1318 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1319 true, host_mac, RTE_ETHER_ADDR_LEN);
1321 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1325 memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1331 hns3vf_get_configuration(struct hns3_hw *hw)
1335 hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1336 hw->rss_dis_flag = false;
1338 /* Get device capability */
1339 ret = hns3vf_get_capability(hw);
1341 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1345 /* Get queue configuration from PF */
1346 ret = hns3vf_get_queue_info(hw);
1350 /* Get queue depth info from PF */
1351 ret = hns3vf_get_queue_depth(hw);
1355 /* Get user defined VF MAC addr from PF */
1356 ret = hns3vf_get_host_mac_addr(hw);
1360 ret = hns3vf_get_port_base_vlan_filter_state(hw);
1364 /* Get tc configuration from PF */
1365 return hns3vf_get_tc_info(hw);
1369 hns3vf_set_tc_info(struct hns3_adapter *hns)
1371 struct hns3_hw *hw = &hns->hw;
1372 uint16_t nb_rx_q = hw->data->nb_rx_queues;
1373 uint16_t nb_tx_q = hw->data->nb_tx_queues;
1377 for (i = 0; i < HNS3_MAX_TC_NUM; i++)
1378 if (hw->hw_tc_map & BIT(i))
1381 if (nb_rx_q < hw->num_tc) {
1382 hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).",
1383 nb_rx_q, hw->num_tc);
1387 if (nb_tx_q < hw->num_tc) {
1388 hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).",
1389 nb_tx_q, hw->num_tc);
1393 hns3_set_rss_size(hw, nb_rx_q);
1394 hns3_tc_queue_mapping_cfg(hw, nb_tx_q);
1400 hns3vf_request_link_info(struct hns3_hw *hw)
1405 if (rte_atomic16_read(&hw->reset.resetting))
1407 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1408 &resp_msg, sizeof(resp_msg));
1410 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1414 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1416 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1417 struct hns3_hw *hw = &hns->hw;
1418 uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1419 uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1420 uint8_t is_kill = on ? 0 : 1;
1422 msg_data[0] = is_kill;
1423 memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1424 memcpy(&msg_data[3], &proto, sizeof(proto));
1426 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1427 msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1432 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1434 struct hns3_adapter *hns = dev->data->dev_private;
1435 struct hns3_hw *hw = &hns->hw;
1438 if (rte_atomic16_read(&hw->reset.resetting)) {
1440 "vf set vlan id failed during resetting, vlan_id =%u",
1444 rte_spinlock_lock(&hw->lock);
1445 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1446 rte_spinlock_unlock(&hw->lock);
1448 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1455 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1460 msg_data = enable ? 1 : 0;
1461 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1462 &msg_data, sizeof(msg_data), false, NULL, 0);
1464 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1470 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1472 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1473 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1474 unsigned int tmp_mask;
1477 if (rte_atomic16_read(&hw->reset.resetting)) {
1478 hns3_err(hw, "vf set vlan offload failed during resetting, "
1479 "mask = 0x%x", mask);
1483 tmp_mask = (unsigned int)mask;
1484 /* Vlan stripping setting */
1485 if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1486 rte_spinlock_lock(&hw->lock);
1487 /* Enable or disable VLAN stripping */
1488 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1489 ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1491 ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1492 rte_spinlock_unlock(&hw->lock);
1499 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1501 struct rte_vlan_filter_conf *vfc;
1502 struct hns3_hw *hw = &hns->hw;
1509 vfc = &hw->data->vlan_filter_conf;
1510 for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1511 if (vfc->ids[i] == 0)
1516 * 64 means the num bits of ids, one bit corresponds to
1520 /* count trailing zeroes */
1521 vbit = ~ids & (ids - 1);
1522 /* clear least significant bit set */
1523 ids ^= (ids ^ (ids - 1)) ^ vbit;
1528 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1531 "VF handle vlan table failed, ret =%d, on = %d",
1542 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1544 return hns3vf_handle_all_vlan_table(hns, 0);
1548 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1550 struct hns3_hw *hw = &hns->hw;
1551 struct rte_eth_conf *dev_conf;
1555 dev_conf = &hw->data->dev_conf;
1556 en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1558 ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1560 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1566 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1568 struct hns3_adapter *hns = dev->data->dev_private;
1569 struct rte_eth_dev_data *data = dev->data;
1570 struct hns3_hw *hw = &hns->hw;
1573 if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1574 data->dev_conf.txmode.hw_vlan_reject_untagged ||
1575 data->dev_conf.txmode.hw_vlan_insert_pvid) {
1576 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1577 "or hw_vlan_insert_pvid is not support!");
1580 /* Apply vlan offload setting */
1581 ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1583 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1589 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1593 msg_data = alive ? 1 : 0;
1594 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1595 sizeof(msg_data), false, NULL, 0);
1599 hns3vf_keep_alive_handler(void *param)
1601 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1602 struct hns3_adapter *hns = eth_dev->data->dev_private;
1603 struct hns3_hw *hw = &hns->hw;
1607 ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1608 false, &respmsg, sizeof(uint8_t));
1610 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1613 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1618 hns3vf_service_handler(void *param)
1620 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1621 struct hns3_adapter *hns = eth_dev->data->dev_private;
1622 struct hns3_hw *hw = &hns->hw;
1625 * The query link status and reset processing are executed in the
1626 * interrupt thread.When the IMP reset occurs, IMP will not respond,
1627 * and the query operation will time out after 30ms. In the case of
1628 * multiple PF/VFs, each query failure timeout causes the IMP reset
1629 * interrupt to fail to respond within 100ms.
1630 * Before querying the link status, check whether there is a reset
1631 * pending, and if so, abandon the query.
1633 if (!hns3vf_is_reset_pending(hns))
1634 hns3vf_request_link_info(hw);
1636 hns3_warn(hw, "Cancel the query when reset is pending");
1638 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1643 hns3_query_vf_resource(struct hns3_hw *hw)
1645 struct hns3_vf_res_cmd *req;
1646 struct hns3_cmd_desc desc;
1650 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1651 ret = hns3_cmd_send(hw, &desc, 1);
1653 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1657 req = (struct hns3_vf_res_cmd *)desc.data;
1658 num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1659 HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1660 if (num_msi < HNS3_MIN_VECTOR_NUM) {
1661 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1662 num_msi, HNS3_MIN_VECTOR_NUM);
1666 hw->num_msi = num_msi;
1672 hns3vf_init_hardware(struct hns3_adapter *hns)
1674 struct hns3_hw *hw = &hns->hw;
1675 uint16_t mtu = hw->data->mtu;
1678 ret = hns3vf_set_promisc_mode(hw, true, false, false);
1682 ret = hns3vf_config_mtu(hw, mtu);
1684 goto err_init_hardware;
1686 ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1688 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1689 goto err_init_hardware;
1692 ret = hns3_config_gro(hw, false);
1694 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1695 goto err_init_hardware;
1699 * In the initialization clearing the all hardware mapping relationship
1700 * configurations between queues and interrupt vectors is needed, so
1701 * some error caused by the residual configurations, such as the
1702 * unexpected interrupt, can be avoid.
1704 ret = hns3vf_init_ring_with_vector(hw);
1706 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1707 goto err_init_hardware;
1710 ret = hns3vf_set_alive(hw, true);
1712 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1713 goto err_init_hardware;
1716 hns3vf_request_link_info(hw);
1720 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1725 hns3vf_clear_vport_list(struct hns3_hw *hw)
1727 return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1728 HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1733 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1735 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1736 struct hns3_adapter *hns = eth_dev->data->dev_private;
1737 struct hns3_hw *hw = &hns->hw;
1740 PMD_INIT_FUNC_TRACE();
1742 /* Get hardware io base address from pcie BAR2 IO space */
1743 hw->io_base = pci_dev->mem_resource[2].addr;
1745 /* Firmware command queue initialize */
1746 ret = hns3_cmd_init_queue(hw);
1748 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1749 goto err_cmd_init_queue;
1752 /* Firmware command initialize */
1753 ret = hns3_cmd_init(hw);
1755 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1759 /* Get VF resource */
1760 ret = hns3_query_vf_resource(hw);
1764 rte_spinlock_init(&hw->mbx_resp.lock);
1766 hns3vf_clear_event_cause(hw, 0);
1768 ret = rte_intr_callback_register(&pci_dev->intr_handle,
1769 hns3vf_interrupt_handler, eth_dev);
1771 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1772 goto err_intr_callback_register;
1775 /* Enable interrupt */
1776 rte_intr_enable(&pci_dev->intr_handle);
1777 hns3vf_enable_irq0(hw);
1779 /* Get configuration from PF */
1780 ret = hns3vf_get_configuration(hw);
1782 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1783 goto err_get_config;
1786 ret = hns3vf_clear_vport_list(hw);
1788 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1789 goto err_get_config;
1792 ret = hns3vf_init_hardware(hns);
1794 goto err_get_config;
1796 hns3_set_default_rss_args(hw);
1801 hns3vf_disable_irq0(hw);
1802 rte_intr_disable(&pci_dev->intr_handle);
1803 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1805 err_intr_callback_register:
1807 hns3_cmd_uninit(hw);
1808 hns3_cmd_destroy_queue(hw);
1816 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1818 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1819 struct hns3_adapter *hns = eth_dev->data->dev_private;
1820 struct hns3_hw *hw = &hns->hw;
1822 PMD_INIT_FUNC_TRACE();
1824 hns3_rss_uninit(hns);
1825 (void)hns3_config_gro(hw, false);
1826 (void)hns3vf_set_alive(hw, false);
1827 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1828 hns3vf_disable_irq0(hw);
1829 rte_intr_disable(&pci_dev->intr_handle);
1830 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1832 hns3_cmd_uninit(hw);
1833 hns3_cmd_destroy_queue(hw);
1838 hns3vf_do_stop(struct hns3_adapter *hns)
1840 struct hns3_hw *hw = &hns->hw;
1843 hw->mac.link_status = ETH_LINK_DOWN;
1845 if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1846 hns3vf_configure_mac_addr(hns, true);
1849 reset_queue = false;
1850 return hns3_stop_queues(hns, reset_queue);
1854 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1856 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1857 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1858 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1859 uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1860 uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1863 if (dev->data->dev_conf.intr_conf.rxq == 0)
1866 /* unmap the ring with vector */
1867 if (rte_intr_allow_others(intr_handle)) {
1868 vec = RTE_INTR_VEC_RXTX_OFFSET;
1869 base = RTE_INTR_VEC_RXTX_OFFSET;
1871 if (rte_intr_dp_is_en(intr_handle)) {
1872 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1873 (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1876 if (vec < base + intr_handle->nb_efd - 1)
1880 /* Clean datapath event and queue/vec mapping */
1881 rte_intr_efd_disable(intr_handle);
1882 if (intr_handle->intr_vec) {
1883 rte_free(intr_handle->intr_vec);
1884 intr_handle->intr_vec = NULL;
1889 hns3vf_dev_stop(struct rte_eth_dev *dev)
1891 struct hns3_adapter *hns = dev->data->dev_private;
1892 struct hns3_hw *hw = &hns->hw;
1894 PMD_INIT_FUNC_TRACE();
1896 hw->adapter_state = HNS3_NIC_STOPPING;
1897 hns3_set_rxtx_function(dev);
1899 /* Disable datapath on secondary process. */
1900 hns3_mp_req_stop_rxtx(dev);
1901 /* Prevent crashes when queues are still in use. */
1902 rte_delay_ms(hw->tqps_num);
1904 rte_spinlock_lock(&hw->lock);
1905 if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1906 hns3vf_do_stop(hns);
1907 hns3vf_unmap_rx_interrupt(dev);
1908 hns3_dev_release_mbufs(hns);
1909 hw->adapter_state = HNS3_NIC_CONFIGURED;
1911 hns3_rx_scattered_reset(dev);
1912 rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1913 rte_spinlock_unlock(&hw->lock);
1917 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1919 struct hns3_adapter *hns = eth_dev->data->dev_private;
1920 struct hns3_hw *hw = &hns->hw;
1922 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1925 if (hw->adapter_state == HNS3_NIC_STARTED)
1926 hns3vf_dev_stop(eth_dev);
1928 hw->adapter_state = HNS3_NIC_CLOSING;
1929 hns3_reset_abort(hns);
1930 hw->adapter_state = HNS3_NIC_CLOSED;
1931 rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1932 hns3vf_configure_all_mc_mac_addr(hns, true);
1933 hns3vf_remove_all_vlan_table(hns);
1934 hns3vf_uninit_vf(eth_dev);
1935 hns3_free_all_queues(eth_dev);
1936 rte_free(hw->reset.wait_data);
1937 rte_free(eth_dev->process_private);
1938 eth_dev->process_private = NULL;
1939 hns3_mp_uninit_primary();
1940 hns3_warn(hw, "Close port %d finished", hw->data->port_id);
1944 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
1947 struct hns3_adapter *hns = eth_dev->data->dev_private;
1948 struct hns3_hw *hw = &hns->hw;
1949 uint32_t version = hw->fw_version;
1952 ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
1953 hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
1954 HNS3_FW_VERSION_BYTE3_S),
1955 hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
1956 HNS3_FW_VERSION_BYTE2_S),
1957 hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
1958 HNS3_FW_VERSION_BYTE1_S),
1959 hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
1960 HNS3_FW_VERSION_BYTE0_S));
1961 ret += 1; /* add the size of '\0' */
1962 if (fw_size < (uint32_t)ret)
1969 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
1970 __rte_unused int wait_to_complete)
1972 struct hns3_adapter *hns = eth_dev->data->dev_private;
1973 struct hns3_hw *hw = &hns->hw;
1974 struct hns3_mac *mac = &hw->mac;
1975 struct rte_eth_link new_link;
1977 memset(&new_link, 0, sizeof(new_link));
1978 switch (mac->link_speed) {
1979 case ETH_SPEED_NUM_10M:
1980 case ETH_SPEED_NUM_100M:
1981 case ETH_SPEED_NUM_1G:
1982 case ETH_SPEED_NUM_10G:
1983 case ETH_SPEED_NUM_25G:
1984 case ETH_SPEED_NUM_40G:
1985 case ETH_SPEED_NUM_50G:
1986 case ETH_SPEED_NUM_100G:
1987 case ETH_SPEED_NUM_200G:
1988 new_link.link_speed = mac->link_speed;
1991 new_link.link_speed = ETH_SPEED_NUM_100M;
1995 new_link.link_duplex = mac->link_duplex;
1996 new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
1997 new_link.link_autoneg =
1998 !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2000 return rte_eth_linkstatus_set(eth_dev, &new_link);
2004 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2006 struct hns3_hw *hw = &hns->hw;
2009 ret = hns3vf_set_tc_info(hns);
2013 ret = hns3_start_queues(hns, reset_queue);
2015 hns3_err(hw, "Failed to start queues: %d", ret);
2021 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2023 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2024 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2025 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2026 uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2027 uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2028 uint32_t intr_vector;
2032 if (dev->data->dev_conf.intr_conf.rxq == 0)
2035 /* disable uio/vfio intr/eventfd mapping */
2036 rte_intr_disable(intr_handle);
2038 /* check and configure queue intr-vector mapping */
2039 if (rte_intr_cap_multiple(intr_handle) ||
2040 !RTE_ETH_DEV_SRIOV(dev).active) {
2041 intr_vector = hw->used_rx_queues;
2042 /* It creates event fd for each intr vector when MSIX is used */
2043 if (rte_intr_efd_enable(intr_handle, intr_vector))
2046 if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
2047 intr_handle->intr_vec =
2048 rte_zmalloc("intr_vec",
2049 hw->used_rx_queues * sizeof(int), 0);
2050 if (intr_handle->intr_vec == NULL) {
2051 hns3_err(hw, "Failed to allocate %d rx_queues"
2052 " intr_vec", hw->used_rx_queues);
2054 goto vf_alloc_intr_vec_error;
2058 if (rte_intr_allow_others(intr_handle)) {
2059 vec = RTE_INTR_VEC_RXTX_OFFSET;
2060 base = RTE_INTR_VEC_RXTX_OFFSET;
2062 if (rte_intr_dp_is_en(intr_handle)) {
2063 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2064 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2068 goto vf_bind_vector_error;
2069 intr_handle->intr_vec[q_id] = vec;
2070 if (vec < base + intr_handle->nb_efd - 1)
2074 rte_intr_enable(intr_handle);
2077 vf_bind_vector_error:
2078 rte_intr_efd_disable(intr_handle);
2079 if (intr_handle->intr_vec) {
2080 free(intr_handle->intr_vec);
2081 intr_handle->intr_vec = NULL;
2084 vf_alloc_intr_vec_error:
2085 rte_intr_efd_disable(intr_handle);
2090 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2092 struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2093 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2094 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2098 if (dev->data->dev_conf.intr_conf.rxq == 0)
2101 if (rte_intr_dp_is_en(intr_handle)) {
2102 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2103 ret = hns3vf_bind_ring_with_vector(hw,
2104 intr_handle->intr_vec[q_id], true,
2105 HNS3_RING_TYPE_RX, q_id);
2115 hns3vf_restore_filter(struct rte_eth_dev *dev)
2117 hns3_restore_rss_filter(dev);
2121 hns3vf_dev_start(struct rte_eth_dev *dev)
2123 struct hns3_adapter *hns = dev->data->dev_private;
2124 struct hns3_hw *hw = &hns->hw;
2127 PMD_INIT_FUNC_TRACE();
2128 if (rte_atomic16_read(&hw->reset.resetting))
2131 rte_spinlock_lock(&hw->lock);
2132 hw->adapter_state = HNS3_NIC_STARTING;
2133 ret = hns3vf_do_start(hns, true);
2135 hw->adapter_state = HNS3_NIC_CONFIGURED;
2136 rte_spinlock_unlock(&hw->lock);
2139 ret = hns3vf_map_rx_interrupt(dev);
2141 hw->adapter_state = HNS3_NIC_CONFIGURED;
2142 rte_spinlock_unlock(&hw->lock);
2145 hw->adapter_state = HNS3_NIC_STARTED;
2146 rte_spinlock_unlock(&hw->lock);
2148 hns3_rx_scattered_calc(dev);
2149 hns3_set_rxtx_function(dev);
2150 hns3_mp_req_start_rxtx(dev);
2151 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
2153 hns3vf_restore_filter(dev);
2155 /* Enable interrupt of all rx queues before enabling queues */
2156 hns3_dev_all_rx_queue_intr_enable(hw, true);
2158 * When finished the initialization, enable queues to receive/transmit
2161 hns3_enable_all_queues(hw, true);
2167 is_vf_reset_done(struct hns3_hw *hw)
2169 #define HNS3_FUN_RST_ING_BITS \
2170 (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2171 BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2172 BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2173 BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2177 if (hw->reset.level == HNS3_VF_RESET) {
2178 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2179 if (val & HNS3_VF_RST_ING_BIT)
2182 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2183 if (val & HNS3_FUN_RST_ING_BITS)
2190 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2192 struct hns3_hw *hw = &hns->hw;
2193 enum hns3_reset_level reset;
2196 * According to the protocol of PCIe, FLR to a PF device resets the PF
2197 * state as well as the SR-IOV extended capability including VF Enable
2198 * which means that VFs no longer exist.
2200 * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2201 * is in FLR stage, the register state of VF device is not reliable,
2202 * so register states detection can not be carried out. In this case,
2203 * we just ignore the register states and return false to indicate that
2204 * there are no other reset states that need to be processed by driver.
2206 if (hw->reset.level == HNS3_VF_FULL_RESET)
2209 /* Check the registers to confirm whether there is reset pending */
2210 hns3vf_check_event_cause(hns, NULL);
2211 reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2212 if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2213 hns3_warn(hw, "High level reset %d is pending", reset);
2220 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2222 struct hns3_hw *hw = &hns->hw;
2223 struct hns3_wait_data *wait_data = hw->reset.wait_data;
2226 if (wait_data->result == HNS3_WAIT_SUCCESS) {
2228 * After vf reset is ready, the PF may not have completed
2229 * the reset processing. The vf sending mbox to PF may fail
2230 * during the pf reset, so it is better to add extra delay.
2232 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2233 hw->reset.level == HNS3_FLR_RESET)
2235 /* Reset retry process, no need to add extra delay. */
2236 if (hw->reset.attempts)
2238 if (wait_data->check_completion == NULL)
2241 wait_data->check_completion = NULL;
2242 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2243 wait_data->count = 1;
2244 wait_data->result = HNS3_WAIT_REQUEST;
2245 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2247 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2249 } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2250 gettimeofday(&tv, NULL);
2251 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2252 tv.tv_sec, tv.tv_usec);
2254 } else if (wait_data->result == HNS3_WAIT_REQUEST)
2257 wait_data->hns = hns;
2258 wait_data->check_completion = is_vf_reset_done;
2259 wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2260 HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2261 wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2262 wait_data->count = HNS3VF_RESET_WAIT_CNT;
2263 wait_data->result = HNS3_WAIT_REQUEST;
2264 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2269 hns3vf_prepare_reset(struct hns3_adapter *hns)
2271 struct hns3_hw *hw = &hns->hw;
2274 if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2275 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2278 rte_atomic16_set(&hw->reset.disable_cmd, 1);
2284 hns3vf_stop_service(struct hns3_adapter *hns)
2286 struct hns3_hw *hw = &hns->hw;
2287 struct rte_eth_dev *eth_dev;
2289 eth_dev = &rte_eth_devices[hw->data->port_id];
2290 if (hw->adapter_state == HNS3_NIC_STARTED)
2291 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2292 hw->mac.link_status = ETH_LINK_DOWN;
2294 hns3_set_rxtx_function(eth_dev);
2296 /* Disable datapath on secondary process. */
2297 hns3_mp_req_stop_rxtx(eth_dev);
2298 rte_delay_ms(hw->tqps_num);
2300 rte_spinlock_lock(&hw->lock);
2301 if (hw->adapter_state == HNS3_NIC_STARTED ||
2302 hw->adapter_state == HNS3_NIC_STOPPING) {
2303 hns3vf_do_stop(hns);
2304 hw->reset.mbuf_deferred_free = true;
2306 hw->reset.mbuf_deferred_free = false;
2309 * It is cumbersome for hardware to pick-and-choose entries for deletion
2310 * from table space. Hence, for function reset software intervention is
2311 * required to delete the entries.
2313 if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2314 hns3vf_configure_all_mc_mac_addr(hns, true);
2315 rte_spinlock_unlock(&hw->lock);
2321 hns3vf_start_service(struct hns3_adapter *hns)
2323 struct hns3_hw *hw = &hns->hw;
2324 struct rte_eth_dev *eth_dev;
2326 eth_dev = &rte_eth_devices[hw->data->port_id];
2327 hns3_set_rxtx_function(eth_dev);
2328 hns3_mp_req_start_rxtx(eth_dev);
2329 if (hw->adapter_state == HNS3_NIC_STARTED) {
2330 hns3vf_service_handler(eth_dev);
2332 /* Enable interrupt of all rx queues before enabling queues */
2333 hns3_dev_all_rx_queue_intr_enable(hw, true);
2335 * When finished the initialization, enable queues to receive
2336 * and transmit packets.
2338 hns3_enable_all_queues(hw, true);
2345 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2347 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2348 struct rte_ether_addr *hw_mac;
2352 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2353 * on the host by "ip link set ..." command. If the hns3 PF kernel
2354 * ethdev driver sets the MAC address for VF device after the
2355 * initialization of the related VF device, the PF driver will notify
2356 * VF driver to reset VF device to make the new MAC address effective
2357 * immediately. The hns3 VF PMD driver should check whether the MAC
2358 * address has been changed by the PF kernel ethdev driver, if changed
2359 * VF driver should configure hardware using the new MAC address in the
2360 * recovering hardware configuration stage of the reset process.
2362 ret = hns3vf_get_host_mac_addr(hw);
2366 hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2367 ret = rte_is_zero_ether_addr(hw_mac);
2369 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2371 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2373 rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2374 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2375 &hw->data->mac_addrs[0]);
2376 hns3_warn(hw, "Default MAC address has been changed to:"
2377 " %s by the host PF kernel ethdev driver",
2386 hns3vf_restore_conf(struct hns3_adapter *hns)
2388 struct hns3_hw *hw = &hns->hw;
2391 ret = hns3vf_check_default_mac_change(hw);
2395 ret = hns3vf_configure_mac_addr(hns, false);
2399 ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2403 ret = hns3vf_restore_promisc(hns);
2405 goto err_vlan_table;
2407 ret = hns3vf_restore_vlan_conf(hns);
2409 goto err_vlan_table;
2411 ret = hns3vf_get_port_base_vlan_filter_state(hw);
2413 goto err_vlan_table;
2415 ret = hns3vf_restore_rx_interrupt(hw);
2417 goto err_vlan_table;
2419 ret = hns3_restore_gro_conf(hw);
2421 goto err_vlan_table;
2423 if (hw->adapter_state == HNS3_NIC_STARTED) {
2424 ret = hns3vf_do_start(hns, false);
2426 goto err_vlan_table;
2427 hns3_info(hw, "hns3vf dev restart successful!");
2428 } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2429 hw->adapter_state = HNS3_NIC_CONFIGURED;
2433 hns3vf_configure_all_mc_mac_addr(hns, true);
2435 hns3vf_configure_mac_addr(hns, true);
2439 static enum hns3_reset_level
2440 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2442 enum hns3_reset_level reset_level;
2444 /* return the highest priority reset level amongst all */
2445 if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2446 reset_level = HNS3_VF_RESET;
2447 else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2448 reset_level = HNS3_VF_FULL_RESET;
2449 else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2450 reset_level = HNS3_VF_PF_FUNC_RESET;
2451 else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2452 reset_level = HNS3_VF_FUNC_RESET;
2453 else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2454 reset_level = HNS3_FLR_RESET;
2456 reset_level = HNS3_NONE_RESET;
2458 if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2459 return HNS3_NONE_RESET;
2465 hns3vf_reset_service(void *param)
2467 struct hns3_adapter *hns = (struct hns3_adapter *)param;
2468 struct hns3_hw *hw = &hns->hw;
2469 enum hns3_reset_level reset_level;
2470 struct timeval tv_delta;
2471 struct timeval tv_start;
2476 * The interrupt is not triggered within the delay time.
2477 * The interrupt may have been lost. It is necessary to handle
2478 * the interrupt to recover from the error.
2480 if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2481 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2482 hns3_err(hw, "Handling interrupts in delayed tasks");
2483 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2484 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2485 if (reset_level == HNS3_NONE_RESET) {
2486 hns3_err(hw, "No reset level is set, try global reset");
2487 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2490 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2493 * Hardware reset has been notified, we now have to poll & check if
2494 * hardware has actually completed the reset sequence.
2496 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2497 if (reset_level != HNS3_NONE_RESET) {
2498 gettimeofday(&tv_start, NULL);
2499 hns3_reset_process(hns, reset_level);
2500 gettimeofday(&tv, NULL);
2501 timersub(&tv, &tv_start, &tv_delta);
2502 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2503 tv_delta.tv_usec / USEC_PER_MSEC;
2504 if (msec > HNS3_RESET_PROCESS_MS)
2505 hns3_err(hw, "%d handle long time delta %" PRIx64
2506 " ms time=%ld.%.6ld",
2507 hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2512 hns3vf_reinit_dev(struct hns3_adapter *hns)
2514 struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2515 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2516 struct hns3_hw *hw = &hns->hw;
2519 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2520 rte_intr_disable(&pci_dev->intr_handle);
2521 hns3vf_set_bus_master(pci_dev, true);
2524 /* Firmware command initialize */
2525 ret = hns3_cmd_init(hw);
2527 hns3_err(hw, "Failed to init cmd: %d", ret);
2531 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2533 * UIO enables msix by writing the pcie configuration space
2534 * vfio_pci enables msix in rte_intr_enable.
2536 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2537 pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2538 if (hns3vf_enable_msix(pci_dev, true))
2539 hns3_err(hw, "Failed to enable msix");
2542 rte_intr_enable(&pci_dev->intr_handle);
2545 ret = hns3_reset_all_queues(hns);
2547 hns3_err(hw, "Failed to reset all queues: %d", ret);
2551 ret = hns3vf_init_hardware(hns);
2553 hns3_err(hw, "Failed to init hardware: %d", ret);
2560 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2561 .dev_configure = hns3vf_dev_configure,
2562 .dev_start = hns3vf_dev_start,
2563 .dev_stop = hns3vf_dev_stop,
2564 .dev_close = hns3vf_dev_close,
2565 .mtu_set = hns3vf_dev_mtu_set,
2566 .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2567 .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2568 .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2569 .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2570 .stats_get = hns3_stats_get,
2571 .stats_reset = hns3_stats_reset,
2572 .xstats_get = hns3_dev_xstats_get,
2573 .xstats_get_names = hns3_dev_xstats_get_names,
2574 .xstats_reset = hns3_dev_xstats_reset,
2575 .xstats_get_by_id = hns3_dev_xstats_get_by_id,
2576 .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2577 .dev_infos_get = hns3vf_dev_infos_get,
2578 .fw_version_get = hns3vf_fw_version_get,
2579 .rx_queue_setup = hns3_rx_queue_setup,
2580 .tx_queue_setup = hns3_tx_queue_setup,
2581 .rx_queue_release = hns3_dev_rx_queue_release,
2582 .tx_queue_release = hns3_dev_tx_queue_release,
2583 .rx_queue_intr_enable = hns3_dev_rx_queue_intr_enable,
2584 .rx_queue_intr_disable = hns3_dev_rx_queue_intr_disable,
2585 .rxq_info_get = hns3_rxq_info_get,
2586 .txq_info_get = hns3_txq_info_get,
2587 .rx_burst_mode_get = hns3_rx_burst_mode_get,
2588 .tx_burst_mode_get = hns3_tx_burst_mode_get,
2589 .mac_addr_add = hns3vf_add_mac_addr,
2590 .mac_addr_remove = hns3vf_remove_mac_addr,
2591 .mac_addr_set = hns3vf_set_default_mac_addr,
2592 .set_mc_addr_list = hns3vf_set_mc_mac_addr_list,
2593 .link_update = hns3vf_dev_link_update,
2594 .rss_hash_update = hns3_dev_rss_hash_update,
2595 .rss_hash_conf_get = hns3_dev_rss_hash_conf_get,
2596 .reta_update = hns3_dev_rss_reta_update,
2597 .reta_query = hns3_dev_rss_reta_query,
2598 .filter_ctrl = hns3_dev_filter_ctrl,
2599 .vlan_filter_set = hns3vf_vlan_filter_set,
2600 .vlan_offload_set = hns3vf_vlan_offload_set,
2601 .get_reg = hns3_get_regs,
2602 .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2605 static const struct hns3_reset_ops hns3vf_reset_ops = {
2606 .reset_service = hns3vf_reset_service,
2607 .stop_service = hns3vf_stop_service,
2608 .prepare_reset = hns3vf_prepare_reset,
2609 .wait_hardware_ready = hns3vf_wait_hardware_ready,
2610 .reinit_dev = hns3vf_reinit_dev,
2611 .restore_conf = hns3vf_restore_conf,
2612 .start_service = hns3vf_start_service,
2616 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2618 struct hns3_adapter *hns = eth_dev->data->dev_private;
2619 struct hns3_hw *hw = &hns->hw;
2622 PMD_INIT_FUNC_TRACE();
2624 eth_dev->process_private = (struct hns3_process_private *)
2625 rte_zmalloc_socket("hns3_filter_list",
2626 sizeof(struct hns3_process_private),
2627 RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2628 if (eth_dev->process_private == NULL) {
2629 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2633 /* initialize flow filter lists */
2634 hns3_filterlist_init(eth_dev);
2636 hns3_set_rxtx_function(eth_dev);
2637 eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2638 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2639 ret = hns3_mp_init_secondary();
2641 PMD_INIT_LOG(ERR, "Failed to init for secondary "
2642 "process, ret = %d", ret);
2643 goto err_mp_init_secondary;
2646 hw->secondary_cnt++;
2650 ret = hns3_mp_init_primary();
2653 "Failed to init for primary process, ret = %d",
2655 goto err_mp_init_primary;
2658 hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2660 hw->data = eth_dev->data;
2662 ret = hns3_reset_init(hw);
2664 goto err_init_reset;
2665 hw->reset.ops = &hns3vf_reset_ops;
2667 ret = hns3vf_init_vf(eth_dev);
2669 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2673 /* Allocate memory for storing MAC addresses */
2674 eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2675 sizeof(struct rte_ether_addr) *
2676 HNS3_VF_UC_MACADDR_NUM, 0);
2677 if (eth_dev->data->mac_addrs == NULL) {
2678 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2679 "to store MAC addresses",
2680 sizeof(struct rte_ether_addr) *
2681 HNS3_VF_UC_MACADDR_NUM);
2683 goto err_rte_zmalloc;
2687 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2688 * on the host by "ip link set ..." command. To avoid some incorrect
2689 * scenes, for example, hns3 VF PMD driver fails to receive and send
2690 * packets after user configure the MAC address by using the
2691 * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2692 * address strategy as the hns3 kernel ethdev driver in the
2693 * initialization. If user configure a MAC address by the ip command
2694 * for VF device, then hns3 VF PMD driver will start with it, otherwise
2695 * start with a random MAC address in the initialization.
2697 if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2698 rte_eth_random_addr(hw->mac.mac_addr);
2699 rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2700 ð_dev->data->mac_addrs[0]);
2702 hw->adapter_state = HNS3_NIC_INITIALIZED;
2704 * Pass the information to the rte_eth_dev_close() that it should also
2705 * release the private port resources.
2707 eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
2709 if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2710 hns3_err(hw, "Reschedule reset service after dev_init");
2711 hns3_schedule_reset(hns);
2713 /* IMP will wait ready flag before reset */
2714 hns3_notify_reset_ready(hw, false);
2716 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2721 hns3vf_uninit_vf(eth_dev);
2724 rte_free(hw->reset.wait_data);
2727 hns3_mp_uninit_primary();
2729 err_mp_init_primary:
2730 err_mp_init_secondary:
2731 eth_dev->dev_ops = NULL;
2732 eth_dev->rx_pkt_burst = NULL;
2733 eth_dev->tx_pkt_burst = NULL;
2734 eth_dev->tx_pkt_prepare = NULL;
2735 rte_free(eth_dev->process_private);
2736 eth_dev->process_private = NULL;
2742 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2744 struct hns3_adapter *hns = eth_dev->data->dev_private;
2745 struct hns3_hw *hw = &hns->hw;
2747 PMD_INIT_FUNC_TRACE();
2749 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2752 eth_dev->dev_ops = NULL;
2753 eth_dev->rx_pkt_burst = NULL;
2754 eth_dev->tx_pkt_burst = NULL;
2755 eth_dev->tx_pkt_prepare = NULL;
2757 if (hw->adapter_state < HNS3_NIC_CLOSING)
2758 hns3vf_dev_close(eth_dev);
2760 hw->adapter_state = HNS3_NIC_REMOVED;
2765 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2766 struct rte_pci_device *pci_dev)
2768 return rte_eth_dev_pci_generic_probe(pci_dev,
2769 sizeof(struct hns3_adapter),
2774 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2776 return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2779 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2780 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2781 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2782 { .vendor_id = 0, /* sentinel */ },
2785 static struct rte_pci_driver rte_hns3vf_pmd = {
2786 .id_table = pci_id_hns3vf_map,
2787 .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2788 .probe = eth_hns3vf_pci_probe,
2789 .remove = eth_hns3vf_pci_remove,
2792 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2793 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2794 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");