net/hns3: add simple Rx path
[dpdk.git] / drivers / net / hns3 / hns3_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <stdarg.h>
6 #include <stdbool.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <unistd.h>
10 #include <inttypes.h>
11 #include <rte_bus_pci.h>
12 #include <rte_byteorder.h>
13 #include <rte_common.h>
14 #include <rte_cycles.h>
15 #include <rte_dev.h>
16 #include <rte_eal.h>
17 #include <rte_ether.h>
18 #include <rte_vxlan.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_io.h>
21 #include <rte_ip.h>
22 #include <rte_gre.h>
23 #include <rte_net.h>
24 #include <rte_malloc.h>
25 #include <rte_pci.h>
26
27 #include "hns3_ethdev.h"
28 #include "hns3_rxtx.h"
29 #include "hns3_regs.h"
30 #include "hns3_logs.h"
31
32 #define HNS3_CFG_DESC_NUM(num)  ((num) / 8 - 1)
33 #define HNS3_RX_RING_PREFETCTH_MASK     3
34
35 static void
36 hns3_rx_queue_release_mbufs(struct hns3_rx_queue *rxq)
37 {
38         uint16_t i;
39
40         /* Note: Fake rx queue will not enter here */
41         if (rxq->sw_ring == NULL)
42                 return;
43
44         for (i = 0; i < rxq->nb_rx_desc; i++)
45                 if (rxq->sw_ring[i].mbuf)
46                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
47
48         for (i = 0; i < rxq->bulk_mbuf_num; i++)
49                 rte_pktmbuf_free_seg(rxq->bulk_mbuf[i]);
50         rxq->bulk_mbuf_num = 0;
51
52         if (rxq->pkt_first_seg) {
53                 rte_pktmbuf_free(rxq->pkt_first_seg);
54                 rxq->pkt_first_seg = NULL;
55         }
56 }
57
58 static void
59 hns3_tx_queue_release_mbufs(struct hns3_tx_queue *txq)
60 {
61         uint16_t i;
62
63         /* Note: Fake rx queue will not enter here */
64         if (txq->sw_ring) {
65                 for (i = 0; i < txq->nb_tx_desc; i++) {
66                         if (txq->sw_ring[i].mbuf) {
67                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
68                                 txq->sw_ring[i].mbuf = NULL;
69                         }
70                 }
71         }
72 }
73
74 static void
75 hns3_rx_queue_release(void *queue)
76 {
77         struct hns3_rx_queue *rxq = queue;
78         if (rxq) {
79                 hns3_rx_queue_release_mbufs(rxq);
80                 if (rxq->mz)
81                         rte_memzone_free(rxq->mz);
82                 if (rxq->sw_ring)
83                         rte_free(rxq->sw_ring);
84                 rte_free(rxq);
85         }
86 }
87
88 static void
89 hns3_tx_queue_release(void *queue)
90 {
91         struct hns3_tx_queue *txq = queue;
92         if (txq) {
93                 hns3_tx_queue_release_mbufs(txq);
94                 if (txq->mz)
95                         rte_memzone_free(txq->mz);
96                 if (txq->sw_ring)
97                         rte_free(txq->sw_ring);
98                 rte_free(txq);
99         }
100 }
101
102 void
103 hns3_dev_rx_queue_release(void *queue)
104 {
105         struct hns3_rx_queue *rxq = queue;
106         struct hns3_adapter *hns;
107
108         if (rxq == NULL)
109                 return;
110
111         hns = rxq->hns;
112         rte_spinlock_lock(&hns->hw.lock);
113         hns3_rx_queue_release(queue);
114         rte_spinlock_unlock(&hns->hw.lock);
115 }
116
117 void
118 hns3_dev_tx_queue_release(void *queue)
119 {
120         struct hns3_tx_queue *txq = queue;
121         struct hns3_adapter *hns;
122
123         if (txq == NULL)
124                 return;
125
126         hns = txq->hns;
127         rte_spinlock_lock(&hns->hw.lock);
128         hns3_tx_queue_release(queue);
129         rte_spinlock_unlock(&hns->hw.lock);
130 }
131
132 static void
133 hns3_fake_rx_queue_release(struct hns3_rx_queue *queue)
134 {
135         struct hns3_rx_queue *rxq = queue;
136         struct hns3_adapter *hns;
137         struct hns3_hw *hw;
138         uint16_t idx;
139
140         if (rxq == NULL)
141                 return;
142
143         hns = rxq->hns;
144         hw = &hns->hw;
145         idx = rxq->queue_id;
146         if (hw->fkq_data.rx_queues[idx]) {
147                 hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
148                 hw->fkq_data.rx_queues[idx] = NULL;
149         }
150
151         /* free fake rx queue arrays */
152         if (idx == (hw->fkq_data.nb_fake_rx_queues - 1)) {
153                 hw->fkq_data.nb_fake_rx_queues = 0;
154                 rte_free(hw->fkq_data.rx_queues);
155                 hw->fkq_data.rx_queues = NULL;
156         }
157 }
158
159 static void
160 hns3_fake_tx_queue_release(struct hns3_tx_queue *queue)
161 {
162         struct hns3_tx_queue *txq = queue;
163         struct hns3_adapter *hns;
164         struct hns3_hw *hw;
165         uint16_t idx;
166
167         if (txq == NULL)
168                 return;
169
170         hns = txq->hns;
171         hw = &hns->hw;
172         idx = txq->queue_id;
173         if (hw->fkq_data.tx_queues[idx]) {
174                 hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
175                 hw->fkq_data.tx_queues[idx] = NULL;
176         }
177
178         /* free fake tx queue arrays */
179         if (idx == (hw->fkq_data.nb_fake_tx_queues - 1)) {
180                 hw->fkq_data.nb_fake_tx_queues = 0;
181                 rte_free(hw->fkq_data.tx_queues);
182                 hw->fkq_data.tx_queues = NULL;
183         }
184 }
185
186 static void
187 hns3_free_rx_queues(struct rte_eth_dev *dev)
188 {
189         struct hns3_adapter *hns = dev->data->dev_private;
190         struct hns3_fake_queue_data *fkq_data;
191         struct hns3_hw *hw = &hns->hw;
192         uint16_t nb_rx_q;
193         uint16_t i;
194
195         nb_rx_q = hw->data->nb_rx_queues;
196         for (i = 0; i < nb_rx_q; i++) {
197                 if (dev->data->rx_queues[i]) {
198                         hns3_rx_queue_release(dev->data->rx_queues[i]);
199                         dev->data->rx_queues[i] = NULL;
200                 }
201         }
202
203         /* Free fake Rx queues */
204         fkq_data = &hw->fkq_data;
205         for (i = 0; i < fkq_data->nb_fake_rx_queues; i++) {
206                 if (fkq_data->rx_queues[i])
207                         hns3_fake_rx_queue_release(fkq_data->rx_queues[i]);
208         }
209 }
210
211 static void
212 hns3_free_tx_queues(struct rte_eth_dev *dev)
213 {
214         struct hns3_adapter *hns = dev->data->dev_private;
215         struct hns3_fake_queue_data *fkq_data;
216         struct hns3_hw *hw = &hns->hw;
217         uint16_t nb_tx_q;
218         uint16_t i;
219
220         nb_tx_q = hw->data->nb_tx_queues;
221         for (i = 0; i < nb_tx_q; i++) {
222                 if (dev->data->tx_queues[i]) {
223                         hns3_tx_queue_release(dev->data->tx_queues[i]);
224                         dev->data->tx_queues[i] = NULL;
225                 }
226         }
227
228         /* Free fake Tx queues */
229         fkq_data = &hw->fkq_data;
230         for (i = 0; i < fkq_data->nb_fake_tx_queues; i++) {
231                 if (fkq_data->tx_queues[i])
232                         hns3_fake_tx_queue_release(fkq_data->tx_queues[i]);
233         }
234 }
235
236 void
237 hns3_free_all_queues(struct rte_eth_dev *dev)
238 {
239         hns3_free_rx_queues(dev);
240         hns3_free_tx_queues(dev);
241 }
242
243 static int
244 hns3_alloc_rx_queue_mbufs(struct hns3_hw *hw, struct hns3_rx_queue *rxq)
245 {
246         struct rte_mbuf *mbuf;
247         uint64_t dma_addr;
248         uint16_t i;
249
250         for (i = 0; i < rxq->nb_rx_desc; i++) {
251                 mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
252                 if (unlikely(mbuf == NULL)) {
253                         hns3_err(hw, "Failed to allocate RXD[%d] for rx queue!",
254                                  i);
255                         hns3_rx_queue_release_mbufs(rxq);
256                         return -ENOMEM;
257                 }
258
259                 rte_mbuf_refcnt_set(mbuf, 1);
260                 mbuf->next = NULL;
261                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
262                 mbuf->nb_segs = 1;
263                 mbuf->port = rxq->port_id;
264
265                 rxq->sw_ring[i].mbuf = mbuf;
266                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
267                 rxq->rx_ring[i].addr = dma_addr;
268                 rxq->rx_ring[i].rx.bd_base_info = 0;
269         }
270
271         return 0;
272 }
273
274 static int
275 hns3_buf_size2type(uint32_t buf_size)
276 {
277         int bd_size_type;
278
279         switch (buf_size) {
280         case 512:
281                 bd_size_type = HNS3_BD_SIZE_512_TYPE;
282                 break;
283         case 1024:
284                 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
285                 break;
286         case 4096:
287                 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
288                 break;
289         default:
290                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
291         }
292
293         return bd_size_type;
294 }
295
296 static void
297 hns3_init_rx_queue_hw(struct hns3_rx_queue *rxq)
298 {
299         uint32_t rx_buf_len = rxq->rx_buf_len;
300         uint64_t dma_addr = rxq->rx_ring_phys_addr;
301
302         hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_L_REG, (uint32_t)dma_addr);
303         hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_H_REG,
304                        (uint32_t)((dma_addr >> 31) >> 1));
305
306         hns3_write_dev(rxq, HNS3_RING_RX_BD_LEN_REG,
307                        hns3_buf_size2type(rx_buf_len));
308         hns3_write_dev(rxq, HNS3_RING_RX_BD_NUM_REG,
309                        HNS3_CFG_DESC_NUM(rxq->nb_rx_desc));
310 }
311
312 static void
313 hns3_init_tx_queue_hw(struct hns3_tx_queue *txq)
314 {
315         uint64_t dma_addr = txq->tx_ring_phys_addr;
316
317         hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_L_REG, (uint32_t)dma_addr);
318         hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_H_REG,
319                        (uint32_t)((dma_addr >> 31) >> 1));
320
321         hns3_write_dev(txq, HNS3_RING_TX_BD_NUM_REG,
322                        HNS3_CFG_DESC_NUM(txq->nb_tx_desc));
323 }
324
325 void
326 hns3_update_all_queues_pvid_state(struct hns3_hw *hw)
327 {
328         uint16_t nb_rx_q = hw->data->nb_rx_queues;
329         uint16_t nb_tx_q = hw->data->nb_tx_queues;
330         struct hns3_rx_queue *rxq;
331         struct hns3_tx_queue *txq;
332         int pvid_state;
333         int i;
334
335         pvid_state = hw->port_base_vlan_cfg.state;
336         for (i = 0; i < hw->cfg_max_queues; i++) {
337                 if (i < nb_rx_q) {
338                         rxq = hw->data->rx_queues[i];
339                         if (rxq != NULL)
340                                 rxq->pvid_state = pvid_state;
341                 }
342                 if (i < nb_tx_q) {
343                         txq = hw->data->tx_queues[i];
344                         if (txq != NULL)
345                                 txq->pvid_state = pvid_state;
346                 }
347         }
348 }
349
350 void
351 hns3_enable_all_queues(struct hns3_hw *hw, bool en)
352 {
353         uint16_t nb_rx_q = hw->data->nb_rx_queues;
354         uint16_t nb_tx_q = hw->data->nb_tx_queues;
355         struct hns3_rx_queue *rxq;
356         struct hns3_tx_queue *txq;
357         uint32_t rcb_reg;
358         int i;
359
360         for (i = 0; i < hw->cfg_max_queues; i++) {
361                 if (i < nb_rx_q)
362                         rxq = hw->data->rx_queues[i];
363                 else
364                         rxq = hw->fkq_data.rx_queues[i - nb_rx_q];
365                 if (i < nb_tx_q)
366                         txq = hw->data->tx_queues[i];
367                 else
368                         txq = hw->fkq_data.tx_queues[i - nb_tx_q];
369                 if (rxq == NULL || txq == NULL ||
370                     (en && (rxq->rx_deferred_start || txq->tx_deferred_start)))
371                         continue;
372
373                 rcb_reg = hns3_read_dev(rxq, HNS3_RING_EN_REG);
374                 if (en)
375                         rcb_reg |= BIT(HNS3_RING_EN_B);
376                 else
377                         rcb_reg &= ~BIT(HNS3_RING_EN_B);
378                 hns3_write_dev(rxq, HNS3_RING_EN_REG, rcb_reg);
379         }
380 }
381
382 static int
383 hns3_tqp_enable(struct hns3_hw *hw, uint16_t queue_id, bool enable)
384 {
385         struct hns3_cfg_com_tqp_queue_cmd *req;
386         struct hns3_cmd_desc desc;
387         int ret;
388
389         req = (struct hns3_cfg_com_tqp_queue_cmd *)desc.data;
390
391         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_COM_TQP_QUEUE, false);
392         req->tqp_id = rte_cpu_to_le_16(queue_id & HNS3_RING_ID_MASK);
393         req->stream_id = 0;
394         hns3_set_bit(req->enable, HNS3_TQP_ENABLE_B, enable ? 1 : 0);
395
396         ret = hns3_cmd_send(hw, &desc, 1);
397         if (ret)
398                 hns3_err(hw, "TQP enable fail, ret = %d", ret);
399
400         return ret;
401 }
402
403 static int
404 hns3_send_reset_tqp_cmd(struct hns3_hw *hw, uint16_t queue_id, bool enable)
405 {
406         struct hns3_reset_tqp_queue_cmd *req;
407         struct hns3_cmd_desc desc;
408         int ret;
409
410         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, false);
411
412         req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
413         req->tqp_id = rte_cpu_to_le_16(queue_id & HNS3_RING_ID_MASK);
414         hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0);
415
416         ret = hns3_cmd_send(hw, &desc, 1);
417         if (ret)
418                 hns3_err(hw, "Send tqp reset cmd error, ret = %d", ret);
419
420         return ret;
421 }
422
423 static int
424 hns3_get_reset_status(struct hns3_hw *hw, uint16_t queue_id)
425 {
426         struct hns3_reset_tqp_queue_cmd *req;
427         struct hns3_cmd_desc desc;
428         int ret;
429
430         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, true);
431
432         req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
433         req->tqp_id = rte_cpu_to_le_16(queue_id & HNS3_RING_ID_MASK);
434
435         ret = hns3_cmd_send(hw, &desc, 1);
436         if (ret) {
437                 hns3_err(hw, "Get reset status error, ret =%d", ret);
438                 return ret;
439         }
440
441         return hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B);
442 }
443
444 static int
445 hns3_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
446 {
447 #define HNS3_TQP_RESET_TRY_MS   200
448         uint64_t end;
449         int reset_status;
450         int ret;
451
452         ret = hns3_tqp_enable(hw, queue_id, false);
453         if (ret)
454                 return ret;
455
456         /*
457          * In current version VF is not supported when PF is driven by DPDK
458          * driver, all task queue pairs are mapped to PF function, so PF's queue
459          * id is equals to the global queue id in PF range.
460          */
461         ret = hns3_send_reset_tqp_cmd(hw, queue_id, true);
462         if (ret) {
463                 hns3_err(hw, "Send reset tqp cmd fail, ret = %d", ret);
464                 return ret;
465         }
466         ret = -ETIMEDOUT;
467         end = get_timeofday_ms() + HNS3_TQP_RESET_TRY_MS;
468         do {
469                 /* Wait for tqp hw reset */
470                 rte_delay_ms(HNS3_POLL_RESPONE_MS);
471                 reset_status = hns3_get_reset_status(hw, queue_id);
472                 if (reset_status) {
473                         ret = 0;
474                         break;
475                 }
476         } while (get_timeofday_ms() < end);
477
478         if (ret) {
479                 hns3_err(hw, "Reset TQP fail, ret = %d", ret);
480                 return ret;
481         }
482
483         ret = hns3_send_reset_tqp_cmd(hw, queue_id, false);
484         if (ret)
485                 hns3_err(hw, "Deassert the soft reset fail, ret = %d", ret);
486
487         return ret;
488 }
489
490 static int
491 hns3vf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
492 {
493         uint8_t msg_data[2];
494         int ret;
495
496         /* Disable VF's queue before send queue reset msg to PF */
497         ret = hns3_tqp_enable(hw, queue_id, false);
498         if (ret)
499                 return ret;
500
501         memcpy(msg_data, &queue_id, sizeof(uint16_t));
502
503         return hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data,
504                                  sizeof(msg_data), true, NULL, 0);
505 }
506
507 static int
508 hns3_reset_queue(struct hns3_adapter *hns, uint16_t queue_id)
509 {
510         struct hns3_hw *hw = &hns->hw;
511         if (hns->is_vf)
512                 return hns3vf_reset_tqp(hw, queue_id);
513         else
514                 return hns3_reset_tqp(hw, queue_id);
515 }
516
517 int
518 hns3_reset_all_queues(struct hns3_adapter *hns)
519 {
520         struct hns3_hw *hw = &hns->hw;
521         int ret, i;
522
523         for (i = 0; i < hw->cfg_max_queues; i++) {
524                 ret = hns3_reset_queue(hns, i);
525                 if (ret) {
526                         hns3_err(hw, "Failed to reset No.%d queue: %d", i, ret);
527                         return ret;
528                 }
529         }
530         return 0;
531 }
532
533 void
534 hns3_set_queue_intr_gl(struct hns3_hw *hw, uint16_t queue_id,
535                        uint8_t gl_idx, uint16_t gl_value)
536 {
537         uint32_t offset[] = {HNS3_TQP_INTR_GL0_REG,
538                              HNS3_TQP_INTR_GL1_REG,
539                              HNS3_TQP_INTR_GL2_REG};
540         uint32_t addr, value;
541
542         if (gl_idx >= RTE_DIM(offset) || gl_value > HNS3_TQP_INTR_GL_MAX)
543                 return;
544
545         addr = offset[gl_idx] + queue_id * HNS3_TQP_INTR_REG_SIZE;
546         if (hw->intr.gl_unit == HNS3_INTR_COALESCE_GL_UINT_1US)
547                 value = gl_value | HNS3_TQP_INTR_GL_UNIT_1US;
548         else
549                 value = HNS3_GL_USEC_TO_REG(gl_value);
550
551         hns3_write_dev(hw, addr, value);
552 }
553
554 void
555 hns3_set_queue_intr_rl(struct hns3_hw *hw, uint16_t queue_id, uint16_t rl_value)
556 {
557         uint32_t addr, value;
558
559         if (rl_value > HNS3_TQP_INTR_RL_MAX)
560                 return;
561
562         addr = HNS3_TQP_INTR_RL_REG + queue_id * HNS3_TQP_INTR_REG_SIZE;
563         value = HNS3_RL_USEC_TO_REG(rl_value);
564         if (value > 0)
565                 value |= HNS3_TQP_INTR_RL_ENABLE_MASK;
566
567         hns3_write_dev(hw, addr, value);
568 }
569
570 void
571 hns3_set_queue_intr_ql(struct hns3_hw *hw, uint16_t queue_id, uint16_t ql_value)
572 {
573         uint32_t addr;
574
575         if (hw->intr.coalesce_mode == HNS3_INTR_COALESCE_NON_QL)
576                 return;
577
578         addr = HNS3_TQP_INTR_TX_QL_REG + queue_id * HNS3_TQP_INTR_REG_SIZE;
579         hns3_write_dev(hw, addr, ql_value);
580
581         addr = HNS3_TQP_INTR_RX_QL_REG + queue_id * HNS3_TQP_INTR_REG_SIZE;
582         hns3_write_dev(hw, addr, ql_value);
583 }
584
585 static void
586 hns3_queue_intr_enable(struct hns3_hw *hw, uint16_t queue_id, bool en)
587 {
588         uint32_t addr, value;
589
590         addr = HNS3_TQP_INTR_CTRL_REG + queue_id * HNS3_TQP_INTR_REG_SIZE;
591         value = en ? 1 : 0;
592
593         hns3_write_dev(hw, addr, value);
594 }
595
596 /*
597  * Enable all rx queue interrupt when in interrupt rx mode.
598  * This api was called before enable queue rx&tx (in normal start or reset
599  * recover scenes), used to fix hardware rx queue interrupt enable was clear
600  * when FLR.
601  */
602 void
603 hns3_dev_all_rx_queue_intr_enable(struct hns3_hw *hw, bool en)
604 {
605         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
606         uint16_t nb_rx_q = hw->data->nb_rx_queues;
607         int i;
608
609         if (dev->data->dev_conf.intr_conf.rxq == 0)
610                 return;
611
612         for (i = 0; i < nb_rx_q; i++)
613                 hns3_queue_intr_enable(hw, i, en);
614 }
615
616 int
617 hns3_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
618 {
619         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
620         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
621         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
622
623         if (dev->data->dev_conf.intr_conf.rxq == 0)
624                 return -ENOTSUP;
625
626         hns3_queue_intr_enable(hw, queue_id, true);
627
628         return rte_intr_ack(intr_handle);
629 }
630
631 int
632 hns3_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
633 {
634         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
635
636         if (dev->data->dev_conf.intr_conf.rxq == 0)
637                 return -ENOTSUP;
638
639         hns3_queue_intr_enable(hw, queue_id, false);
640
641         return 0;
642 }
643
644 static int
645 hns3_dev_rx_queue_start(struct hns3_adapter *hns, uint16_t idx)
646 {
647         struct hns3_hw *hw = &hns->hw;
648         struct hns3_rx_queue *rxq;
649         int ret;
650
651         PMD_INIT_FUNC_TRACE();
652
653         rxq = (struct hns3_rx_queue *)hw->data->rx_queues[idx];
654         ret = hns3_alloc_rx_queue_mbufs(hw, rxq);
655         if (ret) {
656                 hns3_err(hw, "Failed to alloc mbuf for No.%d rx queue: %d",
657                          idx, ret);
658                 return ret;
659         }
660
661         rxq->next_to_use = 0;
662         rxq->rx_free_hold = 0;
663         rxq->pkt_first_seg = NULL;
664         rxq->pkt_last_seg = NULL;
665         hns3_init_rx_queue_hw(rxq);
666
667         return 0;
668 }
669
670 static void
671 hns3_fake_rx_queue_start(struct hns3_adapter *hns, uint16_t idx)
672 {
673         struct hns3_hw *hw = &hns->hw;
674         struct hns3_rx_queue *rxq;
675
676         rxq = (struct hns3_rx_queue *)hw->fkq_data.rx_queues[idx];
677         rxq->next_to_use = 0;
678         rxq->rx_free_hold = 0;
679         hns3_init_rx_queue_hw(rxq);
680 }
681
682 static void
683 hns3_init_tx_queue(struct hns3_tx_queue *queue)
684 {
685         struct hns3_tx_queue *txq = queue;
686         struct hns3_desc *desc;
687         int i;
688
689         /* Clear tx bd */
690         desc = txq->tx_ring;
691         for (i = 0; i < txq->nb_tx_desc; i++) {
692                 desc->tx.tp_fe_sc_vld_ra_ri = 0;
693                 desc++;
694         }
695
696         txq->next_to_use = 0;
697         txq->next_to_clean = 0;
698         txq->tx_bd_ready = txq->nb_tx_desc - 1;
699         hns3_init_tx_queue_hw(txq);
700 }
701
702 static void
703 hns3_dev_tx_queue_start(struct hns3_adapter *hns, uint16_t idx)
704 {
705         struct hns3_hw *hw = &hns->hw;
706         struct hns3_tx_queue *txq;
707
708         txq = (struct hns3_tx_queue *)hw->data->tx_queues[idx];
709         hns3_init_tx_queue(txq);
710 }
711
712 static void
713 hns3_fake_tx_queue_start(struct hns3_adapter *hns, uint16_t idx)
714 {
715         struct hns3_hw *hw = &hns->hw;
716         struct hns3_tx_queue *txq;
717
718         txq = (struct hns3_tx_queue *)hw->fkq_data.tx_queues[idx];
719         hns3_init_tx_queue(txq);
720 }
721
722 static void
723 hns3_init_tx_ring_tc(struct hns3_adapter *hns)
724 {
725         struct hns3_hw *hw = &hns->hw;
726         struct hns3_tx_queue *txq;
727         int i, num;
728
729         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
730                 struct hns3_tc_queue_info *tc_queue = &hw->tc_queue[i];
731                 int j;
732
733                 if (!tc_queue->enable)
734                         continue;
735
736                 for (j = 0; j < tc_queue->tqp_count; j++) {
737                         num = tc_queue->tqp_offset + j;
738                         txq = (struct hns3_tx_queue *)hw->data->tx_queues[num];
739                         if (txq == NULL)
740                                 continue;
741
742                         hns3_write_dev(txq, HNS3_RING_TX_TC_REG, tc_queue->tc);
743                 }
744         }
745 }
746
747 static int
748 hns3_start_rx_queues(struct hns3_adapter *hns)
749 {
750         struct hns3_hw *hw = &hns->hw;
751         struct hns3_rx_queue *rxq;
752         int i, j;
753         int ret;
754
755         /* Initialize RSS for queues */
756         ret = hns3_config_rss(hns);
757         if (ret) {
758                 hns3_err(hw, "Failed to configure rss %d", ret);
759                 return ret;
760         }
761
762         for (i = 0; i < hw->data->nb_rx_queues; i++) {
763                 rxq = (struct hns3_rx_queue *)hw->data->rx_queues[i];
764                 if (rxq == NULL || rxq->rx_deferred_start)
765                         continue;
766                 ret = hns3_dev_rx_queue_start(hns, i);
767                 if (ret) {
768                         hns3_err(hw, "Failed to start No.%d rx queue: %d", i,
769                                  ret);
770                         goto out;
771                 }
772         }
773
774         for (i = 0; i < hw->fkq_data.nb_fake_rx_queues; i++) {
775                 rxq = (struct hns3_rx_queue *)hw->fkq_data.rx_queues[i];
776                 if (rxq == NULL || rxq->rx_deferred_start)
777                         continue;
778                 hns3_fake_rx_queue_start(hns, i);
779         }
780         return 0;
781
782 out:
783         for (j = 0; j < i; j++) {
784                 rxq = (struct hns3_rx_queue *)hw->data->rx_queues[j];
785                 hns3_rx_queue_release_mbufs(rxq);
786         }
787
788         return ret;
789 }
790
791 static void
792 hns3_start_tx_queues(struct hns3_adapter *hns)
793 {
794         struct hns3_hw *hw = &hns->hw;
795         struct hns3_tx_queue *txq;
796         int i;
797
798         for (i = 0; i < hw->data->nb_tx_queues; i++) {
799                 txq = (struct hns3_tx_queue *)hw->data->tx_queues[i];
800                 if (txq == NULL || txq->tx_deferred_start)
801                         continue;
802                 hns3_dev_tx_queue_start(hns, i);
803         }
804
805         for (i = 0; i < hw->fkq_data.nb_fake_tx_queues; i++) {
806                 txq = (struct hns3_tx_queue *)hw->fkq_data.tx_queues[i];
807                 if (txq == NULL || txq->tx_deferred_start)
808                         continue;
809                 hns3_fake_tx_queue_start(hns, i);
810         }
811
812         hns3_init_tx_ring_tc(hns);
813 }
814
815 /*
816  * Start all queues.
817  * Note: just init and setup queues, and don't enable queue rx&tx.
818  */
819 int
820 hns3_start_queues(struct hns3_adapter *hns, bool reset_queue)
821 {
822         struct hns3_hw *hw = &hns->hw;
823         int ret;
824
825         if (reset_queue) {
826                 ret = hns3_reset_all_queues(hns);
827                 if (ret) {
828                         hns3_err(hw, "Failed to reset all queues %d", ret);
829                         return ret;
830                 }
831         }
832
833         ret = hns3_start_rx_queues(hns);
834         if (ret) {
835                 hns3_err(hw, "Failed to start rx queues: %d", ret);
836                 return ret;
837         }
838
839         hns3_start_tx_queues(hns);
840
841         return 0;
842 }
843
844 int
845 hns3_stop_queues(struct hns3_adapter *hns, bool reset_queue)
846 {
847         struct hns3_hw *hw = &hns->hw;
848         int ret;
849
850         hns3_enable_all_queues(hw, false);
851         if (reset_queue) {
852                 ret = hns3_reset_all_queues(hns);
853                 if (ret) {
854                         hns3_err(hw, "Failed to reset all queues %d", ret);
855                         return ret;
856                 }
857         }
858         return 0;
859 }
860
861 static void*
862 hns3_alloc_rxq_and_dma_zone(struct rte_eth_dev *dev,
863                             struct hns3_queue_info *q_info)
864 {
865         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
866         const struct rte_memzone *rx_mz;
867         struct hns3_rx_queue *rxq;
868         unsigned int rx_desc;
869
870         rxq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_rx_queue),
871                                  RTE_CACHE_LINE_SIZE, q_info->socket_id);
872         if (rxq == NULL) {
873                 hns3_err(hw, "Failed to allocate memory for No.%d rx ring!",
874                          q_info->idx);
875                 return NULL;
876         }
877
878         /* Allocate rx ring hardware descriptors. */
879         rxq->queue_id = q_info->idx;
880         rxq->nb_rx_desc = q_info->nb_desc;
881         rx_desc = rxq->nb_rx_desc * sizeof(struct hns3_desc);
882         rx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
883                                          rx_desc, HNS3_RING_BASE_ALIGN,
884                                          q_info->socket_id);
885         if (rx_mz == NULL) {
886                 hns3_err(hw, "Failed to reserve DMA memory for No.%d rx ring!",
887                          q_info->idx);
888                 hns3_rx_queue_release(rxq);
889                 return NULL;
890         }
891         rxq->mz = rx_mz;
892         rxq->rx_ring = (struct hns3_desc *)rx_mz->addr;
893         rxq->rx_ring_phys_addr = rx_mz->iova;
894
895         hns3_dbg(hw, "No.%d rx descriptors iova 0x%" PRIx64, q_info->idx,
896                  rxq->rx_ring_phys_addr);
897
898         return rxq;
899 }
900
901 static int
902 hns3_fake_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
903                          uint16_t nb_desc, unsigned int socket_id)
904 {
905         struct hns3_adapter *hns = dev->data->dev_private;
906         struct hns3_hw *hw = &hns->hw;
907         struct hns3_queue_info q_info;
908         struct hns3_rx_queue *rxq;
909         uint16_t nb_rx_q;
910
911         if (hw->fkq_data.rx_queues[idx]) {
912                 hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
913                 hw->fkq_data.rx_queues[idx] = NULL;
914         }
915
916         q_info.idx = idx;
917         q_info.socket_id = socket_id;
918         q_info.nb_desc = nb_desc;
919         q_info.type = "hns3 fake RX queue";
920         q_info.ring_name = "rx_fake_ring";
921         rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
922         if (rxq == NULL) {
923                 hns3_err(hw, "Failed to setup No.%d fake rx ring.", idx);
924                 return -ENOMEM;
925         }
926
927         /* Don't need alloc sw_ring, because upper applications don't use it */
928         rxq->sw_ring = NULL;
929
930         rxq->hns = hns;
931         rxq->rx_deferred_start = false;
932         rxq->port_id = dev->data->port_id;
933         rxq->configured = true;
934         nb_rx_q = dev->data->nb_rx_queues;
935         rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
936                                 (nb_rx_q + idx) * HNS3_TQP_REG_SIZE);
937         rxq->rx_buf_len = HNS3_MIN_BD_BUF_SIZE;
938
939         rte_spinlock_lock(&hw->lock);
940         hw->fkq_data.rx_queues[idx] = rxq;
941         rte_spinlock_unlock(&hw->lock);
942
943         return 0;
944 }
945
946 static void*
947 hns3_alloc_txq_and_dma_zone(struct rte_eth_dev *dev,
948                             struct hns3_queue_info *q_info)
949 {
950         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
951         const struct rte_memzone *tx_mz;
952         struct hns3_tx_queue *txq;
953         struct hns3_desc *desc;
954         unsigned int tx_desc;
955         int i;
956
957         txq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_tx_queue),
958                                  RTE_CACHE_LINE_SIZE, q_info->socket_id);
959         if (txq == NULL) {
960                 hns3_err(hw, "Failed to allocate memory for No.%d tx ring!",
961                          q_info->idx);
962                 return NULL;
963         }
964
965         /* Allocate tx ring hardware descriptors. */
966         txq->queue_id = q_info->idx;
967         txq->nb_tx_desc = q_info->nb_desc;
968         tx_desc = txq->nb_tx_desc * sizeof(struct hns3_desc);
969         tx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
970                                          tx_desc, HNS3_RING_BASE_ALIGN,
971                                          q_info->socket_id);
972         if (tx_mz == NULL) {
973                 hns3_err(hw, "Failed to reserve DMA memory for No.%d tx ring!",
974                          q_info->idx);
975                 hns3_tx_queue_release(txq);
976                 return NULL;
977         }
978         txq->mz = tx_mz;
979         txq->tx_ring = (struct hns3_desc *)tx_mz->addr;
980         txq->tx_ring_phys_addr = tx_mz->iova;
981
982         hns3_dbg(hw, "No.%d tx descriptors iova 0x%" PRIx64, q_info->idx,
983                  txq->tx_ring_phys_addr);
984
985         /* Clear tx bd */
986         desc = txq->tx_ring;
987         for (i = 0; i < txq->nb_tx_desc; i++) {
988                 desc->tx.tp_fe_sc_vld_ra_ri = 0;
989                 desc++;
990         }
991
992         return txq;
993 }
994
995 static int
996 hns3_fake_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
997                          uint16_t nb_desc, unsigned int socket_id)
998 {
999         struct hns3_adapter *hns = dev->data->dev_private;
1000         struct hns3_hw *hw = &hns->hw;
1001         struct hns3_queue_info q_info;
1002         struct hns3_tx_queue *txq;
1003         uint16_t nb_tx_q;
1004
1005         if (hw->fkq_data.tx_queues[idx] != NULL) {
1006                 hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
1007                 hw->fkq_data.tx_queues[idx] = NULL;
1008         }
1009
1010         q_info.idx = idx;
1011         q_info.socket_id = socket_id;
1012         q_info.nb_desc = nb_desc;
1013         q_info.type = "hns3 fake TX queue";
1014         q_info.ring_name = "tx_fake_ring";
1015         txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
1016         if (txq == NULL) {
1017                 hns3_err(hw, "Failed to setup No.%d fake tx ring.", idx);
1018                 return -ENOMEM;
1019         }
1020
1021         /* Don't need alloc sw_ring, because upper applications don't use it */
1022         txq->sw_ring = NULL;
1023
1024         txq->hns = hns;
1025         txq->tx_deferred_start = false;
1026         txq->port_id = dev->data->port_id;
1027         txq->configured = true;
1028         nb_tx_q = dev->data->nb_tx_queues;
1029         txq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
1030                                 (nb_tx_q + idx) * HNS3_TQP_REG_SIZE);
1031
1032         rte_spinlock_lock(&hw->lock);
1033         hw->fkq_data.tx_queues[idx] = txq;
1034         rte_spinlock_unlock(&hw->lock);
1035
1036         return 0;
1037 }
1038
1039 static int
1040 hns3_fake_rx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
1041 {
1042         uint16_t old_nb_queues = hw->fkq_data.nb_fake_rx_queues;
1043         void **rxq;
1044         uint8_t i;
1045
1046         if (hw->fkq_data.rx_queues == NULL && nb_queues != 0) {
1047                 /* first time configuration */
1048                 uint32_t size;
1049                 size = sizeof(hw->fkq_data.rx_queues[0]) * nb_queues;
1050                 hw->fkq_data.rx_queues = rte_zmalloc("fake_rx_queues", size,
1051                                                      RTE_CACHE_LINE_SIZE);
1052                 if (hw->fkq_data.rx_queues == NULL) {
1053                         hw->fkq_data.nb_fake_rx_queues = 0;
1054                         return -ENOMEM;
1055                 }
1056         } else if (hw->fkq_data.rx_queues != NULL && nb_queues != 0) {
1057                 /* re-configure */
1058                 rxq = hw->fkq_data.rx_queues;
1059                 for (i = nb_queues; i < old_nb_queues; i++)
1060                         hns3_dev_rx_queue_release(rxq[i]);
1061
1062                 rxq = rte_realloc(rxq, sizeof(rxq[0]) * nb_queues,
1063                                   RTE_CACHE_LINE_SIZE);
1064                 if (rxq == NULL)
1065                         return -ENOMEM;
1066                 if (nb_queues > old_nb_queues) {
1067                         uint16_t new_qs = nb_queues - old_nb_queues;
1068                         memset(rxq + old_nb_queues, 0, sizeof(rxq[0]) * new_qs);
1069                 }
1070
1071                 hw->fkq_data.rx_queues = rxq;
1072         } else if (hw->fkq_data.rx_queues != NULL && nb_queues == 0) {
1073                 rxq = hw->fkq_data.rx_queues;
1074                 for (i = nb_queues; i < old_nb_queues; i++)
1075                         hns3_dev_rx_queue_release(rxq[i]);
1076
1077                 rte_free(hw->fkq_data.rx_queues);
1078                 hw->fkq_data.rx_queues = NULL;
1079         }
1080
1081         hw->fkq_data.nb_fake_rx_queues = nb_queues;
1082
1083         return 0;
1084 }
1085
1086 static int
1087 hns3_fake_tx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
1088 {
1089         uint16_t old_nb_queues = hw->fkq_data.nb_fake_tx_queues;
1090         void **txq;
1091         uint8_t i;
1092
1093         if (hw->fkq_data.tx_queues == NULL && nb_queues != 0) {
1094                 /* first time configuration */
1095                 uint32_t size;
1096                 size = sizeof(hw->fkq_data.tx_queues[0]) * nb_queues;
1097                 hw->fkq_data.tx_queues = rte_zmalloc("fake_tx_queues", size,
1098                                                      RTE_CACHE_LINE_SIZE);
1099                 if (hw->fkq_data.tx_queues == NULL) {
1100                         hw->fkq_data.nb_fake_tx_queues = 0;
1101                         return -ENOMEM;
1102                 }
1103         } else if (hw->fkq_data.tx_queues != NULL && nb_queues != 0) {
1104                 /* re-configure */
1105                 txq = hw->fkq_data.tx_queues;
1106                 for (i = nb_queues; i < old_nb_queues; i++)
1107                         hns3_dev_tx_queue_release(txq[i]);
1108                 txq = rte_realloc(txq, sizeof(txq[0]) * nb_queues,
1109                                   RTE_CACHE_LINE_SIZE);
1110                 if (txq == NULL)
1111                         return -ENOMEM;
1112                 if (nb_queues > old_nb_queues) {
1113                         uint16_t new_qs = nb_queues - old_nb_queues;
1114                         memset(txq + old_nb_queues, 0, sizeof(txq[0]) * new_qs);
1115                 }
1116
1117                 hw->fkq_data.tx_queues = txq;
1118         } else if (hw->fkq_data.tx_queues != NULL && nb_queues == 0) {
1119                 txq = hw->fkq_data.tx_queues;
1120                 for (i = nb_queues; i < old_nb_queues; i++)
1121                         hns3_dev_tx_queue_release(txq[i]);
1122
1123                 rte_free(hw->fkq_data.tx_queues);
1124                 hw->fkq_data.tx_queues = NULL;
1125         }
1126         hw->fkq_data.nb_fake_tx_queues = nb_queues;
1127
1128         return 0;
1129 }
1130
1131 int
1132 hns3_set_fake_rx_or_tx_queues(struct rte_eth_dev *dev, uint16_t nb_rx_q,
1133                               uint16_t nb_tx_q)
1134 {
1135         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1136         uint16_t rx_need_add_nb_q;
1137         uint16_t tx_need_add_nb_q;
1138         uint16_t port_id;
1139         uint16_t q;
1140         int ret;
1141
1142         /* Setup new number of fake RX/TX queues and reconfigure device. */
1143         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
1144         rx_need_add_nb_q = hw->cfg_max_queues - nb_rx_q;
1145         tx_need_add_nb_q = hw->cfg_max_queues - nb_tx_q;
1146         ret = hns3_fake_rx_queue_config(hw, rx_need_add_nb_q);
1147         if (ret) {
1148                 hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
1149                 goto cfg_fake_rx_q_fail;
1150         }
1151
1152         ret = hns3_fake_tx_queue_config(hw, tx_need_add_nb_q);
1153         if (ret) {
1154                 hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
1155                 goto cfg_fake_tx_q_fail;
1156         }
1157
1158         /* Allocate and set up fake RX queue per Ethernet port. */
1159         port_id = hw->data->port_id;
1160         for (q = 0; q < rx_need_add_nb_q; q++) {
1161                 ret = hns3_fake_rx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
1162                                                rte_eth_dev_socket_id(port_id));
1163                 if (ret)
1164                         goto setup_fake_rx_q_fail;
1165         }
1166
1167         /* Allocate and set up fake TX queue per Ethernet port. */
1168         for (q = 0; q < tx_need_add_nb_q; q++) {
1169                 ret = hns3_fake_tx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
1170                                                rte_eth_dev_socket_id(port_id));
1171                 if (ret)
1172                         goto setup_fake_tx_q_fail;
1173         }
1174
1175         return 0;
1176
1177 setup_fake_tx_q_fail:
1178 setup_fake_rx_q_fail:
1179         (void)hns3_fake_tx_queue_config(hw, 0);
1180 cfg_fake_tx_q_fail:
1181         (void)hns3_fake_rx_queue_config(hw, 0);
1182 cfg_fake_rx_q_fail:
1183         hw->cfg_max_queues = 0;
1184
1185         return ret;
1186 }
1187
1188 void
1189 hns3_dev_release_mbufs(struct hns3_adapter *hns)
1190 {
1191         struct rte_eth_dev_data *dev_data = hns->hw.data;
1192         struct hns3_rx_queue *rxq;
1193         struct hns3_tx_queue *txq;
1194         int i;
1195
1196         if (dev_data->rx_queues)
1197                 for (i = 0; i < dev_data->nb_rx_queues; i++) {
1198                         rxq = dev_data->rx_queues[i];
1199                         if (rxq == NULL || rxq->rx_deferred_start)
1200                                 continue;
1201                         hns3_rx_queue_release_mbufs(rxq);
1202                 }
1203
1204         if (dev_data->tx_queues)
1205                 for (i = 0; i < dev_data->nb_tx_queues; i++) {
1206                         txq = dev_data->tx_queues[i];
1207                         if (txq == NULL || txq->tx_deferred_start)
1208                                 continue;
1209                         hns3_tx_queue_release_mbufs(txq);
1210                 }
1211 }
1212
1213 static int
1214 hns3_rx_buf_len_calc(struct rte_mempool *mp, uint16_t *rx_buf_len)
1215 {
1216         uint16_t vld_buf_size;
1217         uint16_t num_hw_specs;
1218         uint16_t i;
1219
1220         /*
1221          * hns3 network engine only support to set 4 typical specification, and
1222          * different buffer size will affect the max packet_len and the max
1223          * number of segmentation when hw gro is turned on in receive side. The
1224          * relationship between them is as follows:
1225          *      rx_buf_size     |  max_gro_pkt_len  |  max_gro_nb_seg
1226          * ---------------------|-------------------|----------------
1227          * HNS3_4K_BD_BUF_SIZE  |        60KB       |       15
1228          * HNS3_2K_BD_BUF_SIZE  |        62KB       |       31
1229          * HNS3_1K_BD_BUF_SIZE  |        63KB       |       63
1230          * HNS3_512_BD_BUF_SIZE |      31.5KB       |       63
1231          */
1232         static const uint16_t hw_rx_buf_size[] = {
1233                 HNS3_4K_BD_BUF_SIZE,
1234                 HNS3_2K_BD_BUF_SIZE,
1235                 HNS3_1K_BD_BUF_SIZE,
1236                 HNS3_512_BD_BUF_SIZE
1237         };
1238
1239         vld_buf_size = (uint16_t)(rte_pktmbuf_data_room_size(mp) -
1240                         RTE_PKTMBUF_HEADROOM);
1241
1242         if (vld_buf_size < HNS3_MIN_BD_BUF_SIZE)
1243                 return -EINVAL;
1244
1245         num_hw_specs = RTE_DIM(hw_rx_buf_size);
1246         for (i = 0; i < num_hw_specs; i++) {
1247                 if (vld_buf_size >= hw_rx_buf_size[i]) {
1248                         *rx_buf_len = hw_rx_buf_size[i];
1249                         break;
1250                 }
1251         }
1252         return 0;
1253 }
1254
1255 static int
1256 hns3_rx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_rxconf *conf,
1257                          struct rte_mempool *mp, uint16_t nb_desc,
1258                          uint16_t *buf_size)
1259 {
1260         if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
1261             nb_desc % HNS3_ALIGN_RING_DESC) {
1262                 hns3_err(hw, "Number (%u) of rx descriptors is invalid",
1263                          nb_desc);
1264                 return -EINVAL;
1265         }
1266
1267         if (conf->rx_drop_en == 0)
1268                 hns3_warn(hw, "if no descriptors available, packets are always "
1269                           "dropped and rx_drop_en (1) is fixed on");
1270
1271         if (hns3_rx_buf_len_calc(mp, buf_size)) {
1272                 hns3_err(hw, "rxq mbufs' data room size (%u) is not enough! "
1273                                 "minimal data room size (%u).",
1274                                 rte_pktmbuf_data_room_size(mp),
1275                                 HNS3_MIN_BD_BUF_SIZE + RTE_PKTMBUF_HEADROOM);
1276                 return -EINVAL;
1277         }
1278
1279         return 0;
1280 }
1281
1282 int
1283 hns3_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
1284                     unsigned int socket_id, const struct rte_eth_rxconf *conf,
1285                     struct rte_mempool *mp)
1286 {
1287         struct hns3_adapter *hns = dev->data->dev_private;
1288         struct hns3_hw *hw = &hns->hw;
1289         struct hns3_queue_info q_info;
1290         struct hns3_rx_queue *rxq;
1291         uint16_t rx_buf_size;
1292         int rx_entry_len;
1293         int ret;
1294
1295         if (dev->data->dev_started) {
1296                 hns3_err(hw, "rx_queue_setup after dev_start no supported");
1297                 return -EINVAL;
1298         }
1299
1300         ret = hns3_rx_queue_conf_check(hw, conf, mp, nb_desc, &rx_buf_size);
1301         if (ret)
1302                 return ret;
1303
1304         if (dev->data->rx_queues[idx]) {
1305                 hns3_rx_queue_release(dev->data->rx_queues[idx]);
1306                 dev->data->rx_queues[idx] = NULL;
1307         }
1308
1309         q_info.idx = idx;
1310         q_info.socket_id = socket_id;
1311         q_info.nb_desc = nb_desc;
1312         q_info.type = "hns3 RX queue";
1313         q_info.ring_name = "rx_ring";
1314
1315         rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
1316         if (rxq == NULL) {
1317                 hns3_err(hw,
1318                          "Failed to alloc mem and reserve DMA mem for rx ring!");
1319                 return -ENOMEM;
1320         }
1321
1322         rxq->hns = hns;
1323         rxq->ptype_tbl = &hns->ptype_tbl;
1324         rxq->mb_pool = mp;
1325         rxq->rx_free_thresh = (conf->rx_free_thresh > 0) ?
1326                 conf->rx_free_thresh : HNS3_DEFAULT_RX_FREE_THRESH;
1327         rxq->rx_deferred_start = conf->rx_deferred_start;
1328
1329         rx_entry_len = sizeof(struct hns3_entry) * rxq->nb_rx_desc;
1330         rxq->sw_ring = rte_zmalloc_socket("hns3 RX sw ring", rx_entry_len,
1331                                           RTE_CACHE_LINE_SIZE, socket_id);
1332         if (rxq->sw_ring == NULL) {
1333                 hns3_err(hw, "Failed to allocate memory for rx sw ring!");
1334                 hns3_rx_queue_release(rxq);
1335                 return -ENOMEM;
1336         }
1337
1338         rxq->next_to_use = 0;
1339         rxq->rx_free_hold = 0;
1340         rxq->pkt_first_seg = NULL;
1341         rxq->pkt_last_seg = NULL;
1342         rxq->port_id = dev->data->port_id;
1343         rxq->pvid_state = hw->port_base_vlan_cfg.state;
1344         rxq->configured = true;
1345         rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
1346                                 idx * HNS3_TQP_REG_SIZE);
1347         rxq->io_head_reg = (volatile void *)((char *)rxq->io_base +
1348                            HNS3_RING_RX_HEAD_REG);
1349         rxq->rx_buf_len = rx_buf_size;
1350         rxq->l2_errors = 0;
1351         rxq->pkt_len_errors = 0;
1352         rxq->l3_csum_errors = 0;
1353         rxq->l4_csum_errors = 0;
1354         rxq->ol3_csum_errors = 0;
1355         rxq->ol4_csum_errors = 0;
1356
1357         /* CRC len set here is used for amending packet length */
1358         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1359                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1360         else
1361                 rxq->crc_len = 0;
1362
1363         rxq->bulk_mbuf_num = 0;
1364
1365         rte_spinlock_lock(&hw->lock);
1366         dev->data->rx_queues[idx] = rxq;
1367         rte_spinlock_unlock(&hw->lock);
1368
1369         return 0;
1370 }
1371
1372 void
1373 hns3_rx_scattered_reset(struct rte_eth_dev *dev)
1374 {
1375         struct hns3_adapter *hns = dev->data->dev_private;
1376         struct hns3_hw *hw = &hns->hw;
1377
1378         hw->rx_buf_len = 0;
1379         dev->data->scattered_rx = false;
1380 }
1381
1382 void
1383 hns3_rx_scattered_calc(struct rte_eth_dev *dev)
1384 {
1385         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1386         struct hns3_adapter *hns = dev->data->dev_private;
1387         struct hns3_hw *hw = &hns->hw;
1388         struct hns3_rx_queue *rxq;
1389         uint32_t queue_id;
1390
1391         if (dev->data->rx_queues == NULL)
1392                 return;
1393
1394         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
1395                 rxq = dev->data->rx_queues[queue_id];
1396                 if (hw->rx_buf_len == 0)
1397                         hw->rx_buf_len = rxq->rx_buf_len;
1398                 else
1399                         hw->rx_buf_len = RTE_MIN(hw->rx_buf_len,
1400                                                  rxq->rx_buf_len);
1401         }
1402
1403         if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_SCATTER ||
1404             dev_conf->rxmode.max_rx_pkt_len > hw->rx_buf_len)
1405                 dev->data->scattered_rx = true;
1406 }
1407
1408 const uint32_t *
1409 hns3_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1410 {
1411         static const uint32_t ptypes[] = {
1412                 RTE_PTYPE_L2_ETHER,
1413                 RTE_PTYPE_L2_ETHER_VLAN,
1414                 RTE_PTYPE_L2_ETHER_QINQ,
1415                 RTE_PTYPE_L2_ETHER_LLDP,
1416                 RTE_PTYPE_L2_ETHER_ARP,
1417                 RTE_PTYPE_L3_IPV4,
1418                 RTE_PTYPE_L3_IPV4_EXT,
1419                 RTE_PTYPE_L3_IPV6,
1420                 RTE_PTYPE_L3_IPV6_EXT,
1421                 RTE_PTYPE_L4_IGMP,
1422                 RTE_PTYPE_L4_ICMP,
1423                 RTE_PTYPE_L4_SCTP,
1424                 RTE_PTYPE_L4_TCP,
1425                 RTE_PTYPE_L4_UDP,
1426                 RTE_PTYPE_TUNNEL_GRE,
1427                 RTE_PTYPE_UNKNOWN
1428         };
1429
1430         if (dev->rx_pkt_burst == hns3_recv_pkts ||
1431             dev->rx_pkt_burst == hns3_recv_scattered_pkts)
1432                 return ptypes;
1433
1434         return NULL;
1435 }
1436
1437 void
1438 hns3_init_rx_ptype_tble(struct rte_eth_dev *dev)
1439 {
1440         struct hns3_adapter *hns = dev->data->dev_private;
1441         struct hns3_ptype_table *tbl = &hns->ptype_tbl;
1442
1443         memset(tbl, 0, sizeof(*tbl));
1444
1445         tbl->l2table[0] = RTE_PTYPE_L2_ETHER;
1446         tbl->l2table[1] = RTE_PTYPE_L2_ETHER_QINQ;
1447         tbl->l2table[2] = RTE_PTYPE_L2_ETHER_VLAN;
1448         tbl->l2table[3] = RTE_PTYPE_L2_ETHER_VLAN;
1449
1450         tbl->l3table[0] = RTE_PTYPE_L3_IPV4;
1451         tbl->l3table[1] = RTE_PTYPE_L3_IPV6;
1452         tbl->l3table[2] = RTE_PTYPE_L2_ETHER_ARP;
1453         tbl->l3table[3] = RTE_PTYPE_L2_ETHER;
1454         tbl->l3table[4] = RTE_PTYPE_L3_IPV4_EXT;
1455         tbl->l3table[5] = RTE_PTYPE_L3_IPV6_EXT;
1456         tbl->l3table[6] = RTE_PTYPE_L2_ETHER_LLDP;
1457
1458         tbl->l4table[0] = RTE_PTYPE_L4_UDP;
1459         tbl->l4table[1] = RTE_PTYPE_L4_TCP;
1460         tbl->l4table[2] = RTE_PTYPE_TUNNEL_GRE;
1461         tbl->l4table[3] = RTE_PTYPE_L4_SCTP;
1462         tbl->l4table[4] = RTE_PTYPE_L4_IGMP;
1463         tbl->l4table[5] = RTE_PTYPE_L4_ICMP;
1464
1465         tbl->inner_l2table[0] = RTE_PTYPE_INNER_L2_ETHER;
1466         tbl->inner_l2table[1] = RTE_PTYPE_INNER_L2_ETHER_VLAN;
1467         tbl->inner_l2table[2] = RTE_PTYPE_INNER_L2_ETHER_QINQ;
1468
1469         tbl->inner_l3table[0] = RTE_PTYPE_INNER_L3_IPV4;
1470         tbl->inner_l3table[1] = RTE_PTYPE_INNER_L3_IPV6;
1471         tbl->inner_l3table[2] = 0;
1472         tbl->inner_l3table[3] = RTE_PTYPE_INNER_L2_ETHER;
1473         tbl->inner_l3table[4] = RTE_PTYPE_INNER_L3_IPV4_EXT;
1474         tbl->inner_l3table[5] = RTE_PTYPE_INNER_L3_IPV6_EXT;
1475
1476         tbl->inner_l4table[0] = RTE_PTYPE_INNER_L4_UDP;
1477         tbl->inner_l4table[1] = RTE_PTYPE_INNER_L4_TCP;
1478         tbl->inner_l4table[2] = RTE_PTYPE_TUNNEL_GRE;
1479         tbl->inner_l4table[3] = RTE_PTYPE_INNER_L4_SCTP;
1480         tbl->inner_l4table[4] = RTE_PTYPE_L4_IGMP;
1481         tbl->inner_l4table[5] = RTE_PTYPE_INNER_L4_ICMP;
1482
1483         tbl->ol3table[0] = RTE_PTYPE_L3_IPV4;
1484         tbl->ol3table[1] = RTE_PTYPE_L3_IPV6;
1485         tbl->ol3table[2] = 0;
1486         tbl->ol3table[3] = 0;
1487         tbl->ol3table[4] = RTE_PTYPE_L3_IPV4_EXT;
1488         tbl->ol3table[5] = RTE_PTYPE_L3_IPV6_EXT;
1489
1490         tbl->ol4table[0] = 0;
1491         tbl->ol4table[1] = RTE_PTYPE_TUNNEL_VXLAN;
1492         tbl->ol4table[2] = RTE_PTYPE_TUNNEL_NVGRE;
1493 }
1494
1495 static inline void
1496 hns3_rxd_to_vlan_tci(struct hns3_rx_queue *rxq, struct rte_mbuf *mb,
1497                      uint32_t l234_info, const struct hns3_desc *rxd)
1498 {
1499 #define HNS3_STRP_STATUS_NUM            0x4
1500
1501 #define HNS3_NO_STRP_VLAN_VLD           0x0
1502 #define HNS3_INNER_STRP_VLAN_VLD        0x1
1503 #define HNS3_OUTER_STRP_VLAN_VLD        0x2
1504         uint32_t strip_status;
1505         uint32_t report_mode;
1506
1507         /*
1508          * Since HW limitation, the vlan tag will always be inserted into RX
1509          * descriptor when strip the tag from packet, driver needs to determine
1510          * reporting which tag to mbuf according to the PVID configuration
1511          * and vlan striped status.
1512          */
1513         static const uint32_t report_type[][HNS3_STRP_STATUS_NUM] = {
1514                 {
1515                         HNS3_NO_STRP_VLAN_VLD,
1516                         HNS3_OUTER_STRP_VLAN_VLD,
1517                         HNS3_INNER_STRP_VLAN_VLD,
1518                         HNS3_OUTER_STRP_VLAN_VLD
1519                 },
1520                 {
1521                         HNS3_NO_STRP_VLAN_VLD,
1522                         HNS3_NO_STRP_VLAN_VLD,
1523                         HNS3_NO_STRP_VLAN_VLD,
1524                         HNS3_INNER_STRP_VLAN_VLD
1525                 }
1526         };
1527         strip_status = hns3_get_field(l234_info, HNS3_RXD_STRP_TAGP_M,
1528                                       HNS3_RXD_STRP_TAGP_S);
1529         report_mode = report_type[rxq->pvid_state][strip_status];
1530         switch (report_mode) {
1531         case HNS3_NO_STRP_VLAN_VLD:
1532                 mb->vlan_tci = 0;
1533                 return;
1534         case HNS3_INNER_STRP_VLAN_VLD:
1535                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1536                 mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.vlan_tag);
1537                 return;
1538         case HNS3_OUTER_STRP_VLAN_VLD:
1539                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1540                 mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.ot_vlan_tag);
1541                 return;
1542         }
1543 }
1544
1545 static inline void
1546 recalculate_data_len(struct rte_mbuf *first_seg, struct rte_mbuf *last_seg,
1547                     struct rte_mbuf *rxm, struct hns3_rx_queue *rxq,
1548                     uint16_t data_len)
1549 {
1550         uint8_t crc_len = rxq->crc_len;
1551
1552         if (data_len <= crc_len) {
1553                 rte_pktmbuf_free_seg(rxm);
1554                 first_seg->nb_segs--;
1555                 last_seg->data_len = (uint16_t)(last_seg->data_len -
1556                         (crc_len - data_len));
1557                 last_seg->next = NULL;
1558         } else
1559                 rxm->data_len = (uint16_t)(data_len - crc_len);
1560 }
1561
1562 static inline struct rte_mbuf *
1563 hns3_rx_alloc_buffer(struct hns3_rx_queue *rxq)
1564 {
1565         int ret;
1566
1567         if (likely(rxq->bulk_mbuf_num > 0))
1568                 return rxq->bulk_mbuf[--rxq->bulk_mbuf_num];
1569
1570         ret = rte_mempool_get_bulk(rxq->mb_pool, (void **)rxq->bulk_mbuf,
1571                                    HNS3_BULK_ALLOC_MBUF_NUM);
1572         if (likely(ret == 0)) {
1573                 rxq->bulk_mbuf_num = HNS3_BULK_ALLOC_MBUF_NUM;
1574                 return rxq->bulk_mbuf[--rxq->bulk_mbuf_num];
1575         } else
1576                 return rte_mbuf_raw_alloc(rxq->mb_pool);
1577 }
1578
1579 uint16_t
1580 hns3_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1581 {
1582         volatile struct hns3_desc *rx_ring;  /* RX ring (desc) */
1583         volatile struct hns3_desc *rxdp;     /* pointer of the current desc */
1584         struct hns3_rx_queue *rxq;      /* RX queue */
1585         struct hns3_entry *sw_ring;
1586         struct hns3_entry *rxe;
1587         struct hns3_desc rxd;
1588         struct rte_mbuf *nmb;           /* pointer of the new mbuf */
1589         struct rte_mbuf *rxm;
1590         uint32_t bd_base_info;
1591         uint32_t cksum_err;
1592         uint32_t l234_info;
1593         uint32_t ol_info;
1594         uint64_t dma_addr;
1595         uint16_t nb_rx_bd;
1596         uint16_t nb_rx;
1597         uint16_t rx_id;
1598         int ret;
1599
1600         nb_rx = 0;
1601         nb_rx_bd = 0;
1602         rxq = rx_queue;
1603         rx_ring = rxq->rx_ring;
1604         sw_ring = rxq->sw_ring;
1605         rx_id = rxq->next_to_use;
1606
1607         while (nb_rx < nb_pkts) {
1608                 rxdp = &rx_ring[rx_id];
1609                 bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
1610                 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
1611                         break;
1612
1613                 rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
1614                            (1u << HNS3_RXD_VLD_B)];
1615
1616                 nmb = hns3_rx_alloc_buffer(rxq);
1617                 if (unlikely(nmb == NULL)) {
1618                         uint16_t port_id;
1619
1620                         port_id = rxq->port_id;
1621                         rte_eth_devices[port_id].data->rx_mbuf_alloc_failed++;
1622                         break;
1623                 }
1624
1625                 nb_rx_bd++;
1626                 rxe = &sw_ring[rx_id];
1627                 rx_id++;
1628                 if (unlikely(rx_id == rxq->nb_rx_desc))
1629                         rx_id = 0;
1630
1631                 rte_prefetch0(sw_ring[rx_id].mbuf);
1632                 if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) {
1633                         rte_prefetch0(&rx_ring[rx_id]);
1634                         rte_prefetch0(&sw_ring[rx_id]);
1635                 }
1636
1637                 rxm = rxe->mbuf;
1638                 rxe->mbuf = nmb;
1639
1640                 dma_addr = rte_mbuf_data_iova_default(nmb);
1641                 rxdp->addr = rte_cpu_to_le_64(dma_addr);
1642                 rxdp->rx.bd_base_info = 0;
1643
1644                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1645                 rxm->pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.rx.pkt_len)) -
1646                                 rxq->crc_len;
1647                 rxm->data_len = rxm->pkt_len;
1648                 rxm->port = rxq->port_id;
1649                 rxm->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
1650                 rxm->ol_flags = PKT_RX_RSS_HASH;
1651                 if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) {
1652                         rxm->hash.fdir.hi =
1653                                 rte_le_to_cpu_16(rxd.rx.fd_id);
1654                         rxm->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
1655                 }
1656                 rxm->nb_segs = 1;
1657                 rxm->next = NULL;
1658
1659                 /* Load remained descriptor data and extract necessary fields */
1660                 l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
1661                 ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
1662                 ret = hns3_handle_bdinfo(rxq, rxm, bd_base_info,
1663                                          l234_info, &cksum_err);
1664                 if (unlikely(ret))
1665                         goto pkt_err;
1666
1667                 rxm->packet_type = hns3_rx_calc_ptype(rxq, l234_info, ol_info);
1668
1669                 if (likely(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
1670                         hns3_rx_set_cksum_flag(rxm, rxm->packet_type,
1671                                                cksum_err);
1672                 hns3_rxd_to_vlan_tci(rxq, rxm, l234_info, &rxd);
1673
1674                 rx_pkts[nb_rx++] = rxm;
1675                 continue;
1676 pkt_err:
1677                 rte_pktmbuf_free(rxm);
1678         }
1679
1680         rxq->next_to_use = rx_id;
1681         rxq->rx_free_hold += nb_rx_bd;
1682         if (rxq->rx_free_hold > rxq->rx_free_thresh) {
1683                 hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold);
1684                 rxq->rx_free_hold = 0;
1685         }
1686
1687         return nb_rx;
1688 }
1689
1690 uint16_t
1691 hns3_recv_scattered_pkts(void *rx_queue,
1692                          struct rte_mbuf **rx_pkts,
1693                          uint16_t nb_pkts)
1694 {
1695         volatile struct hns3_desc *rx_ring;  /* RX ring (desc) */
1696         volatile struct hns3_desc *rxdp;     /* pointer of the current desc */
1697         struct hns3_rx_queue *rxq;      /* RX queue */
1698         struct hns3_entry *sw_ring;
1699         struct hns3_entry *rxe;
1700         struct rte_mbuf *first_seg;
1701         struct rte_mbuf *last_seg;
1702         struct hns3_desc rxd;
1703         struct rte_mbuf *nmb;           /* pointer of the new mbuf */
1704         struct rte_mbuf *rxm;
1705         struct rte_eth_dev *dev;
1706         uint32_t bd_base_info;
1707         uint32_t cksum_err;
1708         uint32_t l234_info;
1709         uint32_t gro_size;
1710         uint32_t ol_info;
1711         uint64_t dma_addr;
1712         uint16_t nb_rx_bd;
1713         uint16_t nb_rx;
1714         uint16_t rx_id;
1715         int ret;
1716
1717         nb_rx = 0;
1718         nb_rx_bd = 0;
1719         rxq = rx_queue;
1720
1721         rx_id = rxq->next_to_use;
1722         rx_ring = rxq->rx_ring;
1723         sw_ring = rxq->sw_ring;
1724         first_seg = rxq->pkt_first_seg;
1725         last_seg = rxq->pkt_last_seg;
1726
1727         while (nb_rx < nb_pkts) {
1728                 rxdp = &rx_ring[rx_id];
1729                 bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
1730                 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
1731                         break;
1732
1733                 /*
1734                  * The interactive process between software and hardware of
1735                  * receiving a new packet in hns3 network engine:
1736                  * 1. Hardware network engine firstly writes the packet content
1737                  *    to the memory pointed by the 'addr' field of the Rx Buffer
1738                  *    Descriptor, secondly fills the result of parsing the
1739                  *    packet include the valid field into the Rx Buffer
1740                  *    Descriptor in one write operation.
1741                  * 2. Driver reads the Rx BD's valid field in the loop to check
1742                  *    whether it's valid, if valid then assign a new address to
1743                  *    the addr field, clear the valid field, get the other
1744                  *    information of the packet by parsing Rx BD's other fields,
1745                  *    finally write back the number of Rx BDs processed by the
1746                  *    driver to the HNS3_RING_RX_HEAD_REG register to inform
1747                  *    hardware.
1748                  * In the above process, the ordering is very important. We must
1749                  * make sure that CPU read Rx BD's other fields only after the
1750                  * Rx BD is valid.
1751                  *
1752                  * There are two type of re-ordering: compiler re-ordering and
1753                  * CPU re-ordering under the ARMv8 architecture.
1754                  * 1. we use volatile to deal with compiler re-ordering, so you
1755                  *    can see that rx_ring/rxdp defined with volatile.
1756                  * 2. we commonly use memory barrier to deal with CPU
1757                  *    re-ordering, but the cost is high.
1758                  *
1759                  * In order to solve the high cost of using memory barrier, we
1760                  * use the data dependency order under the ARMv8 architecture,
1761                  * for example:
1762                  *      instr01: load A
1763                  *      instr02: load B <- A
1764                  * the instr02 will always execute after instr01.
1765                  *
1766                  * To construct the data dependency ordering, we use the
1767                  * following assignment:
1768                  *      rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
1769                  *                 (1u<<HNS3_RXD_VLD_B)]
1770                  * Using gcc compiler under the ARMv8 architecture, the related
1771                  * assembly code example as follows:
1772                  * note: (1u << HNS3_RXD_VLD_B) equal 0x10
1773                  *      instr01: ldr w26, [x22, #28]  --read bd_base_info
1774                  *      instr02: and w0, w26, #0x10   --calc bd_base_info & 0x10
1775                  *      instr03: sub w0, w0, #0x10    --calc (bd_base_info &
1776                  *                                            0x10) - 0x10
1777                  *      instr04: add x0, x22, x0, lsl #5 --calc copy source addr
1778                  *      instr05: ldp x2, x3, [x0]
1779                  *      instr06: stp x2, x3, [x29, #256] --copy BD's [0 ~ 15]B
1780                  *      instr07: ldp x4, x5, [x0, #16]
1781                  *      instr08: stp x4, x5, [x29, #272] --copy BD's [16 ~ 31]B
1782                  * the instr05~08 depend on x0's value, x0 depent on w26's
1783                  * value, the w26 is the bd_base_info, this form the data
1784                  * dependency ordering.
1785                  * note: if BD is valid, (bd_base_info & (1u<<HNS3_RXD_VLD_B)) -
1786                  *       (1u<<HNS3_RXD_VLD_B) will always zero, so the
1787                  *       assignment is correct.
1788                  *
1789                  * So we use the data dependency ordering instead of memory
1790                  * barrier to improve receive performance.
1791                  */
1792                 rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
1793                            (1u << HNS3_RXD_VLD_B)];
1794
1795                 nmb = hns3_rx_alloc_buffer(rxq);
1796                 if (unlikely(nmb == NULL)) {
1797                         dev = &rte_eth_devices[rxq->port_id];
1798                         dev->data->rx_mbuf_alloc_failed++;
1799                         break;
1800                 }
1801
1802                 nb_rx_bd++;
1803                 rxe = &sw_ring[rx_id];
1804                 rx_id++;
1805                 if (unlikely(rx_id == rxq->nb_rx_desc))
1806                         rx_id = 0;
1807
1808                 rte_prefetch0(sw_ring[rx_id].mbuf);
1809                 if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) {
1810                         rte_prefetch0(&rx_ring[rx_id]);
1811                         rte_prefetch0(&sw_ring[rx_id]);
1812                 }
1813
1814                 rxm = rxe->mbuf;
1815                 rxe->mbuf = nmb;
1816
1817                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1818                 rxdp->rx.bd_base_info = 0;
1819                 rxdp->addr = dma_addr;
1820
1821                 if (first_seg == NULL) {
1822                         first_seg = rxm;
1823                         first_seg->nb_segs = 1;
1824                 } else {
1825                         first_seg->nb_segs++;
1826                         last_seg->next = rxm;
1827                 }
1828
1829                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1830                 rxm->data_len = rte_le_to_cpu_16(rxd.rx.size);
1831
1832                 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
1833                         last_seg = rxm;
1834                         rxm->next = NULL;
1835                         continue;
1836                 }
1837
1838                 /*
1839                  * The last buffer of the received packet. packet len from
1840                  * buffer description may contains CRC len, packet len should
1841                  * subtract it, same as data len.
1842                  */
1843                 first_seg->pkt_len = rte_le_to_cpu_16(rxd.rx.pkt_len);
1844
1845                 /*
1846                  * This is the last buffer of the received packet. If the CRC
1847                  * is not stripped by the hardware:
1848                  *  - Subtract the CRC length from the total packet length.
1849                  *  - If the last buffer only contains the whole CRC or a part
1850                  *  of it, free the mbuf associated to the last buffer. If part
1851                  *  of the CRC is also contained in the previous mbuf, subtract
1852                  *  the length of that CRC part from the data length of the
1853                  *  previous mbuf.
1854                  */
1855                 rxm->next = NULL;
1856                 if (unlikely(rxq->crc_len > 0)) {
1857                         first_seg->pkt_len -= rxq->crc_len;
1858                         recalculate_data_len(first_seg, last_seg, rxm, rxq,
1859                                 rxm->data_len);
1860                 }
1861
1862                 first_seg->port = rxq->port_id;
1863                 first_seg->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
1864                 first_seg->ol_flags = PKT_RX_RSS_HASH;
1865                 if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) {
1866                         first_seg->hash.fdir.hi =
1867                                 rte_le_to_cpu_16(rxd.rx.fd_id);
1868                         first_seg->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
1869                 }
1870
1871                 gro_size = hns3_get_field(bd_base_info, HNS3_RXD_GRO_SIZE_M,
1872                                           HNS3_RXD_GRO_SIZE_S);
1873                 if (gro_size != 0) {
1874                         first_seg->ol_flags |= PKT_RX_LRO;
1875                         first_seg->tso_segsz = gro_size;
1876                 }
1877
1878                 l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
1879                 ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
1880                 ret = hns3_handle_bdinfo(rxq, first_seg, bd_base_info,
1881                                          l234_info, &cksum_err);
1882                 if (unlikely(ret))
1883                         goto pkt_err;
1884
1885                 first_seg->packet_type = hns3_rx_calc_ptype(rxq,
1886                                                 l234_info, ol_info);
1887
1888                 if (bd_base_info & BIT(HNS3_RXD_L3L4P_B))
1889                         hns3_rx_set_cksum_flag(first_seg,
1890                                                first_seg->packet_type,
1891                                                cksum_err);
1892                 hns3_rxd_to_vlan_tci(rxq, first_seg, l234_info, &rxd);
1893
1894                 rx_pkts[nb_rx++] = first_seg;
1895                 first_seg = NULL;
1896                 continue;
1897 pkt_err:
1898                 rte_pktmbuf_free(first_seg);
1899                 first_seg = NULL;
1900         }
1901
1902         rxq->next_to_use = rx_id;
1903         rxq->pkt_first_seg = first_seg;
1904         rxq->pkt_last_seg = last_seg;
1905
1906         rxq->rx_free_hold += nb_rx_bd;
1907         if (rxq->rx_free_hold > rxq->rx_free_thresh) {
1908                 hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold);
1909                 rxq->rx_free_hold = 0;
1910         }
1911
1912         return nb_rx;
1913 }
1914
1915 int
1916 hns3_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
1917                        struct rte_eth_burst_mode *mode)
1918 {
1919         static const struct {
1920                 eth_rx_burst_t pkt_burst;
1921                 const char *info;
1922         } burst_infos[] = {
1923                 { hns3_recv_pkts,               "Scalar" },
1924                 { hns3_recv_scattered_pkts,     "Scalar Scattered" },
1925         };
1926
1927         eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
1928         int ret = -EINVAL;
1929         unsigned int i;
1930
1931         for (i = 0; i < RTE_DIM(burst_infos); i++) {
1932                 if (pkt_burst == burst_infos[i].pkt_burst) {
1933                         snprintf(mode->info, sizeof(mode->info), "%s",
1934                                  burst_infos[i].info);
1935                         ret = 0;
1936                         break;
1937                 }
1938         }
1939
1940         return ret;
1941 }
1942
1943 static eth_rx_burst_t
1944 hns3_get_rx_function(struct rte_eth_dev *dev)
1945 {
1946         struct hns3_adapter *hns = dev->data->dev_private;
1947         uint64_t offloads = dev->data->dev_conf.rxmode.offloads;
1948
1949         if (hns->rx_simple_allowed && !dev->data->scattered_rx &&
1950             (offloads & DEV_RX_OFFLOAD_TCP_LRO) == 0)
1951                 return hns3_recv_pkts;
1952
1953         return hns3_recv_scattered_pkts;
1954 }
1955 int
1956 hns3_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
1957                     unsigned int socket_id, const struct rte_eth_txconf *conf)
1958 {
1959         struct hns3_adapter *hns = dev->data->dev_private;
1960         struct hns3_hw *hw = &hns->hw;
1961         struct hns3_queue_info q_info;
1962         struct hns3_tx_queue *txq;
1963         int tx_entry_len;
1964
1965         if (dev->data->dev_started) {
1966                 hns3_err(hw, "tx_queue_setup after dev_start no supported");
1967                 return -EINVAL;
1968         }
1969
1970         if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
1971             nb_desc % HNS3_ALIGN_RING_DESC) {
1972                 hns3_err(hw, "Number (%u) of tx descriptors is invalid",
1973                             nb_desc);
1974                 return -EINVAL;
1975         }
1976
1977         if (dev->data->tx_queues[idx] != NULL) {
1978                 hns3_tx_queue_release(dev->data->tx_queues[idx]);
1979                 dev->data->tx_queues[idx] = NULL;
1980         }
1981
1982         q_info.idx = idx;
1983         q_info.socket_id = socket_id;
1984         q_info.nb_desc = nb_desc;
1985         q_info.type = "hns3 TX queue";
1986         q_info.ring_name = "tx_ring";
1987         txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
1988         if (txq == NULL) {
1989                 hns3_err(hw,
1990                          "Failed to alloc mem and reserve DMA mem for tx ring!");
1991                 return -ENOMEM;
1992         }
1993
1994         txq->tx_deferred_start = conf->tx_deferred_start;
1995         tx_entry_len = sizeof(struct hns3_entry) * txq->nb_tx_desc;
1996         txq->sw_ring = rte_zmalloc_socket("hns3 TX sw ring", tx_entry_len,
1997                                           RTE_CACHE_LINE_SIZE, socket_id);
1998         if (txq->sw_ring == NULL) {
1999                 hns3_err(hw, "Failed to allocate memory for tx sw ring!");
2000                 hns3_tx_queue_release(txq);
2001                 return -ENOMEM;
2002         }
2003
2004         txq->hns = hns;
2005         txq->next_to_use = 0;
2006         txq->next_to_clean = 0;
2007         txq->tx_bd_ready = txq->nb_tx_desc - 1;
2008         txq->port_id = dev->data->port_id;
2009         txq->pvid_state = hw->port_base_vlan_cfg.state;
2010         txq->configured = true;
2011         txq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
2012                                 idx * HNS3_TQP_REG_SIZE);
2013         txq->min_tx_pkt_len = hw->min_tx_pkt_len;
2014         txq->over_length_pkt_cnt = 0;
2015         txq->exceed_limit_bd_pkt_cnt = 0;
2016         txq->exceed_limit_bd_reassem_fail = 0;
2017         txq->unsupported_tunnel_pkt_cnt = 0;
2018         txq->queue_full_cnt = 0;
2019         txq->pkt_padding_fail_cnt = 0;
2020         rte_spinlock_lock(&hw->lock);
2021         dev->data->tx_queues[idx] = txq;
2022         rte_spinlock_unlock(&hw->lock);
2023
2024         return 0;
2025 }
2026
2027 static inline void
2028 hns3_queue_xmit(struct hns3_tx_queue *txq, uint32_t buf_num)
2029 {
2030         hns3_write_dev(txq, HNS3_RING_TX_TAIL_REG, buf_num);
2031 }
2032
2033 static void
2034 hns3_tx_free_useless_buffer(struct hns3_tx_queue *txq)
2035 {
2036         uint16_t tx_next_clean = txq->next_to_clean;
2037         uint16_t tx_next_use   = txq->next_to_use;
2038         uint16_t tx_bd_ready   = txq->tx_bd_ready;
2039         uint16_t tx_bd_max     = txq->nb_tx_desc;
2040         struct hns3_entry *tx_bak_pkt = &txq->sw_ring[tx_next_clean];
2041         struct hns3_desc *desc = &txq->tx_ring[tx_next_clean];
2042         struct rte_mbuf *mbuf;
2043
2044         while ((!(desc->tx.tp_fe_sc_vld_ra_ri &
2045                 rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))) &&
2046                 tx_next_use != tx_next_clean) {
2047                 mbuf = tx_bak_pkt->mbuf;
2048                 if (mbuf) {
2049                         rte_pktmbuf_free_seg(mbuf);
2050                         tx_bak_pkt->mbuf = NULL;
2051                 }
2052
2053                 desc++;
2054                 tx_bak_pkt++;
2055                 tx_next_clean++;
2056                 tx_bd_ready++;
2057
2058                 if (tx_next_clean >= tx_bd_max) {
2059                         tx_next_clean = 0;
2060                         desc = txq->tx_ring;
2061                         tx_bak_pkt = txq->sw_ring;
2062                 }
2063         }
2064
2065         txq->next_to_clean = tx_next_clean;
2066         txq->tx_bd_ready   = tx_bd_ready;
2067 }
2068
2069 static int
2070 hns3_tso_proc_tunnel(struct hns3_desc *desc, uint64_t ol_flags,
2071                      struct rte_mbuf *rxm, uint8_t *l2_len)
2072 {
2073         uint64_t tun_flags;
2074         uint8_t ol4_len;
2075         uint32_t otmp;
2076
2077         tun_flags = ol_flags & PKT_TX_TUNNEL_MASK;
2078         if (tun_flags == 0)
2079                 return 0;
2080
2081         otmp = rte_le_to_cpu_32(desc->tx.ol_type_vlan_len_msec);
2082         switch (tun_flags) {
2083         case PKT_TX_TUNNEL_GENEVE:
2084         case PKT_TX_TUNNEL_VXLAN:
2085                 *l2_len = rxm->l2_len - RTE_ETHER_VXLAN_HLEN;
2086                 break;
2087         case PKT_TX_TUNNEL_GRE:
2088                 /*
2089                  * OL4 header size, defined in 4 Bytes, it contains outer
2090                  * L4(GRE) length and tunneling length.
2091                  */
2092                 ol4_len = hns3_get_field(otmp, HNS3_TXD_L4LEN_M,
2093                                          HNS3_TXD_L4LEN_S);
2094                 *l2_len = rxm->l2_len - (ol4_len << HNS3_L4_LEN_UNIT);
2095                 break;
2096         default:
2097                 /* For non UDP / GRE tunneling, drop the tunnel packet */
2098                 return -EINVAL;
2099         }
2100         hns3_set_field(otmp, HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
2101                        rxm->outer_l2_len >> HNS3_L2_LEN_UNIT);
2102         desc->tx.ol_type_vlan_len_msec = rte_cpu_to_le_32(otmp);
2103
2104         return 0;
2105 }
2106
2107 int
2108 hns3_config_gro(struct hns3_hw *hw, bool en)
2109 {
2110         struct hns3_cfg_gro_status_cmd *req;
2111         struct hns3_cmd_desc desc;
2112         int ret;
2113
2114         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GRO_GENERIC_CONFIG, false);
2115         req = (struct hns3_cfg_gro_status_cmd *)desc.data;
2116
2117         req->gro_en = rte_cpu_to_le_16(en ? 1 : 0);
2118
2119         ret = hns3_cmd_send(hw, &desc, 1);
2120         if (ret)
2121                 hns3_err(hw, "%s hardware GRO failed, ret = %d",
2122                          en ? "enable" : "disable", ret);
2123
2124         return ret;
2125 }
2126
2127 int
2128 hns3_restore_gro_conf(struct hns3_hw *hw)
2129 {
2130         uint64_t offloads;
2131         bool gro_en;
2132         int ret;
2133
2134         offloads = hw->data->dev_conf.rxmode.offloads;
2135         gro_en = offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2136         ret = hns3_config_gro(hw, gro_en);
2137         if (ret)
2138                 hns3_err(hw, "restore hardware GRO to %s failed, ret = %d",
2139                          gro_en ? "enabled" : "disabled", ret);
2140
2141         return ret;
2142 }
2143
2144 static inline bool
2145 hns3_pkt_is_tso(struct rte_mbuf *m)
2146 {
2147         return (m->tso_segsz != 0 && m->ol_flags & PKT_TX_TCP_SEG);
2148 }
2149
2150 static void
2151 hns3_set_tso(struct hns3_desc *desc, uint64_t ol_flags,
2152                 uint32_t paylen, struct rte_mbuf *rxm)
2153 {
2154         uint8_t l2_len = rxm->l2_len;
2155         uint32_t tmp;
2156
2157         if (!hns3_pkt_is_tso(rxm))
2158                 return;
2159
2160         if (hns3_tso_proc_tunnel(desc, ol_flags, rxm, &l2_len))
2161                 return;
2162
2163         if (paylen <= rxm->tso_segsz)
2164                 return;
2165
2166         tmp = rte_le_to_cpu_32(desc->tx.type_cs_vlan_tso_len);
2167         hns3_set_bit(tmp, HNS3_TXD_TSO_B, 1);
2168         hns3_set_bit(tmp, HNS3_TXD_L3CS_B, 1);
2169         hns3_set_field(tmp, HNS3_TXD_L4T_M, HNS3_TXD_L4T_S, HNS3_L4T_TCP);
2170         hns3_set_bit(tmp, HNS3_TXD_L4CS_B, 1);
2171         hns3_set_field(tmp, HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
2172                        sizeof(struct rte_tcp_hdr) >> HNS3_L4_LEN_UNIT);
2173         hns3_set_field(tmp, HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
2174                        l2_len >> HNS3_L2_LEN_UNIT);
2175         desc->tx.type_cs_vlan_tso_len = rte_cpu_to_le_32(tmp);
2176         desc->tx.mss = rte_cpu_to_le_16(rxm->tso_segsz);
2177 }
2178
2179 static inline void
2180 hns3_fill_per_desc(struct hns3_desc *desc, struct rte_mbuf *rxm)
2181 {
2182         desc->addr = rte_mbuf_data_iova(rxm);
2183         desc->tx.send_size = rte_cpu_to_le_16(rte_pktmbuf_data_len(rxm));
2184         desc->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B));
2185 }
2186
2187 static void
2188 hns3_fill_first_desc(struct hns3_tx_queue *txq, struct hns3_desc *desc,
2189                      struct rte_mbuf *rxm)
2190 {
2191         uint64_t ol_flags = rxm->ol_flags;
2192         uint32_t hdr_len;
2193         uint32_t paylen;
2194
2195         hdr_len = rxm->l2_len + rxm->l3_len + rxm->l4_len;
2196         hdr_len += (ol_flags & PKT_TX_TUNNEL_MASK) ?
2197                            rxm->outer_l2_len + rxm->outer_l3_len : 0;
2198         paylen = rxm->pkt_len - hdr_len;
2199         desc->tx.paylen = rte_cpu_to_le_32(paylen);
2200         hns3_set_tso(desc, ol_flags, paylen, rxm);
2201
2202         /*
2203          * Currently, hardware doesn't support more than two layers VLAN offload
2204          * in Tx direction based on hns3 network engine. So when the number of
2205          * VLANs in the packets represented by rxm plus the number of VLAN
2206          * offload by hardware such as PVID etc, exceeds two, the packets will
2207          * be discarded or the original VLAN of the packets will be overwitted
2208          * by hardware. When the PF PVID is enabled by calling the API function
2209          * named rte_eth_dev_set_vlan_pvid or the VF PVID is enabled by the hns3
2210          * PF kernel ether driver, the outer VLAN tag will always be the PVID.
2211          * To avoid the VLAN of Tx descriptor is overwritten by PVID, it should
2212          * be added to the position close to the IP header when PVID is enabled.
2213          */
2214         if (!txq->pvid_state && ol_flags & (PKT_TX_VLAN_PKT |
2215                                 PKT_TX_QINQ_PKT)) {
2216                 desc->tx.ol_type_vlan_len_msec |=
2217                                 rte_cpu_to_le_32(BIT(HNS3_TXD_OVLAN_B));
2218                 if (ol_flags & PKT_TX_QINQ_PKT)
2219                         desc->tx.outer_vlan_tag =
2220                                         rte_cpu_to_le_16(rxm->vlan_tci_outer);
2221                 else
2222                         desc->tx.outer_vlan_tag =
2223                                         rte_cpu_to_le_16(rxm->vlan_tci);
2224         }
2225
2226         if (ol_flags & PKT_TX_QINQ_PKT ||
2227             ((ol_flags & PKT_TX_VLAN_PKT) && txq->pvid_state)) {
2228                 desc->tx.type_cs_vlan_tso_len |=
2229                                         rte_cpu_to_le_32(BIT(HNS3_TXD_VLAN_B));
2230                 desc->tx.vlan_tag = rte_cpu_to_le_16(rxm->vlan_tci);
2231         }
2232 }
2233
2234 static int
2235 hns3_tx_alloc_mbufs(struct hns3_tx_queue *txq, struct rte_mempool *mb_pool,
2236                     uint16_t nb_new_buf, struct rte_mbuf **alloc_mbuf)
2237 {
2238         struct rte_mbuf *new_mbuf = NULL;
2239         struct rte_eth_dev *dev;
2240         struct rte_mbuf *temp;
2241         struct hns3_hw *hw;
2242         uint16_t i;
2243
2244         /* Allocate enough mbufs */
2245         for (i = 0; i < nb_new_buf; i++) {
2246                 temp = rte_pktmbuf_alloc(mb_pool);
2247                 if (unlikely(temp == NULL)) {
2248                         dev = &rte_eth_devices[txq->port_id];
2249                         hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2250                         hns3_err(hw, "Failed to alloc TX mbuf port_id=%d,"
2251                                      "queue_id=%d in reassemble tx pkts.",
2252                                      txq->port_id, txq->queue_id);
2253                         rte_pktmbuf_free(new_mbuf);
2254                         return -ENOMEM;
2255                 }
2256                 temp->next = new_mbuf;
2257                 new_mbuf = temp;
2258         }
2259
2260         if (new_mbuf == NULL)
2261                 return -ENOMEM;
2262
2263         new_mbuf->nb_segs = nb_new_buf;
2264         *alloc_mbuf = new_mbuf;
2265
2266         return 0;
2267 }
2268
2269 static inline void
2270 hns3_pktmbuf_copy_hdr(struct rte_mbuf *new_pkt, struct rte_mbuf *old_pkt)
2271 {
2272         new_pkt->ol_flags = old_pkt->ol_flags;
2273         new_pkt->pkt_len = rte_pktmbuf_pkt_len(old_pkt);
2274         new_pkt->outer_l2_len = old_pkt->outer_l2_len;
2275         new_pkt->outer_l3_len = old_pkt->outer_l3_len;
2276         new_pkt->l2_len = old_pkt->l2_len;
2277         new_pkt->l3_len = old_pkt->l3_len;
2278         new_pkt->l4_len = old_pkt->l4_len;
2279         new_pkt->vlan_tci_outer = old_pkt->vlan_tci_outer;
2280         new_pkt->vlan_tci = old_pkt->vlan_tci;
2281 }
2282
2283 static int
2284 hns3_reassemble_tx_pkts(void *tx_queue, struct rte_mbuf *tx_pkt,
2285                         struct rte_mbuf **new_pkt)
2286 {
2287         struct hns3_tx_queue *txq = tx_queue;
2288         struct rte_mempool *mb_pool;
2289         struct rte_mbuf *new_mbuf;
2290         struct rte_mbuf *temp_new;
2291         struct rte_mbuf *temp;
2292         uint16_t last_buf_len;
2293         uint16_t nb_new_buf;
2294         uint16_t buf_size;
2295         uint16_t buf_len;
2296         uint16_t len_s;
2297         uint16_t len_d;
2298         uint16_t len;
2299         uint16_t i;
2300         int ret;
2301         char *s;
2302         char *d;
2303
2304         mb_pool = tx_pkt->pool;
2305         buf_size = tx_pkt->buf_len - RTE_PKTMBUF_HEADROOM;
2306         nb_new_buf = (rte_pktmbuf_pkt_len(tx_pkt) - 1) / buf_size + 1;
2307         if (nb_new_buf > HNS3_MAX_NON_TSO_BD_PER_PKT)
2308                 return -EINVAL;
2309
2310         last_buf_len = rte_pktmbuf_pkt_len(tx_pkt) % buf_size;
2311         if (last_buf_len == 0)
2312                 last_buf_len = buf_size;
2313
2314         /* Allocate enough mbufs */
2315         ret = hns3_tx_alloc_mbufs(txq, mb_pool, nb_new_buf, &new_mbuf);
2316         if (ret)
2317                 return ret;
2318
2319         /* Copy the original packet content to the new mbufs */
2320         temp = tx_pkt;
2321         s = rte_pktmbuf_mtod(temp, char *);
2322         len_s = rte_pktmbuf_data_len(temp);
2323         temp_new = new_mbuf;
2324         for (i = 0; i < nb_new_buf; i++) {
2325                 d = rte_pktmbuf_mtod(temp_new, char *);
2326                 if (i < nb_new_buf - 1)
2327                         buf_len = buf_size;
2328                 else
2329                         buf_len = last_buf_len;
2330                 len_d = buf_len;
2331
2332                 while (len_d) {
2333                         len = RTE_MIN(len_s, len_d);
2334                         memcpy(d, s, len);
2335                         s = s + len;
2336                         d = d + len;
2337                         len_d = len_d - len;
2338                         len_s = len_s - len;
2339
2340                         if (len_s == 0) {
2341                                 temp = temp->next;
2342                                 if (temp == NULL)
2343                                         break;
2344                                 s = rte_pktmbuf_mtod(temp, char *);
2345                                 len_s = rte_pktmbuf_data_len(temp);
2346                         }
2347                 }
2348
2349                 temp_new->data_len = buf_len;
2350                 temp_new = temp_new->next;
2351         }
2352         hns3_pktmbuf_copy_hdr(new_mbuf, tx_pkt);
2353
2354         /* free original mbufs */
2355         rte_pktmbuf_free(tx_pkt);
2356
2357         *new_pkt = new_mbuf;
2358
2359         return 0;
2360 }
2361
2362 static void
2363 hns3_parse_outer_params(uint64_t ol_flags, uint32_t *ol_type_vlan_len_msec)
2364 {
2365         uint32_t tmp = *ol_type_vlan_len_msec;
2366
2367         /* (outer) IP header type */
2368         if (ol_flags & PKT_TX_OUTER_IPV4) {
2369                 /* OL3 header size, defined in 4 bytes */
2370                 hns3_set_field(tmp, HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
2371                                sizeof(struct rte_ipv4_hdr) >> HNS3_L3_LEN_UNIT);
2372                 if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
2373                         hns3_set_field(tmp, HNS3_TXD_OL3T_M,
2374                                        HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_CSUM);
2375                 else
2376                         hns3_set_field(tmp, HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
2377                                        HNS3_OL3T_IPV4_NO_CSUM);
2378         } else if (ol_flags & PKT_TX_OUTER_IPV6) {
2379                 hns3_set_field(tmp, HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
2380                                HNS3_OL3T_IPV6);
2381                 /* OL3 header size, defined in 4 bytes */
2382                 hns3_set_field(tmp, HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
2383                                sizeof(struct rte_ipv6_hdr) >> HNS3_L3_LEN_UNIT);
2384         }
2385
2386         *ol_type_vlan_len_msec = tmp;
2387 }
2388
2389 static int
2390 hns3_parse_inner_params(uint64_t ol_flags, uint32_t *ol_type_vlan_len_msec,
2391                         struct rte_net_hdr_lens *hdr_lens)
2392 {
2393         uint32_t tmp = *ol_type_vlan_len_msec;
2394         uint8_t l4_len;
2395
2396         /* OL2 header size, defined in 2 bytes */
2397         hns3_set_field(tmp, HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
2398                        sizeof(struct rte_ether_hdr) >> HNS3_L2_LEN_UNIT);
2399
2400         /* L4TUNT: L4 Tunneling Type */
2401         switch (ol_flags & PKT_TX_TUNNEL_MASK) {
2402         case PKT_TX_TUNNEL_GENEVE:
2403         case PKT_TX_TUNNEL_VXLAN:
2404                 /* MAC in UDP tunnelling packet, include VxLAN */
2405                 hns3_set_field(tmp, HNS3_TXD_TUNTYPE_M, HNS3_TXD_TUNTYPE_S,
2406                                HNS3_TUN_MAC_IN_UDP);
2407                 /*
2408                  * OL4 header size, defined in 4 Bytes, it contains outer
2409                  * L4(UDP) length and tunneling length.
2410                  */
2411                 hns3_set_field(tmp, HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
2412                                (uint8_t)RTE_ETHER_VXLAN_HLEN >>
2413                                HNS3_L4_LEN_UNIT);
2414                 break;
2415         case PKT_TX_TUNNEL_GRE:
2416                 hns3_set_field(tmp, HNS3_TXD_TUNTYPE_M, HNS3_TXD_TUNTYPE_S,
2417                                HNS3_TUN_NVGRE);
2418                 /*
2419                  * OL4 header size, defined in 4 Bytes, it contains outer
2420                  * L4(GRE) length and tunneling length.
2421                  */
2422                 l4_len = hdr_lens->l4_len + hdr_lens->tunnel_len;
2423                 hns3_set_field(tmp, HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
2424                                l4_len >> HNS3_L4_LEN_UNIT);
2425                 break;
2426         default:
2427                 /* For non UDP / GRE tunneling, drop the tunnel packet */
2428                 return -EINVAL;
2429         }
2430
2431         *ol_type_vlan_len_msec = tmp;
2432
2433         return 0;
2434 }
2435
2436 static int
2437 hns3_parse_tunneling_params(struct hns3_tx_queue *txq, uint16_t tx_desc_id,
2438                             uint64_t ol_flags,
2439                             struct rte_net_hdr_lens *hdr_lens)
2440 {
2441         struct hns3_desc *tx_ring = txq->tx_ring;
2442         struct hns3_desc *desc = &tx_ring[tx_desc_id];
2443         uint32_t value = 0;
2444         int ret;
2445
2446         hns3_parse_outer_params(ol_flags, &value);
2447         ret = hns3_parse_inner_params(ol_flags, &value, hdr_lens);
2448         if (ret)
2449                 return -EINVAL;
2450
2451         desc->tx.ol_type_vlan_len_msec |= rte_cpu_to_le_32(value);
2452
2453         return 0;
2454 }
2455
2456 static void
2457 hns3_parse_l3_cksum_params(uint64_t ol_flags, uint32_t *type_cs_vlan_tso_len)
2458 {
2459         uint32_t tmp;
2460
2461         /* Enable L3 checksum offloads */
2462         if (ol_flags & PKT_TX_IPV4) {
2463                 tmp = *type_cs_vlan_tso_len;
2464                 hns3_set_field(tmp, HNS3_TXD_L3T_M, HNS3_TXD_L3T_S,
2465                                HNS3_L3T_IPV4);
2466                 /* inner(/normal) L3 header size, defined in 4 bytes */
2467                 hns3_set_field(tmp, HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
2468                                sizeof(struct rte_ipv4_hdr) >> HNS3_L3_LEN_UNIT);
2469                 if (ol_flags & PKT_TX_IP_CKSUM)
2470                         hns3_set_bit(tmp, HNS3_TXD_L3CS_B, 1);
2471                 *type_cs_vlan_tso_len = tmp;
2472         } else if (ol_flags & PKT_TX_IPV6) {
2473                 tmp = *type_cs_vlan_tso_len;
2474                 /* L3T, IPv6 don't do checksum */
2475                 hns3_set_field(tmp, HNS3_TXD_L3T_M, HNS3_TXD_L3T_S,
2476                                HNS3_L3T_IPV6);
2477                 /* inner(/normal) L3 header size, defined in 4 bytes */
2478                 hns3_set_field(tmp, HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
2479                                sizeof(struct rte_ipv6_hdr) >> HNS3_L3_LEN_UNIT);
2480                 *type_cs_vlan_tso_len = tmp;
2481         }
2482 }
2483
2484 static void
2485 hns3_parse_l4_cksum_params(uint64_t ol_flags, uint32_t *type_cs_vlan_tso_len)
2486 {
2487         uint32_t tmp;
2488
2489         /* Enable L4 checksum offloads */
2490         switch (ol_flags & PKT_TX_L4_MASK) {
2491         case PKT_TX_TCP_CKSUM:
2492                 tmp = *type_cs_vlan_tso_len;
2493                 hns3_set_field(tmp, HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
2494                                HNS3_L4T_TCP);
2495                 hns3_set_bit(tmp, HNS3_TXD_L4CS_B, 1);
2496                 hns3_set_field(tmp, HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
2497                                sizeof(struct rte_tcp_hdr) >> HNS3_L4_LEN_UNIT);
2498                 *type_cs_vlan_tso_len = tmp;
2499                 break;
2500         case PKT_TX_UDP_CKSUM:
2501                 tmp = *type_cs_vlan_tso_len;
2502                 hns3_set_field(tmp, HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
2503                                HNS3_L4T_UDP);
2504                 hns3_set_bit(tmp, HNS3_TXD_L4CS_B, 1);
2505                 hns3_set_field(tmp, HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
2506                                sizeof(struct rte_udp_hdr) >> HNS3_L4_LEN_UNIT);
2507                 *type_cs_vlan_tso_len = tmp;
2508                 break;
2509         case PKT_TX_SCTP_CKSUM:
2510                 tmp = *type_cs_vlan_tso_len;
2511                 hns3_set_field(tmp, HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
2512                                HNS3_L4T_SCTP);
2513                 hns3_set_bit(tmp, HNS3_TXD_L4CS_B, 1);
2514                 hns3_set_field(tmp, HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
2515                                sizeof(struct rte_sctp_hdr) >> HNS3_L4_LEN_UNIT);
2516                 *type_cs_vlan_tso_len = tmp;
2517                 break;
2518         default:
2519                 break;
2520         }
2521 }
2522
2523 static void
2524 hns3_txd_enable_checksum(struct hns3_tx_queue *txq, uint16_t tx_desc_id,
2525                          uint64_t ol_flags)
2526 {
2527         struct hns3_desc *tx_ring = txq->tx_ring;
2528         struct hns3_desc *desc = &tx_ring[tx_desc_id];
2529         uint32_t value = 0;
2530
2531         /* inner(/normal) L2 header size, defined in 2 bytes */
2532         hns3_set_field(value, HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
2533                        sizeof(struct rte_ether_hdr) >> HNS3_L2_LEN_UNIT);
2534
2535         hns3_parse_l3_cksum_params(ol_flags, &value);
2536         hns3_parse_l4_cksum_params(ol_flags, &value);
2537
2538         desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(value);
2539 }
2540
2541 static bool
2542 hns3_pkt_need_linearized(struct rte_mbuf *tx_pkts, uint32_t bd_num)
2543 {
2544         struct rte_mbuf *m_first = tx_pkts;
2545         struct rte_mbuf *m_last = tx_pkts;
2546         uint32_t tot_len = 0;
2547         uint32_t hdr_len;
2548         uint32_t i;
2549
2550         /*
2551          * Hardware requires that the sum of the data length of every 8
2552          * consecutive buffers is greater than MSS in hns3 network engine.
2553          * We simplify it by ensuring pkt_headlen + the first 8 consecutive
2554          * frags greater than gso header len + mss, and the remaining 7
2555          * consecutive frags greater than MSS except the last 7 frags.
2556          */
2557         if (bd_num <= HNS3_MAX_NON_TSO_BD_PER_PKT)
2558                 return false;
2559
2560         for (i = 0; m_last && i < HNS3_MAX_NON_TSO_BD_PER_PKT - 1;
2561              i++, m_last = m_last->next)
2562                 tot_len += m_last->data_len;
2563
2564         if (!m_last)
2565                 return true;
2566
2567         /* ensure the first 8 frags is greater than mss + header */
2568         hdr_len = tx_pkts->l2_len + tx_pkts->l3_len + tx_pkts->l4_len;
2569         hdr_len += (tx_pkts->ol_flags & PKT_TX_TUNNEL_MASK) ?
2570                    tx_pkts->outer_l2_len + tx_pkts->outer_l3_len : 0;
2571         if (tot_len + m_last->data_len < tx_pkts->tso_segsz + hdr_len)
2572                 return true;
2573
2574         /*
2575          * ensure the sum of the data length of every 7 consecutive buffer
2576          * is greater than mss except the last one.
2577          */
2578         for (i = 0; m_last && i < bd_num - HNS3_MAX_NON_TSO_BD_PER_PKT; i++) {
2579                 tot_len -= m_first->data_len;
2580                 tot_len += m_last->data_len;
2581
2582                 if (tot_len < tx_pkts->tso_segsz)
2583                         return true;
2584
2585                 m_first = m_first->next;
2586                 m_last = m_last->next;
2587         }
2588
2589         return false;
2590 }
2591
2592 static void
2593 hns3_outer_header_cksum_prepare(struct rte_mbuf *m)
2594 {
2595         uint64_t ol_flags = m->ol_flags;
2596         struct rte_ipv4_hdr *ipv4_hdr;
2597         struct rte_udp_hdr *udp_hdr;
2598         uint32_t paylen, hdr_len;
2599
2600         if (!(ol_flags & (PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6)))
2601                 return;
2602
2603         if (ol_flags & PKT_TX_IPV4) {
2604                 ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2605                                                    m->outer_l2_len);
2606
2607                 if (ol_flags & PKT_TX_IP_CKSUM)
2608                         ipv4_hdr->hdr_checksum = 0;
2609         }
2610
2611         if ((ol_flags & PKT_TX_L4_MASK) == PKT_TX_UDP_CKSUM &&
2612             ol_flags & PKT_TX_TCP_SEG) {
2613                 hdr_len = m->l2_len + m->l3_len + m->l4_len;
2614                 hdr_len += (ol_flags & PKT_TX_TUNNEL_MASK) ?
2615                                 m->outer_l2_len + m->outer_l3_len : 0;
2616                 paylen = m->pkt_len - hdr_len;
2617                 if (paylen <= m->tso_segsz)
2618                         return;
2619                 udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
2620                                                   m->outer_l2_len +
2621                                                   m->outer_l3_len);
2622                 udp_hdr->dgram_cksum = 0;
2623         }
2624 }
2625
2626 static int
2627 hns3_check_tso_pkt_valid(struct rte_mbuf *m)
2628 {
2629         uint32_t tmp_data_len_sum = 0;
2630         uint16_t nb_buf = m->nb_segs;
2631         uint32_t paylen, hdr_len;
2632         struct rte_mbuf *m_seg;
2633         int i;
2634
2635         if (nb_buf > HNS3_MAX_TSO_BD_PER_PKT)
2636                 return -EINVAL;
2637
2638         hdr_len = m->l2_len + m->l3_len + m->l4_len;
2639         hdr_len += (m->ol_flags & PKT_TX_TUNNEL_MASK) ?
2640                         m->outer_l2_len + m->outer_l3_len : 0;
2641         if (hdr_len > HNS3_MAX_TSO_HDR_SIZE)
2642                 return -EINVAL;
2643
2644         paylen = m->pkt_len - hdr_len;
2645         if (paylen > HNS3_MAX_BD_PAYLEN)
2646                 return -EINVAL;
2647
2648         /*
2649          * The TSO header (include outer and inner L2, L3 and L4 header)
2650          * should be provided by three descriptors in maximum in hns3 network
2651          * engine.
2652          */
2653         m_seg = m;
2654         for (i = 0; m_seg != NULL && i < HNS3_MAX_TSO_HDR_BD_NUM && i < nb_buf;
2655              i++, m_seg = m_seg->next) {
2656                 tmp_data_len_sum += m_seg->data_len;
2657         }
2658
2659         if (hdr_len > tmp_data_len_sum)
2660                 return -EINVAL;
2661
2662         return 0;
2663 }
2664
2665 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2666 static inline int
2667 hns3_vld_vlan_chk(struct hns3_tx_queue *txq, struct rte_mbuf *m)
2668 {
2669         struct rte_ether_hdr *eh;
2670         struct rte_vlan_hdr *vh;
2671
2672         if (!txq->pvid_state)
2673                 return 0;
2674
2675         /*
2676          * Due to hardware limitations, we only support two-layer VLAN hardware
2677          * offload in Tx direction based on hns3 network engine, so when PVID is
2678          * enabled, QinQ insert is no longer supported.
2679          * And when PVID is enabled, in the following two cases:
2680          *  i) packets with more than two VLAN tags.
2681          *  ii) packets with one VLAN tag while the hardware VLAN insert is
2682          *      enabled.
2683          * The packets will be regarded as abnormal packets and discarded by
2684          * hardware in Tx direction. For debugging purposes, a validation check
2685          * for these types of packets is added to the '.tx_pkt_prepare' ops
2686          * implementation function named hns3_prep_pkts to inform users that
2687          * these packets will be discarded.
2688          */
2689         if (m->ol_flags & PKT_TX_QINQ_PKT)
2690                 return -EINVAL;
2691
2692         eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
2693         if (eh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) {
2694                 if (m->ol_flags & PKT_TX_VLAN_PKT)
2695                         return -EINVAL;
2696
2697                 /* Ensure the incoming packet is not a QinQ packet */
2698                 vh = (struct rte_vlan_hdr *)(eh + 1);
2699                 if (vh->eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN))
2700                         return -EINVAL;
2701         }
2702
2703         return 0;
2704 }
2705 #endif
2706
2707 uint16_t
2708 hns3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2709                uint16_t nb_pkts)
2710 {
2711         struct rte_mbuf *m;
2712         uint16_t i;
2713         int ret;
2714
2715         for (i = 0; i < nb_pkts; i++) {
2716                 m = tx_pkts[i];
2717
2718                 if (hns3_pkt_is_tso(m) &&
2719                     (hns3_pkt_need_linearized(m, m->nb_segs) ||
2720                      hns3_check_tso_pkt_valid(m))) {
2721                         rte_errno = EINVAL;
2722                         return i;
2723                 }
2724
2725 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2726                 ret = rte_validate_tx_offload(m);
2727                 if (ret != 0) {
2728                         rte_errno = -ret;
2729                         return i;
2730                 }
2731
2732                 if (hns3_vld_vlan_chk(tx_queue, m)) {
2733                         rte_errno = EINVAL;
2734                         return i;
2735                 }
2736 #endif
2737                 ret = rte_net_intel_cksum_prepare(m);
2738                 if (ret != 0) {
2739                         rte_errno = -ret;
2740                         return i;
2741                 }
2742
2743                 hns3_outer_header_cksum_prepare(m);
2744         }
2745
2746         return i;
2747 }
2748
2749 static int
2750 hns3_parse_cksum(struct hns3_tx_queue *txq, uint16_t tx_desc_id,
2751                  const struct rte_mbuf *m, struct rte_net_hdr_lens *hdr_lens)
2752 {
2753         /* Fill in tunneling parameters if necessary */
2754         if (m->ol_flags & PKT_TX_TUNNEL_MASK) {
2755                 (void)rte_net_get_ptype(m, hdr_lens, RTE_PTYPE_ALL_MASK);
2756                 if (hns3_parse_tunneling_params(txq, tx_desc_id, m->ol_flags,
2757                                                 hdr_lens)) {
2758                         txq->unsupported_tunnel_pkt_cnt++;
2759                         return -EINVAL;
2760                 }
2761         }
2762         /* Enable checksum offloading */
2763         if (m->ol_flags & HNS3_TX_CKSUM_OFFLOAD_MASK)
2764                 hns3_txd_enable_checksum(txq, tx_desc_id, m->ol_flags);
2765
2766         return 0;
2767 }
2768
2769 static int
2770 hns3_check_non_tso_pkt(uint16_t nb_buf, struct rte_mbuf **m_seg,
2771                       struct rte_mbuf *tx_pkt, struct hns3_tx_queue *txq)
2772 {
2773         struct rte_mbuf *new_pkt;
2774         int ret;
2775
2776         if (hns3_pkt_is_tso(*m_seg))
2777                 return 0;
2778
2779         /*
2780          * If packet length is greater than HNS3_MAX_FRAME_LEN
2781          * driver support, the packet will be ignored.
2782          */
2783         if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) > HNS3_MAX_FRAME_LEN)) {
2784                 txq->over_length_pkt_cnt++;
2785                 return -EINVAL;
2786         }
2787
2788         if (unlikely(nb_buf > HNS3_MAX_NON_TSO_BD_PER_PKT)) {
2789                 txq->exceed_limit_bd_pkt_cnt++;
2790                 ret = hns3_reassemble_tx_pkts(txq, tx_pkt, &new_pkt);
2791                 if (ret) {
2792                         txq->exceed_limit_bd_reassem_fail++;
2793                         return ret;
2794                 }
2795                 *m_seg = new_pkt;
2796         }
2797
2798         return 0;
2799 }
2800
2801 uint16_t
2802 hns3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2803 {
2804         struct rte_net_hdr_lens hdr_lens = {0};
2805         struct hns3_tx_queue *txq = tx_queue;
2806         struct hns3_entry *tx_bak_pkt;
2807         struct hns3_desc *tx_ring;
2808         struct rte_mbuf *tx_pkt;
2809         struct rte_mbuf *m_seg;
2810         struct hns3_desc *desc;
2811         uint32_t nb_hold = 0;
2812         uint16_t tx_next_use;
2813         uint16_t tx_pkt_num;
2814         uint16_t tx_bd_max;
2815         uint16_t nb_buf;
2816         uint16_t nb_tx;
2817         uint16_t i;
2818
2819         /* free useless buffer */
2820         hns3_tx_free_useless_buffer(txq);
2821
2822         tx_next_use   = txq->next_to_use;
2823         tx_bd_max     = txq->nb_tx_desc;
2824         tx_pkt_num = nb_pkts;
2825         tx_ring = txq->tx_ring;
2826
2827         /* send packets */
2828         tx_bak_pkt = &txq->sw_ring[tx_next_use];
2829         for (nb_tx = 0; nb_tx < tx_pkt_num; nb_tx++) {
2830                 tx_pkt = *tx_pkts++;
2831
2832                 nb_buf = tx_pkt->nb_segs;
2833
2834                 if (nb_buf > txq->tx_bd_ready) {
2835                         txq->queue_full_cnt++;
2836                         if (nb_tx == 0)
2837                                 return 0;
2838
2839                         goto end_of_tx;
2840                 }
2841
2842                 /*
2843                  * If packet length is less than minimum packet length supported
2844                  * by hardware in Tx direction, driver need to pad it to avoid
2845                  * error.
2846                  */
2847                 if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) <
2848                                                 txq->min_tx_pkt_len)) {
2849                         uint16_t add_len;
2850                         char *appended;
2851
2852                         add_len = txq->min_tx_pkt_len -
2853                                          rte_pktmbuf_pkt_len(tx_pkt);
2854                         appended = rte_pktmbuf_append(tx_pkt, add_len);
2855                         if (appended == NULL) {
2856                                 txq->pkt_padding_fail_cnt++;
2857                                 break;
2858                         }
2859
2860                         memset(appended, 0, add_len);
2861                 }
2862
2863                 m_seg = tx_pkt;
2864
2865                 if (hns3_check_non_tso_pkt(nb_buf, &m_seg, tx_pkt, txq))
2866                         goto end_of_tx;
2867
2868                 if (hns3_parse_cksum(txq, tx_next_use, m_seg, &hdr_lens))
2869                         goto end_of_tx;
2870
2871                 i = 0;
2872                 desc = &tx_ring[tx_next_use];
2873
2874                 /*
2875                  * If the packet is divided into multiple Tx Buffer Descriptors,
2876                  * only need to fill vlan, paylen and tso into the first Tx
2877                  * Buffer Descriptor.
2878                  */
2879                 hns3_fill_first_desc(txq, desc, m_seg);
2880
2881                 do {
2882                         desc = &tx_ring[tx_next_use];
2883                         /*
2884                          * Fill valid bits, DMA address and data length for each
2885                          * Tx Buffer Descriptor.
2886                          */
2887                         hns3_fill_per_desc(desc, m_seg);
2888                         tx_bak_pkt->mbuf = m_seg;
2889                         m_seg = m_seg->next;
2890                         tx_next_use++;
2891                         tx_bak_pkt++;
2892                         if (tx_next_use >= tx_bd_max) {
2893                                 tx_next_use = 0;
2894                                 tx_bak_pkt = txq->sw_ring;
2895                         }
2896
2897                         i++;
2898                 } while (m_seg != NULL);
2899
2900                 /* Add end flag for the last Tx Buffer Descriptor */
2901                 desc->tx.tp_fe_sc_vld_ra_ri |=
2902                                  rte_cpu_to_le_16(BIT(HNS3_TXD_FE_B));
2903
2904                 nb_hold += i;
2905                 txq->next_to_use = tx_next_use;
2906                 txq->tx_bd_ready -= i;
2907         }
2908
2909 end_of_tx:
2910
2911         if (likely(nb_tx))
2912                 hns3_queue_xmit(txq, nb_hold);
2913
2914         return nb_tx;
2915 }
2916
2917 static uint16_t
2918 hns3_dummy_rxtx_burst(void *dpdk_txq __rte_unused,
2919                       struct rte_mbuf **pkts __rte_unused,
2920                       uint16_t pkts_n __rte_unused)
2921 {
2922         return 0;
2923 }
2924
2925 void hns3_set_rxtx_function(struct rte_eth_dev *eth_dev)
2926 {
2927         struct hns3_adapter *hns = eth_dev->data->dev_private;
2928
2929         if (hns->hw.adapter_state == HNS3_NIC_STARTED &&
2930             rte_atomic16_read(&hns->hw.reset.resetting) == 0) {
2931                 eth_dev->rx_pkt_burst = hns3_get_rx_function(eth_dev);
2932                 eth_dev->tx_pkt_burst = hns3_xmit_pkts;
2933                 eth_dev->tx_pkt_prepare = hns3_prep_pkts;
2934         } else {
2935                 eth_dev->rx_pkt_burst = hns3_dummy_rxtx_burst;
2936                 eth_dev->tx_pkt_burst = hns3_dummy_rxtx_burst;
2937                 eth_dev->tx_pkt_prepare = hns3_dummy_rxtx_burst;
2938         }
2939 }
2940
2941 void
2942 hns3_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2943                   struct rte_eth_rxq_info *qinfo)
2944 {
2945         struct hns3_rx_queue *rxq = dev->data->rx_queues[queue_id];
2946
2947         qinfo->mp = rxq->mb_pool;
2948         qinfo->nb_desc = rxq->nb_rx_desc;
2949         qinfo->scattered_rx = dev->data->scattered_rx;
2950
2951         /*
2952          * If there are no available Rx buffer descriptors, incoming packets
2953          * are always dropped by hardware based on hns3 network engine.
2954          */
2955         qinfo->conf.rx_drop_en = 1;
2956         qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
2957         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2958         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2959 }
2960
2961 void
2962 hns3_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2963                   struct rte_eth_txq_info *qinfo)
2964 {
2965         struct hns3_tx_queue *txq = dev->data->tx_queues[queue_id];
2966
2967         qinfo->nb_desc = txq->nb_tx_desc;
2968         qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
2969         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2970 }