net/i40e: remove compiler barrier from NEON Rx
[dpdk.git] / drivers / net / i40e / i40e_rxtx_vec_neon.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation.
3  * Copyright(c) 2016-2018, Linaro Limited.
4  */
5
6 #include <stdint.h>
7 #include <rte_ethdev_driver.h>
8 #include <rte_malloc.h>
9
10 #include "base/i40e_prototype.h"
11 #include "base/i40e_type.h"
12 #include "i40e_ethdev.h"
13 #include "i40e_rxtx.h"
14 #include "i40e_rxtx_vec_common.h"
15
16 #include <arm_neon.h>
17
18 #pragma GCC diagnostic ignored "-Wcast-qual"
19
20 static inline void
21 i40e_rxq_rearm(struct i40e_rx_queue *rxq)
22 {
23         int i;
24         uint16_t rx_id;
25         volatile union i40e_rx_desc *rxdp;
26         struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
27         struct rte_mbuf *mb0, *mb1;
28         uint64x2_t dma_addr0, dma_addr1;
29         uint64x2_t zero = vdupq_n_u64(0);
30         uint64_t paddr;
31
32         rxdp = rxq->rx_ring + rxq->rxrearm_start;
33
34         /* Pull 'n' more MBUFs into the software ring */
35         if (unlikely(rte_mempool_get_bulk(rxq->mp,
36                                           (void *)rxep,
37                                           RTE_I40E_RXQ_REARM_THRESH) < 0)) {
38                 if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
39                     rxq->nb_rx_desc) {
40                         for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
41                                 rxep[i].mbuf = &rxq->fake_mbuf;
42                                 vst1q_u64((uint64_t *)&rxdp[i].read, zero);
43                         }
44                 }
45                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46                         RTE_I40E_RXQ_REARM_THRESH;
47                 return;
48         }
49
50         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
51         for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
52                 mb0 = rxep[0].mbuf;
53                 mb1 = rxep[1].mbuf;
54
55                 paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM;
56                 dma_addr0 = vdupq_n_u64(paddr);
57
58                 /* flush desc with pa dma_addr */
59                 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr0);
60
61                 paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM;
62                 dma_addr1 = vdupq_n_u64(paddr);
63                 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr1);
64         }
65
66         rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
67         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
68                 rxq->rxrearm_start = 0;
69
70         rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
71
72         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
73                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
74
75         /* Update the tail pointer on the NIC */
76         I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
77 }
78
79 static inline void
80 desc_to_olflags_v(struct i40e_rx_queue *rxq, uint64x2_t descs[4],
81                   struct rte_mbuf **rx_pkts)
82 {
83         uint32x4_t vlan0, vlan1, rss, l3_l4e;
84         const uint64x2_t mbuf_init = {rxq->mbuf_initializer, 0};
85         uint64x2_t rearm0, rearm1, rearm2, rearm3;
86
87         /* mask everything except RSS, flow director and VLAN flags
88          * bit2 is for VLAN tag, bit11 for flow director indication
89          * bit13:12 for RSS indication.
90          */
91         const uint32x4_t rss_vlan_msk = {
92                         0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804};
93
94         const uint32x4_t cksum_mask = {
95                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
96                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
97                         PKT_RX_EIP_CKSUM_BAD,
98                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
99                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
100                         PKT_RX_EIP_CKSUM_BAD,
101                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
102                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
103                         PKT_RX_EIP_CKSUM_BAD,
104                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
105                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
106                         PKT_RX_EIP_CKSUM_BAD};
107
108         /* map rss and vlan type to rss hash and vlan flag */
109         const uint8x16_t vlan_flags = {
110                         0, 0, 0, 0,
111                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, 0, 0,
112                         0, 0, 0, 0,
113                         0, 0, 0, 0};
114
115         const uint8x16_t rss_flags = {
116                         0, PKT_RX_FDIR, 0, 0,
117                         0, 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH | PKT_RX_FDIR,
118                         0, 0, 0, 0,
119                         0, 0, 0, 0};
120
121         const uint8x16_t l3_l4e_flags = {
122                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
123                         PKT_RX_IP_CKSUM_BAD >> 1,
124                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
125                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
126                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
127                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
128                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
129                          PKT_RX_L4_CKSUM_BAD) >> 1,
130                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
131                          PKT_RX_IP_CKSUM_BAD) >> 1,
132                         0, 0, 0, 0, 0, 0, 0, 0};
133
134         vlan0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
135                           vreinterpretq_u32_u64(descs[2])).val[1];
136         vlan1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
137                           vreinterpretq_u32_u64(descs[3])).val[1];
138         vlan0 = vzipq_u32(vlan0, vlan1).val[0];
139
140         vlan1 = vandq_u32(vlan0, rss_vlan_msk);
141         vlan0 = vreinterpretq_u32_u8(vqtbl1q_u8(vlan_flags,
142                                                 vreinterpretq_u8_u32(vlan1)));
143
144         rss = vshrq_n_u32(vlan1, 11);
145         rss = vreinterpretq_u32_u8(vqtbl1q_u8(rss_flags,
146                                               vreinterpretq_u8_u32(rss)));
147
148         l3_l4e = vshrq_n_u32(vlan1, 22);
149         l3_l4e = vreinterpretq_u32_u8(vqtbl1q_u8(l3_l4e_flags,
150                                               vreinterpretq_u8_u32(l3_l4e)));
151         /* then we shift left 1 bit */
152         l3_l4e = vshlq_n_u32(l3_l4e, 1);
153         /* we need to mask out the reduntant bits */
154         l3_l4e = vandq_u32(l3_l4e, cksum_mask);
155
156         vlan0 = vorrq_u32(vlan0, rss);
157         vlan0 = vorrq_u32(vlan0, l3_l4e);
158
159         rearm0 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 0), mbuf_init, 1);
160         rearm1 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 1), mbuf_init, 1);
161         rearm2 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 2), mbuf_init, 1);
162         rearm3 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 3), mbuf_init, 1);
163
164         vst1q_u64((uint64_t *)&rx_pkts[0]->rearm_data, rearm0);
165         vst1q_u64((uint64_t *)&rx_pkts[1]->rearm_data, rearm1);
166         vst1q_u64((uint64_t *)&rx_pkts[2]->rearm_data, rearm2);
167         vst1q_u64((uint64_t *)&rx_pkts[3]->rearm_data, rearm3);
168 }
169
170 #define PKTLEN_SHIFT     10
171 #define I40E_UINT16_BIT (CHAR_BIT * sizeof(uint16_t))
172
173 static inline void
174 desc_to_ptype_v(uint64x2_t descs[4], struct rte_mbuf **rx_pkts,
175                 uint32_t *ptype_tbl)
176 {
177         int i;
178         uint8_t ptype;
179         uint8x16_t tmp;
180
181         for (i = 0; i < 4; i++) {
182                 tmp = vreinterpretq_u8_u64(vshrq_n_u64(descs[i], 30));
183                 ptype = vgetq_lane_u8(tmp, 8);
184                 rx_pkts[i]->packet_type = ptype_tbl[ptype];
185         }
186
187 }
188
189  /*
190  * Notice:
191  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
192  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
193  *   numbers of DD bits
194  */
195 static inline uint16_t
196 _recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
197                    uint16_t nb_pkts, uint8_t *split_packet)
198 {
199         volatile union i40e_rx_desc *rxdp;
200         struct i40e_rx_entry *sw_ring;
201         uint16_t nb_pkts_recd;
202         int pos;
203         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
204
205         /* mask to shuffle from desc. to mbuf */
206         uint8x16_t shuf_msk = {
207                 0xFF, 0xFF,   /* pkt_type set as unknown */
208                 0xFF, 0xFF,   /* pkt_type set as unknown */
209                 14, 15,       /* octet 15~14, low 16 bits pkt_len */
210                 0xFF, 0xFF,   /* skip high 16 bits pkt_len, zero out */
211                 14, 15,       /* octet 15~14, 16 bits data_len */
212                 2, 3,         /* octet 2~3, low 16 bits vlan_macip */
213                 4, 5, 6, 7    /* octet 4~7, 32bits rss */
214                 };
215
216         uint8x16_t eop_check = {
217                 0x02, 0x00, 0x02, 0x00,
218                 0x02, 0x00, 0x02, 0x00,
219                 0x00, 0x00, 0x00, 0x00,
220                 0x00, 0x00, 0x00, 0x00
221                 };
222
223         uint16x8_t crc_adjust = {
224                 0, 0,         /* ignore pkt_type field */
225                 rxq->crc_len, /* sub crc on pkt_len */
226                 0,            /* ignore high-16bits of pkt_len */
227                 rxq->crc_len, /* sub crc on data_len */
228                 0, 0, 0       /* ignore non-length fields */
229                 };
230
231         /* nb_pkts shall be less equal than RTE_I40E_MAX_RX_BURST */
232         nb_pkts = RTE_MIN(nb_pkts, RTE_I40E_MAX_RX_BURST);
233
234         /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
235         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
236
237         /* Just the act of getting into the function from the application is
238          * going to cost about 7 cycles
239          */
240         rxdp = rxq->rx_ring + rxq->rx_tail;
241
242         rte_prefetch_non_temporal(rxdp);
243
244         /* See if we need to rearm the RX queue - gives the prefetch a bit
245          * of time to act
246          */
247         if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
248                 i40e_rxq_rearm(rxq);
249
250         /* Before we start moving massive data around, check to see if
251          * there is actually a packet available
252          */
253         if (!(rxdp->wb.qword1.status_error_len &
254                         rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
255                 return 0;
256
257         /* Cache is empty -> need to scan the buffer rings, but first move
258          * the next 'n' mbufs into the cache
259          */
260         sw_ring = &rxq->sw_ring[rxq->rx_tail];
261
262         /* A. load 4 packet in one loop
263          * [A*. mask out 4 unused dirty field in desc]
264          * B. copy 4 mbuf point from swring to rx_pkts
265          * C. calc the number of DD bits among the 4 packets
266          * [C*. extract the end-of-packet bit, if requested]
267          * D. fill info. from desc to mbuf
268          */
269
270         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
271                         pos += RTE_I40E_DESCS_PER_LOOP,
272                         rxdp += RTE_I40E_DESCS_PER_LOOP) {
273                 uint64x2_t descs[RTE_I40E_DESCS_PER_LOOP];
274                 uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
275                 uint16x8x2_t sterr_tmp1, sterr_tmp2;
276                 uint64x2_t mbp1, mbp2;
277                 uint16x8_t staterr;
278                 uint16x8_t tmp;
279                 uint64_t stat;
280
281                 int32x4_t len_shl = {0, 0, 0, PKTLEN_SHIFT};
282
283                 /* B.1 load 1 mbuf point */
284                 mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]);
285                 /* Read desc statuses backwards to avoid race condition */
286                 /* A.1 load 4 pkts desc */
287                 descs[3] =  vld1q_u64((uint64_t *)(rxdp + 3));
288
289                 /* B.2 copy 2 mbuf point into rx_pkts  */
290                 vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1);
291
292                 /* B.1 load 1 mbuf point */
293                 mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]);
294
295                 descs[2] =  vld1q_u64((uint64_t *)(rxdp + 2));
296                 /* B.1 load 2 mbuf point */
297                 descs[1] =  vld1q_u64((uint64_t *)(rxdp + 1));
298                 descs[0] =  vld1q_u64((uint64_t *)(rxdp));
299
300                 /* B.2 copy 2 mbuf point into rx_pkts  */
301                 vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2);
302
303                 if (split_packet) {
304                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
305                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
306                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
307                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
308                 }
309
310                 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
311                 uint32x4_t len3 = vshlq_u32(vreinterpretq_u32_u64(descs[3]),
312                                             len_shl);
313                 descs[3] = vreinterpretq_u64_u32(len3);
314                 uint32x4_t len2 = vshlq_u32(vreinterpretq_u32_u64(descs[2]),
315                                             len_shl);
316                 descs[2] = vreinterpretq_u64_u32(len2);
317
318                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
319                 pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk);
320                 pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk);
321
322                 /* C.1 4=>2 filter staterr info only */
323                 sterr_tmp2 = vzipq_u16(vreinterpretq_u16_u64(descs[1]),
324                                        vreinterpretq_u16_u64(descs[3]));
325                 /* C.1 4=>2 filter staterr info only */
326                 sterr_tmp1 = vzipq_u16(vreinterpretq_u16_u64(descs[0]),
327                                        vreinterpretq_u16_u64(descs[2]));
328
329                 /* C.2 get 4 pkts staterr value  */
330                 staterr = vzipq_u16(sterr_tmp1.val[1],
331                                     sterr_tmp2.val[1]).val[0];
332
333                 desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
334
335                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
336                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust);
337                 pkt_mb4 = vreinterpretq_u8_u16(tmp);
338                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust);
339                 pkt_mb3 = vreinterpretq_u8_u16(tmp);
340
341                 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
342                 uint32x4_t len1 = vshlq_u32(vreinterpretq_u32_u64(descs[1]),
343                                             len_shl);
344                 descs[1] = vreinterpretq_u64_u32(len1);
345                 uint32x4_t len0 = vshlq_u32(vreinterpretq_u32_u64(descs[0]),
346                                             len_shl);
347                 descs[0] = vreinterpretq_u64_u32(len0);
348
349                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
350                 pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk);
351                 pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk);
352
353                 /* D.3 copy final 3,4 data to rx_pkts */
354                 vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
355                                  pkt_mb4);
356                 vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
357                                  pkt_mb3);
358
359                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
360                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust);
361                 pkt_mb2 = vreinterpretq_u8_u16(tmp);
362                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust);
363                 pkt_mb1 = vreinterpretq_u8_u16(tmp);
364
365                 /* C* extract and record EOP bit */
366                 if (split_packet) {
367                         uint8x16_t eop_shuf_mask = {
368                                         0x00, 0x02, 0x04, 0x06,
369                                         0xFF, 0xFF, 0xFF, 0xFF,
370                                         0xFF, 0xFF, 0xFF, 0xFF,
371                                         0xFF, 0xFF, 0xFF, 0xFF};
372                         uint8x16_t eop_bits;
373
374                         /* and with mask to extract bits, flipping 1-0 */
375                         eop_bits = vmvnq_u8(vreinterpretq_u8_u16(staterr));
376                         eop_bits = vandq_u8(eop_bits, eop_check);
377                         /* the staterr values are not in order, as the count
378                          * count of dd bits doesn't care. However, for end of
379                          * packet tracking, we do care, so shuffle. This also
380                          * compresses the 32-bit values to 8-bit
381                          */
382                         eop_bits = vqtbl1q_u8(eop_bits, eop_shuf_mask);
383
384                         /* store the resulting 32-bit value */
385                         vst1q_lane_u32((uint32_t *)split_packet,
386                                        vreinterpretq_u32_u8(eop_bits), 0);
387                         split_packet += RTE_I40E_DESCS_PER_LOOP;
388
389                         /* zero-out next pointers */
390                         rx_pkts[pos]->next = NULL;
391                         rx_pkts[pos + 1]->next = NULL;
392                         rx_pkts[pos + 2]->next = NULL;
393                         rx_pkts[pos + 3]->next = NULL;
394                 }
395
396                 staterr = vshlq_n_u16(staterr, I40E_UINT16_BIT - 1);
397                 staterr = vreinterpretq_u16_s16(
398                                 vshrq_n_s16(vreinterpretq_s16_u16(staterr),
399                                             I40E_UINT16_BIT - 1));
400                 stat = ~vgetq_lane_u64(vreinterpretq_u64_u16(staterr), 0);
401
402                 rte_prefetch_non_temporal(rxdp + RTE_I40E_DESCS_PER_LOOP);
403
404                 /* D.3 copy final 1,2 data to rx_pkts */
405                 vst1q_u8((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
406                          pkt_mb2);
407                 vst1q_u8((void *)&rx_pkts[pos]->rx_descriptor_fields1,
408                          pkt_mb1);
409                 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
410                 /* C.4 calc avaialbe number of desc */
411                 if (unlikely(stat == 0)) {
412                         nb_pkts_recd += RTE_I40E_DESCS_PER_LOOP;
413                 } else {
414                         nb_pkts_recd += __builtin_ctzl(stat) / I40E_UINT16_BIT;
415                         break;
416                 }
417         }
418
419         /* Update our internal tail pointer */
420         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
421         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
422         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
423
424         return nb_pkts_recd;
425 }
426
427  /*
428  * Notice:
429  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
430  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
431  *   numbers of DD bits
432  */
433 uint16_t
434 i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
435                    uint16_t nb_pkts)
436 {
437         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
438 }
439
440  /* vPMD receive routine that reassembles scattered packets
441  * Notice:
442  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
443  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
444  *   numbers of DD bits
445  */
446 uint16_t
447 i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
448                              uint16_t nb_pkts)
449 {
450
451         struct i40e_rx_queue *rxq = rx_queue;
452         uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
453
454         /* get some new buffers */
455         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
456                         split_flags);
457         if (nb_bufs == 0)
458                 return 0;
459
460         /* happy day case, full burst + no packets to be joined */
461         const uint64_t *split_fl64 = (uint64_t *)split_flags;
462
463         if (rxq->pkt_first_seg == NULL &&
464                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
465                         split_fl64[2] == 0 && split_fl64[3] == 0)
466                 return nb_bufs;
467
468         /* reassemble any packets that need reassembly*/
469         unsigned i = 0;
470
471         if (rxq->pkt_first_seg == NULL) {
472                 /* find the first split flag, and only reassemble then*/
473                 while (i < nb_bufs && !split_flags[i])
474                         i++;
475                 if (i == nb_bufs)
476                         return nb_bufs;
477         }
478         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
479                 &split_flags[i]);
480 }
481
482 static inline void
483 vtx1(volatile struct i40e_tx_desc *txdp,
484                 struct rte_mbuf *pkt, uint64_t flags)
485 {
486         uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
487                         ((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
488                         ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
489
490         uint64x2_t descriptor = {pkt->buf_iova + pkt->data_off, high_qw};
491         vst1q_u64((uint64_t *)txdp, descriptor);
492 }
493
494 static inline void
495 vtx(volatile struct i40e_tx_desc *txdp,
496                 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
497 {
498         int i;
499
500         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
501                 vtx1(txdp, *pkt, flags);
502 }
503
504 uint16_t
505 i40e_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
506                           uint16_t nb_pkts)
507 {
508         struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
509         volatile struct i40e_tx_desc *txdp;
510         struct i40e_tx_entry *txep;
511         uint16_t n, nb_commit, tx_id;
512         uint64_t flags = I40E_TD_CMD;
513         uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
514         int i;
515
516         /* cross rx_thresh boundary is not allowed */
517         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
518
519         if (txq->nb_tx_free < txq->tx_free_thresh)
520                 i40e_tx_free_bufs(txq);
521
522         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
523         if (unlikely(nb_pkts == 0))
524                 return 0;
525
526         tx_id = txq->tx_tail;
527         txdp = &txq->tx_ring[tx_id];
528         txep = &txq->sw_ring[tx_id];
529
530         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
531
532         n = (uint16_t)(txq->nb_tx_desc - tx_id);
533         if (nb_commit >= n) {
534                 tx_backlog_entry(txep, tx_pkts, n);
535
536                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
537                         vtx1(txdp, *tx_pkts, flags);
538
539                 vtx1(txdp, *tx_pkts++, rs);
540
541                 nb_commit = (uint16_t)(nb_commit - n);
542
543                 tx_id = 0;
544                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
545
546                 /* avoid reach the end of ring */
547                 txdp = &txq->tx_ring[tx_id];
548                 txep = &txq->sw_ring[tx_id];
549         }
550
551         tx_backlog_entry(txep, tx_pkts, nb_commit);
552
553         vtx(txdp, tx_pkts, nb_commit, flags);
554
555         tx_id = (uint16_t)(tx_id + nb_commit);
556         if (tx_id > txq->tx_next_rs) {
557                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
558                         rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
559                                                 I40E_TXD_QW1_CMD_SHIFT);
560                 txq->tx_next_rs =
561                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
562         }
563
564         txq->tx_tail = tx_id;
565
566         I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
567
568         return nb_pkts;
569 }
570
571 void __attribute__((cold))
572 i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
573 {
574         _i40e_rx_queue_release_mbufs_vec(rxq);
575 }
576
577 int __attribute__((cold))
578 i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
579 {
580         return i40e_rxq_vec_setup_default(rxq);
581 }
582
583 int __attribute__((cold))
584 i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
585 {
586         return 0;
587 }
588
589 int __attribute__((cold))
590 i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
591 {
592         return i40e_rx_vec_dev_conf_condition_check_default(dev);
593 }