log: register with standardized names
[dpdk.git] / drivers / net / iavf / iavf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <ethdev_driver.h>
23 #include <ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "iavf_generic_flow.h"
31 #include "rte_pmd_iavf.h"
32
33 /* devargs */
34 #define IAVF_PROTO_XTR_ARG         "proto_xtr"
35
36 static const char * const iavf_valid_args[] = {
37         IAVF_PROTO_XTR_ARG,
38         NULL
39 };
40
41 static const struct rte_mbuf_dynfield iavf_proto_xtr_metadata_param = {
42         .name = "intel_pmd_dynfield_proto_xtr_metadata",
43         .size = sizeof(uint32_t),
44         .align = __alignof__(uint32_t),
45         .flags = 0,
46 };
47
48 struct iavf_proto_xtr_ol {
49         const struct rte_mbuf_dynflag param;
50         uint64_t *ol_flag;
51         bool required;
52 };
53
54 static struct iavf_proto_xtr_ol iavf_proto_xtr_params[] = {
55         [IAVF_PROTO_XTR_VLAN] = {
56                 .param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
57                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_vlan_mask },
58         [IAVF_PROTO_XTR_IPV4] = {
59                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
60                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask },
61         [IAVF_PROTO_XTR_IPV6] = {
62                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
63                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask },
64         [IAVF_PROTO_XTR_IPV6_FLOW] = {
65                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
66                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask },
67         [IAVF_PROTO_XTR_TCP] = {
68                 .param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
69                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_tcp_mask },
70         [IAVF_PROTO_XTR_IP_OFFSET] = {
71                 .param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
72                 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask },
73 };
74
75 static int iavf_dev_configure(struct rte_eth_dev *dev);
76 static int iavf_dev_start(struct rte_eth_dev *dev);
77 static int iavf_dev_stop(struct rte_eth_dev *dev);
78 static int iavf_dev_close(struct rte_eth_dev *dev);
79 static int iavf_dev_reset(struct rte_eth_dev *dev);
80 static int iavf_dev_info_get(struct rte_eth_dev *dev,
81                              struct rte_eth_dev_info *dev_info);
82 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
83 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
84                              struct rte_eth_stats *stats);
85 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
86 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
87                                  struct rte_eth_xstat *xstats, unsigned int n);
88 static int iavf_dev_xstats_get_names(struct rte_eth_dev *dev,
89                                        struct rte_eth_xstat_name *xstats_names,
90                                        unsigned int limit);
91 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
92 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
93 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
94 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
95 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
96                                 struct rte_ether_addr *addr,
97                                 uint32_t index,
98                                 uint32_t pool);
99 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
100 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
101                                    uint16_t vlan_id, int on);
102 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
103 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
104                                    struct rte_eth_rss_reta_entry64 *reta_conf,
105                                    uint16_t reta_size);
106 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
107                                   struct rte_eth_rss_reta_entry64 *reta_conf,
108                                   uint16_t reta_size);
109 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
110                                    struct rte_eth_rss_conf *rss_conf);
111 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
112                                      struct rte_eth_rss_conf *rss_conf);
113 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
114 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
115                                          struct rte_ether_addr *mac_addr);
116 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
117                                         uint16_t queue_id);
118 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
119                                          uint16_t queue_id);
120 static int iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
121                                  const struct rte_flow_ops **ops);
122 static int iavf_set_mc_addr_list(struct rte_eth_dev *dev,
123                         struct rte_ether_addr *mc_addrs,
124                         uint32_t mc_addrs_num);
125
126 static const struct rte_pci_id pci_id_iavf_map[] = {
127         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
128         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF) },
129         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_VF_HV) },
130         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_VF) },
131         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_X722_A0_VF) },
132         { .vendor_id = 0, /* sentinel */ },
133 };
134
135 struct rte_iavf_xstats_name_off {
136         char name[RTE_ETH_XSTATS_NAME_SIZE];
137         unsigned int offset;
138 };
139
140 static const struct rte_iavf_xstats_name_off rte_iavf_stats_strings[] = {
141         {"rx_bytes", offsetof(struct iavf_eth_stats, rx_bytes)},
142         {"rx_unicast_packets", offsetof(struct iavf_eth_stats, rx_unicast)},
143         {"rx_multicast_packets", offsetof(struct iavf_eth_stats, rx_multicast)},
144         {"rx_broadcast_packets", offsetof(struct iavf_eth_stats, rx_broadcast)},
145         {"rx_dropped_packets", offsetof(struct iavf_eth_stats, rx_discards)},
146         {"rx_unknown_protocol_packets", offsetof(struct iavf_eth_stats,
147                 rx_unknown_protocol)},
148         {"tx_bytes", offsetof(struct iavf_eth_stats, tx_bytes)},
149         {"tx_unicast_packets", offsetof(struct iavf_eth_stats, tx_unicast)},
150         {"tx_multicast_packets", offsetof(struct iavf_eth_stats, tx_multicast)},
151         {"tx_broadcast_packets", offsetof(struct iavf_eth_stats, tx_broadcast)},
152         {"tx_dropped_packets", offsetof(struct iavf_eth_stats, tx_discards)},
153         {"tx_error_packets", offsetof(struct iavf_eth_stats, tx_errors)},
154 };
155
156 #define IAVF_NB_XSTATS (sizeof(rte_iavf_stats_strings) / \
157                 sizeof(rte_iavf_stats_strings[0]))
158
159 static const struct eth_dev_ops iavf_eth_dev_ops = {
160         .dev_configure              = iavf_dev_configure,
161         .dev_start                  = iavf_dev_start,
162         .dev_stop                   = iavf_dev_stop,
163         .dev_close                  = iavf_dev_close,
164         .dev_reset                  = iavf_dev_reset,
165         .dev_infos_get              = iavf_dev_info_get,
166         .dev_supported_ptypes_get   = iavf_dev_supported_ptypes_get,
167         .link_update                = iavf_dev_link_update,
168         .stats_get                  = iavf_dev_stats_get,
169         .stats_reset                = iavf_dev_stats_reset,
170         .xstats_get                 = iavf_dev_xstats_get,
171         .xstats_get_names           = iavf_dev_xstats_get_names,
172         .xstats_reset               = iavf_dev_stats_reset,
173         .promiscuous_enable         = iavf_dev_promiscuous_enable,
174         .promiscuous_disable        = iavf_dev_promiscuous_disable,
175         .allmulticast_enable        = iavf_dev_allmulticast_enable,
176         .allmulticast_disable       = iavf_dev_allmulticast_disable,
177         .mac_addr_add               = iavf_dev_add_mac_addr,
178         .mac_addr_remove            = iavf_dev_del_mac_addr,
179         .set_mc_addr_list                       = iavf_set_mc_addr_list,
180         .vlan_filter_set            = iavf_dev_vlan_filter_set,
181         .vlan_offload_set           = iavf_dev_vlan_offload_set,
182         .rx_queue_start             = iavf_dev_rx_queue_start,
183         .rx_queue_stop              = iavf_dev_rx_queue_stop,
184         .tx_queue_start             = iavf_dev_tx_queue_start,
185         .tx_queue_stop              = iavf_dev_tx_queue_stop,
186         .rx_queue_setup             = iavf_dev_rx_queue_setup,
187         .rx_queue_release           = iavf_dev_rx_queue_release,
188         .tx_queue_setup             = iavf_dev_tx_queue_setup,
189         .tx_queue_release           = iavf_dev_tx_queue_release,
190         .mac_addr_set               = iavf_dev_set_default_mac_addr,
191         .reta_update                = iavf_dev_rss_reta_update,
192         .reta_query                 = iavf_dev_rss_reta_query,
193         .rss_hash_update            = iavf_dev_rss_hash_update,
194         .rss_hash_conf_get          = iavf_dev_rss_hash_conf_get,
195         .rxq_info_get               = iavf_dev_rxq_info_get,
196         .txq_info_get               = iavf_dev_txq_info_get,
197         .mtu_set                    = iavf_dev_mtu_set,
198         .rx_queue_intr_enable       = iavf_dev_rx_queue_intr_enable,
199         .rx_queue_intr_disable      = iavf_dev_rx_queue_intr_disable,
200         .flow_ops_get               = iavf_dev_flow_ops_get,
201         .tx_done_cleanup            = iavf_dev_tx_done_cleanup,
202         .get_monitor_addr           = iavf_get_monitor_addr,
203 };
204
205 static int
206 iavf_set_mc_addr_list(struct rte_eth_dev *dev,
207                         struct rte_ether_addr *mc_addrs,
208                         uint32_t mc_addrs_num)
209 {
210         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
211         struct iavf_adapter *adapter =
212                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
213         int err, ret;
214
215         if (mc_addrs_num > IAVF_NUM_MACADDR_MAX) {
216                 PMD_DRV_LOG(ERR,
217                             "can't add more than a limited number (%u) of addresses.",
218                             (uint32_t)IAVF_NUM_MACADDR_MAX);
219                 return -EINVAL;
220         }
221
222         /* flush previous addresses */
223         err = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
224                                         false);
225         if (err)
226                 return err;
227
228         /* add new ones */
229         err = iavf_add_del_mc_addr_list(adapter, mc_addrs, mc_addrs_num, true);
230
231         if (err) {
232                 /* if adding mac address list fails, should add the previous
233                  * addresses back.
234                  */
235                 ret = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs,
236                                                 vf->mc_addrs_num, true);
237                 if (ret)
238                         return ret;
239         } else {
240                 vf->mc_addrs_num = mc_addrs_num;
241                 memcpy(vf->mc_addrs,
242                        mc_addrs, mc_addrs_num * sizeof(*mc_addrs));
243         }
244
245         return err;
246 }
247
248 static int
249 iavf_config_rss_hf(struct iavf_adapter *adapter, uint64_t rss_hf)
250 {
251         static const uint64_t map_hena_rss[] = {
252                 /* IPv4 */
253                 [IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP] =
254                                 ETH_RSS_NONFRAG_IPV4_UDP,
255                 [IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP] =
256                                 ETH_RSS_NONFRAG_IPV4_UDP,
257                 [IAVF_FILTER_PCTYPE_NONF_IPV4_UDP] =
258                                 ETH_RSS_NONFRAG_IPV4_UDP,
259                 [IAVF_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK] =
260                                 ETH_RSS_NONFRAG_IPV4_TCP,
261                 [IAVF_FILTER_PCTYPE_NONF_IPV4_TCP] =
262                                 ETH_RSS_NONFRAG_IPV4_TCP,
263                 [IAVF_FILTER_PCTYPE_NONF_IPV4_SCTP] =
264                                 ETH_RSS_NONFRAG_IPV4_SCTP,
265                 [IAVF_FILTER_PCTYPE_NONF_IPV4_OTHER] =
266                                 ETH_RSS_NONFRAG_IPV4_OTHER,
267                 [IAVF_FILTER_PCTYPE_FRAG_IPV4] = ETH_RSS_FRAG_IPV4,
268
269                 /* IPv6 */
270                 [IAVF_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP] =
271                                 ETH_RSS_NONFRAG_IPV6_UDP,
272                 [IAVF_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP] =
273                                 ETH_RSS_NONFRAG_IPV6_UDP,
274                 [IAVF_FILTER_PCTYPE_NONF_IPV6_UDP] =
275                                 ETH_RSS_NONFRAG_IPV6_UDP,
276                 [IAVF_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK] =
277                                 ETH_RSS_NONFRAG_IPV6_TCP,
278                 [IAVF_FILTER_PCTYPE_NONF_IPV6_TCP] =
279                                 ETH_RSS_NONFRAG_IPV6_TCP,
280                 [IAVF_FILTER_PCTYPE_NONF_IPV6_SCTP] =
281                                 ETH_RSS_NONFRAG_IPV6_SCTP,
282                 [IAVF_FILTER_PCTYPE_NONF_IPV6_OTHER] =
283                                 ETH_RSS_NONFRAG_IPV6_OTHER,
284                 [IAVF_FILTER_PCTYPE_FRAG_IPV6] = ETH_RSS_FRAG_IPV6,
285
286                 /* L2 Payload */
287                 [IAVF_FILTER_PCTYPE_L2_PAYLOAD] = ETH_RSS_L2_PAYLOAD
288         };
289
290         const uint64_t ipv4_rss = ETH_RSS_NONFRAG_IPV4_UDP |
291                                   ETH_RSS_NONFRAG_IPV4_TCP |
292                                   ETH_RSS_NONFRAG_IPV4_SCTP |
293                                   ETH_RSS_NONFRAG_IPV4_OTHER |
294                                   ETH_RSS_FRAG_IPV4;
295
296         const uint64_t ipv6_rss = ETH_RSS_NONFRAG_IPV6_UDP |
297                                   ETH_RSS_NONFRAG_IPV6_TCP |
298                                   ETH_RSS_NONFRAG_IPV6_SCTP |
299                                   ETH_RSS_NONFRAG_IPV6_OTHER |
300                                   ETH_RSS_FRAG_IPV6;
301
302         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
303         uint64_t caps = 0, hena = 0, valid_rss_hf = 0;
304         uint32_t i;
305         int ret;
306
307         ret = iavf_get_hena_caps(adapter, &caps);
308         if (ret)
309                 return ret;
310         /**
311          * ETH_RSS_IPV4 and ETH_RSS_IPV6 can be considered as 2
312          * generalizations of all other IPv4 and IPv6 RSS types.
313          */
314         if (rss_hf & ETH_RSS_IPV4)
315                 rss_hf |= ipv4_rss;
316
317         if (rss_hf & ETH_RSS_IPV6)
318                 rss_hf |= ipv6_rss;
319
320         RTE_BUILD_BUG_ON(RTE_DIM(map_hena_rss) > sizeof(uint64_t) * CHAR_BIT);
321
322         for (i = 0; i < RTE_DIM(map_hena_rss); i++) {
323                 uint64_t bit = BIT_ULL(i);
324
325                 if ((caps & bit) && (map_hena_rss[i] & rss_hf)) {
326                         valid_rss_hf |= map_hena_rss[i];
327                         hena |= bit;
328                 }
329         }
330
331         ret = iavf_set_hena(adapter, hena);
332         if (ret)
333                 return ret;
334
335         if (valid_rss_hf & ipv4_rss)
336                 valid_rss_hf |= rss_hf & ETH_RSS_IPV4;
337
338         if (valid_rss_hf & ipv6_rss)
339                 valid_rss_hf |= rss_hf & ETH_RSS_IPV6;
340
341         if (rss_hf & ~valid_rss_hf)
342                 PMD_DRV_LOG(WARNING, "Unsupported rss_hf 0x%" PRIx64,
343                             rss_hf & ~valid_rss_hf);
344
345         vf->rss_hf = valid_rss_hf;
346         return 0;
347 }
348
349 static int
350 iavf_init_rss(struct iavf_adapter *adapter)
351 {
352         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
353         struct rte_eth_rss_conf *rss_conf;
354         uint16_t i, j, nb_q;
355         int ret;
356
357         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
358         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
359                        vf->max_rss_qregion);
360
361         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
362                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
363                 return -ENOTSUP;
364         }
365
366         /* configure RSS key */
367         if (!rss_conf->rss_key) {
368                 /* Calculate the default hash key */
369                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
370                         vf->rss_key[i] = (uint8_t)rte_rand();
371         } else
372                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
373                            RTE_MIN(rss_conf->rss_key_len,
374                                    vf->vf_res->rss_key_size));
375
376         /* init RSS LUT table */
377         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
378                 if (j >= nb_q)
379                         j = 0;
380                 vf->rss_lut[i] = j;
381         }
382         /* send virtchnnl ops to configure rss*/
383         ret = iavf_configure_rss_lut(adapter);
384         if (ret)
385                 return ret;
386         ret = iavf_configure_rss_key(adapter);
387         if (ret)
388                 return ret;
389
390         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
391                 /* Set RSS hash configuration based on rss_conf->rss_hf. */
392                 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
393                 if (ret) {
394                         PMD_DRV_LOG(ERR, "fail to set default RSS");
395                         return ret;
396                 }
397         } else {
398                 ret = iavf_config_rss_hf(adapter, rss_conf->rss_hf);
399                 if (ret != -ENOTSUP)
400                         return ret;
401         }
402
403         return 0;
404 }
405
406 static int
407 iavf_queues_req_reset(struct rte_eth_dev *dev, uint16_t num)
408 {
409         struct iavf_adapter *ad =
410                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
411         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
412         int ret;
413
414         ret = iavf_request_queues(ad, num);
415         if (ret) {
416                 PMD_DRV_LOG(ERR, "request queues from PF failed");
417                 return ret;
418         }
419         PMD_DRV_LOG(INFO, "change queue pairs from %u to %u",
420                         vf->vsi_res->num_queue_pairs, num);
421
422         ret = iavf_dev_reset(dev);
423         if (ret) {
424                 PMD_DRV_LOG(ERR, "vf reset failed");
425                 return ret;
426         }
427
428         return 0;
429 }
430
431 static int
432 iavf_dev_vlan_insert_set(struct rte_eth_dev *dev)
433 {
434         struct iavf_adapter *adapter =
435                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
436         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
437         bool enable;
438
439         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2))
440                 return 0;
441
442         enable = !!(dev->data->dev_conf.txmode.offloads &
443                     DEV_TX_OFFLOAD_VLAN_INSERT);
444         iavf_config_vlan_insert_v2(adapter, enable);
445
446         return 0;
447 }
448
449 static int
450 iavf_dev_init_vlan(struct rte_eth_dev *dev)
451 {
452         int err;
453
454         err = iavf_dev_vlan_offload_set(dev,
455                                         ETH_VLAN_STRIP_MASK |
456                                         ETH_QINQ_STRIP_MASK |
457                                         ETH_VLAN_FILTER_MASK |
458                                         ETH_VLAN_EXTEND_MASK);
459         if (err) {
460                 PMD_DRV_LOG(ERR, "Failed to update vlan offload");
461                 return err;
462         }
463
464         err = iavf_dev_vlan_insert_set(dev);
465         if (err)
466                 PMD_DRV_LOG(ERR, "Failed to update vlan insertion");
467
468         return err;
469 }
470
471 static int
472 iavf_dev_configure(struct rte_eth_dev *dev)
473 {
474         struct iavf_adapter *ad =
475                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
476         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
477         uint16_t num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
478                 dev->data->nb_tx_queues);
479         int ret;
480
481         ad->rx_bulk_alloc_allowed = true;
482         /* Initialize to TRUE. If any of Rx queues doesn't meet the
483          * vector Rx/Tx preconditions, it will be reset.
484          */
485         ad->rx_vec_allowed = true;
486         ad->tx_vec_allowed = true;
487
488         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
489                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
490
491         /* Large VF setting */
492         if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT) {
493                 if (!(vf->vf_res->vf_cap_flags &
494                                 VIRTCHNL_VF_LARGE_NUM_QPAIRS)) {
495                         PMD_DRV_LOG(ERR, "large VF is not supported");
496                         return -1;
497                 }
498
499                 if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_LV) {
500                         PMD_DRV_LOG(ERR, "queue pairs number cannot be larger than %u",
501                                 IAVF_MAX_NUM_QUEUES_LV);
502                         return -1;
503                 }
504
505                 ret = iavf_queues_req_reset(dev, num_queue_pairs);
506                 if (ret)
507                         return ret;
508
509                 ret = iavf_get_max_rss_queue_region(ad);
510                 if (ret) {
511                         PMD_INIT_LOG(ERR, "get max rss queue region failed");
512                         return ret;
513                 }
514
515                 vf->lv_enabled = true;
516         } else {
517                 /* Check if large VF is already enabled. If so, disable and
518                  * release redundant queue resource.
519                  * Or check if enough queue pairs. If not, request them from PF.
520                  */
521                 if (vf->lv_enabled ||
522                     num_queue_pairs > vf->vsi_res->num_queue_pairs) {
523                         ret = iavf_queues_req_reset(dev, num_queue_pairs);
524                         if (ret)
525                                 return ret;
526
527                         vf->lv_enabled = false;
528                 }
529                 /* if large VF is not required, use default rss queue region */
530                 vf->max_rss_qregion = IAVF_MAX_NUM_QUEUES_DFLT;
531         }
532
533         ret = iavf_dev_init_vlan(dev);
534         if (ret)
535                 PMD_DRV_LOG(ERR, "configure VLAN failed: %d", ret);
536
537         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
538                 if (iavf_init_rss(ad) != 0) {
539                         PMD_DRV_LOG(ERR, "configure rss failed");
540                         return -1;
541                 }
542         }
543         return 0;
544 }
545
546 static int
547 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
548 {
549         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
550         struct rte_eth_dev_data *dev_data = dev->data;
551         uint16_t buf_size, max_pkt_len, len;
552
553         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
554
555         /* Calculate the maximum packet length allowed */
556         len = rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS;
557         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
558
559         /* Check if the jumbo frame and maximum packet length are set
560          * correctly.
561          */
562         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
563                 if (max_pkt_len <= IAVF_ETH_MAX_LEN ||
564                     max_pkt_len > IAVF_FRAME_SIZE_MAX) {
565                         PMD_DRV_LOG(ERR, "maximum packet length must be "
566                                     "larger than %u and smaller than %u, "
567                                     "as jumbo frame is enabled",
568                                     (uint32_t)IAVF_ETH_MAX_LEN,
569                                     (uint32_t)IAVF_FRAME_SIZE_MAX);
570                         return -EINVAL;
571                 }
572         } else {
573                 if (max_pkt_len < RTE_ETHER_MIN_LEN ||
574                     max_pkt_len > IAVF_ETH_MAX_LEN) {
575                         PMD_DRV_LOG(ERR, "maximum packet length must be "
576                                     "larger than %u and smaller than %u, "
577                                     "as jumbo frame is disabled",
578                                     (uint32_t)RTE_ETHER_MIN_LEN,
579                                     (uint32_t)IAVF_ETH_MAX_LEN);
580                         return -EINVAL;
581                 }
582         }
583
584         rxq->max_pkt_len = max_pkt_len;
585         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
586             rxq->max_pkt_len > buf_size) {
587                 dev_data->scattered_rx = 1;
588         }
589         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
590         IAVF_WRITE_FLUSH(hw);
591
592         return 0;
593 }
594
595 static int
596 iavf_init_queues(struct rte_eth_dev *dev)
597 {
598         struct iavf_rx_queue **rxq =
599                 (struct iavf_rx_queue **)dev->data->rx_queues;
600         int i, ret = IAVF_SUCCESS;
601
602         for (i = 0; i < dev->data->nb_rx_queues; i++) {
603                 if (!rxq[i] || !rxq[i]->q_set)
604                         continue;
605                 ret = iavf_init_rxq(dev, rxq[i]);
606                 if (ret != IAVF_SUCCESS)
607                         break;
608         }
609         /* set rx/tx function to vector/scatter/single-segment
610          * according to parameters
611          */
612         iavf_set_rx_function(dev);
613         iavf_set_tx_function(dev);
614
615         return ret;
616 }
617
618 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
619                                      struct rte_intr_handle *intr_handle)
620 {
621         struct iavf_adapter *adapter =
622                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
623         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
624         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
625         struct iavf_qv_map *qv_map;
626         uint16_t interval, i;
627         int vec;
628
629         if (rte_intr_cap_multiple(intr_handle) &&
630             dev->data->dev_conf.intr_conf.rxq) {
631                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
632                         return -1;
633         }
634
635         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
636                 intr_handle->intr_vec =
637                         rte_zmalloc("intr_vec",
638                                     dev->data->nb_rx_queues * sizeof(int), 0);
639                 if (!intr_handle->intr_vec) {
640                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
641                                     dev->data->nb_rx_queues);
642                         return -1;
643                 }
644         }
645
646         qv_map = rte_zmalloc("qv_map",
647                 dev->data->nb_rx_queues * sizeof(struct iavf_qv_map), 0);
648         if (!qv_map) {
649                 PMD_DRV_LOG(ERR, "Failed to allocate %d queue-vector map",
650                                 dev->data->nb_rx_queues);
651                 return -1;
652         }
653
654         if (!dev->data->dev_conf.intr_conf.rxq ||
655             !rte_intr_dp_is_en(intr_handle)) {
656                 /* Rx interrupt disabled, Map interrupt only for writeback */
657                 vf->nb_msix = 1;
658                 if (vf->vf_res->vf_cap_flags &
659                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
660                         /* If WB_ON_ITR supports, enable it */
661                         vf->msix_base = IAVF_RX_VEC_START;
662                         /* Set the ITR for index zero, to 2us to make sure that
663                          * we leave time for aggregation to occur, but don't
664                          * increase latency dramatically.
665                          */
666                         IAVF_WRITE_REG(hw,
667                                        IAVF_VFINT_DYN_CTLN1(vf->msix_base - 1),
668                                        (0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
669                                        IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
670                                        (2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
671                         /* debug - check for success! the return value
672                          * should be 2, offset is 0x2800
673                          */
674                         /* IAVF_READ_REG(hw, IAVF_VFINT_ITRN1(0, 0)); */
675                 } else {
676                         /* If no WB_ON_ITR offload flags, need to set
677                          * interrupt for descriptor write back.
678                          */
679                         vf->msix_base = IAVF_MISC_VEC_ID;
680
681                         /* set ITR to max */
682                         interval = iavf_calc_itr_interval(
683                                         IAVF_QUEUE_ITR_INTERVAL_MAX);
684                         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
685                                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
686                                        (IAVF_ITR_INDEX_DEFAULT <<
687                                         IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
688                                        (interval <<
689                                         IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
690                 }
691                 IAVF_WRITE_FLUSH(hw);
692                 /* map all queues to the same interrupt */
693                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
694                         qv_map[i].queue_id = i;
695                         qv_map[i].vector_id = vf->msix_base;
696                 }
697                 vf->qv_map = qv_map;
698         } else {
699                 if (!rte_intr_allow_others(intr_handle)) {
700                         vf->nb_msix = 1;
701                         vf->msix_base = IAVF_MISC_VEC_ID;
702                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
703                                 qv_map[i].queue_id = i;
704                                 qv_map[i].vector_id = vf->msix_base;
705                                 intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID;
706                         }
707                         vf->qv_map = qv_map;
708                         PMD_DRV_LOG(DEBUG,
709                                     "vector %u are mapping to all Rx queues",
710                                     vf->msix_base);
711                 } else {
712                         /* If Rx interrupt is reuquired, and we can use
713                          * multi interrupts, then the vec is from 1
714                          */
715                         vf->nb_msix = RTE_MIN(intr_handle->nb_efd,
716                                  (uint16_t)(vf->vf_res->max_vectors - 1));
717                         vf->msix_base = IAVF_RX_VEC_START;
718                         vec = IAVF_RX_VEC_START;
719                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
720                                 qv_map[i].queue_id = i;
721                                 qv_map[i].vector_id = vec;
722                                 intr_handle->intr_vec[i] = vec++;
723                                 if (vec >= vf->nb_msix + IAVF_RX_VEC_START)
724                                         vec = IAVF_RX_VEC_START;
725                         }
726                         vf->qv_map = qv_map;
727                         PMD_DRV_LOG(DEBUG,
728                                     "%u vectors are mapping to %u Rx queues",
729                                     vf->nb_msix, dev->data->nb_rx_queues);
730                 }
731         }
732
733         if (!vf->lv_enabled) {
734                 if (iavf_config_irq_map(adapter)) {
735                         PMD_DRV_LOG(ERR, "config interrupt mapping failed");
736                         return -1;
737                 }
738         } else {
739                 uint16_t num_qv_maps = dev->data->nb_rx_queues;
740                 uint16_t index = 0;
741
742                 while (num_qv_maps > IAVF_IRQ_MAP_NUM_PER_BUF) {
743                         if (iavf_config_irq_map_lv(adapter,
744                                         IAVF_IRQ_MAP_NUM_PER_BUF, index)) {
745                                 PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
746                                 return -1;
747                         }
748                         num_qv_maps -= IAVF_IRQ_MAP_NUM_PER_BUF;
749                         index += IAVF_IRQ_MAP_NUM_PER_BUF;
750                 }
751
752                 if (iavf_config_irq_map_lv(adapter, num_qv_maps, index)) {
753                         PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
754                         return -1;
755                 }
756         }
757         return 0;
758 }
759
760 static int
761 iavf_start_queues(struct rte_eth_dev *dev)
762 {
763         struct iavf_rx_queue *rxq;
764         struct iavf_tx_queue *txq;
765         int i;
766
767         for (i = 0; i < dev->data->nb_tx_queues; i++) {
768                 txq = dev->data->tx_queues[i];
769                 if (txq->tx_deferred_start)
770                         continue;
771                 if (iavf_dev_tx_queue_start(dev, i) != 0) {
772                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
773                         return -1;
774                 }
775         }
776
777         for (i = 0; i < dev->data->nb_rx_queues; i++) {
778                 rxq = dev->data->rx_queues[i];
779                 if (rxq->rx_deferred_start)
780                         continue;
781                 if (iavf_dev_rx_queue_start(dev, i) != 0) {
782                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
783                         return -1;
784                 }
785         }
786
787         return 0;
788 }
789
790 static int
791 iavf_dev_start(struct rte_eth_dev *dev)
792 {
793         struct iavf_adapter *adapter =
794                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
795         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
796         struct rte_intr_handle *intr_handle = dev->intr_handle;
797         uint16_t num_queue_pairs;
798         uint16_t index = 0;
799
800         PMD_INIT_FUNC_TRACE();
801
802         adapter->stopped = 0;
803
804         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
805         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
806                                       dev->data->nb_tx_queues);
807         num_queue_pairs = vf->num_queue_pairs;
808
809         if (iavf_init_queues(dev) != 0) {
810                 PMD_DRV_LOG(ERR, "failed to do Queue init");
811                 return -1;
812         }
813
814         /* If needed, send configure queues msg multiple times to make the
815          * adminq buffer length smaller than the 4K limitation.
816          */
817         while (num_queue_pairs > IAVF_CFG_Q_NUM_PER_BUF) {
818                 if (iavf_configure_queues(adapter,
819                                 IAVF_CFG_Q_NUM_PER_BUF, index) != 0) {
820                         PMD_DRV_LOG(ERR, "configure queues failed");
821                         goto err_queue;
822                 }
823                 num_queue_pairs -= IAVF_CFG_Q_NUM_PER_BUF;
824                 index += IAVF_CFG_Q_NUM_PER_BUF;
825         }
826
827         if (iavf_configure_queues(adapter, num_queue_pairs, index) != 0) {
828                 PMD_DRV_LOG(ERR, "configure queues failed");
829                 goto err_queue;
830         }
831
832         if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
833                 PMD_DRV_LOG(ERR, "configure irq failed");
834                 goto err_queue;
835         }
836         /* re-enable intr again, because efd assign may change */
837         if (dev->data->dev_conf.intr_conf.rxq != 0) {
838                 rte_intr_disable(intr_handle);
839                 rte_intr_enable(intr_handle);
840         }
841
842         /* Set all mac addrs */
843         iavf_add_del_all_mac_addr(adapter, true);
844
845         /* Set all multicast addresses */
846         iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
847                                   true);
848
849         if (iavf_start_queues(dev) != 0) {
850                 PMD_DRV_LOG(ERR, "enable queues failed");
851                 goto err_mac;
852         }
853
854         return 0;
855
856 err_mac:
857         iavf_add_del_all_mac_addr(adapter, false);
858 err_queue:
859         return -1;
860 }
861
862 static int
863 iavf_dev_stop(struct rte_eth_dev *dev)
864 {
865         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
866         struct iavf_adapter *adapter =
867                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
868         struct rte_intr_handle *intr_handle = dev->intr_handle;
869
870         PMD_INIT_FUNC_TRACE();
871
872         if (adapter->stopped == 1)
873                 return 0;
874
875         iavf_stop_queues(dev);
876
877         /* Disable the interrupt for Rx */
878         rte_intr_efd_disable(intr_handle);
879         /* Rx interrupt vector mapping free */
880         if (intr_handle->intr_vec) {
881                 rte_free(intr_handle->intr_vec);
882                 intr_handle->intr_vec = NULL;
883         }
884
885         /* remove all mac addrs */
886         iavf_add_del_all_mac_addr(adapter, false);
887
888         /* remove all multicast addresses */
889         iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
890                                   false);
891
892         adapter->stopped = 1;
893         dev->data->dev_started = 0;
894
895         return 0;
896 }
897
898 static int
899 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
900 {
901         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
902
903         dev_info->max_rx_queues = IAVF_MAX_NUM_QUEUES_LV;
904         dev_info->max_tx_queues = IAVF_MAX_NUM_QUEUES_LV;
905         dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
906         dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
907         dev_info->max_mtu = dev_info->max_rx_pktlen - IAVF_ETH_OVERHEAD;
908         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
909         dev_info->hash_key_size = vf->vf_res->rss_key_size;
910         dev_info->reta_size = vf->vf_res->rss_lut_size;
911         dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
912         dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
913         dev_info->rx_offload_capa =
914                 DEV_RX_OFFLOAD_VLAN_STRIP |
915                 DEV_RX_OFFLOAD_QINQ_STRIP |
916                 DEV_RX_OFFLOAD_IPV4_CKSUM |
917                 DEV_RX_OFFLOAD_UDP_CKSUM |
918                 DEV_RX_OFFLOAD_TCP_CKSUM |
919                 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
920                 DEV_RX_OFFLOAD_SCATTER |
921                 DEV_RX_OFFLOAD_JUMBO_FRAME |
922                 DEV_RX_OFFLOAD_VLAN_FILTER |
923                 DEV_RX_OFFLOAD_RSS_HASH;
924
925         dev_info->tx_offload_capa =
926                 DEV_TX_OFFLOAD_VLAN_INSERT |
927                 DEV_TX_OFFLOAD_QINQ_INSERT |
928                 DEV_TX_OFFLOAD_IPV4_CKSUM |
929                 DEV_TX_OFFLOAD_UDP_CKSUM |
930                 DEV_TX_OFFLOAD_TCP_CKSUM |
931                 DEV_TX_OFFLOAD_SCTP_CKSUM |
932                 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
933                 DEV_TX_OFFLOAD_TCP_TSO |
934                 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
935                 DEV_TX_OFFLOAD_GRE_TNL_TSO |
936                 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
937                 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
938                 DEV_TX_OFFLOAD_MULTI_SEGS |
939                 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
940
941         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_CRC)
942                 dev_info->rx_offload_capa |= DEV_RX_OFFLOAD_KEEP_CRC;
943
944         dev_info->default_rxconf = (struct rte_eth_rxconf) {
945                 .rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
946                 .rx_drop_en = 0,
947                 .offloads = 0,
948         };
949
950         dev_info->default_txconf = (struct rte_eth_txconf) {
951                 .tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
952                 .tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
953                 .offloads = 0,
954         };
955
956         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
957                 .nb_max = IAVF_MAX_RING_DESC,
958                 .nb_min = IAVF_MIN_RING_DESC,
959                 .nb_align = IAVF_ALIGN_RING_DESC,
960         };
961
962         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
963                 .nb_max = IAVF_MAX_RING_DESC,
964                 .nb_min = IAVF_MIN_RING_DESC,
965                 .nb_align = IAVF_ALIGN_RING_DESC,
966         };
967
968         return 0;
969 }
970
971 static const uint32_t *
972 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
973 {
974         static const uint32_t ptypes[] = {
975                 RTE_PTYPE_L2_ETHER,
976                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
977                 RTE_PTYPE_L4_FRAG,
978                 RTE_PTYPE_L4_ICMP,
979                 RTE_PTYPE_L4_NONFRAG,
980                 RTE_PTYPE_L4_SCTP,
981                 RTE_PTYPE_L4_TCP,
982                 RTE_PTYPE_L4_UDP,
983                 RTE_PTYPE_UNKNOWN
984         };
985         return ptypes;
986 }
987
988 int
989 iavf_dev_link_update(struct rte_eth_dev *dev,
990                     __rte_unused int wait_to_complete)
991 {
992         struct rte_eth_link new_link;
993         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
994
995         memset(&new_link, 0, sizeof(new_link));
996
997         /* Only read status info stored in VF, and the info is updated
998          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
999          */
1000         switch (vf->link_speed) {
1001         case 10:
1002                 new_link.link_speed = ETH_SPEED_NUM_10M;
1003                 break;
1004         case 100:
1005                 new_link.link_speed = ETH_SPEED_NUM_100M;
1006                 break;
1007         case 1000:
1008                 new_link.link_speed = ETH_SPEED_NUM_1G;
1009                 break;
1010         case 10000:
1011                 new_link.link_speed = ETH_SPEED_NUM_10G;
1012                 break;
1013         case 20000:
1014                 new_link.link_speed = ETH_SPEED_NUM_20G;
1015                 break;
1016         case 25000:
1017                 new_link.link_speed = ETH_SPEED_NUM_25G;
1018                 break;
1019         case 40000:
1020                 new_link.link_speed = ETH_SPEED_NUM_40G;
1021                 break;
1022         case 50000:
1023                 new_link.link_speed = ETH_SPEED_NUM_50G;
1024                 break;
1025         case 100000:
1026                 new_link.link_speed = ETH_SPEED_NUM_100G;
1027                 break;
1028         default:
1029                 new_link.link_speed = ETH_SPEED_NUM_NONE;
1030                 break;
1031         }
1032
1033         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
1034         new_link.link_status = vf->link_up ? ETH_LINK_UP :
1035                                              ETH_LINK_DOWN;
1036         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1037                                 ETH_LINK_SPEED_FIXED);
1038
1039         return rte_eth_linkstatus_set(dev, &new_link);
1040 }
1041
1042 static int
1043 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
1044 {
1045         struct iavf_adapter *adapter =
1046                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1047         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1048
1049         return iavf_config_promisc(adapter,
1050                                   true, vf->promisc_multicast_enabled);
1051 }
1052
1053 static int
1054 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
1055 {
1056         struct iavf_adapter *adapter =
1057                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1058         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1059
1060         return iavf_config_promisc(adapter,
1061                                   false, vf->promisc_multicast_enabled);
1062 }
1063
1064 static int
1065 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
1066 {
1067         struct iavf_adapter *adapter =
1068                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1069         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1070
1071         return iavf_config_promisc(adapter,
1072                                   vf->promisc_unicast_enabled, true);
1073 }
1074
1075 static int
1076 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
1077 {
1078         struct iavf_adapter *adapter =
1079                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1080         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1081
1082         return iavf_config_promisc(adapter,
1083                                   vf->promisc_unicast_enabled, false);
1084 }
1085
1086 static int
1087 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
1088                      __rte_unused uint32_t index,
1089                      __rte_unused uint32_t pool)
1090 {
1091         struct iavf_adapter *adapter =
1092                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1093         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1094         int err;
1095
1096         if (rte_is_zero_ether_addr(addr)) {
1097                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
1098                 return -EINVAL;
1099         }
1100
1101         err = iavf_add_del_eth_addr(adapter, addr, true, VIRTCHNL_ETHER_ADDR_EXTRA);
1102         if (err) {
1103                 PMD_DRV_LOG(ERR, "fail to add MAC address");
1104                 return -EIO;
1105         }
1106
1107         vf->mac_num++;
1108
1109         return 0;
1110 }
1111
1112 static void
1113 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
1114 {
1115         struct iavf_adapter *adapter =
1116                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1117         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1118         struct rte_ether_addr *addr;
1119         int err;
1120
1121         addr = &dev->data->mac_addrs[index];
1122
1123         err = iavf_add_del_eth_addr(adapter, addr, false, VIRTCHNL_ETHER_ADDR_EXTRA);
1124         if (err)
1125                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
1126
1127         vf->mac_num--;
1128 }
1129
1130 static int
1131 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1132 {
1133         struct iavf_adapter *adapter =
1134                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1135         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1136         int err;
1137
1138         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
1139                 err = iavf_add_del_vlan_v2(adapter, vlan_id, on);
1140                 if (err)
1141                         return -EIO;
1142                 return 0;
1143         }
1144
1145         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1146                 return -ENOTSUP;
1147
1148         err = iavf_add_del_vlan(adapter, vlan_id, on);
1149         if (err)
1150                 return -EIO;
1151         return 0;
1152 }
1153
1154 static void
1155 iavf_iterate_vlan_filters_v2(struct rte_eth_dev *dev, bool enable)
1156 {
1157         struct rte_vlan_filter_conf *vfc = &dev->data->vlan_filter_conf;
1158         struct iavf_adapter *adapter =
1159                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1160         uint32_t i, j;
1161         uint64_t ids;
1162
1163         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1164                 if (vfc->ids[i] == 0)
1165                         continue;
1166
1167                 ids = vfc->ids[i];
1168                 for (j = 0; ids != 0 && j < 64; j++, ids >>= 1) {
1169                         if (ids & 1)
1170                                 iavf_add_del_vlan_v2(adapter,
1171                                                      64 * i + j, enable);
1172                 }
1173         }
1174 }
1175
1176 static int
1177 iavf_dev_vlan_offload_set_v2(struct rte_eth_dev *dev, int mask)
1178 {
1179         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
1180         struct iavf_adapter *adapter =
1181                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1182         bool enable;
1183         int err;
1184
1185         if (mask & ETH_VLAN_FILTER_MASK) {
1186                 enable = !!(rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER);
1187
1188                 iavf_iterate_vlan_filters_v2(dev, enable);
1189         }
1190
1191         if (mask & ETH_VLAN_STRIP_MASK) {
1192                 enable = !!(rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP);
1193
1194                 err = iavf_config_vlan_strip_v2(adapter, enable);
1195                 /* If not support, the stripping is already disabled by PF */
1196                 if (err == -ENOTSUP && !enable)
1197                         err = 0;
1198                 if (err)
1199                         return -EIO;
1200         }
1201
1202         return 0;
1203 }
1204
1205 static int
1206 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1207 {
1208         struct iavf_adapter *adapter =
1209                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1210         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1211         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1212         int err;
1213
1214         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2)
1215                 return iavf_dev_vlan_offload_set_v2(dev, mask);
1216
1217         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1218                 return -ENOTSUP;
1219
1220         /* Vlan stripping setting */
1221         if (mask & ETH_VLAN_STRIP_MASK) {
1222                 /* Enable or disable VLAN stripping */
1223                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1224                         err = iavf_enable_vlan_strip(adapter);
1225                 else
1226                         err = iavf_disable_vlan_strip(adapter);
1227
1228                 if (err)
1229                         return -EIO;
1230         }
1231         return 0;
1232 }
1233
1234 static int
1235 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
1236                         struct rte_eth_rss_reta_entry64 *reta_conf,
1237                         uint16_t reta_size)
1238 {
1239         struct iavf_adapter *adapter =
1240                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1241         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1242         uint8_t *lut;
1243         uint16_t i, idx, shift;
1244         int ret;
1245
1246         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1247                 return -ENOTSUP;
1248
1249         if (reta_size != vf->vf_res->rss_lut_size) {
1250                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1251                         "(%d) doesn't match the number of hardware can "
1252                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1253                 return -EINVAL;
1254         }
1255
1256         lut = rte_zmalloc("rss_lut", reta_size, 0);
1257         if (!lut) {
1258                 PMD_DRV_LOG(ERR, "No memory can be allocated");
1259                 return -ENOMEM;
1260         }
1261         /* store the old lut table temporarily */
1262         rte_memcpy(lut, vf->rss_lut, reta_size);
1263
1264         for (i = 0; i < reta_size; i++) {
1265                 idx = i / RTE_RETA_GROUP_SIZE;
1266                 shift = i % RTE_RETA_GROUP_SIZE;
1267                 if (reta_conf[idx].mask & (1ULL << shift))
1268                         lut[i] = reta_conf[idx].reta[shift];
1269         }
1270
1271         rte_memcpy(vf->rss_lut, lut, reta_size);
1272         /* send virtchnnl ops to configure rss*/
1273         ret = iavf_configure_rss_lut(adapter);
1274         if (ret) /* revert back */
1275                 rte_memcpy(vf->rss_lut, lut, reta_size);
1276         rte_free(lut);
1277
1278         return ret;
1279 }
1280
1281 static int
1282 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
1283                        struct rte_eth_rss_reta_entry64 *reta_conf,
1284                        uint16_t reta_size)
1285 {
1286         struct iavf_adapter *adapter =
1287                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1288         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1289         uint16_t i, idx, shift;
1290
1291         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1292                 return -ENOTSUP;
1293
1294         if (reta_size != vf->vf_res->rss_lut_size) {
1295                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1296                         "(%d) doesn't match the number of hardware can "
1297                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1298                 return -EINVAL;
1299         }
1300
1301         for (i = 0; i < reta_size; i++) {
1302                 idx = i / RTE_RETA_GROUP_SIZE;
1303                 shift = i % RTE_RETA_GROUP_SIZE;
1304                 if (reta_conf[idx].mask & (1ULL << shift))
1305                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
1306         }
1307
1308         return 0;
1309 }
1310
1311 static int
1312 iavf_set_rss_key(struct iavf_adapter *adapter, uint8_t *key, uint8_t key_len)
1313 {
1314         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1315
1316         /* HENA setting, it is enabled by default, no change */
1317         if (!key || key_len == 0) {
1318                 PMD_DRV_LOG(DEBUG, "No key to be configured");
1319                 return 0;
1320         } else if (key_len != vf->vf_res->rss_key_size) {
1321                 PMD_DRV_LOG(ERR, "The size of hash key configured "
1322                         "(%d) doesn't match the size of hardware can "
1323                         "support (%d)", key_len,
1324                         vf->vf_res->rss_key_size);
1325                 return -EINVAL;
1326         }
1327
1328         rte_memcpy(vf->rss_key, key, key_len);
1329
1330         return iavf_configure_rss_key(adapter);
1331 }
1332
1333 static int
1334 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
1335                         struct rte_eth_rss_conf *rss_conf)
1336 {
1337         struct iavf_adapter *adapter =
1338                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1339         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1340         int ret;
1341
1342         adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf = *rss_conf;
1343
1344         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1345                 return -ENOTSUP;
1346
1347         /* Set hash key. */
1348         ret = iavf_set_rss_key(adapter, rss_conf->rss_key,
1349                                rss_conf->rss_key_len);
1350         if (ret)
1351                 return ret;
1352
1353         if (rss_conf->rss_hf == 0) {
1354                 vf->rss_hf = 0;
1355                 ret = iavf_set_hena(adapter, 0);
1356
1357                 /* It is a workaround, temporarily allow error to be returned
1358                  * due to possible lack of PF handling for hena = 0.
1359                  */
1360                 if (ret)
1361                         PMD_DRV_LOG(WARNING, "fail to clean existing RSS, lack PF support");
1362                 return 0;
1363         }
1364
1365         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) {
1366                 /* Clear existing RSS. */
1367                 ret = iavf_set_hena(adapter, 0);
1368
1369                 /* It is a workaround, temporarily allow error to be returned
1370                  * due to possible lack of PF handling for hena = 0.
1371                  */
1372                 if (ret)
1373                         PMD_DRV_LOG(WARNING, "fail to clean existing RSS,"
1374                                     "lack PF support");
1375
1376                 /* Set new RSS configuration. */
1377                 ret = iavf_rss_hash_set(adapter, rss_conf->rss_hf, true);
1378                 if (ret) {
1379                         PMD_DRV_LOG(ERR, "fail to set new RSS");
1380                         return ret;
1381                 }
1382         } else {
1383                 ret = iavf_config_rss_hf(adapter, rss_conf->rss_hf);
1384                 if (ret != -ENOTSUP)
1385                         return ret;
1386         }
1387
1388         return 0;
1389 }
1390
1391 static int
1392 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1393                           struct rte_eth_rss_conf *rss_conf)
1394 {
1395         struct iavf_adapter *adapter =
1396                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1397         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1398
1399         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1400                 return -ENOTSUP;
1401
1402         rss_conf->rss_hf = vf->rss_hf;
1403
1404         if (!rss_conf->rss_key)
1405                 return 0;
1406
1407         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
1408         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
1409
1410         return 0;
1411 }
1412
1413 static int
1414 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1415 {
1416         uint32_t frame_size = mtu + IAVF_ETH_OVERHEAD;
1417         int ret = 0;
1418
1419         if (mtu < RTE_ETHER_MIN_MTU || frame_size > IAVF_FRAME_SIZE_MAX)
1420                 return -EINVAL;
1421
1422         /* mtu setting is forbidden if port is start */
1423         if (dev->data->dev_started) {
1424                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
1425                 return -EBUSY;
1426         }
1427
1428         if (frame_size > IAVF_ETH_MAX_LEN)
1429                 dev->data->dev_conf.rxmode.offloads |=
1430                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
1431         else
1432                 dev->data->dev_conf.rxmode.offloads &=
1433                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1434
1435         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1436
1437         return ret;
1438 }
1439
1440 static int
1441 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
1442                              struct rte_ether_addr *mac_addr)
1443 {
1444         struct iavf_adapter *adapter =
1445                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1446         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1447         struct rte_ether_addr *old_addr;
1448         int ret;
1449
1450         old_addr = (struct rte_ether_addr *)hw->mac.addr;
1451
1452         if (rte_is_same_ether_addr(old_addr, mac_addr))
1453                 return 0;
1454
1455         ret = iavf_add_del_eth_addr(adapter, old_addr, false, VIRTCHNL_ETHER_ADDR_PRIMARY);
1456         if (ret)
1457                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
1458                             " %02X:%02X:%02X:%02X:%02X:%02X",
1459                             old_addr->addr_bytes[0],
1460                             old_addr->addr_bytes[1],
1461                             old_addr->addr_bytes[2],
1462                             old_addr->addr_bytes[3],
1463                             old_addr->addr_bytes[4],
1464                             old_addr->addr_bytes[5]);
1465
1466         ret = iavf_add_del_eth_addr(adapter, mac_addr, true, VIRTCHNL_ETHER_ADDR_PRIMARY);
1467         if (ret)
1468                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1469                             " %02X:%02X:%02X:%02X:%02X:%02X",
1470                             mac_addr->addr_bytes[0],
1471                             mac_addr->addr_bytes[1],
1472                             mac_addr->addr_bytes[2],
1473                             mac_addr->addr_bytes[3],
1474                             mac_addr->addr_bytes[4],
1475                             mac_addr->addr_bytes[5]);
1476
1477         if (ret)
1478                 return -EIO;
1479
1480         rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1481         return 0;
1482 }
1483
1484 static void
1485 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1486 {
1487         if (*stat >= *offset)
1488                 *stat = *stat - *offset;
1489         else
1490                 *stat = (uint64_t)((*stat +
1491                         ((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1492
1493         *stat &= IAVF_48_BIT_MASK;
1494 }
1495
1496 static void
1497 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1498 {
1499         if (*stat >= *offset)
1500                 *stat = (uint64_t)(*stat - *offset);
1501         else
1502                 *stat = (uint64_t)((*stat +
1503                         ((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1504 }
1505
1506 static void
1507 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1508 {
1509         struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset;
1510
1511         iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1512         iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1513         iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1514         iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1515         iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1516         iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1517         iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1518         iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1519         iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1520         iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1521         iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1522 }
1523
1524 static int
1525 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1526 {
1527         struct iavf_adapter *adapter =
1528                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1529         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1530         struct iavf_vsi *vsi = &vf->vsi;
1531         struct virtchnl_eth_stats *pstats = NULL;
1532         int ret;
1533
1534         ret = iavf_query_stats(adapter, &pstats);
1535         if (ret == 0) {
1536                 uint8_t crc_stats_len = (dev->data->dev_conf.rxmode.offloads &
1537                                          DEV_RX_OFFLOAD_KEEP_CRC) ? 0 :
1538                                          RTE_ETHER_CRC_LEN;
1539                 iavf_update_stats(vsi, pstats);
1540                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1541                                 pstats->rx_broadcast - pstats->rx_discards;
1542                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1543                                                 pstats->tx_unicast;
1544                 stats->imissed = pstats->rx_discards;
1545                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1546                 stats->ibytes = pstats->rx_bytes;
1547                 stats->ibytes -= stats->ipackets * crc_stats_len;
1548                 stats->obytes = pstats->tx_bytes;
1549         } else {
1550                 PMD_DRV_LOG(ERR, "Get statistics failed");
1551         }
1552         return ret;
1553 }
1554
1555 static int
1556 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1557 {
1558         int ret;
1559         struct iavf_adapter *adapter =
1560                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1561         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1562         struct iavf_vsi *vsi = &vf->vsi;
1563         struct virtchnl_eth_stats *pstats = NULL;
1564
1565         /* read stat values to clear hardware registers */
1566         ret = iavf_query_stats(adapter, &pstats);
1567         if (ret != 0)
1568                 return ret;
1569
1570         /* set stats offset base on current values */
1571         vsi->eth_stats_offset = *pstats;
1572
1573         return 0;
1574 }
1575
1576 static int iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1577                                       struct rte_eth_xstat_name *xstats_names,
1578                                       __rte_unused unsigned int limit)
1579 {
1580         unsigned int i;
1581
1582         if (xstats_names != NULL)
1583                 for (i = 0; i < IAVF_NB_XSTATS; i++) {
1584                         snprintf(xstats_names[i].name,
1585                                 sizeof(xstats_names[i].name),
1586                                 "%s", rte_iavf_stats_strings[i].name);
1587                 }
1588         return IAVF_NB_XSTATS;
1589 }
1590
1591 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
1592                                  struct rte_eth_xstat *xstats, unsigned int n)
1593 {
1594         int ret;
1595         unsigned int i;
1596         struct iavf_adapter *adapter =
1597                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1598         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1599         struct iavf_vsi *vsi = &vf->vsi;
1600         struct virtchnl_eth_stats *pstats = NULL;
1601
1602         if (n < IAVF_NB_XSTATS)
1603                 return IAVF_NB_XSTATS;
1604
1605         ret = iavf_query_stats(adapter, &pstats);
1606         if (ret != 0)
1607                 return 0;
1608
1609         if (!xstats)
1610                 return 0;
1611
1612         iavf_update_stats(vsi, pstats);
1613
1614         /* loop over xstats array and values from pstats */
1615         for (i = 0; i < IAVF_NB_XSTATS; i++) {
1616                 xstats[i].id = i;
1617                 xstats[i].value = *(uint64_t *)(((char *)pstats) +
1618                         rte_iavf_stats_strings[i].offset);
1619         }
1620
1621         return IAVF_NB_XSTATS;
1622 }
1623
1624
1625 static int
1626 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1627 {
1628         struct iavf_adapter *adapter =
1629                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1630         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1631         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1632         uint16_t msix_intr;
1633
1634         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1635         if (msix_intr == IAVF_MISC_VEC_ID) {
1636                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1637                 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1638                                IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1639                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1640                                IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1641         } else {
1642                 IAVF_WRITE_REG(hw,
1643                                IAVF_VFINT_DYN_CTLN1
1644                                 (msix_intr - IAVF_RX_VEC_START),
1645                                IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1646                                IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1647                                IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
1648         }
1649
1650         IAVF_WRITE_FLUSH(hw);
1651
1652         rte_intr_ack(&pci_dev->intr_handle);
1653
1654         return 0;
1655 }
1656
1657 static int
1658 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1659 {
1660         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1661         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1662         uint16_t msix_intr;
1663
1664         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1665         if (msix_intr == IAVF_MISC_VEC_ID) {
1666                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1667                 return -EIO;
1668         }
1669
1670         IAVF_WRITE_REG(hw,
1671                       IAVF_VFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1672                       0);
1673
1674         IAVF_WRITE_FLUSH(hw);
1675         return 0;
1676 }
1677
1678 static int
1679 iavf_check_vf_reset_done(struct iavf_hw *hw)
1680 {
1681         int i, reset;
1682
1683         for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1684                 reset = IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
1685                         IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1686                 reset = reset >> IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT;
1687                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1688                     reset == VIRTCHNL_VFR_COMPLETED)
1689                         break;
1690                 rte_delay_ms(20);
1691         }
1692
1693         if (i >= IAVF_RESET_WAIT_CNT)
1694                 return -1;
1695
1696         return 0;
1697 }
1698
1699 static int
1700 iavf_lookup_proto_xtr_type(const char *flex_name)
1701 {
1702         static struct {
1703                 const char *name;
1704                 enum iavf_proto_xtr_type type;
1705         } xtr_type_map[] = {
1706                 { "vlan",      IAVF_PROTO_XTR_VLAN      },
1707                 { "ipv4",      IAVF_PROTO_XTR_IPV4      },
1708                 { "ipv6",      IAVF_PROTO_XTR_IPV6      },
1709                 { "ipv6_flow", IAVF_PROTO_XTR_IPV6_FLOW },
1710                 { "tcp",       IAVF_PROTO_XTR_TCP       },
1711                 { "ip_offset", IAVF_PROTO_XTR_IP_OFFSET },
1712         };
1713         uint32_t i;
1714
1715         for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
1716                 if (strcmp(flex_name, xtr_type_map[i].name) == 0)
1717                         return xtr_type_map[i].type;
1718         }
1719
1720         PMD_DRV_LOG(ERR, "wrong proto_xtr type, "
1721                     "it should be: vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset");
1722
1723         return -1;
1724 }
1725
1726 /**
1727  * Parse elem, the elem could be single number/range or '(' ')' group
1728  * 1) A single number elem, it's just a simple digit. e.g. 9
1729  * 2) A single range elem, two digits with a '-' between. e.g. 2-6
1730  * 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
1731  *    Within group elem, '-' used for a range separator;
1732  *                       ',' used for a single number.
1733  */
1734 static int
1735 iavf_parse_queue_set(const char *input, int xtr_type,
1736                      struct iavf_devargs *devargs)
1737 {
1738         const char *str = input;
1739         char *end = NULL;
1740         uint32_t min, max;
1741         uint32_t idx;
1742
1743         while (isblank(*str))
1744                 str++;
1745
1746         if (!isdigit(*str) && *str != '(')
1747                 return -1;
1748
1749         /* process single number or single range of number */
1750         if (*str != '(') {
1751                 errno = 0;
1752                 idx = strtoul(str, &end, 10);
1753                 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1754                         return -1;
1755
1756                 while (isblank(*end))
1757                         end++;
1758
1759                 min = idx;
1760                 max = idx;
1761
1762                 /* process single <number>-<number> */
1763                 if (*end == '-') {
1764                         end++;
1765                         while (isblank(*end))
1766                                 end++;
1767                         if (!isdigit(*end))
1768                                 return -1;
1769
1770                         errno = 0;
1771                         idx = strtoul(end, &end, 10);
1772                         if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1773                                 return -1;
1774
1775                         max = idx;
1776                         while (isblank(*end))
1777                                 end++;
1778                 }
1779
1780                 if (*end != ':')
1781                         return -1;
1782
1783                 for (idx = RTE_MIN(min, max);
1784                      idx <= RTE_MAX(min, max); idx++)
1785                         devargs->proto_xtr[idx] = xtr_type;
1786
1787                 return 0;
1788         }
1789
1790         /* process set within bracket */
1791         str++;
1792         while (isblank(*str))
1793                 str++;
1794         if (*str == '\0')
1795                 return -1;
1796
1797         min = IAVF_MAX_QUEUE_NUM;
1798         do {
1799                 /* go ahead to the first digit */
1800                 while (isblank(*str))
1801                         str++;
1802                 if (!isdigit(*str))
1803                         return -1;
1804
1805                 /* get the digit value */
1806                 errno = 0;
1807                 idx = strtoul(str, &end, 10);
1808                 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1809                         return -1;
1810
1811                 /* go ahead to separator '-',',' and ')' */
1812                 while (isblank(*end))
1813                         end++;
1814                 if (*end == '-') {
1815                         if (min == IAVF_MAX_QUEUE_NUM)
1816                                 min = idx;
1817                         else /* avoid continuous '-' */
1818                                 return -1;
1819                 } else if (*end == ',' || *end == ')') {
1820                         max = idx;
1821                         if (min == IAVF_MAX_QUEUE_NUM)
1822                                 min = idx;
1823
1824                         for (idx = RTE_MIN(min, max);
1825                              idx <= RTE_MAX(min, max); idx++)
1826                                 devargs->proto_xtr[idx] = xtr_type;
1827
1828                         min = IAVF_MAX_QUEUE_NUM;
1829                 } else {
1830                         return -1;
1831                 }
1832
1833                 str = end + 1;
1834         } while (*end != ')' && *end != '\0');
1835
1836         return 0;
1837 }
1838
1839 static int
1840 iavf_parse_queue_proto_xtr(const char *queues, struct iavf_devargs *devargs)
1841 {
1842         const char *queue_start;
1843         uint32_t idx;
1844         int xtr_type;
1845         char flex_name[32];
1846
1847         while (isblank(*queues))
1848                 queues++;
1849
1850         if (*queues != '[') {
1851                 xtr_type = iavf_lookup_proto_xtr_type(queues);
1852                 if (xtr_type < 0)
1853                         return -1;
1854
1855                 devargs->proto_xtr_dflt = xtr_type;
1856
1857                 return 0;
1858         }
1859
1860         queues++;
1861         do {
1862                 while (isblank(*queues))
1863                         queues++;
1864                 if (*queues == '\0')
1865                         return -1;
1866
1867                 queue_start = queues;
1868
1869                 /* go across a complete bracket */
1870                 if (*queue_start == '(') {
1871                         queues += strcspn(queues, ")");
1872                         if (*queues != ')')
1873                                 return -1;
1874                 }
1875
1876                 /* scan the separator ':' */
1877                 queues += strcspn(queues, ":");
1878                 if (*queues++ != ':')
1879                         return -1;
1880                 while (isblank(*queues))
1881                         queues++;
1882
1883                 for (idx = 0; ; idx++) {
1884                         if (isblank(queues[idx]) ||
1885                             queues[idx] == ',' ||
1886                             queues[idx] == ']' ||
1887                             queues[idx] == '\0')
1888                                 break;
1889
1890                         if (idx > sizeof(flex_name) - 2)
1891                                 return -1;
1892
1893                         flex_name[idx] = queues[idx];
1894                 }
1895                 flex_name[idx] = '\0';
1896                 xtr_type = iavf_lookup_proto_xtr_type(flex_name);
1897                 if (xtr_type < 0)
1898                         return -1;
1899
1900                 queues += idx;
1901
1902                 while (isblank(*queues) || *queues == ',' || *queues == ']')
1903                         queues++;
1904
1905                 if (iavf_parse_queue_set(queue_start, xtr_type, devargs) < 0)
1906                         return -1;
1907         } while (*queues != '\0');
1908
1909         return 0;
1910 }
1911
1912 static int
1913 iavf_handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
1914                           void *extra_args)
1915 {
1916         struct iavf_devargs *devargs = extra_args;
1917
1918         if (!value || !extra_args)
1919                 return -EINVAL;
1920
1921         if (iavf_parse_queue_proto_xtr(value, devargs) < 0) {
1922                 PMD_DRV_LOG(ERR, "the proto_xtr's parameter is wrong : '%s'",
1923                             value);
1924                 return -1;
1925         }
1926
1927         return 0;
1928 }
1929
1930 static int iavf_parse_devargs(struct rte_eth_dev *dev)
1931 {
1932         struct iavf_adapter *ad =
1933                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1934         struct rte_devargs *devargs = dev->device->devargs;
1935         struct rte_kvargs *kvlist;
1936         int ret;
1937
1938         if (!devargs)
1939                 return 0;
1940
1941         kvlist = rte_kvargs_parse(devargs->args, iavf_valid_args);
1942         if (!kvlist) {
1943                 PMD_INIT_LOG(ERR, "invalid kvargs key\n");
1944                 return -EINVAL;
1945         }
1946
1947         ad->devargs.proto_xtr_dflt = IAVF_PROTO_XTR_NONE;
1948         memset(ad->devargs.proto_xtr, IAVF_PROTO_XTR_NONE,
1949                sizeof(ad->devargs.proto_xtr));
1950
1951         ret = rte_kvargs_process(kvlist, IAVF_PROTO_XTR_ARG,
1952                                  &iavf_handle_proto_xtr_arg, &ad->devargs);
1953         if (ret)
1954                 goto bail;
1955
1956 bail:
1957         rte_kvargs_free(kvlist);
1958         return ret;
1959 }
1960
1961 static void
1962 iavf_init_proto_xtr(struct rte_eth_dev *dev)
1963 {
1964         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1965         struct iavf_adapter *ad =
1966                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1967         const struct iavf_proto_xtr_ol *xtr_ol;
1968         bool proto_xtr_enable = false;
1969         int offset;
1970         uint16_t i;
1971
1972         vf->proto_xtr = rte_zmalloc("vf proto xtr",
1973                                     vf->vsi_res->num_queue_pairs, 0);
1974         if (unlikely(!(vf->proto_xtr))) {
1975                 PMD_DRV_LOG(ERR, "no memory for setting up proto_xtr's table");
1976                 return;
1977         }
1978
1979         for (i = 0; i < vf->vsi_res->num_queue_pairs; i++) {
1980                 vf->proto_xtr[i] = ad->devargs.proto_xtr[i] !=
1981                                         IAVF_PROTO_XTR_NONE ?
1982                                         ad->devargs.proto_xtr[i] :
1983                                         ad->devargs.proto_xtr_dflt;
1984
1985                 if (vf->proto_xtr[i] != IAVF_PROTO_XTR_NONE) {
1986                         uint8_t type = vf->proto_xtr[i];
1987
1988                         iavf_proto_xtr_params[type].required = true;
1989                         proto_xtr_enable = true;
1990                 }
1991         }
1992
1993         if (likely(!proto_xtr_enable))
1994                 return;
1995
1996         offset = rte_mbuf_dynfield_register(&iavf_proto_xtr_metadata_param);
1997         if (unlikely(offset == -1)) {
1998                 PMD_DRV_LOG(ERR,
1999                             "failed to extract protocol metadata, error %d",
2000                             -rte_errno);
2001                 return;
2002         }
2003
2004         PMD_DRV_LOG(DEBUG,
2005                     "proto_xtr metadata offset in mbuf is : %d",
2006                     offset);
2007         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = offset;
2008
2009         for (i = 0; i < RTE_DIM(iavf_proto_xtr_params); i++) {
2010                 xtr_ol = &iavf_proto_xtr_params[i];
2011
2012                 uint8_t rxdid = iavf_proto_xtr_type_to_rxdid((uint8_t)i);
2013
2014                 if (!xtr_ol->required)
2015                         continue;
2016
2017                 if (!(vf->supported_rxdid & BIT(rxdid))) {
2018                         PMD_DRV_LOG(ERR,
2019                                     "rxdid[%u] is not supported in hardware",
2020                                     rxdid);
2021                         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2022                         break;
2023                 }
2024
2025                 offset = rte_mbuf_dynflag_register(&xtr_ol->param);
2026                 if (unlikely(offset == -1)) {
2027                         PMD_DRV_LOG(ERR,
2028                                     "failed to register proto_xtr offload '%s', error %d",
2029                                     xtr_ol->param.name, -rte_errno);
2030
2031                         rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
2032                         break;
2033                 }
2034
2035                 PMD_DRV_LOG(DEBUG,
2036                             "proto_xtr offload '%s' offset in mbuf is : %d",
2037                             xtr_ol->param.name, offset);
2038                 *xtr_ol->ol_flag = 1ULL << offset;
2039         }
2040 }
2041
2042 static int
2043 iavf_init_vf(struct rte_eth_dev *dev)
2044 {
2045         int err, bufsz;
2046         struct iavf_adapter *adapter =
2047                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2048         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2049         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2050
2051         err = iavf_parse_devargs(dev);
2052         if (err) {
2053                 PMD_INIT_LOG(ERR, "Failed to parse devargs");
2054                 goto err;
2055         }
2056
2057         err = iavf_set_mac_type(hw);
2058         if (err) {
2059                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
2060                 goto err;
2061         }
2062
2063         err = iavf_check_vf_reset_done(hw);
2064         if (err) {
2065                 PMD_INIT_LOG(ERR, "VF is still resetting");
2066                 goto err;
2067         }
2068
2069         iavf_init_adminq_parameter(hw);
2070         err = iavf_init_adminq(hw);
2071         if (err) {
2072                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
2073                 goto err;
2074         }
2075
2076         vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
2077         if (!vf->aq_resp) {
2078                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
2079                 goto err_aq;
2080         }
2081         if (iavf_check_api_version(adapter) != 0) {
2082                 PMD_INIT_LOG(ERR, "check_api version failed");
2083                 goto err_api;
2084         }
2085
2086         bufsz = sizeof(struct virtchnl_vf_resource) +
2087                 (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
2088         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
2089         if (!vf->vf_res) {
2090                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
2091                 goto err_api;
2092         }
2093         if (iavf_get_vf_resource(adapter) != 0) {
2094                 PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
2095                 goto err_alloc;
2096         }
2097         /* Allocate memort for RSS info */
2098         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2099                 vf->rss_key = rte_zmalloc("rss_key",
2100                                           vf->vf_res->rss_key_size, 0);
2101                 if (!vf->rss_key) {
2102                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
2103                         goto err_rss;
2104                 }
2105                 vf->rss_lut = rte_zmalloc("rss_lut",
2106                                           vf->vf_res->rss_lut_size, 0);
2107                 if (!vf->rss_lut) {
2108                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
2109                         goto err_rss;
2110                 }
2111         }
2112
2113         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2114                 if (iavf_get_supported_rxdid(adapter) != 0) {
2115                         PMD_INIT_LOG(ERR, "failed to do get supported rxdid");
2116                         goto err_rss;
2117                 }
2118         }
2119
2120         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
2121                 if (iavf_get_vlan_offload_caps_v2(adapter) != 0) {
2122                         PMD_INIT_LOG(ERR, "failed to do get VLAN offload v2 capabilities");
2123                         goto err_rss;
2124                 }
2125         }
2126
2127         iavf_init_proto_xtr(dev);
2128
2129         return 0;
2130 err_rss:
2131         rte_free(vf->rss_key);
2132         rte_free(vf->rss_lut);
2133 err_alloc:
2134         rte_free(vf->vf_res);
2135         vf->vsi_res = NULL;
2136 err_api:
2137         rte_free(vf->aq_resp);
2138 err_aq:
2139         iavf_shutdown_adminq(hw);
2140 err:
2141         return -1;
2142 }
2143
2144 /* Enable default admin queue interrupt setting */
2145 static inline void
2146 iavf_enable_irq0(struct iavf_hw *hw)
2147 {
2148         /* Enable admin queue interrupt trigger */
2149         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1,
2150                        IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
2151
2152         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2153                        IAVF_VFINT_DYN_CTL01_INTENA_MASK |
2154                        IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
2155                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2156
2157         IAVF_WRITE_FLUSH(hw);
2158 }
2159
2160 static inline void
2161 iavf_disable_irq0(struct iavf_hw *hw)
2162 {
2163         /* Disable all interrupt types */
2164         IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, 0);
2165         IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
2166                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
2167         IAVF_WRITE_FLUSH(hw);
2168 }
2169
2170 static void
2171 iavf_dev_interrupt_handler(void *param)
2172 {
2173         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2174         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2175
2176         iavf_disable_irq0(hw);
2177
2178         iavf_handle_virtchnl_msg(dev);
2179
2180         iavf_enable_irq0(hw);
2181 }
2182
2183 static int
2184 iavf_dev_flow_ops_get(struct rte_eth_dev *dev,
2185                       const struct rte_flow_ops **ops)
2186 {
2187         if (!dev)
2188                 return -EINVAL;
2189
2190         *ops = &iavf_flow_ops;
2191         return 0;
2192 }
2193
2194 static void
2195 iavf_default_rss_disable(struct iavf_adapter *adapter)
2196 {
2197         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
2198         int ret = 0;
2199
2200         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2201                 /* Set hena = 0 to ask PF to cleanup all existing RSS. */
2202                 ret = iavf_set_hena(adapter, 0);
2203                 if (ret)
2204                         /* It is a workaround, temporarily allow error to be
2205                          * returned due to possible lack of PF handling for
2206                          * hena = 0.
2207                          */
2208                         PMD_INIT_LOG(WARNING, "fail to disable default RSS,"
2209                                     "lack PF support");
2210         }
2211 }
2212
2213 static int
2214 iavf_dev_init(struct rte_eth_dev *eth_dev)
2215 {
2216         struct iavf_adapter *adapter =
2217                 IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2218         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
2219         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2220         int ret = 0;
2221
2222         PMD_INIT_FUNC_TRACE();
2223
2224         /* assign ops func pointer */
2225         eth_dev->dev_ops = &iavf_eth_dev_ops;
2226         eth_dev->rx_queue_count = iavf_dev_rxq_count;
2227         eth_dev->rx_descriptor_status = iavf_dev_rx_desc_status;
2228         eth_dev->tx_descriptor_status = iavf_dev_tx_desc_status;
2229         eth_dev->rx_pkt_burst = &iavf_recv_pkts;
2230         eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
2231         eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
2232
2233         /* For secondary processes, we don't initialise any further as primary
2234          * has already done this work. Only check if we need a different RX
2235          * and TX function.
2236          */
2237         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2238                 iavf_set_rx_function(eth_dev);
2239                 iavf_set_tx_function(eth_dev);
2240                 return 0;
2241         }
2242         rte_eth_copy_pci_info(eth_dev, pci_dev);
2243         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2244
2245         hw->vendor_id = pci_dev->id.vendor_id;
2246         hw->device_id = pci_dev->id.device_id;
2247         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
2248         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
2249         hw->bus.bus_id = pci_dev->addr.bus;
2250         hw->bus.device = pci_dev->addr.devid;
2251         hw->bus.func = pci_dev->addr.function;
2252         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
2253         hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
2254         adapter->eth_dev = eth_dev;
2255         adapter->stopped = 1;
2256
2257         if (iavf_init_vf(eth_dev) != 0) {
2258                 PMD_INIT_LOG(ERR, "Init vf failed");
2259                 return -1;
2260         }
2261
2262         /* set default ptype table */
2263         adapter->ptype_tbl = iavf_get_default_ptype_table();
2264
2265         /* copy mac addr */
2266         eth_dev->data->mac_addrs = rte_zmalloc(
2267                 "iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
2268         if (!eth_dev->data->mac_addrs) {
2269                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
2270                              " store MAC addresses",
2271                              RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
2272                 return -ENOMEM;
2273         }
2274         /* If the MAC address is not configured by host,
2275          * generate a random one.
2276          */
2277         if (!rte_is_valid_assigned_ether_addr(
2278                         (struct rte_ether_addr *)hw->mac.addr))
2279                 rte_eth_random_addr(hw->mac.addr);
2280         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
2281                         &eth_dev->data->mac_addrs[0]);
2282
2283         /* register callback func to eal lib */
2284         rte_intr_callback_register(&pci_dev->intr_handle,
2285                                    iavf_dev_interrupt_handler,
2286                                    (void *)eth_dev);
2287
2288         /* enable uio intr after callback register */
2289         rte_intr_enable(&pci_dev->intr_handle);
2290
2291         /* configure and enable device interrupt */
2292         iavf_enable_irq0(hw);
2293
2294         ret = iavf_flow_init(adapter);
2295         if (ret) {
2296                 PMD_INIT_LOG(ERR, "Failed to initialize flow");
2297                 return ret;
2298         }
2299
2300         iavf_default_rss_disable(adapter);
2301
2302         return 0;
2303 }
2304
2305 static int
2306 iavf_dev_close(struct rte_eth_dev *dev)
2307 {
2308         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2309         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2310         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2311         struct iavf_adapter *adapter =
2312                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2313         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2314         int ret;
2315
2316         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2317                 return 0;
2318
2319         ret = iavf_dev_stop(dev);
2320
2321         iavf_flow_flush(dev, NULL);
2322         iavf_flow_uninit(adapter);
2323
2324         /*
2325          * disable promiscuous mode before reset vf
2326          * it is a workaround solution when work with kernel driver
2327          * and it is not the normal way
2328          */
2329         if (vf->promisc_unicast_enabled || vf->promisc_multicast_enabled)
2330                 iavf_config_promisc(adapter, false, false);
2331
2332         iavf_shutdown_adminq(hw);
2333         /* disable uio intr before callback unregister */
2334         rte_intr_disable(intr_handle);
2335
2336         /* unregister callback func from eal lib */
2337         rte_intr_callback_unregister(intr_handle,
2338                                      iavf_dev_interrupt_handler, dev);
2339         iavf_disable_irq0(hw);
2340
2341         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2342                 if (vf->rss_lut) {
2343                         rte_free(vf->rss_lut);
2344                         vf->rss_lut = NULL;
2345                 }
2346                 if (vf->rss_key) {
2347                         rte_free(vf->rss_key);
2348                         vf->rss_key = NULL;
2349                 }
2350         }
2351
2352         rte_free(vf->vf_res);
2353         vf->vsi_res = NULL;
2354         vf->vf_res = NULL;
2355
2356         rte_free(vf->aq_resp);
2357         vf->aq_resp = NULL;
2358
2359         vf->vf_reset = false;
2360
2361         return ret;
2362 }
2363
2364 static int
2365 iavf_dev_uninit(struct rte_eth_dev *dev)
2366 {
2367         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2368                 return -EPERM;
2369
2370         iavf_dev_close(dev);
2371
2372         return 0;
2373 }
2374
2375 /*
2376  * Reset VF device only to re-initialize resources in PMD layer
2377  */
2378 static int
2379 iavf_dev_reset(struct rte_eth_dev *dev)
2380 {
2381         int ret;
2382
2383         ret = iavf_dev_uninit(dev);
2384         if (ret)
2385                 return ret;
2386
2387         return iavf_dev_init(dev);
2388 }
2389
2390 static int
2391 iavf_dcf_cap_check_handler(__rte_unused const char *key,
2392                            const char *value, __rte_unused void *opaque)
2393 {
2394         if (strcmp(value, "dcf"))
2395                 return -1;
2396
2397         return 0;
2398 }
2399
2400 static int
2401 iavf_dcf_cap_selected(struct rte_devargs *devargs)
2402 {
2403         struct rte_kvargs *kvlist;
2404         const char *key = "cap";
2405         int ret = 0;
2406
2407         if (devargs == NULL)
2408                 return 0;
2409
2410         kvlist = rte_kvargs_parse(devargs->args, NULL);
2411         if (kvlist == NULL)
2412                 return 0;
2413
2414         if (!rte_kvargs_count(kvlist, key))
2415                 goto exit;
2416
2417         /* dcf capability selected when there's a key-value pair: cap=dcf */
2418         if (rte_kvargs_process(kvlist, key,
2419                                iavf_dcf_cap_check_handler, NULL) < 0)
2420                 goto exit;
2421
2422         ret = 1;
2423
2424 exit:
2425         rte_kvargs_free(kvlist);
2426         return ret;
2427 }
2428
2429 static int
2430 iavf_drv_i40evf_check_handler(__rte_unused const char *key,
2431                               const char *value, __rte_unused void *opaque)
2432 {
2433         if (strcmp(value, "i40evf"))
2434                 return -1;
2435
2436         return 0;
2437 }
2438
2439 static int
2440 iavf_drv_i40evf_selected(struct rte_devargs *devargs, uint16_t device_id)
2441 {
2442         struct rte_kvargs *kvlist;
2443         const char *key = "driver";
2444         int ret = 0;
2445
2446         if (device_id != IAVF_DEV_ID_VF &&
2447             device_id != IAVF_DEV_ID_VF_HV &&
2448             device_id != IAVF_DEV_ID_X722_VF &&
2449             device_id != IAVF_DEV_ID_X722_A0_VF)
2450                 return 0;
2451
2452         if (devargs == NULL)
2453                 return 0;
2454
2455         kvlist = rte_kvargs_parse(devargs->args, NULL);
2456         if (kvlist == NULL)
2457                 return 0;
2458
2459         if (!rte_kvargs_count(kvlist, key))
2460                 goto exit;
2461
2462         /* i40evf driver selected when there's a key-value pair:
2463          * driver=i40evf
2464          */
2465         if (rte_kvargs_process(kvlist, key,
2466                                iavf_drv_i40evf_check_handler, NULL) < 0)
2467                 goto exit;
2468
2469         ret = 1;
2470
2471 exit:
2472         rte_kvargs_free(kvlist);
2473         return ret;
2474 }
2475
2476 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2477                              struct rte_pci_device *pci_dev)
2478 {
2479         if (iavf_dcf_cap_selected(pci_dev->device.devargs) ||
2480             iavf_drv_i40evf_selected(pci_dev->device.devargs,
2481                                      pci_dev->id.device_id))
2482                 return 1;
2483
2484         return rte_eth_dev_pci_generic_probe(pci_dev,
2485                 sizeof(struct iavf_adapter), iavf_dev_init);
2486 }
2487
2488 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
2489 {
2490         return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
2491 }
2492
2493 /* Adaptive virtual function driver struct */
2494 static struct rte_pci_driver rte_iavf_pmd = {
2495         .id_table = pci_id_iavf_map,
2496         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
2497         .probe = eth_iavf_pci_probe,
2498         .remove = eth_iavf_pci_remove,
2499 };
2500
2501 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
2502 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
2503 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
2504 RTE_PMD_REGISTER_PARAM_STRING(net_iavf, "cap=dcf driver=i40evf");
2505 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_init, init, NOTICE);
2506 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_driver, driver, NOTICE);
2507 #ifdef RTE_ETHDEV_DEBUG_RX
2508 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_rx, rx, DEBUG);
2509 #endif
2510 #ifdef RTE_ETHDEV_DEBUG_TX
2511 RTE_LOG_REGISTER_SUFFIX(iavf_logtype_tx, tx, DEBUG);
2512 #endif