net/i40e: remove redundant VSI check in Tx queue setup
[dpdk.git] / drivers / net / i40e / i40e_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26 #include <rte_vect.h>
27
28 #include "i40e_logs.h"
29 #include "base/i40e_prototype.h"
30 #include "base/i40e_type.h"
31 #include "i40e_ethdev.h"
32 #include "i40e_rxtx.h"
33
34 #define DEFAULT_TX_RS_THRESH   32
35 #define DEFAULT_TX_FREE_THRESH 32
36
37 #define I40E_TX_MAX_BURST  32
38
39 #define I40E_DMA_MEM_ALIGN 4096
40
41 /* Base address of the HW descriptor ring should be 128B aligned. */
42 #define I40E_RING_BASE_ALIGN    128
43
44 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
45
46 #ifdef RTE_LIBRTE_IEEE1588
47 #define I40E_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
48 #else
49 #define I40E_TX_IEEE1588_TMST 0
50 #endif
51
52 #define I40E_TX_CKSUM_OFFLOAD_MASK (             \
53                 PKT_TX_IP_CKSUM |                \
54                 PKT_TX_L4_MASK |                 \
55                 PKT_TX_TCP_SEG |                 \
56                 PKT_TX_OUTER_IP_CKSUM)
57
58 #define I40E_TX_OFFLOAD_MASK (  \
59                 PKT_TX_OUTER_IPV4 |     \
60                 PKT_TX_OUTER_IPV6 |     \
61                 PKT_TX_IPV4 |           \
62                 PKT_TX_IPV6 |           \
63                 PKT_TX_IP_CKSUM |       \
64                 PKT_TX_L4_MASK |        \
65                 PKT_TX_OUTER_IP_CKSUM | \
66                 PKT_TX_TCP_SEG |        \
67                 PKT_TX_QINQ_PKT |       \
68                 PKT_TX_VLAN_PKT |       \
69                 PKT_TX_TUNNEL_MASK |    \
70                 I40E_TX_IEEE1588_TMST)
71
72 #define I40E_TX_OFFLOAD_NOTSUP_MASK \
73                 (PKT_TX_OFFLOAD_MASK ^ I40E_TX_OFFLOAD_MASK)
74
75 int
76 i40e_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
77 {
78         struct i40e_rx_queue *rxq = rx_queue;
79         volatile union i40e_rx_desc *rxdp;
80         uint16_t desc;
81
82         desc = rxq->rx_tail;
83         rxdp = &rxq->rx_ring[desc];
84         /* watch for changes in status bit */
85         pmc->addr = &rxdp->wb.qword1.status_error_len;
86
87         /*
88          * we expect the DD bit to be set to 1 if this descriptor was already
89          * written to.
90          */
91         pmc->val = rte_cpu_to_le_64(1 << I40E_RX_DESC_STATUS_DD_SHIFT);
92         pmc->mask = rte_cpu_to_le_64(1 << I40E_RX_DESC_STATUS_DD_SHIFT);
93
94         /* registers are 64-bit */
95         pmc->size = sizeof(uint64_t);
96
97         return 0;
98 }
99
100 static inline void
101 i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
102 {
103         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
104                 (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
105                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
106                 mb->vlan_tci =
107                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
108                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
109                            rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
110         } else {
111                 mb->vlan_tci = 0;
112         }
113 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
114         if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
115                 (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
116                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
117                         PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
118                 mb->vlan_tci_outer = mb->vlan_tci;
119                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
120                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
121                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
122                            rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
123         } else {
124                 mb->vlan_tci_outer = 0;
125         }
126 #endif
127         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
128                    mb->vlan_tci, mb->vlan_tci_outer);
129 }
130
131 /* Translate the rx descriptor status to pkt flags */
132 static inline uint64_t
133 i40e_rxd_status_to_pkt_flags(uint64_t qword)
134 {
135         uint64_t flags;
136
137         /* Check if RSS_HASH */
138         flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
139                                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
140                         I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
141
142         /* Check if FDIR Match */
143         flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
144                                                         PKT_RX_FDIR : 0);
145
146         return flags;
147 }
148
149 static inline uint64_t
150 i40e_rxd_error_to_pkt_flags(uint64_t qword)
151 {
152         uint64_t flags = 0;
153         uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
154
155 #define I40E_RX_ERR_BITS 0x3f
156         if (likely((error_bits & I40E_RX_ERR_BITS) == 0)) {
157                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
158                 return flags;
159         }
160
161         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
162                 flags |= PKT_RX_IP_CKSUM_BAD;
163         else
164                 flags |= PKT_RX_IP_CKSUM_GOOD;
165
166         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
167                 flags |= PKT_RX_L4_CKSUM_BAD;
168         else
169                 flags |= PKT_RX_L4_CKSUM_GOOD;
170
171         if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
172                 flags |= PKT_RX_OUTER_IP_CKSUM_BAD;
173
174         return flags;
175 }
176
177 /* Function to check and set the ieee1588 timesync index and get the
178  * appropriate flags.
179  */
180 #ifdef RTE_LIBRTE_IEEE1588
181 static inline uint64_t
182 i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
183 {
184         uint64_t pkt_flags = 0;
185         uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
186                                   | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
187                                     >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
188
189         if ((mb->packet_type & RTE_PTYPE_L2_MASK)
190                         == RTE_PTYPE_L2_ETHER_TIMESYNC)
191                 pkt_flags = PKT_RX_IEEE1588_PTP;
192         if (tsyn & 0x04) {
193                 pkt_flags |= PKT_RX_IEEE1588_TMST;
194                 mb->timesync = tsyn & 0x03;
195         }
196
197         return pkt_flags;
198 }
199 #endif
200
201 static inline uint64_t
202 i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
203 {
204         uint64_t flags = 0;
205 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
206         uint16_t flexbh, flexbl;
207
208         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
209                 I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
210                 I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
211         flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
212                 I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
213                 I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
214
215
216         if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
217                 mb->hash.fdir.hi =
218                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
219                 flags |= PKT_RX_FDIR_ID;
220         } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
221                 mb->hash.fdir.hi =
222                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
223                 flags |= PKT_RX_FDIR_FLX;
224         }
225         if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
226                 mb->hash.fdir.lo =
227                         rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
228                 flags |= PKT_RX_FDIR_FLX;
229         }
230 #else
231         mb->hash.fdir.hi =
232                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
233         flags |= PKT_RX_FDIR_ID;
234 #endif
235         return flags;
236 }
237
238 static inline void
239 i40e_parse_tunneling_params(uint64_t ol_flags,
240                             union i40e_tx_offload tx_offload,
241                             uint32_t *cd_tunneling)
242 {
243         /* EIPT: External (outer) IP header type */
244         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
245                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
246         else if (ol_flags & PKT_TX_OUTER_IPV4)
247                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
248         else if (ol_flags & PKT_TX_OUTER_IPV6)
249                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
250
251         /* EIPLEN: External (outer) IP header length, in DWords */
252         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
253                 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
254
255         /* L4TUNT: L4 Tunneling Type */
256         switch (ol_flags & PKT_TX_TUNNEL_MASK) {
257         case PKT_TX_TUNNEL_IPIP:
258                 /* for non UDP / GRE tunneling, set to 00b */
259                 break;
260         case PKT_TX_TUNNEL_VXLAN:
261         case PKT_TX_TUNNEL_GENEVE:
262                 *cd_tunneling |= I40E_TXD_CTX_UDP_TUNNELING;
263                 break;
264         case PKT_TX_TUNNEL_GRE:
265                 *cd_tunneling |= I40E_TXD_CTX_GRE_TUNNELING;
266                 break;
267         default:
268                 PMD_TX_LOG(ERR, "Tunnel type not supported");
269                 return;
270         }
271
272         /* L4TUNLEN: L4 Tunneling Length, in Words
273          *
274          * We depend on app to set rte_mbuf.l2_len correctly.
275          * For IP in GRE it should be set to the length of the GRE
276          * header;
277          * for MAC in GRE or MAC in UDP it should be set to the length
278          * of the GRE or UDP headers plus the inner MAC up to including
279          * its last Ethertype.
280          */
281         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
282                 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
283 }
284
285 static inline void
286 i40e_txd_enable_checksum(uint64_t ol_flags,
287                         uint32_t *td_cmd,
288                         uint32_t *td_offset,
289                         union i40e_tx_offload tx_offload)
290 {
291         /* Set MACLEN */
292         if (ol_flags & PKT_TX_TUNNEL_MASK)
293                 *td_offset |= (tx_offload.outer_l2_len >> 1)
294                                 << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
295         else
296                 *td_offset |= (tx_offload.l2_len >> 1)
297                         << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
298
299         /* Enable L3 checksum offloads */
300         if (ol_flags & PKT_TX_IP_CKSUM) {
301                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
302                 *td_offset |= (tx_offload.l3_len >> 2)
303                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
304         } else if (ol_flags & PKT_TX_IPV4) {
305                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
306                 *td_offset |= (tx_offload.l3_len >> 2)
307                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
308         } else if (ol_flags & PKT_TX_IPV6) {
309                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
310                 *td_offset |= (tx_offload.l3_len >> 2)
311                                 << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
312         }
313
314         if (ol_flags & PKT_TX_TCP_SEG) {
315                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
316                 *td_offset |= (tx_offload.l4_len >> 2)
317                         << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
318                 return;
319         }
320
321         /* Enable L4 checksum offloads */
322         switch (ol_flags & PKT_TX_L4_MASK) {
323         case PKT_TX_TCP_CKSUM:
324                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
325                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
326                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
327                 break;
328         case PKT_TX_SCTP_CKSUM:
329                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
330                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
331                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
332                 break;
333         case PKT_TX_UDP_CKSUM:
334                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
335                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
336                                 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
337                 break;
338         default:
339                 break;
340         }
341 }
342
343 /* Construct the tx flags */
344 static inline uint64_t
345 i40e_build_ctob(uint32_t td_cmd,
346                 uint32_t td_offset,
347                 unsigned int size,
348                 uint32_t td_tag)
349 {
350         return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
351                         ((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
352                         ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
353                         ((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
354                         ((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
355 }
356
357 static inline int
358 i40e_xmit_cleanup(struct i40e_tx_queue *txq)
359 {
360         struct i40e_tx_entry *sw_ring = txq->sw_ring;
361         volatile struct i40e_tx_desc *txd = txq->tx_ring;
362         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
363         uint16_t nb_tx_desc = txq->nb_tx_desc;
364         uint16_t desc_to_clean_to;
365         uint16_t nb_tx_to_clean;
366
367         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
368         if (desc_to_clean_to >= nb_tx_desc)
369                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
370
371         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
372         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
373                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
374                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
375                 PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
376                            "(port=%d queue=%d)", desc_to_clean_to,
377                            txq->port_id, txq->queue_id);
378                 return -1;
379         }
380
381         if (last_desc_cleaned > desc_to_clean_to)
382                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
383                                                         desc_to_clean_to);
384         else
385                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
386                                         last_desc_cleaned);
387
388         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
389
390         txq->last_desc_cleaned = desc_to_clean_to;
391         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
392
393         return 0;
394 }
395
396 static inline int
397 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
398 check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
399 #else
400 check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
401 #endif
402 {
403         int ret = 0;
404
405 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
406         if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
407                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
408                              "rxq->rx_free_thresh=%d, "
409                              "RTE_PMD_I40E_RX_MAX_BURST=%d",
410                              rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
411                 ret = -EINVAL;
412         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
413                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
414                              "rxq->rx_free_thresh=%d, "
415                              "rxq->nb_rx_desc=%d",
416                              rxq->rx_free_thresh, rxq->nb_rx_desc);
417                 ret = -EINVAL;
418         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
419                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
420                              "rxq->nb_rx_desc=%d, "
421                              "rxq->rx_free_thresh=%d",
422                              rxq->nb_rx_desc, rxq->rx_free_thresh);
423                 ret = -EINVAL;
424         }
425 #else
426         ret = -EINVAL;
427 #endif
428
429         return ret;
430 }
431
432 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
433 #define I40E_LOOK_AHEAD 8
434 #if (I40E_LOOK_AHEAD != 8)
435 #error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
436 #endif
437 static inline int
438 i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
439 {
440         volatile union i40e_rx_desc *rxdp;
441         struct i40e_rx_entry *rxep;
442         struct rte_mbuf *mb;
443         uint16_t pkt_len;
444         uint64_t qword1;
445         uint32_t rx_status;
446         int32_t s[I40E_LOOK_AHEAD], nb_dd;
447         int32_t i, j, nb_rx = 0;
448         uint64_t pkt_flags;
449         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
450
451         rxdp = &rxq->rx_ring[rxq->rx_tail];
452         rxep = &rxq->sw_ring[rxq->rx_tail];
453
454         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
455         rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
456                                 I40E_RXD_QW1_STATUS_SHIFT;
457
458         /* Make sure there is at least 1 packet to receive */
459         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
460                 return 0;
461
462         /**
463          * Scan LOOK_AHEAD descriptors at a time to determine which
464          * descriptors reference packets that are ready to be received.
465          */
466         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
467                         rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
468                 /* Read desc statuses backwards to avoid race condition */
469                 for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
470                         qword1 = rte_le_to_cpu_64(\
471                                 rxdp[j].wb.qword1.status_error_len);
472                         s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
473                                         I40E_RXD_QW1_STATUS_SHIFT;
474                 }
475
476                 rte_smp_rmb();
477
478                 /* Compute how many status bits were set */
479                 for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
480                         nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
481
482                 nb_rx += nb_dd;
483
484                 /* Translate descriptor info to mbuf parameters */
485                 for (j = 0; j < nb_dd; j++) {
486                         mb = rxep[j].mbuf;
487                         qword1 = rte_le_to_cpu_64(\
488                                 rxdp[j].wb.qword1.status_error_len);
489                         pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
490                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
491                         mb->data_len = pkt_len;
492                         mb->pkt_len = pkt_len;
493                         mb->ol_flags = 0;
494                         i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
495                         pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
496                         pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
497                         mb->packet_type =
498                                 ptype_tbl[(uint8_t)((qword1 &
499                                 I40E_RXD_QW1_PTYPE_MASK) >>
500                                 I40E_RXD_QW1_PTYPE_SHIFT)];
501                         if (pkt_flags & PKT_RX_RSS_HASH)
502                                 mb->hash.rss = rte_le_to_cpu_32(\
503                                         rxdp[j].wb.qword0.hi_dword.rss);
504                         if (pkt_flags & PKT_RX_FDIR)
505                                 pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
506
507 #ifdef RTE_LIBRTE_IEEE1588
508                         pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
509 #endif
510                         mb->ol_flags |= pkt_flags;
511
512                 }
513
514                 for (j = 0; j < I40E_LOOK_AHEAD; j++)
515                         rxq->rx_stage[i + j] = rxep[j].mbuf;
516
517                 if (nb_dd != I40E_LOOK_AHEAD)
518                         break;
519         }
520
521         /* Clear software ring entries */
522         for (i = 0; i < nb_rx; i++)
523                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
524
525         return nb_rx;
526 }
527
528 static inline uint16_t
529 i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
530                         struct rte_mbuf **rx_pkts,
531                         uint16_t nb_pkts)
532 {
533         uint16_t i;
534         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
535
536         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
537
538         for (i = 0; i < nb_pkts; i++)
539                 rx_pkts[i] = stage[i];
540
541         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
542         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
543
544         return nb_pkts;
545 }
546
547 static inline int
548 i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
549 {
550         volatile union i40e_rx_desc *rxdp;
551         struct i40e_rx_entry *rxep;
552         struct rte_mbuf *mb;
553         uint16_t alloc_idx, i;
554         uint64_t dma_addr;
555         int diag;
556
557         /* Allocate buffers in bulk */
558         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
559                                 (rxq->rx_free_thresh - 1));
560         rxep = &(rxq->sw_ring[alloc_idx]);
561         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
562                                         rxq->rx_free_thresh);
563         if (unlikely(diag != 0)) {
564                 PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
565                 return -ENOMEM;
566         }
567
568         rxdp = &rxq->rx_ring[alloc_idx];
569         for (i = 0; i < rxq->rx_free_thresh; i++) {
570                 if (likely(i < (rxq->rx_free_thresh - 1)))
571                         /* Prefetch next mbuf */
572                         rte_prefetch0(rxep[i + 1].mbuf);
573
574                 mb = rxep[i].mbuf;
575                 rte_mbuf_refcnt_set(mb, 1);
576                 mb->next = NULL;
577                 mb->data_off = RTE_PKTMBUF_HEADROOM;
578                 mb->nb_segs = 1;
579                 mb->port = rxq->port_id;
580                 dma_addr = rte_cpu_to_le_64(\
581                         rte_mbuf_data_iova_default(mb));
582                 rxdp[i].read.hdr_addr = 0;
583                 rxdp[i].read.pkt_addr = dma_addr;
584         }
585
586         /* Update rx tail regsiter */
587         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
588
589         rxq->rx_free_trigger =
590                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
591         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
592                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
593
594         return 0;
595 }
596
597 static inline uint16_t
598 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
599 {
600         struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
601         struct rte_eth_dev *dev;
602         uint16_t nb_rx = 0;
603
604         if (!nb_pkts)
605                 return 0;
606
607         if (rxq->rx_nb_avail)
608                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
609
610         nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
611         rxq->rx_next_avail = 0;
612         rxq->rx_nb_avail = nb_rx;
613         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
614
615         if (rxq->rx_tail > rxq->rx_free_trigger) {
616                 if (i40e_rx_alloc_bufs(rxq) != 0) {
617                         uint16_t i, j;
618
619                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
620                         dev->data->rx_mbuf_alloc_failed +=
621                                 rxq->rx_free_thresh;
622
623                         rxq->rx_nb_avail = 0;
624                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
625                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
626                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
627
628                         return 0;
629                 }
630         }
631
632         if (rxq->rx_tail >= rxq->nb_rx_desc)
633                 rxq->rx_tail = 0;
634
635         if (rxq->rx_nb_avail)
636                 return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
637
638         return 0;
639 }
640
641 static uint16_t
642 i40e_recv_pkts_bulk_alloc(void *rx_queue,
643                           struct rte_mbuf **rx_pkts,
644                           uint16_t nb_pkts)
645 {
646         uint16_t nb_rx = 0, n, count;
647
648         if (unlikely(nb_pkts == 0))
649                 return 0;
650
651         if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
652                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
653
654         while (nb_pkts) {
655                 n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
656                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
657                 nb_rx = (uint16_t)(nb_rx + count);
658                 nb_pkts = (uint16_t)(nb_pkts - count);
659                 if (count < n)
660                         break;
661         }
662
663         return nb_rx;
664 }
665 #else
666 static uint16_t
667 i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
668                           struct rte_mbuf __rte_unused **rx_pkts,
669                           uint16_t __rte_unused nb_pkts)
670 {
671         return 0;
672 }
673 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
674
675 uint16_t
676 i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
677 {
678         struct i40e_rx_queue *rxq;
679         volatile union i40e_rx_desc *rx_ring;
680         volatile union i40e_rx_desc *rxdp;
681         union i40e_rx_desc rxd;
682         struct i40e_rx_entry *sw_ring;
683         struct i40e_rx_entry *rxe;
684         struct rte_eth_dev *dev;
685         struct rte_mbuf *rxm;
686         struct rte_mbuf *nmb;
687         uint16_t nb_rx;
688         uint32_t rx_status;
689         uint64_t qword1;
690         uint16_t rx_packet_len;
691         uint16_t rx_id, nb_hold;
692         uint64_t dma_addr;
693         uint64_t pkt_flags;
694         uint32_t *ptype_tbl;
695
696         nb_rx = 0;
697         nb_hold = 0;
698         rxq = rx_queue;
699         rx_id = rxq->rx_tail;
700         rx_ring = rxq->rx_ring;
701         sw_ring = rxq->sw_ring;
702         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
703
704         while (nb_rx < nb_pkts) {
705                 rxdp = &rx_ring[rx_id];
706                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
707                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
708                                 >> I40E_RXD_QW1_STATUS_SHIFT;
709
710                 /* Check the DD bit first */
711                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
712                         break;
713
714                 nmb = rte_mbuf_raw_alloc(rxq->mp);
715                 if (unlikely(!nmb)) {
716                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
717                         dev->data->rx_mbuf_alloc_failed++;
718                         break;
719                 }
720
721                 rxd = *rxdp;
722                 nb_hold++;
723                 rxe = &sw_ring[rx_id];
724                 rx_id++;
725                 if (unlikely(rx_id == rxq->nb_rx_desc))
726                         rx_id = 0;
727
728                 /* Prefetch next mbuf */
729                 rte_prefetch0(sw_ring[rx_id].mbuf);
730
731                 /**
732                  * When next RX descriptor is on a cache line boundary,
733                  * prefetch the next 4 RX descriptors and next 8 pointers
734                  * to mbufs.
735                  */
736                 if ((rx_id & 0x3) == 0) {
737                         rte_prefetch0(&rx_ring[rx_id]);
738                         rte_prefetch0(&sw_ring[rx_id]);
739                 }
740                 rxm = rxe->mbuf;
741                 rxe->mbuf = nmb;
742                 dma_addr =
743                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
744                 rxdp->read.hdr_addr = 0;
745                 rxdp->read.pkt_addr = dma_addr;
746
747                 rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
748                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
749
750                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
751                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
752                 rxm->nb_segs = 1;
753                 rxm->next = NULL;
754                 rxm->pkt_len = rx_packet_len;
755                 rxm->data_len = rx_packet_len;
756                 rxm->port = rxq->port_id;
757                 rxm->ol_flags = 0;
758                 i40e_rxd_to_vlan_tci(rxm, &rxd);
759                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
760                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
761                 rxm->packet_type =
762                         ptype_tbl[(uint8_t)((qword1 &
763                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
764                 if (pkt_flags & PKT_RX_RSS_HASH)
765                         rxm->hash.rss =
766                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
767                 if (pkt_flags & PKT_RX_FDIR)
768                         pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
769
770 #ifdef RTE_LIBRTE_IEEE1588
771                 pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
772 #endif
773                 rxm->ol_flags |= pkt_flags;
774
775                 rx_pkts[nb_rx++] = rxm;
776         }
777         rxq->rx_tail = rx_id;
778
779         /**
780          * If the number of free RX descriptors is greater than the RX free
781          * threshold of the queue, advance the receive tail register of queue.
782          * Update that register with the value of the last processed RX
783          * descriptor minus 1.
784          */
785         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
786         if (nb_hold > rxq->rx_free_thresh) {
787                 rx_id = (uint16_t) ((rx_id == 0) ?
788                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
789                 I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
790                 nb_hold = 0;
791         }
792         rxq->nb_rx_hold = nb_hold;
793
794         return nb_rx;
795 }
796
797 uint16_t
798 i40e_recv_scattered_pkts(void *rx_queue,
799                          struct rte_mbuf **rx_pkts,
800                          uint16_t nb_pkts)
801 {
802         struct i40e_rx_queue *rxq = rx_queue;
803         volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
804         volatile union i40e_rx_desc *rxdp;
805         union i40e_rx_desc rxd;
806         struct i40e_rx_entry *sw_ring = rxq->sw_ring;
807         struct i40e_rx_entry *rxe;
808         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
809         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
810         struct rte_mbuf *nmb, *rxm;
811         uint16_t rx_id = rxq->rx_tail;
812         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
813         struct rte_eth_dev *dev;
814         uint32_t rx_status;
815         uint64_t qword1;
816         uint64_t dma_addr;
817         uint64_t pkt_flags;
818         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
819
820         while (nb_rx < nb_pkts) {
821                 rxdp = &rx_ring[rx_id];
822                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
823                 rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
824                                         I40E_RXD_QW1_STATUS_SHIFT;
825
826                 /* Check the DD bit */
827                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
828                         break;
829
830                 nmb = rte_mbuf_raw_alloc(rxq->mp);
831                 if (unlikely(!nmb)) {
832                         dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
833                         dev->data->rx_mbuf_alloc_failed++;
834                         break;
835                 }
836
837                 rxd = *rxdp;
838                 nb_hold++;
839                 rxe = &sw_ring[rx_id];
840                 rx_id++;
841                 if (rx_id == rxq->nb_rx_desc)
842                         rx_id = 0;
843
844                 /* Prefetch next mbuf */
845                 rte_prefetch0(sw_ring[rx_id].mbuf);
846
847                 /**
848                  * When next RX descriptor is on a cache line boundary,
849                  * prefetch the next 4 RX descriptors and next 8 pointers
850                  * to mbufs.
851                  */
852                 if ((rx_id & 0x3) == 0) {
853                         rte_prefetch0(&rx_ring[rx_id]);
854                         rte_prefetch0(&sw_ring[rx_id]);
855                 }
856
857                 rxm = rxe->mbuf;
858                 rxe->mbuf = nmb;
859                 dma_addr =
860                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
861
862                 /* Set data buffer address and data length of the mbuf */
863                 rxdp->read.hdr_addr = 0;
864                 rxdp->read.pkt_addr = dma_addr;
865                 rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
866                                         I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
867                 rxm->data_len = rx_packet_len;
868                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
869
870                 /**
871                  * If this is the first buffer of the received packet, set the
872                  * pointer to the first mbuf of the packet and initialize its
873                  * context. Otherwise, update the total length and the number
874                  * of segments of the current scattered packet, and update the
875                  * pointer to the last mbuf of the current packet.
876                  */
877                 if (!first_seg) {
878                         first_seg = rxm;
879                         first_seg->nb_segs = 1;
880                         first_seg->pkt_len = rx_packet_len;
881                 } else {
882                         first_seg->pkt_len =
883                                 (uint16_t)(first_seg->pkt_len +
884                                                 rx_packet_len);
885                         first_seg->nb_segs++;
886                         last_seg->next = rxm;
887                 }
888
889                 /**
890                  * If this is not the last buffer of the received packet,
891                  * update the pointer to the last mbuf of the current scattered
892                  * packet and continue to parse the RX ring.
893                  */
894                 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
895                         last_seg = rxm;
896                         continue;
897                 }
898
899                 /**
900                  * This is the last buffer of the received packet. If the CRC
901                  * is not stripped by the hardware:
902                  *  - Subtract the CRC length from the total packet length.
903                  *  - If the last buffer only contains the whole CRC or a part
904                  *  of it, free the mbuf associated to the last buffer. If part
905                  *  of the CRC is also contained in the previous mbuf, subtract
906                  *  the length of that CRC part from the data length of the
907                  *  previous mbuf.
908                  */
909                 rxm->next = NULL;
910                 if (unlikely(rxq->crc_len > 0)) {
911                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
912                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
913                                 rte_pktmbuf_free_seg(rxm);
914                                 first_seg->nb_segs--;
915                                 last_seg->data_len =
916                                         (uint16_t)(last_seg->data_len -
917                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
918                                 last_seg->next = NULL;
919                         } else
920                                 rxm->data_len = (uint16_t)(rx_packet_len -
921                                                         RTE_ETHER_CRC_LEN);
922                 }
923
924                 first_seg->port = rxq->port_id;
925                 first_seg->ol_flags = 0;
926                 i40e_rxd_to_vlan_tci(first_seg, &rxd);
927                 pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
928                 pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
929                 first_seg->packet_type =
930                         ptype_tbl[(uint8_t)((qword1 &
931                         I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
932                 if (pkt_flags & PKT_RX_RSS_HASH)
933                         first_seg->hash.rss =
934                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
935                 if (pkt_flags & PKT_RX_FDIR)
936                         pkt_flags |= i40e_rxd_build_fdir(&rxd, first_seg);
937
938 #ifdef RTE_LIBRTE_IEEE1588
939                 pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
940 #endif
941                 first_seg->ol_flags |= pkt_flags;
942
943                 /* Prefetch data of first segment, if configured to do so. */
944                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
945                         first_seg->data_off));
946                 rx_pkts[nb_rx++] = first_seg;
947                 first_seg = NULL;
948         }
949
950         /* Record index of the next RX descriptor to probe. */
951         rxq->rx_tail = rx_id;
952         rxq->pkt_first_seg = first_seg;
953         rxq->pkt_last_seg = last_seg;
954
955         /**
956          * If the number of free RX descriptors is greater than the RX free
957          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
958          * register. Update the RDT with the value of the last processed RX
959          * descriptor minus 1, to guarantee that the RDT register is never
960          * equal to the RDH register, which creates a "full" ring situtation
961          * from the hardware point of view.
962          */
963         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
964         if (nb_hold > rxq->rx_free_thresh) {
965                 rx_id = (uint16_t)(rx_id == 0 ?
966                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
967                 I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
968                 nb_hold = 0;
969         }
970         rxq->nb_rx_hold = nb_hold;
971
972         return nb_rx;
973 }
974
975 /* Check if the context descriptor is needed for TX offloading */
976 static inline uint16_t
977 i40e_calc_context_desc(uint64_t flags)
978 {
979         static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
980                 PKT_TX_TCP_SEG |
981                 PKT_TX_QINQ_PKT |
982                 PKT_TX_TUNNEL_MASK;
983
984 #ifdef RTE_LIBRTE_IEEE1588
985         mask |= PKT_TX_IEEE1588_TMST;
986 #endif
987
988         return (flags & mask) ? 1 : 0;
989 }
990
991 /* set i40e TSO context descriptor */
992 static inline uint64_t
993 i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
994 {
995         uint64_t ctx_desc = 0;
996         uint32_t cd_cmd, hdr_len, cd_tso_len;
997
998         if (!tx_offload.l4_len) {
999                 PMD_DRV_LOG(DEBUG, "L4 length set to 0");
1000                 return ctx_desc;
1001         }
1002
1003         hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
1004         hdr_len += (mbuf->ol_flags & PKT_TX_TUNNEL_MASK) ?
1005                    tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
1006
1007         cd_cmd = I40E_TX_CTX_DESC_TSO;
1008         cd_tso_len = mbuf->pkt_len - hdr_len;
1009         ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1010                 ((uint64_t)cd_tso_len <<
1011                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1012                 ((uint64_t)mbuf->tso_segsz <<
1013                  I40E_TXD_CTX_QW1_MSS_SHIFT);
1014
1015         return ctx_desc;
1016 }
1017
1018 /* HW requires that Tx buffer size ranges from 1B up to (16K-1)B. */
1019 #define I40E_MAX_DATA_PER_TXD \
1020         (I40E_TXD_QW1_TX_BUF_SZ_MASK >> I40E_TXD_QW1_TX_BUF_SZ_SHIFT)
1021 /* Calculate the number of TX descriptors needed for each pkt */
1022 static inline uint16_t
1023 i40e_calc_pkt_desc(struct rte_mbuf *tx_pkt)
1024 {
1025         struct rte_mbuf *txd = tx_pkt;
1026         uint16_t count = 0;
1027
1028         while (txd != NULL) {
1029                 count += DIV_ROUND_UP(txd->data_len, I40E_MAX_DATA_PER_TXD);
1030                 txd = txd->next;
1031         }
1032
1033         return count;
1034 }
1035
1036 uint16_t
1037 i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1038 {
1039         struct i40e_tx_queue *txq;
1040         struct i40e_tx_entry *sw_ring;
1041         struct i40e_tx_entry *txe, *txn;
1042         volatile struct i40e_tx_desc *txd;
1043         volatile struct i40e_tx_desc *txr;
1044         struct rte_mbuf *tx_pkt;
1045         struct rte_mbuf *m_seg;
1046         uint32_t cd_tunneling_params;
1047         uint16_t tx_id;
1048         uint16_t nb_tx;
1049         uint32_t td_cmd;
1050         uint32_t td_offset;
1051         uint32_t td_tag;
1052         uint64_t ol_flags;
1053         uint16_t nb_used;
1054         uint16_t nb_ctx;
1055         uint16_t tx_last;
1056         uint16_t slen;
1057         uint64_t buf_dma_addr;
1058         union i40e_tx_offload tx_offload = {0};
1059
1060         txq = tx_queue;
1061         sw_ring = txq->sw_ring;
1062         txr = txq->tx_ring;
1063         tx_id = txq->tx_tail;
1064         txe = &sw_ring[tx_id];
1065
1066         /* Check if the descriptor ring needs to be cleaned. */
1067         if (txq->nb_tx_free < txq->tx_free_thresh)
1068                 (void)i40e_xmit_cleanup(txq);
1069
1070         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1071                 td_cmd = 0;
1072                 td_tag = 0;
1073                 td_offset = 0;
1074
1075                 tx_pkt = *tx_pkts++;
1076                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1077
1078                 ol_flags = tx_pkt->ol_flags;
1079                 tx_offload.l2_len = tx_pkt->l2_len;
1080                 tx_offload.l3_len = tx_pkt->l3_len;
1081                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1082                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1083                 tx_offload.l4_len = tx_pkt->l4_len;
1084                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1085
1086                 /* Calculate the number of context descriptors needed. */
1087                 nb_ctx = i40e_calc_context_desc(ol_flags);
1088
1089                 /**
1090                  * The number of descriptors that must be allocated for
1091                  * a packet equals to the number of the segments of that
1092                  * packet plus 1 context descriptor if needed.
1093                  * Recalculate the needed tx descs when TSO enabled in case
1094                  * the mbuf data size exceeds max data size that hw allows
1095                  * per tx desc.
1096                  */
1097                 if (ol_flags & PKT_TX_TCP_SEG)
1098                         nb_used = (uint16_t)(i40e_calc_pkt_desc(tx_pkt) +
1099                                              nb_ctx);
1100                 else
1101                         nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1102                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1103
1104                 /* Circular ring */
1105                 if (tx_last >= txq->nb_tx_desc)
1106                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1107
1108                 if (nb_used > txq->nb_tx_free) {
1109                         if (i40e_xmit_cleanup(txq) != 0) {
1110                                 if (nb_tx == 0)
1111                                         return 0;
1112                                 goto end_of_tx;
1113                         }
1114                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
1115                                 while (nb_used > txq->nb_tx_free) {
1116                                         if (i40e_xmit_cleanup(txq) != 0) {
1117                                                 if (nb_tx == 0)
1118                                                         return 0;
1119                                                 goto end_of_tx;
1120                                         }
1121                                 }
1122                         }
1123                 }
1124
1125                 /* Descriptor based VLAN insertion */
1126                 if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
1127                         td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1128                         td_tag = tx_pkt->vlan_tci;
1129                 }
1130
1131                 /* Always enable CRC offload insertion */
1132                 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1133
1134                 /* Fill in tunneling parameters if necessary */
1135                 cd_tunneling_params = 0;
1136                 if (ol_flags & PKT_TX_TUNNEL_MASK)
1137                         i40e_parse_tunneling_params(ol_flags, tx_offload,
1138                                                     &cd_tunneling_params);
1139                 /* Enable checksum offloading */
1140                 if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK)
1141                         i40e_txd_enable_checksum(ol_flags, &td_cmd,
1142                                                  &td_offset, tx_offload);
1143
1144                 if (nb_ctx) {
1145                         /* Setup TX context descriptor if required */
1146                         volatile struct i40e_tx_context_desc *ctx_txd =
1147                                 (volatile struct i40e_tx_context_desc *)\
1148                                                         &txr[tx_id];
1149                         uint16_t cd_l2tag2 = 0;
1150                         uint64_t cd_type_cmd_tso_mss =
1151                                 I40E_TX_DESC_DTYPE_CONTEXT;
1152
1153                         txn = &sw_ring[txe->next_id];
1154                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1155                         if (txe->mbuf != NULL) {
1156                                 rte_pktmbuf_free_seg(txe->mbuf);
1157                                 txe->mbuf = NULL;
1158                         }
1159
1160                         /* TSO enabled means no timestamp */
1161                         if (ol_flags & PKT_TX_TCP_SEG)
1162                                 cd_type_cmd_tso_mss |=
1163                                         i40e_set_tso_ctx(tx_pkt, tx_offload);
1164                         else {
1165 #ifdef RTE_LIBRTE_IEEE1588
1166                                 if (ol_flags & PKT_TX_IEEE1588_TMST)
1167                                         cd_type_cmd_tso_mss |=
1168                                                 ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1169                                                  I40E_TXD_CTX_QW1_CMD_SHIFT);
1170 #endif
1171                         }
1172
1173                         ctx_txd->tunneling_params =
1174                                 rte_cpu_to_le_32(cd_tunneling_params);
1175                         if (ol_flags & PKT_TX_QINQ_PKT) {
1176                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
1177                                 cd_type_cmd_tso_mss |=
1178                                         ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1179                                                 I40E_TXD_CTX_QW1_CMD_SHIFT);
1180                         }
1181                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1182                         ctx_txd->type_cmd_tso_mss =
1183                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1184
1185                         PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1186                                 "tunneling_params: %#x;\n"
1187                                 "l2tag2: %#hx;\n"
1188                                 "rsvd: %#hx;\n"
1189                                 "type_cmd_tso_mss: %#"PRIx64";\n",
1190                                 tx_pkt, tx_id,
1191                                 ctx_txd->tunneling_params,
1192                                 ctx_txd->l2tag2,
1193                                 ctx_txd->rsvd,
1194                                 ctx_txd->type_cmd_tso_mss);
1195
1196                         txe->last_id = tx_last;
1197                         tx_id = txe->next_id;
1198                         txe = txn;
1199                 }
1200
1201                 m_seg = tx_pkt;
1202                 do {
1203                         txd = &txr[tx_id];
1204                         txn = &sw_ring[txe->next_id];
1205
1206                         if (txe->mbuf)
1207                                 rte_pktmbuf_free_seg(txe->mbuf);
1208                         txe->mbuf = m_seg;
1209
1210                         /* Setup TX Descriptor */
1211                         slen = m_seg->data_len;
1212                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
1213
1214                         while ((ol_flags & PKT_TX_TCP_SEG) &&
1215                                 unlikely(slen > I40E_MAX_DATA_PER_TXD)) {
1216                                 txd->buffer_addr =
1217                                         rte_cpu_to_le_64(buf_dma_addr);
1218                                 txd->cmd_type_offset_bsz =
1219                                         i40e_build_ctob(td_cmd,
1220                                         td_offset, I40E_MAX_DATA_PER_TXD,
1221                                         td_tag);
1222
1223                                 buf_dma_addr += I40E_MAX_DATA_PER_TXD;
1224                                 slen -= I40E_MAX_DATA_PER_TXD;
1225
1226                                 txe->last_id = tx_last;
1227                                 tx_id = txe->next_id;
1228                                 txe = txn;
1229                                 txd = &txr[tx_id];
1230                                 txn = &sw_ring[txe->next_id];
1231                         }
1232                         PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1233                                 "buf_dma_addr: %#"PRIx64";\n"
1234                                 "td_cmd: %#x;\n"
1235                                 "td_offset: %#x;\n"
1236                                 "td_len: %u;\n"
1237                                 "td_tag: %#x;\n",
1238                                 tx_pkt, tx_id, buf_dma_addr,
1239                                 td_cmd, td_offset, slen, td_tag);
1240
1241                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1242                         txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1243                                                 td_offset, slen, td_tag);
1244                         txe->last_id = tx_last;
1245                         tx_id = txe->next_id;
1246                         txe = txn;
1247                         m_seg = m_seg->next;
1248                 } while (m_seg != NULL);
1249
1250                 /* The last packet data descriptor needs End Of Packet (EOP) */
1251                 td_cmd |= I40E_TX_DESC_CMD_EOP;
1252                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1253                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1254
1255                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1256                         PMD_TX_LOG(DEBUG,
1257                                    "Setting RS bit on TXD id="
1258                                    "%4u (port=%d queue=%d)",
1259                                    tx_last, txq->port_id, txq->queue_id);
1260
1261                         td_cmd |= I40E_TX_DESC_CMD_RS;
1262
1263                         /* Update txq RS bit counters */
1264                         txq->nb_tx_used = 0;
1265                 }
1266
1267                 txd->cmd_type_offset_bsz |=
1268                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1269                                         I40E_TXD_QW1_CMD_SHIFT);
1270         }
1271
1272 end_of_tx:
1273         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1274                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
1275                    (unsigned) tx_id, (unsigned) nb_tx);
1276
1277         rte_io_wmb();
1278         I40E_PCI_REG_WC_WRITE_RELAXED(txq->qtx_tail, tx_id);
1279         txq->tx_tail = tx_id;
1280
1281         return nb_tx;
1282 }
1283
1284 static __rte_always_inline int
1285 i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1286 {
1287         struct i40e_tx_entry *txep;
1288         uint16_t i;
1289
1290         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1291                         rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1292                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
1293                 return 0;
1294
1295         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
1296
1297         for (i = 0; i < txq->tx_rs_thresh; i++)
1298                 rte_prefetch0((txep + i)->mbuf);
1299
1300         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
1301                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1302                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
1303                         txep->mbuf = NULL;
1304                 }
1305         } else {
1306                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1307                         rte_pktmbuf_free_seg(txep->mbuf);
1308                         txep->mbuf = NULL;
1309                 }
1310         }
1311
1312         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1313         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1314         if (txq->tx_next_dd >= txq->nb_tx_desc)
1315                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1316
1317         return txq->tx_rs_thresh;
1318 }
1319
1320 /* Populate 4 descriptors with data from 4 mbufs */
1321 static inline void
1322 tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1323 {
1324         uint64_t dma_addr;
1325         uint32_t i;
1326
1327         for (i = 0; i < 4; i++, txdp++, pkts++) {
1328                 dma_addr = rte_mbuf_data_iova(*pkts);
1329                 txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1330                 txdp->cmd_type_offset_bsz =
1331                         i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1332                                         (*pkts)->data_len, 0);
1333         }
1334 }
1335
1336 /* Populate 1 descriptor with data from 1 mbuf */
1337 static inline void
1338 tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1339 {
1340         uint64_t dma_addr;
1341
1342         dma_addr = rte_mbuf_data_iova(*pkts);
1343         txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1344         txdp->cmd_type_offset_bsz =
1345                 i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1346                                 (*pkts)->data_len, 0);
1347 }
1348
1349 /* Fill hardware descriptor ring with mbuf data */
1350 static inline void
1351 i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1352                      struct rte_mbuf **pkts,
1353                      uint16_t nb_pkts)
1354 {
1355         volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1356         struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1357         const int N_PER_LOOP = 4;
1358         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1359         int mainpart, leftover;
1360         int i, j;
1361
1362         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1363         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
1364         for (i = 0; i < mainpart; i += N_PER_LOOP) {
1365                 for (j = 0; j < N_PER_LOOP; ++j) {
1366                         (txep + i + j)->mbuf = *(pkts + i + j);
1367                 }
1368                 tx4(txdp + i, pkts + i);
1369         }
1370         if (unlikely(leftover > 0)) {
1371                 for (i = 0; i < leftover; ++i) {
1372                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1373                         tx1(txdp + mainpart + i, pkts + mainpart + i);
1374                 }
1375         }
1376 }
1377
1378 static inline uint16_t
1379 tx_xmit_pkts(struct i40e_tx_queue *txq,
1380              struct rte_mbuf **tx_pkts,
1381              uint16_t nb_pkts)
1382 {
1383         volatile struct i40e_tx_desc *txr = txq->tx_ring;
1384         uint16_t n = 0;
1385
1386         /**
1387          * Begin scanning the H/W ring for done descriptors when the number
1388          * of available descriptors drops below tx_free_thresh. For each done
1389          * descriptor, free the associated buffer.
1390          */
1391         if (txq->nb_tx_free < txq->tx_free_thresh)
1392                 i40e_tx_free_bufs(txq);
1393
1394         /* Use available descriptor only */
1395         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1396         if (unlikely(!nb_pkts))
1397                 return 0;
1398
1399         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1400         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1401                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1402                 i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1403                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1404                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1405                                                 I40E_TXD_QW1_CMD_SHIFT);
1406                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1407                 txq->tx_tail = 0;
1408         }
1409
1410         /* Fill hardware descriptor ring with mbuf data */
1411         i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1412         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1413
1414         /* Determin if RS bit needs to be set */
1415         if (txq->tx_tail > txq->tx_next_rs) {
1416                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1417                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1418                                                 I40E_TXD_QW1_CMD_SHIFT);
1419                 txq->tx_next_rs =
1420                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1421                 if (txq->tx_next_rs >= txq->nb_tx_desc)
1422                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1423         }
1424
1425         if (txq->tx_tail >= txq->nb_tx_desc)
1426                 txq->tx_tail = 0;
1427
1428         /* Update the tx tail register */
1429         I40E_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1430
1431         return nb_pkts;
1432 }
1433
1434 static uint16_t
1435 i40e_xmit_pkts_simple(void *tx_queue,
1436                       struct rte_mbuf **tx_pkts,
1437                       uint16_t nb_pkts)
1438 {
1439         uint16_t nb_tx = 0;
1440
1441         if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1442                 return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1443                                                 tx_pkts, nb_pkts);
1444
1445         while (nb_pkts) {
1446                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1447                                                 I40E_TX_MAX_BURST);
1448
1449                 ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1450                                                 &tx_pkts[nb_tx], num);
1451                 nb_tx = (uint16_t)(nb_tx + ret);
1452                 nb_pkts = (uint16_t)(nb_pkts - ret);
1453                 if (ret < num)
1454                         break;
1455         }
1456
1457         return nb_tx;
1458 }
1459
1460 static uint16_t
1461 i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1462                    uint16_t nb_pkts)
1463 {
1464         uint16_t nb_tx = 0;
1465         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
1466
1467         while (nb_pkts) {
1468                 uint16_t ret, num;
1469
1470                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1471                 ret = i40e_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
1472                                                 num);
1473                 nb_tx += ret;
1474                 nb_pkts -= ret;
1475                 if (ret < num)
1476                         break;
1477         }
1478
1479         return nb_tx;
1480 }
1481
1482 /*********************************************************************
1483  *
1484  *  TX simple prep functions
1485  *
1486  **********************************************************************/
1487 uint16_t
1488 i40e_simple_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1489                       uint16_t nb_pkts)
1490 {
1491         int i;
1492         uint64_t ol_flags;
1493         struct rte_mbuf *m;
1494
1495         for (i = 0; i < nb_pkts; i++) {
1496                 m = tx_pkts[i];
1497                 ol_flags = m->ol_flags;
1498
1499                 if (m->nb_segs != 1) {
1500                         rte_errno = EINVAL;
1501                         return i;
1502                 }
1503
1504                 if (ol_flags & PKT_TX_OFFLOAD_MASK) {
1505                         rte_errno = ENOTSUP;
1506                         return i;
1507                 }
1508
1509                 /* check the size of packet */
1510                 if (m->pkt_len < I40E_TX_MIN_PKT_LEN ||
1511                     m->pkt_len > I40E_FRAME_SIZE_MAX) {
1512                         rte_errno = EINVAL;
1513                         return i;
1514                 }
1515         }
1516         return i;
1517 }
1518
1519 /*********************************************************************
1520  *
1521  *  TX prep functions
1522  *
1523  **********************************************************************/
1524 uint16_t
1525 i40e_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1526                 uint16_t nb_pkts)
1527 {
1528         int i, ret;
1529         uint64_t ol_flags;
1530         struct rte_mbuf *m;
1531
1532         for (i = 0; i < nb_pkts; i++) {
1533                 m = tx_pkts[i];
1534                 ol_flags = m->ol_flags;
1535
1536                 /* Check for m->nb_segs to not exceed the limits. */
1537                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
1538                         if (m->nb_segs > I40E_TX_MAX_MTU_SEG ||
1539                             m->pkt_len > I40E_FRAME_SIZE_MAX) {
1540                                 rte_errno = EINVAL;
1541                                 return i;
1542                         }
1543                 } else if (m->nb_segs > I40E_TX_MAX_SEG ||
1544                            m->tso_segsz < I40E_MIN_TSO_MSS ||
1545                            m->tso_segsz > I40E_MAX_TSO_MSS ||
1546                            m->pkt_len > I40E_TSO_FRAME_SIZE_MAX) {
1547                         /* MSS outside the range (256B - 9674B) are considered
1548                          * malicious
1549                          */
1550                         rte_errno = EINVAL;
1551                         return i;
1552                 }
1553
1554                 if (ol_flags & I40E_TX_OFFLOAD_NOTSUP_MASK) {
1555                         rte_errno = ENOTSUP;
1556                         return i;
1557                 }
1558
1559                 /* check the size of packet */
1560                 if (m->pkt_len < I40E_TX_MIN_PKT_LEN) {
1561                         rte_errno = EINVAL;
1562                         return i;
1563                 }
1564
1565 #ifdef RTE_ETHDEV_DEBUG_TX
1566                 ret = rte_validate_tx_offload(m);
1567                 if (ret != 0) {
1568                         rte_errno = -ret;
1569                         return i;
1570                 }
1571 #endif
1572                 ret = rte_net_intel_cksum_prepare(m);
1573                 if (ret != 0) {
1574                         rte_errno = -ret;
1575                         return i;
1576                 }
1577         }
1578         return i;
1579 }
1580
1581 /*
1582  * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1583  * application used, which assume having sequential ones. But from driver's
1584  * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1585  * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1586  * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1587  * use queue_idx from 0 to 95 to access queues, while real queue would be
1588  * different. This function will do a queue mapping to find VSI the queue
1589  * belongs to.
1590  */
1591 static struct i40e_vsi*
1592 i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1593 {
1594         /* the queue in MAIN VSI range */
1595         if (queue_idx < pf->main_vsi->nb_qps)
1596                 return pf->main_vsi;
1597
1598         queue_idx -= pf->main_vsi->nb_qps;
1599
1600         /* queue_idx is greater than VMDQ VSIs range */
1601         if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1602                 PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1603                 return NULL;
1604         }
1605
1606         return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1607 }
1608
1609 static uint16_t
1610 i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1611 {
1612         /* the queue in MAIN VSI range */
1613         if (queue_idx < pf->main_vsi->nb_qps)
1614                 return queue_idx;
1615
1616         /* It's VMDQ queues */
1617         queue_idx -= pf->main_vsi->nb_qps;
1618
1619         if (pf->nb_cfg_vmdq_vsi)
1620                 return queue_idx % pf->vmdq_nb_qps;
1621         else {
1622                 PMD_INIT_LOG(ERR, "Fail to get queue offset");
1623                 return (uint16_t)(-1);
1624         }
1625 }
1626
1627 int
1628 i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1629 {
1630         struct i40e_rx_queue *rxq;
1631         int err;
1632         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1633
1634         PMD_INIT_FUNC_TRACE();
1635
1636         rxq = dev->data->rx_queues[rx_queue_id];
1637         if (!rxq || !rxq->q_set) {
1638                 PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
1639                             rx_queue_id);
1640                 return -EINVAL;
1641         }
1642
1643         if (rxq->rx_deferred_start)
1644                 PMD_DRV_LOG(WARNING, "RX queue %u is deferrd start",
1645                             rx_queue_id);
1646
1647         err = i40e_alloc_rx_queue_mbufs(rxq);
1648         if (err) {
1649                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1650                 return err;
1651         }
1652
1653         /* Init the RX tail regieter. */
1654         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
1655
1656         err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
1657         if (err) {
1658                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
1659                             rx_queue_id);
1660
1661                 i40e_rx_queue_release_mbufs(rxq);
1662                 i40e_reset_rx_queue(rxq);
1663                 return err;
1664         }
1665         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1666
1667         return 0;
1668 }
1669
1670 int
1671 i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1672 {
1673         struct i40e_rx_queue *rxq;
1674         int err;
1675         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1676
1677         rxq = dev->data->rx_queues[rx_queue_id];
1678         if (!rxq || !rxq->q_set) {
1679                 PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
1680                                 rx_queue_id);
1681                 return -EINVAL;
1682         }
1683
1684         /*
1685          * rx_queue_id is queue id application refers to, while
1686          * rxq->reg_idx is the real queue index.
1687          */
1688         err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
1689         if (err) {
1690                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
1691                             rx_queue_id);
1692                 return err;
1693         }
1694         i40e_rx_queue_release_mbufs(rxq);
1695         i40e_reset_rx_queue(rxq);
1696         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1697
1698         return 0;
1699 }
1700
1701 int
1702 i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1703 {
1704         int err;
1705         struct i40e_tx_queue *txq;
1706         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1707
1708         PMD_INIT_FUNC_TRACE();
1709
1710         txq = dev->data->tx_queues[tx_queue_id];
1711         if (!txq || !txq->q_set) {
1712                 PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
1713                             tx_queue_id);
1714                 return -EINVAL;
1715         }
1716
1717         if (txq->tx_deferred_start)
1718                 PMD_DRV_LOG(WARNING, "TX queue %u is deferrd start",
1719                             tx_queue_id);
1720
1721         /*
1722          * tx_queue_id is queue id application refers to, while
1723          * rxq->reg_idx is the real queue index.
1724          */
1725         err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
1726         if (err) {
1727                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
1728                             tx_queue_id);
1729                 return err;
1730         }
1731         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1732
1733         return 0;
1734 }
1735
1736 int
1737 i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1738 {
1739         struct i40e_tx_queue *txq;
1740         int err;
1741         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1742
1743         txq = dev->data->tx_queues[tx_queue_id];
1744         if (!txq || !txq->q_set) {
1745                 PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
1746                         tx_queue_id);
1747                 return -EINVAL;
1748         }
1749
1750         /*
1751          * tx_queue_id is queue id application refers to, while
1752          * txq->reg_idx is the real queue index.
1753          */
1754         err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
1755         if (err) {
1756                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
1757                             tx_queue_id);
1758                 return err;
1759         }
1760
1761         i40e_tx_queue_release_mbufs(txq);
1762         i40e_reset_tx_queue(txq);
1763         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1764
1765         return 0;
1766 }
1767
1768 const uint32_t *
1769 i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1770 {
1771         static const uint32_t ptypes[] = {
1772                 /* refers to i40e_rxd_pkt_type_mapping() */
1773                 RTE_PTYPE_L2_ETHER,
1774                 RTE_PTYPE_L2_ETHER_TIMESYNC,
1775                 RTE_PTYPE_L2_ETHER_LLDP,
1776                 RTE_PTYPE_L2_ETHER_ARP,
1777                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1778                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1779                 RTE_PTYPE_L4_FRAG,
1780                 RTE_PTYPE_L4_ICMP,
1781                 RTE_PTYPE_L4_NONFRAG,
1782                 RTE_PTYPE_L4_SCTP,
1783                 RTE_PTYPE_L4_TCP,
1784                 RTE_PTYPE_L4_UDP,
1785                 RTE_PTYPE_TUNNEL_GRENAT,
1786                 RTE_PTYPE_TUNNEL_IP,
1787                 RTE_PTYPE_INNER_L2_ETHER,
1788                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1789                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1790                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1791                 RTE_PTYPE_INNER_L4_FRAG,
1792                 RTE_PTYPE_INNER_L4_ICMP,
1793                 RTE_PTYPE_INNER_L4_NONFRAG,
1794                 RTE_PTYPE_INNER_L4_SCTP,
1795                 RTE_PTYPE_INNER_L4_TCP,
1796                 RTE_PTYPE_INNER_L4_UDP,
1797                 RTE_PTYPE_UNKNOWN
1798         };
1799
1800         if (dev->rx_pkt_burst == i40e_recv_pkts ||
1801 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1802             dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
1803 #endif
1804             dev->rx_pkt_burst == i40e_recv_scattered_pkts ||
1805             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
1806             dev->rx_pkt_burst == i40e_recv_pkts_vec ||
1807 #ifdef CC_AVX512_SUPPORT
1808             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx512 ||
1809             dev->rx_pkt_burst == i40e_recv_pkts_vec_avx512 ||
1810 #endif
1811             dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
1812             dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2)
1813                 return ptypes;
1814         return NULL;
1815 }
1816
1817 static int
1818 i40e_dev_first_queue(uint16_t idx, void **queues, int num)
1819 {
1820         uint16_t i;
1821
1822         for (i = 0; i < num; i++) {
1823                 if (i != idx && queues[i])
1824                         return 0;
1825         }
1826
1827         return 1;
1828 }
1829
1830 static int
1831 i40e_dev_rx_queue_setup_runtime(struct rte_eth_dev *dev,
1832                                 struct i40e_rx_queue *rxq)
1833 {
1834         struct i40e_adapter *ad =
1835                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1836         int use_def_burst_func =
1837                 check_rx_burst_bulk_alloc_preconditions(rxq);
1838         uint16_t buf_size =
1839                 (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
1840                            RTE_PKTMBUF_HEADROOM);
1841         int use_scattered_rx =
1842                 (rxq->max_pkt_len > buf_size);
1843
1844         if (i40e_rx_queue_init(rxq) != I40E_SUCCESS) {
1845                 PMD_DRV_LOG(ERR,
1846                             "Failed to do RX queue initialization");
1847                 return -EINVAL;
1848         }
1849
1850         if (i40e_dev_first_queue(rxq->queue_id,
1851                                  dev->data->rx_queues,
1852                                  dev->data->nb_rx_queues)) {
1853                 /**
1854                  * If it is the first queue to setup,
1855                  * set all flags to default and call
1856                  * i40e_set_rx_function.
1857                  */
1858                 ad->rx_bulk_alloc_allowed = true;
1859                 ad->rx_vec_allowed = true;
1860                 dev->data->scattered_rx = use_scattered_rx;
1861                 if (use_def_burst_func)
1862                         ad->rx_bulk_alloc_allowed = false;
1863                 i40e_set_rx_function(dev);
1864                 return 0;
1865         } else if (ad->rx_vec_allowed && !rte_is_power_of_2(rxq->nb_rx_desc)) {
1866                 PMD_DRV_LOG(ERR, "Vector mode is allowed, but descriptor"
1867                             " number %d of queue %d isn't power of 2",
1868                             rxq->nb_rx_desc, rxq->queue_id);
1869                 return -EINVAL;
1870         }
1871
1872         /* check bulk alloc conflict */
1873         if (ad->rx_bulk_alloc_allowed && use_def_burst_func) {
1874                 PMD_DRV_LOG(ERR, "Can't use default burst.");
1875                 return -EINVAL;
1876         }
1877         /* check scatterred conflict */
1878         if (!dev->data->scattered_rx && use_scattered_rx) {
1879                 PMD_DRV_LOG(ERR, "Scattered rx is required.");
1880                 return -EINVAL;
1881         }
1882         /* check vector conflict */
1883         if (ad->rx_vec_allowed && i40e_rxq_vec_setup(rxq)) {
1884                 PMD_DRV_LOG(ERR, "Failed vector rx setup.");
1885                 return -EINVAL;
1886         }
1887
1888         return 0;
1889 }
1890
1891 int
1892 i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
1893                         uint16_t queue_idx,
1894                         uint16_t nb_desc,
1895                         unsigned int socket_id,
1896                         const struct rte_eth_rxconf *rx_conf,
1897                         struct rte_mempool *mp)
1898 {
1899         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1900         struct i40e_adapter *ad =
1901                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1902         struct i40e_vsi *vsi;
1903         struct i40e_pf *pf = NULL;
1904         struct i40e_vf *vf = NULL;
1905         struct i40e_rx_queue *rxq;
1906         const struct rte_memzone *rz;
1907         uint32_t ring_size;
1908         uint16_t len, i;
1909         uint16_t reg_idx, base, bsf, tc_mapping;
1910         int q_offset, use_def_burst_func = 1;
1911         uint64_t offloads;
1912
1913         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1914
1915         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
1916                 vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1917                 vsi = &vf->vsi;
1918                 if (!vsi)
1919                         return -EINVAL;
1920                 reg_idx = queue_idx;
1921         } else {
1922                 pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1923                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1924                 if (!vsi)
1925                         return -EINVAL;
1926                 q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
1927                 if (q_offset < 0)
1928                         return -EINVAL;
1929                 reg_idx = vsi->base_queue + q_offset;
1930         }
1931
1932         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
1933             (nb_desc > I40E_MAX_RING_DESC) ||
1934             (nb_desc < I40E_MIN_RING_DESC)) {
1935                 PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
1936                             "invalid", nb_desc);
1937                 return -EINVAL;
1938         }
1939
1940         /* Free memory if needed */
1941         if (dev->data->rx_queues[queue_idx]) {
1942                 i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
1943                 dev->data->rx_queues[queue_idx] = NULL;
1944         }
1945
1946         /* Allocate the rx queue data structure */
1947         rxq = rte_zmalloc_socket("i40e rx queue",
1948                                  sizeof(struct i40e_rx_queue),
1949                                  RTE_CACHE_LINE_SIZE,
1950                                  socket_id);
1951         if (!rxq) {
1952                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
1953                             "rx queue data structure");
1954                 return -ENOMEM;
1955         }
1956         rxq->mp = mp;
1957         rxq->nb_rx_desc = nb_desc;
1958         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1959         rxq->queue_id = queue_idx;
1960         rxq->reg_idx = reg_idx;
1961         rxq->port_id = dev->data->port_id;
1962         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1963                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1964         else
1965                 rxq->crc_len = 0;
1966         rxq->drop_en = rx_conf->rx_drop_en;
1967         rxq->vsi = vsi;
1968         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1969         rxq->offloads = offloads;
1970
1971         /* Allocate the maximun number of RX ring hardware descriptor. */
1972         len = I40E_MAX_RING_DESC;
1973
1974         /**
1975          * Allocating a little more memory because vectorized/bulk_alloc Rx
1976          * functions doesn't check boundaries each time.
1977          */
1978         len += RTE_PMD_I40E_RX_MAX_BURST;
1979
1980         ring_size = RTE_ALIGN(len * sizeof(union i40e_rx_desc),
1981                               I40E_DMA_MEM_ALIGN);
1982
1983         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1984                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
1985         if (!rz) {
1986                 i40e_dev_rx_queue_release(rxq);
1987                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
1988                 return -ENOMEM;
1989         }
1990
1991         /* Zero all the descriptors in the ring. */
1992         memset(rz->addr, 0, ring_size);
1993
1994         rxq->rx_ring_phys_addr = rz->iova;
1995         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
1996
1997         len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
1998
1999         /* Allocate the software ring. */
2000         rxq->sw_ring =
2001                 rte_zmalloc_socket("i40e rx sw ring",
2002                                    sizeof(struct i40e_rx_entry) * len,
2003                                    RTE_CACHE_LINE_SIZE,
2004                                    socket_id);
2005         if (!rxq->sw_ring) {
2006                 i40e_dev_rx_queue_release(rxq);
2007                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
2008                 return -ENOMEM;
2009         }
2010
2011         i40e_reset_rx_queue(rxq);
2012         rxq->q_set = TRUE;
2013
2014         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2015                 if (!(vsi->enabled_tc & (1 << i)))
2016                         continue;
2017                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2018                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2019                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2020                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2021                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2022
2023                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2024                         rxq->dcb_tc = i;
2025         }
2026
2027         if (dev->data->dev_started) {
2028                 if (i40e_dev_rx_queue_setup_runtime(dev, rxq)) {
2029                         i40e_dev_rx_queue_release(rxq);
2030                         return -EINVAL;
2031                 }
2032         } else {
2033                 use_def_burst_func =
2034                         check_rx_burst_bulk_alloc_preconditions(rxq);
2035                 if (!use_def_burst_func) {
2036 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2037                         PMD_INIT_LOG(DEBUG,
2038                           "Rx Burst Bulk Alloc Preconditions are "
2039                           "satisfied. Rx Burst Bulk Alloc function will be "
2040                           "used on port=%d, queue=%d.",
2041                           rxq->port_id, rxq->queue_id);
2042 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2043                 } else {
2044                         PMD_INIT_LOG(DEBUG,
2045                           "Rx Burst Bulk Alloc Preconditions are "
2046                           "not satisfied, Scattered Rx is requested, "
2047                           "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
2048                           "not enabled on port=%d, queue=%d.",
2049                           rxq->port_id, rxq->queue_id);
2050                         ad->rx_bulk_alloc_allowed = false;
2051                 }
2052         }
2053
2054         dev->data->rx_queues[queue_idx] = rxq;
2055         return 0;
2056 }
2057
2058 void
2059 i40e_dev_rx_queue_release(void *rxq)
2060 {
2061         struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
2062
2063         if (!q) {
2064                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2065                 return;
2066         }
2067
2068         i40e_rx_queue_release_mbufs(q);
2069         rte_free(q->sw_ring);
2070         rte_free(q);
2071 }
2072
2073 uint32_t
2074 i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
2075 {
2076 #define I40E_RXQ_SCAN_INTERVAL 4
2077         volatile union i40e_rx_desc *rxdp;
2078         struct i40e_rx_queue *rxq;
2079         uint16_t desc = 0;
2080
2081         rxq = dev->data->rx_queues[rx_queue_id];
2082         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
2083         while ((desc < rxq->nb_rx_desc) &&
2084                 ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2085                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
2086                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
2087                 /**
2088                  * Check the DD bit of a rx descriptor of each 4 in a group,
2089                  * to avoid checking too frequently and downgrading performance
2090                  * too much.
2091                  */
2092                 desc += I40E_RXQ_SCAN_INTERVAL;
2093                 rxdp += I40E_RXQ_SCAN_INTERVAL;
2094                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2095                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2096                                         desc - rxq->nb_rx_desc]);
2097         }
2098
2099         return desc;
2100 }
2101
2102 int
2103 i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
2104 {
2105         volatile union i40e_rx_desc *rxdp;
2106         struct i40e_rx_queue *rxq = rx_queue;
2107         uint16_t desc;
2108         int ret;
2109
2110         if (unlikely(offset >= rxq->nb_rx_desc)) {
2111                 PMD_DRV_LOG(ERR, "Invalid RX descriptor id %u", offset);
2112                 return 0;
2113         }
2114
2115         desc = rxq->rx_tail + offset;
2116         if (desc >= rxq->nb_rx_desc)
2117                 desc -= rxq->nb_rx_desc;
2118
2119         rxdp = &(rxq->rx_ring[desc]);
2120
2121         ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2122                 I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
2123                                 (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
2124
2125         return ret;
2126 }
2127
2128 int
2129 i40e_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
2130 {
2131         struct i40e_rx_queue *rxq = rx_queue;
2132         volatile uint64_t *status;
2133         uint64_t mask;
2134         uint32_t desc;
2135
2136         if (unlikely(offset >= rxq->nb_rx_desc))
2137                 return -EINVAL;
2138
2139         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2140                 return RTE_ETH_RX_DESC_UNAVAIL;
2141
2142         desc = rxq->rx_tail + offset;
2143         if (desc >= rxq->nb_rx_desc)
2144                 desc -= rxq->nb_rx_desc;
2145
2146         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2147         mask = rte_le_to_cpu_64((1ULL << I40E_RX_DESC_STATUS_DD_SHIFT)
2148                 << I40E_RXD_QW1_STATUS_SHIFT);
2149         if (*status & mask)
2150                 return RTE_ETH_RX_DESC_DONE;
2151
2152         return RTE_ETH_RX_DESC_AVAIL;
2153 }
2154
2155 int
2156 i40e_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
2157 {
2158         struct i40e_tx_queue *txq = tx_queue;
2159         volatile uint64_t *status;
2160         uint64_t mask, expect;
2161         uint32_t desc;
2162
2163         if (unlikely(offset >= txq->nb_tx_desc))
2164                 return -EINVAL;
2165
2166         desc = txq->tx_tail + offset;
2167         /* go to next desc that has the RS bit */
2168         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2169                 txq->tx_rs_thresh;
2170         if (desc >= txq->nb_tx_desc) {
2171                 desc -= txq->nb_tx_desc;
2172                 if (desc >= txq->nb_tx_desc)
2173                         desc -= txq->nb_tx_desc;
2174         }
2175
2176         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2177         mask = rte_le_to_cpu_64(I40E_TXD_QW1_DTYPE_MASK);
2178         expect = rte_cpu_to_le_64(
2179                 I40E_TX_DESC_DTYPE_DESC_DONE << I40E_TXD_QW1_DTYPE_SHIFT);
2180         if ((*status & mask) == expect)
2181                 return RTE_ETH_TX_DESC_DONE;
2182
2183         return RTE_ETH_TX_DESC_FULL;
2184 }
2185
2186 static int
2187 i40e_dev_tx_queue_setup_runtime(struct rte_eth_dev *dev,
2188                                 struct i40e_tx_queue *txq)
2189 {
2190         struct i40e_adapter *ad =
2191                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2192
2193         if (i40e_tx_queue_init(txq) != I40E_SUCCESS) {
2194                 PMD_DRV_LOG(ERR,
2195                             "Failed to do TX queue initialization");
2196                 return -EINVAL;
2197         }
2198
2199         if (i40e_dev_first_queue(txq->queue_id,
2200                                  dev->data->tx_queues,
2201                                  dev->data->nb_tx_queues)) {
2202                 /**
2203                  * If it is the first queue to setup,
2204                  * set all flags and call
2205                  * i40e_set_tx_function.
2206                  */
2207                 i40e_set_tx_function_flag(dev, txq);
2208                 i40e_set_tx_function(dev);
2209                 return 0;
2210         }
2211
2212         /* check vector conflict */
2213         if (ad->tx_vec_allowed) {
2214                 if (txq->tx_rs_thresh > RTE_I40E_TX_MAX_FREE_BUF_SZ ||
2215                     i40e_txq_vec_setup(txq)) {
2216                         PMD_DRV_LOG(ERR, "Failed vector tx setup.");
2217                         return -EINVAL;
2218                 }
2219         }
2220         /* check simple tx conflict */
2221         if (ad->tx_simple_allowed) {
2222                 if ((txq->offloads & ~DEV_TX_OFFLOAD_MBUF_FAST_FREE) != 0 ||
2223                                 txq->tx_rs_thresh < RTE_PMD_I40E_TX_MAX_BURST) {
2224                         PMD_DRV_LOG(ERR, "No-simple tx is required.");
2225                         return -EINVAL;
2226                 }
2227         }
2228
2229         return 0;
2230 }
2231
2232 int
2233 i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
2234                         uint16_t queue_idx,
2235                         uint16_t nb_desc,
2236                         unsigned int socket_id,
2237                         const struct rte_eth_txconf *tx_conf)
2238 {
2239         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2240         struct i40e_vsi *vsi;
2241         struct i40e_pf *pf = NULL;
2242         struct i40e_vf *vf = NULL;
2243         struct i40e_tx_queue *txq;
2244         const struct rte_memzone *tz;
2245         uint32_t ring_size;
2246         uint16_t tx_rs_thresh, tx_free_thresh;
2247         uint16_t reg_idx, i, base, bsf, tc_mapping;
2248         int q_offset;
2249         uint64_t offloads;
2250
2251         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2252
2253         if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
2254                 vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2255                 vsi = &vf->vsi;
2256                 reg_idx = queue_idx;
2257         } else {
2258                 pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2259                 vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2260                 if (!vsi)
2261                         return -EINVAL;
2262                 q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
2263                 if (q_offset < 0)
2264                         return -EINVAL;
2265                 reg_idx = vsi->base_queue + q_offset;
2266         }
2267
2268         if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
2269             (nb_desc > I40E_MAX_RING_DESC) ||
2270             (nb_desc < I40E_MIN_RING_DESC)) {
2271                 PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
2272                             "invalid", nb_desc);
2273                 return -EINVAL;
2274         }
2275
2276         /**
2277          * The following two parameters control the setting of the RS bit on
2278          * transmit descriptors. TX descriptors will have their RS bit set
2279          * after txq->tx_rs_thresh descriptors have been used. The TX
2280          * descriptor ring will be cleaned after txq->tx_free_thresh
2281          * descriptors are used or if the number of descriptors required to
2282          * transmit a packet is greater than the number of free TX descriptors.
2283          *
2284          * The following constraints must be satisfied:
2285          *  - tx_rs_thresh must be greater than 0.
2286          *  - tx_rs_thresh must be less than the size of the ring minus 2.
2287          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
2288          *  - tx_rs_thresh must be a divisor of the ring size.
2289          *  - tx_free_thresh must be greater than 0.
2290          *  - tx_free_thresh must be less than the size of the ring minus 3.
2291          *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
2292          *
2293          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
2294          * race condition, hence the maximum threshold constraints. When set
2295          * to zero use default values.
2296          */
2297         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2298                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2299         /* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
2300         tx_rs_thresh = (DEFAULT_TX_RS_THRESH + tx_free_thresh > nb_desc) ?
2301                 nb_desc - tx_free_thresh : DEFAULT_TX_RS_THRESH;
2302         if (tx_conf->tx_rs_thresh > 0)
2303                 tx_rs_thresh = tx_conf->tx_rs_thresh;
2304         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
2305                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
2306                                 "exceed nb_desc. (tx_rs_thresh=%u "
2307                                 "tx_free_thresh=%u nb_desc=%u port=%d queue=%d)",
2308                                 (unsigned int)tx_rs_thresh,
2309                                 (unsigned int)tx_free_thresh,
2310                                 (unsigned int)nb_desc,
2311                                 (int)dev->data->port_id,
2312                                 (int)queue_idx);
2313                 return I40E_ERR_PARAM;
2314         }
2315         if (tx_rs_thresh >= (nb_desc - 2)) {
2316                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2317                              "number of TX descriptors minus 2. "
2318                              "(tx_rs_thresh=%u port=%d queue=%d)",
2319                              (unsigned int)tx_rs_thresh,
2320                              (int)dev->data->port_id,
2321                              (int)queue_idx);
2322                 return I40E_ERR_PARAM;
2323         }
2324         if (tx_free_thresh >= (nb_desc - 3)) {
2325                 PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
2326                              "number of TX descriptors minus 3. "
2327                              "(tx_free_thresh=%u port=%d queue=%d)",
2328                              (unsigned int)tx_free_thresh,
2329                              (int)dev->data->port_id,
2330                              (int)queue_idx);
2331                 return I40E_ERR_PARAM;
2332         }
2333         if (tx_rs_thresh > tx_free_thresh) {
2334                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2335                              "equal to tx_free_thresh. (tx_free_thresh=%u"
2336                              " tx_rs_thresh=%u port=%d queue=%d)",
2337                              (unsigned int)tx_free_thresh,
2338                              (unsigned int)tx_rs_thresh,
2339                              (int)dev->data->port_id,
2340                              (int)queue_idx);
2341                 return I40E_ERR_PARAM;
2342         }
2343         if ((nb_desc % tx_rs_thresh) != 0) {
2344                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2345                              "number of TX descriptors. (tx_rs_thresh=%u"
2346                              " port=%d queue=%d)",
2347                              (unsigned int)tx_rs_thresh,
2348                              (int)dev->data->port_id,
2349                              (int)queue_idx);
2350                 return I40E_ERR_PARAM;
2351         }
2352         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2353                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2354                              "tx_rs_thresh is greater than 1. "
2355                              "(tx_rs_thresh=%u port=%d queue=%d)",
2356                              (unsigned int)tx_rs_thresh,
2357                              (int)dev->data->port_id,
2358                              (int)queue_idx);
2359                 return I40E_ERR_PARAM;
2360         }
2361
2362         /* Free memory if needed. */
2363         if (dev->data->tx_queues[queue_idx]) {
2364                 i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
2365                 dev->data->tx_queues[queue_idx] = NULL;
2366         }
2367
2368         /* Allocate the TX queue data structure. */
2369         txq = rte_zmalloc_socket("i40e tx queue",
2370                                   sizeof(struct i40e_tx_queue),
2371                                   RTE_CACHE_LINE_SIZE,
2372                                   socket_id);
2373         if (!txq) {
2374                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2375                             "tx queue structure");
2376                 return -ENOMEM;
2377         }
2378
2379         /* Allocate TX hardware ring descriptors. */
2380         ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2381         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2382         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2383                               ring_size, I40E_RING_BASE_ALIGN, socket_id);
2384         if (!tz) {
2385                 i40e_dev_tx_queue_release(txq);
2386                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2387                 return -ENOMEM;
2388         }
2389
2390         txq->nb_tx_desc = nb_desc;
2391         txq->tx_rs_thresh = tx_rs_thresh;
2392         txq->tx_free_thresh = tx_free_thresh;
2393         txq->pthresh = tx_conf->tx_thresh.pthresh;
2394         txq->hthresh = tx_conf->tx_thresh.hthresh;
2395         txq->wthresh = tx_conf->tx_thresh.wthresh;
2396         txq->queue_id = queue_idx;
2397         txq->reg_idx = reg_idx;
2398         txq->port_id = dev->data->port_id;
2399         txq->offloads = offloads;
2400         txq->vsi = vsi;
2401         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2402
2403         txq->tx_ring_phys_addr = tz->iova;
2404         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2405
2406         /* Allocate software ring */
2407         txq->sw_ring =
2408                 rte_zmalloc_socket("i40e tx sw ring",
2409                                    sizeof(struct i40e_tx_entry) * nb_desc,
2410                                    RTE_CACHE_LINE_SIZE,
2411                                    socket_id);
2412         if (!txq->sw_ring) {
2413                 i40e_dev_tx_queue_release(txq);
2414                 PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2415                 return -ENOMEM;
2416         }
2417
2418         i40e_reset_tx_queue(txq);
2419         txq->q_set = TRUE;
2420
2421         for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2422                 if (!(vsi->enabled_tc & (1 << i)))
2423                         continue;
2424                 tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2425                 base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2426                         I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2427                 bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2428                         I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2429
2430                 if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2431                         txq->dcb_tc = i;
2432         }
2433
2434         if (dev->data->dev_started) {
2435                 if (i40e_dev_tx_queue_setup_runtime(dev, txq)) {
2436                         i40e_dev_tx_queue_release(txq);
2437                         return -EINVAL;
2438                 }
2439         } else {
2440                 /**
2441                  * Use a simple TX queue without offloads or
2442                  * multi segs if possible
2443                  */
2444                 i40e_set_tx_function_flag(dev, txq);
2445         }
2446         dev->data->tx_queues[queue_idx] = txq;
2447
2448         return 0;
2449 }
2450
2451 void
2452 i40e_dev_tx_queue_release(void *txq)
2453 {
2454         struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2455
2456         if (!q) {
2457                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2458                 return;
2459         }
2460
2461         i40e_tx_queue_release_mbufs(q);
2462         rte_free(q->sw_ring);
2463         rte_free(q);
2464 }
2465
2466 const struct rte_memzone *
2467 i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2468 {
2469         const struct rte_memzone *mz;
2470
2471         mz = rte_memzone_lookup(name);
2472         if (mz)
2473                 return mz;
2474
2475         mz = rte_memzone_reserve_aligned(name, len, socket_id,
2476                         RTE_MEMZONE_IOVA_CONTIG, I40E_RING_BASE_ALIGN);
2477         return mz;
2478 }
2479
2480 void
2481 i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2482 {
2483         uint16_t i;
2484
2485         /* SSE Vector driver has a different way of releasing mbufs. */
2486         if (rxq->rx_using_sse) {
2487                 i40e_rx_queue_release_mbufs_vec(rxq);
2488                 return;
2489         }
2490
2491         if (!rxq->sw_ring) {
2492                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
2493                 return;
2494         }
2495
2496         for (i = 0; i < rxq->nb_rx_desc; i++) {
2497                 if (rxq->sw_ring[i].mbuf) {
2498                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2499                         rxq->sw_ring[i].mbuf = NULL;
2500                 }
2501         }
2502 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2503         if (rxq->rx_nb_avail == 0)
2504                 return;
2505         for (i = 0; i < rxq->rx_nb_avail; i++) {
2506                 struct rte_mbuf *mbuf;
2507
2508                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2509                 rte_pktmbuf_free_seg(mbuf);
2510         }
2511         rxq->rx_nb_avail = 0;
2512 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2513 }
2514
2515 void
2516 i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2517 {
2518         unsigned i;
2519         uint16_t len;
2520
2521         if (!rxq) {
2522                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2523                 return;
2524         }
2525
2526 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2527         if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2528                 len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2529         else
2530 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2531                 len = rxq->nb_rx_desc;
2532
2533         for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2534                 ((volatile char *)rxq->rx_ring)[i] = 0;
2535
2536         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2537         for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2538                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2539
2540 #ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2541         rxq->rx_nb_avail = 0;
2542         rxq->rx_next_avail = 0;
2543         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2544 #endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2545         rxq->rx_tail = 0;
2546         rxq->nb_rx_hold = 0;
2547         rxq->pkt_first_seg = NULL;
2548         rxq->pkt_last_seg = NULL;
2549
2550         rxq->rxrearm_start = 0;
2551         rxq->rxrearm_nb = 0;
2552 }
2553
2554 void
2555 i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2556 {
2557         struct rte_eth_dev *dev;
2558         uint16_t i;
2559
2560         if (!txq || !txq->sw_ring) {
2561                 PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
2562                 return;
2563         }
2564
2565         dev = &rte_eth_devices[txq->port_id];
2566
2567         /**
2568          *  vPMD tx will not set sw_ring's mbuf to NULL after free,
2569          *  so need to free remains more carefully.
2570          */
2571 #ifdef CC_AVX512_SUPPORT
2572         if (dev->tx_pkt_burst == i40e_xmit_pkts_vec_avx512) {
2573                 struct i40e_vec_tx_entry *swr = (void *)txq->sw_ring;
2574
2575                 i = txq->tx_next_dd - txq->tx_rs_thresh + 1;
2576                 if (txq->tx_tail < i) {
2577                         for (; i < txq->nb_tx_desc; i++) {
2578                                 rte_pktmbuf_free_seg(swr[i].mbuf);
2579                                 swr[i].mbuf = NULL;
2580                         }
2581                         i = 0;
2582                 }
2583                 for (; i < txq->tx_tail; i++) {
2584                         rte_pktmbuf_free_seg(swr[i].mbuf);
2585                         swr[i].mbuf = NULL;
2586                 }
2587                 return;
2588         }
2589 #endif
2590         if (dev->tx_pkt_burst == i40e_xmit_pkts_vec_avx2 ||
2591                         dev->tx_pkt_burst == i40e_xmit_pkts_vec) {
2592                 i = txq->tx_next_dd - txq->tx_rs_thresh + 1;
2593                 if (txq->tx_tail < i) {
2594                         for (; i < txq->nb_tx_desc; i++) {
2595                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2596                                 txq->sw_ring[i].mbuf = NULL;
2597                         }
2598                         i = 0;
2599                 }
2600                 for (; i < txq->tx_tail; i++) {
2601                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2602                         txq->sw_ring[i].mbuf = NULL;
2603                 }
2604         } else {
2605                 for (i = 0; i < txq->nb_tx_desc; i++) {
2606                         if (txq->sw_ring[i].mbuf) {
2607                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2608                                 txq->sw_ring[i].mbuf = NULL;
2609                         }
2610                 }
2611         }
2612 }
2613
2614 static int
2615 i40e_tx_done_cleanup_full(struct i40e_tx_queue *txq,
2616                         uint32_t free_cnt)
2617 {
2618         struct i40e_tx_entry *swr_ring = txq->sw_ring;
2619         uint16_t i, tx_last, tx_id;
2620         uint16_t nb_tx_free_last;
2621         uint16_t nb_tx_to_clean;
2622         uint32_t pkt_cnt;
2623
2624         /* Start free mbuf from the next of tx_tail */
2625         tx_last = txq->tx_tail;
2626         tx_id  = swr_ring[tx_last].next_id;
2627
2628         if (txq->nb_tx_free == 0 && i40e_xmit_cleanup(txq))
2629                 return 0;
2630
2631         nb_tx_to_clean = txq->nb_tx_free;
2632         nb_tx_free_last = txq->nb_tx_free;
2633         if (!free_cnt)
2634                 free_cnt = txq->nb_tx_desc;
2635
2636         /* Loop through swr_ring to count the amount of
2637          * freeable mubfs and packets.
2638          */
2639         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2640                 for (i = 0; i < nb_tx_to_clean &&
2641                         pkt_cnt < free_cnt &&
2642                         tx_id != tx_last; i++) {
2643                         if (swr_ring[tx_id].mbuf != NULL) {
2644                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2645                                 swr_ring[tx_id].mbuf = NULL;
2646
2647                                 /*
2648                                  * last segment in the packet,
2649                                  * increment packet count
2650                                  */
2651                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2652                         }
2653
2654                         tx_id = swr_ring[tx_id].next_id;
2655                 }
2656
2657                 if (txq->tx_rs_thresh > txq->nb_tx_desc -
2658                         txq->nb_tx_free || tx_id == tx_last)
2659                         break;
2660
2661                 if (pkt_cnt < free_cnt) {
2662                         if (i40e_xmit_cleanup(txq))
2663                                 break;
2664
2665                         nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
2666                         nb_tx_free_last = txq->nb_tx_free;
2667                 }
2668         }
2669
2670         return (int)pkt_cnt;
2671 }
2672
2673 static int
2674 i40e_tx_done_cleanup_simple(struct i40e_tx_queue *txq,
2675                         uint32_t free_cnt)
2676 {
2677         int i, n, cnt;
2678
2679         if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
2680                 free_cnt = txq->nb_tx_desc;
2681
2682         cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
2683
2684         for (i = 0; i < cnt; i += n) {
2685                 if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
2686                         break;
2687
2688                 n = i40e_tx_free_bufs(txq);
2689
2690                 if (n == 0)
2691                         break;
2692         }
2693
2694         return i;
2695 }
2696
2697 static int
2698 i40e_tx_done_cleanup_vec(struct i40e_tx_queue *txq __rte_unused,
2699                         uint32_t free_cnt __rte_unused)
2700 {
2701         return -ENOTSUP;
2702 }
2703 int
2704 i40e_tx_done_cleanup(void *txq, uint32_t free_cnt)
2705 {
2706         struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2707         struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
2708         struct i40e_adapter *ad =
2709                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2710
2711         if (ad->tx_simple_allowed) {
2712                 if (ad->tx_vec_allowed)
2713                         return i40e_tx_done_cleanup_vec(q, free_cnt);
2714                 else
2715                         return i40e_tx_done_cleanup_simple(q, free_cnt);
2716         } else {
2717                 return i40e_tx_done_cleanup_full(q, free_cnt);
2718         }
2719 }
2720
2721 void
2722 i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2723 {
2724         struct i40e_tx_entry *txe;
2725         uint16_t i, prev, size;
2726
2727         if (!txq) {
2728                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2729                 return;
2730         }
2731
2732         txe = txq->sw_ring;
2733         size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2734         for (i = 0; i < size; i++)
2735                 ((volatile char *)txq->tx_ring)[i] = 0;
2736
2737         prev = (uint16_t)(txq->nb_tx_desc - 1);
2738         for (i = 0; i < txq->nb_tx_desc; i++) {
2739                 volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2740
2741                 txd->cmd_type_offset_bsz =
2742                         rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2743                 txe[i].mbuf =  NULL;
2744                 txe[i].last_id = i;
2745                 txe[prev].next_id = i;
2746                 prev = i;
2747         }
2748
2749         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2750         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2751
2752         txq->tx_tail = 0;
2753         txq->nb_tx_used = 0;
2754
2755         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2756         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2757 }
2758
2759 /* Init the TX queue in hardware */
2760 int
2761 i40e_tx_queue_init(struct i40e_tx_queue *txq)
2762 {
2763         enum i40e_status_code err = I40E_SUCCESS;
2764         struct i40e_vsi *vsi = txq->vsi;
2765         struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2766         uint16_t pf_q = txq->reg_idx;
2767         struct i40e_hmc_obj_txq tx_ctx;
2768         uint32_t qtx_ctl;
2769
2770         /* clear the context structure first */
2771         memset(&tx_ctx, 0, sizeof(tx_ctx));
2772         tx_ctx.new_context = 1;
2773         tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2774         tx_ctx.qlen = txq->nb_tx_desc;
2775
2776 #ifdef RTE_LIBRTE_IEEE1588
2777         tx_ctx.timesync_ena = 1;
2778 #endif
2779         tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
2780         if (vsi->type == I40E_VSI_FDIR)
2781                 tx_ctx.fd_ena = TRUE;
2782
2783         err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2784         if (err != I40E_SUCCESS) {
2785                 PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2786                 return err;
2787         }
2788
2789         err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2790         if (err != I40E_SUCCESS) {
2791                 PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2792                 return err;
2793         }
2794
2795         /* Now associate this queue with this PCI function */
2796         qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2797         qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2798                                         I40E_QTX_CTL_PF_INDX_MASK);
2799         I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2800         I40E_WRITE_FLUSH(hw);
2801
2802         txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2803
2804         return err;
2805 }
2806
2807 int
2808 i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2809 {
2810         struct i40e_rx_entry *rxe = rxq->sw_ring;
2811         uint64_t dma_addr;
2812         uint16_t i;
2813
2814         for (i = 0; i < rxq->nb_rx_desc; i++) {
2815                 volatile union i40e_rx_desc *rxd;
2816                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
2817
2818                 if (unlikely(!mbuf)) {
2819                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2820                         return -ENOMEM;
2821                 }
2822
2823                 rte_mbuf_refcnt_set(mbuf, 1);
2824                 mbuf->next = NULL;
2825                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2826                 mbuf->nb_segs = 1;
2827                 mbuf->port = rxq->port_id;
2828
2829                 dma_addr =
2830                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2831
2832                 rxd = &rxq->rx_ring[i];
2833                 rxd->read.pkt_addr = dma_addr;
2834                 rxd->read.hdr_addr = 0;
2835 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2836                 rxd->read.rsvd1 = 0;
2837                 rxd->read.rsvd2 = 0;
2838 #endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2839
2840                 rxe[i].mbuf = mbuf;
2841         }
2842
2843         return 0;
2844 }
2845
2846 /*
2847  * Calculate the buffer length, and check the jumbo frame
2848  * and maximum packet length.
2849  */
2850 static int
2851 i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2852 {
2853         struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2854         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2855         struct rte_eth_dev_data *data = pf->dev_data;
2856         uint16_t buf_size;
2857
2858         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2859                 RTE_PKTMBUF_HEADROOM);
2860
2861         switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2862                         I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2863         case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2864                 rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2865                                 (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2866                 rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2867                                 (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2868                 rxq->hs_mode = i40e_header_split_enabled;
2869                 break;
2870         case I40E_FLAG_HEADER_SPLIT_DISABLED:
2871         default:
2872                 rxq->rx_hdr_len = 0;
2873                 rxq->rx_buf_len = RTE_ALIGN_FLOOR(buf_size,
2874                         (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2875                 rxq->hs_mode = i40e_header_split_none;
2876                 break;
2877         }
2878
2879         rxq->max_pkt_len =
2880                 RTE_MIN((uint32_t)(hw->func_caps.rx_buf_chain_len *
2881                         rxq->rx_buf_len), data->dev_conf.rxmode.max_rx_pkt_len);
2882         if (data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2883                 if (rxq->max_pkt_len <= I40E_ETH_MAX_LEN ||
2884                         rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2885                         PMD_DRV_LOG(ERR, "maximum packet length must "
2886                                     "be larger than %u and smaller than %u,"
2887                                     "as jumbo frame is enabled",
2888                                     (uint32_t)I40E_ETH_MAX_LEN,
2889                                     (uint32_t)I40E_FRAME_SIZE_MAX);
2890                         return I40E_ERR_CONFIG;
2891                 }
2892         } else {
2893                 if (rxq->max_pkt_len < RTE_ETHER_MIN_LEN ||
2894                         rxq->max_pkt_len > I40E_ETH_MAX_LEN) {
2895                         PMD_DRV_LOG(ERR, "maximum packet length must be "
2896                                     "larger than %u and smaller than %u, "
2897                                     "as jumbo frame is disabled",
2898                                     (uint32_t)RTE_ETHER_MIN_LEN,
2899                                     (uint32_t)I40E_ETH_MAX_LEN);
2900                         return I40E_ERR_CONFIG;
2901                 }
2902         }
2903
2904         return 0;
2905 }
2906
2907 /* Init the RX queue in hardware */
2908 int
2909 i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2910 {
2911         int err = I40E_SUCCESS;
2912         struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2913         struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2914         uint16_t pf_q = rxq->reg_idx;
2915         uint16_t buf_size;
2916         struct i40e_hmc_obj_rxq rx_ctx;
2917
2918         err = i40e_rx_queue_config(rxq);
2919         if (err < 0) {
2920                 PMD_DRV_LOG(ERR, "Failed to config RX queue");
2921                 return err;
2922         }
2923
2924         /* Clear the context structure first */
2925         memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2926         rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2927         rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2928
2929         rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2930         rx_ctx.qlen = rxq->nb_rx_desc;
2931 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2932         rx_ctx.dsize = 1;
2933 #endif
2934         rx_ctx.dtype = rxq->hs_mode;
2935         if (rxq->hs_mode)
2936                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2937         else
2938                 rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2939         rx_ctx.rxmax = rxq->max_pkt_len;
2940         rx_ctx.tphrdesc_ena = 1;
2941         rx_ctx.tphwdesc_ena = 1;
2942         rx_ctx.tphdata_ena = 1;
2943         rx_ctx.tphhead_ena = 1;
2944         rx_ctx.lrxqthresh = 2;
2945         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2946         rx_ctx.l2tsel = 1;
2947         /* showiv indicates if inner VLAN is stripped inside of tunnel
2948          * packet. When set it to 1, vlan information is stripped from
2949          * the inner header, but the hardware does not put it in the
2950          * descriptor. So set it zero by default.
2951          */
2952         rx_ctx.showiv = 0;
2953         rx_ctx.prefena = 1;
2954
2955         err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2956         if (err != I40E_SUCCESS) {
2957                 PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2958                 return err;
2959         }
2960         err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2961         if (err != I40E_SUCCESS) {
2962                 PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2963                 return err;
2964         }
2965
2966         rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2967
2968         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2969                 RTE_PKTMBUF_HEADROOM);
2970
2971         /* Check if scattered RX needs to be used. */
2972         if (rxq->max_pkt_len > buf_size)
2973                 dev_data->scattered_rx = 1;
2974
2975         /* Init the RX tail regieter. */
2976         I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2977
2978         return 0;
2979 }
2980
2981 void
2982 i40e_dev_clear_queues(struct rte_eth_dev *dev)
2983 {
2984         uint16_t i;
2985
2986         PMD_INIT_FUNC_TRACE();
2987
2988         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2989                 if (!dev->data->tx_queues[i])
2990                         continue;
2991                 i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
2992                 i40e_reset_tx_queue(dev->data->tx_queues[i]);
2993         }
2994
2995         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2996                 if (!dev->data->rx_queues[i])
2997                         continue;
2998                 i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
2999                 i40e_reset_rx_queue(dev->data->rx_queues[i]);
3000         }
3001 }
3002
3003 void
3004 i40e_dev_free_queues(struct rte_eth_dev *dev)
3005 {
3006         uint16_t i;
3007
3008         PMD_INIT_FUNC_TRACE();
3009
3010         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3011                 if (!dev->data->rx_queues[i])
3012                         continue;
3013                 i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
3014                 dev->data->rx_queues[i] = NULL;
3015                 rte_eth_dma_zone_free(dev, "rx_ring", i);
3016         }
3017
3018         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3019                 if (!dev->data->tx_queues[i])
3020                         continue;
3021                 i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
3022                 dev->data->tx_queues[i] = NULL;
3023                 rte_eth_dma_zone_free(dev, "tx_ring", i);
3024         }
3025 }
3026
3027 enum i40e_status_code
3028 i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
3029 {
3030         struct i40e_tx_queue *txq;
3031         const struct rte_memzone *tz = NULL;
3032         struct rte_eth_dev *dev;
3033         uint32_t ring_size;
3034
3035         if (!pf) {
3036                 PMD_DRV_LOG(ERR, "PF is not available");
3037                 return I40E_ERR_BAD_PTR;
3038         }
3039
3040         dev = pf->adapter->eth_dev;
3041
3042         /* Allocate the TX queue data structure. */
3043         txq = rte_zmalloc_socket("i40e fdir tx queue",
3044                                   sizeof(struct i40e_tx_queue),
3045                                   RTE_CACHE_LINE_SIZE,
3046                                   SOCKET_ID_ANY);
3047         if (!txq) {
3048                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
3049                                         "tx queue structure.");
3050                 return I40E_ERR_NO_MEMORY;
3051         }
3052
3053         /* Allocate TX hardware ring descriptors. */
3054         ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
3055         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
3056
3057         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
3058                                       I40E_FDIR_QUEUE_ID, ring_size,
3059                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
3060         if (!tz) {
3061                 i40e_dev_tx_queue_release(txq);
3062                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
3063                 return I40E_ERR_NO_MEMORY;
3064         }
3065
3066         txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
3067         txq->queue_id = I40E_FDIR_QUEUE_ID;
3068         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
3069         txq->vsi = pf->fdir.fdir_vsi;
3070
3071         txq->tx_ring_phys_addr = tz->iova;
3072         txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
3073
3074         /*
3075          * don't need to allocate software ring and reset for the fdir
3076          * program queue just set the queue has been configured.
3077          */
3078         txq->q_set = TRUE;
3079         pf->fdir.txq = txq;
3080         pf->fdir.txq_available_buf_count = I40E_FDIR_PRG_PKT_CNT;
3081
3082         return I40E_SUCCESS;
3083 }
3084
3085 enum i40e_status_code
3086 i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
3087 {
3088         struct i40e_rx_queue *rxq;
3089         const struct rte_memzone *rz = NULL;
3090         uint32_t ring_size;
3091         struct rte_eth_dev *dev;
3092
3093         if (!pf) {
3094                 PMD_DRV_LOG(ERR, "PF is not available");
3095                 return I40E_ERR_BAD_PTR;
3096         }
3097
3098         dev = pf->adapter->eth_dev;
3099
3100         /* Allocate the RX queue data structure. */
3101         rxq = rte_zmalloc_socket("i40e fdir rx queue",
3102                                   sizeof(struct i40e_rx_queue),
3103                                   RTE_CACHE_LINE_SIZE,
3104                                   SOCKET_ID_ANY);
3105         if (!rxq) {
3106                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
3107                                         "rx queue structure.");
3108                 return I40E_ERR_NO_MEMORY;
3109         }
3110
3111         /* Allocate RX hardware ring descriptors. */
3112         ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
3113         ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
3114
3115         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
3116                                       I40E_FDIR_QUEUE_ID, ring_size,
3117                                       I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
3118         if (!rz) {
3119                 i40e_dev_rx_queue_release(rxq);
3120                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
3121                 return I40E_ERR_NO_MEMORY;
3122         }
3123
3124         rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
3125         rxq->queue_id = I40E_FDIR_QUEUE_ID;
3126         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
3127         rxq->vsi = pf->fdir.fdir_vsi;
3128
3129         rxq->rx_ring_phys_addr = rz->iova;
3130         memset(rz->addr, 0, I40E_FDIR_NUM_RX_DESC * sizeof(union i40e_rx_desc));
3131         rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
3132
3133         /*
3134          * Don't need to allocate software ring and reset for the fdir
3135          * rx queue, just set the queue has been configured.
3136          */
3137         rxq->q_set = TRUE;
3138         pf->fdir.rxq = rxq;
3139
3140         return I40E_SUCCESS;
3141 }
3142
3143 void
3144 i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3145         struct rte_eth_rxq_info *qinfo)
3146 {
3147         struct i40e_rx_queue *rxq;
3148
3149         rxq = dev->data->rx_queues[queue_id];
3150
3151         qinfo->mp = rxq->mp;
3152         qinfo->scattered_rx = dev->data->scattered_rx;
3153         qinfo->nb_desc = rxq->nb_rx_desc;
3154
3155         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
3156         qinfo->conf.rx_drop_en = rxq->drop_en;
3157         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
3158         qinfo->conf.offloads = rxq->offloads;
3159 }
3160
3161 void
3162 i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3163         struct rte_eth_txq_info *qinfo)
3164 {
3165         struct i40e_tx_queue *txq;
3166
3167         txq = dev->data->tx_queues[queue_id];
3168
3169         qinfo->nb_desc = txq->nb_tx_desc;
3170
3171         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
3172         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
3173         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
3174
3175         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
3176         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
3177         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
3178         qinfo->conf.offloads = txq->offloads;
3179 }
3180
3181 static inline bool
3182 get_avx_supported(bool request_avx512)
3183 {
3184 #ifdef RTE_ARCH_X86
3185         if (request_avx512) {
3186                 if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3187                 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3188                 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3189 #ifdef CC_AVX512_SUPPORT
3190                         return true;
3191 #else
3192                 PMD_DRV_LOG(NOTICE,
3193                         "AVX512 is not supported in build env");
3194                 return false;
3195 #endif
3196         } else {
3197                 if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256 &&
3198                 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 &&
3199                 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
3200 #ifdef CC_AVX2_SUPPORT
3201                         return true;
3202 #else
3203                 PMD_DRV_LOG(NOTICE,
3204                         "AVX2 is not supported in build env");
3205                 return false;
3206 #endif
3207         }
3208 #else
3209         RTE_SET_USED(request_avx512);
3210 #endif /* RTE_ARCH_X86 */
3211
3212         return false;
3213 }
3214
3215
3216 void __rte_cold
3217 i40e_set_rx_function(struct rte_eth_dev *dev)
3218 {
3219         struct i40e_adapter *ad =
3220                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3221         uint16_t rx_using_sse, i;
3222         bool use_avx2 = false;
3223         bool use_avx512 = false;
3224         /* In order to allow Vector Rx there are a few configuration
3225          * conditions to be met and Rx Bulk Allocation should be allowed.
3226          */
3227         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3228                 if (i40e_rx_vec_dev_conf_condition_check(dev) ||
3229                     !ad->rx_bulk_alloc_allowed) {
3230                         PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
3231                                      " Vector Rx preconditions",
3232                                      dev->data->port_id);
3233
3234                         ad->rx_vec_allowed = false;
3235                 }
3236                 if (ad->rx_vec_allowed) {
3237                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3238                                 struct i40e_rx_queue *rxq =
3239                                         dev->data->rx_queues[i];
3240
3241                                 if (rxq && i40e_rxq_vec_setup(rxq)) {
3242                                         ad->rx_vec_allowed = false;
3243                                         break;
3244                                 }
3245                         }
3246
3247                         use_avx512 = get_avx_supported(1);
3248
3249                         if (!use_avx512)
3250                                 use_avx2 = get_avx_supported(0);
3251                 }
3252         }
3253
3254         if (ad->rx_vec_allowed  &&
3255                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3256                 if (dev->data->scattered_rx) {
3257                         if (use_avx512) {
3258 #ifdef CC_AVX512_SUPPORT
3259                                 PMD_DRV_LOG(NOTICE,
3260                                         "Using AVX512 Vector Scattered Rx (port %d).",
3261                                         dev->data->port_id);
3262                                 dev->rx_pkt_burst =
3263                                         i40e_recv_scattered_pkts_vec_avx512;
3264 #endif
3265                         } else {
3266                                 PMD_INIT_LOG(DEBUG,
3267                                         "Using %sVector Scattered Rx (port %d).",
3268                                         use_avx2 ? "avx2 " : "",
3269                                         dev->data->port_id);
3270                                 dev->rx_pkt_burst = use_avx2 ?
3271                                         i40e_recv_scattered_pkts_vec_avx2 :
3272                                         i40e_recv_scattered_pkts_vec;
3273                         }
3274                 } else {
3275                         if (use_avx512) {
3276 #ifdef CC_AVX512_SUPPORT
3277                                 PMD_DRV_LOG(NOTICE,
3278                                         "Using AVX512 Vector Rx (port %d).",
3279                                         dev->data->port_id);
3280                                 dev->rx_pkt_burst =
3281                                         i40e_recv_pkts_vec_avx512;
3282 #endif
3283                         } else {
3284                                 PMD_INIT_LOG(DEBUG,
3285                                         "Using %sVector Rx (port %d).",
3286                                         use_avx2 ? "avx2 " : "",
3287                                         dev->data->port_id);
3288                                 dev->rx_pkt_burst = use_avx2 ?
3289                                         i40e_recv_pkts_vec_avx2 :
3290                                         i40e_recv_pkts_vec;
3291                         }
3292                 }
3293         } else if (!dev->data->scattered_rx && ad->rx_bulk_alloc_allowed) {
3294                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
3295                                     "satisfied. Rx Burst Bulk Alloc function "
3296                                     "will be used on port=%d.",
3297                              dev->data->port_id);
3298
3299                 dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
3300         } else {
3301                 /* Simple Rx Path. */
3302                 PMD_INIT_LOG(DEBUG, "Simple Rx path will be used on port=%d.",
3303                              dev->data->port_id);
3304                 dev->rx_pkt_burst = dev->data->scattered_rx ?
3305                                         i40e_recv_scattered_pkts :
3306                                         i40e_recv_pkts;
3307         }
3308
3309         /* Propagate information about RX function choice through all queues. */
3310         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3311                 rx_using_sse =
3312                         (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
3313                          dev->rx_pkt_burst == i40e_recv_pkts_vec ||
3314 #ifdef CC_AVX512_SUPPORT
3315                          dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx512 ||
3316                          dev->rx_pkt_burst == i40e_recv_pkts_vec_avx512 ||
3317 #endif
3318                          dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
3319                          dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2);
3320
3321                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
3322                         struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
3323
3324                         if (rxq)
3325                                 rxq->rx_using_sse = rx_using_sse;
3326                 }
3327         }
3328 }
3329
3330 static const struct {
3331         eth_rx_burst_t pkt_burst;
3332         const char *info;
3333 } i40e_rx_burst_infos[] = {
3334         { i40e_recv_scattered_pkts,          "Scalar Scattered" },
3335         { i40e_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
3336         { i40e_recv_pkts,                    "Scalar" },
3337 #ifdef RTE_ARCH_X86
3338 #ifdef CC_AVX512_SUPPORT
3339         { i40e_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
3340         { i40e_recv_pkts_vec_avx512,           "Vector AVX512" },
3341 #endif
3342         { i40e_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
3343         { i40e_recv_pkts_vec_avx2,           "Vector AVX2" },
3344         { i40e_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
3345         { i40e_recv_pkts_vec,                "Vector SSE" },
3346 #elif defined(RTE_ARCH_ARM64)
3347         { i40e_recv_scattered_pkts_vec,      "Vector Neon Scattered" },
3348         { i40e_recv_pkts_vec,                "Vector Neon" },
3349 #elif defined(RTE_ARCH_PPC_64)
3350         { i40e_recv_scattered_pkts_vec,      "Vector AltiVec Scattered" },
3351         { i40e_recv_pkts_vec,                "Vector AltiVec" },
3352 #endif
3353 };
3354
3355 int
3356 i40e_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3357                        struct rte_eth_burst_mode *mode)
3358 {
3359         eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
3360         int ret = -EINVAL;
3361         unsigned int i;
3362
3363         for (i = 0; i < RTE_DIM(i40e_rx_burst_infos); ++i) {
3364                 if (pkt_burst == i40e_rx_burst_infos[i].pkt_burst) {
3365                         snprintf(mode->info, sizeof(mode->info), "%s",
3366                                  i40e_rx_burst_infos[i].info);
3367                         ret = 0;
3368                         break;
3369                 }
3370         }
3371
3372         return ret;
3373 }
3374
3375 void __rte_cold
3376 i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
3377 {
3378         struct i40e_adapter *ad =
3379                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3380
3381         /* Use a simple Tx queue if possible (only fast free is allowed) */
3382         ad->tx_simple_allowed =
3383                 (txq->offloads ==
3384                  (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
3385                  txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST);
3386         ad->tx_vec_allowed = (ad->tx_simple_allowed &&
3387                         txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ);
3388
3389         if (ad->tx_vec_allowed)
3390                 PMD_INIT_LOG(DEBUG, "Vector Tx can be enabled on Tx queue %u.",
3391                                 txq->queue_id);
3392         else if (ad->tx_simple_allowed)
3393                 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3394                                 txq->queue_id);
3395         else
3396                 PMD_INIT_LOG(DEBUG,
3397                                 "Neither simple nor vector Tx enabled on Tx queue %u\n",
3398                                 txq->queue_id);
3399 }
3400
3401 void __rte_cold
3402 i40e_set_tx_function(struct rte_eth_dev *dev)
3403 {
3404         struct i40e_adapter *ad =
3405                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3406         int i;
3407         bool use_avx2 = false;
3408         bool use_avx512 = false;
3409
3410         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3411                 if (ad->tx_vec_allowed) {
3412                         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3413                                 struct i40e_tx_queue *txq =
3414                                         dev->data->tx_queues[i];
3415
3416                                 if (txq && i40e_txq_vec_setup(txq)) {
3417                                         ad->tx_vec_allowed = false;
3418                                         break;
3419                                 }
3420                         }
3421
3422                         use_avx512 = get_avx_supported(1);
3423
3424                         if (!use_avx512)
3425                                 use_avx2 = get_avx_supported(0);
3426                 }
3427         }
3428
3429         if (ad->tx_simple_allowed) {
3430                 if (ad->tx_vec_allowed &&
3431                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3432                         if (use_avx512) {
3433 #ifdef CC_AVX512_SUPPORT
3434                                 PMD_DRV_LOG(NOTICE, "Using AVX512 Vector Tx (port %d).",
3435                                             dev->data->port_id);
3436                                 dev->tx_pkt_burst = i40e_xmit_pkts_vec_avx512;
3437 #endif
3438                         } else {
3439                                 PMD_INIT_LOG(DEBUG, "Using %sVector Tx (port %d).",
3440                                              use_avx2 ? "avx2 " : "",
3441                                              dev->data->port_id);
3442                                 dev->tx_pkt_burst = use_avx2 ?
3443                                                     i40e_xmit_pkts_vec_avx2 :
3444                                                     i40e_xmit_pkts_vec;
3445                         }
3446                 } else {
3447                         PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3448                         dev->tx_pkt_burst = i40e_xmit_pkts_simple;
3449                 }
3450                 dev->tx_pkt_prepare = i40e_simple_prep_pkts;
3451         } else {
3452                 PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
3453                 dev->tx_pkt_burst = i40e_xmit_pkts;
3454                 dev->tx_pkt_prepare = i40e_prep_pkts;
3455         }
3456 }
3457
3458 static const struct {
3459         eth_tx_burst_t pkt_burst;
3460         const char *info;
3461 } i40e_tx_burst_infos[] = {
3462         { i40e_xmit_pkts_simple,   "Scalar Simple" },
3463         { i40e_xmit_pkts,          "Scalar" },
3464 #ifdef RTE_ARCH_X86
3465 #ifdef CC_AVX512_SUPPORT
3466         { i40e_xmit_pkts_vec_avx512, "Vector AVX512" },
3467 #endif
3468         { i40e_xmit_pkts_vec_avx2, "Vector AVX2" },
3469         { i40e_xmit_pkts_vec,      "Vector SSE" },
3470 #elif defined(RTE_ARCH_ARM64)
3471         { i40e_xmit_pkts_vec,      "Vector Neon" },
3472 #elif defined(RTE_ARCH_PPC_64)
3473         { i40e_xmit_pkts_vec,      "Vector AltiVec" },
3474 #endif
3475 };
3476
3477 int
3478 i40e_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3479                        struct rte_eth_burst_mode *mode)
3480 {
3481         eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
3482         int ret = -EINVAL;
3483         unsigned int i;
3484
3485         for (i = 0; i < RTE_DIM(i40e_tx_burst_infos); ++i) {
3486                 if (pkt_burst == i40e_tx_burst_infos[i].pkt_burst) {
3487                         snprintf(mode->info, sizeof(mode->info), "%s",
3488                                  i40e_tx_burst_infos[i].info);
3489                         ret = 0;
3490                         break;
3491                 }
3492         }
3493
3494         return ret;
3495 }
3496
3497 void __rte_cold
3498 i40e_set_default_ptype_table(struct rte_eth_dev *dev)
3499 {
3500         struct i40e_adapter *ad =
3501                 I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3502         int i;
3503
3504         for (i = 0; i < I40E_MAX_PKT_TYPE; i++)
3505                 ad->ptype_tbl[i] = i40e_get_default_pkt_type(i);
3506 }
3507
3508 void __rte_cold
3509 i40e_set_default_pctype_table(struct rte_eth_dev *dev)
3510 {
3511         struct i40e_adapter *ad =
3512                         I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3513         struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3514         int i;
3515
3516         for (i = 0; i < I40E_FLOW_TYPE_MAX; i++)
3517                 ad->pctypes_tbl[i] = 0ULL;
3518         ad->flow_types_mask = 0ULL;
3519         ad->pctypes_mask = 0ULL;
3520
3521         ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV4] =
3522                                 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4);
3523         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] =
3524                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
3525         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] =
3526                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
3527         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_SCTP] =
3528                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
3529         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_OTHER] =
3530                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER);
3531         ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV6] =
3532                                 (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6);
3533         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] =
3534                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
3535         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] =
3536                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
3537         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_SCTP] =
3538                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
3539         ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_OTHER] =
3540                                 (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER);
3541         ad->pctypes_tbl[RTE_ETH_FLOW_L2_PAYLOAD] =
3542                                 (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
3543
3544         if (hw->mac.type == I40E_MAC_X722 ||
3545                 hw->mac.type == I40E_MAC_X722_VF) {
3546                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3547                         (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP);
3548                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3549                         (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP);
3550                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] |=
3551                         (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK);
3552                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3553                         (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP);
3554                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3555                         (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP);
3556                 ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] |=
3557                         (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
3558         }
3559
3560         for (i = 0; i < I40E_FLOW_TYPE_MAX; i++) {
3561                 if (ad->pctypes_tbl[i])
3562                         ad->flow_types_mask |= (1ULL << i);
3563                 ad->pctypes_mask |= ad->pctypes_tbl[i];
3564         }
3565 }
3566
3567 #ifndef CC_AVX2_SUPPORT
3568 uint16_t
3569 i40e_recv_pkts_vec_avx2(void __rte_unused *rx_queue,
3570                         struct rte_mbuf __rte_unused **rx_pkts,
3571                         uint16_t __rte_unused nb_pkts)
3572 {
3573         return 0;
3574 }
3575
3576 uint16_t
3577 i40e_recv_scattered_pkts_vec_avx2(void __rte_unused *rx_queue,
3578                         struct rte_mbuf __rte_unused **rx_pkts,
3579                         uint16_t __rte_unused nb_pkts)
3580 {
3581         return 0;
3582 }
3583
3584 uint16_t
3585 i40e_xmit_pkts_vec_avx2(void __rte_unused * tx_queue,
3586                           struct rte_mbuf __rte_unused **tx_pkts,
3587                           uint16_t __rte_unused nb_pkts)
3588 {
3589         return 0;
3590 }
3591 #endif /* ifndef CC_AVX2_SUPPORT */