net/mlx5: fix VLAN push/pop and decap actions with mirror
[dpdk.git] / drivers / net / iavf / iavf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <ethdev_driver.h>
23 #include <ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "iavf_generic_flow.h"
31 #include "rte_pmd_iavf.h"
32
33 /* devargs */
34 #define IAVF_PROTO_XTR_ARG         "proto_xtr"
35
36 static const char * const iavf_valid_args[] = {
37         IAVF_PROTO_XTR_ARG,
38         NULL
39 };
40
41 static const struct rte_mbuf_dynfield iavf_proto_xtr_metadata_param = {
42         .name = "intel_pmd_dynfield_proto_xtr_metadata",
43         .size = sizeof(uint32_t),
44         .align = __alignof__(uint32_t),
45         .flags = 0,
46 };
47
48 struct iavf_proto_xtr_ol {
49         const struct rte_mbuf_dynflag param;
50         uint64_t *ol_flag;
51         bool required;
52 };
53
54 static struct iavf_proto_xtr_ol iavf_proto_xtr_params[] = {
55         [IAVF_PROTO_XTR_VLAN] = {
56                 .param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
57                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_vlan_mask },
58         [IAVF_PROTO_XTR_IPV4] = {
59                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
60                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask },
61         [IAVF_PROTO_XTR_IPV6] = {
62                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
63                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask },
64         [IAVF_PROTO_XTR_IPV6_FLOW] = {
65                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
66                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask },
67         [IAVF_PROTO_XTR_TCP] = {
68                 .param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
69                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_tcp_mask },
70         [IAVF_PROTO_XTR_IP_OFFSET] = {
71                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
72                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask },
73 };
74
75 static int iavf_dev_configure(struct rte_eth_dev *dev);
76 static int iavf_dev_start(struct rte_eth_dev *dev);
77 static int iavf_dev_stop(struct rte_eth_dev *dev);
78 static int iavf_dev_close(struct rte_eth_dev *dev);
79 static int iavf_dev_reset(struct rte_eth_dev *dev);
80 static int iavf_dev_info_get(struct rte_eth_dev *dev,
81                              struct rte_eth_dev_info *dev_info);
82 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
83 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
84                              struct rte_eth_stats *stats);
85 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
86 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
87                                  struct rte_eth_xstat *xstats, unsigned int n);
88 static int iavf_dev_xstats_get_names(struct rte_eth_dev *dev,
89                                        struct rte_eth_xstat_name *xstats_names,
90                                        unsigned int limit);
91 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
92 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
93 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
94 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
95 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
96                                 struct rte_ether_addr *addr,
97                                 uint32_t index,
98                                 uint32_t pool);
99 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
100 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
101                                    uint16_t vlan_id, int on);
102 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
103 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
104                                    struct rte_eth_rss_reta_entry64 *reta_conf,
105                                    uint16_t reta_size);
106 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
107                                   struct rte_eth_rss_reta_entry64 *reta_conf,
108                                   uint16_t reta_size);
109 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
110                                    struct rte_eth_rss_conf *rss_conf);
111 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
112                                      struct rte_eth_rss_conf *rss_conf);
113 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
114 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
115                                          struct rte_ether_addr *mac_addr);
116 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
117                                         uint16_t queue_id);
118 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
119                                          uint16_t queue_id);
120 static int iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
121                                  const struct rte_flow_ops **ops);
122 static int iavf_set_mc_addr_list(struct rte_eth_dev *dev,
123                         struct rte_ether_addr *mc_addrs,
124                         uint32_t mc_addrs_num);
125
126 static const struct rte_pci_id pci_id_iavf_map[] = {
127         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
128         { .vendor_id = 0, /* sentinel */ },
129 };
130
131 struct rte_iavf_xstats_name_off {
132         char name[RTE_ETH_XSTATS_NAME_SIZE];
133         unsigned int offset;
134 };
135
136 static const struct rte_iavf_xstats_name_off rte_iavf_stats_strings[] = {
137         {"rx_bytes", offsetof(struct iavf_eth_stats, rx_bytes)},
138         {"rx_unicast_packets", offsetof(struct iavf_eth_stats, rx_unicast)},
139         {"rx_multicast_packets", offsetof(struct iavf_eth_stats, rx_multicast)},
140         {"rx_broadcast_packets", offsetof(struct iavf_eth_stats, rx_broadcast)},
141         {"rx_dropped_packets", offsetof(struct iavf_eth_stats, rx_discards)},
142         {"rx_unknown_protocol_packets", offsetof(struct iavf_eth_stats,
143                 rx_unknown_protocol)},
144         {"tx_bytes", offsetof(struct iavf_eth_stats, tx_bytes)},
145         {"tx_unicast_packets", offsetof(struct iavf_eth_stats, tx_unicast)},
146         {"tx_multicast_packets", offsetof(struct iavf_eth_stats, tx_multicast)},
147         {"tx_broadcast_packets", offsetof(struct iavf_eth_stats, tx_broadcast)},
148         {"tx_dropped_packets", offsetof(struct iavf_eth_stats, tx_discards)},
149         {"tx_error_packets", offsetof(struct iavf_eth_stats, tx_errors)},
150 };
151
152 #define IAVF_NB_XSTATS (sizeof(rte_iavf_stats_strings) / \
153                 sizeof(rte_iavf_stats_strings[0]))
154
155 static const struct eth_dev_ops iavf_eth_dev_ops = {
156         .dev_configure              = iavf_dev_configure,
157         .dev_start                  = iavf_dev_start,
158         .dev_stop                   = iavf_dev_stop,
159         .dev_close                  = iavf_dev_close,
160         .dev_reset                  = iavf_dev_reset,
161         .dev_infos_get              = iavf_dev_info_get,
162         .dev_supported_ptypes_get   = iavf_dev_supported_ptypes_get,
163         .link_update                = iavf_dev_link_update,
164         .stats_get                  = iavf_dev_stats_get,
165         .stats_reset                = iavf_dev_stats_reset,
166         .xstats_get                 = iavf_dev_xstats_get,
167         .xstats_get_names           = iavf_dev_xstats_get_names,
168         .xstats_reset               = iavf_dev_stats_reset,
169         .promiscuous_enable         = iavf_dev_promiscuous_enable,
170         .promiscuous_disable        = iavf_dev_promiscuous_disable,
171         .allmulticast_enable        = iavf_dev_allmulticast_enable,
172         .allmulticast_disable       = iavf_dev_allmulticast_disable,
173         .mac_addr_add               = iavf_dev_add_mac_addr,
174         .mac_addr_remove            = iavf_dev_del_mac_addr,
175         .set_mc_addr_list                       = iavf_set_mc_addr_list,
176         .vlan_filter_set            = iavf_dev_vlan_filter_set,
177         .vlan_offload_set           = iavf_dev_vlan_offload_set,
178         .rx_queue_start             = iavf_dev_rx_queue_start,
179         .rx_queue_stop              = iavf_dev_rx_queue_stop,
180         .tx_queue_start             = iavf_dev_tx_queue_start,
181         .tx_queue_stop              = iavf_dev_tx_queue_stop,
182         .rx_queue_setup             = iavf_dev_rx_queue_setup,
183         .rx_queue_release           = iavf_dev_rx_queue_release,
184         .tx_queue_setup             = iavf_dev_tx_queue_setup,
185         .tx_queue_release           = iavf_dev_tx_queue_release,
186         .mac_addr_set               = iavf_dev_set_default_mac_addr,
187         .reta_update                = iavf_dev_rss_reta_update,
188         .reta_query                 = iavf_dev_rss_reta_query,
189         .rss_hash_update            = iavf_dev_rss_hash_update,
190         .rss_hash_conf_get          = iavf_dev_rss_hash_conf_get,
191         .rxq_info_get               = iavf_dev_rxq_info_get,
192         .txq_info_get               = iavf_dev_txq_info_get,
193         .mtu_set                    = iavf_dev_mtu_set,
194         .rx_queue_intr_enable       = iavf_dev_rx_queue_intr_enable,
195         .rx_queue_intr_disable      = iavf_dev_rx_queue_intr_disable,
196         .flow_ops_get               = iavf_dev_flow_ops_get,
197         .tx_done_cleanup            = iavf_dev_tx_done_cleanup,
198         .get_monitor_addr           = iavf_get_monitor_addr,
199 };
200
201 static int
202 iavf_set_mc_addr_list(struct rte_eth_dev *dev,
203                         struct rte_ether_addr *mc_addrs,
204                         uint32_t mc_addrs_num)
205 {
206         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
207         struct iavf_adapter *adapter =
208                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
209         int err, ret;
210
211         if (mc_addrs_num > IAVF_NUM_MACADDR_MAX) {
212                 PMD_DRV_LOG(ERR,
213                             "can't add more than a limited number (%u) of addresses.",
214                             (uint32_t)IAVF_NUM_MACADDR_MAX);
215                 return -EINVAL;
216         }
217
218         /* flush previous addresses */
219         err = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
220                                         false);
221         if (err)
222                 return err;
223
224         /* add new ones */
225         err = iavf_add_del_mc_addr_list(adapter, mc_addrs, mc_addrs_num, true);
226
227         if (err) {
228                 /* if adding mac address list fails, should add the previous
229                  * addresses back.
230                  */
231                 ret = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs,
232                                                 vf->mc_addrs_num, true);
233                 if (ret)
234                         return ret;
235         } else {
236                 vf->mc_addrs_num = mc_addrs_num;
237                 memcpy(vf->mc_addrs,
238                        mc_addrs, mc_addrs_num * sizeof(*mc_addrs));
239         }
240
241         return err;
242 }
243
244 static int
245 iavf_init_rss(struct iavf_adapter *adapter)
246 {
247         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
248         struct rte_eth_rss_conf *rss_conf;
249         uint16_t i, j, nb_q;
250         int ret;
251
252         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
253         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
254                        vf->max_rss_qregion);
255
256         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
257                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
258                 return -ENOTSUP;
259         }
260         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
261                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
262                 /* set all lut items to default queue */
263                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
264                         vf->rss_lut[i] = 0;
265                 ret = iavf_configure_rss_lut(adapter);
266                 return ret;
267         }
268
269         /* configure RSS key */
270         if (!rss_conf->rss_key) {
271                 /* Calculate the default hash key */
272                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
273                         vf->rss_key[i] = (uint8_t)rte_rand();
274         } else
275                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
276                            RTE_MIN(rss_conf->rss_key_len,
277                                    vf->vf_res->rss_key_size));
278
279         /* init RSS LUT table */
280         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
281                 if (j >= nb_q)
282                         j = 0;
283                 vf->rss_lut[i] = j;
284         }
285         /* send virtchnnl ops to configure rss*/
286         ret = iavf_configure_rss_lut(adapter);
287         if (ret)
288                 return ret;
289         ret = iavf_configure_rss_key(adapter);
290         if (ret)
291                 return ret;
292
293         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
294                 /* Set RSS hash configuration based on rss_conf->rss_hf. */
295                 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
296                 if (ret) {
297                         PMD_DRV_LOG(ERR, "fail to set default RSS");
298                         return ret;
299                 }
300         }
301
302         return 0;
303 }
304
305 static int
306 iavf_queues_req_reset(struct rte_eth_dev *dev, uint16_t num)
307 {
308         struct iavf_adapter *ad =
309                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
310         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
311         int ret;
312
313         ret = iavf_request_queues(ad, num);
314         if (ret) {
315                 PMD_DRV_LOG(ERR, "request queues from PF failed");
316                 return ret;
317         }
318         PMD_DRV_LOG(INFO, "change queue pairs from %u to %u",
319                         vf->vsi_res->num_queue_pairs, num);
320
321         ret = iavf_dev_reset(dev);
322         if (ret) {
323                 PMD_DRV_LOG(ERR, "vf reset failed");
324                 return ret;
325         }
326
327         return 0;
328 }
329
330 static int
331 iavf_dev_vlan_insert_set(struct rte_eth_dev *dev)
332 {
333         struct iavf_adapter *adapter =
334                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
335         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
336         bool enable;
337
338         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2))
339                 return 0;
340
341         enable = !!(dev->data->dev_conf.txmode.offloads &
342                     DEV_TX_OFFLOAD_VLAN_INSERT);
343         iavf_config_vlan_insert_v2(adapter, enable);
344
345         return 0;
346 }
347
348 static int
349 iavf_dev_init_vlan(struct rte_eth_dev *dev)
350 {
351         int err;
352
353         err = iavf_dev_vlan_offload_set(dev,
354                                         ETH_VLAN_STRIP_MASK |
355                                         ETH_QINQ_STRIP_MASK |
356                                         ETH_VLAN_FILTER_MASK |
357                                         ETH_VLAN_EXTEND_MASK);
358         if (err) {
359                 PMD_DRV_LOG(ERR, "Failed to update vlan offload");
360                 return err;
361         }
362
363         err = iavf_dev_vlan_insert_set(dev);
364         if (err)
365                 PMD_DRV_LOG(ERR, "Failed to update vlan insertion");
366
367         return err;
368 }
369
370 static int
371 iavf_dev_configure(struct rte_eth_dev *dev)
372 {
373         struct iavf_adapter *ad =
374                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
375         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
376         uint16_t num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
377                 dev->data->nb_tx_queues);
378         int ret;
379
380         ad->rx_bulk_alloc_allowed = true;
381         /* Initialize to TRUE. If any of Rx queues doesn't meet the
382          * vector Rx/Tx preconditions, it will be reset.
383          */
384         ad->rx_vec_allowed = true;
385         ad->tx_vec_allowed = true;
386
387         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
388                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
389
390         /* Large VF setting */
391         if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT) {
392                 if (!(vf->vf_res->vf_cap_flags &
393                                 VIRTCHNL_VF_LARGE_NUM_QPAIRS)) {
394                         PMD_DRV_LOG(ERR, "large VF is not supported");
395                         return -1;
396                 }
397
398                 if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_LV) {
399                         PMD_DRV_LOG(ERR, "queue pairs number cannot be larger than %u",
400                                 IAVF_MAX_NUM_QUEUES_LV);
401                         return -1;
402                 }
403
404                 ret = iavf_queues_req_reset(dev, num_queue_pairs);
405                 if (ret)
406                         return ret;
407
408                 ret = iavf_get_max_rss_queue_region(ad);
409                 if (ret) {
410                         PMD_INIT_LOG(ERR, "get max rss queue region failed");
411                         return ret;
412                 }
413
414                 vf->lv_enabled = true;
415         } else {
416                 /* Check if large VF is already enabled. If so, disable and
417                  * release redundant queue resource.
418                  * Or check if enough queue pairs. If not, request them from PF.
419                  */
420                 if (vf->lv_enabled ||
421                     num_queue_pairs > vf->vsi_res->num_queue_pairs) {
422                         ret = iavf_queues_req_reset(dev, num_queue_pairs);
423                         if (ret)
424                                 return ret;
425
426                         vf->lv_enabled = false;
427                 }
428                 /* if large VF is not required, use default rss queue region */
429                 vf->max_rss_qregion = IAVF_MAX_NUM_QUEUES_DFLT;
430         }
431
432         ret = iavf_dev_init_vlan(dev);
433         if (ret)
434                 PMD_DRV_LOG(ERR, "configure VLAN failed: %d", ret);
435
436         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
437                 if (iavf_init_rss(ad) != 0) {
438                         PMD_DRV_LOG(ERR, "configure rss failed");
439                         return -1;
440                 }
441         }
442         return 0;
443 }
444
445 static int
446 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
447 {
448         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
449         struct rte_eth_dev_data *dev_data = dev->data;
450         uint16_t buf_size, max_pkt_len, len;
451
452         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
453
454         /* Calculate the maximum packet length allowed */
455         len = rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS;
456         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
457
458         /* Check if the jumbo frame and maximum packet length are set
459          * correctly.
460          */
461         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
462                 if (max_pkt_len <= IAVF_ETH_MAX_LEN ||
463                     max_pkt_len > IAVF_FRAME_SIZE_MAX) {
464                         PMD_DRV_LOG(ERR, "maximum packet length must be "
465                                     "larger than %u and smaller than %u, "
466                                     "as jumbo frame is enabled",
467                                     (uint32_t)IAVF_ETH_MAX_LEN,
468                                     (uint32_t)IAVF_FRAME_SIZE_MAX);
469                         return -EINVAL;
470                 }
471         } else {
472                 if (max_pkt_len < RTE_ETHER_MIN_LEN ||
473                     max_pkt_len > IAVF_ETH_MAX_LEN) {
474                         PMD_DRV_LOG(ERR, "maximum packet length must be "
475                                     "larger than %u and smaller than %u, "
476                                     "as jumbo frame is disabled",
477                                     (uint32_t)RTE_ETHER_MIN_LEN,
478                                     (uint32_t)IAVF_ETH_MAX_LEN);
479                         return -EINVAL;
480                 }
481         }
482
483         rxq->max_pkt_len = max_pkt_len;
484         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
485             rxq->max_pkt_len > buf_size) {
486                 dev_data->scattered_rx = 1;
487         }
488         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
489         IAVF_WRITE_FLUSH(hw);
490
491         return 0;
492 }
493
494 static int
495 iavf_init_queues(struct rte_eth_dev *dev)
496 {
497         struct iavf_rx_queue **rxq =
498                 (struct iavf_rx_queue **)dev->data->rx_queues;
499         int i, ret = IAVF_SUCCESS;
500
501         for (i = 0; i < dev->data->nb_rx_queues; i++) {
502                 if (!rxq[i] || !rxq[i]->q_set)
503                         continue;
504                 ret = iavf_init_rxq(dev, rxq[i]);
505                 if (ret != IAVF_SUCCESS)
506                         break;
507         }
508         /* set rx/tx function to vector/scatter/single-segment
509          * according to parameters
510          */
511         iavf_set_rx_function(dev);
512         iavf_set_tx_function(dev);
513
514         return ret;
515 }
516
517 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
518                                      struct rte_intr_handle *intr_handle)
519 {
520         struct iavf_adapter *adapter =
521                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
522         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
523         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
524         struct iavf_qv_map *qv_map;
525         uint16_t interval, i;
526         int vec;
527
528         if (rte_intr_cap_multiple(intr_handle) &&
529             dev->data->dev_conf.intr_conf.rxq) {
530                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
531                         return -1;
532         }
533
534         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
535                 intr_handle->intr_vec =
536                         rte_zmalloc("intr_vec",
537                                     dev->data->nb_rx_queues * sizeof(int), 0);
538                 if (!intr_handle->intr_vec) {
539                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
540                                     dev->data->nb_rx_queues);
541                         return -1;
542                 }
543         }
544
545         qv_map = rte_zmalloc("qv_map",
546                 dev->data->nb_rx_queues * sizeof(struct iavf_qv_map), 0);
547         if (!qv_map) {
548                 PMD_DRV_LOG(ERR, "Failed to allocate %d queue-vector map",
549                                 dev->data->nb_rx_queues);
550                 return -1;
551         }
552
553         if (!dev->data->dev_conf.intr_conf.rxq ||
554             !rte_intr_dp_is_en(intr_handle)) {
555                 /* Rx interrupt disabled, Map interrupt only for writeback */
556                 vf->nb_msix = 1;
557                 if (vf->vf_res->vf_cap_flags &
558                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
559                         /* If WB_ON_ITR supports, enable it */
560                         vf->msix_base = IAVF_RX_VEC_START;
561                         /* Set the ITR for index zero, to 2us to make sure that
562                          * we leave time for aggregation to occur, but don't
563                          * increase latency dramatically.
564                          */
565                         IAVF_WRITE_REG(hw,
566                                        IAVF_VFINT_DYN_CTLN1(vf->msix_base - 1),
567                                        (0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
568                                        IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
569                                        (2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
570                         /* debug - check for success! the return value
571                          * should be 2, offset is 0x2800
572                          */
573                         /* IAVF_READ_REG(hw, IAVF_VFINT_ITRN1(0, 0)); */
574                 } else {
575                         /* If no WB_ON_ITR offload flags, need to set
576                          * interrupt for descriptor write back.
577                          */
578                         vf->msix_base = IAVF_MISC_VEC_ID;
579
580                         /* set ITR to max */
581                         interval = iavf_calc_itr_interval(
582                                         IAVF_QUEUE_ITR_INTERVAL_MAX);
583                         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
584                                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
585                                        (IAVF_ITR_INDEX_DEFAULT <<
586                                         IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
587                                        (interval <<
588                                         IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
589                 }
590                 IAVF_WRITE_FLUSH(hw);
591                 /* map all queues to the same interrupt */
592                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
593                         qv_map[i].queue_id = i;
594                         qv_map[i].vector_id = vf->msix_base;
595                 }
596                 vf->qv_map = qv_map;
597         } else {
598                 if (!rte_intr_allow_others(intr_handle)) {
599                         vf->nb_msix = 1;
600                         vf->msix_base = IAVF_MISC_VEC_ID;
601                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
602                                 qv_map[i].queue_id = i;
603                                 qv_map[i].vector_id = vf->msix_base;
604                                 intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID;
605                         }
606                         vf->qv_map = qv_map;
607                         PMD_DRV_LOG(DEBUG,
608                                     "vector %u are mapping to all Rx queues",
609                                     vf->msix_base);
610                 } else {
611                         /* If Rx interrupt is reuquired, and we can use
612                          * multi interrupts, then the vec is from 1
613                          */
614                         vf->nb_msix = RTE_MIN(intr_handle->nb_efd,
615                                  (uint16_t)(vf->vf_res->max_vectors - 1));
616                         vf->msix_base = IAVF_RX_VEC_START;
617                         vec = IAVF_RX_VEC_START;
618                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
619                                 qv_map[i].queue_id = i;
620                                 qv_map[i].vector_id = vec;
621                                 intr_handle->intr_vec[i] = vec++;
622                                 if (vec >= vf->nb_msix + IAVF_RX_VEC_START)
623                                         vec = IAVF_RX_VEC_START;
624                         }
625                         vf->qv_map = qv_map;
626                         PMD_DRV_LOG(DEBUG,
627                                     "%u vectors are mapping to %u Rx queues",
628                                     vf->nb_msix, dev->data->nb_rx_queues);
629                 }
630         }
631
632         if (!vf->lv_enabled) {
633                 if (iavf_config_irq_map(adapter)) {
634                         PMD_DRV_LOG(ERR, "config interrupt mapping failed");
635                         return -1;
636                 }
637         } else {
638                 uint16_t num_qv_maps = dev->data->nb_rx_queues;
639                 uint16_t index = 0;
640
641                 while (num_qv_maps > IAVF_IRQ_MAP_NUM_PER_BUF) {
642                         if (iavf_config_irq_map_lv(adapter,
643                                         IAVF_IRQ_MAP_NUM_PER_BUF, index)) {
644                                 PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
645                                 return -1;
646                         }
647                         num_qv_maps -= IAVF_IRQ_MAP_NUM_PER_BUF;
648                         index += IAVF_IRQ_MAP_NUM_PER_BUF;
649                 }
650
651                 if (iavf_config_irq_map_lv(adapter, num_qv_maps, index)) {
652                         PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
653                         return -1;
654                 }
655         }
656         return 0;
657 }
658
659 static int
660 iavf_start_queues(struct rte_eth_dev *dev)
661 {
662         struct iavf_rx_queue *rxq;
663         struct iavf_tx_queue *txq;
664         int i;
665
666         for (i = 0; i < dev->data->nb_tx_queues; i++) {
667                 txq = dev->data->tx_queues[i];
668                 if (txq->tx_deferred_start)
669                         continue;
670                 if (iavf_dev_tx_queue_start(dev, i) != 0) {
671                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
672                         return -1;
673                 }
674         }
675
676         for (i = 0; i < dev->data->nb_rx_queues; i++) {
677                 rxq = dev->data->rx_queues[i];
678                 if (rxq->rx_deferred_start)
679                         continue;
680                 if (iavf_dev_rx_queue_start(dev, i) != 0) {
681                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
682                         return -1;
683                 }
684         }
685
686         return 0;
687 }
688
689 static int
690 iavf_dev_start(struct rte_eth_dev *dev)
691 {
692         struct iavf_adapter *adapter =
693                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
694         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
695         struct rte_intr_handle *intr_handle = dev->intr_handle;
696         uint16_t num_queue_pairs;
697         uint16_t index = 0;
698
699         PMD_INIT_FUNC_TRACE();
700
701         adapter->stopped = 0;
702
703         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
704         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
705                                       dev->data->nb_tx_queues);
706         num_queue_pairs = vf->num_queue_pairs;
707
708         if (iavf_init_queues(dev) != 0) {
709                 PMD_DRV_LOG(ERR, "failed to do Queue init");
710                 return -1;
711         }
712
713         /* If needed, send configure queues msg multiple times to make the
714          * adminq buffer length smaller than the 4K limitation.
715          */
716         while (num_queue_pairs > IAVF_CFG_Q_NUM_PER_BUF) {
717                 if (iavf_configure_queues(adapter,
718                                 IAVF_CFG_Q_NUM_PER_BUF, index) != 0) {
719                         PMD_DRV_LOG(ERR, "configure queues failed");
720                         goto err_queue;
721                 }
722                 num_queue_pairs -= IAVF_CFG_Q_NUM_PER_BUF;
723                 index += IAVF_CFG_Q_NUM_PER_BUF;
724         }
725
726         if (iavf_configure_queues(adapter, num_queue_pairs, index) != 0) {
727                 PMD_DRV_LOG(ERR, "configure queues failed");
728                 goto err_queue;
729         }
730
731         if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
732                 PMD_DRV_LOG(ERR, "configure irq failed");
733                 goto err_queue;
734         }
735         /* re-enable intr again, because efd assign may change */
736         if (dev->data->dev_conf.intr_conf.rxq != 0) {
737                 rte_intr_disable(intr_handle);
738                 rte_intr_enable(intr_handle);
739         }
740
741         /* Set all mac addrs */
742         iavf_add_del_all_mac_addr(adapter, true);
743
744         /* Set all multicast addresses */
745         iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
746                                   true);
747
748         if (iavf_start_queues(dev) != 0) {
749                 PMD_DRV_LOG(ERR, "enable queues failed");
750                 goto err_mac;
751         }
752
753         return 0;
754
755 err_mac:
756         iavf_add_del_all_mac_addr(adapter, false);
757 err_queue:
758         return -1;
759 }
760
761 static int
762 iavf_dev_stop(struct rte_eth_dev *dev)
763 {
764         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
765         struct iavf_adapter *adapter =
766                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
767         struct rte_intr_handle *intr_handle = dev->intr_handle;
768
769         PMD_INIT_FUNC_TRACE();
770
771         if (adapter->stopped == 1)
772                 return 0;
773
774         iavf_stop_queues(dev);
775
776         /* Disable the interrupt for Rx */
777         rte_intr_efd_disable(intr_handle);
778         /* Rx interrupt vector mapping free */
779         if (intr_handle->intr_vec) {
780                 rte_free(intr_handle->intr_vec);
781                 intr_handle->intr_vec = NULL;
782         }
783
784         /* remove all mac addrs */
785         iavf_add_del_all_mac_addr(adapter, false);
786
787         /* remove all multicast addresses */
788         iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
789                                   false);
790
791         adapter->stopped = 1;
792         dev->data->dev_started = 0;
793
794         return 0;
795 }
796
797 static int
798 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
799 {
800         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
801
802         dev_info->max_rx_queues = IAVF_MAX_NUM_QUEUES_LV;
803         dev_info->max_tx_queues = IAVF_MAX_NUM_QUEUES_LV;
804         dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
805         dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
806         dev_info->max_mtu = dev_info->max_rx_pktlen - IAVF_ETH_OVERHEAD;
807         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
808         dev_info->hash_key_size = vf->vf_res->rss_key_size;
809         dev_info->reta_size = vf->vf_res->rss_lut_size;
810         dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
811         dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
812         dev_info->rx_offload_capa =
813                 DEV_RX_OFFLOAD_VLAN_STRIP |
814                 DEV_RX_OFFLOAD_QINQ_STRIP |
815                 DEV_RX_OFFLOAD_IPV4_CKSUM |
816                 DEV_RX_OFFLOAD_UDP_CKSUM |
817                 DEV_RX_OFFLOAD_TCP_CKSUM |
818                 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
819                 DEV_RX_OFFLOAD_SCATTER |
820                 DEV_RX_OFFLOAD_JUMBO_FRAME |
821                 DEV_RX_OFFLOAD_VLAN_FILTER |
822                 DEV_RX_OFFLOAD_RSS_HASH;
823
824         dev_info->tx_offload_capa =
825                 DEV_TX_OFFLOAD_VLAN_INSERT |
826                 DEV_TX_OFFLOAD_QINQ_INSERT |
827                 DEV_TX_OFFLOAD_IPV4_CKSUM |
828                 DEV_TX_OFFLOAD_UDP_CKSUM |
829                 DEV_TX_OFFLOAD_TCP_CKSUM |
830                 DEV_TX_OFFLOAD_SCTP_CKSUM |
831                 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
832                 DEV_TX_OFFLOAD_TCP_TSO |
833                 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
834                 DEV_TX_OFFLOAD_GRE_TNL_TSO |
835                 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
836                 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
837                 DEV_TX_OFFLOAD_MULTI_SEGS |
838                 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
839
840         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_CRC)
841                 dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_KEEP_CRC;
842
843         dev_info->default_rxconf = (struct rte_eth_rxconf) {
844                 .rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
845                 .rx_drop_en = 0,
846                 .offloads = 0,
847         };
848
849         dev_info->default_txconf = (struct rte_eth_txconf) {
850                 .tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
851                 .tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
852                 .offloads = 0,
853         };
854
855         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
856                 .nb_max = IAVF_MAX_RING_DESC,
857                 .nb_min = IAVF_MIN_RING_DESC,
858                 .nb_align = IAVF_ALIGN_RING_DESC,
859         };
860
861         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
862                 .nb_max = IAVF_MAX_RING_DESC,
863                 .nb_min = IAVF_MIN_RING_DESC,
864                 .nb_align = IAVF_ALIGN_RING_DESC,
865         };
866
867         return 0;
868 }
869
870 static const uint32_t *
871 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
872 {
873         static const uint32_t ptypes[] = {
874                 RTE_PTYPE_L2_ETHER,
875                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
876                 RTE_PTYPE_L4_FRAG,
877                 RTE_PTYPE_L4_ICMP,
878                 RTE_PTYPE_L4_NONFRAG,
879                 RTE_PTYPE_L4_SCTP,
880                 RTE_PTYPE_L4_TCP,
881                 RTE_PTYPE_L4_UDP,
882                 RTE_PTYPE_UNKNOWN
883         };
884         return ptypes;
885 }
886
887 int
888 iavf_dev_link_update(struct rte_eth_dev *dev,
889                     __rte_unused int wait_to_complete)
890 {
891         struct rte_eth_link new_link;
892         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
893
894         memset(&new_link, 0, sizeof(new_link));
895
896         /* Only read status info stored in VF, and the info is updated
897          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
898          */
899         switch (vf->link_speed) {
900         case 10:
901                 new_link.link_speed = ETH_SPEED_NUM_10M;
902                 break;
903         case 100:
904                 new_link.link_speed = ETH_SPEED_NUM_100M;
905                 break;
906         case 1000:
907                 new_link.link_speed = ETH_SPEED_NUM_1G;
908                 break;
909         case 10000:
910                 new_link.link_speed = ETH_SPEED_NUM_10G;
911                 break;
912         case 20000:
913                 new_link.link_speed = ETH_SPEED_NUM_20G;
914                 break;
915         case 25000:
916                 new_link.link_speed = ETH_SPEED_NUM_25G;
917                 break;
918         case 40000:
919                 new_link.link_speed = ETH_SPEED_NUM_40G;
920                 break;
921         case 50000:
922                 new_link.link_speed = ETH_SPEED_NUM_50G;
923                 break;
924         case 100000:
925                 new_link.link_speed = ETH_SPEED_NUM_100G;
926                 break;
927         default:
928                 new_link.link_speed = ETH_SPEED_NUM_NONE;
929                 break;
930         }
931
932         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
933         new_link.link_status = vf->link_up ? ETH_LINK_UP :
934                                              ETH_LINK_DOWN;
935         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
936                                 ETH_LINK_SPEED_FIXED);
937
938         return rte_eth_linkstatus_set(dev, &new_link);
939 }
940
941 static int
942 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
943 {
944         struct iavf_adapter *adapter =
945                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
946         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
947
948         return iavf_config_promisc(adapter,
949                                   true, vf->promisc_multicast_enabled);
950 }
951
952 static int
953 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
954 {
955         struct iavf_adapter *adapter =
956                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
957         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
958
959         return iavf_config_promisc(adapter,
960                                   false, vf->promisc_multicast_enabled);
961 }
962
963 static int
964 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
965 {
966         struct iavf_adapter *adapter =
967                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
968         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
969
970         return iavf_config_promisc(adapter,
971                                   vf->promisc_unicast_enabled, true);
972 }
973
974 static int
975 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
976 {
977         struct iavf_adapter *adapter =
978                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
979         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
980
981         return iavf_config_promisc(adapter,
982                                   vf->promisc_unicast_enabled, false);
983 }
984
985 static int
986 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
987                      __rte_unused uint32_t index,
988                      __rte_unused uint32_t pool)
989 {
990         struct iavf_adapter *adapter =
991                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
992         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
993         int err;
994
995         if (rte_is_zero_ether_addr(addr)) {
996                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
997                 return -EINVAL;
998         }
999
1000         err = iavf_add_del_eth_addr(adapter, addr, true, VIRTCHNL_ETHER_ADDR_EXTRA);
1001         if (err) {
1002                 PMD_DRV_LOG(ERR, "fail to add MAC address");
1003                 return -EIO;
1004         }
1005
1006         vf->mac_num++;
1007
1008         return 0;
1009 }
1010
1011 static void
1012 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
1013 {
1014         struct iavf_adapter *adapter =
1015                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1016         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1017         struct rte_ether_addr *addr;
1018         int err;
1019
1020         addr = &dev->data->mac_addrs[index];
1021
1022         err = iavf_add_del_eth_addr(adapter, addr, false, VIRTCHNL_ETHER_ADDR_EXTRA);
1023         if (err)
1024                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
1025
1026         vf->mac_num--;
1027 }
1028
1029 static int
1030 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1031 {
1032         struct iavf_adapter *adapter =
1033                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1034         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1035         int err;
1036
1037         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
1038                 err = iavf_add_del_vlan_v2(adapter, vlan_id, on);
1039                 if (err)
1040                         return -EIO;
1041                 return 0;
1042         }
1043
1044         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1045                 return -ENOTSUP;
1046
1047         err = iavf_add_del_vlan(adapter, vlan_id, on);
1048         if (err)
1049                 return -EIO;
1050         return 0;
1051 }
1052
1053 static void
1054 iavf_iterate_vlan_filters_v2(struct rte_eth_dev *dev, bool enable)
1055 {
1056         struct rte_vlan_filter_conf *vfc = &dev->data->vlan_filter_conf;
1057         struct iavf_adapter *adapter =
1058                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1059         uint32_t i, j;
1060         uint64_t ids;
1061
1062         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1063                 if (vfc->ids[i] == 0)
1064                         continue;
1065
1066                 ids = vfc->ids[i];
1067                 for (j = 0; ids != 0 && j < 64; j++, ids >>= 1) {
1068                         if (ids & 1)
1069                                 iavf_add_del_vlan_v2(adapter,
1070                                                      64 * i + j, enable);
1071                 }
1072         }
1073 }
1074
1075 static int
1076 iavf_dev_vlan_offload_set_v2(struct rte_eth_dev *dev, int mask)
1077 {
1078         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1079         struct iavf_adapter *adapter =
1080                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1081         bool enable;
1082         int err;
1083
1084         if (mask & ETH_VLAN_FILTER_MASK) {
1085                 enable = !!(rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER);
1086
1087                 iavf_iterate_vlan_filters_v2(dev, enable);
1088         }
1089
1090         if (mask & ETH_VLAN_STRIP_MASK) {
1091                 enable = !!(rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP);
1092
1093                 err = iavf_config_vlan_strip_v2(adapter, enable);
1094                 /* If not support, the stripping is already disabled by PF */
1095                 if (err == -ENOTSUP && !enable)
1096                         err = 0;
1097                 if (err)
1098                         return -EIO;
1099         }
1100
1101         return 0;
1102 }
1103
1104 static int
1105 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1106 {
1107         struct iavf_adapter *adapter =
1108                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1109         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1110         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1111         int err;
1112
1113         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2)
1114                 return iavf_dev_vlan_offload_set_v2(dev, mask);
1115
1116         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1117                 return -ENOTSUP;
1118
1119         /* Vlan stripping setting */
1120         if (mask & ETH_VLAN_STRIP_MASK) {
1121                 /* Enable or disable VLAN stripping */
1122                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1123                         err = iavf_enable_vlan_strip(adapter);
1124                 else
1125                         err = iavf_disable_vlan_strip(adapter);
1126
1127                 if (err)
1128                         return -EIO;
1129         }
1130         return 0;
1131 }
1132
1133 static int
1134 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
1135                         struct rte_eth_rss_reta_entry64 *reta_conf,
1136                         uint16_t reta_size)
1137 {
1138         struct iavf_adapter *adapter =
1139                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1140         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1141         uint8_t *lut;
1142         uint16_t i, idx, shift;
1143         int ret;
1144
1145         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1146                 return -ENOTSUP;
1147
1148         if (reta_size != vf->vf_res->rss_lut_size) {
1149                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1150                         "(%d) doesn't match the number of hardware can "
1151                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1152                 return -EINVAL;
1153         }
1154
1155         lut = rte_zmalloc("rss_lut", reta_size, 0);
1156         if (!lut) {
1157                 PMD_DRV_LOG(ERR, "No memory can be allocated");
1158                 return -ENOMEM;
1159         }
1160         /* store the old lut table temporarily */
1161         rte_memcpy(lut, vf->rss_lut, reta_size);
1162
1163         for (i = 0; i < reta_size; i++) {
1164                 idx = i / RTE_RETA_GROUP_SIZE;
1165                 shift = i % RTE_RETA_GROUP_SIZE;
1166                 if (reta_conf[idx].mask & (1ULL << shift))
1167                         lut[i] = reta_conf[idx].reta[shift];
1168         }
1169
1170         rte_memcpy(vf->rss_lut, lut, reta_size);
1171         /* send virtchnnl ops to configure rss*/
1172         ret = iavf_configure_rss_lut(adapter);
1173         if (ret) /* revert back */
1174                 rte_memcpy(vf->rss_lut, lut, reta_size);
1175         rte_free(lut);
1176
1177         return ret;
1178 }
1179
1180 static int
1181 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
1182                        struct rte_eth_rss_reta_entry64 *reta_conf,
1183                        uint16_t reta_size)
1184 {
1185         struct iavf_adapter *adapter =
1186                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1187         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1188         uint16_t i, idx, shift;
1189
1190         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1191                 return -ENOTSUP;
1192
1193         if (reta_size != vf->vf_res->rss_lut_size) {
1194                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1195                         "(%d) doesn't match the number of hardware can "
1196                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1197                 return -EINVAL;
1198         }
1199
1200         for (i = 0; i < reta_size; i++) {
1201                 idx = i / RTE_RETA_GROUP_SIZE;
1202                 shift = i % RTE_RETA_GROUP_SIZE;
1203                 if (reta_conf[idx].mask & (1ULL << shift))
1204                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
1205         }
1206
1207         return 0;
1208 }
1209
1210 static int
1211 iavf_set_rss_key(struct iavf_adapter *adapter, uint8_t *key, uint8_t key_len)
1212 {
1213         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1214
1215         /* HENA setting, it is enabled by default, no change */
1216         if (!key || key_len == 0) {
1217                 PMD_DRV_LOG(DEBUG, "No key to be configured");
1218                 return 0;
1219         } else if (key_len != vf->vf_res->rss_key_size) {
1220                 PMD_DRV_LOG(ERR, "The size of hash key configured "
1221                         "(%d) doesn't match the size of hardware can "
1222                         "support (%d)", key_len,
1223                         vf->vf_res->rss_key_size);
1224                 return -EINVAL;
1225         }
1226
1227         rte_memcpy(vf->rss_key, key, key_len);
1228
1229         return iavf_configure_rss_key(adapter);
1230 }
1231
1232 static int
1233 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
1234                         struct rte_eth_rss_conf *rss_conf)
1235 {
1236         struct iavf_adapter *adapter =
1237                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1238         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1239         int ret;
1240
1241         adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf = *rss_conf;
1242
1243         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1244                 return -ENOTSUP;
1245
1246         /* Set hash key. */
1247         ret = iavf_set_rss_key(adapter, rss_conf->rss_key,
1248                                rss_conf->rss_key_len);
1249         if (ret)
1250                 return ret;
1251
1252         if (rss_conf->rss_hf == 0) {
1253                 vf->rss_hf = 0;
1254                 ret = iavf_set_hena(adapter, 0);
1255
1256                 /* It is a workaround, temporarily allow error to be returned
1257                  * due to possible lack of PF handling for hena = 0.
1258                  */
1259                 if (ret)
1260                         PMD_DRV_LOG(WARNING, "fail to clean existing RSS, lack PF support");
1261                 return 0;
1262         }
1263
1264         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
1265                 /* Clear existing RSS. */
1266                 ret = iavf_set_hena(adapter, 0);
1267
1268                 /* It is a workaround, temporarily allow error to be returned
1269                  * due to possible lack of PF handling for hena = 0.
1270                  */
1271                 if (ret)
1272                         PMD_DRV_LOG(WARNING, "fail to clean existing RSS,"
1273                                     "lack PF support");
1274
1275                 /* Set new RSS configuration. */
1276                 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
1277                 if (ret) {
1278                         PMD_DRV_LOG(ERR, "fail to set new RSS");
1279                         return ret;
1280                 }
1281         }
1282
1283         return 0;
1284 }
1285
1286 static int
1287 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1288                           struct rte_eth_rss_conf *rss_conf)
1289 {
1290         struct iavf_adapter *adapter =
1291                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1292         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1293
1294         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1295                 return -ENOTSUP;
1296
1297         rss_conf->rss_hf = vf->rss_hf;
1298
1299         if (!rss_conf->rss_key)
1300                 return 0;
1301
1302         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
1303         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
1304
1305         return 0;
1306 }
1307
1308 static int
1309 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1310 {
1311         uint32_t frame_size = mtu + IAVF_ETH_OVERHEAD;
1312         int ret = 0;
1313
1314         if (mtu < RTE_ETHER_MIN_MTU || frame_size > IAVF_FRAME_SIZE_MAX)
1315                 return -EINVAL;
1316
1317         /* mtu setting is forbidden if port is start */
1318         if (dev->data->dev_started) {
1319                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
1320                 return -EBUSY;
1321         }
1322
1323         if (frame_size > IAVF_ETH_MAX_LEN)
1324                 dev->data->dev_conf.rxmode.offloads |=
1325                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
1326         else
1327                 dev->data->dev_conf.rxmode.offloads &=
1328                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1329
1330         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1331
1332         return ret;
1333 }
1334
1335 static int
1336 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
1337                              struct rte_ether_addr *mac_addr)
1338 {
1339         struct iavf_adapter *adapter =
1340                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1341         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1342         struct rte_ether_addr *old_addr;
1343         int ret;
1344
1345         old_addr = (struct rte_ether_addr *)hw->mac.addr;
1346
1347         if (rte_is_same_ether_addr(old_addr, mac_addr))
1348                 return 0;
1349
1350         ret = iavf_add_del_eth_addr(adapter, old_addr, false, VIRTCHNL_ETHER_ADDR_PRIMARY);
1351         if (ret)
1352                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
1353                             " %02X:%02X:%02X:%02X:%02X:%02X",
1354                             old_addr->addr_bytes[0],
1355                             old_addr->addr_bytes[1],
1356                             old_addr->addr_bytes[2],
1357                             old_addr->addr_bytes[3],
1358                             old_addr->addr_bytes[4],
1359                             old_addr->addr_bytes[5]);
1360
1361         ret = iavf_add_del_eth_addr(adapter, mac_addr, true, VIRTCHNL_ETHER_ADDR_PRIMARY);
1362         if (ret)
1363                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1364                             " %02X:%02X:%02X:%02X:%02X:%02X",
1365                             mac_addr->addr_bytes[0],
1366                             mac_addr->addr_bytes[1],
1367                             mac_addr->addr_bytes[2],
1368                             mac_addr->addr_bytes[3],
1369                             mac_addr->addr_bytes[4],
1370                             mac_addr->addr_bytes[5]);
1371
1372         if (ret)
1373                 return -EIO;
1374
1375         rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1376         return 0;
1377 }
1378
1379 static void
1380 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1381 {
1382         if (*stat >= *offset)
1383                 *stat = *stat - *offset;
1384         else
1385                 *stat = (uint64_t)((*stat +
1386                         ((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1387
1388         *stat &= IAVF_48_BIT_MASK;
1389 }
1390
1391 static void
1392 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1393 {
1394         if (*stat >= *offset)
1395                 *stat = (uint64_t)(*stat - *offset);
1396         else
1397                 *stat = (uint64_t)((*stat +
1398                         ((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1399 }
1400
1401 static void
1402 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1403 {
1404         struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset;
1405
1406         iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1407         iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1408         iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1409         iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1410         iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1411         iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1412         iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1413         iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1414         iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1415         iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1416         iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1417 }
1418
1419 static int
1420 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1421 {
1422         struct iavf_adapter *adapter =
1423                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1424         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1425         struct iavf_vsi *vsi = &vf->vsi;
1426         struct virtchnl_eth_stats *pstats = NULL;
1427         int ret;
1428
1429         ret = iavf_query_stats(adapter, &pstats);
1430         if (ret == 0) {
1431                 uint8_t crc_stats_len = (dev->data->dev_conf.rxmode.offloads &
1432                                          DEV_RX_OFFLOAD_KEEP_CRC) ? 0 :
1433                                          RTE_ETHER_CRC_LEN;
1434                 iavf_update_stats(vsi, pstats);
1435                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1436                                 pstats->rx_broadcast - pstats->rx_discards;
1437                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1438                                                 pstats->tx_unicast;
1439                 stats->imissed = pstats->rx_discards;
1440                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1441                 stats->ibytes = pstats->rx_bytes;
1442                 stats->ibytes -= stats->ipackets * crc_stats_len;
1443                 stats->obytes = pstats->tx_bytes;
1444         } else {
1445                 PMD_DRV_LOG(ERR, "Get statistics failed");
1446         }
1447         return ret;
1448 }
1449
1450 static int
1451 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1452 {
1453         int ret;
1454         struct iavf_adapter *adapter =
1455                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1456         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1457         struct iavf_vsi *vsi = &vf->vsi;
1458         struct virtchnl_eth_stats *pstats = NULL;
1459
1460         /* read stat values to clear hardware registers */
1461         ret = iavf_query_stats(adapter, &pstats);
1462         if (ret != 0)
1463                 return ret;
1464
1465         /* set stats offset base on current values */
1466         vsi->eth_stats_offset = *pstats;
1467
1468         return 0;
1469 }
1470
1471 static int iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1472                                       struct rte_eth_xstat_name *xstats_names,
1473                                       __rte_unused unsigned int limit)
1474 {
1475         unsigned int i;
1476
1477         if (xstats_names != NULL)
1478                 for (i = 0; i < IAVF_NB_XSTATS; i++) {
1479                         snprintf(xstats_names[i].name,
1480                                 sizeof(xstats_names[i].name),
1481                                 "%s", rte_iavf_stats_strings[i].name);
1482                 }
1483         return IAVF_NB_XSTATS;
1484 }
1485
1486 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
1487                                  struct rte_eth_xstat *xstats, unsigned int n)
1488 {
1489         int ret;
1490         unsigned int i;
1491         struct iavf_adapter *adapter =
1492                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1493         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1494         struct iavf_vsi *vsi = &vf->vsi;
1495         struct virtchnl_eth_stats *pstats = NULL;
1496
1497         if (n < IAVF_NB_XSTATS)
1498                 return IAVF_NB_XSTATS;
1499
1500         ret = iavf_query_stats(adapter, &pstats);
1501         if (ret != 0)
1502                 return 0;
1503
1504         if (!xstats)
1505                 return 0;
1506
1507         iavf_update_stats(vsi, pstats);
1508
1509         /* loop over xstats array and values from pstats */
1510         for (i = 0; i < IAVF_NB_XSTATS; i++) {
1511                 xstats[i].id = i;
1512                 xstats[i].value = *(uint64_t *)(((char *)pstats) +
1513                         rte_iavf_stats_strings[i].offset);
1514         }
1515
1516         return IAVF_NB_XSTATS;
1517 }
1518
1519
1520 static int
1521 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1522 {
1523         struct iavf_adapter *adapter =
1524                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1525         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1526         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1527         uint16_t msix_intr;
1528
1529         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1530         if (msix_intr == IAVF_MISC_VEC_ID) {
1531                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1532                 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1533                                IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1534                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1535                                IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1536         } else {
1537                 IAVF_WRITE_REG(hw,
1538                                IAVF_VFINT_DYN_CTLN1
1539                                 (msix_intr - IAVF_RX_VEC_START),
1540                                IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1541                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1542                                IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
1543         }
1544
1545         IAVF_WRITE_FLUSH(hw);
1546
1547         rte_intr_ack(&pci_dev->intr_handle);
1548
1549         return 0;
1550 }
1551
1552 static int
1553 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1554 {
1555         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1556         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1557         uint16_t msix_intr;
1558
1559         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1560         if (msix_intr == IAVF_MISC_VEC_ID) {
1561                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1562                 return -EIO;
1563         }
1564
1565         IAVF_WRITE_REG(hw,
1566                       IAVF_VFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1567                       0);
1568
1569         IAVF_WRITE_FLUSH(hw);
1570         return 0;
1571 }
1572
1573 static int
1574 iavf_check_vf_reset_done(struct iavf_hw *hw)
1575 {
1576         int i, reset;
1577
1578         for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1579                 reset = IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
1580                         IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1581                 reset = reset >> IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT;
1582                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1583                     reset == VIRTCHNL_VFR_COMPLETED)
1584                         break;
1585                 rte_delay_ms(20);
1586         }
1587
1588         if (i >= IAVF_RESET_WAIT_CNT)
1589                 return -1;
1590
1591         return 0;
1592 }
1593
1594 static int
1595 iavf_lookup_proto_xtr_type(const char *flex_name)
1596 {
1597         static struct {
1598                 const char *name;
1599                 enum iavf_proto_xtr_type type;
1600         } xtr_type_map[] = {
1601                 { "vlan",      IAVF_PROTO_XTR_VLAN      },
1602                 { "ipv4",      IAVF_PROTO_XTR_IPV4      },
1603                 { "ipv6",      IAVF_PROTO_XTR_IPV6      },
1604                 { "ipv6_flow", IAVF_PROTO_XTR_IPV6_FLOW },
1605                 { "tcp",       IAVF_PROTO_XTR_TCP       },
1606                 { "ip_offset", IAVF_PROTO_XTR_IP_OFFSET },
1607         };
1608         uint32_t i;
1609
1610         for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
1611                 if (strcmp(flex_name, xtr_type_map[i].name) == 0)
1612                         return xtr_type_map[i].type;
1613         }
1614
1615         PMD_DRV_LOG(ERR, "wrong proto_xtr type, "
1616                     "it should be: vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset");
1617
1618         return -1;
1619 }
1620
1621 /**
1622  * Parse elem, the elem could be single number/range or '(' ')' group
1623  * 1) A single number elem, it's just a simple digit. e.g. 9
1624  * 2) A single range elem, two digits with a '-' between. e.g. 2-6
1625  * 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
1626  *    Within group elem, '-' used for a range separator;
1627  *                       ',' used for a single number.
1628  */
1629 static int
1630 iavf_parse_queue_set(const char *input, int xtr_type,
1631                      struct iavf_devargs *devargs)
1632 {
1633         const char *str = input;
1634         char *end = NULL;
1635         uint32_t min, max;
1636         uint32_t idx;
1637
1638         while (isblank(*str))
1639                 str++;
1640
1641         if (!isdigit(*str) && *str != '(')
1642                 return -1;
1643
1644         /* process single number or single range of number */
1645         if (*str != '(') {
1646                 errno = 0;
1647                 idx = strtoul(str, &end, 10);
1648                 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1649                         return -1;
1650
1651                 while (isblank(*end))
1652                         end++;
1653
1654                 min = idx;
1655                 max = idx;
1656
1657                 /* process single <number>-<number> */
1658                 if (*end == '-') {
1659                         end++;
1660                         while (isblank(*end))
1661                                 end++;
1662                         if (!isdigit(*end))
1663                                 return -1;
1664
1665                         errno = 0;
1666                         idx = strtoul(end, &end, 10);
1667                         if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1668                                 return -1;
1669
1670                         max = idx;
1671                         while (isblank(*end))
1672                                 end++;
1673                 }
1674
1675                 if (*end != ':')
1676                         return -1;
1677
1678                 for (idx = RTE_MIN(min, max);
1679                      idx <= RTE_MAX(min, max); idx++)
1680                         devargs->proto_xtr[idx] = xtr_type;
1681
1682                 return 0;
1683         }
1684
1685         /* process set within bracket */
1686         str++;
1687         while (isblank(*str))
1688                 str++;
1689         if (*str == '\0')
1690                 return -1;
1691
1692         min = IAVF_MAX_QUEUE_NUM;
1693         do {
1694                 /* go ahead to the first digit */
1695                 while (isblank(*str))
1696                         str++;
1697                 if (!isdigit(*str))
1698                         return -1;
1699
1700                 /* get the digit value */
1701                 errno = 0;
1702                 idx = strtoul(str, &end, 10);
1703                 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1704                         return -1;
1705
1706                 /* go ahead to separator '-',',' and ')' */
1707                 while (isblank(*end))
1708                         end++;
1709                 if (*end == '-') {
1710                         if (min == IAVF_MAX_QUEUE_NUM)
1711                                 min = idx;
1712                         else /* avoid continuous '-' */
1713                                 return -1;
1714                 } else if (*end == ',' || *end == ')') {
1715                         max = idx;
1716                         if (min == IAVF_MAX_QUEUE_NUM)
1717                                 min = idx;
1718
1719                         for (idx = RTE_MIN(min, max);
1720                              idx <= RTE_MAX(min, max); idx++)
1721                                 devargs->proto_xtr[idx] = xtr_type;
1722
1723                         min = IAVF_MAX_QUEUE_NUM;
1724                 } else {
1725                         return -1;
1726                 }
1727
1728                 str = end + 1;
1729         } while (*end != ')' && *end != '\0');
1730
1731         return 0;
1732 }
1733
1734 static int
1735 iavf_parse_queue_proto_xtr(const char *queues, struct iavf_devargs *devargs)
1736 {
1737         const char *queue_start;
1738         uint32_t idx;
1739         int xtr_type;
1740         char flex_name[32];
1741
1742         while (isblank(*queues))
1743                 queues++;
1744
1745         if (*queues != '[') {
1746                 xtr_type = iavf_lookup_proto_xtr_type(queues);
1747                 if (xtr_type < 0)
1748                         return -1;
1749
1750                 devargs->proto_xtr_dflt = xtr_type;
1751
1752                 return 0;
1753         }
1754
1755         queues++;
1756         do {
1757                 while (isblank(*queues))
1758                         queues++;
1759                 if (*queues == '\0')
1760                         return -1;
1761
1762                 queue_start = queues;
1763
1764                 /* go across a complete bracket */
1765                 if (*queue_start == '(') {
1766                         queues += strcspn(queues, ")");
1767                         if (*queues != ')')
1768                                 return -1;
1769                 }
1770
1771                 /* scan the separator ':' */
1772                 queues += strcspn(queues, ":");
1773                 if (*queues++ != ':')
1774                         return -1;
1775                 while (isblank(*queues))
1776                         queues++;
1777
1778                 for (idx = 0; ; idx++) {
1779                         if (isblank(queues[idx]) ||
1780                             queues[idx] == ',' ||
1781                             queues[idx] == ']' ||
1782                             queues[idx] == '\0')
1783                                 break;
1784
1785                         if (idx > sizeof(flex_name) - 2)
1786                                 return -1;
1787
1788                         flex_name[idx] = queues[idx];
1789                 }
1790                 flex_name[idx] = '\0';
1791                 xtr_type = iavf_lookup_proto_xtr_type(flex_name);
1792                 if (xtr_type < 0)
1793                         return -1;
1794
1795                 queues += idx;
1796
1797                 while (isblank(*queues) || *queues == ',' || *queues == ']')
1798                         queues++;
1799
1800                 if (iavf_parse_queue_set(queue_start, xtr_type, devargs) < 0)
1801                         return -1;
1802         } while (*queues != '\0');
1803
1804         return 0;
1805 }
1806
1807 static int
1808 iavf_handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
1809                           void *extra_args)
1810 {
1811         struct iavf_devargs *devargs = extra_args;
1812
1813         if (!value || !extra_args)
1814                 return -EINVAL;
1815
1816         if (iavf_parse_queue_proto_xtr(value, devargs) < 0) {
1817                 PMD_DRV_LOG(ERR, "the proto_xtr's parameter is wrong : '%s'",
1818                             value);
1819                 return -1;
1820         }
1821
1822         return 0;
1823 }
1824
1825 static int iavf_parse_devargs(struct rte_eth_dev *dev)
1826 {
1827         struct iavf_adapter *ad =
1828                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1829         struct rte_devargs *devargs = dev->device->devargs;
1830         struct rte_kvargs *kvlist;
1831         int ret;
1832
1833         if (!devargs)
1834                 return 0;
1835
1836         kvlist = rte_kvargs_parse(devargs->args, iavf_valid_args);
1837         if (!kvlist) {
1838                 PMD_INIT_LOG(ERR, "invalid kvargs key\n");
1839                 return -EINVAL;
1840         }
1841
1842         ad->devargs.proto_xtr_dflt = IAVF_PROTO_XTR_NONE;
1843         memset(ad->devargs.proto_xtr, IAVF_PROTO_XTR_NONE,
1844                sizeof(ad->devargs.proto_xtr));
1845
1846         ret = rte_kvargs_process(kvlist, IAVF_PROTO_XTR_ARG,
1847                                  &iavf_handle_proto_xtr_arg, &ad->devargs);
1848         if (ret)
1849                 goto bail;
1850
1851 bail:
1852         rte_kvargs_free(kvlist);
1853         return ret;
1854 }
1855
1856 static void
1857 iavf_init_proto_xtr(struct rte_eth_dev *dev)
1858 {
1859         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1860         struct iavf_adapter *ad =
1861                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1862         const struct iavf_proto_xtr_ol *xtr_ol;
1863         bool proto_xtr_enable = false;
1864         int offset;
1865         uint16_t i;
1866
1867         vf->proto_xtr = rte_zmalloc("vf proto xtr",
1868                                     vf->vsi_res->num_queue_pairs, 0);
1869         if (unlikely(!(vf->proto_xtr))) {
1870                 PMD_DRV_LOG(ERR, "no memory for setting up proto_xtr's table");
1871                 return;
1872         }
1873
1874         for (i = 0; i < vf->vsi_res->num_queue_pairs; i++) {
1875                 vf->proto_xtr[i] = ad->devargs.proto_xtr[i] !=
1876                                         IAVF_PROTO_XTR_NONE ?
1877                                         ad->devargs.proto_xtr[i] :
1878                                         ad->devargs.proto_xtr_dflt;
1879
1880                 if (vf->proto_xtr[i] != IAVF_PROTO_XTR_NONE) {
1881                         uint8_t type = vf->proto_xtr[i];
1882
1883                         iavf_proto_xtr_params[type].required = true;
1884                         proto_xtr_enable = true;
1885                 }
1886         }
1887
1888         if (likely(!proto_xtr_enable))
1889                 return;
1890
1891         offset = rte_mbuf_dynfield_register(&iavf_proto_xtr_metadata_param);
1892         if (unlikely(offset == -1)) {
1893                 PMD_DRV_LOG(ERR,
1894                             "failed to extract protocol metadata, error %d",
1895                             -rte_errno);
1896                 return;
1897         }
1898
1899         PMD_DRV_LOG(DEBUG,
1900                     "proto_xtr metadata offset in mbuf is : %d",
1901                     offset);
1902         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = offset;
1903
1904         for (i = 0; i < RTE_DIM(iavf_proto_xtr_params); i++) {
1905                 xtr_ol = &iavf_proto_xtr_params[i];
1906
1907                 uint8_t rxdid = iavf_proto_xtr_type_to_rxdid((uint8_t)i);
1908
1909                 if (!xtr_ol->required)
1910                         continue;
1911
1912                 if (!(vf->supported_rxdid & BIT(rxdid))) {
1913                         PMD_DRV_LOG(ERR,
1914                                     "rxdid[%u] is not supported in hardware",
1915                                     rxdid);
1916                         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
1917                         break;
1918                 }
1919
1920                 offset = rte_mbuf_dynflag_register(&xtr_ol->param);
1921                 if (unlikely(offset == -1)) {
1922                         PMD_DRV_LOG(ERR,
1923                                     "failed to register proto_xtr offload '%s', error %d",
1924                                     xtr_ol->param.name, -rte_errno);
1925
1926                         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
1927                         break;
1928                 }
1929
1930                 PMD_DRV_LOG(DEBUG,
1931                             "proto_xtr offload '%s' offset in mbuf is : %d",
1932                             xtr_ol->param.name, offset);
1933                 *xtr_ol->ol_flag = 1ULL << offset;
1934         }
1935 }
1936
1937 static int
1938 iavf_init_vf(struct rte_eth_dev *dev)
1939 {
1940         int err, bufsz;
1941         struct iavf_adapter *adapter =
1942                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1943         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1944         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1945
1946         err = iavf_parse_devargs(dev);
1947         if (err) {
1948                 PMD_INIT_LOG(ERR, "Failed to parse devargs");
1949                 goto err;
1950         }
1951
1952         err = iavf_set_mac_type(hw);
1953         if (err) {
1954                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1955                 goto err;
1956         }
1957
1958         err = iavf_check_vf_reset_done(hw);
1959         if (err) {
1960                 PMD_INIT_LOG(ERR, "VF is still resetting");
1961                 goto err;
1962         }
1963
1964         iavf_init_adminq_parameter(hw);
1965         err = iavf_init_adminq(hw);
1966         if (err) {
1967                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1968                 goto err;
1969         }
1970
1971         vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
1972         if (!vf->aq_resp) {
1973                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1974                 goto err_aq;
1975         }
1976         if (iavf_check_api_version(adapter) != 0) {
1977                 PMD_INIT_LOG(ERR, "check_api version failed");
1978                 goto err_api;
1979         }
1980
1981         bufsz = sizeof(struct virtchnl_vf_resource) +
1982                 (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1983         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1984         if (!vf->vf_res) {
1985                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1986                 goto err_api;
1987         }
1988         if (iavf_get_vf_resource(adapter) != 0) {
1989                 PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
1990                 goto err_alloc;
1991         }
1992         /* Allocate memort for RSS info */
1993         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1994                 vf->rss_key = rte_zmalloc("rss_key",
1995                                           vf->vf_res->rss_key_size, 0);
1996                 if (!vf->rss_key) {
1997                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1998                         goto err_rss;
1999                 }
2000                 vf->rss_lut = rte_zmalloc("rss_lut",
2001                                           vf->vf_res->rss_lut_size, 0);
2002                 if (!vf->rss_lut) {
2003                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
2004                         goto err_rss;
2005                 }
2006         }
2007
2008         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2009                 if (iavf_get_supported_rxdid(adapter) != 0) {
2010                         PMD_INIT_LOG(ERR, "failed to do get supported rxdid");
2011                         goto err_rss;
2012                 }
2013         }
2014
2015         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
2016                 if (iavf_get_vlan_offload_caps_v2(adapter) != 0) {
2017                         PMD_INIT_LOG(ERR, "failed to do get VLAN offload v2 capabilities");
2018                         goto err_rss;
2019                 }
2020         }
2021
2022         iavf_init_proto_xtr(dev);
2023
2024         return 0;
2025 err_rss:
2026         rte_free(vf->rss_key);
2027         rte_free(vf->rss_lut);
2028 err_alloc:
2029         rte_free(vf->vf_res);
2030         vf->vsi_res = NULL;
2031 err_api:
2032         rte_free(vf->aq_resp);
2033 err_aq:
2034         iavf_shutdown_adminq(hw);
2035 err:
2036         return -1;
2037 }
2038
2039 /* Enable default admin queue interrupt setting */
2040 static inline void
2041 iavf_enable_irq0(struct iavf_hw *hw)
2042 {
2043         /* Enable admin queue interrupt trigger */
2044         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1,
2045                        IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
2046
2047         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2048                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
2049                        IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
2050                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2051
2052         IAVF_WRITE_FLUSH(hw);
2053 }
2054
2055 static inline void
2056 iavf_disable_irq0(struct iavf_hw *hw)
2057 {
2058         /* Disable all interrupt types */
2059         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, 0);
2060         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2061                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2062         IAVF_WRITE_FLUSH(hw);
2063 }
2064
2065 static void
2066 iavf_dev_interrupt_handler(void *param)
2067 {
2068         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2069         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2070
2071         iavf_disable_irq0(hw);
2072
2073         iavf_handle_virtchnl_msg(dev);
2074
2075         iavf_enable_irq0(hw);
2076 }
2077
2078 static int
2079 iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
2080                       const struct rte_flow_ops **ops)
2081 {
2082         if (!dev)
2083                 return -EINVAL;
2084
2085         *ops = &iavf_flow_ops;
2086         return 0;
2087 }
2088
2089 static void
2090 iavf_default_rss_disable(struct iavf_adapter *adapter)
2091 {
2092         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
2093         int ret = 0;
2094
2095         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
2096                 /* Set hena = 0 to ask PF to cleanup all existing RSS. */
2097                 ret = iavf_set_hena(adapter, 0);
2098                 if (ret)
2099                         /* It is a workaround, temporarily allow error to be
2100                          * returned due to possible lack of PF handling for
2101                          * hena = 0.
2102                          */
2103                         PMD_INIT_LOG(WARNING, "fail to disable default RSS,"
2104                                     "lack PF support");
2105         }
2106 }
2107
2108 static int
2109 iavf_dev_init(struct rte_eth_dev *eth_dev)
2110 {
2111         struct iavf_adapter *adapter =
2112                 IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2113         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
2114         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2115         int ret = 0;
2116
2117         PMD_INIT_FUNC_TRACE();
2118
2119         /* assign ops func pointer */
2120         eth_dev->dev_ops = &iavf_eth_dev_ops;
2121         eth_dev->rx_queue_count = iavf_dev_rxq_count;
2122         eth_dev->rx_descriptor_status = iavf_dev_rx_desc_status;
2123         eth_dev->tx_descriptor_status = iavf_dev_tx_desc_status;
2124         eth_dev->rx_pkt_burst = &iavf_recv_pkts;
2125         eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
2126         eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
2127
2128         /* For secondary processes, we don't initialise any further as primary
2129          * has already done this work. Only check if we need a different RX
2130          * and TX function.
2131          */
2132         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2133                 iavf_set_rx_function(eth_dev);
2134                 iavf_set_tx_function(eth_dev);
2135                 return 0;
2136         }
2137         rte_eth_copy_pci_info(eth_dev, pci_dev);
2138         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2139
2140         hw->vendor_id = pci_dev->id.vendor_id;
2141         hw->device_id = pci_dev->id.device_id;
2142         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
2143         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
2144         hw->bus.bus_id = pci_dev->addr.bus;
2145         hw->bus.device = pci_dev->addr.devid;
2146         hw->bus.func = pci_dev->addr.function;
2147         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
2148         hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2149         adapter->eth_dev = eth_dev;
2150         adapter->stopped = 1;
2151
2152         if (iavf_init_vf(eth_dev) != 0) {
2153                 PMD_INIT_LOG(ERR, "Init vf failed");
2154                 return -1;
2155         }
2156
2157         /* set default ptype table */
2158         adapter->ptype_tbl = iavf_get_default_ptype_table();
2159
2160         /* copy mac addr */
2161         eth_dev->data->mac_addrs = rte_zmalloc(
2162                 "iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
2163         if (!eth_dev->data->mac_addrs) {
2164                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
2165                              " store MAC addresses",
2166                              RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
2167                 return -ENOMEM;
2168         }
2169         /* If the MAC address is not configured by host,
2170          * generate a random one.
2171          */
2172         if (!rte_is_valid_assigned_ether_addr(
2173                         (struct rte_ether_addr *)hw->mac.addr))
2174                 rte_eth_random_addr(hw->mac.addr);
2175         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
2176                         &eth_dev->data->mac_addrs[0]);
2177
2178         /* register callback func to eal lib */
2179         rte_intr_callback_register(&pci_dev->intr_handle,
2180                                    iavf_dev_interrupt_handler,
2181                                    (void *)eth_dev);
2182
2183         /* enable uio intr after callback register */
2184         rte_intr_enable(&pci_dev->intr_handle);
2185
2186         /* configure and enable device interrupt */
2187         iavf_enable_irq0(hw);
2188
2189         ret = iavf_flow_init(adapter);
2190         if (ret) {
2191                 PMD_INIT_LOG(ERR, "Failed to initialize flow");
2192                 return ret;
2193         }
2194
2195         iavf_default_rss_disable(adapter);
2196
2197         return 0;
2198 }
2199
2200 static int
2201 iavf_dev_close(struct rte_eth_dev *dev)
2202 {
2203         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2204         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2205         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2206         struct iavf_adapter *adapter =
2207                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2208         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2209         int ret;
2210
2211         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2212                 return 0;
2213
2214         ret = iavf_dev_stop(dev);
2215
2216         iavf_flow_flush(dev, NULL);
2217         iavf_flow_uninit(adapter);
2218
2219         /*
2220          * disable promiscuous mode before reset vf
2221          * it is a workaround solution when work with kernel driver
2222          * and it is not the normal way
2223          */
2224         if (vf->promisc_unicast_enabled || vf->promisc_multicast_enabled)
2225                 iavf_config_promisc(adapter, false, false);
2226
2227         iavf_shutdown_adminq(hw);
2228         /* disable uio intr before callback unregister */
2229         rte_intr_disable(intr_handle);
2230
2231         /* unregister callback func from eal lib */
2232         rte_intr_callback_unregister(intr_handle,
2233                                      iavf_dev_interrupt_handler, dev);
2234         iavf_disable_irq0(hw);
2235
2236         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2237                 if (vf->rss_lut) {
2238                         rte_free(vf->rss_lut);
2239                         vf->rss_lut = NULL;
2240                 }
2241                 if (vf->rss_key) {
2242                         rte_free(vf->rss_key);
2243                         vf->rss_key = NULL;
2244                 }
2245         }
2246
2247         rte_free(vf->vf_res);
2248         vf->vsi_res = NULL;
2249         vf->vf_res = NULL;
2250
2251         rte_free(vf->aq_resp);
2252         vf->aq_resp = NULL;
2253
2254         vf->vf_reset = false;
2255
2256         return ret;
2257 }
2258
2259 static int
2260 iavf_dev_uninit(struct rte_eth_dev *dev)
2261 {
2262         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2263                 return -EPERM;
2264
2265         iavf_dev_close(dev);
2266
2267         return 0;
2268 }
2269
2270 /*
2271  * Reset VF device only to re-initialize resources in PMD layer
2272  */
2273 static int
2274 iavf_dev_reset(struct rte_eth_dev *dev)
2275 {
2276         int ret;
2277
2278         ret = iavf_dev_uninit(dev);
2279         if (ret)
2280                 return ret;
2281
2282         return iavf_dev_init(dev);
2283 }
2284
2285 static int
2286 iavf_dcf_cap_check_handler(__rte_unused const char *key,
2287                            const char *value, __rte_unused void *opaque)
2288 {
2289         if (strcmp(value, "dcf"))
2290                 return -1;
2291
2292         return 0;
2293 }
2294
2295 static int
2296 iavf_dcf_cap_selected(struct rte_devargs *devargs)
2297 {
2298         struct rte_kvargs *kvlist;
2299         const char *key = "cap";
2300         int ret = 0;
2301
2302         if (devargs == NULL)
2303                 return 0;
2304
2305         kvlist = rte_kvargs_parse(devargs->args, NULL);
2306         if (kvlist == NULL)
2307                 return 0;
2308
2309         if (!rte_kvargs_count(kvlist, key))
2310                 goto exit;
2311
2312         /* dcf capability selected when there's a key-value pair: cap=dcf */
2313         if (rte_kvargs_process(kvlist, key,
2314                                iavf_dcf_cap_check_handler, NULL) < 0)
2315                 goto exit;
2316
2317         ret = 1;
2318
2319 exit:
2320         rte_kvargs_free(kvlist);
2321         return ret;
2322 }
2323
2324 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2325                              struct rte_pci_device *pci_dev)
2326 {
2327         if (iavf_dcf_cap_selected(pci_dev->device.devargs))
2328                 return 1;
2329
2330         return rte_eth_dev_pci_generic_probe(pci_dev,
2331                 sizeof(struct iavf_adapter), iavf_dev_init);
2332 }
2333
2334 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
2335 {
2336         return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
2337 }
2338
2339 /* Adaptive virtual function driver struct */
2340 static struct rte_pci_driver rte_iavf_pmd = {
2341         .id_table = pci_id_iavf_map,
2342         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
2343         .probe = eth_iavf_pci_probe,
2344         .remove = eth_iavf_pci_remove,
2345 };
2346
2347 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
2348 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
2349 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
2350 RTE_PMD_REGISTER_PARAM_STRING(net_iavf, "cap=dcf");
2351 RTE_LOG_REGISTER(iavf_logtype_init, pmd.net.iavf.init, NOTICE);
2352 RTE_LOG_REGISTER(iavf_logtype_driver, pmd.net.iavf.driver, NOTICE);
2353 #ifdef RTE_ETHDEV_DEBUG_RX
2354 RTE_LOG_REGISTER(iavf_logtype_rx, pmd.net.iavf.rx, DEBUG);
2355 #endif
2356 #ifdef RTE_ETHDEV_DEBUG_TX
2357 RTE_LOG_REGISTER(iavf_logtype_tx, pmd.net.iavf.tx, DEBUG);
2358 #endif