drivers/net: remove queue xstats auto-fill flag
[dpdk.git] / drivers / net / iavf / iavf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_alarm.h>
20 #include <rte_atomic.h>
21 #include <rte_eal.h>
22 #include <rte_ether.h>
23 #include <ethdev_driver.h>
24 #include <ethdev_pci.h>
25 #include <rte_malloc.h>
26 #include <rte_memzone.h>
27 #include <rte_dev.h>
28
29 #include "iavf.h"
30 #include "iavf_rxtx.h"
31 #include "iavf_generic_flow.h"
32 #include "rte_pmd_iavf.h"
33
34 /* devargs */
35 #define IAVF_PROTO_XTR_ARG         "proto_xtr"
36
37 static const char * const iavf_valid_args[] = {
38         IAVF_PROTO_XTR_ARG,
39         NULL
40 };
41
42 static const struct rte_mbuf_dynfield iavf_proto_xtr_metadata_param = {
43         .name = "intel_pmd_dynfield_proto_xtr_metadata",
44         .size = sizeof(uint32_t),
45         .align = __alignof__(uint32_t),
46         .flags = 0,
47 };
48
49 struct iavf_proto_xtr_ol {
50         const struct rte_mbuf_dynflag param;
51         uint64_t *ol_flag;
52         bool required;
53 };
54
55 static struct iavf_proto_xtr_ol iavf_proto_xtr_params[] = {
56         [IAVF_PROTO_XTR_VLAN] = {
57                 .param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
58                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_vlan_mask },
59         [IAVF_PROTO_XTR_IPV4] = {
60                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
61                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask },
62         [IAVF_PROTO_XTR_IPV6] = {
63                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
64                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask },
65         [IAVF_PROTO_XTR_IPV6_FLOW] = {
66                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
67                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask },
68         [IAVF_PROTO_XTR_TCP] = {
69                 .param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
70                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_tcp_mask },
71         [IAVF_PROTO_XTR_IP_OFFSET] = {
72                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
73                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask },
74 };
75
76 static int iavf_dev_configure(struct rte_eth_dev *dev);
77 static int iavf_dev_start(struct rte_eth_dev *dev);
78 static int iavf_dev_stop(struct rte_eth_dev *dev);
79 static int iavf_dev_close(struct rte_eth_dev *dev);
80 static int iavf_dev_reset(struct rte_eth_dev *dev);
81 static int iavf_dev_info_get(struct rte_eth_dev *dev,
82                              struct rte_eth_dev_info *dev_info);
83 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
84 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
85                              struct rte_eth_stats *stats);
86 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
87 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
88                                  struct rte_eth_xstat *xstats, unsigned int n);
89 static int iavf_dev_xstats_get_names(struct rte_eth_dev *dev,
90                                        struct rte_eth_xstat_name *xstats_names,
91                                        unsigned int limit);
92 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
93 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
94 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
95 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
96 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
97                                 struct rte_ether_addr *addr,
98                                 uint32_t index,
99                                 uint32_t pool);
100 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
101 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
102                                    uint16_t vlan_id, int on);
103 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
104 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
105                                    struct rte_eth_rss_reta_entry64 *reta_conf,
106                                    uint16_t reta_size);
107 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
108                                   struct rte_eth_rss_reta_entry64 *reta_conf,
109                                   uint16_t reta_size);
110 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
111                                    struct rte_eth_rss_conf *rss_conf);
112 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
113                                      struct rte_eth_rss_conf *rss_conf);
114 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
115 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
116                                          struct rte_ether_addr *mac_addr);
117 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
118                                         uint16_t queue_id);
119 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
120                                          uint16_t queue_id);
121 static int iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
122                                  const struct rte_flow_ops **ops);
123 static int iavf_set_mc_addr_list(struct rte_eth_dev *dev,
124                         struct rte_ether_addr *mc_addrs,
125                         uint32_t mc_addrs_num);
126 static int iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused, void *arg);
127
128 static const struct rte_pci_id pci_id_iavf_map[] = {
129         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
130         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF) },
131         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF_HV) },
132         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_VF) },
133         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_A0_VF) },
134         { .vendor_id = 0, /* sentinel */ },
135 };
136
137 struct rte_iavf_xstats_name_off {
138         char name[RTE_ETH_XSTATS_NAME_SIZE];
139         unsigned int offset;
140 };
141
142 static const struct rte_iavf_xstats_name_off rte_iavf_stats_strings[] = {
143         {"rx_bytes", offsetof(struct iavf_eth_stats, rx_bytes)},
144         {"rx_unicast_packets", offsetof(struct iavf_eth_stats, rx_unicast)},
145         {"rx_multicast_packets", offsetof(struct iavf_eth_stats, rx_multicast)},
146         {"rx_broadcast_packets", offsetof(struct iavf_eth_stats, rx_broadcast)},
147         {"rx_dropped_packets", offsetof(struct iavf_eth_stats, rx_discards)},
148         {"rx_unknown_protocol_packets", offsetof(struct iavf_eth_stats,
149                 rx_unknown_protocol)},
150         {"tx_bytes", offsetof(struct iavf_eth_stats, tx_bytes)},
151         {"tx_unicast_packets", offsetof(struct iavf_eth_stats, tx_unicast)},
152         {"tx_multicast_packets", offsetof(struct iavf_eth_stats, tx_multicast)},
153         {"tx_broadcast_packets", offsetof(struct iavf_eth_stats, tx_broadcast)},
154         {"tx_dropped_packets", offsetof(struct iavf_eth_stats, tx_discards)},
155         {"tx_error_packets", offsetof(struct iavf_eth_stats, tx_errors)},
156 };
157
158 #define IAVF_NB_XSTATS (sizeof(rte_iavf_stats_strings) / \
159                 sizeof(rte_iavf_stats_strings[0]))
160
161 static const struct eth_dev_ops iavf_eth_dev_ops = {
162         .dev_configure              = iavf_dev_configure,
163         .dev_start                  = iavf_dev_start,
164         .dev_stop                   = iavf_dev_stop,
165         .dev_close                  = iavf_dev_close,
166         .dev_reset                  = iavf_dev_reset,
167         .dev_infos_get              = iavf_dev_info_get,
168         .dev_supported_ptypes_get   = iavf_dev_supported_ptypes_get,
169         .link_update                = iavf_dev_link_update,
170         .stats_get                  = iavf_dev_stats_get,
171         .stats_reset                = iavf_dev_stats_reset,
172         .xstats_get                 = iavf_dev_xstats_get,
173         .xstats_get_names           = iavf_dev_xstats_get_names,
174         .xstats_reset               = iavf_dev_stats_reset,
175         .promiscuous_enable         = iavf_dev_promiscuous_enable,
176         .promiscuous_disable        = iavf_dev_promiscuous_disable,
177         .allmulticast_enable        = iavf_dev_allmulticast_enable,
178         .allmulticast_disable       = iavf_dev_allmulticast_disable,
179         .mac_addr_add               = iavf_dev_add_mac_addr,
180         .mac_addr_remove            = iavf_dev_del_mac_addr,
181         .set_mc_addr_list                       = iavf_set_mc_addr_list,
182         .vlan_filter_set            = iavf_dev_vlan_filter_set,
183         .vlan_offload_set           = iavf_dev_vlan_offload_set,
184         .rx_queue_start             = iavf_dev_rx_queue_start,
185         .rx_queue_stop              = iavf_dev_rx_queue_stop,
186         .tx_queue_start             = iavf_dev_tx_queue_start,
187         .tx_queue_stop              = iavf_dev_tx_queue_stop,
188         .rx_queue_setup             = iavf_dev_rx_queue_setup,
189         .rx_queue_release           = iavf_dev_rx_queue_release,
190         .tx_queue_setup             = iavf_dev_tx_queue_setup,
191         .tx_queue_release           = iavf_dev_tx_queue_release,
192         .mac_addr_set               = iavf_dev_set_default_mac_addr,
193         .reta_update                = iavf_dev_rss_reta_update,
194         .reta_query                 = iavf_dev_rss_reta_query,
195         .rss_hash_update            = iavf_dev_rss_hash_update,
196         .rss_hash_conf_get          = iavf_dev_rss_hash_conf_get,
197         .rxq_info_get               = iavf_dev_rxq_info_get,
198         .txq_info_get               = iavf_dev_txq_info_get,
199         .mtu_set                    = iavf_dev_mtu_set,
200         .rx_queue_intr_enable       = iavf_dev_rx_queue_intr_enable,
201         .rx_queue_intr_disable      = iavf_dev_rx_queue_intr_disable,
202         .flow_ops_get               = iavf_dev_flow_ops_get,
203         .tx_done_cleanup            = iavf_dev_tx_done_cleanup,
204         .get_monitor_addr           = iavf_get_monitor_addr,
205         .tm_ops_get                 = iavf_tm_ops_get,
206 };
207
208 static int
209 iavf_tm_ops_get(struct rte_eth_dev *dev __rte_unused,
210                         void *arg)
211 {
212         if (!arg)
213                 return -EINVAL;
214
215         *(const void **)arg = &iavf_tm_ops;
216
217         return 0;
218 }
219
220 static int
221 iavf_set_mc_addr_list(struct rte_eth_dev *dev,
222                         struct rte_ether_addr *mc_addrs,
223                         uint32_t mc_addrs_num)
224 {
225         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
226         struct iavf_adapter *adapter =
227                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
228         int err, ret;
229
230         if (mc_addrs_num > IAVF_NUM_MACADDR_MAX) {
231                 PMD_DRV_LOG(ERR,
232                             "can't add more than a limited number (%u) of addresses.",
233                             (uint32_t)IAVF_NUM_MACADDR_MAX);
234                 return -EINVAL;
235         }
236
237         /* flush previous addresses */
238         err = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
239                                         false);
240         if (err)
241                 return err;
242
243         /* add new ones */
244         err = iavf_add_del_mc_addr_list(adapter, mc_addrs, mc_addrs_num, true);
245
246         if (err) {
247                 /* if adding mac address list fails, should add the previous
248                  * addresses back.
249                  */
250                 ret = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs,
251                                                 vf->mc_addrs_num, true);
252                 if (ret)
253                         return ret;
254         } else {
255                 vf->mc_addrs_num = mc_addrs_num;
256                 memcpy(vf->mc_addrs,
257                        mc_addrs, mc_addrs_num * sizeof(*mc_addrs));
258         }
259
260         return err;
261 }
262
263 static void
264 iavf_config_rss_hf(struct iavf_adapter *adapter, uint64_t rss_hf)
265 {
266         static const uint64_t map_hena_rss[] = {
267                 /* IPv4 */
268                 [IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] =
269                                 ETH_RSS_NONFRAG_IPV4_UDP,
270                 [IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] =
271                                 ETH_RSS_NONFRAG_IPV4_UDP,
272                 [IAVF_FILTER_PCTYPE_NONF_IPV4_UDP] =
273                                 ETH_RSS_NONFRAG_IPV4_UDP,
274                 [IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] =
275                                 ETH_RSS_NONFRAG_IPV4_TCP,
276                 [IAVF_FILTER_PCTYPE_NONF_IPV4_TCP] =
277                                 ETH_RSS_NONFRAG_IPV4_TCP,
278                 [IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP] =
279                                 ETH_RSS_NONFRAG_IPV4_SCTP,
280                 [IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER] =
281                                 ETH_RSS_NONFRAG_IPV4_OTHER,
282                 [IAVF_FILTER_PCTYPE_FRAG_IPV4] = ETH_RSS_FRAG_IPV4,
283
284                 /* IPv6 */
285                 [IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] =
286                                 ETH_RSS_NONFRAG_IPV6_UDP,
287                 [IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] =
288                                 ETH_RSS_NONFRAG_IPV6_UDP,
289                 [IAVF_FILTER_PCTYPE_NONF_IPV6_UDP] =
290                                 ETH_RSS_NONFRAG_IPV6_UDP,
291                 [IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] =
292                                 ETH_RSS_NONFRAG_IPV6_TCP,
293                 [IAVF_FILTER_PCTYPE_NONF_IPV6_TCP] =
294                                 ETH_RSS_NONFRAG_IPV6_TCP,
295                 [IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP] =
296                                 ETH_RSS_NONFRAG_IPV6_SCTP,
297                 [IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER] =
298                                 ETH_RSS_NONFRAG_IPV6_OTHER,
299                 [IAVF_FILTER_PCTYPE_FRAG_IPV6] = ETH_RSS_FRAG_IPV6,
300
301                 /* L2 Payload */
302                 [IAVF_FILTER_PCTYPE_L2_PAYLOAD] = ETH_RSS_L2_PAYLOAD
303         };
304
305         const uint64_t ipv4_rss = ETH_RSS_NONFRAG_IPV4_UDP |
306                                   ETH_RSS_NONFRAG_IPV4_TCP |
307                                   ETH_RSS_NONFRAG_IPV4_SCTP |
308                                   ETH_RSS_NONFRAG_IPV4_OTHER |
309                                   ETH_RSS_FRAG_IPV4;
310
311         const uint64_t ipv6_rss = ETH_RSS_NONFRAG_IPV6_UDP |
312                                   ETH_RSS_NONFRAG_IPV6_TCP |
313                                   ETH_RSS_NONFRAG_IPV6_SCTP |
314                                   ETH_RSS_NONFRAG_IPV6_OTHER |
315                                   ETH_RSS_FRAG_IPV6;
316
317         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
318         uint64_t caps = 0, hena = 0, valid_rss_hf = 0;
319         uint32_t i;
320         int ret;
321
322         ret = iavf_get_hena_caps(adapter, &caps);
323         if (ret) {
324                 /**
325                  * RSS offload type configuration is not a necessary feature
326                  * for VF, so here just print a warning and return.
327                  */
328                 PMD_DRV_LOG(WARNING,
329                             "fail to get RSS offload type caps, ret: %d", ret);
330                 return;
331         }
332
333         /**
334          * ETH_RSS_IPV4 and ETH_RSS_IPV6 can be considered as 2
335          * generalizations of all other IPv4 and IPv6 RSS types.
336          */
337         if (rss_hf & ETH_RSS_IPV4)
338                 rss_hf |= ipv4_rss;
339
340         if (rss_hf & ETH_RSS_IPV6)
341                 rss_hf |= ipv6_rss;
342
343         RTE_BUILD_BUG_ON(RTE_DIM(map_hena_rss) > sizeof(uint64_t) * CHAR_BIT);
344
345         for (i = 0; i < RTE_DIM(map_hena_rss); i++) {
346                 uint64_t bit = BIT_ULL(i);
347
348                 if ((caps & bit) && (map_hena_rss[i] & rss_hf)) {
349                         valid_rss_hf |= map_hena_rss[i];
350                         hena |= bit;
351                 }
352         }
353
354         ret = iavf_set_hena(adapter, hena);
355         if (ret) {
356                 /**
357                  * RSS offload type configuration is not a necessary feature
358                  * for VF, so here just print a warning and return.
359                  */
360                 PMD_DRV_LOG(WARNING,
361                             "fail to set RSS offload types, ret: %d", ret);
362                 return;
363         }
364
365         if (valid_rss_hf & ipv4_rss)
366                 valid_rss_hf |= rss_hf & ETH_RSS_IPV4;
367
368         if (valid_rss_hf & ipv6_rss)
369                 valid_rss_hf |= rss_hf & ETH_RSS_IPV6;
370
371         if (rss_hf & ~valid_rss_hf)
372                 PMD_DRV_LOG(WARNING, "Unsupported rss_hf 0x%" PRIx64,
373                             rss_hf & ~valid_rss_hf);
374
375         vf->rss_hf = valid_rss_hf;
376 }
377
378 static int
379 iavf_init_rss(struct iavf_adapter *adapter)
380 {
381         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
382         struct rte_eth_rss_conf *rss_conf;
383         uint16_t i, j, nb_q;
384         int ret;
385
386         rss_conf = &adapter->dev_data->dev_conf.rx_adv_conf.rss_conf;
387         nb_q = RTE_MIN(adapter->dev_data->nb_rx_queues,
388                        vf->max_rss_qregion);
389
390         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
391                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
392                 return -ENOTSUP;
393         }
394
395         /* configure RSS key */
396         if (!rss_conf->rss_key) {
397                 /* Calculate the default hash key */
398                 for (i = 0; i < vf->vf_res->rss_key_size; i++)
399                         vf->rss_key[i] = (uint8_t)rte_rand();
400         } else
401                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
402                            RTE_MIN(rss_conf->rss_key_len,
403                                    vf->vf_res->rss_key_size));
404
405         /* init RSS LUT table */
406         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
407                 if (j >= nb_q)
408                         j = 0;
409                 vf->rss_lut[i] = j;
410         }
411         /* send virtchnnl ops to configure rss*/
412         ret = iavf_configure_rss_lut(adapter);
413         if (ret)
414                 return ret;
415         ret = iavf_configure_rss_key(adapter);
416         if (ret)
417                 return ret;
418
419         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
420                 /* Set RSS hash configuration based on rss_conf->rss_hf. */
421                 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
422                 if (ret) {
423                         PMD_DRV_LOG(ERR, "fail to set default RSS");
424                         return ret;
425                 }
426         } else {
427                 iavf_config_rss_hf(adapter, rss_conf->rss_hf);
428         }
429
430         return 0;
431 }
432
433 static int
434 iavf_queues_req_reset(struct rte_eth_dev *dev, uint16_t num)
435 {
436         struct iavf_adapter *ad =
437                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
438         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
439         int ret;
440
441         ret = iavf_request_queues(dev, num);
442         if (ret) {
443                 PMD_DRV_LOG(ERR, "request queues from PF failed");
444                 return ret;
445         }
446         PMD_DRV_LOG(INFO, "change queue pairs from %u to %u",
447                         vf->vsi_res->num_queue_pairs, num);
448
449         ret = iavf_dev_reset(dev);
450         if (ret) {
451                 PMD_DRV_LOG(ERR, "vf reset failed");
452                 return ret;
453         }
454
455         return 0;
456 }
457
458 static int
459 iavf_dev_vlan_insert_set(struct rte_eth_dev *dev)
460 {
461         struct iavf_adapter *adapter =
462                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
463         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
464         bool enable;
465
466         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2))
467                 return 0;
468
469         enable = !!(dev->data->dev_conf.txmode.offloads &
470                     DEV_TX_OFFLOAD_VLAN_INSERT);
471         iavf_config_vlan_insert_v2(adapter, enable);
472
473         return 0;
474 }
475
476 static int
477 iavf_dev_init_vlan(struct rte_eth_dev *dev)
478 {
479         int err;
480
481         err = iavf_dev_vlan_offload_set(dev,
482                                         ETH_VLAN_STRIP_MASK |
483                                         ETH_QINQ_STRIP_MASK |
484                                         ETH_VLAN_FILTER_MASK |
485                                         ETH_VLAN_EXTEND_MASK);
486         if (err) {
487                 PMD_DRV_LOG(ERR, "Failed to update vlan offload");
488                 return err;
489         }
490
491         err = iavf_dev_vlan_insert_set(dev);
492         if (err)
493                 PMD_DRV_LOG(ERR, "Failed to update vlan insertion");
494
495         return err;
496 }
497
498 static int
499 iavf_dev_configure(struct rte_eth_dev *dev)
500 {
501         struct iavf_adapter *ad =
502                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
503         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
504         uint16_t num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
505                 dev->data->nb_tx_queues);
506         int ret;
507
508         ad->rx_bulk_alloc_allowed = true;
509         /* Initialize to TRUE. If any of Rx queues doesn't meet the
510          * vector Rx/Tx preconditions, it will be reset.
511          */
512         ad->rx_vec_allowed = true;
513         ad->tx_vec_allowed = true;
514
515         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
516                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
517
518         /* Large VF setting */
519         if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT) {
520                 if (!(vf->vf_res->vf_cap_flags &
521                                 VIRTCHNL_VF_LARGE_NUM_QPAIRS)) {
522                         PMD_DRV_LOG(ERR, "large VF is not supported");
523                         return -1;
524                 }
525
526                 if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_LV) {
527                         PMD_DRV_LOG(ERR, "queue pairs number cannot be larger than %u",
528                                 IAVF_MAX_NUM_QUEUES_LV);
529                         return -1;
530                 }
531
532                 ret = iavf_queues_req_reset(dev, num_queue_pairs);
533                 if (ret)
534                         return ret;
535
536                 ret = iavf_get_max_rss_queue_region(ad);
537                 if (ret) {
538                         PMD_INIT_LOG(ERR, "get max rss queue region failed");
539                         return ret;
540                 }
541
542                 vf->lv_enabled = true;
543         } else {
544                 /* Check if large VF is already enabled. If so, disable and
545                  * release redundant queue resource.
546                  * Or check if enough queue pairs. If not, request them from PF.
547                  */
548                 if (vf->lv_enabled ||
549                     num_queue_pairs > vf->vsi_res->num_queue_pairs) {
550                         ret = iavf_queues_req_reset(dev, num_queue_pairs);
551                         if (ret)
552                                 return ret;
553
554                         vf->lv_enabled = false;
555                 }
556                 /* if large VF is not required, use default rss queue region */
557                 vf->max_rss_qregion = IAVF_MAX_NUM_QUEUES_DFLT;
558         }
559
560         ret = iavf_dev_init_vlan(dev);
561         if (ret)
562                 PMD_DRV_LOG(ERR, "configure VLAN failed: %d", ret);
563
564         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
565                 if (iavf_init_rss(ad) != 0) {
566                         PMD_DRV_LOG(ERR, "configure rss failed");
567                         return -1;
568                 }
569         }
570         return 0;
571 }
572
573 static int
574 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
575 {
576         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
577         struct rte_eth_dev_data *dev_data = dev->data;
578         uint16_t buf_size, max_pkt_len;
579
580         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
581
582         /* Calculate the maximum packet length allowed */
583         max_pkt_len = RTE_MIN((uint32_t)
584                         rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS,
585                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
586
587         /* Check if the jumbo frame and maximum packet length are set
588          * correctly.
589          */
590         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
591                 if (max_pkt_len <= IAVF_ETH_MAX_LEN ||
592                     max_pkt_len > IAVF_FRAME_SIZE_MAX) {
593                         PMD_DRV_LOG(ERR, "maximum packet length must be "
594                                     "larger than %u and smaller than %u, "
595                                     "as jumbo frame is enabled",
596                                     (uint32_t)IAVF_ETH_MAX_LEN,
597                                     (uint32_t)IAVF_FRAME_SIZE_MAX);
598                         return -EINVAL;
599                 }
600         } else {
601                 if (max_pkt_len < RTE_ETHER_MIN_LEN ||
602                     max_pkt_len > IAVF_ETH_MAX_LEN) {
603                         PMD_DRV_LOG(ERR, "maximum packet length must be "
604                                     "larger than %u and smaller than %u, "
605                                     "as jumbo frame is disabled",
606                                     (uint32_t)RTE_ETHER_MIN_LEN,
607                                     (uint32_t)IAVF_ETH_MAX_LEN);
608                         return -EINVAL;
609                 }
610         }
611
612         rxq->max_pkt_len = max_pkt_len;
613         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
614             rxq->max_pkt_len > buf_size) {
615                 dev_data->scattered_rx = 1;
616         }
617         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
618         IAVF_WRITE_FLUSH(hw);
619
620         return 0;
621 }
622
623 static int
624 iavf_init_queues(struct rte_eth_dev *dev)
625 {
626         struct iavf_rx_queue **rxq =
627                 (struct iavf_rx_queue **)dev->data->rx_queues;
628         int i, ret = IAVF_SUCCESS;
629
630         for (i = 0; i < dev->data->nb_rx_queues; i++) {
631                 if (!rxq[i] || !rxq[i]->q_set)
632                         continue;
633                 ret = iavf_init_rxq(dev, rxq[i]);
634                 if (ret != IAVF_SUCCESS)
635                         break;
636         }
637         /* set rx/tx function to vector/scatter/single-segment
638          * according to parameters
639          */
640         iavf_set_rx_function(dev);
641         iavf_set_tx_function(dev);
642
643         return ret;
644 }
645
646 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
647                                      struct rte_intr_handle *intr_handle)
648 {
649         struct iavf_adapter *adapter =
650                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
651         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
652         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
653         struct iavf_qv_map *qv_map;
654         uint16_t interval, i;
655         int vec;
656
657         if (rte_intr_cap_multiple(intr_handle) &&
658             dev->data->dev_conf.intr_conf.rxq) {
659                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
660                         return -1;
661         }
662
663         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
664                 intr_handle->intr_vec =
665                         rte_zmalloc("intr_vec",
666                                     dev->data->nb_rx_queues * sizeof(int), 0);
667                 if (!intr_handle->intr_vec) {
668                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
669                                     dev->data->nb_rx_queues);
670                         return -1;
671                 }
672         }
673
674         qv_map = rte_zmalloc("qv_map",
675                 dev->data->nb_rx_queues * sizeof(struct iavf_qv_map), 0);
676         if (!qv_map) {
677                 PMD_DRV_LOG(ERR, "Failed to allocate %d queue-vector map",
678                                 dev->data->nb_rx_queues);
679                 goto qv_map_alloc_err;
680         }
681
682         if (!dev->data->dev_conf.intr_conf.rxq ||
683             !rte_intr_dp_is_en(intr_handle)) {
684                 /* Rx interrupt disabled, Map interrupt only for writeback */
685                 vf->nb_msix = 1;
686                 if (vf->vf_res->vf_cap_flags &
687                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
688                         /* If WB_ON_ITR supports, enable it */
689                         vf->msix_base = IAVF_RX_VEC_START;
690                         /* Set the ITR for index zero, to 2us to make sure that
691                          * we leave time for aggregation to occur, but don't
692                          * increase latency dramatically.
693                          */
694                         IAVF_WRITE_REG(hw,
695                                        IAVF_VFINT_DYN_CTLN1(vf->msix_base - 1),
696                                        (0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
697                                        IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
698                                        (2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
699                         /* debug - check for success! the return value
700                          * should be 2, offset is 0x2800
701                          */
702                         /* IAVF_READ_REG(hw, IAVF_VFINT_ITRN1(0, 0)); */
703                 } else {
704                         /* If no WB_ON_ITR offload flags, need to set
705                          * interrupt for descriptor write back.
706                          */
707                         vf->msix_base = IAVF_MISC_VEC_ID;
708
709                         /* set ITR to default */
710                         interval = iavf_calc_itr_interval(
711                                         IAVF_QUEUE_ITR_INTERVAL_DEFAULT);
712                         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
713                                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
714                                        (IAVF_ITR_INDEX_DEFAULT <<
715                                         IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
716                                        (interval <<
717                                         IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
718                 }
719                 IAVF_WRITE_FLUSH(hw);
720                 /* map all queues to the same interrupt */
721                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
722                         qv_map[i].queue_id = i;
723                         qv_map[i].vector_id = vf->msix_base;
724                 }
725                 vf->qv_map = qv_map;
726         } else {
727                 if (!rte_intr_allow_others(intr_handle)) {
728                         vf->nb_msix = 1;
729                         vf->msix_base = IAVF_MISC_VEC_ID;
730                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
731                                 qv_map[i].queue_id = i;
732                                 qv_map[i].vector_id = vf->msix_base;
733                                 intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID;
734                         }
735                         vf->qv_map = qv_map;
736                         PMD_DRV_LOG(DEBUG,
737                                     "vector %u are mapping to all Rx queues",
738                                     vf->msix_base);
739                 } else {
740                         /* If Rx interrupt is reuquired, and we can use
741                          * multi interrupts, then the vec is from 1
742                          */
743                         vf->nb_msix = RTE_MIN(intr_handle->nb_efd,
744                                  (uint16_t)(vf->vf_res->max_vectors - 1));
745                         vf->msix_base = IAVF_RX_VEC_START;
746                         vec = IAVF_RX_VEC_START;
747                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
748                                 qv_map[i].queue_id = i;
749                                 qv_map[i].vector_id = vec;
750                                 intr_handle->intr_vec[i] = vec++;
751                                 if (vec >= vf->nb_msix + IAVF_RX_VEC_START)
752                                         vec = IAVF_RX_VEC_START;
753                         }
754                         vf->qv_map = qv_map;
755                         PMD_DRV_LOG(DEBUG,
756                                     "%u vectors are mapping to %u Rx queues",
757                                     vf->nb_msix, dev->data->nb_rx_queues);
758                 }
759         }
760
761         if (!vf->lv_enabled) {
762                 if (iavf_config_irq_map(adapter)) {
763                         PMD_DRV_LOG(ERR, "config interrupt mapping failed");
764                         goto config_irq_map_err;
765                 }
766         } else {
767                 uint16_t num_qv_maps = dev->data->nb_rx_queues;
768                 uint16_t index = 0;
769
770                 while (num_qv_maps > IAVF_IRQ_MAP_NUM_PER_BUF) {
771                         if (iavf_config_irq_map_lv(adapter,
772                                         IAVF_IRQ_MAP_NUM_PER_BUF, index)) {
773                                 PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
774                                 goto config_irq_map_err;
775                         }
776                         num_qv_maps -= IAVF_IRQ_MAP_NUM_PER_BUF;
777                         index += IAVF_IRQ_MAP_NUM_PER_BUF;
778                 }
779
780                 if (iavf_config_irq_map_lv(adapter, num_qv_maps, index)) {
781                         PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
782                         goto config_irq_map_err;
783                 }
784         }
785         return 0;
786
787 config_irq_map_err:
788         rte_free(vf->qv_map);
789         vf->qv_map = NULL;
790
791 qv_map_alloc_err:
792         rte_free(intr_handle->intr_vec);
793         intr_handle->intr_vec = NULL;
794
795         return -1;
796 }
797
798 static int
799 iavf_start_queues(struct rte_eth_dev *dev)
800 {
801         struct iavf_rx_queue *rxq;
802         struct iavf_tx_queue *txq;
803         int i;
804
805         for (i = 0; i < dev->data->nb_tx_queues; i++) {
806                 txq = dev->data->tx_queues[i];
807                 if (txq->tx_deferred_start)
808                         continue;
809                 if (iavf_dev_tx_queue_start(dev, i) != 0) {
810                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
811                         return -1;
812                 }
813         }
814
815         for (i = 0; i < dev->data->nb_rx_queues; i++) {
816                 rxq = dev->data->rx_queues[i];
817                 if (rxq->rx_deferred_start)
818                         continue;
819                 if (iavf_dev_rx_queue_start(dev, i) != 0) {
820                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
821                         return -1;
822                 }
823         }
824
825         return 0;
826 }
827
828 static int
829 iavf_dev_start(struct rte_eth_dev *dev)
830 {
831         struct iavf_adapter *adapter =
832                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
833         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
834         struct rte_intr_handle *intr_handle = dev->intr_handle;
835         uint16_t num_queue_pairs;
836         uint16_t index = 0;
837
838         PMD_INIT_FUNC_TRACE();
839
840         adapter->stopped = 0;
841
842         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
843         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
844                                       dev->data->nb_tx_queues);
845         num_queue_pairs = vf->num_queue_pairs;
846
847         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
848                 if (iavf_get_qos_cap(adapter)) {
849                         PMD_INIT_LOG(ERR, "Failed to get qos capability");
850                         return -1;
851                 }
852
853         if (iavf_init_queues(dev) != 0) {
854                 PMD_DRV_LOG(ERR, "failed to do Queue init");
855                 return -1;
856         }
857
858         /* If needed, send configure queues msg multiple times to make the
859          * adminq buffer length smaller than the 4K limitation.
860          */
861         while (num_queue_pairs > IAVF_CFG_Q_NUM_PER_BUF) {
862                 if (iavf_configure_queues(adapter,
863                                 IAVF_CFG_Q_NUM_PER_BUF, index) != 0) {
864                         PMD_DRV_LOG(ERR, "configure queues failed");
865                         goto err_queue;
866                 }
867                 num_queue_pairs -= IAVF_CFG_Q_NUM_PER_BUF;
868                 index += IAVF_CFG_Q_NUM_PER_BUF;
869         }
870
871         if (iavf_configure_queues(adapter, num_queue_pairs, index) != 0) {
872                 PMD_DRV_LOG(ERR, "configure queues failed");
873                 goto err_queue;
874         }
875
876         if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
877                 PMD_DRV_LOG(ERR, "configure irq failed");
878                 goto err_queue;
879         }
880         /* re-enable intr again, because efd assign may change */
881         if (dev->data->dev_conf.intr_conf.rxq != 0) {
882                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
883                         rte_intr_disable(intr_handle);
884                 rte_intr_enable(intr_handle);
885         }
886
887         /* Set all mac addrs */
888         iavf_add_del_all_mac_addr(adapter, true);
889
890         /* Set all multicast addresses */
891         iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
892                                   true);
893
894         if (iavf_start_queues(dev) != 0) {
895                 PMD_DRV_LOG(ERR, "enable queues failed");
896                 goto err_mac;
897         }
898
899         return 0;
900
901 err_mac:
902         iavf_add_del_all_mac_addr(adapter, false);
903 err_queue:
904         return -1;
905 }
906
907 static int
908 iavf_dev_stop(struct rte_eth_dev *dev)
909 {
910         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
911         struct iavf_adapter *adapter =
912                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
913         struct rte_intr_handle *intr_handle = dev->intr_handle;
914
915         PMD_INIT_FUNC_TRACE();
916
917         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) &&
918             dev->data->dev_conf.intr_conf.rxq != 0)
919                 rte_intr_disable(intr_handle);
920
921         if (adapter->stopped == 1)
922                 return 0;
923
924         iavf_stop_queues(dev);
925
926         /* Disable the interrupt for Rx */
927         rte_intr_efd_disable(intr_handle);
928         /* Rx interrupt vector mapping free */
929         if (intr_handle->intr_vec) {
930                 rte_free(intr_handle->intr_vec);
931                 intr_handle->intr_vec = NULL;
932         }
933
934         /* remove all mac addrs */
935         iavf_add_del_all_mac_addr(adapter, false);
936
937         /* remove all multicast addresses */
938         iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
939                                   false);
940
941         adapter->stopped = 1;
942         dev->data->dev_started = 0;
943
944         return 0;
945 }
946
947 static int
948 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
949 {
950         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
951
952         dev_info->max_rx_queues = IAVF_MAX_NUM_QUEUES_LV;
953         dev_info->max_tx_queues = IAVF_MAX_NUM_QUEUES_LV;
954         dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
955         dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
956         dev_info->max_mtu = dev_info->max_rx_pktlen - IAVF_ETH_OVERHEAD;
957         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
958         dev_info->hash_key_size = vf->vf_res->rss_key_size;
959         dev_info->reta_size = vf->vf_res->rss_lut_size;
960         dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
961         dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
962         dev_info->rx_offload_capa =
963                 DEV_RX_OFFLOAD_VLAN_STRIP |
964                 DEV_RX_OFFLOAD_QINQ_STRIP |
965                 DEV_RX_OFFLOAD_IPV4_CKSUM |
966                 DEV_RX_OFFLOAD_UDP_CKSUM |
967                 DEV_RX_OFFLOAD_TCP_CKSUM |
968                 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
969                 DEV_RX_OFFLOAD_SCATTER |
970                 DEV_RX_OFFLOAD_JUMBO_FRAME |
971                 DEV_RX_OFFLOAD_VLAN_FILTER |
972                 DEV_RX_OFFLOAD_RSS_HASH;
973
974         dev_info->tx_offload_capa =
975                 DEV_TX_OFFLOAD_VLAN_INSERT |
976                 DEV_TX_OFFLOAD_QINQ_INSERT |
977                 DEV_TX_OFFLOAD_IPV4_CKSUM |
978                 DEV_TX_OFFLOAD_UDP_CKSUM |
979                 DEV_TX_OFFLOAD_TCP_CKSUM |
980                 DEV_TX_OFFLOAD_SCTP_CKSUM |
981                 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
982                 DEV_TX_OFFLOAD_TCP_TSO |
983                 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
984                 DEV_TX_OFFLOAD_GRE_TNL_TSO |
985                 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
986                 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
987                 DEV_TX_OFFLOAD_MULTI_SEGS |
988                 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
989
990         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_CRC)
991                 dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_KEEP_CRC;
992
993         dev_info->default_rxconf = (struct rte_eth_rxconf) {
994                 .rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
995                 .rx_drop_en = 0,
996                 .offloads = 0,
997         };
998
999         dev_info->default_txconf = (struct rte_eth_txconf) {
1000                 .tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
1001                 .tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
1002                 .offloads = 0,
1003         };
1004
1005         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1006                 .nb_max = IAVF_MAX_RING_DESC,
1007                 .nb_min = IAVF_MIN_RING_DESC,
1008                 .nb_align = IAVF_ALIGN_RING_DESC,
1009         };
1010
1011         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1012                 .nb_max = IAVF_MAX_RING_DESC,
1013                 .nb_min = IAVF_MIN_RING_DESC,
1014                 .nb_align = IAVF_ALIGN_RING_DESC,
1015         };
1016
1017         return 0;
1018 }
1019
1020 static const uint32_t *
1021 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1022 {
1023         static const uint32_t ptypes[] = {
1024                 RTE_PTYPE_L2_ETHER,
1025                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1026                 RTE_PTYPE_L4_FRAG,
1027                 RTE_PTYPE_L4_ICMP,
1028                 RTE_PTYPE_L4_NONFRAG,
1029                 RTE_PTYPE_L4_SCTP,
1030                 RTE_PTYPE_L4_TCP,
1031                 RTE_PTYPE_L4_UDP,
1032                 RTE_PTYPE_UNKNOWN
1033         };
1034         return ptypes;
1035 }
1036
1037 int
1038 iavf_dev_link_update(struct rte_eth_dev *dev,
1039                     __rte_unused int wait_to_complete)
1040 {
1041         struct rte_eth_link new_link;
1042         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1043
1044         memset(&new_link, 0, sizeof(new_link));
1045
1046         /* Only read status info stored in VF, and the info is updated
1047          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
1048          */
1049         switch (vf->link_speed) {
1050         case 10:
1051                 new_link.link_speed = ETH_SPEED_NUM_10M;
1052                 break;
1053         case 100:
1054                 new_link.link_speed = ETH_SPEED_NUM_100M;
1055                 break;
1056         case 1000:
1057                 new_link.link_speed = ETH_SPEED_NUM_1G;
1058                 break;
1059         case 10000:
1060                 new_link.link_speed = ETH_SPEED_NUM_10G;
1061                 break;
1062         case 20000:
1063                 new_link.link_speed = ETH_SPEED_NUM_20G;
1064                 break;
1065         case 25000:
1066                 new_link.link_speed = ETH_SPEED_NUM_25G;
1067                 break;
1068         case 40000:
1069                 new_link.link_speed = ETH_SPEED_NUM_40G;
1070                 break;
1071         case 50000:
1072                 new_link.link_speed = ETH_SPEED_NUM_50G;
1073                 break;
1074         case 100000:
1075                 new_link.link_speed = ETH_SPEED_NUM_100G;
1076                 break;
1077         default:
1078                 new_link.link_speed = ETH_SPEED_NUM_NONE;
1079                 break;
1080         }
1081
1082         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
1083         new_link.link_status = vf->link_up ? ETH_LINK_UP :
1084                                              ETH_LINK_DOWN;
1085         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1086                                 ETH_LINK_SPEED_FIXED);
1087
1088         return rte_eth_linkstatus_set(dev, &new_link);
1089 }
1090
1091 static int
1092 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
1093 {
1094         struct iavf_adapter *adapter =
1095                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1096         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1097
1098         return iavf_config_promisc(adapter,
1099                                   true, vf->promisc_multicast_enabled);
1100 }
1101
1102 static int
1103 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
1104 {
1105         struct iavf_adapter *adapter =
1106                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1107         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1108
1109         return iavf_config_promisc(adapter,
1110                                   false, vf->promisc_multicast_enabled);
1111 }
1112
1113 static int
1114 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
1115 {
1116         struct iavf_adapter *adapter =
1117                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1118         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1119
1120         return iavf_config_promisc(adapter,
1121                                   vf->promisc_unicast_enabled, true);
1122 }
1123
1124 static int
1125 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
1126 {
1127         struct iavf_adapter *adapter =
1128                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1129         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1130
1131         return iavf_config_promisc(adapter,
1132                                   vf->promisc_unicast_enabled, false);
1133 }
1134
1135 static int
1136 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
1137                      __rte_unused uint32_t index,
1138                      __rte_unused uint32_t pool)
1139 {
1140         struct iavf_adapter *adapter =
1141                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1142         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1143         int err;
1144
1145         if (rte_is_zero_ether_addr(addr)) {
1146                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
1147                 return -EINVAL;
1148         }
1149
1150         err = iavf_add_del_eth_addr(adapter, addr, true, VIRTCHNL_ETHER_ADDR_EXTRA);
1151         if (err) {
1152                 PMD_DRV_LOG(ERR, "fail to add MAC address");
1153                 return -EIO;
1154         }
1155
1156         vf->mac_num++;
1157
1158         return 0;
1159 }
1160
1161 static void
1162 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
1163 {
1164         struct iavf_adapter *adapter =
1165                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1166         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1167         struct rte_ether_addr *addr;
1168         int err;
1169
1170         addr = &dev->data->mac_addrs[index];
1171
1172         err = iavf_add_del_eth_addr(adapter, addr, false, VIRTCHNL_ETHER_ADDR_EXTRA);
1173         if (err)
1174                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
1175
1176         vf->mac_num--;
1177 }
1178
1179 static int
1180 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1181 {
1182         struct iavf_adapter *adapter =
1183                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1184         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1185         int err;
1186
1187         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
1188                 err = iavf_add_del_vlan_v2(adapter, vlan_id, on);
1189                 if (err)
1190                         return -EIO;
1191                 return 0;
1192         }
1193
1194         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1195                 return -ENOTSUP;
1196
1197         err = iavf_add_del_vlan(adapter, vlan_id, on);
1198         if (err)
1199                 return -EIO;
1200         return 0;
1201 }
1202
1203 static void
1204 iavf_iterate_vlan_filters_v2(struct rte_eth_dev *dev, bool enable)
1205 {
1206         struct rte_vlan_filter_conf *vfc = &dev->data->vlan_filter_conf;
1207         struct iavf_adapter *adapter =
1208                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1209         uint32_t i, j;
1210         uint64_t ids;
1211
1212         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1213                 if (vfc->ids[i] == 0)
1214                         continue;
1215
1216                 ids = vfc->ids[i];
1217                 for (j = 0; ids != 0 && j < 64; j++, ids >>= 1) {
1218                         if (ids & 1)
1219                                 iavf_add_del_vlan_v2(adapter,
1220                                                      64 * i + j, enable);
1221                 }
1222         }
1223 }
1224
1225 static int
1226 iavf_dev_vlan_offload_set_v2(struct rte_eth_dev *dev, int mask)
1227 {
1228         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1229         struct iavf_adapter *adapter =
1230                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1231         bool enable;
1232         int err;
1233
1234         if (mask & ETH_VLAN_FILTER_MASK) {
1235                 enable = !!(rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER);
1236
1237                 iavf_iterate_vlan_filters_v2(dev, enable);
1238         }
1239
1240         if (mask & ETH_VLAN_STRIP_MASK) {
1241                 enable = !!(rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP);
1242
1243                 err = iavf_config_vlan_strip_v2(adapter, enable);
1244                 /* If not support, the stripping is already disabled by PF */
1245                 if (err == -ENOTSUP && !enable)
1246                         err = 0;
1247                 if (err)
1248                         return -EIO;
1249         }
1250
1251         return 0;
1252 }
1253
1254 static int
1255 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1256 {
1257         struct iavf_adapter *adapter =
1258                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1259         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1260         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1261         int err;
1262
1263         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2)
1264                 return iavf_dev_vlan_offload_set_v2(dev, mask);
1265
1266         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1267                 return -ENOTSUP;
1268
1269         /* Vlan stripping setting */
1270         if (mask & ETH_VLAN_STRIP_MASK) {
1271                 /* Enable or disable VLAN stripping */
1272                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1273                         err = iavf_enable_vlan_strip(adapter);
1274                 else
1275                         err = iavf_disable_vlan_strip(adapter);
1276
1277                 if (err)
1278                         return -EIO;
1279         }
1280         return 0;
1281 }
1282
1283 static int
1284 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
1285                         struct rte_eth_rss_reta_entry64 *reta_conf,
1286                         uint16_t reta_size)
1287 {
1288         struct iavf_adapter *adapter =
1289                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1290         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1291         uint8_t *lut;
1292         uint16_t i, idx, shift;
1293         int ret;
1294
1295         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1296                 return -ENOTSUP;
1297
1298         if (reta_size != vf->vf_res->rss_lut_size) {
1299                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1300                         "(%d) doesn't match the number of hardware can "
1301                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1302                 return -EINVAL;
1303         }
1304
1305         lut = rte_zmalloc("rss_lut", reta_size, 0);
1306         if (!lut) {
1307                 PMD_DRV_LOG(ERR, "No memory can be allocated");
1308                 return -ENOMEM;
1309         }
1310         /* store the old lut table temporarily */
1311         rte_memcpy(lut, vf->rss_lut, reta_size);
1312
1313         for (i = 0; i < reta_size; i++) {
1314                 idx = i / RTE_RETA_GROUP_SIZE;
1315                 shift = i % RTE_RETA_GROUP_SIZE;
1316                 if (reta_conf[idx].mask & (1ULL << shift))
1317                         lut[i] = reta_conf[idx].reta[shift];
1318         }
1319
1320         rte_memcpy(vf->rss_lut, lut, reta_size);
1321         /* send virtchnnl ops to configure rss*/
1322         ret = iavf_configure_rss_lut(adapter);
1323         if (ret) /* revert back */
1324                 rte_memcpy(vf->rss_lut, lut, reta_size);
1325         rte_free(lut);
1326
1327         return ret;
1328 }
1329
1330 static int
1331 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
1332                        struct rte_eth_rss_reta_entry64 *reta_conf,
1333                        uint16_t reta_size)
1334 {
1335         struct iavf_adapter *adapter =
1336                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1337         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1338         uint16_t i, idx, shift;
1339
1340         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1341                 return -ENOTSUP;
1342
1343         if (reta_size != vf->vf_res->rss_lut_size) {
1344                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1345                         "(%d) doesn't match the number of hardware can "
1346                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1347                 return -EINVAL;
1348         }
1349
1350         for (i = 0; i < reta_size; i++) {
1351                 idx = i / RTE_RETA_GROUP_SIZE;
1352                 shift = i % RTE_RETA_GROUP_SIZE;
1353                 if (reta_conf[idx].mask & (1ULL << shift))
1354                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
1355         }
1356
1357         return 0;
1358 }
1359
1360 static int
1361 iavf_set_rss_key(struct iavf_adapter *adapter, uint8_t *key, uint8_t key_len)
1362 {
1363         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1364
1365         /* HENA setting, it is enabled by default, no change */
1366         if (!key || key_len == 0) {
1367                 PMD_DRV_LOG(DEBUG, "No key to be configured");
1368                 return 0;
1369         } else if (key_len != vf->vf_res->rss_key_size) {
1370                 PMD_DRV_LOG(ERR, "The size of hash key configured "
1371                         "(%d) doesn't match the size of hardware can "
1372                         "support (%d)", key_len,
1373                         vf->vf_res->rss_key_size);
1374                 return -EINVAL;
1375         }
1376
1377         rte_memcpy(vf->rss_key, key, key_len);
1378
1379         return iavf_configure_rss_key(adapter);
1380 }
1381
1382 static int
1383 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
1384                         struct rte_eth_rss_conf *rss_conf)
1385 {
1386         struct iavf_adapter *adapter =
1387                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1388         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1389         int ret;
1390
1391         adapter->dev_data->dev_conf.rx_adv_conf.rss_conf = *rss_conf;
1392
1393         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1394                 return -ENOTSUP;
1395
1396         /* Set hash key. */
1397         ret = iavf_set_rss_key(adapter, rss_conf->rss_key,
1398                                rss_conf->rss_key_len);
1399         if (ret)
1400                 return ret;
1401
1402         if (rss_conf->rss_hf == 0) {
1403                 vf->rss_hf = 0;
1404                 ret = iavf_set_hena(adapter, 0);
1405
1406                 /* It is a workaround, temporarily allow error to be returned
1407                  * due to possible lack of PF handling for hena = 0.
1408                  */
1409                 if (ret)
1410                         PMD_DRV_LOG(WARNING, "fail to clean existing RSS, lack PF support");
1411                 return 0;
1412         }
1413
1414         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
1415                 /* Clear existing RSS. */
1416                 ret = iavf_set_hena(adapter, 0);
1417
1418                 /* It is a workaround, temporarily allow error to be returned
1419                  * due to possible lack of PF handling for hena = 0.
1420                  */
1421                 if (ret)
1422                         PMD_DRV_LOG(WARNING, "fail to clean existing RSS,"
1423                                     "lack PF support");
1424
1425                 /* Set new RSS configuration. */
1426                 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
1427                 if (ret) {
1428                         PMD_DRV_LOG(ERR, "fail to set new RSS");
1429                         return ret;
1430                 }
1431         } else {
1432                 iavf_config_rss_hf(adapter, rss_conf->rss_hf);
1433         }
1434
1435         return 0;
1436 }
1437
1438 static int
1439 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1440                           struct rte_eth_rss_conf *rss_conf)
1441 {
1442         struct iavf_adapter *adapter =
1443                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1444         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1445
1446         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1447                 return -ENOTSUP;
1448
1449         rss_conf->rss_hf = vf->rss_hf;
1450
1451         if (!rss_conf->rss_key)
1452                 return 0;
1453
1454         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
1455         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
1456
1457         return 0;
1458 }
1459
1460 static int
1461 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1462 {
1463         uint32_t frame_size = mtu + IAVF_ETH_OVERHEAD;
1464         int ret = 0;
1465
1466         if (mtu < RTE_ETHER_MIN_MTU || frame_size > IAVF_FRAME_SIZE_MAX)
1467                 return -EINVAL;
1468
1469         /* mtu setting is forbidden if port is start */
1470         if (dev->data->dev_started) {
1471                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
1472                 return -EBUSY;
1473         }
1474
1475         if (frame_size > IAVF_ETH_MAX_LEN)
1476                 dev->data->dev_conf.rxmode.offloads |=
1477                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
1478         else
1479                 dev->data->dev_conf.rxmode.offloads &=
1480                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1481
1482         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1483
1484         return ret;
1485 }
1486
1487 static int
1488 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
1489                              struct rte_ether_addr *mac_addr)
1490 {
1491         struct iavf_adapter *adapter =
1492                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1493         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1494         struct rte_ether_addr *old_addr;
1495         int ret;
1496
1497         old_addr = (struct rte_ether_addr *)hw->mac.addr;
1498
1499         if (rte_is_same_ether_addr(old_addr, mac_addr))
1500                 return 0;
1501
1502         ret = iavf_add_del_eth_addr(adapter, old_addr, false, VIRTCHNL_ETHER_ADDR_PRIMARY);
1503         if (ret)
1504                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
1505                             RTE_ETHER_ADDR_PRT_FMT,
1506                                 RTE_ETHER_ADDR_BYTES(old_addr));
1507
1508         ret = iavf_add_del_eth_addr(adapter, mac_addr, true, VIRTCHNL_ETHER_ADDR_PRIMARY);
1509         if (ret)
1510                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1511                             RTE_ETHER_ADDR_PRT_FMT,
1512                                 RTE_ETHER_ADDR_BYTES(mac_addr));
1513
1514         if (ret)
1515                 return -EIO;
1516
1517         rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1518         return 0;
1519 }
1520
1521 static void
1522 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1523 {
1524         if (*stat >= *offset)
1525                 *stat = *stat - *offset;
1526         else
1527                 *stat = (uint64_t)((*stat +
1528                         ((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1529
1530         *stat &= IAVF_48_BIT_MASK;
1531 }
1532
1533 static void
1534 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1535 {
1536         if (*stat >= *offset)
1537                 *stat = (uint64_t)(*stat - *offset);
1538         else
1539                 *stat = (uint64_t)((*stat +
1540                         ((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1541 }
1542
1543 static void
1544 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1545 {
1546         struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset;
1547
1548         iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1549         iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1550         iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1551         iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1552         iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1553         iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1554         iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1555         iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1556         iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1557         iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1558         iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1559 }
1560
1561 static int
1562 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1563 {
1564         struct iavf_adapter *adapter =
1565                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1566         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1567         struct iavf_vsi *vsi = &vf->vsi;
1568         struct virtchnl_eth_stats *pstats = NULL;
1569         int ret;
1570
1571         ret = iavf_query_stats(adapter, &pstats);
1572         if (ret == 0) {
1573                 uint8_t crc_stats_len = (dev->data->dev_conf.rxmode.offloads &
1574                                          DEV_RX_OFFLOAD_KEEP_CRC) ? 0 :
1575                                          RTE_ETHER_CRC_LEN;
1576                 iavf_update_stats(vsi, pstats);
1577                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1578                                 pstats->rx_broadcast - pstats->rx_discards;
1579                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1580                                                 pstats->tx_unicast;
1581                 stats->imissed = pstats->rx_discards;
1582                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1583                 stats->ibytes = pstats->rx_bytes;
1584                 stats->ibytes -= stats->ipackets * crc_stats_len;
1585                 stats->obytes = pstats->tx_bytes;
1586         } else {
1587                 PMD_DRV_LOG(ERR, "Get statistics failed");
1588         }
1589         return ret;
1590 }
1591
1592 static int
1593 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1594 {
1595         int ret;
1596         struct iavf_adapter *adapter =
1597                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1598         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1599         struct iavf_vsi *vsi = &vf->vsi;
1600         struct virtchnl_eth_stats *pstats = NULL;
1601
1602         /* read stat values to clear hardware registers */
1603         ret = iavf_query_stats(adapter, &pstats);
1604         if (ret != 0)
1605                 return ret;
1606
1607         /* set stats offset base on current values */
1608         vsi->eth_stats_offset = *pstats;
1609
1610         return 0;
1611 }
1612
1613 static int iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1614                                       struct rte_eth_xstat_name *xstats_names,
1615                                       __rte_unused unsigned int limit)
1616 {
1617         unsigned int i;
1618
1619         if (xstats_names != NULL)
1620                 for (i = 0; i < IAVF_NB_XSTATS; i++) {
1621                         snprintf(xstats_names[i].name,
1622                                 sizeof(xstats_names[i].name),
1623                                 "%s", rte_iavf_stats_strings[i].name);
1624                 }
1625         return IAVF_NB_XSTATS;
1626 }
1627
1628 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
1629                                  struct rte_eth_xstat *xstats, unsigned int n)
1630 {
1631         int ret;
1632         unsigned int i;
1633         struct iavf_adapter *adapter =
1634                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1635         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1636         struct iavf_vsi *vsi = &vf->vsi;
1637         struct virtchnl_eth_stats *pstats = NULL;
1638
1639         if (n < IAVF_NB_XSTATS)
1640                 return IAVF_NB_XSTATS;
1641
1642         ret = iavf_query_stats(adapter, &pstats);
1643         if (ret != 0)
1644                 return 0;
1645
1646         if (!xstats)
1647                 return 0;
1648
1649         iavf_update_stats(vsi, pstats);
1650
1651         /* loop over xstats array and values from pstats */
1652         for (i = 0; i < IAVF_NB_XSTATS; i++) {
1653                 xstats[i].id = i;
1654                 xstats[i].value = *(uint64_t *)(((char *)pstats) +
1655                         rte_iavf_stats_strings[i].offset);
1656         }
1657
1658         return IAVF_NB_XSTATS;
1659 }
1660
1661
1662 static int
1663 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1664 {
1665         struct iavf_adapter *adapter =
1666                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1667         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1668         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1669         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1670         uint16_t msix_intr;
1671
1672         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1673         if (msix_intr == IAVF_MISC_VEC_ID) {
1674                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1675                 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1676                                IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1677                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1678                                IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1679         } else {
1680                 IAVF_WRITE_REG(hw,
1681                                IAVF_VFINT_DYN_CTLN1
1682                                 (msix_intr - IAVF_RX_VEC_START),
1683                                IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1684                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1685                                IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
1686         }
1687
1688         IAVF_WRITE_FLUSH(hw);
1689
1690         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1691                 rte_intr_ack(&pci_dev->intr_handle);
1692
1693         return 0;
1694 }
1695
1696 static int
1697 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1698 {
1699         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1700         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1701         uint16_t msix_intr;
1702
1703         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1704         if (msix_intr == IAVF_MISC_VEC_ID) {
1705                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1706                 return -EIO;
1707         }
1708
1709         IAVF_WRITE_REG(hw,
1710                       IAVF_VFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1711                       0);
1712
1713         IAVF_WRITE_FLUSH(hw);
1714         return 0;
1715 }
1716
1717 static int
1718 iavf_check_vf_reset_done(struct iavf_hw *hw)
1719 {
1720         int i, reset;
1721
1722         for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1723                 reset = IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
1724                         IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1725                 reset = reset >> IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT;
1726                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1727                     reset == VIRTCHNL_VFR_COMPLETED)
1728                         break;
1729                 rte_delay_ms(20);
1730         }
1731
1732         if (i >= IAVF_RESET_WAIT_CNT)
1733                 return -1;
1734
1735         return 0;
1736 }
1737
1738 static int
1739 iavf_lookup_proto_xtr_type(const char *flex_name)
1740 {
1741         static struct {
1742                 const char *name;
1743                 enum iavf_proto_xtr_type type;
1744         } xtr_type_map[] = {
1745                 { "vlan",      IAVF_PROTO_XTR_VLAN      },
1746                 { "ipv4",      IAVF_PROTO_XTR_IPV4      },
1747                 { "ipv6",      IAVF_PROTO_XTR_IPV6      },
1748                 { "ipv6_flow", IAVF_PROTO_XTR_IPV6_FLOW },
1749                 { "tcp",       IAVF_PROTO_XTR_TCP       },
1750                 { "ip_offset", IAVF_PROTO_XTR_IP_OFFSET },
1751         };
1752         uint32_t i;
1753
1754         for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
1755                 if (strcmp(flex_name, xtr_type_map[i].name) == 0)
1756                         return xtr_type_map[i].type;
1757         }
1758
1759         PMD_DRV_LOG(ERR, "wrong proto_xtr type, "
1760                     "it should be: vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset");
1761
1762         return -1;
1763 }
1764
1765 /**
1766  * Parse elem, the elem could be single number/range or '(' ')' group
1767  * 1) A single number elem, it's just a simple digit. e.g. 9
1768  * 2) A single range elem, two digits with a '-' between. e.g. 2-6
1769  * 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
1770  *    Within group elem, '-' used for a range separator;
1771  *                       ',' used for a single number.
1772  */
1773 static int
1774 iavf_parse_queue_set(const char *input, int xtr_type,
1775                      struct iavf_devargs *devargs)
1776 {
1777         const char *str = input;
1778         char *end = NULL;
1779         uint32_t min, max;
1780         uint32_t idx;
1781
1782         while (isblank(*str))
1783                 str++;
1784
1785         if (!isdigit(*str) && *str != '(')
1786                 return -1;
1787
1788         /* process single number or single range of number */
1789         if (*str != '(') {
1790                 errno = 0;
1791                 idx = strtoul(str, &end, 10);
1792                 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1793                         return -1;
1794
1795                 while (isblank(*end))
1796                         end++;
1797
1798                 min = idx;
1799                 max = idx;
1800
1801                 /* process single <number>-<number> */
1802                 if (*end == '-') {
1803                         end++;
1804                         while (isblank(*end))
1805                                 end++;
1806                         if (!isdigit(*end))
1807                                 return -1;
1808
1809                         errno = 0;
1810                         idx = strtoul(end, &end, 10);
1811                         if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1812                                 return -1;
1813
1814                         max = idx;
1815                         while (isblank(*end))
1816                                 end++;
1817                 }
1818
1819                 if (*end != ':')
1820                         return -1;
1821
1822                 for (idx = RTE_MIN(min, max);
1823                      idx <= RTE_MAX(min, max); idx++)
1824                         devargs->proto_xtr[idx] = xtr_type;
1825
1826                 return 0;
1827         }
1828
1829         /* process set within bracket */
1830         str++;
1831         while (isblank(*str))
1832                 str++;
1833         if (*str == '\0')
1834                 return -1;
1835
1836         min = IAVF_MAX_QUEUE_NUM;
1837         do {
1838                 /* go ahead to the first digit */
1839                 while (isblank(*str))
1840                         str++;
1841                 if (!isdigit(*str))
1842                         return -1;
1843
1844                 /* get the digit value */
1845                 errno = 0;
1846                 idx = strtoul(str, &end, 10);
1847                 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1848                         return -1;
1849
1850                 /* go ahead to separator '-',',' and ')' */
1851                 while (isblank(*end))
1852                         end++;
1853                 if (*end == '-') {
1854                         if (min == IAVF_MAX_QUEUE_NUM)
1855                                 min = idx;
1856                         else /* avoid continuous '-' */
1857                                 return -1;
1858                 } else if (*end == ',' || *end == ')') {
1859                         max = idx;
1860                         if (min == IAVF_MAX_QUEUE_NUM)
1861                                 min = idx;
1862
1863                         for (idx = RTE_MIN(min, max);
1864                              idx <= RTE_MAX(min, max); idx++)
1865                                 devargs->proto_xtr[idx] = xtr_type;
1866
1867                         min = IAVF_MAX_QUEUE_NUM;
1868                 } else {
1869                         return -1;
1870                 }
1871
1872                 str = end + 1;
1873         } while (*end != ')' && *end != '\0');
1874
1875         return 0;
1876 }
1877
1878 static int
1879 iavf_parse_queue_proto_xtr(const char *queues, struct iavf_devargs *devargs)
1880 {
1881         const char *queue_start;
1882         uint32_t idx;
1883         int xtr_type;
1884         char flex_name[32];
1885
1886         while (isblank(*queues))
1887                 queues++;
1888
1889         if (*queues != '[') {
1890                 xtr_type = iavf_lookup_proto_xtr_type(queues);
1891                 if (xtr_type < 0)
1892                         return -1;
1893
1894                 devargs->proto_xtr_dflt = xtr_type;
1895
1896                 return 0;
1897         }
1898
1899         queues++;
1900         do {
1901                 while (isblank(*queues))
1902                         queues++;
1903                 if (*queues == '\0')
1904                         return -1;
1905
1906                 queue_start = queues;
1907
1908                 /* go across a complete bracket */
1909                 if (*queue_start == '(') {
1910                         queues += strcspn(queues, ")");
1911                         if (*queues != ')')
1912                                 return -1;
1913                 }
1914
1915                 /* scan the separator ':' */
1916                 queues += strcspn(queues, ":");
1917                 if (*queues++ != ':')
1918                         return -1;
1919                 while (isblank(*queues))
1920                         queues++;
1921
1922                 for (idx = 0; ; idx++) {
1923                         if (isblank(queues[idx]) ||
1924                             queues[idx] == ',' ||
1925                             queues[idx] == ']' ||
1926                             queues[idx] == '\0')
1927                                 break;
1928
1929                         if (idx > sizeof(flex_name) - 2)
1930                                 return -1;
1931
1932                         flex_name[idx] = queues[idx];
1933                 }
1934                 flex_name[idx] = '\0';
1935                 xtr_type = iavf_lookup_proto_xtr_type(flex_name);
1936                 if (xtr_type < 0)
1937                         return -1;
1938
1939                 queues += idx;
1940
1941                 while (isblank(*queues) || *queues == ',' || *queues == ']')
1942                         queues++;
1943
1944                 if (iavf_parse_queue_set(queue_start, xtr_type, devargs) < 0)
1945                         return -1;
1946         } while (*queues != '\0');
1947
1948         return 0;
1949 }
1950
1951 static int
1952 iavf_handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
1953                           void *extra_args)
1954 {
1955         struct iavf_devargs *devargs = extra_args;
1956
1957         if (!value || !extra_args)
1958                 return -EINVAL;
1959
1960         if (iavf_parse_queue_proto_xtr(value, devargs) < 0) {
1961                 PMD_DRV_LOG(ERR, "the proto_xtr's parameter is wrong : '%s'",
1962                             value);
1963                 return -1;
1964         }
1965
1966         return 0;
1967 }
1968
1969 static int iavf_parse_devargs(struct rte_eth_dev *dev)
1970 {
1971         struct iavf_adapter *ad =
1972                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1973         struct rte_devargs *devargs = dev->device->devargs;
1974         struct rte_kvargs *kvlist;
1975         int ret;
1976
1977         if (!devargs)
1978                 return 0;
1979
1980         kvlist = rte_kvargs_parse(devargs->args, iavf_valid_args);
1981         if (!kvlist) {
1982                 PMD_INIT_LOG(ERR, "invalid kvargs key\n");
1983                 return -EINVAL;
1984         }
1985
1986         ad->devargs.proto_xtr_dflt = IAVF_PROTO_XTR_NONE;
1987         memset(ad->devargs.proto_xtr, IAVF_PROTO_XTR_NONE,
1988                sizeof(ad->devargs.proto_xtr));
1989
1990         ret = rte_kvargs_process(kvlist, IAVF_PROTO_XTR_ARG,
1991                                  &iavf_handle_proto_xtr_arg, &ad->devargs);
1992         if (ret)
1993                 goto bail;
1994
1995 bail:
1996         rte_kvargs_free(kvlist);
1997         return ret;
1998 }
1999
2000 static void
2001 iavf_init_proto_xtr(struct rte_eth_dev *dev)
2002 {
2003         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2004         struct iavf_adapter *ad =
2005                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2006         const struct iavf_proto_xtr_ol *xtr_ol;
2007         bool proto_xtr_enable = false;
2008         int offset;
2009         uint16_t i;
2010
2011         vf->proto_xtr = rte_zmalloc("vf proto xtr",
2012                                     vf->vsi_res->num_queue_pairs, 0);
2013         if (unlikely(!(vf->proto_xtr))) {
2014                 PMD_DRV_LOG(ERR, "no memory for setting up proto_xtr's table");
2015                 return;
2016         }
2017
2018         for (i = 0; i < vf->vsi_res->num_queue_pairs; i++) {
2019                 vf->proto_xtr[i] = ad->devargs.proto_xtr[i] !=
2020                                         IAVF_PROTO_XTR_NONE ?
2021                                         ad->devargs.proto_xtr[i] :
2022                                         ad->devargs.proto_xtr_dflt;
2023
2024                 if (vf->proto_xtr[i] != IAVF_PROTO_XTR_NONE) {
2025                         uint8_t type = vf->proto_xtr[i];
2026
2027                         iavf_proto_xtr_params[type].required = true;
2028                         proto_xtr_enable = true;
2029                 }
2030         }
2031
2032         if (likely(!proto_xtr_enable))
2033                 return;
2034
2035         offset = rte_mbuf_dynfield_register(&iavf_proto_xtr_metadata_param);
2036         if (unlikely(offset == -1)) {
2037                 PMD_DRV_LOG(ERR,
2038                             "failed to extract protocol metadata, error %d",
2039                             -rte_errno);
2040                 return;
2041         }
2042
2043         PMD_DRV_LOG(DEBUG,
2044                     "proto_xtr metadata offset in mbuf is : %d",
2045                     offset);
2046         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = offset;
2047
2048         for (i = 0; i < RTE_DIM(iavf_proto_xtr_params); i++) {
2049                 xtr_ol = &iavf_proto_xtr_params[i];
2050
2051                 uint8_t rxdid = iavf_proto_xtr_type_to_rxdid((uint8_t)i);
2052
2053                 if (!xtr_ol->required)
2054                         continue;
2055
2056                 if (!(vf->supported_rxdid & BIT(rxdid))) {
2057                         PMD_DRV_LOG(ERR,
2058                                     "rxdid[%u] is not supported in hardware",
2059                                     rxdid);
2060                         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2061                         break;
2062                 }
2063
2064                 offset = rte_mbuf_dynflag_register(&xtr_ol->param);
2065                 if (unlikely(offset == -1)) {
2066                         PMD_DRV_LOG(ERR,
2067                                     "failed to register proto_xtr offload '%s', error %d",
2068                                     xtr_ol->param.name, -rte_errno);
2069
2070                         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2071                         break;
2072                 }
2073
2074                 PMD_DRV_LOG(DEBUG,
2075                             "proto_xtr offload '%s' offset in mbuf is : %d",
2076                             xtr_ol->param.name, offset);
2077                 *xtr_ol->ol_flag = 1ULL << offset;
2078         }
2079 }
2080
2081 static int
2082 iavf_init_vf(struct rte_eth_dev *dev)
2083 {
2084         int err, bufsz;
2085         struct iavf_adapter *adapter =
2086                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2087         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2088         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2089
2090         vf->eth_dev = dev;
2091
2092         err = iavf_parse_devargs(dev);
2093         if (err) {
2094                 PMD_INIT_LOG(ERR, "Failed to parse devargs");
2095                 goto err;
2096         }
2097
2098         err = iavf_set_mac_type(hw);
2099         if (err) {
2100                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
2101                 goto err;
2102         }
2103
2104         err = iavf_check_vf_reset_done(hw);
2105         if (err) {
2106                 PMD_INIT_LOG(ERR, "VF is still resetting");
2107                 goto err;
2108         }
2109
2110         iavf_init_adminq_parameter(hw);
2111         err = iavf_init_adminq(hw);
2112         if (err) {
2113                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
2114                 goto err;
2115         }
2116
2117         vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
2118         if (!vf->aq_resp) {
2119                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
2120                 goto err_aq;
2121         }
2122         if (iavf_check_api_version(adapter) != 0) {
2123                 PMD_INIT_LOG(ERR, "check_api version failed");
2124                 goto err_api;
2125         }
2126
2127         bufsz = sizeof(struct virtchnl_vf_resource) +
2128                 (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
2129         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
2130         if (!vf->vf_res) {
2131                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
2132                 goto err_api;
2133         }
2134
2135         if (iavf_get_vf_resource(adapter) != 0) {
2136                 PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
2137                 goto err_alloc;
2138         }
2139         /* Allocate memort for RSS info */
2140         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2141                 vf->rss_key = rte_zmalloc("rss_key",
2142                                           vf->vf_res->rss_key_size, 0);
2143                 if (!vf->rss_key) {
2144                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
2145                         goto err_rss;
2146                 }
2147                 vf->rss_lut = rte_zmalloc("rss_lut",
2148                                           vf->vf_res->rss_lut_size, 0);
2149                 if (!vf->rss_lut) {
2150                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
2151                         goto err_rss;
2152                 }
2153         }
2154
2155         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2156                 if (iavf_get_supported_rxdid(adapter) != 0) {
2157                         PMD_INIT_LOG(ERR, "failed to do get supported rxdid");
2158                         goto err_rss;
2159                 }
2160         }
2161
2162         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
2163                 if (iavf_get_vlan_offload_caps_v2(adapter) != 0) {
2164                         PMD_INIT_LOG(ERR, "failed to do get VLAN offload v2 capabilities");
2165                         goto err_rss;
2166                 }
2167         }
2168
2169         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS) {
2170                 bufsz = sizeof(struct virtchnl_qos_cap_list) +
2171                         IAVF_MAX_TRAFFIC_CLASS *
2172                         sizeof(struct virtchnl_qos_cap_elem);
2173                 vf->qos_cap = rte_zmalloc("qos_cap", bufsz, 0);
2174                 if (!vf->qos_cap) {
2175                         PMD_INIT_LOG(ERR, "unable to allocate qos_cap memory");
2176                         goto err_rss;
2177                 }
2178                 iavf_tm_conf_init(dev);
2179         }
2180
2181         iavf_init_proto_xtr(dev);
2182
2183         return 0;
2184 err_rss:
2185         rte_free(vf->rss_key);
2186         rte_free(vf->rss_lut);
2187 err_alloc:
2188         rte_free(vf->qos_cap);
2189         rte_free(vf->vf_res);
2190         vf->vsi_res = NULL;
2191 err_api:
2192         rte_free(vf->aq_resp);
2193 err_aq:
2194         iavf_shutdown_adminq(hw);
2195 err:
2196         return -1;
2197 }
2198
2199 static void
2200 iavf_uninit_vf(struct rte_eth_dev *dev)
2201 {
2202         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2203         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2204
2205         iavf_shutdown_adminq(hw);
2206
2207         rte_free(vf->vf_res);
2208         vf->vsi_res = NULL;
2209         vf->vf_res = NULL;
2210
2211         rte_free(vf->aq_resp);
2212         vf->aq_resp = NULL;
2213
2214         rte_free(vf->qos_cap);
2215         vf->qos_cap = NULL;
2216
2217         rte_free(vf->rss_lut);
2218         vf->rss_lut = NULL;
2219         rte_free(vf->rss_key);
2220         vf->rss_key = NULL;
2221 }
2222
2223 /* Enable default admin queue interrupt setting */
2224 static inline void
2225 iavf_enable_irq0(struct iavf_hw *hw)
2226 {
2227         /* Enable admin queue interrupt trigger */
2228         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1,
2229                        IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
2230
2231         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2232                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
2233                        IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
2234                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2235
2236         IAVF_WRITE_FLUSH(hw);
2237 }
2238
2239 static inline void
2240 iavf_disable_irq0(struct iavf_hw *hw)
2241 {
2242         /* Disable all interrupt types */
2243         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, 0);
2244         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2245                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2246         IAVF_WRITE_FLUSH(hw);
2247 }
2248
2249 static void
2250 iavf_dev_interrupt_handler(void *param)
2251 {
2252         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2253         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2254
2255         iavf_disable_irq0(hw);
2256
2257         iavf_handle_virtchnl_msg(dev);
2258
2259         iavf_enable_irq0(hw);
2260 }
2261
2262 void
2263 iavf_dev_alarm_handler(void *param)
2264 {
2265         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2266         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2267         uint32_t icr0;
2268
2269         iavf_disable_irq0(hw);
2270
2271         /* read out interrupt causes */
2272         icr0 = IAVF_READ_REG(hw, IAVF_VFINT_ICR01);
2273
2274         if (icr0 & IAVF_VFINT_ICR01_ADMINQ_MASK) {
2275                 PMD_DRV_LOG(DEBUG, "ICR01_ADMINQ is reported");
2276                 iavf_handle_virtchnl_msg(dev);
2277         }
2278
2279         iavf_enable_irq0(hw);
2280
2281         rte_eal_alarm_set(IAVF_ALARM_INTERVAL,
2282                           iavf_dev_alarm_handler, dev);
2283 }
2284
2285 static int
2286 iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
2287                       const struct rte_flow_ops **ops)
2288 {
2289         if (!dev)
2290                 return -EINVAL;
2291
2292         *ops = &iavf_flow_ops;
2293         return 0;
2294 }
2295
2296 static void
2297 iavf_default_rss_disable(struct iavf_adapter *adapter)
2298 {
2299         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
2300         int ret = 0;
2301
2302         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2303                 /* Set hena = 0 to ask PF to cleanup all existing RSS. */
2304                 ret = iavf_set_hena(adapter, 0);
2305                 if (ret)
2306                         /* It is a workaround, temporarily allow error to be
2307                          * returned due to possible lack of PF handling for
2308                          * hena = 0.
2309                          */
2310                         PMD_INIT_LOG(WARNING, "fail to disable default RSS,"
2311                                     "lack PF support");
2312         }
2313 }
2314
2315 static int
2316 iavf_dev_init(struct rte_eth_dev *eth_dev)
2317 {
2318         struct iavf_adapter *adapter =
2319                 IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2320         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
2321         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
2322         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2323         int ret = 0;
2324
2325         PMD_INIT_FUNC_TRACE();
2326
2327         /* assign ops func pointer */
2328         eth_dev->dev_ops = &iavf_eth_dev_ops;
2329         eth_dev->rx_queue_count = iavf_dev_rxq_count;
2330         eth_dev->rx_descriptor_status = iavf_dev_rx_desc_status;
2331         eth_dev->tx_descriptor_status = iavf_dev_tx_desc_status;
2332         eth_dev->rx_pkt_burst = &iavf_recv_pkts;
2333         eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
2334         eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
2335
2336         /* For secondary processes, we don't initialise any further as primary
2337          * has already done this work. Only check if we need a different RX
2338          * and TX function.
2339          */
2340         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2341                 iavf_set_rx_function(eth_dev);
2342                 iavf_set_tx_function(eth_dev);
2343                 return 0;
2344         }
2345         rte_eth_copy_pci_info(eth_dev, pci_dev);
2346
2347         hw->vendor_id = pci_dev->id.vendor_id;
2348         hw->device_id = pci_dev->id.device_id;
2349         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
2350         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
2351         hw->bus.bus_id = pci_dev->addr.bus;
2352         hw->bus.device = pci_dev->addr.devid;
2353         hw->bus.func = pci_dev->addr.function;
2354         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
2355         hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2356         adapter->dev_data = eth_dev->data;
2357         adapter->stopped = 1;
2358
2359         if (iavf_init_vf(eth_dev) != 0) {
2360                 PMD_INIT_LOG(ERR, "Init vf failed");
2361                 return -1;
2362         }
2363
2364         /* set default ptype table */
2365         adapter->ptype_tbl = iavf_get_default_ptype_table();
2366
2367         /* copy mac addr */
2368         eth_dev->data->mac_addrs = rte_zmalloc(
2369                 "iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
2370         if (!eth_dev->data->mac_addrs) {
2371                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
2372                              " store MAC addresses",
2373                              RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
2374                 ret = -ENOMEM;
2375                 goto init_vf_err;
2376         }
2377         /* If the MAC address is not configured by host,
2378          * generate a random one.
2379          */
2380         if (!rte_is_valid_assigned_ether_addr(
2381                         (struct rte_ether_addr *)hw->mac.addr))
2382                 rte_eth_random_addr(hw->mac.addr);
2383         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
2384                         &eth_dev->data->mac_addrs[0]);
2385
2386         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
2387                 /* register callback func to eal lib */
2388                 rte_intr_callback_register(&pci_dev->intr_handle,
2389                                            iavf_dev_interrupt_handler,
2390                                            (void *)eth_dev);
2391
2392                 /* enable uio intr after callback register */
2393                 rte_intr_enable(&pci_dev->intr_handle);
2394         } else {
2395                 rte_eal_alarm_set(IAVF_ALARM_INTERVAL,
2396                                   iavf_dev_alarm_handler, eth_dev);
2397         }
2398
2399         /* configure and enable device interrupt */
2400         iavf_enable_irq0(hw);
2401
2402         ret = iavf_flow_init(adapter);
2403         if (ret) {
2404                 PMD_INIT_LOG(ERR, "Failed to initialize flow");
2405                 goto flow_init_err;
2406         }
2407
2408         iavf_default_rss_disable(adapter);
2409
2410         return 0;
2411
2412 flow_init_err:
2413         rte_free(eth_dev->data->mac_addrs);
2414         eth_dev->data->mac_addrs = NULL;
2415
2416 init_vf_err:
2417         iavf_uninit_vf(eth_dev);
2418
2419         return ret;
2420 }
2421
2422 static int
2423 iavf_dev_close(struct rte_eth_dev *dev)
2424 {
2425         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2426         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2427         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2428         struct iavf_adapter *adapter =
2429                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2430         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2431         int ret;
2432
2433         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2434                 return 0;
2435
2436         ret = iavf_dev_stop(dev);
2437
2438         iavf_flow_flush(dev, NULL);
2439         iavf_flow_uninit(adapter);
2440
2441         /*
2442          * disable promiscuous mode before reset vf
2443          * it is a workaround solution when work with kernel driver
2444          * and it is not the normal way
2445          */
2446         if (vf->promisc_unicast_enabled || vf->promisc_multicast_enabled)
2447                 iavf_config_promisc(adapter, false, false);
2448
2449         iavf_shutdown_adminq(hw);
2450         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
2451                 /* disable uio intr before callback unregister */
2452                 rte_intr_disable(intr_handle);
2453
2454                 /* unregister callback func from eal lib */
2455                 rte_intr_callback_unregister(intr_handle,
2456                                              iavf_dev_interrupt_handler, dev);
2457         } else {
2458                 rte_eal_alarm_cancel(iavf_dev_alarm_handler, dev);
2459         }
2460         iavf_disable_irq0(hw);
2461
2462         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS)
2463                 iavf_tm_conf_uninit(dev);
2464
2465         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2466                 if (vf->rss_lut) {
2467                         rte_free(vf->rss_lut);
2468                         vf->rss_lut = NULL;
2469                 }
2470                 if (vf->rss_key) {
2471                         rte_free(vf->rss_key);
2472                         vf->rss_key = NULL;
2473                 }
2474         }
2475
2476         rte_free(vf->vf_res);
2477         vf->vsi_res = NULL;
2478         vf->vf_res = NULL;
2479
2480         rte_free(vf->aq_resp);
2481         vf->aq_resp = NULL;
2482
2483         /*
2484          * If the VF is reset via VFLR, the device will be knocked out of bus
2485          * master mode, and the driver will fail to recover from the reset. Fix
2486          * this by enabling bus mastering after every reset. In a non-VFLR case,
2487          * the bus master bit will not be disabled, and this call will have no
2488          * effect.
2489          */
2490         if (vf->vf_reset && !rte_pci_set_bus_master(pci_dev, true))
2491                 vf->vf_reset = false;
2492
2493         return ret;
2494 }
2495
2496 static int
2497 iavf_dev_uninit(struct rte_eth_dev *dev)
2498 {
2499         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2500                 return -EPERM;
2501
2502         iavf_dev_close(dev);
2503
2504         return 0;
2505 }
2506
2507 /*
2508  * Reset VF device only to re-initialize resources in PMD layer
2509  */
2510 static int
2511 iavf_dev_reset(struct rte_eth_dev *dev)
2512 {
2513         int ret;
2514
2515         ret = iavf_dev_uninit(dev);
2516         if (ret)
2517                 return ret;
2518
2519         return iavf_dev_init(dev);
2520 }
2521
2522 static int
2523 iavf_dcf_cap_check_handler(__rte_unused const char *key,
2524                            const char *value, __rte_unused void *opaque)
2525 {
2526         if (strcmp(value, "dcf"))
2527                 return -1;
2528
2529         return 0;
2530 }
2531
2532 static int
2533 iavf_dcf_cap_selected(struct rte_devargs *devargs)
2534 {
2535         struct rte_kvargs *kvlist;
2536         const char *key = "cap";
2537         int ret = 0;
2538
2539         if (devargs == NULL)
2540                 return 0;
2541
2542         kvlist = rte_kvargs_parse(devargs->args, NULL);
2543         if (kvlist == NULL)
2544                 return 0;
2545
2546         if (!rte_kvargs_count(kvlist, key))
2547                 goto exit;
2548
2549         /* dcf capability selected when there's a key-value pair: cap=dcf */
2550         if (rte_kvargs_process(kvlist, key,
2551                                iavf_dcf_cap_check_handler, NULL) < 0)
2552                 goto exit;
2553
2554         ret = 1;
2555
2556 exit:
2557         rte_kvargs_free(kvlist);
2558         return ret;
2559 }
2560
2561 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2562                              struct rte_pci_device *pci_dev)
2563 {
2564         if (iavf_dcf_cap_selected(pci_dev->device.devargs))
2565                 return 1;
2566
2567         return rte_eth_dev_pci_generic_probe(pci_dev,
2568                 sizeof(struct iavf_adapter), iavf_dev_init);
2569 }
2570
2571 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
2572 {
2573         return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
2574 }
2575
2576 /* Adaptive virtual function driver struct */
2577 static struct rte_pci_driver rte_iavf_pmd = {
2578         .id_table = pci_id_iavf_map,
2579         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
2580         .probe = eth_iavf_pci_probe,
2581         .remove = eth_iavf_pci_remove,
2582 };
2583
2584 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
2585 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
2586 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
2587 RTE_PMD_REGISTER_PARAM_STRING(net_iavf, "cap=dcf");
2588 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_init, init, NOTICE);
2589 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_driver, driver, NOTICE);
2590 #ifdef RTE_ETHDEV_DEBUG_RX
2591 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_rx, rx, DEBUG);
2592 #endif
2593 #ifdef RTE_ETHDEV_DEBUG_TX
2594 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_tx, tx, DEBUG);
2595 #endif