46e9276be1fc9a2d3276ae1c81b83bd41f562cc6
[dpdk.git] / drivers / net / i40e / i40e_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26 #include <rte_vect.h>
27
28 #include "i40e_logs.h"
29 #include "base/i40e_prototype.h"
30 #include "base/i40e_type.h"
31 #include "i40e_ethdev.h"
32 #include "i40e_rxtx.h"
33
34 #define DEFAULT_TX_RS_THRESH   32
35 #define DEFAULT_TX_FREE_THRESH 32
36
37 #define I40E_TX_MAX_BURST  32
38
39 #define I40E_DMA_MEM_ALIGN 4096
40
41 /* Base address of the HW descriptor ring should be 128B aligned. */
42 #define I40E_RING_BASE_ALIGN    128
43
44 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
45
46 #ifdef RTE_LIBRTE_IEEE1588
47 #define I40E_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
48 #else
49 #define I40E_TX_IEEE1588_TMST 0
50 #endif
51
52 #define I40E_TX_CKSUM_OFFLOAD_MASK (             \
53                 PKT_TX_IP_CKSUM |                \
54                 PKT_TX_L4_MASK |                 \
55                 PKT_TX_TCP_SEG |                 \
56                 PKT_TX_OUTER_IP_CKSUM)
57
58 #define I40E_TX_OFFLOAD_MASK (  \
59                 PKT_TX_OUTER_IPV4 |     \
60                 PKT_TX_OUTER_IPV6 |     \
61                 PKT_TX_IPV4 |           \
62                 PKT_TX_IPV6 |           \
63                 PKT_TX_IP_CKSUM |       \
64                 PKT_TX_L4_MASK |        \
65                 PKT_TX_OUTER_IP_CKSUM | \
66                 PKT_TX_TCP_SEG |        \
67                 PKT_TX_QINQ_PKT |       \
68                 PKT_TX_VLAN_PKT |       \
69                 PKT_TX_TUNNEL_MASK |    \
70                 I40E_TX_IEEE1588_TMST)
71
72 #define I40E_TX_OFFLOAD_NOTSUP_MASK \
73                 (PKT_TX_OFFLOAD_MASK ^ I40E_TX_OFFLOAD_MASK)
74
75 int
76 i40e_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
77 {
78         struct i40e_rx_queue *rxq = rx_queue;
79         volatile union i40e_rx_desc *rxdp;
80         uint16_t desc;
81
82         desc = rxq->rx_tail;
83         rxdp = &rxq->rx_ring[desc];
84         /* watch for changes in status bit */
85         pmc->addr = &rxdp->wb.qword1.status_error_len;
86
87         /*
88          * we expect the DD bit to be set to 1 if this descriptor was already
89          * written to.
90          */
91         pmc->val = rte_cpu_to_le_64(1 << I40E_RX_DESC_STATUS_DD_SHIFT);
92         pmc->mask = rte_cpu_to_le_64(1 << I40E_RX_DESC_STATUS_DD_SHIFT);
93
94         /* registers are 64-bit */
95         pmc->data_sz = sizeof(uint64_t);
96
97         return 0;
98 }
99
100 static inline void
101 i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
102 {
103         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
104                 (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
105                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
106                 mb->vlan_tci =
107                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
108                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
109                            rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
110         } else {
111                 mb->vlan_tci = 0;
112         }
113 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
114         if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
115                 (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
116                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
117                         PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
118                 mb->vlan_tci_outer = mb->vlan_tci;
119                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
120                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
121                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
122                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
123         } else {
124                 mb->vlan_tci_outer = 0;
125         }
126 #endif
127         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
128                    mb->vlan_tci, mb->vlan_tci_outer);
129 }
130
131 /* Translate the rx descriptor status to pkt flags */
132 static inline uint64_t
133 i40e_rxd_status_to_pkt_flags(uint64_t qword)
134 {
135         uint64_t flags;
136
137         /* Check if RSS_HASH */
138         flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
139                                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
140                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
141
142         /* Check if FDIR Match */
143         flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
144                                                         PKT_RX_FDIR : 0);
145
146         return flags;
147 }
148
149 static inline uint64_t
150 i40e_rxd_error_to_pkt_flags(uint64_t qword)
151 {
152         uint64_t flags = 0;
153         uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
154
155 #define I40E_RX_ERR_BITS 0x3f
156         if (likely((error_bits & I40E_RX_ERR_BITS) == 0)) {
157                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
158                 return flags;
159         }
160
161         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
162                 flags |= PKT_RX_IP_CKSUM_BAD;
163         else
164                 flags |= PKT_RX_IP_CKSUM_GOOD;
165
166         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
167                 flags |= PKT_RX_L4_CKSUM_BAD;
168         else
169                 flags |= PKT_RX_L4_CKSUM_GOOD;
170
171         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
172                 flags |= PKT_RX_EIP_CKSUM_BAD;
173
174         return flags;
175 }
176
177 /* Function to check and set the ieee1588 timesync index and get the
178  * appropriate flags.
179  */
180 #ifdef RTE_LIBRTE_IEEE1588
181 static inline uint64_t
182 i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
183 {
184         uint64_t pkt_flags = 0;
185         uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
186                                   | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
187                                     >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
188
189         if ((mb->packet_type & RTE_PTYPE_L2_MASK)
190                         == RTE_PTYPE_L2_ETHER_TIMESYNC)
191                 pkt_flags = PKT_RX_IEEE1588_PTP;
192         if (tsyn & 0x04) {
193                 pkt_flags |= PKT_RX_IEEE1588_TMST;
194                 mb->timesync = tsyn & 0x03;
195         }
196
197         return pkt_flags;
198 }
199 #endif
200
201 static inline uint64_t
202 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
203 {
204         uint64_t flags = 0;
205 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
206         uint16_t flexbh, flexbl;
207
208         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
209                 I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
210                 I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
211         flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
212                 I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
213                 I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
214
215
216         if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
217                 mb->hash.fdir.hi =
218                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
219                 flags |= PKT_RX_FDIR_ID;
220         } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
221                 mb->hash.fdir.hi =
222                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
223                 flags |= PKT_RX_FDIR_FLX;
224         }
225         if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
226                 mb->hash.fdir.lo =
227                         rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
228                 flags |= PKT_RX_FDIR_FLX;
229         }
230 #else
231         mb->hash.fdir.hi =
232                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
233         flags |= PKT_RX_FDIR_ID;
234 #endif
235         return flags;
236 }
237
238 static inline void
239 i40e_parse_tunneling_params(uint64_t ol_flags,
240                             union i40e_tx_offload tx_offload,
241                             uint32_t *cd_tunneling)
242 {
243         /* EIPT: External (outer) IP header type */
244         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
245                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
246         else if (ol_flags & PKT_TX_OUTER_IPV4)
247                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
248         else if (ol_flags & PKT_TX_OUTER_IPV6)
249                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
250
251         /* EIPLEN: External (outer) IP header length, in DWords */
252         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
253                 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
254
255         /* L4TUNT: L4 Tunneling Type */
256         switch (ol_flags & PKT_TX_TUNNEL_MASK) {
257         case PKT_TX_TUNNEL_IPIP:
258                 /* for non UDP / GRE tunneling, set to 00b */
259                 break;
260         case PKT_TX_TUNNEL_VXLAN:
261         case PKT_TX_TUNNEL_GENEVE:
262                 *cd_tunneling |= I40E_TXD_CTX_UDP_TUNNELING;
263                 break;
264         case PKT_TX_TUNNEL_GRE:
265                 *cd_tunneling |= I40E_TXD_CTX_GRE_TUNNELING;
266                 break;
267         default:
268                 PMD_TX_LOG(ERR, "Tunnel type not supported");
269                 return;
270         }
271
272         /* L4TUNLEN: L4 Tunneling Length, in Words
273          *
274          * We depend on app to set rte_mbuf.l2_len correctly.
275          * For IP in GRE it should be set to the length of the GRE
276          * header;
277          * for MAC in GRE or MAC in UDP it should be set to the length
278          * of the GRE or UDP headers plus the inner MAC up to including
279          * its last Ethertype.
280          */
281         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
282                 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
283 }
284
285 static inline void
286 i40e_txd_enable_checksum(uint64_t ol_flags,
287                         uint32_t *td_cmd,
288                         uint32_t *td_offset,
289                         union i40e_tx_offload tx_offload)
290 {
291         /* Set MACLEN */
292         if (ol_flags & PKT_TX_TUNNEL_MASK)
293                 *td_offset |= (tx_offload.outer_l2_len >> 1)
294                                 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
295         else
296                 *td_offset |= (tx_offload.l2_len >> 1)
297                         << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
298
299         /* Enable L3 checksum offloads */
300         if (ol_flags & PKT_TX_IP_CKSUM) {
301                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
302                 *td_offset |= (tx_offload.l3_len >> 2)
303                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
304         } else if (ol_flags & PKT_TX_IPV4) {
305                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
306                 *td_offset |= (tx_offload.l3_len >> 2)
307                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
308         } else if (ol_flags & PKT_TX_IPV6) {
309                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
310                 *td_offset |= (tx_offload.l3_len >> 2)
311                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
312         }
313
314         if (ol_flags & PKT_TX_TCP_SEG) {
315                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
316                 *td_offset |= (tx_offload.l4_len >> 2)
317                         << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
318                 return;
319         }
320
321         /* Enable L4 checksum offloads */
322         switch (ol_flags & PKT_TX_L4_MASK) {
323         case PKT_TX_TCP_CKSUM:
324                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
325                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
326                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
327                 break;
328         case PKT_TX_SCTP_CKSUM:
329                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
330                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
331                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
332                 break;
333         case PKT_TX_UDP_CKSUM:
334                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
335                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
336                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
337                 break;
338         default:
339                 break;
340         }
341 }
342
343 /* Construct the tx flags */
344 static inline uint64_t
345 i40e_build_ctob(uint32_t td_cmd,
346                 uint32_t td_offset,
347                 unsigned int size,
348                 uint32_t td_tag)
349 {
350         return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
351                         ((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
352                         ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
353                         ((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
354                         ((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
355 }
356
357 static inline int
358 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
359 {
360         struct i40e_tx_entry *sw_ring = txq->sw_ring;
361         volatile struct i40e_tx_desc *txd = txq->tx_ring;
362         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
363         uint16_t nb_tx_desc = txq->nb_tx_desc;
364         uint16_t desc_to_clean_to;
365         uint16_t nb_tx_to_clean;
366
367         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
368         if (desc_to_clean_to >= nb_tx_desc)
369                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
370
371         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
372         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
373                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
374                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
375                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
376                         "(port=%d queue=%d)", desc_to_clean_to,
377                                 txq->port_id, txq->queue_id);
378                 return -1;
379         }
380
381         if (last_desc_cleaned > desc_to_clean_to)
382                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
383                                                         desc_to_clean_to);
384         else
385                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
386                                         last_desc_cleaned);
387
388         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
389
390         txq->last_desc_cleaned = desc_to_clean_to;
391         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
392
393         return 0;
394 }
395
396 static inline int
397 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
398 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
399 #else
400 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
401 #endif
402 {
403         int ret = 0;
404
405 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
406         if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
407                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
408                              "rxq->rx_free_thresh=%d, "
409                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
410                              rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
411                 ret = -EINVAL;
412         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
413                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
414                              "rxq->rx_free_thresh=%d, "
415                              "rxq->nb_rx_desc=%d",
416                              rxq->rx_free_thresh, rxq->nb_rx_desc);
417                 ret = -EINVAL;
418         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
419                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
420                              "rxq->nb_rx_desc=%d, "
421                              "rxq->rx_free_thresh=%d",
422                              rxq->nb_rx_desc, rxq->rx_free_thresh);
423                 ret = -EINVAL;
424         }
425 #else
426         ret = -EINVAL;
427 #endif
428
429         return ret;
430 }
431
432 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
433 #define I40E_LOOK_AHEAD 8
434 #if (I40E_LOOK_AHEAD != 8)
435 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
436 #endif
437 static inline int
438 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
439 {
440         volatile union i40e_rx_desc *rxdp;
441         struct i40e_rx_entry *rxep;
442         struct rte_mbuf *mb;
443         uint16_t pkt_len;
444         uint64_t qword1;
445         uint32_t rx_status;
446         int32_t s[I40E_LOOK_AHEAD], nb_dd;
447         int32_t i, j, nb_rx = 0;
448         uint64_t pkt_flags;
449         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
450
451         rxdp = &rxq->rx_ring[rxq->rx_tail];
452         rxep = &rxq->sw_ring[rxq->rx_tail];
453
454         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
455         rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
456                                 I40E_RXD_QW1_STATUS_SHIFT;
457
458         /* Make sure there is at least 1 packet to receive */
459         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
460                 return 0;
461
462         /**
463          * Scan LOOK_AHEAD descriptors at a time to determine which
464          * descriptors reference packets that are ready to be received.
465          */
466         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
467                         rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
468                 /* Read desc statuses backwards to avoid race condition */
469                 for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
470                         qword1 = rte_le_to_cpu_64(\
471                                 rxdp[j].wb.qword1.status_error_len);
472                         s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
473                                         I40E_RXD_QW1_STATUS_SHIFT;
474                 }
475
476                 rte_smp_rmb();
477
478                 /* Compute how many status bits were set */
479                 for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
480                         nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
481
482                 nb_rx += nb_dd;
483
484                 /* Translate descriptor info to mbuf parameters */
485                 for (j = 0; j < nb_dd; j++) {
486                         mb = rxep[j].mbuf;
487                         qword1 = rte_le_to_cpu_64(\
488                                 rxdp[j].wb.qword1.status_error_len);
489                         pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
490                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
491                         mb->data_len = pkt_len;
492                         mb->pkt_len = pkt_len;
493                         mb->ol_flags = 0;
494                         i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
495                         pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
496                         pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
497                         mb->packet_type =
498                                 ptype_tbl[(uint8_t)((qword1 &
499                                 I40E_RXD_QW1_PTYPE_MASK) >>
500                                 I40E_RXD_QW1_PTYPE_SHIFT)];
501                         if (pkt_flags & PKT_RX_RSS_HASH)
502                                 mb->hash.rss = rte_le_to_cpu_32(\
503                                         rxdp[j].wb.qword0.hi_dword.rss);
504                         if (pkt_flags & PKT_RX_FDIR)
505                                 pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
506
507 #ifdef RTE_LIBRTE_IEEE1588
508                         pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
509 #endif
510                         mb->ol_flags |= pkt_flags;
511
512                 }
513
514                 for (j = 0; j < I40E_LOOK_AHEAD; j++)
515                         rxq->rx_stage[i + j] = rxep[j].mbuf;
516
517                 if (nb_dd != I40E_LOOK_AHEAD)
518                         break;
519         }
520
521         /* Clear software ring entries */
522         for (i = 0; i < nb_rx; i++)
523                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
524
525         return nb_rx;
526 }
527
528 static inline uint16_t
529 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
530                         struct rte_mbuf **rx_pkts,
531                         uint16_t nb_pkts)
532 {
533         uint16_t i;
534         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
535
536         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
537
538         for (i = 0; i < nb_pkts; i++)
539                 rx_pkts[i] = stage[i];
540
541         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
542         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
543
544         return nb_pkts;
545 }
546
547 static inline int
548 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
549 {
550         volatile union i40e_rx_desc *rxdp;
551         struct i40e_rx_entry *rxep;
552         struct rte_mbuf *mb;
553         uint16_t alloc_idx, i;
554         uint64_t dma_addr;
555         int diag;
556
557         /* Allocate buffers in bulk */
558         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
559                                 (rxq->rx_free_thresh - 1));
560         rxep = &(rxq->sw_ring[alloc_idx]);
561         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
562                                         rxq->rx_free_thresh);
563         if (unlikely(diag != 0)) {
564                 PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
565                 return -ENOMEM;
566         }
567
568         rxdp = &rxq->rx_ring[alloc_idx];
569         for (i = 0; i < rxq->rx_free_thresh; i++) {
570                 if (likely(i < (rxq->rx_free_thresh - 1)))
571                         /* Prefetch next mbuf */
572                         rte_prefetch0(rxep[i + 1].mbuf);
573
574                 mb = rxep[i].mbuf;
575                 rte_mbuf_refcnt_set(mb, 1);
576                 mb->next = NULL;
577                 mb->data_off = RTE_PKTMBUF_HEADROOM;
578                 mb->nb_segs = 1;
579                 mb->port = rxq->port_id;
580                 dma_addr = rte_cpu_to_le_64(\
581                         rte_mbuf_data_iova_default(mb));
582                 rxdp[i].read.hdr_addr = 0;
583                 rxdp[i].read.pkt_addr = dma_addr;
584         }
585
586         /* Update rx tail regsiter */
587         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
588
589         rxq->rx_free_trigger =
590                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
591         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
592                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
593
594         return 0;
595 }
596
597 static inline uint16_t
598 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
599 {
600         struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
601         struct rte_eth_dev *dev;
602         uint16_t nb_rx = 0;
603
604         if (!nb_pkts)
605                 return 0;
606
607         if (rxq->rx_nb_avail)
608                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
609
610         nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
611         rxq->rx_next_avail = 0;
612         rxq->rx_nb_avail = nb_rx;
613         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
614
615         if (rxq->rx_tail > rxq->rx_free_trigger) {
616                 if (i40e_rx_alloc_bufs(rxq) != 0) {
617                         uint16_t i, j;
618
619                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
620                         dev->data->rx_mbuf_alloc_failed +=
621                                 rxq->rx_free_thresh;
622
623                         rxq->rx_nb_avail = 0;
624                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
625                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
626                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
627
628                         return 0;
629                 }
630         }
631
632         if (rxq->rx_tail >= rxq->nb_rx_desc)
633                 rxq->rx_tail = 0;
634
635         if (rxq->rx_nb_avail)
636                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
637
638         return 0;
639 }
640
641 static uint16_t
642 i40e_recv_pkts_bulk_alloc(void *rx_queue,
643                           struct rte_mbuf **rx_pkts,
644                           uint16_t nb_pkts)
645 {
646         uint16_t nb_rx = 0, n, count;
647
648         if (unlikely(nb_pkts == 0))
649                 return 0;
650
651         if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
652                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
653
654         while (nb_pkts) {
655                 n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
656                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
657                 nb_rx = (uint16_t)(nb_rx + count);
658                 nb_pkts = (uint16_t)(nb_pkts - count);
659                 if (count < n)
660                         break;
661         }
662
663         return nb_rx;
664 }
665 #else
666 static uint16_t
667 i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
668                           struct rte_mbuf __rte_unused **rx_pkts,
669                           uint16_t __rte_unused nb_pkts)
670 {
671         return 0;
672 }
673 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
674
675 uint16_t
676 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
677 {
678         struct i40e_rx_queue *rxq;
679         volatile union i40e_rx_desc *rx_ring;
680         volatile union i40e_rx_desc *rxdp;
681         union i40e_rx_desc rxd;
682         struct i40e_rx_entry *sw_ring;
683         struct i40e_rx_entry *rxe;
684         struct rte_eth_dev *dev;
685         struct rte_mbuf *rxm;
686         struct rte_mbuf *nmb;
687         uint16_t nb_rx;
688         uint32_t rx_status;
689         uint64_t qword1;
690         uint16_t rx_packet_len;
691         uint16_t rx_id, nb_hold;
692         uint64_t dma_addr;
693         uint64_t pkt_flags;
694         uint32_t *ptype_tbl;
695
696         nb_rx = 0;
697         nb_hold = 0;
698         rxq = rx_queue;
699         rx_id = rxq->rx_tail;
700         rx_ring = rxq->rx_ring;
701         sw_ring = rxq->sw_ring;
702         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
703
704         while (nb_rx < nb_pkts) {
705                 rxdp = &rx_ring[rx_id];
706                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
707                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
708                                 >> I40E_RXD_QW1_STATUS_SHIFT;
709
710                 /* Check the DD bit first */
711                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
712                         break;
713
714                 nmb = rte_mbuf_raw_alloc(rxq->mp);
715                 if (unlikely(!nmb)) {
716                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
717                         dev->data->rx_mbuf_alloc_failed++;
718                         break;
719                 }
720
721                 rxd = *rxdp;
722                 nb_hold++;
723                 rxe = &sw_ring[rx_id];
724                 rx_id++;
725                 if (unlikely(rx_id == rxq->nb_rx_desc))
726                         rx_id = 0;
727
728                 /* Prefetch next mbuf */
729                 rte_prefetch0(sw_ring[rx_id].mbuf);
730
731                 /**
732                  * When next RX descriptor is on a cache line boundary,
733                  * prefetch the next 4 RX descriptors and next 8 pointers
734                  * to mbufs.
735                  */
736                 if ((rx_id & 0x3) == 0) {
737                         rte_prefetch0(&rx_ring[rx_id]);
738                         rte_prefetch0(&sw_ring[rx_id]);
739                 }
740                 rxm = rxe->mbuf;
741                 rxe->mbuf = nmb;
742                 dma_addr =
743                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
744                 rxdp->read.hdr_addr = 0;
745                 rxdp->read.pkt_addr = dma_addr;
746
747                 rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
748                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
749
750                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
751                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
752                 rxm->nb_segs = 1;
753                 rxm->next = NULL;
754                 rxm->pkt_len = rx_packet_len;
755                 rxm->data_len = rx_packet_len;
756                 rxm->port = rxq->port_id;
757                 rxm->ol_flags = 0;
758                 i40e_rxd_to_vlan_tci(rxm, &rxd);
759                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
760                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
761                 rxm->packet_type =
762                         ptype_tbl[(uint8_t)((qword1 &
763                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
764                 if (pkt_flags & PKT_RX_RSS_HASH)
765                         rxm->hash.rss =
766                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
767                 if (pkt_flags & PKT_RX_FDIR)
768                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
769
770 #ifdef RTE_LIBRTE_IEEE1588
771                 pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
772 #endif
773                 rxm->ol_flags |= pkt_flags;
774
775                 rx_pkts[nb_rx++] = rxm;
776         }
777         rxq->rx_tail = rx_id;
778
779         /**
780          * If the number of free RX descriptors is greater than the RX free
781          * threshold of the queue, advance the receive tail register of queue.
782          * Update that register with the value of the last processed RX
783          * descriptor minus 1.
784          */
785         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
786         if (nb_hold > rxq->rx_free_thresh) {
787                 rx_id = (uint16_t) ((rx_id == 0) ?
788                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
789                 I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
790                 nb_hold = 0;
791         }
792         rxq->nb_rx_hold = nb_hold;
793
794         return nb_rx;
795 }
796
797 uint16_t
798 i40e_recv_scattered_pkts(void *rx_queue,
799                          struct rte_mbuf **rx_pkts,
800                          uint16_t nb_pkts)
801 {
802         struct i40e_rx_queue *rxq = rx_queue;
803         volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
804         volatile union i40e_rx_desc *rxdp;
805         union i40e_rx_desc rxd;
806         struct i40e_rx_entry *sw_ring = rxq->sw_ring;
807         struct i40e_rx_entry *rxe;
808         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
809         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
810         struct rte_mbuf *nmb, *rxm;
811         uint16_t rx_id = rxq->rx_tail;
812         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
813         struct rte_eth_dev *dev;
814         uint32_t rx_status;
815         uint64_t qword1;
816         uint64_t dma_addr;
817         uint64_t pkt_flags;
818         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
819
820         while (nb_rx < nb_pkts) {
821                 rxdp = &rx_ring[rx_id];
822                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
823                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
824                                         I40E_RXD_QW1_STATUS_SHIFT;
825
826                 /* Check the DD bit */
827                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
828                         break;
829
830                 nmb = rte_mbuf_raw_alloc(rxq->mp);
831                 if (unlikely(!nmb)) {
832                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
833                         dev->data->rx_mbuf_alloc_failed++;
834                         break;
835                 }
836
837                 rxd = *rxdp;
838                 nb_hold++;
839                 rxe = &sw_ring[rx_id];
840                 rx_id++;
841                 if (rx_id == rxq->nb_rx_desc)
842                         rx_id = 0;
843
844                 /* Prefetch next mbuf */
845                 rte_prefetch0(sw_ring[rx_id].mbuf);
846
847                 /**
848                  * When next RX descriptor is on a cache line boundary,
849                  * prefetch the next 4 RX descriptors and next 8 pointers
850                  * to mbufs.
851                  */
852                 if ((rx_id & 0x3) == 0) {
853                         rte_prefetch0(&rx_ring[rx_id]);
854                         rte_prefetch0(&sw_ring[rx_id]);
855                 }
856
857                 rxm = rxe->mbuf;
858                 rxe->mbuf = nmb;
859                 dma_addr =
860                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
861
862                 /* Set data buffer address and data length of the mbuf */
863                 rxdp->read.hdr_addr = 0;
864                 rxdp->read.pkt_addr = dma_addr;
865                 rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
866                                         I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
867                 rxm->data_len = rx_packet_len;
868                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
869
870                 /**
871                  * If this is the first buffer of the received packet, set the
872                  * pointer to the first mbuf of the packet and initialize its
873                  * context. Otherwise, update the total length and the number
874                  * of segments of the current scattered packet, and update the
875                  * pointer to the last mbuf of the current packet.
876                  */
877                 if (!first_seg) {
878                         first_seg = rxm;
879                         first_seg->nb_segs = 1;
880                         first_seg->pkt_len = rx_packet_len;
881                 } else {
882                         first_seg->pkt_len =
883                                 (uint16_t)(first_seg->pkt_len +
884                                                 rx_packet_len);
885                         first_seg->nb_segs++;
886                         last_seg->next = rxm;
887                 }
888
889                 /**
890                  * If this is not the last buffer of the received packet,
891                  * update the pointer to the last mbuf of the current scattered
892                  * packet and continue to parse the RX ring.
893                  */
894                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
895                         last_seg = rxm;
896                         continue;
897                 }
898
899                 /**
900                  * This is the last buffer of the received packet. If the CRC
901                  * is not stripped by the hardware:
902                  *  - Subtract the CRC length from the total packet length.
903                  *  - If the last buffer only contains the whole CRC or a part
904                  *  of it, free the mbuf associated to the last buffer. If part
905                  *  of the CRC is also contained in the previous mbuf, subtract
906                  *  the length of that CRC part from the data length of the
907                  *  previous mbuf.
908                  */
909                 rxm->next = NULL;
910                 if (unlikely(rxq->crc_len > 0)) {
911                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
912                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
913                                 rte_pktmbuf_free_seg(rxm);
914                                 first_seg->nb_segs--;
915                                 last_seg->data_len =
916                                         (uint16_t)(last_seg->data_len -
917                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
918                                 last_seg->next = NULL;
919                         } else
920                                 rxm->data_len = (uint16_t)(rx_packet_len -
921                                                         RTE_ETHER_CRC_LEN);
922                 }
923
924                 first_seg->port = rxq->port_id;
925                 first_seg->ol_flags = 0;
926                 i40e_rxd_to_vlan_tci(first_seg, &rxd);
927                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
928                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
929                 first_seg->packet_type =
930                         ptype_tbl[(uint8_t)((qword1 &
931                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
932                 if (pkt_flags & PKT_RX_RSS_HASH)
933                         first_seg->hash.rss =
934                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
935                 if (pkt_flags & PKT_RX_FDIR)
936                         pkt_flags |= i40e_rxd_build_fdir(&rxd, first_seg);
937
938 #ifdef RTE_LIBRTE_IEEE1588
939                 pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
940 #endif
941                 first_seg->ol_flags |= pkt_flags;
942
943                 /* Prefetch data of first segment, if configured to do so. */
944                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
945                         first_seg->data_off));
946                 rx_pkts[nb_rx++] = first_seg;
947                 first_seg = NULL;
948         }
949
950         /* Record index of the next RX descriptor to probe. */
951         rxq->rx_tail = rx_id;
952         rxq->pkt_first_seg = first_seg;
953         rxq->pkt_last_seg = last_seg;
954
955         /**
956          * If the number of free RX descriptors is greater than the RX free
957          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
958          * register. Update the RDT with the value of the last processed RX
959          * descriptor minus 1, to guarantee that the RDT register is never
960          * equal to the RDH register, which creates a "full" ring situtation
961          * from the hardware point of view.
962          */
963         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
964         if (nb_hold > rxq->rx_free_thresh) {
965                 rx_id = (uint16_t)(rx_id == 0 ?
966                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
967                 I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
968                 nb_hold = 0;
969         }
970         rxq->nb_rx_hold = nb_hold;
971
972         return nb_rx;
973 }
974
975 /* Check if the context descriptor is needed for TX offloading */
976 static inline uint16_t
977 i40e_calc_context_desc(uint64_t flags)
978 {
979         static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
980                 PKT_TX_TCP_SEG |
981                 PKT_TX_QINQ_PKT |
982                 PKT_TX_TUNNEL_MASK;
983
984 #ifdef RTE_LIBRTE_IEEE1588
985         mask |= PKT_TX_IEEE1588_TMST;
986 #endif
987
988         return (flags & mask) ? 1 : 0;
989 }
990
991 /* set i40e TSO context descriptor */
992 static inline uint64_t
993 i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
994 {
995         uint64_t ctx_desc = 0;
996         uint32_t cd_cmd, hdr_len, cd_tso_len;
997
998         if (!tx_offload.l4_len) {
999                 PMD_DRV_LOG(DEBUG, "L4 length set to 0");
1000                 return ctx_desc;
1001         }
1002
1003         hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
1004         hdr_len += (mbuf->ol_flags & PKT_TX_TUNNEL_MASK) ?
1005                    tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
1006
1007         cd_cmd = I40E_TX_CTX_DESC_TSO;
1008         cd_tso_len = mbuf->pkt_len - hdr_len;
1009         ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1010                 ((uint64_t)cd_tso_len <<
1011                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1012                 ((uint64_t)mbuf->tso_segsz <<
1013                  I40E_TXD_CTX_QW1_MSS_SHIFT);
1014
1015         return ctx_desc;
1016 }
1017
1018 /* HW requires that Tx buffer size ranges from 1B up to (16K-1)B. */
1019 #define I40E_MAX_DATA_PER_TXD \
1020         (I40E_TXD_QW1_TX_BUF_SZ_MASK >> I40E_TXD_QW1_TX_BUF_SZ_SHIFT)
1021 /* Calculate the number of TX descriptors needed for each pkt */
1022 static inline uint16_t
1023 i40e_calc_pkt_desc(struct rte_mbuf *tx_pkt)
1024 {
1025         struct rte_mbuf *txd = tx_pkt;
1026         uint16_t count = 0;
1027
1028         while (txd != NULL) {
1029                 count += DIV_ROUND_UP(txd->data_len, I40E_MAX_DATA_PER_TXD);
1030                 txd = txd->next;
1031         }
1032
1033         return count;
1034 }
1035
1036 uint16_t
1037 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1038 {
1039         struct i40e_tx_queue *txq;
1040         struct i40e_tx_entry *sw_ring;
1041         struct i40e_tx_entry *txe, *txn;
1042         volatile struct i40e_tx_desc *txd;
1043         volatile struct i40e_tx_desc *txr;
1044         struct rte_mbuf *tx_pkt;
1045         struct rte_mbuf *m_seg;
1046         uint32_t cd_tunneling_params;
1047         uint16_t tx_id;
1048         uint16_t nb_tx;
1049         uint32_t td_cmd;
1050         uint32_t td_offset;
1051         uint32_t td_tag;
1052         uint64_t ol_flags;
1053         uint16_t nb_used;
1054         uint16_t nb_ctx;
1055         uint16_t tx_last;
1056         uint16_t slen;
1057         uint64_t buf_dma_addr;
1058         union i40e_tx_offload tx_offload = {0};
1059
1060         txq = tx_queue;
1061         sw_ring = txq->sw_ring;
1062         txr = txq->tx_ring;
1063         tx_id = txq->tx_tail;
1064         txe = &sw_ring[tx_id];
1065
1066         /* Check if the descriptor ring needs to be cleaned. */
1067         if (txq->nb_tx_free < txq->tx_free_thresh)
1068                 (void)i40e_xmit_cleanup(txq);
1069
1070         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1071                 td_cmd = 0;
1072                 td_tag = 0;
1073                 td_offset = 0;
1074
1075                 tx_pkt = *tx_pkts++;
1076                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1077
1078                 ol_flags = tx_pkt->ol_flags;
1079                 tx_offload.l2_len = tx_pkt->l2_len;
1080                 tx_offload.l3_len = tx_pkt->l3_len;
1081                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1082                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1083                 tx_offload.l4_len = tx_pkt->l4_len;
1084                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1085
1086                 /* Calculate the number of context descriptors needed. */
1087                 nb_ctx = i40e_calc_context_desc(ol_flags);
1088
1089                 /**
1090                  * The number of descriptors that must be allocated for
1091                  * a packet equals to the number of the segments of that
1092                  * packet plus 1 context descriptor if needed.
1093                  * Recalculate the needed tx descs when TSO enabled in case
1094                  * the mbuf data size exceeds max data size that hw allows
1095                  * per tx desc.
1096                  */
1097                 if (ol_flags & PKT_TX_TCP_SEG)
1098                         nb_used = (uint16_t)(i40e_calc_pkt_desc(tx_pkt) +
1099                                              nb_ctx);
1100                 else
1101                         nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1102                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1103
1104                 /* Circular ring */
1105                 if (tx_last >= txq->nb_tx_desc)
1106                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1107
1108                 if (nb_used > txq->nb_tx_free) {
1109                         if (i40e_xmit_cleanup(txq) != 0) {
1110                                 if (nb_tx == 0)
1111                                         return 0;
1112                                 goto end_of_tx;
1113                         }
1114                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
1115                                 while (nb_used > txq->nb_tx_free) {
1116                                         if (i40e_xmit_cleanup(txq) != 0) {
1117                                                 if (nb_tx == 0)
1118                                                         return 0;
1119                                                 goto end_of_tx;
1120                                         }
1121                                 }
1122                         }
1123                 }
1124
1125                 /* Descriptor based VLAN insertion */
1126                 if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1127                         td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1128                         td_tag = tx_pkt->vlan_tci;
1129                 }
1130
1131                 /* Always enable CRC offload insertion */
1132                 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1133
1134                 /* Fill in tunneling parameters if necessary */
1135                 cd_tunneling_params = 0;
1136                 if (ol_flags & PKT_TX_TUNNEL_MASK)
1137                         i40e_parse_tunneling_params(ol_flags, tx_offload,
1138                                                     &cd_tunneling_params);
1139                 /* Enable checksum offloading */
1140                 if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK)
1141                         i40e_txd_enable_checksum(ol_flags, &td_cmd,
1142                                                  &td_offset, tx_offload);
1143
1144                 if (nb_ctx) {
1145                         /* Setup TX context descriptor if required */
1146                         volatile struct i40e_tx_context_desc *ctx_txd =
1147                                 (volatile struct i40e_tx_context_desc *)\
1148                                                         &txr[tx_id];
1149                         uint16_t cd_l2tag2 = 0;
1150                         uint64_t cd_type_cmd_tso_mss =
1151                                 I40E_TX_DESC_DTYPE_CONTEXT;
1152
1153                         txn = &sw_ring[txe->next_id];
1154                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1155                         if (txe->mbuf != NULL) {
1156                                 rte_pktmbuf_free_seg(txe->mbuf);
1157                                 txe->mbuf = NULL;
1158                         }
1159
1160                         /* TSO enabled means no timestamp */
1161                         if (ol_flags & PKT_TX_TCP_SEG)
1162                                 cd_type_cmd_tso_mss |=
1163                                         i40e_set_tso_ctx(tx_pkt, tx_offload);
1164                         else {
1165 #ifdef RTE_LIBRTE_IEEE1588
1166                                 if (ol_flags & PKT_TX_IEEE1588_TMST)
1167                                         cd_type_cmd_tso_mss |=
1168                                                 ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1169                                                  I40E_TXD_CTX_QW1_CMD_SHIFT);
1170 #endif
1171                         }
1172
1173                         ctx_txd->tunneling_params =
1174                                 rte_cpu_to_le_32(cd_tunneling_params);
1175                         if (ol_flags & PKT_TX_QINQ_PKT) {
1176                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
1177                                 cd_type_cmd_tso_mss |=
1178                                         ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1179                                                 I40E_TXD_CTX_QW1_CMD_SHIFT);
1180                         }
1181                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1182                         ctx_txd->type_cmd_tso_mss =
1183                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1184
1185                         PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1186                                 "tunneling_params: %#x;\n"
1187                                 "l2tag2: %#hx;\n"
1188                                 "rsvd: %#hx;\n"
1189                                 "type_cmd_tso_mss: %#"PRIx64";\n",
1190                                 tx_pkt, tx_id,
1191                                 ctx_txd->tunneling_params,
1192                                 ctx_txd->l2tag2,
1193                                 ctx_txd->rsvd,
1194                                 ctx_txd->type_cmd_tso_mss);
1195
1196                         txe->last_id = tx_last;
1197                         tx_id = txe->next_id;
1198                         txe = txn;
1199                 }
1200
1201                 m_seg = tx_pkt;
1202                 do {
1203                         txd = &txr[tx_id];
1204                         txn = &sw_ring[txe->next_id];
1205
1206                         if (txe->mbuf)
1207                                 rte_pktmbuf_free_seg(txe->mbuf);
1208                         txe->mbuf = m_seg;
1209
1210                         /* Setup TX Descriptor */
1211                         slen = m_seg->data_len;
1212                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
1213
1214                         while ((ol_flags & PKT_TX_TCP_SEG) &&
1215                                 unlikely(slen > I40E_MAX_DATA_PER_TXD)) {
1216                                 txd->buffer_addr =
1217                                         rte_cpu_to_le_64(buf_dma_addr);
1218                                 txd->cmd_type_offset_bsz =
1219                                         i40e_build_ctob(td_cmd,
1220                                         td_offset, I40E_MAX_DATA_PER_TXD,
1221                                         td_tag);
1222
1223                                 buf_dma_addr += I40E_MAX_DATA_PER_TXD;
1224                                 slen -= I40E_MAX_DATA_PER_TXD;
1225
1226                                 txe->last_id = tx_last;
1227                                 tx_id = txe->next_id;
1228                                 txe = txn;
1229                                 txd = &txr[tx_id];
1230                                 txn = &sw_ring[txe->next_id];
1231                         }
1232                         PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1233                                 "buf_dma_addr: %#"PRIx64";\n"
1234                                 "td_cmd: %#x;\n"
1235                                 "td_offset: %#x;\n"
1236                                 "td_len: %u;\n"
1237                                 "td_tag: %#x;\n",
1238                                 tx_pkt, tx_id, buf_dma_addr,
1239                                 td_cmd, td_offset, slen, td_tag);
1240
1241                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1242                         txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1243                                                 td_offset, slen, td_tag);
1244                         txe->last_id = tx_last;
1245                         tx_id = txe->next_id;
1246                         txe = txn;
1247                         m_seg = m_seg->next;
1248                 } while (m_seg != NULL);
1249
1250                 /* The last packet data descriptor needs End Of Packet (EOP) */
1251                 td_cmd |= I40E_TX_DESC_CMD_EOP;
1252                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1253                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1254
1255                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1256                         PMD_TX_FREE_LOG(DEBUG,
1257                                         "Setting RS bit on TXD id="
1258                                         "%4u (port=%d queue=%d)",
1259                                         tx_last, txq->port_id, txq->queue_id);
1260
1261                         td_cmd |= I40E_TX_DESC_CMD_RS;
1262
1263                         /* Update txq RS bit counters */
1264                         txq->nb_tx_used = 0;
1265                 }
1266
1267                 txd->cmd_type_offset_bsz |=
1268                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1269                                         I40E_TXD_QW1_CMD_SHIFT);
1270         }
1271
1272 end_of_tx:
1273         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1274                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
1275                    (unsigned) tx_id, (unsigned) nb_tx);
1276
1277         rte_io_wmb();
1278         I40E_PCI_REG_WC_WRITE_RELAXED(txq->qtx_tail, tx_id);
1279         txq->tx_tail = tx_id;
1280
1281         return nb_tx;
1282 }
1283
1284 static __rte_always_inline int
1285 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1286 {
1287         struct i40e_tx_entry *txep;
1288         uint16_t i;
1289
1290         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1291                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1292                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
1293                 return 0;
1294
1295         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
1296
1297         for (i = 0; i < txq->tx_rs_thresh; i++)
1298                 rte_prefetch0((txep + i)->mbuf);
1299
1300         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
1301                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1302                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
1303                         txep->mbuf = NULL;
1304                 }
1305         } else {
1306                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1307                         rte_pktmbuf_free_seg(txep->mbuf);
1308                         txep->mbuf = NULL;
1309                 }
1310         }
1311
1312         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1313         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1314         if (txq->tx_next_dd >= txq->nb_tx_desc)
1315                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1316
1317         return txq->tx_rs_thresh;
1318 }
1319
1320 /* Populate 4 descriptors with data from 4 mbufs */
1321 static inline void
1322 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1323 {
1324         uint64_t dma_addr;
1325         uint32_t i;
1326
1327         for (i = 0; i < 4; i++, txdp++, pkts++) {
1328                 dma_addr = rte_mbuf_data_iova(*pkts);
1329                 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1330                 txdp->cmd_type_offset_bsz =
1331                         i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1332                                         (*pkts)->data_len, 0);
1333         }
1334 }
1335
1336 /* Populate 1 descriptor with data from 1 mbuf */
1337 static inline void
1338 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1339 {
1340         uint64_t dma_addr;
1341
1342         dma_addr = rte_mbuf_data_iova(*pkts);
1343         txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1344         txdp->cmd_type_offset_bsz =
1345                 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1346                                 (*pkts)->data_len, 0);
1347 }
1348
1349 /* Fill hardware descriptor ring with mbuf data */
1350 static inline void
1351 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1352                      struct rte_mbuf **pkts,
1353                      uint16_t nb_pkts)
1354 {
1355         volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1356         struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1357         const int N_PER_LOOP = 4;
1358         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1359         int mainpart, leftover;
1360         int i, j;
1361
1362         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1363         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
1364         for (i = 0; i < mainpart; i += N_PER_LOOP) {
1365                 for (j = 0; j < N_PER_LOOP; ++j) {
1366                         (txep + i + j)->mbuf = *(pkts + i + j);
1367                 }
1368                 tx4(txdp + i, pkts + i);
1369         }
1370         if (unlikely(leftover > 0)) {
1371                 for (i = 0; i < leftover; ++i) {
1372                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1373                         tx1(txdp + mainpart + i, pkts + mainpart + i);
1374                 }
1375         }
1376 }
1377
1378 static inline uint16_t
1379 tx_xmit_pkts(struct i40e_tx_queue *txq,
1380              struct rte_mbuf **tx_pkts,
1381              uint16_t nb_pkts)
1382 {
1383         volatile struct i40e_tx_desc *txr = txq->tx_ring;
1384         uint16_t n = 0;
1385
1386         /**
1387          * Begin scanning the H/W ring for done descriptors when the number
1388          * of available descriptors drops below tx_free_thresh. For each done
1389          * descriptor, free the associated buffer.
1390          */
1391         if (txq->nb_tx_free < txq->tx_free_thresh)
1392                 i40e_tx_free_bufs(txq);
1393
1394         /* Use available descriptor only */
1395         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1396         if (unlikely(!nb_pkts))
1397                 return 0;
1398
1399         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1400         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1401                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1402                 i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1403                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1404                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1405                                                 I40E_TXD_QW1_CMD_SHIFT);
1406                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1407                 txq->tx_tail = 0;
1408         }
1409
1410         /* Fill hardware descriptor ring with mbuf data */
1411         i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1412         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1413
1414         /* Determin if RS bit needs to be set */
1415         if (txq->tx_tail > txq->tx_next_rs) {
1416                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1417                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1418                                                 I40E_TXD_QW1_CMD_SHIFT);
1419                 txq->tx_next_rs =
1420                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1421                 if (txq->tx_next_rs >= txq->nb_tx_desc)
1422                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1423         }
1424
1425         if (txq->tx_tail >= txq->nb_tx_desc)
1426                 txq->tx_tail = 0;
1427
1428         /* Update the tx tail register */
1429         I40E_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1430
1431         return nb_pkts;
1432 }
1433
1434 static uint16_t
1435 i40e_xmit_pkts_simple(void *tx_queue,
1436                       struct rte_mbuf **tx_pkts,
1437                       uint16_t nb_pkts)
1438 {
1439         uint16_t nb_tx = 0;
1440
1441         if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1442                 return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1443                                                 tx_pkts, nb_pkts);
1444
1445         while (nb_pkts) {
1446                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1447                                                 I40E_TX_MAX_BURST);
1448
1449                 ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1450                                                 &tx_pkts[nb_tx], num);
1451                 nb_tx = (uint16_t)(nb_tx + ret);
1452                 nb_pkts = (uint16_t)(nb_pkts - ret);
1453                 if (ret < num)
1454                         break;
1455         }
1456
1457         return nb_tx;
1458 }
1459
1460 static uint16_t
1461 i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1462                    uint16_t nb_pkts)
1463 {
1464         uint16_t nb_tx = 0;
1465         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
1466
1467         while (nb_pkts) {
1468                 uint16_t ret, num;
1469
1470                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1471                 ret = i40e_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
1472                                                 num);
1473                 nb_tx += ret;
1474                 nb_pkts -= ret;
1475                 if (ret < num)
1476                         break;
1477         }
1478
1479         return nb_tx;
1480 }
1481
1482 /*********************************************************************
1483  *
1484  *  TX prep functions
1485  *
1486  **********************************************************************/
1487 uint16_t
1488 i40e_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1489                 uint16_t nb_pkts)
1490 {
1491         int i, ret;
1492         uint64_t ol_flags;
1493         struct rte_mbuf *m;
1494
1495         for (i = 0; i < nb_pkts; i++) {
1496                 m = tx_pkts[i];
1497                 ol_flags = m->ol_flags;
1498
1499                 /* Check for m->nb_segs to not exceed the limits. */
1500                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
1501                         if (m->nb_segs > I40E_TX_MAX_MTU_SEG ||
1502                             m->pkt_len > I40E_FRAME_SIZE_MAX) {
1503                                 rte_errno = EINVAL;
1504                                 return i;
1505                         }
1506                 } else if (m->nb_segs > I40E_TX_MAX_SEG ||
1507                            m->tso_segsz < I40E_MIN_TSO_MSS ||
1508                            m->tso_segsz > I40E_MAX_TSO_MSS ||
1509                            m->pkt_len > I40E_TSO_FRAME_SIZE_MAX) {
1510                         /* MSS outside the range (256B - 9674B) are considered
1511                          * malicious
1512                          */
1513                         rte_errno = EINVAL;
1514                         return i;
1515                 }
1516
1517                 if (ol_flags & I40E_TX_OFFLOAD_NOTSUP_MASK) {
1518                         rte_errno = ENOTSUP;
1519                         return i;
1520                 }
1521
1522                 /* check the size of packet */
1523                 if (m->pkt_len < I40E_TX_MIN_PKT_LEN) {
1524                         rte_errno = EINVAL;
1525                         return i;
1526                 }
1527
1528 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1529                 ret = rte_validate_tx_offload(m);
1530                 if (ret != 0) {
1531                         rte_errno = -ret;
1532                         return i;
1533                 }
1534 #endif
1535                 ret = rte_net_intel_cksum_prepare(m);
1536                 if (ret != 0) {
1537                         rte_errno = -ret;
1538                         return i;
1539                 }
1540         }
1541         return i;
1542 }
1543
1544 /*
1545  * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1546  * application used, which assume having sequential ones. But from driver's
1547  * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1548  * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1549  * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1550  * use queue_idx from 0 to 95 to access queues, while real queue would be
1551  * different. This function will do a queue mapping to find VSI the queue
1552  * belongs to.
1553  */
1554 static struct i40e_vsi*
1555 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1556 {
1557         /* the queue in MAIN VSI range */
1558         if (queue_idx < pf->main_vsi->nb_qps)
1559                 return pf->main_vsi;
1560
1561         queue_idx -= pf->main_vsi->nb_qps;
1562
1563         /* queue_idx is greater than VMDQ VSIs range */
1564         if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1565                 PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1566                 return NULL;
1567         }
1568
1569         return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1570 }
1571
1572 static uint16_t
1573 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1574 {
1575         /* the queue in MAIN VSI range */
1576         if (queue_idx < pf->main_vsi->nb_qps)
1577                 return queue_idx;
1578
1579         /* It's VMDQ queues */
1580         queue_idx -= pf->main_vsi->nb_qps;
1581
1582         if (pf->nb_cfg_vmdq_vsi)
1583                 return queue_idx % pf->vmdq_nb_qps;
1584         else {
1585                 PMD_INIT_LOG(ERR, "Fail to get queue offset");
1586                 return (uint16_t)(-1);
1587         }
1588 }
1589
1590 int
1591 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1592 {
1593         struct i40e_rx_queue *rxq;
1594         int err;
1595         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1596
1597         PMD_INIT_FUNC_TRACE();
1598
1599         rxq = dev->data->rx_queues[rx_queue_id];
1600         if (!rxq || !rxq->q_set) {
1601                 PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
1602                             rx_queue_id);
1603                 return -EINVAL;
1604         }
1605
1606         if (rxq->rx_deferred_start)
1607                 PMD_DRV_LOG(WARNING, "RX queue %u is deferrd start",
1608                             rx_queue_id);
1609
1610         err = i40e_alloc_rx_queue_mbufs(rxq);
1611         if (err) {
1612                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1613                 return err;
1614         }
1615
1616         /* Init the RX tail regieter. */
1617         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
1618
1619         err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
1620         if (err) {
1621                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
1622                             rx_queue_id);
1623
1624                 i40e_rx_queue_release_mbufs(rxq);
1625                 i40e_reset_rx_queue(rxq);
1626                 return err;
1627         }
1628         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1629
1630         return 0;
1631 }
1632
1633 int
1634 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1635 {
1636         struct i40e_rx_queue *rxq;
1637         int err;
1638         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1639
1640         rxq = dev->data->rx_queues[rx_queue_id];
1641         if (!rxq || !rxq->q_set) {
1642                 PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
1643                                 rx_queue_id);
1644                 return -EINVAL;
1645         }
1646
1647         /*
1648          * rx_queue_id is queue id application refers to, while
1649          * rxq->reg_idx is the real queue index.
1650          */
1651         err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
1652         if (err) {
1653                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
1654                             rx_queue_id);
1655                 return err;
1656         }
1657         i40e_rx_queue_release_mbufs(rxq);
1658         i40e_reset_rx_queue(rxq);
1659         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1660
1661         return 0;
1662 }
1663
1664 int
1665 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1666 {
1667         int err;
1668         struct i40e_tx_queue *txq;
1669         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1670
1671         PMD_INIT_FUNC_TRACE();
1672
1673         txq = dev->data->tx_queues[tx_queue_id];
1674         if (!txq || !txq->q_set) {
1675                 PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
1676                             tx_queue_id);
1677                 return -EINVAL;
1678         }
1679
1680         if (txq->tx_deferred_start)
1681                 PMD_DRV_LOG(WARNING, "TX queue %u is deferrd start",
1682                             tx_queue_id);
1683
1684         /*
1685          * tx_queue_id is queue id application refers to, while
1686          * rxq->reg_idx is the real queue index.
1687          */
1688         err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
1689         if (err) {
1690                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
1691                             tx_queue_id);
1692                 return err;
1693         }
1694         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1695
1696         return 0;
1697 }
1698
1699 int
1700 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1701 {
1702         struct i40e_tx_queue *txq;
1703         int err;
1704         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1705
1706         txq = dev->data->tx_queues[tx_queue_id];
1707         if (!txq || !txq->q_set) {
1708                 PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
1709                         tx_queue_id);
1710                 return -EINVAL;
1711         }
1712
1713         /*
1714          * tx_queue_id is queue id application refers to, while
1715          * txq->reg_idx is the real queue index.
1716          */
1717         err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
1718         if (err) {
1719                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
1720                             tx_queue_id);
1721                 return err;
1722         }
1723
1724         i40e_tx_queue_release_mbufs(txq);
1725         i40e_reset_tx_queue(txq);
1726         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1727
1728         return 0;
1729 }
1730
1731 const uint32_t *
1732 i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1733 {
1734         static const uint32_t ptypes[] = {
1735                 /* refers to i40e_rxd_pkt_type_mapping() */
1736                 RTE_PTYPE_L2_ETHER,
1737                 RTE_PTYPE_L2_ETHER_TIMESYNC,
1738                 RTE_PTYPE_L2_ETHER_LLDP,
1739                 RTE_PTYPE_L2_ETHER_ARP,
1740                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1741                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1742                 RTE_PTYPE_L4_FRAG,
1743                 RTE_PTYPE_L4_ICMP,
1744                 RTE_PTYPE_L4_NONFRAG,
1745                 RTE_PTYPE_L4_SCTP,
1746                 RTE_PTYPE_L4_TCP,
1747                 RTE_PTYPE_L4_UDP,
1748                 RTE_PTYPE_TUNNEL_GRENAT,
1749                 RTE_PTYPE_TUNNEL_IP,
1750                 RTE_PTYPE_INNER_L2_ETHER,
1751                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1752                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1753                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1754                 RTE_PTYPE_INNER_L4_FRAG,
1755                 RTE_PTYPE_INNER_L4_ICMP,
1756                 RTE_PTYPE_INNER_L4_NONFRAG,
1757                 RTE_PTYPE_INNER_L4_SCTP,
1758                 RTE_PTYPE_INNER_L4_TCP,
1759                 RTE_PTYPE_INNER_L4_UDP,
1760                 RTE_PTYPE_UNKNOWN
1761         };
1762
1763         if (dev->rx_pkt_burst == i40e_recv_pkts ||
1764 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1765             dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
1766 #endif
1767             dev->rx_pkt_burst == i40e_recv_scattered_pkts ||
1768             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
1769             dev->rx_pkt_burst == i40e_recv_pkts_vec ||
1770             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
1771             dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2)
1772                 return ptypes;
1773         return NULL;
1774 }
1775
1776 static int
1777 i40e_dev_first_queue(uint16_t idx, void **queues, int num)
1778 {
1779         uint16_t i;
1780
1781         for (i = 0; i < num; i++) {
1782                 if (i != idx && queues[i])
1783                         return 0;
1784         }
1785
1786         return 1;
1787 }
1788
1789 static int
1790 i40e_dev_rx_queue_setup_runtime(struct rte_eth_dev *dev,
1791                                 struct i40e_rx_queue *rxq)
1792 {
1793         struct i40e_adapter *ad =
1794                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1795         int use_def_burst_func =
1796                 check_rx_burst_bulk_alloc_preconditions(rxq);
1797         uint16_t buf_size =
1798                 (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
1799                            RTE_PKTMBUF_HEADROOM);
1800         int use_scattered_rx =
1801                 (rxq->max_pkt_len > buf_size);
1802
1803         if (i40e_rx_queue_init(rxq) != I40E_SUCCESS) {
1804                 PMD_DRV_LOG(ERR,
1805                             "Failed to do RX queue initialization");
1806                 return -EINVAL;
1807         }
1808
1809         if (i40e_dev_first_queue(rxq->queue_id,
1810                                  dev->data->rx_queues,
1811                                  dev->data->nb_rx_queues)) {
1812                 /**
1813                  * If it is the first queue to setup,
1814                  * set all flags to default and call
1815                  * i40e_set_rx_function.
1816                  */
1817                 ad->rx_bulk_alloc_allowed = true;
1818                 ad->rx_vec_allowed = true;
1819                 dev->data->scattered_rx = use_scattered_rx;
1820                 if (use_def_burst_func)
1821                         ad->rx_bulk_alloc_allowed = false;
1822                 i40e_set_rx_function(dev);
1823                 return 0;
1824         } else if (ad->rx_vec_allowed && !rte_is_power_of_2(rxq->nb_rx_desc)) {
1825                 PMD_DRV_LOG(ERR, "Vector mode is allowed, but descriptor"
1826                             " number %d of queue %d isn't power of 2",
1827                             rxq->nb_rx_desc, rxq->queue_id);
1828                 return -EINVAL;
1829         }
1830
1831         /* check bulk alloc conflict */
1832         if (ad->rx_bulk_alloc_allowed && use_def_burst_func) {
1833                 PMD_DRV_LOG(ERR, "Can't use default burst.");
1834                 return -EINVAL;
1835         }
1836         /* check scatterred conflict */
1837         if (!dev->data->scattered_rx && use_scattered_rx) {
1838                 PMD_DRV_LOG(ERR, "Scattered rx is required.");
1839                 return -EINVAL;
1840         }
1841         /* check vector conflict */
1842         if (ad->rx_vec_allowed && i40e_rxq_vec_setup(rxq)) {
1843                 PMD_DRV_LOG(ERR, "Failed vector rx setup.");
1844                 return -EINVAL;
1845         }
1846
1847         return 0;
1848 }
1849
1850 int
1851 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
1852                         uint16_t queue_idx,
1853                         uint16_t nb_desc,
1854                         unsigned int socket_id,
1855                         const struct rte_eth_rxconf *rx_conf,
1856                         struct rte_mempool *mp)
1857 {
1858         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1859         struct i40e_adapter *ad =
1860                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1861         struct i40e_vsi *vsi;
1862         struct i40e_pf *pf = NULL;
1863         struct i40e_vf *vf = NULL;
1864         struct i40e_rx_queue *rxq;
1865         const struct rte_memzone *rz;
1866         uint32_t ring_size;
1867         uint16_t len, i;
1868         uint16_t reg_idx, base, bsf, tc_mapping;
1869         int q_offset, use_def_burst_func = 1;
1870         uint64_t offloads;
1871
1872         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1873
1874         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
1875                 vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1876                 vsi = &vf->vsi;
1877                 if (!vsi)
1878                         return -EINVAL;
1879                 reg_idx = queue_idx;
1880         } else {
1881                 pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1882                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1883                 if (!vsi)
1884                         return -EINVAL;
1885                 q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
1886                 if (q_offset < 0)
1887                         return -EINVAL;
1888                 reg_idx = vsi->base_queue + q_offset;
1889         }
1890
1891         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
1892             (nb_desc > I40E_MAX_RING_DESC) ||
1893             (nb_desc < I40E_MIN_RING_DESC)) {
1894                 PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
1895                             "invalid", nb_desc);
1896                 return -EINVAL;
1897         }
1898
1899         /* Free memory if needed */
1900         if (dev->data->rx_queues[queue_idx]) {
1901                 i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
1902                 dev->data->rx_queues[queue_idx] = NULL;
1903         }
1904
1905         /* Allocate the rx queue data structure */
1906         rxq = rte_zmalloc_socket("i40e rx queue",
1907                                  sizeof(struct i40e_rx_queue),
1908                                  RTE_CACHE_LINE_SIZE,
1909                                  socket_id);
1910         if (!rxq) {
1911                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
1912                             "rx queue data structure");
1913                 return -ENOMEM;
1914         }
1915         rxq->mp = mp;
1916         rxq->nb_rx_desc = nb_desc;
1917         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1918         rxq->queue_id = queue_idx;
1919         rxq->reg_idx = reg_idx;
1920         rxq->port_id = dev->data->port_id;
1921         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1922                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1923         else
1924                 rxq->crc_len = 0;
1925         rxq->drop_en = rx_conf->rx_drop_en;
1926         rxq->vsi = vsi;
1927         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1928         rxq->offloads = offloads;
1929
1930         /* Allocate the maximun number of RX ring hardware descriptor. */
1931         len = I40E_MAX_RING_DESC;
1932
1933         /**
1934          * Allocating a little more memory because vectorized/bulk_alloc Rx
1935          * functions doesn't check boundaries each time.
1936          */
1937         len += RTE_PMD_I40E_RX_MAX_BURST;
1938
1939         ring_size = RTE_ALIGN(len * sizeof(union i40e_rx_desc),
1940                               I40E_DMA_MEM_ALIGN);
1941
1942         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1943                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
1944         if (!rz) {
1945                 i40e_dev_rx_queue_release(rxq);
1946                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
1947                 return -ENOMEM;
1948         }
1949
1950         /* Zero all the descriptors in the ring. */
1951         memset(rz->addr, 0, ring_size);
1952
1953         rxq->rx_ring_phys_addr = rz->iova;
1954         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
1955
1956         len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
1957
1958         /* Allocate the software ring. */
1959         rxq->sw_ring =
1960                 rte_zmalloc_socket("i40e rx sw ring",
1961                                    sizeof(struct i40e_rx_entry) * len,
1962                                    RTE_CACHE_LINE_SIZE,
1963                                    socket_id);
1964         if (!rxq->sw_ring) {
1965                 i40e_dev_rx_queue_release(rxq);
1966                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
1967                 return -ENOMEM;
1968         }
1969
1970         i40e_reset_rx_queue(rxq);
1971         rxq->q_set = TRUE;
1972
1973         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1974                 if (!(vsi->enabled_tc & (1 << i)))
1975                         continue;
1976                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
1977                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
1978                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
1979                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
1980                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
1981
1982                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
1983                         rxq->dcb_tc = i;
1984         }
1985
1986         if (dev->data->dev_started) {
1987                 if (i40e_dev_rx_queue_setup_runtime(dev, rxq)) {
1988                         i40e_dev_rx_queue_release(rxq);
1989                         return -EINVAL;
1990                 }
1991         } else {
1992                 use_def_burst_func =
1993                         check_rx_burst_bulk_alloc_preconditions(rxq);
1994                 if (!use_def_burst_func) {
1995 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1996                         PMD_INIT_LOG(DEBUG,
1997                           "Rx Burst Bulk Alloc Preconditions are "
1998                           "satisfied. Rx Burst Bulk Alloc function will be "
1999                           "used on port=%d, queue=%d.",
2000                           rxq->port_id, rxq->queue_id);
2001 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2002                 } else {
2003                         PMD_INIT_LOG(DEBUG,
2004                           "Rx Burst Bulk Alloc Preconditions are "
2005                           "not satisfied, Scattered Rx is requested, "
2006                           "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
2007                           "not enabled on port=%d, queue=%d.",
2008                           rxq->port_id, rxq->queue_id);
2009                         ad->rx_bulk_alloc_allowed = false;
2010                 }
2011         }
2012
2013         dev->data->rx_queues[queue_idx] = rxq;
2014         return 0;
2015 }
2016
2017 void
2018 i40e_dev_rx_queue_release(void *rxq)
2019 {
2020         struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
2021
2022         if (!q) {
2023                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2024                 return;
2025         }
2026
2027         i40e_rx_queue_release_mbufs(q);
2028         rte_free(q->sw_ring);
2029         rte_free(q);
2030 }
2031
2032 uint32_t
2033 i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2034 {
2035 #define I40E_RXQ_SCAN_INTERVAL 4
2036         volatile union i40e_rx_desc *rxdp;
2037         struct i40e_rx_queue *rxq;
2038         uint16_t desc = 0;
2039
2040         rxq = dev->data->rx_queues[rx_queue_id];
2041         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
2042         while ((desc < rxq->nb_rx_desc) &&
2043                 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2044                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
2045                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
2046                 /**
2047                  * Check the DD bit of a rx descriptor of each 4 in a group,
2048                  * to avoid checking too frequently and downgrading performance
2049                  * too much.
2050                  */
2051                 desc += I40E_RXQ_SCAN_INTERVAL;
2052                 rxdp += I40E_RXQ_SCAN_INTERVAL;
2053                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2054                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2055                                         desc - rxq->nb_rx_desc]);
2056         }
2057
2058         return desc;
2059 }
2060
2061 int
2062 i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
2063 {
2064         volatile union i40e_rx_desc *rxdp;
2065         struct i40e_rx_queue *rxq = rx_queue;
2066         uint16_t desc;
2067         int ret;
2068
2069         if (unlikely(offset >= rxq->nb_rx_desc)) {
2070                 PMD_DRV_LOG(ERR, "Invalid RX descriptor id %u", offset);
2071                 return 0;
2072         }
2073
2074         desc = rxq->rx_tail + offset;
2075         if (desc >= rxq->nb_rx_desc)
2076                 desc -= rxq->nb_rx_desc;
2077
2078         rxdp = &(rxq->rx_ring[desc]);
2079
2080         ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2081                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
2082                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
2083
2084         return ret;
2085 }
2086
2087 int
2088 i40e_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
2089 {
2090         struct i40e_rx_queue *rxq = rx_queue;
2091         volatile uint64_t *status;
2092         uint64_t mask;
2093         uint32_t desc;
2094
2095         if (unlikely(offset >= rxq->nb_rx_desc))
2096                 return -EINVAL;
2097
2098         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2099                 return RTE_ETH_RX_DESC_UNAVAIL;
2100
2101         desc = rxq->rx_tail + offset;
2102         if (desc >= rxq->nb_rx_desc)
2103                 desc -= rxq->nb_rx_desc;
2104
2105         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2106         mask = rte_le_to_cpu_64((1ULL << I40E_RX_DESC_STATUS_DD_SHIFT)
2107                 << I40E_RXD_QW1_STATUS_SHIFT);
2108         if (*status & mask)
2109                 return RTE_ETH_RX_DESC_DONE;
2110
2111         return RTE_ETH_RX_DESC_AVAIL;
2112 }
2113
2114 int
2115 i40e_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
2116 {
2117         struct i40e_tx_queue *txq = tx_queue;
2118         volatile uint64_t *status;
2119         uint64_t mask, expect;
2120         uint32_t desc;
2121
2122         if (unlikely(offset >= txq->nb_tx_desc))
2123                 return -EINVAL;
2124
2125         desc = txq->tx_tail + offset;
2126         /* go to next desc that has the RS bit */
2127         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2128                 txq->tx_rs_thresh;
2129         if (desc >= txq->nb_tx_desc) {
2130                 desc -= txq->nb_tx_desc;
2131                 if (desc >= txq->nb_tx_desc)
2132                         desc -= txq->nb_tx_desc;
2133         }
2134
2135         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2136         mask = rte_le_to_cpu_64(I40E_TXD_QW1_DTYPE_MASK);
2137         expect = rte_cpu_to_le_64(
2138                 I40E_TX_DESC_DTYPE_DESC_DONE << I40E_TXD_QW1_DTYPE_SHIFT);
2139         if ((*status & mask) == expect)
2140                 return RTE_ETH_TX_DESC_DONE;
2141
2142         return RTE_ETH_TX_DESC_FULL;
2143 }
2144
2145 static int
2146 i40e_dev_tx_queue_setup_runtime(struct rte_eth_dev *dev,
2147                                 struct i40e_tx_queue *txq)
2148 {
2149         struct i40e_adapter *ad =
2150                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2151
2152         if (i40e_tx_queue_init(txq) != I40E_SUCCESS) {
2153                 PMD_DRV_LOG(ERR,
2154                             "Failed to do TX queue initialization");
2155                 return -EINVAL;
2156         }
2157
2158         if (i40e_dev_first_queue(txq->queue_id,
2159                                  dev->data->tx_queues,
2160                                  dev->data->nb_tx_queues)) {
2161                 /**
2162                  * If it is the first queue to setup,
2163                  * set all flags and call
2164                  * i40e_set_tx_function.
2165                  */
2166                 i40e_set_tx_function_flag(dev, txq);
2167                 i40e_set_tx_function(dev);
2168                 return 0;
2169         }
2170
2171         /* check vector conflict */
2172         if (ad->tx_vec_allowed) {
2173                 if (txq->tx_rs_thresh > RTE_I40E_TX_MAX_FREE_BUF_SZ ||
2174                     i40e_txq_vec_setup(txq)) {
2175                         PMD_DRV_LOG(ERR, "Failed vector tx setup.");
2176                         return -EINVAL;
2177                 }
2178         }
2179         /* check simple tx conflict */
2180         if (ad->tx_simple_allowed) {
2181                 if ((txq->offloads & ~DEV_TX_OFFLOAD_MBUF_FAST_FREE) != 0 ||
2182                                 txq->tx_rs_thresh < RTE_PMD_I40E_TX_MAX_BURST) {
2183                         PMD_DRV_LOG(ERR, "No-simple tx is required.");
2184                         return -EINVAL;
2185                 }
2186         }
2187
2188         return 0;
2189 }
2190
2191 int
2192 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
2193                         uint16_t queue_idx,
2194                         uint16_t nb_desc,
2195                         unsigned int socket_id,
2196                         const struct rte_eth_txconf *tx_conf)
2197 {
2198         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2199         struct i40e_vsi *vsi;
2200         struct i40e_pf *pf = NULL;
2201         struct i40e_vf *vf = NULL;
2202         struct i40e_tx_queue *txq;
2203         const struct rte_memzone *tz;
2204         uint32_t ring_size;
2205         uint16_t tx_rs_thresh, tx_free_thresh;
2206         uint16_t reg_idx, i, base, bsf, tc_mapping;
2207         int q_offset;
2208         uint64_t offloads;
2209
2210         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2211
2212         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
2213                 vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2214                 vsi = &vf->vsi;
2215                 if (!vsi)
2216                         return -EINVAL;
2217                 reg_idx = queue_idx;
2218         } else {
2219                 pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2220                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2221                 if (!vsi)
2222                         return -EINVAL;
2223                 q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
2224                 if (q_offset < 0)
2225                         return -EINVAL;
2226                 reg_idx = vsi->base_queue + q_offset;
2227         }
2228
2229         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
2230             (nb_desc > I40E_MAX_RING_DESC) ||
2231             (nb_desc < I40E_MIN_RING_DESC)) {
2232                 PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
2233                             "invalid", nb_desc);
2234                 return -EINVAL;
2235         }
2236
2237         /**
2238          * The following two parameters control the setting of the RS bit on
2239          * transmit descriptors. TX descriptors will have their RS bit set
2240          * after txq->tx_rs_thresh descriptors have been used. The TX
2241          * descriptor ring will be cleaned after txq->tx_free_thresh
2242          * descriptors are used or if the number of descriptors required to
2243          * transmit a packet is greater than the number of free TX descriptors.
2244          *
2245          * The following constraints must be satisfied:
2246          *  - tx_rs_thresh must be greater than 0.
2247          *  - tx_rs_thresh must be less than the size of the ring minus 2.
2248          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
2249          *  - tx_rs_thresh must be a divisor of the ring size.
2250          *  - tx_free_thresh must be greater than 0.
2251          *  - tx_free_thresh must be less than the size of the ring minus 3.
2252          *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
2253          *
2254          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
2255          * race condition, hence the maximum threshold constraints. When set
2256          * to zero use default values.
2257          */
2258         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2259                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2260         /* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
2261         tx_rs_thresh = (DEFAULT_TX_RS_THRESH + tx_free_thresh > nb_desc) ?
2262                 nb_desc - tx_free_thresh : DEFAULT_TX_RS_THRESH;
2263         if (tx_conf->tx_rs_thresh > 0)
2264                 tx_rs_thresh = tx_conf->tx_rs_thresh;
2265         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
2266                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
2267                                 "exceed nb_desc. (tx_rs_thresh=%u "
2268                                 "tx_free_thresh=%u nb_desc=%u port=%d queue=%d)",
2269                                 (unsigned int)tx_rs_thresh,
2270                                 (unsigned int)tx_free_thresh,
2271                                 (unsigned int)nb_desc,
2272                                 (int)dev->data->port_id,
2273                                 (int)queue_idx);
2274                 return I40E_ERR_PARAM;
2275         }
2276         if (tx_rs_thresh >= (nb_desc - 2)) {
2277                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2278                              "number of TX descriptors minus 2. "
2279                              "(tx_rs_thresh=%u port=%d queue=%d)",
2280                              (unsigned int)tx_rs_thresh,
2281                              (int)dev->data->port_id,
2282                              (int)queue_idx);
2283                 return I40E_ERR_PARAM;
2284         }
2285         if (tx_free_thresh >= (nb_desc - 3)) {
2286                 PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
2287                              "number of TX descriptors minus 3. "
2288                              "(tx_free_thresh=%u port=%d queue=%d)",
2289                              (unsigned int)tx_free_thresh,
2290                              (int)dev->data->port_id,
2291                              (int)queue_idx);
2292                 return I40E_ERR_PARAM;
2293         }
2294         if (tx_rs_thresh > tx_free_thresh) {
2295                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2296                              "equal to tx_free_thresh. (tx_free_thresh=%u"
2297                              " tx_rs_thresh=%u port=%d queue=%d)",
2298                              (unsigned int)tx_free_thresh,
2299                              (unsigned int)tx_rs_thresh,
2300                              (int)dev->data->port_id,
2301                              (int)queue_idx);
2302                 return I40E_ERR_PARAM;
2303         }
2304         if ((nb_desc % tx_rs_thresh) != 0) {
2305                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2306                              "number of TX descriptors. (tx_rs_thresh=%u"
2307                              " port=%d queue=%d)",
2308                              (unsigned int)tx_rs_thresh,
2309                              (int)dev->data->port_id,
2310                              (int)queue_idx);
2311                 return I40E_ERR_PARAM;
2312         }
2313         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2314                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2315                              "tx_rs_thresh is greater than 1. "
2316                              "(tx_rs_thresh=%u port=%d queue=%d)",
2317                              (unsigned int)tx_rs_thresh,
2318                              (int)dev->data->port_id,
2319                              (int)queue_idx);
2320                 return I40E_ERR_PARAM;
2321         }
2322
2323         /* Free memory if needed. */
2324         if (dev->data->tx_queues[queue_idx]) {
2325                 i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
2326                 dev->data->tx_queues[queue_idx] = NULL;
2327         }
2328
2329         /* Allocate the TX queue data structure. */
2330         txq = rte_zmalloc_socket("i40e tx queue",
2331                                   sizeof(struct i40e_tx_queue),
2332                                   RTE_CACHE_LINE_SIZE,
2333                                   socket_id);
2334         if (!txq) {
2335                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2336                             "tx queue structure");
2337                 return -ENOMEM;
2338         }
2339
2340         /* Allocate TX hardware ring descriptors. */
2341         ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2342         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2343         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2344                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
2345         if (!tz) {
2346                 i40e_dev_tx_queue_release(txq);
2347                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2348                 return -ENOMEM;
2349         }
2350
2351         txq->nb_tx_desc = nb_desc;
2352         txq->tx_rs_thresh = tx_rs_thresh;
2353         txq->tx_free_thresh = tx_free_thresh;
2354         txq->pthresh = tx_conf->tx_thresh.pthresh;
2355         txq->hthresh = tx_conf->tx_thresh.hthresh;
2356         txq->wthresh = tx_conf->tx_thresh.wthresh;
2357         txq->queue_id = queue_idx;
2358         txq->reg_idx = reg_idx;
2359         txq->port_id = dev->data->port_id;
2360         txq->offloads = offloads;
2361         txq->vsi = vsi;
2362         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2363
2364         txq->tx_ring_phys_addr = tz->iova;
2365         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2366
2367         /* Allocate software ring */
2368         txq->sw_ring =
2369                 rte_zmalloc_socket("i40e tx sw ring",
2370                                    sizeof(struct i40e_tx_entry) * nb_desc,
2371                                    RTE_CACHE_LINE_SIZE,
2372                                    socket_id);
2373         if (!txq->sw_ring) {
2374                 i40e_dev_tx_queue_release(txq);
2375                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2376                 return -ENOMEM;
2377         }
2378
2379         i40e_reset_tx_queue(txq);
2380         txq->q_set = TRUE;
2381
2382         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2383                 if (!(vsi->enabled_tc & (1 << i)))
2384                         continue;
2385                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2386                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2387                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2388                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2389                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2390
2391                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2392                         txq->dcb_tc = i;
2393         }
2394
2395         if (dev->data->dev_started) {
2396                 if (i40e_dev_tx_queue_setup_runtime(dev, txq)) {
2397                         i40e_dev_tx_queue_release(txq);
2398                         return -EINVAL;
2399                 }
2400         } else {
2401                 /**
2402                  * Use a simple TX queue without offloads or
2403                  * multi segs if possible
2404                  */
2405                 i40e_set_tx_function_flag(dev, txq);
2406         }
2407         dev->data->tx_queues[queue_idx] = txq;
2408
2409         return 0;
2410 }
2411
2412 void
2413 i40e_dev_tx_queue_release(void *txq)
2414 {
2415         struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2416
2417         if (!q) {
2418                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2419                 return;
2420         }
2421
2422         i40e_tx_queue_release_mbufs(q);
2423         rte_free(q->sw_ring);
2424         rte_free(q);
2425 }
2426
2427 const struct rte_memzone *
2428 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2429 {
2430         const struct rte_memzone *mz;
2431
2432         mz = rte_memzone_lookup(name);
2433         if (mz)
2434                 return mz;
2435
2436         mz = rte_memzone_reserve_aligned(name, len, socket_id,
2437                         RTE_MEMZONE_IOVA_CONTIG, I40E_RING_BASE_ALIGN);
2438         return mz;
2439 }
2440
2441 void
2442 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2443 {
2444         uint16_t i;
2445
2446         /* SSE Vector driver has a different way of releasing mbufs. */
2447         if (rxq->rx_using_sse) {
2448                 i40e_rx_queue_release_mbufs_vec(rxq);
2449                 return;
2450         }
2451
2452         if (!rxq->sw_ring) {
2453                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
2454                 return;
2455         }
2456
2457         for (i = 0; i < rxq->nb_rx_desc; i++) {
2458                 if (rxq->sw_ring[i].mbuf) {
2459                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2460                         rxq->sw_ring[i].mbuf = NULL;
2461                 }
2462         }
2463 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2464         if (rxq->rx_nb_avail == 0)
2465                 return;
2466         for (i = 0; i < rxq->rx_nb_avail; i++) {
2467                 struct rte_mbuf *mbuf;
2468
2469                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2470                 rte_pktmbuf_free_seg(mbuf);
2471         }
2472         rxq->rx_nb_avail = 0;
2473 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2474 }
2475
2476 void
2477 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2478 {
2479         unsigned i;
2480         uint16_t len;
2481
2482         if (!rxq) {
2483                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2484                 return;
2485         }
2486
2487 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2488         if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2489                 len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2490         else
2491 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2492                 len = rxq->nb_rx_desc;
2493
2494         for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2495                 ((volatile char *)rxq->rx_ring)[i] = 0;
2496
2497         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2498         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2499                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2500
2501 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2502         rxq->rx_nb_avail = 0;
2503         rxq->rx_next_avail = 0;
2504         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2505 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2506         rxq->rx_tail = 0;
2507         rxq->nb_rx_hold = 0;
2508         rxq->pkt_first_seg = NULL;
2509         rxq->pkt_last_seg = NULL;
2510
2511         rxq->rxrearm_start = 0;
2512         rxq->rxrearm_nb = 0;
2513 }
2514
2515 void
2516 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2517 {
2518         struct rte_eth_dev *dev;
2519         uint16_t i;
2520
2521         if (!txq || !txq->sw_ring) {
2522                 PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
2523                 return;
2524         }
2525
2526         dev = &rte_eth_devices[txq->port_id];
2527
2528         /**
2529          *  vPMD tx will not set sw_ring's mbuf to NULL after free,
2530          *  so need to free remains more carefully.
2531          */
2532         if (dev->tx_pkt_burst == i40e_xmit_pkts_vec_avx2 ||
2533                         dev->tx_pkt_burst == i40e_xmit_pkts_vec) {
2534                 i = txq->tx_next_dd - txq->tx_rs_thresh + 1;
2535                 if (txq->tx_tail < i) {
2536                         for (; i < txq->nb_tx_desc; i++) {
2537                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2538                                 txq->sw_ring[i].mbuf = NULL;
2539                         }
2540                         i = 0;
2541                 }
2542                 for (; i < txq->tx_tail; i++) {
2543                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2544                         txq->sw_ring[i].mbuf = NULL;
2545                 }
2546         } else {
2547                 for (i = 0; i < txq->nb_tx_desc; i++) {
2548                         if (txq->sw_ring[i].mbuf) {
2549                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2550                                 txq->sw_ring[i].mbuf = NULL;
2551                         }
2552                 }
2553         }
2554 }
2555
2556 static int
2557 i40e_tx_done_cleanup_full(struct i40e_tx_queue *txq,
2558                         uint32_t free_cnt)
2559 {
2560         struct i40e_tx_entry *swr_ring = txq->sw_ring;
2561         uint16_t i, tx_last, tx_id;
2562         uint16_t nb_tx_free_last;
2563         uint16_t nb_tx_to_clean;
2564         uint32_t pkt_cnt;
2565
2566         /* Start free mbuf from the next of tx_tail */
2567         tx_last = txq->tx_tail;
2568         tx_id  = swr_ring[tx_last].next_id;
2569
2570         if (txq->nb_tx_free == 0 && i40e_xmit_cleanup(txq))
2571                 return 0;
2572
2573         nb_tx_to_clean = txq->nb_tx_free;
2574         nb_tx_free_last = txq->nb_tx_free;
2575         if (!free_cnt)
2576                 free_cnt = txq->nb_tx_desc;
2577
2578         /* Loop through swr_ring to count the amount of
2579          * freeable mubfs and packets.
2580          */
2581         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2582                 for (i = 0; i < nb_tx_to_clean &&
2583                         pkt_cnt < free_cnt &&
2584                         tx_id != tx_last; i++) {
2585                         if (swr_ring[tx_id].mbuf != NULL) {
2586                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2587                                 swr_ring[tx_id].mbuf = NULL;
2588
2589                                 /*
2590                                  * last segment in the packet,
2591                                  * increment packet count
2592                                  */
2593                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2594                         }
2595
2596                         tx_id = swr_ring[tx_id].next_id;
2597                 }
2598
2599                 if (txq->tx_rs_thresh > txq->nb_tx_desc -
2600                         txq->nb_tx_free || tx_id == tx_last)
2601                         break;
2602
2603                 if (pkt_cnt < free_cnt) {
2604                         if (i40e_xmit_cleanup(txq))
2605                                 break;
2606
2607                         nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
2608                         nb_tx_free_last = txq->nb_tx_free;
2609                 }
2610         }
2611
2612         return (int)pkt_cnt;
2613 }
2614
2615 static int
2616 i40e_tx_done_cleanup_simple(struct i40e_tx_queue *txq,
2617                         uint32_t free_cnt)
2618 {
2619         int i, n, cnt;
2620
2621         if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
2622                 free_cnt = txq->nb_tx_desc;
2623
2624         cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
2625
2626         for (i = 0; i < cnt; i += n) {
2627                 if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
2628                         break;
2629
2630                 n = i40e_tx_free_bufs(txq);
2631
2632                 if (n == 0)
2633                         break;
2634         }
2635
2636         return i;
2637 }
2638
2639 static int
2640 i40e_tx_done_cleanup_vec(struct i40e_tx_queue *txq __rte_unused,
2641                         uint32_t free_cnt __rte_unused)
2642 {
2643         return -ENOTSUP;
2644 }
2645 int
2646 i40e_tx_done_cleanup(void *txq, uint32_t free_cnt)
2647 {
2648         struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2649         struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
2650         struct i40e_adapter *ad =
2651                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2652
2653         if (ad->tx_simple_allowed) {
2654                 if (ad->tx_vec_allowed)
2655                         return i40e_tx_done_cleanup_vec(q, free_cnt);
2656                 else
2657                         return i40e_tx_done_cleanup_simple(q, free_cnt);
2658         } else {
2659                 return i40e_tx_done_cleanup_full(q, free_cnt);
2660         }
2661 }
2662
2663 void
2664 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2665 {
2666         struct i40e_tx_entry *txe;
2667         uint16_t i, prev, size;
2668
2669         if (!txq) {
2670                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2671                 return;
2672         }
2673
2674         txe = txq->sw_ring;
2675         size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2676         for (i = 0; i < size; i++)
2677                 ((volatile char *)txq->tx_ring)[i] = 0;
2678
2679         prev = (uint16_t)(txq->nb_tx_desc - 1);
2680         for (i = 0; i < txq->nb_tx_desc; i++) {
2681                 volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2682
2683                 txd->cmd_type_offset_bsz =
2684                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2685                 txe[i].mbuf =  NULL;
2686                 txe[i].last_id = i;
2687                 txe[prev].next_id = i;
2688                 prev = i;
2689         }
2690
2691         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2692         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2693
2694         txq->tx_tail = 0;
2695         txq->nb_tx_used = 0;
2696
2697         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2698         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2699 }
2700
2701 /* Init the TX queue in hardware */
2702 int
2703 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2704 {
2705         enum i40e_status_code err = I40E_SUCCESS;
2706         struct i40e_vsi *vsi = txq->vsi;
2707         struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2708         uint16_t pf_q = txq->reg_idx;
2709         struct i40e_hmc_obj_txq tx_ctx;
2710         uint32_t qtx_ctl;
2711
2712         /* clear the context structure first */
2713         memset(&tx_ctx, 0, sizeof(tx_ctx));
2714         tx_ctx.new_context = 1;
2715         tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2716         tx_ctx.qlen = txq->nb_tx_desc;
2717
2718 #ifdef RTE_LIBRTE_IEEE1588
2719         tx_ctx.timesync_ena = 1;
2720 #endif
2721         tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
2722         if (vsi->type == I40E_VSI_FDIR)
2723                 tx_ctx.fd_ena = TRUE;
2724
2725         err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2726         if (err != I40E_SUCCESS) {
2727                 PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2728                 return err;
2729         }
2730
2731         err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2732         if (err != I40E_SUCCESS) {
2733                 PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2734                 return err;
2735         }
2736
2737         /* Now associate this queue with this PCI function */
2738         qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2739         qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2740                                         I40E_QTX_CTL_PF_INDX_MASK);
2741         I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2742         I40E_WRITE_FLUSH(hw);
2743
2744         txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2745
2746         return err;
2747 }
2748
2749 int
2750 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2751 {
2752         struct i40e_rx_entry *rxe = rxq->sw_ring;
2753         uint64_t dma_addr;
2754         uint16_t i;
2755
2756         for (i = 0; i < rxq->nb_rx_desc; i++) {
2757                 volatile union i40e_rx_desc *rxd;
2758                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
2759
2760                 if (unlikely(!mbuf)) {
2761                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2762                         return -ENOMEM;
2763                 }
2764
2765                 rte_mbuf_refcnt_set(mbuf, 1);
2766                 mbuf->next = NULL;
2767                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2768                 mbuf->nb_segs = 1;
2769                 mbuf->port = rxq->port_id;
2770
2771                 dma_addr =
2772                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2773
2774                 rxd = &rxq->rx_ring[i];
2775                 rxd->read.pkt_addr = dma_addr;
2776                 rxd->read.hdr_addr = 0;
2777 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2778                 rxd->read.rsvd1 = 0;
2779                 rxd->read.rsvd2 = 0;
2780 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2781
2782                 rxe[i].mbuf = mbuf;
2783         }
2784
2785         return 0;
2786 }
2787
2788 /*
2789  * Calculate the buffer length, and check the jumbo frame
2790  * and maximum packet length.
2791  */
2792 static int
2793 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2794 {
2795         struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2796         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2797         struct rte_eth_dev_data *data = pf->dev_data;
2798         uint16_t buf_size;
2799
2800         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2801                 RTE_PKTMBUF_HEADROOM);
2802
2803         switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2804                         I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2805         case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2806                 rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2807                                 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2808                 rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2809                                 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2810                 rxq->hs_mode = i40e_header_split_enabled;
2811                 break;
2812         case I40E_FLAG_HEADER_SPLIT_DISABLED:
2813         default:
2814                 rxq->rx_hdr_len = 0;
2815                 rxq->rx_buf_len = RTE_ALIGN_FLOOR(buf_size,
2816                         (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2817                 rxq->hs_mode = i40e_header_split_none;
2818                 break;
2819         }
2820
2821         rxq->max_pkt_len =
2822                 RTE_MIN((uint32_t)(hw->func_caps.rx_buf_chain_len *
2823                         rxq->rx_buf_len), data->dev_conf.rxmode.max_rx_pkt_len);
2824         if (data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2825                 if (rxq->max_pkt_len <= RTE_ETHER_MAX_LEN ||
2826                         rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2827                         PMD_DRV_LOG(ERR, "maximum packet length must "
2828                                     "be larger than %u and smaller than %u,"
2829                                     "as jumbo frame is enabled",
2830                                     (uint32_t)RTE_ETHER_MAX_LEN,
2831                                     (uint32_t)I40E_FRAME_SIZE_MAX);
2832                         return I40E_ERR_CONFIG;
2833                 }
2834         } else {
2835                 if (rxq->max_pkt_len < RTE_ETHER_MIN_LEN ||
2836                         rxq->max_pkt_len > RTE_ETHER_MAX_LEN) {
2837                         PMD_DRV_LOG(ERR, "maximum packet length must be "
2838                                     "larger than %u and smaller than %u, "
2839                                     "as jumbo frame is disabled",
2840                                     (uint32_t)RTE_ETHER_MIN_LEN,
2841                                     (uint32_t)RTE_ETHER_MAX_LEN);
2842                         return I40E_ERR_CONFIG;
2843                 }
2844         }
2845
2846         return 0;
2847 }
2848
2849 /* Init the RX queue in hardware */
2850 int
2851 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2852 {
2853         int err = I40E_SUCCESS;
2854         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2855         struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2856         uint16_t pf_q = rxq->reg_idx;
2857         uint16_t buf_size;
2858         struct i40e_hmc_obj_rxq rx_ctx;
2859
2860         err = i40e_rx_queue_config(rxq);
2861         if (err < 0) {
2862                 PMD_DRV_LOG(ERR, "Failed to config RX queue");
2863                 return err;
2864         }
2865
2866         /* Clear the context structure first */
2867         memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2868         rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2869         rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2870
2871         rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2872         rx_ctx.qlen = rxq->nb_rx_desc;
2873 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2874         rx_ctx.dsize = 1;
2875 #endif
2876         rx_ctx.dtype = rxq->hs_mode;
2877         if (rxq->hs_mode)
2878                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2879         else
2880                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2881         rx_ctx.rxmax = rxq->max_pkt_len;
2882         rx_ctx.tphrdesc_ena = 1;
2883         rx_ctx.tphwdesc_ena = 1;
2884         rx_ctx.tphdata_ena = 1;
2885         rx_ctx.tphhead_ena = 1;
2886         rx_ctx.lrxqthresh = 2;
2887         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2888         rx_ctx.l2tsel = 1;
2889         /* showiv indicates if inner VLAN is stripped inside of tunnel
2890          * packet. When set it to 1, vlan information is stripped from
2891          * the inner header, but the hardware does not put it in the
2892          * descriptor. So set it zero by default.
2893          */
2894         rx_ctx.showiv = 0;
2895         rx_ctx.prefena = 1;
2896
2897         err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2898         if (err != I40E_SUCCESS) {
2899                 PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2900                 return err;
2901         }
2902         err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2903         if (err != I40E_SUCCESS) {
2904                 PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2905                 return err;
2906         }
2907
2908         rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2909
2910         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2911                 RTE_PKTMBUF_HEADROOM);
2912
2913         /* Check if scattered RX needs to be used. */
2914         if (rxq->max_pkt_len > buf_size)
2915                 dev_data->scattered_rx = 1;
2916
2917         /* Init the RX tail regieter. */
2918         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2919
2920         return 0;
2921 }
2922
2923 void
2924 i40e_dev_clear_queues(struct rte_eth_dev *dev)
2925 {
2926         uint16_t i;
2927
2928         PMD_INIT_FUNC_TRACE();
2929
2930         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2931                 if (!dev->data->tx_queues[i])
2932                         continue;
2933                 i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
2934                 i40e_reset_tx_queue(dev->data->tx_queues[i]);
2935         }
2936
2937         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2938                 if (!dev->data->rx_queues[i])
2939                         continue;
2940                 i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
2941                 i40e_reset_rx_queue(dev->data->rx_queues[i]);
2942         }
2943 }
2944
2945 void
2946 i40e_dev_free_queues(struct rte_eth_dev *dev)
2947 {
2948         uint16_t i;
2949
2950         PMD_INIT_FUNC_TRACE();
2951
2952         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2953                 if (!dev->data->rx_queues[i])
2954                         continue;
2955                 i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
2956                 dev->data->rx_queues[i] = NULL;
2957                 rte_eth_dma_zone_free(dev, "rx_ring", i);
2958         }
2959
2960         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2961                 if (!dev->data->tx_queues[i])
2962                         continue;
2963                 i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
2964                 dev->data->tx_queues[i] = NULL;
2965                 rte_eth_dma_zone_free(dev, "tx_ring", i);
2966         }
2967 }
2968
2969 enum i40e_status_code
2970 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
2971 {
2972         struct i40e_tx_queue *txq;
2973         const struct rte_memzone *tz = NULL;
2974         struct rte_eth_dev *dev;
2975         uint32_t ring_size;
2976
2977         if (!pf) {
2978                 PMD_DRV_LOG(ERR, "PF is not available");
2979                 return I40E_ERR_BAD_PTR;
2980         }
2981
2982         dev = pf->adapter->eth_dev;
2983
2984         /* Allocate the TX queue data structure. */
2985         txq = rte_zmalloc_socket("i40e fdir tx queue",
2986                                   sizeof(struct i40e_tx_queue),
2987                                   RTE_CACHE_LINE_SIZE,
2988                                   SOCKET_ID_ANY);
2989         if (!txq) {
2990                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2991                                         "tx queue structure.");
2992                 return I40E_ERR_NO_MEMORY;
2993         }
2994
2995         /* Allocate TX hardware ring descriptors. */
2996         ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
2997         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2998
2999         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
3000                                       I40E_FDIR_QUEUE_ID, ring_size,
3001                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
3002         if (!tz) {
3003                 i40e_dev_tx_queue_release(txq);
3004                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
3005                 return I40E_ERR_NO_MEMORY;
3006         }
3007
3008         txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
3009         txq->queue_id = I40E_FDIR_QUEUE_ID;
3010         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
3011         txq->vsi = pf->fdir.fdir_vsi;
3012
3013         txq->tx_ring_phys_addr = tz->iova;
3014         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
3015
3016         /*
3017          * don't need to allocate software ring and reset for the fdir
3018          * program queue just set the queue has been configured.
3019          */
3020         txq->q_set = TRUE;
3021         pf->fdir.txq = txq;
3022         pf->fdir.txq_available_buf_count = I40E_FDIR_PRG_PKT_CNT;
3023
3024         return I40E_SUCCESS;
3025 }
3026
3027 enum i40e_status_code
3028 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
3029 {
3030         struct i40e_rx_queue *rxq;
3031         const struct rte_memzone *rz = NULL;
3032         uint32_t ring_size;
3033         struct rte_eth_dev *dev;
3034
3035         if (!pf) {
3036                 PMD_DRV_LOG(ERR, "PF is not available");
3037                 return I40E_ERR_BAD_PTR;
3038         }
3039
3040         dev = pf->adapter->eth_dev;
3041
3042         /* Allocate the RX queue data structure. */
3043         rxq = rte_zmalloc_socket("i40e fdir rx queue",
3044                                   sizeof(struct i40e_rx_queue),
3045                                   RTE_CACHE_LINE_SIZE,
3046                                   SOCKET_ID_ANY);
3047         if (!rxq) {
3048                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
3049                                         "rx queue structure.");
3050                 return I40E_ERR_NO_MEMORY;
3051         }
3052
3053         /* Allocate RX hardware ring descriptors. */
3054         ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
3055         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
3056
3057         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
3058                                       I40E_FDIR_QUEUE_ID, ring_size,
3059                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
3060         if (!rz) {
3061                 i40e_dev_rx_queue_release(rxq);
3062                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
3063                 return I40E_ERR_NO_MEMORY;
3064         }
3065
3066         rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
3067         rxq->queue_id = I40E_FDIR_QUEUE_ID;
3068         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
3069         rxq->vsi = pf->fdir.fdir_vsi;
3070
3071         rxq->rx_ring_phys_addr = rz->iova;
3072         memset(rz->addr, 0, I40E_FDIR_NUM_RX_DESC * sizeof(union i40e_rx_desc));
3073         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
3074
3075         /*
3076          * Don't need to allocate software ring and reset for the fdir
3077          * rx queue, just set the queue has been configured.
3078          */
3079         rxq->q_set = TRUE;
3080         pf->fdir.rxq = rxq;
3081
3082         return I40E_SUCCESS;
3083 }
3084
3085 void
3086 i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3087         struct rte_eth_rxq_info *qinfo)
3088 {
3089         struct i40e_rx_queue *rxq;
3090
3091         rxq = dev->data->rx_queues[queue_id];
3092
3093         qinfo->mp = rxq->mp;
3094         qinfo->scattered_rx = dev->data->scattered_rx;
3095         qinfo->nb_desc = rxq->nb_rx_desc;
3096
3097         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
3098         qinfo->conf.rx_drop_en = rxq->drop_en;
3099         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
3100         qinfo->conf.offloads = rxq->offloads;
3101 }
3102
3103 void
3104 i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3105         struct rte_eth_txq_info *qinfo)
3106 {
3107         struct i40e_tx_queue *txq;
3108
3109         txq = dev->data->tx_queues[queue_id];
3110
3111         qinfo->nb_desc = txq->nb_tx_desc;
3112
3113         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
3114         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
3115         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
3116
3117         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
3118         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
3119         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
3120         qinfo->conf.offloads = txq->offloads;
3121 }
3122
3123 static inline bool
3124 get_avx_supported(bool request_avx512)
3125 {
3126 #ifdef RTE_ARCH_X86
3127         if (request_avx512) {
3128                 if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3129                 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3130                 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3131 #ifdef CC_AVX512_SUPPORT
3132                         return true;
3133 #else
3134                 PMD_DRV_LOG(NOTICE,
3135                         "AVX512 is not supported in build env");
3136                 return false;
3137 #endif
3138         } else {
3139                 if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256 &&
3140                 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 &&
3141                 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
3142 #ifdef CC_AVX2_SUPPORT
3143                         return true;
3144 #else
3145                 PMD_DRV_LOG(NOTICE,
3146                         "AVX2 is not supported in build env");
3147                 return false;
3148 #endif
3149         }
3150 #else
3151         RTE_SET_USED(request_avx512);
3152 #endif /* RTE_ARCH_X86 */
3153
3154         return false;
3155 }
3156
3157
3158 void __rte_cold
3159 i40e_set_rx_function(struct rte_eth_dev *dev)
3160 {
3161         struct i40e_adapter *ad =
3162                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3163         uint16_t rx_using_sse, i;
3164         bool use_avx2 = false;
3165         /* In order to allow Vector Rx there are a few configuration
3166          * conditions to be met and Rx Bulk Allocation should be allowed.
3167          */
3168         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3169                 if (i40e_rx_vec_dev_conf_condition_check(dev) ||
3170                     !ad->rx_bulk_alloc_allowed) {
3171                         PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
3172                                      " Vector Rx preconditions",
3173                                      dev->data->port_id);
3174
3175                         ad->rx_vec_allowed = false;
3176                 }
3177                 if (ad->rx_vec_allowed) {
3178                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3179                                 struct i40e_rx_queue *rxq =
3180                                         dev->data->rx_queues[i];
3181
3182                                 if (rxq && i40e_rxq_vec_setup(rxq)) {
3183                                         ad->rx_vec_allowed = false;
3184                                         break;
3185                                 }
3186                         }
3187
3188                         use_avx2 = get_avx_supported(0);
3189                 }
3190         }
3191
3192         if (ad->rx_vec_allowed  &&
3193                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3194                 if (dev->data->scattered_rx) {
3195                         PMD_INIT_LOG(DEBUG,
3196                                 "Using %sVector Scattered Rx (port %d).",
3197                                 use_avx2 ? "avx2 " : "",
3198                                 dev->data->port_id);
3199                         dev->rx_pkt_burst = use_avx2 ?
3200                                 i40e_recv_scattered_pkts_vec_avx2 :
3201                                 i40e_recv_scattered_pkts_vec;
3202                 } else {
3203                         PMD_INIT_LOG(DEBUG,
3204                                 "Using %sVector Rx (port %d).",
3205                                 use_avx2 ? "avx2 " : "",
3206                                 dev->data->port_id);
3207                         dev->rx_pkt_burst = use_avx2 ?
3208                                 i40e_recv_pkts_vec_avx2 :
3209                                 i40e_recv_pkts_vec;
3210                 }
3211         } else if (!dev->data->scattered_rx && ad->rx_bulk_alloc_allowed) {
3212                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
3213                                     "satisfied. Rx Burst Bulk Alloc function "
3214                                     "will be used on port=%d.",
3215                              dev->data->port_id);
3216
3217                 dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
3218         } else {
3219                 /* Simple Rx Path. */
3220                 PMD_INIT_LOG(DEBUG, "Simple Rx path will be used on port=%d.",
3221                              dev->data->port_id);
3222                 dev->rx_pkt_burst = dev->data->scattered_rx ?
3223                                         i40e_recv_scattered_pkts :
3224                                         i40e_recv_pkts;
3225         }
3226
3227         /* Propagate information about RX function choice through all queues. */
3228         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3229                 rx_using_sse =
3230                         (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
3231                          dev->rx_pkt_burst == i40e_recv_pkts_vec ||
3232                          dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
3233                          dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2);
3234
3235                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
3236                         struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
3237
3238                         if (rxq)
3239                                 rxq->rx_using_sse = rx_using_sse;
3240                 }
3241         }
3242 }
3243
3244 static const struct {
3245         eth_rx_burst_t pkt_burst;
3246         const char *info;
3247 } i40e_rx_burst_infos[] = {
3248         { i40e_recv_scattered_pkts,          "Scalar Scattered" },
3249         { i40e_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
3250         { i40e_recv_pkts,                    "Scalar" },
3251 #ifdef RTE_ARCH_X86
3252         { i40e_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
3253         { i40e_recv_pkts_vec_avx2,           "Vector AVX2" },
3254         { i40e_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
3255         { i40e_recv_pkts_vec,                "Vector SSE" },
3256 #elif defined(RTE_ARCH_ARM64)
3257         { i40e_recv_scattered_pkts_vec,      "Vector Neon Scattered" },
3258         { i40e_recv_pkts_vec,                "Vector Neon" },
3259 #elif defined(RTE_ARCH_PPC_64)
3260         { i40e_recv_scattered_pkts_vec,      "Vector AltiVec Scattered" },
3261         { i40e_recv_pkts_vec,                "Vector AltiVec" },
3262 #endif
3263 };
3264
3265 int
3266 i40e_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3267                        struct rte_eth_burst_mode *mode)
3268 {
3269         eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
3270         int ret = -EINVAL;
3271         unsigned int i;
3272
3273         for (i = 0; i < RTE_DIM(i40e_rx_burst_infos); ++i) {
3274                 if (pkt_burst == i40e_rx_burst_infos[i].pkt_burst) {
3275                         snprintf(mode->info, sizeof(mode->info), "%s",
3276                                  i40e_rx_burst_infos[i].info);
3277                         ret = 0;
3278                         break;
3279                 }
3280         }
3281
3282         return ret;
3283 }
3284
3285 void __rte_cold
3286 i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
3287 {
3288         struct i40e_adapter *ad =
3289                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3290
3291         /* Use a simple Tx queue if possible (only fast free is allowed) */
3292         ad->tx_simple_allowed =
3293                 (txq->offloads ==
3294                  (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
3295                  txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST);
3296         ad->tx_vec_allowed = (ad->tx_simple_allowed &&
3297                         txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ);
3298
3299         if (ad->tx_vec_allowed)
3300                 PMD_INIT_LOG(DEBUG, "Vector Tx can be enabled on Tx queue %u.",
3301                                 txq->queue_id);
3302         else if (ad->tx_simple_allowed)
3303                 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3304                                 txq->queue_id);
3305         else
3306                 PMD_INIT_LOG(DEBUG,
3307                                 "Neither simple nor vector Tx enabled on Tx queue %u\n",
3308                                 txq->queue_id);
3309 }
3310
3311 void __rte_cold
3312 i40e_set_tx_function(struct rte_eth_dev *dev)
3313 {
3314         struct i40e_adapter *ad =
3315                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3316         int i;
3317         bool use_avx2 = false;
3318
3319         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3320                 if (ad->tx_vec_allowed) {
3321                         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3322                                 struct i40e_tx_queue *txq =
3323                                         dev->data->tx_queues[i];
3324
3325                                 if (txq && i40e_txq_vec_setup(txq)) {
3326                                         ad->tx_vec_allowed = false;
3327                                         break;
3328                                 }
3329                         }
3330
3331                         use_avx2 = get_avx_supported(0);
3332                 }
3333         }
3334
3335         if (ad->tx_simple_allowed) {
3336                 if (ad->tx_vec_allowed &&
3337                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3338                         PMD_INIT_LOG(DEBUG, "Using %sVector Tx (port %d).",
3339                                      use_avx2 ? "avx2 " : "",
3340                                      dev->data->port_id);
3341                         dev->tx_pkt_burst = use_avx2 ?
3342                                             i40e_xmit_pkts_vec_avx2 :
3343                                             i40e_xmit_pkts_vec;
3344                 } else {
3345                         PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3346                         dev->tx_pkt_burst = i40e_xmit_pkts_simple;
3347                 }
3348                 dev->tx_pkt_prepare = NULL;
3349         } else {
3350                 PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
3351                 dev->tx_pkt_burst = i40e_xmit_pkts;
3352                 dev->tx_pkt_prepare = i40e_prep_pkts;
3353         }
3354 }
3355
3356 static const struct {
3357         eth_tx_burst_t pkt_burst;
3358         const char *info;
3359 } i40e_tx_burst_infos[] = {
3360         { i40e_xmit_pkts_simple,   "Scalar Simple" },
3361         { i40e_xmit_pkts,          "Scalar" },
3362 #ifdef RTE_ARCH_X86
3363         { i40e_xmit_pkts_vec_avx2, "Vector AVX2" },
3364         { i40e_xmit_pkts_vec,      "Vector SSE" },
3365 #elif defined(RTE_ARCH_ARM64)
3366         { i40e_xmit_pkts_vec,      "Vector Neon" },
3367 #elif defined(RTE_ARCH_PPC_64)
3368         { i40e_xmit_pkts_vec,      "Vector AltiVec" },
3369 #endif
3370 };
3371
3372 int
3373 i40e_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3374                        struct rte_eth_burst_mode *mode)
3375 {
3376         eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
3377         int ret = -EINVAL;
3378         unsigned int i;
3379
3380         for (i = 0; i < RTE_DIM(i40e_tx_burst_infos); ++i) {
3381                 if (pkt_burst == i40e_tx_burst_infos[i].pkt_burst) {
3382                         snprintf(mode->info, sizeof(mode->info), "%s",
3383                                  i40e_tx_burst_infos[i].info);
3384                         ret = 0;
3385                         break;
3386                 }
3387         }
3388
3389         return ret;
3390 }
3391
3392 void __rte_cold
3393 i40e_set_default_ptype_table(struct rte_eth_dev *dev)
3394 {
3395         struct i40e_adapter *ad =
3396                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3397         int i;
3398
3399         for (i = 0; i < I40E_MAX_PKT_TYPE; i++)
3400                 ad->ptype_tbl[i] = i40e_get_default_pkt_type(i);
3401 }
3402
3403 void __rte_cold
3404 i40e_set_default_pctype_table(struct rte_eth_dev *dev)
3405 {
3406         struct i40e_adapter *ad =
3407                         I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3408         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3409         int i;
3410
3411         for (i = 0; i < I40E_FLOW_TYPE_MAX; i++)
3412                 ad->pctypes_tbl[i] = 0ULL;
3413         ad->flow_types_mask = 0ULL;
3414         ad->pctypes_mask = 0ULL;
3415
3416         ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV4] =
3417                                 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4);
3418         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] =
3419                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
3420         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] =
3421                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
3422         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_SCTP] =
3423                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
3424         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_OTHER] =
3425                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER);
3426         ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV6] =
3427                                 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6);
3428         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] =
3429                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
3430         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] =
3431                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
3432         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_SCTP] =
3433                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
3434         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_OTHER] =
3435                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER);
3436         ad->pctypes_tbl[RTE_ETH_FLOW_L2_PAYLOAD] =
3437                                 (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
3438
3439         if (hw->mac.type == I40E_MAC_X722 ||
3440                 hw->mac.type == I40E_MAC_X722_VF) {
3441                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3442                         (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP);
3443                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3444                         (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP);
3445                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] |=
3446                         (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK);
3447                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3448                         (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP);
3449                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3450                         (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP);
3451                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] |=
3452                         (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
3453         }
3454
3455         for (i = 0; i < I40E_FLOW_TYPE_MAX; i++) {
3456                 if (ad->pctypes_tbl[i])
3457                         ad->flow_types_mask |= (1ULL << i);
3458                 ad->pctypes_mask |= ad->pctypes_tbl[i];
3459         }
3460 }
3461
3462 #ifndef RTE_LIBRTE_I40E_INC_VECTOR
3463 int
3464 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
3465 {
3466         return -1;
3467 }
3468
3469 uint16_t
3470 i40e_recv_pkts_vec(
3471         void __rte_unused *rx_queue,
3472         struct rte_mbuf __rte_unused **rx_pkts,
3473         uint16_t __rte_unused nb_pkts)
3474 {
3475         return 0;
3476 }
3477
3478 uint16_t
3479 i40e_recv_scattered_pkts_vec(
3480         void __rte_unused *rx_queue,
3481         struct rte_mbuf __rte_unused **rx_pkts,
3482         uint16_t __rte_unused nb_pkts)
3483 {
3484         return 0;
3485 }
3486
3487 int
3488 i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq)
3489 {
3490         return -1;
3491 }
3492
3493 int
3494 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
3495 {
3496         return -1;
3497 }
3498
3499 void
3500 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq)
3501 {
3502         return;
3503 }
3504
3505 uint16_t
3506 i40e_xmit_fixed_burst_vec(void __rte_unused * tx_queue,
3507                           struct rte_mbuf __rte_unused **tx_pkts,
3508                           uint16_t __rte_unused nb_pkts)
3509 {
3510         return 0;
3511 }
3512 #endif /* ifndef RTE_LIBRTE_I40E_INC_VECTOR */
3513
3514 #ifndef CC_AVX2_SUPPORT
3515 uint16_t
3516 i40e_recv_pkts_vec_avx2(void __rte_unused *rx_queue,
3517                         struct rte_mbuf __rte_unused **rx_pkts,
3518                         uint16_t __rte_unused nb_pkts)
3519 {
3520         return 0;
3521 }
3522
3523 uint16_t
3524 i40e_recv_scattered_pkts_vec_avx2(void __rte_unused *rx_queue,
3525                         struct rte_mbuf __rte_unused **rx_pkts,
3526                         uint16_t __rte_unused nb_pkts)
3527 {
3528         return 0;
3529 }
3530
3531 uint16_t
3532 i40e_xmit_pkts_vec_avx2(void __rte_unused * tx_queue,
3533                           struct rte_mbuf __rte_unused **tx_pkts,
3534                           uint16_t __rte_unused nb_pkts)
3535 {
3536         return 0;
3537 }
3538 #endif /* ifndef CC_AVX2_SUPPORT */