net/iavf/base: rename error code enum
[dpdk.git] / drivers / net / iavf / iavf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "iavf_log.h"
29 #include "base/iavf_prototype.h"
30 #include "base/iavf_adminq_cmd.h"
31 #include "base/iavf_type.h"
32
33 #include "iavf.h"
34 #include "iavf_rxtx.h"
35
36 static int iavf_dev_configure(struct rte_eth_dev *dev);
37 static int iavf_dev_start(struct rte_eth_dev *dev);
38 static void iavf_dev_stop(struct rte_eth_dev *dev);
39 static void iavf_dev_close(struct rte_eth_dev *dev);
40 static int iavf_dev_info_get(struct rte_eth_dev *dev,
41                              struct rte_eth_dev_info *dev_info);
42 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
44                              struct rte_eth_stats *stats);
45 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
46 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
47 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
48 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
49 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
50 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
51                                 struct rte_ether_addr *addr,
52                                 uint32_t index,
53                                 uint32_t pool);
54 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
55 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
56                                    uint16_t vlan_id, int on);
57 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
58 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
59                                    struct rte_eth_rss_reta_entry64 *reta_conf,
60                                    uint16_t reta_size);
61 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
62                                   struct rte_eth_rss_reta_entry64 *reta_conf,
63                                   uint16_t reta_size);
64 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
65                                    struct rte_eth_rss_conf *rss_conf);
66 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
67                                      struct rte_eth_rss_conf *rss_conf);
68 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
69 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
70                                          struct rte_ether_addr *mac_addr);
71 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
72                                         uint16_t queue_id);
73 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
74                                          uint16_t queue_id);
75
76 int iavf_logtype_init;
77 int iavf_logtype_driver;
78
79 #ifdef RTE_LIBRTE_IAVF_DEBUG_RX
80 int iavf_logtype_rx;
81 #endif
82 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX
83 int iavf_logtype_tx;
84 #endif
85 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_FREE
86 int iavf_logtype_tx_free;
87 #endif
88
89 static const struct rte_pci_id pci_id_iavf_map[] = {
90         { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
91         { .vendor_id = 0, /* sentinel */ },
92 };
93
94 static const struct eth_dev_ops iavf_eth_dev_ops = {
95         .dev_configure              = iavf_dev_configure,
96         .dev_start                  = iavf_dev_start,
97         .dev_stop                   = iavf_dev_stop,
98         .dev_close                  = iavf_dev_close,
99         .dev_infos_get              = iavf_dev_info_get,
100         .dev_supported_ptypes_get   = iavf_dev_supported_ptypes_get,
101         .link_update                = iavf_dev_link_update,
102         .stats_get                  = iavf_dev_stats_get,
103         .stats_reset                = iavf_dev_stats_reset,
104         .promiscuous_enable         = iavf_dev_promiscuous_enable,
105         .promiscuous_disable        = iavf_dev_promiscuous_disable,
106         .allmulticast_enable        = iavf_dev_allmulticast_enable,
107         .allmulticast_disable       = iavf_dev_allmulticast_disable,
108         .mac_addr_add               = iavf_dev_add_mac_addr,
109         .mac_addr_remove            = iavf_dev_del_mac_addr,
110         .vlan_filter_set            = iavf_dev_vlan_filter_set,
111         .vlan_offload_set           = iavf_dev_vlan_offload_set,
112         .rx_queue_start             = iavf_dev_rx_queue_start,
113         .rx_queue_stop              = iavf_dev_rx_queue_stop,
114         .tx_queue_start             = iavf_dev_tx_queue_start,
115         .tx_queue_stop              = iavf_dev_tx_queue_stop,
116         .rx_queue_setup             = iavf_dev_rx_queue_setup,
117         .rx_queue_release           = iavf_dev_rx_queue_release,
118         .tx_queue_setup             = iavf_dev_tx_queue_setup,
119         .tx_queue_release           = iavf_dev_tx_queue_release,
120         .mac_addr_set               = iavf_dev_set_default_mac_addr,
121         .reta_update                = iavf_dev_rss_reta_update,
122         .reta_query                 = iavf_dev_rss_reta_query,
123         .rss_hash_update            = iavf_dev_rss_hash_update,
124         .rss_hash_conf_get          = iavf_dev_rss_hash_conf_get,
125         .rxq_info_get               = iavf_dev_rxq_info_get,
126         .txq_info_get               = iavf_dev_txq_info_get,
127         .rx_queue_count             = iavf_dev_rxq_count,
128         .rx_descriptor_status       = iavf_dev_rx_desc_status,
129         .tx_descriptor_status       = iavf_dev_tx_desc_status,
130         .mtu_set                    = iavf_dev_mtu_set,
131         .rx_queue_intr_enable       = iavf_dev_rx_queue_intr_enable,
132         .rx_queue_intr_disable      = iavf_dev_rx_queue_intr_disable,
133 };
134
135 static int
136 iavf_dev_configure(struct rte_eth_dev *dev)
137 {
138         struct iavf_adapter *ad =
139                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
140         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
141         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
142
143         ad->rx_bulk_alloc_allowed = true;
144         /* Initialize to TRUE. If any of Rx queues doesn't meet the
145          * vector Rx/Tx preconditions, it will be reset.
146          */
147         ad->rx_vec_allowed = true;
148         ad->tx_vec_allowed = true;
149
150         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
151                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
152
153         /* Vlan stripping setting */
154         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
155                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
156                         iavf_enable_vlan_strip(ad);
157                 else
158                         iavf_disable_vlan_strip(ad);
159         }
160         return 0;
161 }
162
163 static int
164 iavf_init_rss(struct iavf_adapter *adapter)
165 {
166         struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
167         struct rte_eth_rss_conf *rss_conf;
168         uint8_t i, j, nb_q;
169         int ret;
170
171         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
172         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
173                        IAVF_MAX_NUM_QUEUES);
174
175         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
176                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
177                 return -ENOTSUP;
178         }
179         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
180                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
181                 /* set all lut items to default queue */
182                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
183                         vf->rss_lut[i] = 0;
184                 ret = iavf_configure_rss_lut(adapter);
185                 return ret;
186         }
187
188         /* In IAVF, RSS enablement is set by PF driver. It is not supported
189          * to set based on rss_conf->rss_hf.
190          */
191
192         /* configure RSS key */
193         if (!rss_conf->rss_key) {
194                 /* Calculate the default hash key */
195                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
196                         vf->rss_key[i] = (uint8_t)rte_rand();
197         } else
198                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
199                            RTE_MIN(rss_conf->rss_key_len,
200                                    vf->vf_res->rss_key_size));
201
202         /* init RSS LUT table */
203         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
204                 if (j >= nb_q)
205                         j = 0;
206                 vf->rss_lut[i] = j;
207         }
208         /* send virtchnnl ops to configure rss*/
209         ret = iavf_configure_rss_lut(adapter);
210         if (ret)
211                 return ret;
212         ret = iavf_configure_rss_key(adapter);
213         if (ret)
214                 return ret;
215
216         return 0;
217 }
218
219 static int
220 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
221 {
222         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
223         struct rte_eth_dev_data *dev_data = dev->data;
224         uint16_t buf_size, max_pkt_len, len;
225
226         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
227
228         /* Calculate the maximum packet length allowed */
229         len = rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS;
230         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
231
232         /* Check if the jumbo frame and maximum packet length are set
233          * correctly.
234          */
235         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
236                 if (max_pkt_len <= RTE_ETHER_MAX_LEN ||
237                     max_pkt_len > IAVF_FRAME_SIZE_MAX) {
238                         PMD_DRV_LOG(ERR, "maximum packet length must be "
239                                     "larger than %u and smaller than %u, "
240                                     "as jumbo frame is enabled",
241                                     (uint32_t)RTE_ETHER_MAX_LEN,
242                                     (uint32_t)IAVF_FRAME_SIZE_MAX);
243                         return -EINVAL;
244                 }
245         } else {
246                 if (max_pkt_len < RTE_ETHER_MIN_LEN ||
247                     max_pkt_len > RTE_ETHER_MAX_LEN) {
248                         PMD_DRV_LOG(ERR, "maximum packet length must be "
249                                     "larger than %u and smaller than %u, "
250                                     "as jumbo frame is disabled",
251                                     (uint32_t)RTE_ETHER_MIN_LEN,
252                                     (uint32_t)RTE_ETHER_MAX_LEN);
253                         return -EINVAL;
254                 }
255         }
256
257         rxq->max_pkt_len = max_pkt_len;
258         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
259             (rxq->max_pkt_len + 2 * IAVF_VLAN_TAG_SIZE) > buf_size) {
260                 dev_data->scattered_rx = 1;
261         }
262         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
263         IAVF_WRITE_FLUSH(hw);
264
265         return 0;
266 }
267
268 static int
269 iavf_init_queues(struct rte_eth_dev *dev)
270 {
271         struct iavf_rx_queue **rxq =
272                 (struct iavf_rx_queue **)dev->data->rx_queues;
273         int i, ret = IAVF_SUCCESS;
274
275         for (i = 0; i < dev->data->nb_rx_queues; i++) {
276                 if (!rxq[i] || !rxq[i]->q_set)
277                         continue;
278                 ret = iavf_init_rxq(dev, rxq[i]);
279                 if (ret != IAVF_SUCCESS)
280                         break;
281         }
282         /* set rx/tx function to vector/scatter/single-segment
283          * according to parameters
284          */
285         iavf_set_rx_function(dev);
286         iavf_set_tx_function(dev);
287
288         return ret;
289 }
290
291 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
292                                      struct rte_intr_handle *intr_handle)
293 {
294         struct iavf_adapter *adapter =
295                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
296         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
297         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
298         uint16_t interval, i;
299         int vec;
300
301         if (rte_intr_cap_multiple(intr_handle) &&
302             dev->data->dev_conf.intr_conf.rxq) {
303                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
304                         return -1;
305         }
306
307         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
308                 intr_handle->intr_vec =
309                         rte_zmalloc("intr_vec",
310                                     dev->data->nb_rx_queues * sizeof(int), 0);
311                 if (!intr_handle->intr_vec) {
312                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
313                                     dev->data->nb_rx_queues);
314                         return -1;
315                 }
316         }
317
318         if (!dev->data->dev_conf.intr_conf.rxq ||
319             !rte_intr_dp_is_en(intr_handle)) {
320                 /* Rx interrupt disabled, Map interrupt only for writeback */
321                 vf->nb_msix = 1;
322                 if (vf->vf_res->vf_cap_flags &
323                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
324                         /* If WB_ON_ITR supports, enable it */
325                         vf->msix_base = IAVF_RX_VEC_START;
326                         IAVF_WRITE_REG(hw, IAVFINT_DYN_CTLN1(vf->msix_base - 1),
327                                       IAVFINT_DYN_CTLN1_ITR_INDX_MASK |
328                                       IAVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
329                 } else {
330                         /* If no WB_ON_ITR offload flags, need to set
331                          * interrupt for descriptor write back.
332                          */
333                         vf->msix_base = IAVF_MISC_VEC_ID;
334
335                         /* set ITR to max */
336                         interval = iavf_calc_itr_interval(
337                                         IAVF_QUEUE_ITR_INTERVAL_MAX);
338                         IAVF_WRITE_REG(hw, IAVFINT_DYN_CTL01,
339                                       IAVFINT_DYN_CTL01_INTENA_MASK |
340                                       (IAVF_ITR_INDEX_DEFAULT <<
341                                        IAVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
342                                       (interval <<
343                                        IAVFINT_DYN_CTL01_INTERVAL_SHIFT));
344                 }
345                 IAVF_WRITE_FLUSH(hw);
346                 /* map all queues to the same interrupt */
347                 for (i = 0; i < dev->data->nb_rx_queues; i++)
348                         vf->rxq_map[vf->msix_base] |= 1 << i;
349         } else {
350                 if (!rte_intr_allow_others(intr_handle)) {
351                         vf->nb_msix = 1;
352                         vf->msix_base = IAVF_MISC_VEC_ID;
353                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
354                                 vf->rxq_map[vf->msix_base] |= 1 << i;
355                                 intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID;
356                         }
357                         PMD_DRV_LOG(DEBUG,
358                                     "vector %u are mapping to all Rx queues",
359                                     vf->msix_base);
360                 } else {
361                         /* If Rx interrupt is reuquired, and we can use
362                          * multi interrupts, then the vec is from 1
363                          */
364                         vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
365                                               intr_handle->nb_efd);
366                         vf->msix_base = IAVF_RX_VEC_START;
367                         vec = IAVF_RX_VEC_START;
368                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
369                                 vf->rxq_map[vec] |= 1 << i;
370                                 intr_handle->intr_vec[i] = vec++;
371                                 if (vec >= vf->nb_msix)
372                                         vec = IAVF_RX_VEC_START;
373                         }
374                         PMD_DRV_LOG(DEBUG,
375                                     "%u vectors are mapping to %u Rx queues",
376                                     vf->nb_msix, dev->data->nb_rx_queues);
377                 }
378         }
379
380         if (iavf_config_irq_map(adapter)) {
381                 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
382                 return -1;
383         }
384         return 0;
385 }
386
387 static int
388 iavf_start_queues(struct rte_eth_dev *dev)
389 {
390         struct iavf_rx_queue *rxq;
391         struct iavf_tx_queue *txq;
392         int i;
393
394         for (i = 0; i < dev->data->nb_tx_queues; i++) {
395                 txq = dev->data->tx_queues[i];
396                 if (txq->tx_deferred_start)
397                         continue;
398                 if (iavf_dev_tx_queue_start(dev, i) != 0) {
399                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
400                         return -1;
401                 }
402         }
403
404         for (i = 0; i < dev->data->nb_rx_queues; i++) {
405                 rxq = dev->data->rx_queues[i];
406                 if (rxq->rx_deferred_start)
407                         continue;
408                 if (iavf_dev_rx_queue_start(dev, i) != 0) {
409                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
410                         return -1;
411                 }
412         }
413
414         return 0;
415 }
416
417 static int
418 iavf_dev_start(struct rte_eth_dev *dev)
419 {
420         struct iavf_adapter *adapter =
421                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
422         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
423         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
424         struct rte_intr_handle *intr_handle = dev->intr_handle;
425
426         PMD_INIT_FUNC_TRACE();
427
428         hw->adapter_stopped = 0;
429
430         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
431         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
432                                       dev->data->nb_tx_queues);
433
434         if (iavf_init_queues(dev) != 0) {
435                 PMD_DRV_LOG(ERR, "failed to do Queue init");
436                 return -1;
437         }
438
439         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
440                 if (iavf_init_rss(adapter) != 0) {
441                         PMD_DRV_LOG(ERR, "configure rss failed");
442                         goto err_rss;
443                 }
444         }
445
446         if (iavf_configure_queues(adapter) != 0) {
447                 PMD_DRV_LOG(ERR, "configure queues failed");
448                 goto err_queue;
449         }
450
451         if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
452                 PMD_DRV_LOG(ERR, "configure irq failed");
453                 goto err_queue;
454         }
455         /* re-enable intr again, because efd assign may change */
456         if (dev->data->dev_conf.intr_conf.rxq != 0) {
457                 rte_intr_disable(intr_handle);
458                 rte_intr_enable(intr_handle);
459         }
460
461         /* Set all mac addrs */
462         iavf_add_del_all_mac_addr(adapter, TRUE);
463
464         if (iavf_start_queues(dev) != 0) {
465                 PMD_DRV_LOG(ERR, "enable queues failed");
466                 goto err_mac;
467         }
468
469         return 0;
470
471 err_mac:
472         iavf_add_del_all_mac_addr(adapter, FALSE);
473 err_queue:
474 err_rss:
475         return -1;
476 }
477
478 static void
479 iavf_dev_stop(struct rte_eth_dev *dev)
480 {
481         struct iavf_adapter *adapter =
482                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
483         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
484         struct rte_intr_handle *intr_handle = dev->intr_handle;
485
486         PMD_INIT_FUNC_TRACE();
487
488         if (hw->adapter_stopped == 1)
489                 return;
490
491         iavf_stop_queues(dev);
492
493         /* Disable the interrupt for Rx */
494         rte_intr_efd_disable(intr_handle);
495         /* Rx interrupt vector mapping free */
496         if (intr_handle->intr_vec) {
497                 rte_free(intr_handle->intr_vec);
498                 intr_handle->intr_vec = NULL;
499         }
500
501         /* remove all mac addrs */
502         iavf_add_del_all_mac_addr(adapter, FALSE);
503         hw->adapter_stopped = 1;
504 }
505
506 static int
507 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
508 {
509         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
510
511         dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
512         dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
513         dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
514         dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
515         dev_info->hash_key_size = vf->vf_res->rss_key_size;
516         dev_info->reta_size = vf->vf_res->rss_lut_size;
517         dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
518         dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
519         dev_info->rx_offload_capa =
520                 DEV_RX_OFFLOAD_VLAN_STRIP |
521                 DEV_RX_OFFLOAD_QINQ_STRIP |
522                 DEV_RX_OFFLOAD_IPV4_CKSUM |
523                 DEV_RX_OFFLOAD_UDP_CKSUM |
524                 DEV_RX_OFFLOAD_TCP_CKSUM |
525                 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
526                 DEV_RX_OFFLOAD_SCATTER |
527                 DEV_RX_OFFLOAD_JUMBO_FRAME |
528                 DEV_RX_OFFLOAD_VLAN_FILTER |
529                 DEV_RX_OFFLOAD_RSS_HASH;
530         dev_info->tx_offload_capa =
531                 DEV_TX_OFFLOAD_VLAN_INSERT |
532                 DEV_TX_OFFLOAD_QINQ_INSERT |
533                 DEV_TX_OFFLOAD_IPV4_CKSUM |
534                 DEV_TX_OFFLOAD_UDP_CKSUM |
535                 DEV_TX_OFFLOAD_TCP_CKSUM |
536                 DEV_TX_OFFLOAD_SCTP_CKSUM |
537                 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
538                 DEV_TX_OFFLOAD_TCP_TSO |
539                 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
540                 DEV_TX_OFFLOAD_GRE_TNL_TSO |
541                 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
542                 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
543                 DEV_TX_OFFLOAD_MULTI_SEGS;
544
545         dev_info->default_rxconf = (struct rte_eth_rxconf) {
546                 .rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
547                 .rx_drop_en = 0,
548                 .offloads = 0,
549         };
550
551         dev_info->default_txconf = (struct rte_eth_txconf) {
552                 .tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
553                 .tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
554                 .offloads = 0,
555         };
556
557         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
558                 .nb_max = IAVF_MAX_RING_DESC,
559                 .nb_min = IAVF_MIN_RING_DESC,
560                 .nb_align = IAVF_ALIGN_RING_DESC,
561         };
562
563         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
564                 .nb_max = IAVF_MAX_RING_DESC,
565                 .nb_min = IAVF_MIN_RING_DESC,
566                 .nb_align = IAVF_ALIGN_RING_DESC,
567         };
568
569         return 0;
570 }
571
572 static const uint32_t *
573 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
574 {
575         static const uint32_t ptypes[] = {
576                 RTE_PTYPE_L2_ETHER,
577                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
578                 RTE_PTYPE_L4_FRAG,
579                 RTE_PTYPE_L4_ICMP,
580                 RTE_PTYPE_L4_NONFRAG,
581                 RTE_PTYPE_L4_SCTP,
582                 RTE_PTYPE_L4_TCP,
583                 RTE_PTYPE_L4_UDP,
584                 RTE_PTYPE_UNKNOWN
585         };
586         return ptypes;
587 }
588
589 int
590 iavf_dev_link_update(struct rte_eth_dev *dev,
591                     __rte_unused int wait_to_complete)
592 {
593         struct rte_eth_link new_link;
594         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
595
596         /* Only read status info stored in VF, and the info is updated
597          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
598          */
599         switch (vf->link_speed) {
600         case 10:
601                 new_link.link_speed = ETH_SPEED_NUM_10M;
602                 break;
603         case 100:
604                 new_link.link_speed = ETH_SPEED_NUM_100M;
605                 break;
606         case 1000:
607                 new_link.link_speed = ETH_SPEED_NUM_1G;
608                 break;
609         case 10000:
610                 new_link.link_speed = ETH_SPEED_NUM_10G;
611                 break;
612         case 20000:
613                 new_link.link_speed = ETH_SPEED_NUM_20G;
614                 break;
615         case 25000:
616                 new_link.link_speed = ETH_SPEED_NUM_25G;
617                 break;
618         case 40000:
619                 new_link.link_speed = ETH_SPEED_NUM_40G;
620                 break;
621         case 50000:
622                 new_link.link_speed = ETH_SPEED_NUM_50G;
623                 break;
624         case 100000:
625                 new_link.link_speed = ETH_SPEED_NUM_100G;
626                 break;
627         default:
628                 new_link.link_speed = ETH_SPEED_NUM_NONE;
629                 break;
630         }
631
632         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
633         new_link.link_status = vf->link_up ? ETH_LINK_UP :
634                                              ETH_LINK_DOWN;
635         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
636                                 ETH_LINK_SPEED_FIXED);
637
638         if (rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
639                                 *(uint64_t *)&dev->data->dev_link,
640                                 *(uint64_t *)&new_link) == 0)
641                 return -1;
642
643         return 0;
644 }
645
646 static int
647 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
648 {
649         struct iavf_adapter *adapter =
650                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
651         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
652         int ret;
653
654         if (vf->promisc_unicast_enabled)
655                 return 0;
656
657         ret = iavf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
658         if (!ret)
659                 vf->promisc_unicast_enabled = TRUE;
660         else
661                 ret = -EAGAIN;
662
663         return ret;
664 }
665
666 static int
667 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
668 {
669         struct iavf_adapter *adapter =
670                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
671         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
672         int ret;
673
674         if (!vf->promisc_unicast_enabled)
675                 return 0;
676
677         ret = iavf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
678         if (!ret)
679                 vf->promisc_unicast_enabled = FALSE;
680         else
681                 ret = -EAGAIN;
682
683         return ret;
684 }
685
686 static int
687 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
688 {
689         struct iavf_adapter *adapter =
690                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
691         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
692         int ret;
693
694         if (vf->promisc_multicast_enabled)
695                 return 0;
696
697         ret = iavf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
698         if (!ret)
699                 vf->promisc_multicast_enabled = TRUE;
700         else
701                 ret = -EAGAIN;
702
703         return ret;
704 }
705
706 static int
707 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
708 {
709         struct iavf_adapter *adapter =
710                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
711         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
712         int ret;
713
714         if (!vf->promisc_multicast_enabled)
715                 return 0;
716
717         ret = iavf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
718         if (!ret)
719                 vf->promisc_multicast_enabled = FALSE;
720         else
721                 ret = -EAGAIN;
722
723         return ret;
724 }
725
726 static int
727 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
728                      __rte_unused uint32_t index,
729                      __rte_unused uint32_t pool)
730 {
731         struct iavf_adapter *adapter =
732                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
733         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
734         int err;
735
736         if (rte_is_zero_ether_addr(addr)) {
737                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
738                 return -EINVAL;
739         }
740
741         err = iavf_add_del_eth_addr(adapter, addr, TRUE);
742         if (err) {
743                 PMD_DRV_LOG(ERR, "fail to add MAC address");
744                 return -EIO;
745         }
746
747         vf->mac_num++;
748
749         return 0;
750 }
751
752 static void
753 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
754 {
755         struct iavf_adapter *adapter =
756                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
757         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
758         struct rte_ether_addr *addr;
759         int err;
760
761         addr = &dev->data->mac_addrs[index];
762
763         err = iavf_add_del_eth_addr(adapter, addr, FALSE);
764         if (err)
765                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
766
767         vf->mac_num--;
768 }
769
770 static int
771 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
772 {
773         struct iavf_adapter *adapter =
774                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
775         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
776         int err;
777
778         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
779                 return -ENOTSUP;
780
781         err = iavf_add_del_vlan(adapter, vlan_id, on);
782         if (err)
783                 return -EIO;
784         return 0;
785 }
786
787 static int
788 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
789 {
790         struct iavf_adapter *adapter =
791                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
792         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
793         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
794         int err;
795
796         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
797                 return -ENOTSUP;
798
799         /* Vlan stripping setting */
800         if (mask & ETH_VLAN_STRIP_MASK) {
801                 /* Enable or disable VLAN stripping */
802                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
803                         err = iavf_enable_vlan_strip(adapter);
804                 else
805                         err = iavf_disable_vlan_strip(adapter);
806
807                 if (err)
808                         return -EIO;
809         }
810         return 0;
811 }
812
813 static int
814 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
815                         struct rte_eth_rss_reta_entry64 *reta_conf,
816                         uint16_t reta_size)
817 {
818         struct iavf_adapter *adapter =
819                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
820         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
821         uint8_t *lut;
822         uint16_t i, idx, shift;
823         int ret;
824
825         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
826                 return -ENOTSUP;
827
828         if (reta_size != vf->vf_res->rss_lut_size) {
829                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
830                         "(%d) doesn't match the number of hardware can "
831                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
832                 return -EINVAL;
833         }
834
835         lut = rte_zmalloc("rss_lut", reta_size, 0);
836         if (!lut) {
837                 PMD_DRV_LOG(ERR, "No memory can be allocated");
838                 return -ENOMEM;
839         }
840         /* store the old lut table temporarily */
841         rte_memcpy(lut, vf->rss_lut, reta_size);
842
843         for (i = 0; i < reta_size; i++) {
844                 idx = i / RTE_RETA_GROUP_SIZE;
845                 shift = i % RTE_RETA_GROUP_SIZE;
846                 if (reta_conf[idx].mask & (1ULL << shift))
847                         lut[i] = reta_conf[idx].reta[shift];
848         }
849
850         rte_memcpy(vf->rss_lut, lut, reta_size);
851         /* send virtchnnl ops to configure rss*/
852         ret = iavf_configure_rss_lut(adapter);
853         if (ret) /* revert back */
854                 rte_memcpy(vf->rss_lut, lut, reta_size);
855         rte_free(lut);
856
857         return ret;
858 }
859
860 static int
861 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
862                        struct rte_eth_rss_reta_entry64 *reta_conf,
863                        uint16_t reta_size)
864 {
865         struct iavf_adapter *adapter =
866                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
867         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
868         uint16_t i, idx, shift;
869
870         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
871                 return -ENOTSUP;
872
873         if (reta_size != vf->vf_res->rss_lut_size) {
874                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
875                         "(%d) doesn't match the number of hardware can "
876                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
877                 return -EINVAL;
878         }
879
880         for (i = 0; i < reta_size; i++) {
881                 idx = i / RTE_RETA_GROUP_SIZE;
882                 shift = i % RTE_RETA_GROUP_SIZE;
883                 if (reta_conf[idx].mask & (1ULL << shift))
884                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
885         }
886
887         return 0;
888 }
889
890 static int
891 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
892                         struct rte_eth_rss_conf *rss_conf)
893 {
894         struct iavf_adapter *adapter =
895                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
896         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
897
898         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
899                 return -ENOTSUP;
900
901         /* HENA setting, it is enabled by default, no change */
902         if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
903                 PMD_DRV_LOG(DEBUG, "No key to be configured");
904                 return 0;
905         } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
906                 PMD_DRV_LOG(ERR, "The size of hash key configured "
907                         "(%d) doesn't match the size of hardware can "
908                         "support (%d)", rss_conf->rss_key_len,
909                         vf->vf_res->rss_key_size);
910                 return -EINVAL;
911         }
912
913         rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
914
915         return iavf_configure_rss_key(adapter);
916 }
917
918 static int
919 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
920                           struct rte_eth_rss_conf *rss_conf)
921 {
922         struct iavf_adapter *adapter =
923                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
924         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
925
926         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
927                 return -ENOTSUP;
928
929          /* Just set it to default value now. */
930         rss_conf->rss_hf = IAVF_RSS_OFFLOAD_ALL;
931
932         if (!rss_conf->rss_key)
933                 return 0;
934
935         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
936         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
937
938         return 0;
939 }
940
941 static int
942 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
943 {
944         uint32_t frame_size = mtu + IAVF_ETH_OVERHEAD;
945         int ret = 0;
946
947         if (mtu < RTE_ETHER_MIN_MTU || frame_size > IAVF_FRAME_SIZE_MAX)
948                 return -EINVAL;
949
950         /* mtu setting is forbidden if port is start */
951         if (dev->data->dev_started) {
952                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
953                 return -EBUSY;
954         }
955
956         if (frame_size > RTE_ETHER_MAX_LEN)
957                 dev->data->dev_conf.rxmode.offloads |=
958                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
959         else
960                 dev->data->dev_conf.rxmode.offloads &=
961                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
962
963         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
964
965         return ret;
966 }
967
968 static int
969 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
970                              struct rte_ether_addr *mac_addr)
971 {
972         struct iavf_adapter *adapter =
973                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
974         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
975         struct rte_ether_addr *perm_addr, *old_addr;
976         int ret;
977
978         old_addr = (struct rte_ether_addr *)hw->mac.addr;
979         perm_addr = (struct rte_ether_addr *)hw->mac.perm_addr;
980
981         if (rte_is_same_ether_addr(mac_addr, old_addr))
982                 return 0;
983
984         /* If the MAC address is configured by host, skip the setting */
985         if (rte_is_valid_assigned_ether_addr(perm_addr))
986                 return -EPERM;
987
988         ret = iavf_add_del_eth_addr(adapter, old_addr, FALSE);
989         if (ret)
990                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
991                             " %02X:%02X:%02X:%02X:%02X:%02X",
992                             old_addr->addr_bytes[0],
993                             old_addr->addr_bytes[1],
994                             old_addr->addr_bytes[2],
995                             old_addr->addr_bytes[3],
996                             old_addr->addr_bytes[4],
997                             old_addr->addr_bytes[5]);
998
999         ret = iavf_add_del_eth_addr(adapter, mac_addr, TRUE);
1000         if (ret)
1001                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1002                             " %02X:%02X:%02X:%02X:%02X:%02X",
1003                             mac_addr->addr_bytes[0],
1004                             mac_addr->addr_bytes[1],
1005                             mac_addr->addr_bytes[2],
1006                             mac_addr->addr_bytes[3],
1007                             mac_addr->addr_bytes[4],
1008                             mac_addr->addr_bytes[5]);
1009
1010         if (ret)
1011                 return -EIO;
1012
1013         rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1014         return 0;
1015 }
1016
1017 static void
1018 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1019 {
1020         if (*stat >= *offset)
1021                 *stat = *stat - *offset;
1022         else
1023                 *stat = (uint64_t)((*stat +
1024                         ((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1025
1026         *stat &= IAVF_48_BIT_MASK;
1027 }
1028
1029 static void
1030 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1031 {
1032         if (*stat >= *offset)
1033                 *stat = (uint64_t)(*stat - *offset);
1034         else
1035                 *stat = (uint64_t)((*stat +
1036                         ((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1037 }
1038
1039 static void
1040 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1041 {
1042         struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset;
1043
1044         iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1045         iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1046         iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1047         iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1048         iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1049         iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1050         iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1051         iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1052         iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1053         iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1054         iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1055 }
1056
1057 static int
1058 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1059 {
1060         struct iavf_adapter *adapter =
1061                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1062         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1063         struct iavf_vsi *vsi = &vf->vsi;
1064         struct virtchnl_eth_stats *pstats = NULL;
1065         int ret;
1066
1067         ret = iavf_query_stats(adapter, &pstats);
1068         if (ret == 0) {
1069                 iavf_update_stats(vsi, pstats);
1070                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1071                                 pstats->rx_broadcast - pstats->rx_discards;
1072                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1073                                                 pstats->tx_unicast;
1074                 stats->imissed = pstats->rx_discards;
1075                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1076                 stats->ibytes = pstats->rx_bytes;
1077                 stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
1078                 stats->obytes = pstats->tx_bytes;
1079         } else {
1080                 PMD_DRV_LOG(ERR, "Get statistics failed");
1081         }
1082         return -EIO;
1083 }
1084
1085 static int
1086 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1087 {
1088         int ret;
1089         struct iavf_adapter *adapter =
1090                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1091         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1092         struct iavf_vsi *vsi = &vf->vsi;
1093         struct virtchnl_eth_stats *pstats = NULL;
1094
1095         /* read stat values to clear hardware registers */
1096         ret = iavf_query_stats(adapter, &pstats);
1097         if (ret != 0)
1098                 return ret;
1099
1100         /* set stats offset base on current values */
1101         vsi->eth_stats_offset = *pstats;
1102
1103         return 0;
1104 }
1105
1106 static int
1107 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1108 {
1109         struct iavf_adapter *adapter =
1110                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1111         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1112         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1113         uint16_t msix_intr;
1114
1115         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1116         if (msix_intr == IAVF_MISC_VEC_ID) {
1117                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1118                 IAVF_WRITE_REG(hw, IAVFINT_DYN_CTL01,
1119                               IAVFINT_DYN_CTL01_INTENA_MASK |
1120                               IAVFINT_DYN_CTL01_CLEARPBA_MASK |
1121                               IAVFINT_DYN_CTL01_ITR_INDX_MASK);
1122         } else {
1123                 IAVF_WRITE_REG(hw,
1124                               IAVFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1125                               IAVFINT_DYN_CTLN1_INTENA_MASK |
1126                               IAVFINT_DYN_CTL01_CLEARPBA_MASK |
1127                               IAVFINT_DYN_CTLN1_ITR_INDX_MASK);
1128         }
1129
1130         IAVF_WRITE_FLUSH(hw);
1131
1132         rte_intr_ack(&pci_dev->intr_handle);
1133
1134         return 0;
1135 }
1136
1137 static int
1138 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1139 {
1140         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1141         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1142         uint16_t msix_intr;
1143
1144         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1145         if (msix_intr == IAVF_MISC_VEC_ID) {
1146                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1147                 return -EIO;
1148         }
1149
1150         IAVF_WRITE_REG(hw,
1151                       IAVFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1152                       0);
1153
1154         IAVF_WRITE_FLUSH(hw);
1155         return 0;
1156 }
1157
1158 static int
1159 iavf_check_vf_reset_done(struct iavf_hw *hw)
1160 {
1161         int i, reset;
1162
1163         for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1164                 reset = IAVF_READ_REG(hw, IAVFGEN_RSTAT) &
1165                         IAVFGEN_RSTAT_VFR_STATE_MASK;
1166                 reset = reset >> IAVFGEN_RSTAT_VFR_STATE_SHIFT;
1167                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1168                     reset == VIRTCHNL_VFR_COMPLETED)
1169                         break;
1170                 rte_delay_ms(20);
1171         }
1172
1173         if (i >= IAVF_RESET_WAIT_CNT)
1174                 return -1;
1175
1176         return 0;
1177 }
1178
1179 static int
1180 iavf_init_vf(struct rte_eth_dev *dev)
1181 {
1182         int err, bufsz;
1183         struct iavf_adapter *adapter =
1184                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1185         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1186         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1187
1188         err = iavf_set_mac_type(hw);
1189         if (err) {
1190                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1191                 goto err;
1192         }
1193
1194         err = iavf_check_vf_reset_done(hw);
1195         if (err) {
1196                 PMD_INIT_LOG(ERR, "VF is still resetting");
1197                 goto err;
1198         }
1199
1200         iavf_init_adminq_parameter(hw);
1201         err = iavf_init_adminq(hw);
1202         if (err) {
1203                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1204                 goto err;
1205         }
1206
1207         vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
1208         if (!vf->aq_resp) {
1209                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1210                 goto err_aq;
1211         }
1212         if (iavf_check_api_version(adapter) != 0) {
1213                 PMD_INIT_LOG(ERR, "check_api version failed");
1214                 goto err_api;
1215         }
1216
1217         bufsz = sizeof(struct virtchnl_vf_resource) +
1218                 (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1219         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1220         if (!vf->vf_res) {
1221                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1222                 goto err_api;
1223         }
1224         if (iavf_get_vf_resource(adapter) != 0) {
1225                 PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
1226                 goto err_alloc;
1227         }
1228         /* Allocate memort for RSS info */
1229         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1230                 vf->rss_key = rte_zmalloc("rss_key",
1231                                           vf->vf_res->rss_key_size, 0);
1232                 if (!vf->rss_key) {
1233                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1234                         goto err_rss;
1235                 }
1236                 vf->rss_lut = rte_zmalloc("rss_lut",
1237                                           vf->vf_res->rss_lut_size, 0);
1238                 if (!vf->rss_lut) {
1239                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
1240                         goto err_rss;
1241                 }
1242         }
1243         return 0;
1244 err_rss:
1245         rte_free(vf->rss_key);
1246         rte_free(vf->rss_lut);
1247 err_alloc:
1248         rte_free(vf->vf_res);
1249         vf->vsi_res = NULL;
1250 err_api:
1251         rte_free(vf->aq_resp);
1252 err_aq:
1253         iavf_shutdown_adminq(hw);
1254 err:
1255         return -1;
1256 }
1257
1258 /* Enable default admin queue interrupt setting */
1259 static inline void
1260 iavf_enable_irq0(struct iavf_hw *hw)
1261 {
1262         /* Enable admin queue interrupt trigger */
1263         IAVF_WRITE_REG(hw, IAVFINT_ICR0_ENA1, IAVFINT_ICR0_ENA1_ADMINQ_MASK);
1264
1265         IAVF_WRITE_REG(hw, IAVFINT_DYN_CTL01, IAVFINT_DYN_CTL01_INTENA_MASK |
1266                 IAVFINT_DYN_CTL01_CLEARPBA_MASK | IAVFINT_DYN_CTL01_ITR_INDX_MASK);
1267
1268         IAVF_WRITE_FLUSH(hw);
1269 }
1270
1271 static inline void
1272 iavf_disable_irq0(struct iavf_hw *hw)
1273 {
1274         /* Disable all interrupt types */
1275         IAVF_WRITE_REG(hw, IAVFINT_ICR0_ENA1, 0);
1276         IAVF_WRITE_REG(hw, IAVFINT_DYN_CTL01,
1277                       IAVFINT_DYN_CTL01_ITR_INDX_MASK);
1278         IAVF_WRITE_FLUSH(hw);
1279 }
1280
1281 static void
1282 iavf_dev_interrupt_handler(void *param)
1283 {
1284         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1285         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1286
1287         iavf_disable_irq0(hw);
1288
1289         iavf_handle_virtchnl_msg(dev);
1290
1291         iavf_enable_irq0(hw);
1292 }
1293
1294 static int
1295 iavf_dev_init(struct rte_eth_dev *eth_dev)
1296 {
1297         struct iavf_adapter *adapter =
1298                 IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1299         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1300         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1301
1302         PMD_INIT_FUNC_TRACE();
1303
1304         /* assign ops func pointer */
1305         eth_dev->dev_ops = &iavf_eth_dev_ops;
1306         eth_dev->rx_pkt_burst = &iavf_recv_pkts;
1307         eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
1308         eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
1309
1310         /* For secondary processes, we don't initialise any further as primary
1311          * has already done this work. Only check if we need a different RX
1312          * and TX function.
1313          */
1314         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1315                 iavf_set_rx_function(eth_dev);
1316                 iavf_set_tx_function(eth_dev);
1317                 return 0;
1318         }
1319         rte_eth_copy_pci_info(eth_dev, pci_dev);
1320
1321         hw->vendor_id = pci_dev->id.vendor_id;
1322         hw->device_id = pci_dev->id.device_id;
1323         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1324         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1325         hw->bus.bus_id = pci_dev->addr.bus;
1326         hw->bus.device = pci_dev->addr.devid;
1327         hw->bus.func = pci_dev->addr.function;
1328         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1329         hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1330         adapter->eth_dev = eth_dev;
1331
1332         if (iavf_init_vf(eth_dev) != 0) {
1333                 PMD_INIT_LOG(ERR, "Init vf failed");
1334                 return -1;
1335         }
1336
1337         /* copy mac addr */
1338         eth_dev->data->mac_addrs = rte_zmalloc(
1339                 "iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
1340         if (!eth_dev->data->mac_addrs) {
1341                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1342                              " store MAC addresses",
1343                              RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
1344                 return -ENOMEM;
1345         }
1346         /* If the MAC address is not configured by host,
1347          * generate a random one.
1348          */
1349         if (!rte_is_valid_assigned_ether_addr(
1350                         (struct rte_ether_addr *)hw->mac.addr))
1351                 rte_eth_random_addr(hw->mac.addr);
1352         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
1353                         &eth_dev->data->mac_addrs[0]);
1354
1355         /* register callback func to eal lib */
1356         rte_intr_callback_register(&pci_dev->intr_handle,
1357                                    iavf_dev_interrupt_handler,
1358                                    (void *)eth_dev);
1359
1360         /* enable uio intr after callback register */
1361         rte_intr_enable(&pci_dev->intr_handle);
1362
1363         /* configure and enable device interrupt */
1364         iavf_enable_irq0(hw);
1365
1366         return 0;
1367 }
1368
1369 static void
1370 iavf_dev_close(struct rte_eth_dev *dev)
1371 {
1372         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1373         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1374         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1375
1376         iavf_dev_stop(dev);
1377         iavf_shutdown_adminq(hw);
1378         /* disable uio intr before callback unregister */
1379         rte_intr_disable(intr_handle);
1380
1381         /* unregister callback func from eal lib */
1382         rte_intr_callback_unregister(intr_handle,
1383                                      iavf_dev_interrupt_handler, dev);
1384         iavf_disable_irq0(hw);
1385 }
1386
1387 static int
1388 iavf_dev_uninit(struct rte_eth_dev *dev)
1389 {
1390         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1391         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1392
1393         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1394                 return -EPERM;
1395
1396         dev->dev_ops = NULL;
1397         dev->rx_pkt_burst = NULL;
1398         dev->tx_pkt_burst = NULL;
1399         if (hw->adapter_stopped == 0)
1400                 iavf_dev_close(dev);
1401
1402         rte_free(vf->vf_res);
1403         vf->vsi_res = NULL;
1404         vf->vf_res = NULL;
1405
1406         rte_free(vf->aq_resp);
1407         vf->aq_resp = NULL;
1408
1409         if (vf->rss_lut) {
1410                 rte_free(vf->rss_lut);
1411                 vf->rss_lut = NULL;
1412         }
1413         if (vf->rss_key) {
1414                 rte_free(vf->rss_key);
1415                 vf->rss_key = NULL;
1416         }
1417
1418         return 0;
1419 }
1420
1421 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1422                              struct rte_pci_device *pci_dev)
1423 {
1424         return rte_eth_dev_pci_generic_probe(pci_dev,
1425                 sizeof(struct iavf_adapter), iavf_dev_init);
1426 }
1427
1428 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
1429 {
1430         return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
1431 }
1432
1433 /* Adaptive virtual function driver struct */
1434 static struct rte_pci_driver rte_iavf_pmd = {
1435         .id_table = pci_id_iavf_map,
1436         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
1437         .probe = eth_iavf_pci_probe,
1438         .remove = eth_iavf_pci_remove,
1439 };
1440
1441 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
1442 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
1443 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
1444 RTE_INIT(iavf_init_log)
1445 {
1446         iavf_logtype_init = rte_log_register("pmd.net.iavf.init");
1447         if (iavf_logtype_init >= 0)
1448                 rte_log_set_level(iavf_logtype_init, RTE_LOG_NOTICE);
1449         iavf_logtype_driver = rte_log_register("pmd.net.iavf.driver");
1450         if (iavf_logtype_driver >= 0)
1451                 rte_log_set_level(iavf_logtype_driver, RTE_LOG_NOTICE);
1452
1453 #ifdef RTE_LIBRTE_IAVF_DEBUG_RX
1454         iavf_logtype_rx = rte_log_register("pmd.net.iavf.rx");
1455         if (iavf_logtype_rx >= 0)
1456                 rte_log_set_level(iavf_logtype_rx, RTE_LOG_DEBUG);
1457 #endif
1458
1459 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX
1460         iavf_logtype_tx = rte_log_register("pmd.net.iavf.tx");
1461         if (iavf_logtype_tx >= 0)
1462                 rte_log_set_level(iavf_logtype_tx, RTE_LOG_DEBUG);
1463 #endif
1464
1465 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_FREE
1466         iavf_logtype_tx_free = rte_log_register("pmd.net.iavf.tx_free");
1467         if (iavf_logtype_tx_free >= 0)
1468                 rte_log_set_level(iavf_logtype_tx_free, RTE_LOG_DEBUG);
1469 #endif
1470 }
1471
1472 /* memory func for base code */
1473 enum iavf_status
1474 iavf_allocate_dma_mem_d(__rte_unused struct iavf_hw *hw,
1475                        struct iavf_dma_mem *mem,
1476                        u64 size,
1477                        u32 alignment)
1478 {
1479         const struct rte_memzone *mz = NULL;
1480         char z_name[RTE_MEMZONE_NAMESIZE];
1481
1482         if (!mem)
1483                 return IAVF_ERR_PARAM;
1484
1485         snprintf(z_name, sizeof(z_name), "iavf_dma_%"PRIu64, rte_rand());
1486         mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY,
1487                         RTE_MEMZONE_IOVA_CONTIG, alignment, RTE_PGSIZE_2M);
1488         if (!mz)
1489                 return IAVF_ERR_NO_MEMORY;
1490
1491         mem->size = size;
1492         mem->va = mz->addr;
1493         mem->pa = mz->phys_addr;
1494         mem->zone = (const void *)mz;
1495         PMD_DRV_LOG(DEBUG,
1496                     "memzone %s allocated with physical address: %"PRIu64,
1497                     mz->name, mem->pa);
1498
1499         return IAVF_SUCCESS;
1500 }
1501
1502 enum iavf_status
1503 iavf_free_dma_mem_d(__rte_unused struct iavf_hw *hw,
1504                    struct iavf_dma_mem *mem)
1505 {
1506         if (!mem)
1507                 return IAVF_ERR_PARAM;
1508
1509         PMD_DRV_LOG(DEBUG,
1510                     "memzone %s to be freed with physical address: %"PRIu64,
1511                     ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1512         rte_memzone_free((const struct rte_memzone *)mem->zone);
1513         mem->zone = NULL;
1514         mem->va = NULL;
1515         mem->pa = (u64)0;
1516
1517         return IAVF_SUCCESS;
1518 }
1519
1520 enum iavf_status
1521 iavf_allocate_virt_mem_d(__rte_unused struct iavf_hw *hw,
1522                         struct iavf_virt_mem *mem,
1523                         u32 size)
1524 {
1525         if (!mem)
1526                 return IAVF_ERR_PARAM;
1527
1528         mem->size = size;
1529         mem->va = rte_zmalloc("iavf", size, 0);
1530
1531         if (mem->va)
1532                 return IAVF_SUCCESS;
1533         else
1534                 return IAVF_ERR_NO_MEMORY;
1535 }
1536
1537 enum iavf_status
1538 iavf_free_virt_mem_d(__rte_unused struct iavf_hw *hw,
1539                     struct iavf_virt_mem *mem)
1540 {
1541         if (!mem)
1542                 return IAVF_ERR_PARAM;
1543
1544         rte_free(mem->va);
1545         mem->va = NULL;
1546
1547         return IAVF_SUCCESS;
1548 }