net/iavf: cleanup Tx buffers
[dpdk.git] / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26
27 #include "iavf.h"
28 #include "iavf_rxtx.h"
29
30 static inline int
31 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
32 {
33         /* The following constraints must be satisfied:
34          *   thresh < rxq->nb_rx_desc
35          */
36         if (thresh >= nb_desc) {
37                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
38                              thresh, nb_desc);
39                 return -EINVAL;
40         }
41         return 0;
42 }
43
44 static inline int
45 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
46                 uint16_t tx_free_thresh)
47 {
48         /* TX descriptors will have their RS bit set after tx_rs_thresh
49          * descriptors have been used. The TX descriptor ring will be cleaned
50          * after tx_free_thresh descriptors are used or if the number of
51          * descriptors required to transmit a packet is greater than the
52          * number of free TX descriptors.
53          *
54          * The following constraints must be satisfied:
55          *  - tx_rs_thresh must be less than the size of the ring minus 2.
56          *  - tx_free_thresh must be less than the size of the ring minus 3.
57          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
58          *  - tx_rs_thresh must be a divisor of the ring size.
59          *
60          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
61          * race condition, hence the maximum threshold constraints. When set
62          * to zero use default values.
63          */
64         if (tx_rs_thresh >= (nb_desc - 2)) {
65                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
66                              "number of TX descriptors (%u) minus 2",
67                              tx_rs_thresh, nb_desc);
68                 return -EINVAL;
69         }
70         if (tx_free_thresh >= (nb_desc - 3)) {
71                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
72                              "number of TX descriptors (%u) minus 3.",
73                              tx_free_thresh, nb_desc);
74                 return -EINVAL;
75         }
76         if (tx_rs_thresh > tx_free_thresh) {
77                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
78                              "equal to tx_free_thresh (%u).",
79                              tx_rs_thresh, tx_free_thresh);
80                 return -EINVAL;
81         }
82         if ((nb_desc % tx_rs_thresh) != 0) {
83                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
84                              "number of TX descriptors (%u).",
85                              tx_rs_thresh, nb_desc);
86                 return -EINVAL;
87         }
88
89         return 0;
90 }
91
92 static inline bool
93 check_rx_vec_allow(struct iavf_rx_queue *rxq)
94 {
95         if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
96             rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
97                 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
98                 return true;
99         }
100
101         PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
102         return false;
103 }
104
105 static inline bool
106 check_tx_vec_allow(struct iavf_tx_queue *txq)
107 {
108         if (!(txq->offloads & IAVF_NO_VECTOR_FLAGS) &&
109             txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
110             txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
111                 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
112                 return true;
113         }
114         PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
115         return false;
116 }
117
118 static inline bool
119 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
120 {
121         int ret = true;
122
123         if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
124                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
125                              "rxq->rx_free_thresh=%d, "
126                              "IAVF_RX_MAX_BURST=%d",
127                              rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
128                 ret = false;
129         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
130                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
131                              "rxq->nb_rx_desc=%d, "
132                              "rxq->rx_free_thresh=%d",
133                              rxq->nb_rx_desc, rxq->rx_free_thresh);
134                 ret = false;
135         }
136         return ret;
137 }
138
139 static inline void
140 reset_rx_queue(struct iavf_rx_queue *rxq)
141 {
142         uint16_t len;
143         uint32_t i;
144
145         if (!rxq)
146                 return;
147
148         len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
149
150         for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
151                 ((volatile char *)rxq->rx_ring)[i] = 0;
152
153         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
154
155         for (i = 0; i < IAVF_RX_MAX_BURST; i++)
156                 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
157
158         /* for rx bulk */
159         rxq->rx_nb_avail = 0;
160         rxq->rx_next_avail = 0;
161         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
162
163         rxq->rx_tail = 0;
164         rxq->nb_rx_hold = 0;
165         rxq->pkt_first_seg = NULL;
166         rxq->pkt_last_seg = NULL;
167 }
168
169 static inline void
170 reset_tx_queue(struct iavf_tx_queue *txq)
171 {
172         struct iavf_tx_entry *txe;
173         uint32_t i, size;
174         uint16_t prev;
175
176         if (!txq) {
177                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
178                 return;
179         }
180
181         txe = txq->sw_ring;
182         size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
183         for (i = 0; i < size; i++)
184                 ((volatile char *)txq->tx_ring)[i] = 0;
185
186         prev = (uint16_t)(txq->nb_tx_desc - 1);
187         for (i = 0; i < txq->nb_tx_desc; i++) {
188                 txq->tx_ring[i].cmd_type_offset_bsz =
189                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
190                 txe[i].mbuf =  NULL;
191                 txe[i].last_id = i;
192                 txe[prev].next_id = i;
193                 prev = i;
194         }
195
196         txq->tx_tail = 0;
197         txq->nb_used = 0;
198
199         txq->last_desc_cleaned = txq->nb_tx_desc - 1;
200         txq->nb_free = txq->nb_tx_desc - 1;
201
202         txq->next_dd = txq->rs_thresh - 1;
203         txq->next_rs = txq->rs_thresh - 1;
204 }
205
206 static int
207 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
208 {
209         volatile union iavf_rx_desc *rxd;
210         struct rte_mbuf *mbuf = NULL;
211         uint64_t dma_addr;
212         uint16_t i;
213
214         for (i = 0; i < rxq->nb_rx_desc; i++) {
215                 mbuf = rte_mbuf_raw_alloc(rxq->mp);
216                 if (unlikely(!mbuf)) {
217                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
218                         return -ENOMEM;
219                 }
220
221                 rte_mbuf_refcnt_set(mbuf, 1);
222                 mbuf->next = NULL;
223                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
224                 mbuf->nb_segs = 1;
225                 mbuf->port = rxq->port_id;
226
227                 dma_addr =
228                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
229
230                 rxd = &rxq->rx_ring[i];
231                 rxd->read.pkt_addr = dma_addr;
232                 rxd->read.hdr_addr = 0;
233 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
234                 rxd->read.rsvd1 = 0;
235                 rxd->read.rsvd2 = 0;
236 #endif
237
238                 rxq->sw_ring[i] = mbuf;
239         }
240
241         return 0;
242 }
243
244 static inline void
245 release_rxq_mbufs(struct iavf_rx_queue *rxq)
246 {
247         uint16_t i;
248
249         if (!rxq->sw_ring)
250                 return;
251
252         for (i = 0; i < rxq->nb_rx_desc; i++) {
253                 if (rxq->sw_ring[i]) {
254                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
255                         rxq->sw_ring[i] = NULL;
256                 }
257         }
258
259         /* for rx bulk */
260         if (rxq->rx_nb_avail == 0)
261                 return;
262         for (i = 0; i < rxq->rx_nb_avail; i++) {
263                 struct rte_mbuf *mbuf;
264
265                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
266                 rte_pktmbuf_free_seg(mbuf);
267         }
268         rxq->rx_nb_avail = 0;
269 }
270
271 static inline void
272 release_txq_mbufs(struct iavf_tx_queue *txq)
273 {
274         uint16_t i;
275
276         if (!txq || !txq->sw_ring) {
277                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
278                 return;
279         }
280
281         for (i = 0; i < txq->nb_tx_desc; i++) {
282                 if (txq->sw_ring[i].mbuf) {
283                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
284                         txq->sw_ring[i].mbuf = NULL;
285                 }
286         }
287 }
288
289 static const struct iavf_rxq_ops def_rxq_ops = {
290         .release_mbufs = release_rxq_mbufs,
291 };
292
293 static const struct iavf_txq_ops def_txq_ops = {
294         .release_mbufs = release_txq_mbufs,
295 };
296
297 int
298 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
299                        uint16_t nb_desc, unsigned int socket_id,
300                        const struct rte_eth_rxconf *rx_conf,
301                        struct rte_mempool *mp)
302 {
303         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
304         struct iavf_adapter *ad =
305                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
306         struct iavf_info *vf =
307                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
308         struct iavf_vsi *vsi = &vf->vsi;
309         struct iavf_rx_queue *rxq;
310         const struct rte_memzone *mz;
311         uint32_t ring_size;
312         uint16_t len;
313         uint16_t rx_free_thresh;
314
315         PMD_INIT_FUNC_TRACE();
316
317         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
318             nb_desc > IAVF_MAX_RING_DESC ||
319             nb_desc < IAVF_MIN_RING_DESC) {
320                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
321                              "invalid", nb_desc);
322                 return -EINVAL;
323         }
324
325         /* Check free threshold */
326         rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
327                          IAVF_DEFAULT_RX_FREE_THRESH :
328                          rx_conf->rx_free_thresh;
329         if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
330                 return -EINVAL;
331
332         /* Free memory if needed */
333         if (dev->data->rx_queues[queue_idx]) {
334                 iavf_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
335                 dev->data->rx_queues[queue_idx] = NULL;
336         }
337
338         /* Allocate the rx queue data structure */
339         rxq = rte_zmalloc_socket("iavf rxq",
340                                  sizeof(struct iavf_rx_queue),
341                                  RTE_CACHE_LINE_SIZE,
342                                  socket_id);
343         if (!rxq) {
344                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
345                              "rx queue data structure");
346                 return -ENOMEM;
347         }
348
349         if (vf->vf_res->vf_cap_flags &
350             VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC &&
351             vf->supported_rxdid & BIT(IAVF_RXDID_COMMS_OVS_1)) {
352                 rxq->rxdid = IAVF_RXDID_COMMS_OVS_1;
353         } else {
354                 rxq->rxdid = IAVF_RXDID_LEGACY_1;
355         }
356
357         rxq->mp = mp;
358         rxq->nb_rx_desc = nb_desc;
359         rxq->rx_free_thresh = rx_free_thresh;
360         rxq->queue_id = queue_idx;
361         rxq->port_id = dev->data->port_id;
362         rxq->crc_len = 0; /* crc stripping by default */
363         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
364         rxq->rx_hdr_len = 0;
365         rxq->vsi = vsi;
366
367         len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
368         rxq->rx_buf_len = RTE_ALIGN(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
369
370         /* Allocate the software ring. */
371         len = nb_desc + IAVF_RX_MAX_BURST;
372         rxq->sw_ring =
373                 rte_zmalloc_socket("iavf rx sw ring",
374                                    sizeof(struct rte_mbuf *) * len,
375                                    RTE_CACHE_LINE_SIZE,
376                                    socket_id);
377         if (!rxq->sw_ring) {
378                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
379                 rte_free(rxq);
380                 return -ENOMEM;
381         }
382
383         /* Allocate the maximun number of RX ring hardware descriptor with
384          * a liitle more to support bulk allocate.
385          */
386         len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
387         ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
388                               IAVF_DMA_MEM_ALIGN);
389         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
390                                       ring_size, IAVF_RING_BASE_ALIGN,
391                                       socket_id);
392         if (!mz) {
393                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
394                 rte_free(rxq->sw_ring);
395                 rte_free(rxq);
396                 return -ENOMEM;
397         }
398         /* Zero all the descriptors in the ring. */
399         memset(mz->addr, 0, ring_size);
400         rxq->rx_ring_phys_addr = mz->iova;
401         rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
402
403         rxq->mz = mz;
404         reset_rx_queue(rxq);
405         rxq->q_set = true;
406         dev->data->rx_queues[queue_idx] = rxq;
407         rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
408         rxq->ops = &def_rxq_ops;
409
410         if (check_rx_bulk_allow(rxq) == true) {
411                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
412                              "satisfied. Rx Burst Bulk Alloc function will be "
413                              "used on port=%d, queue=%d.",
414                              rxq->port_id, rxq->queue_id);
415         } else {
416                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
417                              "not satisfied, Scattered Rx is requested "
418                              "on port=%d, queue=%d.",
419                              rxq->port_id, rxq->queue_id);
420                 ad->rx_bulk_alloc_allowed = false;
421         }
422
423         if (check_rx_vec_allow(rxq) == false)
424                 ad->rx_vec_allowed = false;
425
426         return 0;
427 }
428
429 int
430 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
431                        uint16_t queue_idx,
432                        uint16_t nb_desc,
433                        unsigned int socket_id,
434                        const struct rte_eth_txconf *tx_conf)
435 {
436         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
437         struct iavf_tx_queue *txq;
438         const struct rte_memzone *mz;
439         uint32_t ring_size;
440         uint16_t tx_rs_thresh, tx_free_thresh;
441         uint64_t offloads;
442
443         PMD_INIT_FUNC_TRACE();
444
445         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
446
447         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
448             nb_desc > IAVF_MAX_RING_DESC ||
449             nb_desc < IAVF_MIN_RING_DESC) {
450                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
451                             "invalid", nb_desc);
452                 return -EINVAL;
453         }
454
455         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
456                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
457         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
458                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
459         check_tx_thresh(nb_desc, tx_rs_thresh, tx_rs_thresh);
460
461         /* Free memory if needed. */
462         if (dev->data->tx_queues[queue_idx]) {
463                 iavf_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
464                 dev->data->tx_queues[queue_idx] = NULL;
465         }
466
467         /* Allocate the TX queue data structure. */
468         txq = rte_zmalloc_socket("iavf txq",
469                                  sizeof(struct iavf_tx_queue),
470                                  RTE_CACHE_LINE_SIZE,
471                                  socket_id);
472         if (!txq) {
473                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
474                              "tx queue structure");
475                 return -ENOMEM;
476         }
477
478         txq->nb_tx_desc = nb_desc;
479         txq->rs_thresh = tx_rs_thresh;
480         txq->free_thresh = tx_free_thresh;
481         txq->queue_id = queue_idx;
482         txq->port_id = dev->data->port_id;
483         txq->offloads = offloads;
484         txq->tx_deferred_start = tx_conf->tx_deferred_start;
485
486         /* Allocate software ring */
487         txq->sw_ring =
488                 rte_zmalloc_socket("iavf tx sw ring",
489                                    sizeof(struct iavf_tx_entry) * nb_desc,
490                                    RTE_CACHE_LINE_SIZE,
491                                    socket_id);
492         if (!txq->sw_ring) {
493                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
494                 rte_free(txq);
495                 return -ENOMEM;
496         }
497
498         /* Allocate TX hardware ring descriptors. */
499         ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
500         ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
501         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
502                                       ring_size, IAVF_RING_BASE_ALIGN,
503                                       socket_id);
504         if (!mz) {
505                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
506                 rte_free(txq->sw_ring);
507                 rte_free(txq);
508                 return -ENOMEM;
509         }
510         txq->tx_ring_phys_addr = mz->iova;
511         txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
512
513         txq->mz = mz;
514         reset_tx_queue(txq);
515         txq->q_set = true;
516         dev->data->tx_queues[queue_idx] = txq;
517         txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
518         txq->ops = &def_txq_ops;
519
520         if (check_tx_vec_allow(txq) == false) {
521                 struct iavf_adapter *ad =
522                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
523                 ad->tx_vec_allowed = false;
524         }
525
526         return 0;
527 }
528
529 int
530 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
531 {
532         struct iavf_adapter *adapter =
533                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
534         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
535         struct iavf_rx_queue *rxq;
536         int err = 0;
537
538         PMD_DRV_FUNC_TRACE();
539
540         if (rx_queue_id >= dev->data->nb_rx_queues)
541                 return -EINVAL;
542
543         rxq = dev->data->rx_queues[rx_queue_id];
544
545         err = alloc_rxq_mbufs(rxq);
546         if (err) {
547                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
548                 return err;
549         }
550
551         rte_wmb();
552
553         /* Init the RX tail register. */
554         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
555         IAVF_WRITE_FLUSH(hw);
556
557         /* Ready to switch the queue on */
558         err = iavf_switch_queue(adapter, rx_queue_id, true, true);
559         if (err)
560                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
561                             rx_queue_id);
562         else
563                 dev->data->rx_queue_state[rx_queue_id] =
564                         RTE_ETH_QUEUE_STATE_STARTED;
565
566         return err;
567 }
568
569 int
570 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
571 {
572         struct iavf_adapter *adapter =
573                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
574         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
575         struct iavf_tx_queue *txq;
576         int err = 0;
577
578         PMD_DRV_FUNC_TRACE();
579
580         if (tx_queue_id >= dev->data->nb_tx_queues)
581                 return -EINVAL;
582
583         txq = dev->data->tx_queues[tx_queue_id];
584
585         /* Init the RX tail register. */
586         IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
587         IAVF_WRITE_FLUSH(hw);
588
589         /* Ready to switch the queue on */
590         err = iavf_switch_queue(adapter, tx_queue_id, false, true);
591
592         if (err)
593                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
594                             tx_queue_id);
595         else
596                 dev->data->tx_queue_state[tx_queue_id] =
597                         RTE_ETH_QUEUE_STATE_STARTED;
598
599         return err;
600 }
601
602 int
603 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
604 {
605         struct iavf_adapter *adapter =
606                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
607         struct iavf_rx_queue *rxq;
608         int err;
609
610         PMD_DRV_FUNC_TRACE();
611
612         if (rx_queue_id >= dev->data->nb_rx_queues)
613                 return -EINVAL;
614
615         err = iavf_switch_queue(adapter, rx_queue_id, true, false);
616         if (err) {
617                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
618                             rx_queue_id);
619                 return err;
620         }
621
622         rxq = dev->data->rx_queues[rx_queue_id];
623         rxq->ops->release_mbufs(rxq);
624         reset_rx_queue(rxq);
625         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
626
627         return 0;
628 }
629
630 int
631 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
632 {
633         struct iavf_adapter *adapter =
634                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
635         struct iavf_tx_queue *txq;
636         int err;
637
638         PMD_DRV_FUNC_TRACE();
639
640         if (tx_queue_id >= dev->data->nb_tx_queues)
641                 return -EINVAL;
642
643         err = iavf_switch_queue(adapter, tx_queue_id, false, false);
644         if (err) {
645                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
646                             tx_queue_id);
647                 return err;
648         }
649
650         txq = dev->data->tx_queues[tx_queue_id];
651         txq->ops->release_mbufs(txq);
652         reset_tx_queue(txq);
653         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
654
655         return 0;
656 }
657
658 void
659 iavf_dev_rx_queue_release(void *rxq)
660 {
661         struct iavf_rx_queue *q = (struct iavf_rx_queue *)rxq;
662
663         if (!q)
664                 return;
665
666         q->ops->release_mbufs(q);
667         rte_free(q->sw_ring);
668         rte_memzone_free(q->mz);
669         rte_free(q);
670 }
671
672 void
673 iavf_dev_tx_queue_release(void *txq)
674 {
675         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
676
677         if (!q)
678                 return;
679
680         q->ops->release_mbufs(q);
681         rte_free(q->sw_ring);
682         rte_memzone_free(q->mz);
683         rte_free(q);
684 }
685
686 void
687 iavf_stop_queues(struct rte_eth_dev *dev)
688 {
689         struct iavf_adapter *adapter =
690                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
691         struct iavf_rx_queue *rxq;
692         struct iavf_tx_queue *txq;
693         int ret, i;
694
695         /* Stop All queues */
696         ret = iavf_disable_queues(adapter);
697         if (ret)
698                 PMD_DRV_LOG(WARNING, "Fail to stop queues");
699
700         for (i = 0; i < dev->data->nb_tx_queues; i++) {
701                 txq = dev->data->tx_queues[i];
702                 if (!txq)
703                         continue;
704                 txq->ops->release_mbufs(txq);
705                 reset_tx_queue(txq);
706                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
707         }
708         for (i = 0; i < dev->data->nb_rx_queues; i++) {
709                 rxq = dev->data->rx_queues[i];
710                 if (!rxq)
711                         continue;
712                 rxq->ops->release_mbufs(rxq);
713                 reset_rx_queue(rxq);
714                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
715         }
716 }
717
718 static inline void
719 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
720 {
721         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
722                 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
723                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
724                 mb->vlan_tci =
725                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
726         } else {
727                 mb->vlan_tci = 0;
728         }
729 }
730
731 static inline void
732 iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
733                           volatile union iavf_rx_flex_desc *rxdp)
734 {
735         if (rte_le_to_cpu_64(rxdp->wb.status_error0) &
736                 (1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
737                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
738                 mb->vlan_tci =
739                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
740         } else {
741                 mb->vlan_tci = 0;
742         }
743 }
744
745 /* Translate the rx descriptor status and error fields to pkt flags */
746 static inline uint64_t
747 iavf_rxd_to_pkt_flags(uint64_t qword)
748 {
749         uint64_t flags;
750         uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
751
752 #define IAVF_RX_ERR_BITS 0x3f
753
754         /* Check if RSS_HASH */
755         flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
756                                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
757                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
758
759         /* Check if FDIR Match */
760         flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
761                                 PKT_RX_FDIR : 0);
762
763         if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
764                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
765                 return flags;
766         }
767
768         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
769                 flags |= PKT_RX_IP_CKSUM_BAD;
770         else
771                 flags |= PKT_RX_IP_CKSUM_GOOD;
772
773         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
774                 flags |= PKT_RX_L4_CKSUM_BAD;
775         else
776                 flags |= PKT_RX_L4_CKSUM_GOOD;
777
778         /* TODO: Oversize error bit is not processed here */
779
780         return flags;
781 }
782
783 static inline uint64_t
784 iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
785 {
786         uint64_t flags = 0;
787 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
788         uint16_t flexbh;
789
790         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
791                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
792                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
793
794         if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
795                 mb->hash.fdir.hi =
796                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
797                 flags |= PKT_RX_FDIR_ID;
798         }
799 #else
800         mb->hash.fdir.hi =
801                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
802         flags |= PKT_RX_FDIR_ID;
803 #endif
804         return flags;
805 }
806
807
808 /* Translate the rx flex descriptor status to pkt flags */
809 static inline void
810 iavf_rxd_to_pkt_fields(struct rte_mbuf *mb,
811                        volatile union iavf_rx_flex_desc *rxdp)
812 {
813         volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
814                         (volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
815 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
816         uint16_t stat_err;
817
818         stat_err = rte_le_to_cpu_16(desc->status_error0);
819         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
820                 mb->ol_flags |= PKT_RX_RSS_HASH;
821                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
822         }
823 #endif
824
825         if (desc->flow_id != 0xFFFFFFFF) {
826                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
827                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
828         }
829 }
830
831 #define IAVF_RX_FLEX_ERR0_BITS  \
832         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
833          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
834          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
835          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
836          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
837          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
838
839 /* Rx L3/L4 checksum */
840 static inline uint64_t
841 iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
842 {
843         uint64_t flags = 0;
844
845         /* check if HW has decoded the packet and checksum */
846         if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
847                 return 0;
848
849         if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
850                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
851                 return flags;
852         }
853
854         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
855                 flags |= PKT_RX_IP_CKSUM_BAD;
856         else
857                 flags |= PKT_RX_IP_CKSUM_GOOD;
858
859         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
860                 flags |= PKT_RX_L4_CKSUM_BAD;
861         else
862                 flags |= PKT_RX_L4_CKSUM_GOOD;
863
864         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
865                 flags |= PKT_RX_EIP_CKSUM_BAD;
866
867         return flags;
868 }
869
870 /* If the number of free RX descriptors is greater than the RX free
871  * threshold of the queue, advance the Receive Descriptor Tail (RDT)
872  * register. Update the RDT with the value of the last processed RX
873  * descriptor minus 1, to guarantee that the RDT register is never
874  * equal to the RDH register, which creates a "full" ring situation
875  * from the hardware point of view.
876  */
877 static inline void
878 iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
879 {
880         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
881
882         if (nb_hold > rxq->rx_free_thresh) {
883                 PMD_RX_LOG(DEBUG,
884                            "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
885                            rxq->port_id, rxq->queue_id, rx_id, nb_hold);
886                 rx_id = (uint16_t)((rx_id == 0) ?
887                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
888                 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
889                 nb_hold = 0;
890         }
891         rxq->nb_rx_hold = nb_hold;
892 }
893
894 /* implement recv_pkts */
895 uint16_t
896 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
897 {
898         volatile union iavf_rx_desc *rx_ring;
899         volatile union iavf_rx_desc *rxdp;
900         struct iavf_rx_queue *rxq;
901         union iavf_rx_desc rxd;
902         struct rte_mbuf *rxe;
903         struct rte_eth_dev *dev;
904         struct rte_mbuf *rxm;
905         struct rte_mbuf *nmb;
906         uint16_t nb_rx;
907         uint32_t rx_status;
908         uint64_t qword1;
909         uint16_t rx_packet_len;
910         uint16_t rx_id, nb_hold;
911         uint64_t dma_addr;
912         uint64_t pkt_flags;
913         const uint32_t *ptype_tbl;
914
915         nb_rx = 0;
916         nb_hold = 0;
917         rxq = rx_queue;
918         rx_id = rxq->rx_tail;
919         rx_ring = rxq->rx_ring;
920         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
921
922         while (nb_rx < nb_pkts) {
923                 rxdp = &rx_ring[rx_id];
924                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
925                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
926                             IAVF_RXD_QW1_STATUS_SHIFT;
927
928                 /* Check the DD bit first */
929                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
930                         break;
931                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
932
933                 nmb = rte_mbuf_raw_alloc(rxq->mp);
934                 if (unlikely(!nmb)) {
935                         dev = &rte_eth_devices[rxq->port_id];
936                         dev->data->rx_mbuf_alloc_failed++;
937                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
938                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
939                         break;
940                 }
941
942                 rxd = *rxdp;
943                 nb_hold++;
944                 rxe = rxq->sw_ring[rx_id];
945                 rx_id++;
946                 if (unlikely(rx_id == rxq->nb_rx_desc))
947                         rx_id = 0;
948
949                 /* Prefetch next mbuf */
950                 rte_prefetch0(rxq->sw_ring[rx_id]);
951
952                 /* When next RX descriptor is on a cache line boundary,
953                  * prefetch the next 4 RX descriptors and next 8 pointers
954                  * to mbufs.
955                  */
956                 if ((rx_id & 0x3) == 0) {
957                         rte_prefetch0(&rx_ring[rx_id]);
958                         rte_prefetch0(rxq->sw_ring[rx_id]);
959                 }
960                 rxm = rxe;
961                 dma_addr =
962                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
963                 rxdp->read.hdr_addr = 0;
964                 rxdp->read.pkt_addr = dma_addr;
965
966                 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
967                                 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
968
969                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
970                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
971                 rxm->nb_segs = 1;
972                 rxm->next = NULL;
973                 rxm->pkt_len = rx_packet_len;
974                 rxm->data_len = rx_packet_len;
975                 rxm->port = rxq->port_id;
976                 rxm->ol_flags = 0;
977                 iavf_rxd_to_vlan_tci(rxm, &rxd);
978                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
979                 rxm->packet_type =
980                         ptype_tbl[(uint8_t)((qword1 &
981                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
982
983                 if (pkt_flags & PKT_RX_RSS_HASH)
984                         rxm->hash.rss =
985                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
986
987                 if (pkt_flags & PKT_RX_FDIR)
988                         pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
989
990                 rxm->ol_flags |= pkt_flags;
991
992                 rx_pkts[nb_rx++] = rxm;
993         }
994         rxq->rx_tail = rx_id;
995
996         iavf_update_rx_tail(rxq, nb_hold, rx_id);
997
998         return nb_rx;
999 }
1000
1001 /* implement recv_pkts for flexible Rx descriptor */
1002 uint16_t
1003 iavf_recv_pkts_flex_rxd(void *rx_queue,
1004                         struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1005 {
1006         volatile union iavf_rx_desc *rx_ring;
1007         volatile union iavf_rx_flex_desc *rxdp;
1008         struct iavf_rx_queue *rxq;
1009         union iavf_rx_flex_desc rxd;
1010         struct rte_mbuf *rxe;
1011         struct rte_eth_dev *dev;
1012         struct rte_mbuf *rxm;
1013         struct rte_mbuf *nmb;
1014         uint16_t nb_rx;
1015         uint16_t rx_stat_err0;
1016         uint16_t rx_packet_len;
1017         uint16_t rx_id, nb_hold;
1018         uint64_t dma_addr;
1019         uint64_t pkt_flags;
1020         const uint32_t *ptype_tbl;
1021
1022         nb_rx = 0;
1023         nb_hold = 0;
1024         rxq = rx_queue;
1025         rx_id = rxq->rx_tail;
1026         rx_ring = rxq->rx_ring;
1027         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1028
1029         while (nb_rx < nb_pkts) {
1030                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1031                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1032
1033                 /* Check the DD bit first */
1034                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1035                         break;
1036                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1037
1038                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1039                 if (unlikely(!nmb)) {
1040                         dev = &rte_eth_devices[rxq->port_id];
1041                         dev->data->rx_mbuf_alloc_failed++;
1042                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1043                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1044                         break;
1045                 }
1046
1047                 rxd = *rxdp;
1048                 nb_hold++;
1049                 rxe = rxq->sw_ring[rx_id];
1050                 rx_id++;
1051                 if (unlikely(rx_id == rxq->nb_rx_desc))
1052                         rx_id = 0;
1053
1054                 /* Prefetch next mbuf */
1055                 rte_prefetch0(rxq->sw_ring[rx_id]);
1056
1057                 /* When next RX descriptor is on a cache line boundary,
1058                  * prefetch the next 4 RX descriptors and next 8 pointers
1059                  * to mbufs.
1060                  */
1061                 if ((rx_id & 0x3) == 0) {
1062                         rte_prefetch0(&rx_ring[rx_id]);
1063                         rte_prefetch0(rxq->sw_ring[rx_id]);
1064                 }
1065                 rxm = rxe;
1066                 dma_addr =
1067                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1068                 rxdp->read.hdr_addr = 0;
1069                 rxdp->read.pkt_addr = dma_addr;
1070
1071                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
1072                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1073
1074                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1075                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1076                 rxm->nb_segs = 1;
1077                 rxm->next = NULL;
1078                 rxm->pkt_len = rx_packet_len;
1079                 rxm->data_len = rx_packet_len;
1080                 rxm->port = rxq->port_id;
1081                 rxm->ol_flags = 0;
1082                 rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1083                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1084                 iavf_flex_rxd_to_vlan_tci(rxm, &rxd);
1085                 iavf_rxd_to_pkt_fields(rxm, &rxd);
1086                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1087                 rxm->ol_flags |= pkt_flags;
1088
1089                 rx_pkts[nb_rx++] = rxm;
1090         }
1091         rxq->rx_tail = rx_id;
1092
1093         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1094
1095         return nb_rx;
1096 }
1097
1098 /* implement recv_scattered_pkts for flexible Rx descriptor */
1099 uint16_t
1100 iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1101                                   uint16_t nb_pkts)
1102 {
1103         struct iavf_rx_queue *rxq = rx_queue;
1104         union iavf_rx_flex_desc rxd;
1105         struct rte_mbuf *rxe;
1106         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1107         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1108         struct rte_mbuf *nmb, *rxm;
1109         uint16_t rx_id = rxq->rx_tail;
1110         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1111         struct rte_eth_dev *dev;
1112         uint16_t rx_stat_err0;
1113         uint64_t dma_addr;
1114         uint64_t pkt_flags;
1115
1116         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1117         volatile union iavf_rx_flex_desc *rxdp;
1118         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1119
1120         while (nb_rx < nb_pkts) {
1121                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1122                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1123
1124                 /* Check the DD bit */
1125                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1126                         break;
1127                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1128
1129                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1130                 if (unlikely(!nmb)) {
1131                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1132                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1133                         dev = &rte_eth_devices[rxq->port_id];
1134                         dev->data->rx_mbuf_alloc_failed++;
1135                         break;
1136                 }
1137
1138                 rxd = *rxdp;
1139                 nb_hold++;
1140                 rxe = rxq->sw_ring[rx_id];
1141                 rx_id++;
1142                 if (rx_id == rxq->nb_rx_desc)
1143                         rx_id = 0;
1144
1145                 /* Prefetch next mbuf */
1146                 rte_prefetch0(rxq->sw_ring[rx_id]);
1147
1148                 /* When next RX descriptor is on a cache line boundary,
1149                  * prefetch the next 4 RX descriptors and next 8 pointers
1150                  * to mbufs.
1151                  */
1152                 if ((rx_id & 0x3) == 0) {
1153                         rte_prefetch0(&rx_ring[rx_id]);
1154                         rte_prefetch0(rxq->sw_ring[rx_id]);
1155                 }
1156
1157                 rxm = rxe;
1158                 dma_addr =
1159                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1160
1161                 /* Set data buffer address and data length of the mbuf */
1162                 rxdp->read.hdr_addr = 0;
1163                 rxdp->read.pkt_addr = dma_addr;
1164                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1165                                 IAVF_RX_FLX_DESC_PKT_LEN_M;
1166                 rxm->data_len = rx_packet_len;
1167                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1168
1169                 /* If this is the first buffer of the received packet, set the
1170                  * pointer to the first mbuf of the packet and initialize its
1171                  * context. Otherwise, update the total length and the number
1172                  * of segments of the current scattered packet, and update the
1173                  * pointer to the last mbuf of the current packet.
1174                  */
1175                 if (!first_seg) {
1176                         first_seg = rxm;
1177                         first_seg->nb_segs = 1;
1178                         first_seg->pkt_len = rx_packet_len;
1179                 } else {
1180                         first_seg->pkt_len =
1181                                 (uint16_t)(first_seg->pkt_len +
1182                                                 rx_packet_len);
1183                         first_seg->nb_segs++;
1184                         last_seg->next = rxm;
1185                 }
1186
1187                 /* If this is not the last buffer of the received packet,
1188                  * update the pointer to the last mbuf of the current scattered
1189                  * packet and continue to parse the RX ring.
1190                  */
1191                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
1192                         last_seg = rxm;
1193                         continue;
1194                 }
1195
1196                 /* This is the last buffer of the received packet. If the CRC
1197                  * is not stripped by the hardware:
1198                  *  - Subtract the CRC length from the total packet length.
1199                  *  - If the last buffer only contains the whole CRC or a part
1200                  *  of it, free the mbuf associated to the last buffer. If part
1201                  *  of the CRC is also contained in the previous mbuf, subtract
1202                  *  the length of that CRC part from the data length of the
1203                  *  previous mbuf.
1204                  */
1205                 rxm->next = NULL;
1206                 if (unlikely(rxq->crc_len > 0)) {
1207                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1208                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1209                                 rte_pktmbuf_free_seg(rxm);
1210                                 first_seg->nb_segs--;
1211                                 last_seg->data_len =
1212                                         (uint16_t)(last_seg->data_len -
1213                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1214                                 last_seg->next = NULL;
1215                         } else {
1216                                 rxm->data_len = (uint16_t)(rx_packet_len -
1217                                                         RTE_ETHER_CRC_LEN);
1218                         }
1219                 }
1220
1221                 first_seg->port = rxq->port_id;
1222                 first_seg->ol_flags = 0;
1223                 first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1224                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1225                 iavf_flex_rxd_to_vlan_tci(first_seg, &rxd);
1226                 iavf_rxd_to_pkt_fields(first_seg, &rxd);
1227                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1228
1229                 first_seg->ol_flags |= pkt_flags;
1230
1231                 /* Prefetch data of first segment, if configured to do so. */
1232                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1233                                           first_seg->data_off));
1234                 rx_pkts[nb_rx++] = first_seg;
1235                 first_seg = NULL;
1236         }
1237
1238         /* Record index of the next RX descriptor to probe. */
1239         rxq->rx_tail = rx_id;
1240         rxq->pkt_first_seg = first_seg;
1241         rxq->pkt_last_seg = last_seg;
1242
1243         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1244
1245         return nb_rx;
1246 }
1247
1248 /* implement recv_scattered_pkts  */
1249 uint16_t
1250 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1251                         uint16_t nb_pkts)
1252 {
1253         struct iavf_rx_queue *rxq = rx_queue;
1254         union iavf_rx_desc rxd;
1255         struct rte_mbuf *rxe;
1256         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1257         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1258         struct rte_mbuf *nmb, *rxm;
1259         uint16_t rx_id = rxq->rx_tail;
1260         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1261         struct rte_eth_dev *dev;
1262         uint32_t rx_status;
1263         uint64_t qword1;
1264         uint64_t dma_addr;
1265         uint64_t pkt_flags;
1266
1267         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1268         volatile union iavf_rx_desc *rxdp;
1269         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1270
1271         while (nb_rx < nb_pkts) {
1272                 rxdp = &rx_ring[rx_id];
1273                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1274                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1275                             IAVF_RXD_QW1_STATUS_SHIFT;
1276
1277                 /* Check the DD bit */
1278                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1279                         break;
1280                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1281
1282                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1283                 if (unlikely(!nmb)) {
1284                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1285                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1286                         dev = &rte_eth_devices[rxq->port_id];
1287                         dev->data->rx_mbuf_alloc_failed++;
1288                         break;
1289                 }
1290
1291                 rxd = *rxdp;
1292                 nb_hold++;
1293                 rxe = rxq->sw_ring[rx_id];
1294                 rx_id++;
1295                 if (rx_id == rxq->nb_rx_desc)
1296                         rx_id = 0;
1297
1298                 /* Prefetch next mbuf */
1299                 rte_prefetch0(rxq->sw_ring[rx_id]);
1300
1301                 /* When next RX descriptor is on a cache line boundary,
1302                  * prefetch the next 4 RX descriptors and next 8 pointers
1303                  * to mbufs.
1304                  */
1305                 if ((rx_id & 0x3) == 0) {
1306                         rte_prefetch0(&rx_ring[rx_id]);
1307                         rte_prefetch0(rxq->sw_ring[rx_id]);
1308                 }
1309
1310                 rxm = rxe;
1311                 dma_addr =
1312                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1313
1314                 /* Set data buffer address and data length of the mbuf */
1315                 rxdp->read.hdr_addr = 0;
1316                 rxdp->read.pkt_addr = dma_addr;
1317                 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1318                                  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1319                 rxm->data_len = rx_packet_len;
1320                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1321
1322                 /* If this is the first buffer of the received packet, set the
1323                  * pointer to the first mbuf of the packet and initialize its
1324                  * context. Otherwise, update the total length and the number
1325                  * of segments of the current scattered packet, and update the
1326                  * pointer to the last mbuf of the current packet.
1327                  */
1328                 if (!first_seg) {
1329                         first_seg = rxm;
1330                         first_seg->nb_segs = 1;
1331                         first_seg->pkt_len = rx_packet_len;
1332                 } else {
1333                         first_seg->pkt_len =
1334                                 (uint16_t)(first_seg->pkt_len +
1335                                                 rx_packet_len);
1336                         first_seg->nb_segs++;
1337                         last_seg->next = rxm;
1338                 }
1339
1340                 /* If this is not the last buffer of the received packet,
1341                  * update the pointer to the last mbuf of the current scattered
1342                  * packet and continue to parse the RX ring.
1343                  */
1344                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1345                         last_seg = rxm;
1346                         continue;
1347                 }
1348
1349                 /* This is the last buffer of the received packet. If the CRC
1350                  * is not stripped by the hardware:
1351                  *  - Subtract the CRC length from the total packet length.
1352                  *  - If the last buffer only contains the whole CRC or a part
1353                  *  of it, free the mbuf associated to the last buffer. If part
1354                  *  of the CRC is also contained in the previous mbuf, subtract
1355                  *  the length of that CRC part from the data length of the
1356                  *  previous mbuf.
1357                  */
1358                 rxm->next = NULL;
1359                 if (unlikely(rxq->crc_len > 0)) {
1360                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1361                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1362                                 rte_pktmbuf_free_seg(rxm);
1363                                 first_seg->nb_segs--;
1364                                 last_seg->data_len =
1365                                         (uint16_t)(last_seg->data_len -
1366                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1367                                 last_seg->next = NULL;
1368                         } else
1369                                 rxm->data_len = (uint16_t)(rx_packet_len -
1370                                                         RTE_ETHER_CRC_LEN);
1371                 }
1372
1373                 first_seg->port = rxq->port_id;
1374                 first_seg->ol_flags = 0;
1375                 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1376                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1377                 first_seg->packet_type =
1378                         ptype_tbl[(uint8_t)((qword1 &
1379                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1380
1381                 if (pkt_flags & PKT_RX_RSS_HASH)
1382                         first_seg->hash.rss =
1383                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1384
1385                 if (pkt_flags & PKT_RX_FDIR)
1386                         pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
1387
1388                 first_seg->ol_flags |= pkt_flags;
1389
1390                 /* Prefetch data of first segment, if configured to do so. */
1391                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1392                                           first_seg->data_off));
1393                 rx_pkts[nb_rx++] = first_seg;
1394                 first_seg = NULL;
1395         }
1396
1397         /* Record index of the next RX descriptor to probe. */
1398         rxq->rx_tail = rx_id;
1399         rxq->pkt_first_seg = first_seg;
1400         rxq->pkt_last_seg = last_seg;
1401
1402         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1403
1404         return nb_rx;
1405 }
1406
1407 #define IAVF_LOOK_AHEAD 8
1408 static inline int
1409 iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq)
1410 {
1411         volatile union iavf_rx_flex_desc *rxdp;
1412         struct rte_mbuf **rxep;
1413         struct rte_mbuf *mb;
1414         uint16_t stat_err0;
1415         uint16_t pkt_len;
1416         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1417         int32_t i, j, nb_rx = 0;
1418         uint64_t pkt_flags;
1419         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1420
1421         rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
1422         rxep = &rxq->sw_ring[rxq->rx_tail];
1423
1424         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1425
1426         /* Make sure there is at least 1 packet to receive */
1427         if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1428                 return 0;
1429
1430         /* Scan LOOK_AHEAD descriptors at a time to determine which
1431          * descriptors reference packets that are ready to be received.
1432          */
1433         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1434              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1435                 /* Read desc statuses backwards to avoid race condition */
1436                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
1437                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1438
1439                 rte_smp_rmb();
1440
1441                 /* Compute how many status bits were set */
1442                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1443                         nb_dd += s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
1444
1445                 nb_rx += nb_dd;
1446
1447                 /* Translate descriptor info to mbuf parameters */
1448                 for (j = 0; j < nb_dd; j++) {
1449                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1450                                           rxq->rx_tail +
1451                                           i * IAVF_LOOK_AHEAD + j);
1452
1453                         mb = rxep[j];
1454                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1455                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1456                         mb->data_len = pkt_len;
1457                         mb->pkt_len = pkt_len;
1458                         mb->ol_flags = 0;
1459
1460                         mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1461                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1462                         iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j]);
1463                         iavf_rxd_to_pkt_fields(mb, &rxdp[j]);
1464                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1465                         pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
1466
1467                         mb->ol_flags |= pkt_flags;
1468                 }
1469
1470                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1471                         rxq->rx_stage[i + j] = rxep[j];
1472
1473                 if (nb_dd != IAVF_LOOK_AHEAD)
1474                         break;
1475         }
1476
1477         /* Clear software ring entries */
1478         for (i = 0; i < nb_rx; i++)
1479                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1480
1481         return nb_rx;
1482 }
1483
1484 static inline int
1485 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1486 {
1487         volatile union iavf_rx_desc *rxdp;
1488         struct rte_mbuf **rxep;
1489         struct rte_mbuf *mb;
1490         uint16_t pkt_len;
1491         uint64_t qword1;
1492         uint32_t rx_status;
1493         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1494         int32_t i, j, nb_rx = 0;
1495         uint64_t pkt_flags;
1496         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1497
1498         rxdp = &rxq->rx_ring[rxq->rx_tail];
1499         rxep = &rxq->sw_ring[rxq->rx_tail];
1500
1501         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1502         rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1503                     IAVF_RXD_QW1_STATUS_SHIFT;
1504
1505         /* Make sure there is at least 1 packet to receive */
1506         if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1507                 return 0;
1508
1509         /* Scan LOOK_AHEAD descriptors at a time to determine which
1510          * descriptors reference packets that are ready to be received.
1511          */
1512         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1513              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1514                 /* Read desc statuses backwards to avoid race condition */
1515                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1516                         qword1 = rte_le_to_cpu_64(
1517                                 rxdp[j].wb.qword1.status_error_len);
1518                         s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1519                                IAVF_RXD_QW1_STATUS_SHIFT;
1520                 }
1521
1522                 rte_smp_rmb();
1523
1524                 /* Compute how many status bits were set */
1525                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1526                         nb_dd += s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1527
1528                 nb_rx += nb_dd;
1529
1530                 /* Translate descriptor info to mbuf parameters */
1531                 for (j = 0; j < nb_dd; j++) {
1532                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1533                                          rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1534
1535                         mb = rxep[j];
1536                         qword1 = rte_le_to_cpu_64
1537                                         (rxdp[j].wb.qword1.status_error_len);
1538                         pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1539                                   IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1540                         mb->data_len = pkt_len;
1541                         mb->pkt_len = pkt_len;
1542                         mb->ol_flags = 0;
1543                         iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1544                         pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1545                         mb->packet_type =
1546                                 ptype_tbl[(uint8_t)((qword1 &
1547                                 IAVF_RXD_QW1_PTYPE_MASK) >>
1548                                 IAVF_RXD_QW1_PTYPE_SHIFT)];
1549
1550                         if (pkt_flags & PKT_RX_RSS_HASH)
1551                                 mb->hash.rss = rte_le_to_cpu_32(
1552                                         rxdp[j].wb.qword0.hi_dword.rss);
1553
1554                         if (pkt_flags & PKT_RX_FDIR)
1555                                 pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
1556
1557                         mb->ol_flags |= pkt_flags;
1558                 }
1559
1560                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1561                         rxq->rx_stage[i + j] = rxep[j];
1562
1563                 if (nb_dd != IAVF_LOOK_AHEAD)
1564                         break;
1565         }
1566
1567         /* Clear software ring entries */
1568         for (i = 0; i < nb_rx; i++)
1569                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1570
1571         return nb_rx;
1572 }
1573
1574 static inline uint16_t
1575 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
1576                        struct rte_mbuf **rx_pkts,
1577                        uint16_t nb_pkts)
1578 {
1579         uint16_t i;
1580         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1581
1582         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1583
1584         for (i = 0; i < nb_pkts; i++)
1585                 rx_pkts[i] = stage[i];
1586
1587         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1588         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1589
1590         return nb_pkts;
1591 }
1592
1593 static inline int
1594 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
1595 {
1596         volatile union iavf_rx_desc *rxdp;
1597         struct rte_mbuf **rxep;
1598         struct rte_mbuf *mb;
1599         uint16_t alloc_idx, i;
1600         uint64_t dma_addr;
1601         int diag;
1602
1603         /* Allocate buffers in bulk */
1604         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1605                                 (rxq->rx_free_thresh - 1));
1606         rxep = &rxq->sw_ring[alloc_idx];
1607         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1608                                     rxq->rx_free_thresh);
1609         if (unlikely(diag != 0)) {
1610                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1611                 return -ENOMEM;
1612         }
1613
1614         rxdp = &rxq->rx_ring[alloc_idx];
1615         for (i = 0; i < rxq->rx_free_thresh; i++) {
1616                 if (likely(i < (rxq->rx_free_thresh - 1)))
1617                         /* Prefetch next mbuf */
1618                         rte_prefetch0(rxep[i + 1]);
1619
1620                 mb = rxep[i];
1621                 rte_mbuf_refcnt_set(mb, 1);
1622                 mb->next = NULL;
1623                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1624                 mb->nb_segs = 1;
1625                 mb->port = rxq->port_id;
1626                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1627                 rxdp[i].read.hdr_addr = 0;
1628                 rxdp[i].read.pkt_addr = dma_addr;
1629         }
1630
1631         /* Update rx tail register */
1632         rte_wmb();
1633         IAVF_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
1634
1635         rxq->rx_free_trigger =
1636                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1637         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1638                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1639
1640         return 0;
1641 }
1642
1643 static inline uint16_t
1644 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1645 {
1646         struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
1647         uint16_t nb_rx = 0;
1648
1649         if (!nb_pkts)
1650                 return 0;
1651
1652         if (rxq->rx_nb_avail)
1653                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1654
1655         if (rxq->rxdid == IAVF_RXDID_COMMS_OVS_1)
1656                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq);
1657         else
1658                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
1659         rxq->rx_next_avail = 0;
1660         rxq->rx_nb_avail = nb_rx;
1661         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1662
1663         if (rxq->rx_tail > rxq->rx_free_trigger) {
1664                 if (iavf_rx_alloc_bufs(rxq) != 0) {
1665                         uint16_t i, j;
1666
1667                         /* TODO: count rx_mbuf_alloc_failed here */
1668
1669                         rxq->rx_nb_avail = 0;
1670                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1671                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1672                                 rxq->sw_ring[j] = rxq->rx_stage[i];
1673
1674                         return 0;
1675                 }
1676         }
1677
1678         if (rxq->rx_tail >= rxq->nb_rx_desc)
1679                 rxq->rx_tail = 0;
1680
1681         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
1682                    rxq->port_id, rxq->queue_id,
1683                    rxq->rx_tail, nb_rx);
1684
1685         if (rxq->rx_nb_avail)
1686                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1687
1688         return 0;
1689 }
1690
1691 static uint16_t
1692 iavf_recv_pkts_bulk_alloc(void *rx_queue,
1693                          struct rte_mbuf **rx_pkts,
1694                          uint16_t nb_pkts)
1695 {
1696         uint16_t nb_rx = 0, n, count;
1697
1698         if (unlikely(nb_pkts == 0))
1699                 return 0;
1700
1701         if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
1702                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1703
1704         while (nb_pkts) {
1705                 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
1706                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1707                 nb_rx = (uint16_t)(nb_rx + count);
1708                 nb_pkts = (uint16_t)(nb_pkts - count);
1709                 if (count < n)
1710                         break;
1711         }
1712
1713         return nb_rx;
1714 }
1715
1716 static inline int
1717 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
1718 {
1719         struct iavf_tx_entry *sw_ring = txq->sw_ring;
1720         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
1721         uint16_t nb_tx_desc = txq->nb_tx_desc;
1722         uint16_t desc_to_clean_to;
1723         uint16_t nb_tx_to_clean;
1724
1725         volatile struct iavf_tx_desc *txd = txq->tx_ring;
1726
1727         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
1728         if (desc_to_clean_to >= nb_tx_desc)
1729                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
1730
1731         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
1732         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
1733                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
1734                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
1735                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
1736                                 "(port=%d queue=%d)", desc_to_clean_to,
1737                                 txq->port_id, txq->queue_id);
1738                 return -1;
1739         }
1740
1741         if (last_desc_cleaned > desc_to_clean_to)
1742                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
1743                                                         desc_to_clean_to);
1744         else
1745                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
1746                                         last_desc_cleaned);
1747
1748         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
1749
1750         txq->last_desc_cleaned = desc_to_clean_to;
1751         txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
1752
1753         return 0;
1754 }
1755
1756 /* Check if the context descriptor is needed for TX offloading */
1757 static inline uint16_t
1758 iavf_calc_context_desc(uint64_t flags)
1759 {
1760         static uint64_t mask = PKT_TX_TCP_SEG;
1761
1762         return (flags & mask) ? 1 : 0;
1763 }
1764
1765 static inline void
1766 iavf_txd_enable_checksum(uint64_t ol_flags,
1767                         uint32_t *td_cmd,
1768                         uint32_t *td_offset,
1769                         union iavf_tx_offload tx_offload)
1770 {
1771         /* Set MACLEN */
1772         *td_offset |= (tx_offload.l2_len >> 1) <<
1773                       IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1774
1775         /* Enable L3 checksum offloads */
1776         if (ol_flags & PKT_TX_IP_CKSUM) {
1777                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
1778                 *td_offset |= (tx_offload.l3_len >> 2) <<
1779                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1780         } else if (ol_flags & PKT_TX_IPV4) {
1781                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
1782                 *td_offset |= (tx_offload.l3_len >> 2) <<
1783                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1784         } else if (ol_flags & PKT_TX_IPV6) {
1785                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
1786                 *td_offset |= (tx_offload.l3_len >> 2) <<
1787                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1788         }
1789
1790         if (ol_flags & PKT_TX_TCP_SEG) {
1791                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1792                 *td_offset |= (tx_offload.l4_len >> 2) <<
1793                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1794                 return;
1795         }
1796
1797         /* Enable L4 checksum offloads */
1798         switch (ol_flags & PKT_TX_L4_MASK) {
1799         case PKT_TX_TCP_CKSUM:
1800                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1801                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
1802                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1803                 break;
1804         case PKT_TX_SCTP_CKSUM:
1805                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
1806                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
1807                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1808                 break;
1809         case PKT_TX_UDP_CKSUM:
1810                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
1811                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
1812                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1813                 break;
1814         default:
1815                 break;
1816         }
1817 }
1818
1819 /* set TSO context descriptor
1820  * support IP -> L4 and IP -> IP -> L4
1821  */
1822 static inline uint64_t
1823 iavf_set_tso_ctx(struct rte_mbuf *mbuf, union iavf_tx_offload tx_offload)
1824 {
1825         uint64_t ctx_desc = 0;
1826         uint32_t cd_cmd, hdr_len, cd_tso_len;
1827
1828         if (!tx_offload.l4_len) {
1829                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
1830                 return ctx_desc;
1831         }
1832
1833         hdr_len = tx_offload.l2_len +
1834                   tx_offload.l3_len +
1835                   tx_offload.l4_len;
1836
1837         cd_cmd = IAVF_TX_CTX_DESC_TSO;
1838         cd_tso_len = mbuf->pkt_len - hdr_len;
1839         ctx_desc |= ((uint64_t)cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1840                      ((uint64_t)cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1841                      ((uint64_t)mbuf->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1842
1843         return ctx_desc;
1844 }
1845
1846 /* Construct the tx flags */
1847 static inline uint64_t
1848 iavf_build_ctob(uint32_t td_cmd, uint32_t td_offset, unsigned int size,
1849                uint32_t td_tag)
1850 {
1851         return rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DATA |
1852                                 ((uint64_t)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
1853                                 ((uint64_t)td_offset <<
1854                                  IAVF_TXD_QW1_OFFSET_SHIFT) |
1855                                 ((uint64_t)size  <<
1856                                  IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
1857                                 ((uint64_t)td_tag  <<
1858                                  IAVF_TXD_QW1_L2TAG1_SHIFT));
1859 }
1860
1861 /* TX function */
1862 uint16_t
1863 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1864 {
1865         volatile struct iavf_tx_desc *txd;
1866         volatile struct iavf_tx_desc *txr;
1867         struct iavf_tx_queue *txq;
1868         struct iavf_tx_entry *sw_ring;
1869         struct iavf_tx_entry *txe, *txn;
1870         struct rte_mbuf *tx_pkt;
1871         struct rte_mbuf *m_seg;
1872         uint16_t tx_id;
1873         uint16_t nb_tx;
1874         uint32_t td_cmd;
1875         uint32_t td_offset;
1876         uint32_t td_tag;
1877         uint64_t ol_flags;
1878         uint16_t nb_used;
1879         uint16_t nb_ctx;
1880         uint16_t tx_last;
1881         uint16_t slen;
1882         uint64_t buf_dma_addr;
1883         union iavf_tx_offload tx_offload = {0};
1884
1885         txq = tx_queue;
1886         sw_ring = txq->sw_ring;
1887         txr = txq->tx_ring;
1888         tx_id = txq->tx_tail;
1889         txe = &sw_ring[tx_id];
1890
1891         /* Check if the descriptor ring needs to be cleaned. */
1892         if (txq->nb_free < txq->free_thresh)
1893                 iavf_xmit_cleanup(txq);
1894
1895         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1896                 td_cmd = 0;
1897                 td_tag = 0;
1898                 td_offset = 0;
1899
1900                 tx_pkt = *tx_pkts++;
1901                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1902
1903                 ol_flags = tx_pkt->ol_flags;
1904                 tx_offload.l2_len = tx_pkt->l2_len;
1905                 tx_offload.l3_len = tx_pkt->l3_len;
1906                 tx_offload.l4_len = tx_pkt->l4_len;
1907                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1908                 /* Calculate the number of context descriptors needed. */
1909                 nb_ctx = iavf_calc_context_desc(ol_flags);
1910
1911                 /* The number of descriptors that must be allocated for
1912                  * a packet equals to the number of the segments of that
1913                  * packet plus 1 context descriptor if needed.
1914                  */
1915                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1916                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1917
1918                 /* Circular ring */
1919                 if (tx_last >= txq->nb_tx_desc)
1920                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1921
1922                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
1923                            " tx_first=%u tx_last=%u",
1924                            txq->port_id, txq->queue_id, tx_id, tx_last);
1925
1926                 if (nb_used > txq->nb_free) {
1927                         if (iavf_xmit_cleanup(txq)) {
1928                                 if (nb_tx == 0)
1929                                         return 0;
1930                                 goto end_of_tx;
1931                         }
1932                         if (unlikely(nb_used > txq->rs_thresh)) {
1933                                 while (nb_used > txq->nb_free) {
1934                                         if (iavf_xmit_cleanup(txq)) {
1935                                                 if (nb_tx == 0)
1936                                                         return 0;
1937                                                 goto end_of_tx;
1938                                         }
1939                                 }
1940                         }
1941                 }
1942
1943                 /* Descriptor based VLAN insertion */
1944                 if (ol_flags & PKT_TX_VLAN_PKT) {
1945                         td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
1946                         td_tag = tx_pkt->vlan_tci;
1947                 }
1948
1949                 /* According to datasheet, the bit2 is reserved and must be
1950                  * set to 1.
1951                  */
1952                 td_cmd |= 0x04;
1953
1954                 /* Enable checksum offloading */
1955                 if (ol_flags & IAVF_TX_CKSUM_OFFLOAD_MASK)
1956                         iavf_txd_enable_checksum(ol_flags, &td_cmd,
1957                                                 &td_offset, tx_offload);
1958
1959                 if (nb_ctx) {
1960                         /* Setup TX context descriptor if required */
1961                         uint64_t cd_type_cmd_tso_mss =
1962                                 IAVF_TX_DESC_DTYPE_CONTEXT;
1963                         volatile struct iavf_tx_context_desc *ctx_txd =
1964                                 (volatile struct iavf_tx_context_desc *)
1965                                                         &txr[tx_id];
1966
1967                         txn = &sw_ring[txe->next_id];
1968                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1969                         if (txe->mbuf) {
1970                                 rte_pktmbuf_free_seg(txe->mbuf);
1971                                 txe->mbuf = NULL;
1972                         }
1973
1974                         /* TSO enabled */
1975                         if (ol_flags & PKT_TX_TCP_SEG)
1976                                 cd_type_cmd_tso_mss |=
1977                                         iavf_set_tso_ctx(tx_pkt, tx_offload);
1978
1979                         ctx_txd->type_cmd_tso_mss =
1980                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1981
1982                         IAVF_DUMP_TX_DESC(txq, &txr[tx_id], tx_id);
1983                         txe->last_id = tx_last;
1984                         tx_id = txe->next_id;
1985                         txe = txn;
1986                 }
1987
1988                 m_seg = tx_pkt;
1989                 do {
1990                         txd = &txr[tx_id];
1991                         txn = &sw_ring[txe->next_id];
1992
1993                         if (txe->mbuf)
1994                                 rte_pktmbuf_free_seg(txe->mbuf);
1995                         txe->mbuf = m_seg;
1996
1997                         /* Setup TX Descriptor */
1998                         slen = m_seg->data_len;
1999                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2000                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
2001                         txd->cmd_type_offset_bsz = iavf_build_ctob(td_cmd,
2002                                                                   td_offset,
2003                                                                   slen,
2004                                                                   td_tag);
2005
2006                         IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2007                         txe->last_id = tx_last;
2008                         tx_id = txe->next_id;
2009                         txe = txn;
2010                         m_seg = m_seg->next;
2011                 } while (m_seg);
2012
2013                 /* The last packet data descriptor needs End Of Packet (EOP) */
2014                 td_cmd |= IAVF_TX_DESC_CMD_EOP;
2015                 txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
2016                 txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
2017
2018                 if (txq->nb_used >= txq->rs_thresh) {
2019                         PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
2020                                    "%4u (port=%d queue=%d)",
2021                                    tx_last, txq->port_id, txq->queue_id);
2022
2023                         td_cmd |= IAVF_TX_DESC_CMD_RS;
2024
2025                         /* Update txq RS bit counters */
2026                         txq->nb_used = 0;
2027                 }
2028
2029                 txd->cmd_type_offset_bsz |=
2030                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2031                                          IAVF_TXD_QW1_CMD_SHIFT);
2032                 IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2033         }
2034
2035 end_of_tx:
2036         rte_wmb();
2037
2038         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
2039                    txq->port_id, txq->queue_id, tx_id, nb_tx);
2040
2041         IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
2042         txq->tx_tail = tx_id;
2043
2044         return nb_tx;
2045 }
2046
2047 /* TX prep functions */
2048 uint16_t
2049 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2050               uint16_t nb_pkts)
2051 {
2052         int i, ret;
2053         uint64_t ol_flags;
2054         struct rte_mbuf *m;
2055
2056         for (i = 0; i < nb_pkts; i++) {
2057                 m = tx_pkts[i];
2058                 ol_flags = m->ol_flags;
2059
2060                 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
2061                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
2062                         if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
2063                                 rte_errno = EINVAL;
2064                                 return i;
2065                         }
2066                 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
2067                            (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
2068                         /* MSS outside the range are considered malicious */
2069                         rte_errno = EINVAL;
2070                         return i;
2071                 }
2072
2073                 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
2074                         rte_errno = ENOTSUP;
2075                         return i;
2076                 }
2077
2078 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2079                 ret = rte_validate_tx_offload(m);
2080                 if (ret != 0) {
2081                         rte_errno = -ret;
2082                         return i;
2083                 }
2084 #endif
2085                 ret = rte_net_intel_cksum_prepare(m);
2086                 if (ret != 0) {
2087                         rte_errno = -ret;
2088                         return i;
2089                 }
2090         }
2091
2092         return i;
2093 }
2094
2095 /* choose rx function*/
2096 void
2097 iavf_set_rx_function(struct rte_eth_dev *dev)
2098 {
2099         struct iavf_adapter *adapter =
2100                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2101         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2102 #ifdef RTE_ARCH_X86
2103         struct iavf_rx_queue *rxq;
2104         int i;
2105         bool use_avx2 = false;
2106
2107         if (!iavf_rx_vec_dev_check(dev)) {
2108                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2109                         rxq = dev->data->rx_queues[i];
2110                         (void)iavf_rxq_vec_setup(rxq);
2111                 }
2112
2113                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2114                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
2115                         use_avx2 = true;
2116
2117                 if (dev->data->scattered_rx) {
2118                         PMD_DRV_LOG(DEBUG,
2119                                     "Using %sVector Scattered Rx (port %d).",
2120                                     use_avx2 ? "avx2 " : "",
2121                                     dev->data->port_id);
2122                         if (vf->vf_res->vf_cap_flags &
2123                                 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2124                                 dev->rx_pkt_burst = use_avx2 ?
2125                                         iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
2126                                         iavf_recv_scattered_pkts_vec_flex_rxd;
2127                         else
2128                                 dev->rx_pkt_burst = use_avx2 ?
2129                                         iavf_recv_scattered_pkts_vec_avx2 :
2130                                         iavf_recv_scattered_pkts_vec;
2131                 } else {
2132                         PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2133                                     use_avx2 ? "avx2 " : "",
2134                                     dev->data->port_id);
2135                         if (vf->vf_res->vf_cap_flags &
2136                                 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2137                                 dev->rx_pkt_burst = use_avx2 ?
2138                                         iavf_recv_pkts_vec_avx2_flex_rxd :
2139                                         iavf_recv_pkts_vec_flex_rxd;
2140                         else
2141                                 dev->rx_pkt_burst = use_avx2 ?
2142                                         iavf_recv_pkts_vec_avx2 :
2143                                         iavf_recv_pkts_vec;
2144                 }
2145
2146                 return;
2147         }
2148 #endif
2149
2150         if (dev->data->scattered_rx) {
2151                 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
2152                             dev->data->port_id);
2153                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2154                         dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
2155                 else
2156                         dev->rx_pkt_burst = iavf_recv_scattered_pkts;
2157         } else if (adapter->rx_bulk_alloc_allowed) {
2158                 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
2159                             dev->data->port_id);
2160                 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
2161         } else {
2162                 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
2163                             dev->data->port_id);
2164                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2165                         dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
2166                 else
2167                         dev->rx_pkt_burst = iavf_recv_pkts;
2168         }
2169 }
2170
2171 /* choose tx function*/
2172 void
2173 iavf_set_tx_function(struct rte_eth_dev *dev)
2174 {
2175 #ifdef RTE_ARCH_X86
2176         struct iavf_tx_queue *txq;
2177         int i;
2178         bool use_avx2 = false;
2179
2180         if (!iavf_tx_vec_dev_check(dev)) {
2181                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2182                         txq = dev->data->tx_queues[i];
2183                         if (!txq)
2184                                 continue;
2185                         iavf_txq_vec_setup(txq);
2186                 }
2187
2188                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2189                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
2190                         use_avx2 = true;
2191
2192                 PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
2193                             use_avx2 ? "avx2 " : "",
2194                             dev->data->port_id);
2195                 dev->tx_pkt_burst = use_avx2 ?
2196                                     iavf_xmit_pkts_vec_avx2 :
2197                                     iavf_xmit_pkts_vec;
2198                 dev->tx_pkt_prepare = NULL;
2199
2200                 return;
2201         }
2202 #endif
2203
2204         PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
2205                     dev->data->port_id);
2206         dev->tx_pkt_burst = iavf_xmit_pkts;
2207         dev->tx_pkt_prepare = iavf_prep_pkts;
2208 }
2209
2210 static int
2211 iavf_tx_done_cleanup_full(struct iavf_tx_queue *txq,
2212                         uint32_t free_cnt)
2213 {
2214         struct iavf_tx_entry *swr_ring = txq->sw_ring;
2215         uint16_t i, tx_last, tx_id;
2216         uint16_t nb_tx_free_last;
2217         uint16_t nb_tx_to_clean;
2218         uint32_t pkt_cnt;
2219
2220         /* Start free mbuf from the next of tx_tail */
2221         tx_last = txq->tx_tail;
2222         tx_id  = swr_ring[tx_last].next_id;
2223
2224         if (txq->nb_free == 0 && iavf_xmit_cleanup(txq))
2225                 return 0;
2226
2227         nb_tx_to_clean = txq->nb_free;
2228         nb_tx_free_last = txq->nb_free;
2229         if (!free_cnt)
2230                 free_cnt = txq->nb_tx_desc;
2231
2232         /* Loop through swr_ring to count the amount of
2233          * freeable mubfs and packets.
2234          */
2235         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2236                 for (i = 0; i < nb_tx_to_clean &&
2237                         pkt_cnt < free_cnt &&
2238                         tx_id != tx_last; i++) {
2239                         if (swr_ring[tx_id].mbuf != NULL) {
2240                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2241                                 swr_ring[tx_id].mbuf = NULL;
2242
2243                                 /*
2244                                  * last segment in the packet,
2245                                  * increment packet count
2246                                  */
2247                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2248                         }
2249
2250                         tx_id = swr_ring[tx_id].next_id;
2251                 }
2252
2253                 if (txq->rs_thresh > txq->nb_tx_desc -
2254                         txq->nb_free || tx_id == tx_last)
2255                         break;
2256
2257                 if (pkt_cnt < free_cnt) {
2258                         if (iavf_xmit_cleanup(txq))
2259                                 break;
2260
2261                         nb_tx_to_clean = txq->nb_free - nb_tx_free_last;
2262                         nb_tx_free_last = txq->nb_free;
2263                 }
2264         }
2265
2266         return (int)pkt_cnt;
2267 }
2268
2269 int
2270 iavf_dev_tx_done_cleanup(void *txq, uint32_t free_cnt)
2271 {
2272         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
2273
2274         return iavf_tx_done_cleanup_full(q, free_cnt);
2275 }
2276
2277 void
2278 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2279                      struct rte_eth_rxq_info *qinfo)
2280 {
2281         struct iavf_rx_queue *rxq;
2282
2283         rxq = dev->data->rx_queues[queue_id];
2284
2285         qinfo->mp = rxq->mp;
2286         qinfo->scattered_rx = dev->data->scattered_rx;
2287         qinfo->nb_desc = rxq->nb_rx_desc;
2288
2289         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2290         qinfo->conf.rx_drop_en = true;
2291         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2292 }
2293
2294 void
2295 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2296                      struct rte_eth_txq_info *qinfo)
2297 {
2298         struct iavf_tx_queue *txq;
2299
2300         txq = dev->data->tx_queues[queue_id];
2301
2302         qinfo->nb_desc = txq->nb_tx_desc;
2303
2304         qinfo->conf.tx_free_thresh = txq->free_thresh;
2305         qinfo->conf.tx_rs_thresh = txq->rs_thresh;
2306         qinfo->conf.offloads = txq->offloads;
2307         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2308 }
2309
2310 /* Get the number of used descriptors of a rx queue */
2311 uint32_t
2312 iavf_dev_rxq_count(struct rte_eth_dev *dev, uint16_t queue_id)
2313 {
2314 #define IAVF_RXQ_SCAN_INTERVAL 4
2315         volatile union iavf_rx_desc *rxdp;
2316         struct iavf_rx_queue *rxq;
2317         uint16_t desc = 0;
2318
2319         rxq = dev->data->rx_queues[queue_id];
2320         rxdp = &rxq->rx_ring[rxq->rx_tail];
2321
2322         while ((desc < rxq->nb_rx_desc) &&
2323                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2324                  IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
2325                (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
2326                 /* Check the DD bit of a rx descriptor of each 4 in a group,
2327                  * to avoid checking too frequently and downgrading performance
2328                  * too much.
2329                  */
2330                 desc += IAVF_RXQ_SCAN_INTERVAL;
2331                 rxdp += IAVF_RXQ_SCAN_INTERVAL;
2332                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2333                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2334                                         desc - rxq->nb_rx_desc]);
2335         }
2336
2337         return desc;
2338 }
2339
2340 int
2341 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
2342 {
2343         struct iavf_rx_queue *rxq = rx_queue;
2344         volatile uint64_t *status;
2345         uint64_t mask;
2346         uint32_t desc;
2347
2348         if (unlikely(offset >= rxq->nb_rx_desc))
2349                 return -EINVAL;
2350
2351         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2352                 return RTE_ETH_RX_DESC_UNAVAIL;
2353
2354         desc = rxq->rx_tail + offset;
2355         if (desc >= rxq->nb_rx_desc)
2356                 desc -= rxq->nb_rx_desc;
2357
2358         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2359         mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
2360                 << IAVF_RXD_QW1_STATUS_SHIFT);
2361         if (*status & mask)
2362                 return RTE_ETH_RX_DESC_DONE;
2363
2364         return RTE_ETH_RX_DESC_AVAIL;
2365 }
2366
2367 int
2368 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
2369 {
2370         struct iavf_tx_queue *txq = tx_queue;
2371         volatile uint64_t *status;
2372         uint64_t mask, expect;
2373         uint32_t desc;
2374
2375         if (unlikely(offset >= txq->nb_tx_desc))
2376                 return -EINVAL;
2377
2378         desc = txq->tx_tail + offset;
2379         /* go to next desc that has the RS bit */
2380         desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
2381                 txq->rs_thresh;
2382         if (desc >= txq->nb_tx_desc) {
2383                 desc -= txq->nb_tx_desc;
2384                 if (desc >= txq->nb_tx_desc)
2385                         desc -= txq->nb_tx_desc;
2386         }
2387
2388         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2389         mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
2390         expect = rte_cpu_to_le_64(
2391                  IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
2392         if ((*status & mask) == expect)
2393                 return RTE_ETH_TX_DESC_DONE;
2394
2395         return RTE_ETH_TX_DESC_FULL;
2396 }
2397
2398 const uint32_t *
2399 iavf_get_default_ptype_table(void)
2400 {
2401         static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
2402                 __rte_cache_aligned = {
2403                 /* L2 types */
2404                 /* [0] reserved */
2405                 [1] = RTE_PTYPE_L2_ETHER,
2406                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
2407                 /* [3] - [5] reserved */
2408                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
2409                 /* [7] - [10] reserved */
2410                 [11] = RTE_PTYPE_L2_ETHER_ARP,
2411                 /* [12] - [21] reserved */
2412
2413                 /* Non tunneled IPv4 */
2414                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2415                        RTE_PTYPE_L4_FRAG,
2416                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2417                        RTE_PTYPE_L4_NONFRAG,
2418                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2419                        RTE_PTYPE_L4_UDP,
2420                 /* [25] reserved */
2421                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2422                        RTE_PTYPE_L4_TCP,
2423                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2424                        RTE_PTYPE_L4_SCTP,
2425                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2426                        RTE_PTYPE_L4_ICMP,
2427
2428                 /* IPv4 --> IPv4 */
2429                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2430                        RTE_PTYPE_TUNNEL_IP |
2431                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2432                        RTE_PTYPE_INNER_L4_FRAG,
2433                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2434                        RTE_PTYPE_TUNNEL_IP |
2435                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2436                        RTE_PTYPE_INNER_L4_NONFRAG,
2437                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2438                        RTE_PTYPE_TUNNEL_IP |
2439                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2440                        RTE_PTYPE_INNER_L4_UDP,
2441                 /* [32] reserved */
2442                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2443                        RTE_PTYPE_TUNNEL_IP |
2444                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2445                        RTE_PTYPE_INNER_L4_TCP,
2446                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2447                        RTE_PTYPE_TUNNEL_IP |
2448                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2449                        RTE_PTYPE_INNER_L4_SCTP,
2450                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2451                        RTE_PTYPE_TUNNEL_IP |
2452                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2453                        RTE_PTYPE_INNER_L4_ICMP,
2454
2455                 /* IPv4 --> IPv6 */
2456                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2457                        RTE_PTYPE_TUNNEL_IP |
2458                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2459                        RTE_PTYPE_INNER_L4_FRAG,
2460                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2461                        RTE_PTYPE_TUNNEL_IP |
2462                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2463                        RTE_PTYPE_INNER_L4_NONFRAG,
2464                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2465                        RTE_PTYPE_TUNNEL_IP |
2466                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2467                        RTE_PTYPE_INNER_L4_UDP,
2468                 /* [39] reserved */
2469                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2470                        RTE_PTYPE_TUNNEL_IP |
2471                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2472                        RTE_PTYPE_INNER_L4_TCP,
2473                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2474                        RTE_PTYPE_TUNNEL_IP |
2475                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2476                        RTE_PTYPE_INNER_L4_SCTP,
2477                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2478                        RTE_PTYPE_TUNNEL_IP |
2479                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2480                        RTE_PTYPE_INNER_L4_ICMP,
2481
2482                 /* IPv4 --> GRE/Teredo/VXLAN */
2483                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2484                        RTE_PTYPE_TUNNEL_GRENAT,
2485
2486                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
2487                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2488                        RTE_PTYPE_TUNNEL_GRENAT |
2489                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2490                        RTE_PTYPE_INNER_L4_FRAG,
2491                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2492                        RTE_PTYPE_TUNNEL_GRENAT |
2493                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2494                        RTE_PTYPE_INNER_L4_NONFRAG,
2495                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2496                        RTE_PTYPE_TUNNEL_GRENAT |
2497                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2498                        RTE_PTYPE_INNER_L4_UDP,
2499                 /* [47] reserved */
2500                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2501                        RTE_PTYPE_TUNNEL_GRENAT |
2502                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2503                        RTE_PTYPE_INNER_L4_TCP,
2504                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2505                        RTE_PTYPE_TUNNEL_GRENAT |
2506                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2507                        RTE_PTYPE_INNER_L4_SCTP,
2508                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2509                        RTE_PTYPE_TUNNEL_GRENAT |
2510                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2511                        RTE_PTYPE_INNER_L4_ICMP,
2512
2513                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
2514                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2515                        RTE_PTYPE_TUNNEL_GRENAT |
2516                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2517                        RTE_PTYPE_INNER_L4_FRAG,
2518                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2519                        RTE_PTYPE_TUNNEL_GRENAT |
2520                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2521                        RTE_PTYPE_INNER_L4_NONFRAG,
2522                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2523                        RTE_PTYPE_TUNNEL_GRENAT |
2524                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2525                        RTE_PTYPE_INNER_L4_UDP,
2526                 /* [54] reserved */
2527                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2528                        RTE_PTYPE_TUNNEL_GRENAT |
2529                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2530                        RTE_PTYPE_INNER_L4_TCP,
2531                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2532                        RTE_PTYPE_TUNNEL_GRENAT |
2533                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2534                        RTE_PTYPE_INNER_L4_SCTP,
2535                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2536                        RTE_PTYPE_TUNNEL_GRENAT |
2537                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2538                        RTE_PTYPE_INNER_L4_ICMP,
2539
2540                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
2541                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2542                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2543
2544                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2545                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2546                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2547                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2548                        RTE_PTYPE_INNER_L4_FRAG,
2549                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2550                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2551                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2552                        RTE_PTYPE_INNER_L4_NONFRAG,
2553                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2554                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2555                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2556                        RTE_PTYPE_INNER_L4_UDP,
2557                 /* [62] reserved */
2558                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2559                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2560                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2561                        RTE_PTYPE_INNER_L4_TCP,
2562                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2563                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2564                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2565                        RTE_PTYPE_INNER_L4_SCTP,
2566                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2567                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2568                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2569                        RTE_PTYPE_INNER_L4_ICMP,
2570
2571                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2572                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2573                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2574                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2575                        RTE_PTYPE_INNER_L4_FRAG,
2576                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2577                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2578                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2579                        RTE_PTYPE_INNER_L4_NONFRAG,
2580                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2581                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2582                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2583                        RTE_PTYPE_INNER_L4_UDP,
2584                 /* [69] reserved */
2585                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2586                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2587                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2588                        RTE_PTYPE_INNER_L4_TCP,
2589                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2590                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2591                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2592                        RTE_PTYPE_INNER_L4_SCTP,
2593                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2594                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2595                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2596                        RTE_PTYPE_INNER_L4_ICMP,
2597                 /* [73] - [87] reserved */
2598
2599                 /* Non tunneled IPv6 */
2600                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2601                        RTE_PTYPE_L4_FRAG,
2602                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2603                        RTE_PTYPE_L4_NONFRAG,
2604                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2605                        RTE_PTYPE_L4_UDP,
2606                 /* [91] reserved */
2607                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2608                        RTE_PTYPE_L4_TCP,
2609                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2610                        RTE_PTYPE_L4_SCTP,
2611                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2612                        RTE_PTYPE_L4_ICMP,
2613
2614                 /* IPv6 --> IPv4 */
2615                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2616                        RTE_PTYPE_TUNNEL_IP |
2617                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2618                        RTE_PTYPE_INNER_L4_FRAG,
2619                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2620                        RTE_PTYPE_TUNNEL_IP |
2621                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2622                        RTE_PTYPE_INNER_L4_NONFRAG,
2623                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2624                        RTE_PTYPE_TUNNEL_IP |
2625                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2626                        RTE_PTYPE_INNER_L4_UDP,
2627                 /* [98] reserved */
2628                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2629                        RTE_PTYPE_TUNNEL_IP |
2630                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2631                        RTE_PTYPE_INNER_L4_TCP,
2632                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2633                         RTE_PTYPE_TUNNEL_IP |
2634                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2635                         RTE_PTYPE_INNER_L4_SCTP,
2636                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2637                         RTE_PTYPE_TUNNEL_IP |
2638                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2639                         RTE_PTYPE_INNER_L4_ICMP,
2640
2641                 /* IPv6 --> IPv6 */
2642                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2643                         RTE_PTYPE_TUNNEL_IP |
2644                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2645                         RTE_PTYPE_INNER_L4_FRAG,
2646                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2647                         RTE_PTYPE_TUNNEL_IP |
2648                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2649                         RTE_PTYPE_INNER_L4_NONFRAG,
2650                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2651                         RTE_PTYPE_TUNNEL_IP |
2652                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2653                         RTE_PTYPE_INNER_L4_UDP,
2654                 /* [105] reserved */
2655                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2656                         RTE_PTYPE_TUNNEL_IP |
2657                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2658                         RTE_PTYPE_INNER_L4_TCP,
2659                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2660                         RTE_PTYPE_TUNNEL_IP |
2661                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2662                         RTE_PTYPE_INNER_L4_SCTP,
2663                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2664                         RTE_PTYPE_TUNNEL_IP |
2665                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2666                         RTE_PTYPE_INNER_L4_ICMP,
2667
2668                 /* IPv6 --> GRE/Teredo/VXLAN */
2669                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2670                         RTE_PTYPE_TUNNEL_GRENAT,
2671
2672                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
2673                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2674                         RTE_PTYPE_TUNNEL_GRENAT |
2675                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2676                         RTE_PTYPE_INNER_L4_FRAG,
2677                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2678                         RTE_PTYPE_TUNNEL_GRENAT |
2679                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2680                         RTE_PTYPE_INNER_L4_NONFRAG,
2681                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2682                         RTE_PTYPE_TUNNEL_GRENAT |
2683                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2684                         RTE_PTYPE_INNER_L4_UDP,
2685                 /* [113] reserved */
2686                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2687                         RTE_PTYPE_TUNNEL_GRENAT |
2688                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2689                         RTE_PTYPE_INNER_L4_TCP,
2690                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2691                         RTE_PTYPE_TUNNEL_GRENAT |
2692                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2693                         RTE_PTYPE_INNER_L4_SCTP,
2694                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2695                         RTE_PTYPE_TUNNEL_GRENAT |
2696                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2697                         RTE_PTYPE_INNER_L4_ICMP,
2698
2699                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
2700                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2701                         RTE_PTYPE_TUNNEL_GRENAT |
2702                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2703                         RTE_PTYPE_INNER_L4_FRAG,
2704                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2705                         RTE_PTYPE_TUNNEL_GRENAT |
2706                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2707                         RTE_PTYPE_INNER_L4_NONFRAG,
2708                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2709                         RTE_PTYPE_TUNNEL_GRENAT |
2710                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2711                         RTE_PTYPE_INNER_L4_UDP,
2712                 /* [120] reserved */
2713                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2714                         RTE_PTYPE_TUNNEL_GRENAT |
2715                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2716                         RTE_PTYPE_INNER_L4_TCP,
2717                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2718                         RTE_PTYPE_TUNNEL_GRENAT |
2719                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2720                         RTE_PTYPE_INNER_L4_SCTP,
2721                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2722                         RTE_PTYPE_TUNNEL_GRENAT |
2723                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2724                         RTE_PTYPE_INNER_L4_ICMP,
2725
2726                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
2727                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2728                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2729
2730                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2731                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2732                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2733                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2734                         RTE_PTYPE_INNER_L4_FRAG,
2735                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2736                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2737                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2738                         RTE_PTYPE_INNER_L4_NONFRAG,
2739                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2740                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2741                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2742                         RTE_PTYPE_INNER_L4_UDP,
2743                 /* [128] reserved */
2744                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2745                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2746                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2747                         RTE_PTYPE_INNER_L4_TCP,
2748                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2749                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2750                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2751                         RTE_PTYPE_INNER_L4_SCTP,
2752                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2753                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2754                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2755                         RTE_PTYPE_INNER_L4_ICMP,
2756
2757                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2758                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2759                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2760                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2761                         RTE_PTYPE_INNER_L4_FRAG,
2762                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2763                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2764                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2765                         RTE_PTYPE_INNER_L4_NONFRAG,
2766                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2767                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2768                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2769                         RTE_PTYPE_INNER_L4_UDP,
2770                 /* [135] reserved */
2771                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2772                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2773                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2774                         RTE_PTYPE_INNER_L4_TCP,
2775                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2776                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2777                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2778                         RTE_PTYPE_INNER_L4_SCTP,
2779                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2780                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2781                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2782                         RTE_PTYPE_INNER_L4_ICMP,
2783                 /* [139] - [299] reserved */
2784
2785                 /* PPPoE */
2786                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
2787                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
2788
2789                 /* PPPoE --> IPv4 */
2790                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
2791                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2792                         RTE_PTYPE_L4_FRAG,
2793                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
2794                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2795                         RTE_PTYPE_L4_NONFRAG,
2796                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
2797                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2798                         RTE_PTYPE_L4_UDP,
2799                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
2800                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2801                         RTE_PTYPE_L4_TCP,
2802                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
2803                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2804                         RTE_PTYPE_L4_SCTP,
2805                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
2806                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2807                         RTE_PTYPE_L4_ICMP,
2808
2809                 /* PPPoE --> IPv6 */
2810                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
2811                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2812                         RTE_PTYPE_L4_FRAG,
2813                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
2814                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2815                         RTE_PTYPE_L4_NONFRAG,
2816                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
2817                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2818                         RTE_PTYPE_L4_UDP,
2819                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
2820                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2821                         RTE_PTYPE_L4_TCP,
2822                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
2823                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2824                         RTE_PTYPE_L4_SCTP,
2825                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
2826                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2827                         RTE_PTYPE_L4_ICMP,
2828                 /* [314] - [324] reserved */
2829
2830                 /* IPv4/IPv6 --> GTPC/GTPU */
2831                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2832                         RTE_PTYPE_TUNNEL_GTPC,
2833                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2834                         RTE_PTYPE_TUNNEL_GTPC,
2835                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2836                         RTE_PTYPE_TUNNEL_GTPC,
2837                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2838                         RTE_PTYPE_TUNNEL_GTPC,
2839                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2840                         RTE_PTYPE_TUNNEL_GTPU,
2841                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2842                         RTE_PTYPE_TUNNEL_GTPU,
2843
2844                 /* IPv4 --> GTPU --> IPv4 */
2845                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2846                         RTE_PTYPE_TUNNEL_GTPU |
2847                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2848                         RTE_PTYPE_INNER_L4_FRAG,
2849                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2850                         RTE_PTYPE_TUNNEL_GTPU |
2851                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2852                         RTE_PTYPE_INNER_L4_NONFRAG,
2853                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2854                         RTE_PTYPE_TUNNEL_GTPU |
2855                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2856                         RTE_PTYPE_INNER_L4_UDP,
2857                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2858                         RTE_PTYPE_TUNNEL_GTPU |
2859                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2860                         RTE_PTYPE_INNER_L4_TCP,
2861                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2862                         RTE_PTYPE_TUNNEL_GTPU |
2863                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2864                         RTE_PTYPE_INNER_L4_ICMP,
2865
2866                 /* IPv6 --> GTPU --> IPv4 */
2867                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2868                         RTE_PTYPE_TUNNEL_GTPU |
2869                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2870                         RTE_PTYPE_INNER_L4_FRAG,
2871                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2872                         RTE_PTYPE_TUNNEL_GTPU |
2873                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2874                         RTE_PTYPE_INNER_L4_NONFRAG,
2875                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2876                         RTE_PTYPE_TUNNEL_GTPU |
2877                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2878                         RTE_PTYPE_INNER_L4_UDP,
2879                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2880                         RTE_PTYPE_TUNNEL_GTPU |
2881                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2882                         RTE_PTYPE_INNER_L4_TCP,
2883                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2884                         RTE_PTYPE_TUNNEL_GTPU |
2885                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2886                         RTE_PTYPE_INNER_L4_ICMP,
2887
2888                 /* IPv4 --> GTPU --> IPv6 */
2889                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2890                         RTE_PTYPE_TUNNEL_GTPU |
2891                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2892                         RTE_PTYPE_INNER_L4_FRAG,
2893                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2894                         RTE_PTYPE_TUNNEL_GTPU |
2895                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2896                         RTE_PTYPE_INNER_L4_NONFRAG,
2897                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2898                         RTE_PTYPE_TUNNEL_GTPU |
2899                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2900                         RTE_PTYPE_INNER_L4_UDP,
2901                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2902                         RTE_PTYPE_TUNNEL_GTPU |
2903                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2904                         RTE_PTYPE_INNER_L4_TCP,
2905                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2906                         RTE_PTYPE_TUNNEL_GTPU |
2907                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2908                         RTE_PTYPE_INNER_L4_ICMP,
2909
2910                 /* IPv6 --> GTPU --> IPv6 */
2911                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2912                         RTE_PTYPE_TUNNEL_GTPU |
2913                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2914                         RTE_PTYPE_INNER_L4_FRAG,
2915                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2916                         RTE_PTYPE_TUNNEL_GTPU |
2917                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2918                         RTE_PTYPE_INNER_L4_NONFRAG,
2919                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2920                         RTE_PTYPE_TUNNEL_GTPU |
2921                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2922                         RTE_PTYPE_INNER_L4_UDP,
2923                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2924                         RTE_PTYPE_TUNNEL_GTPU |
2925                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2926                         RTE_PTYPE_INNER_L4_TCP,
2927                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2928                         RTE_PTYPE_TUNNEL_GTPU |
2929                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2930                         RTE_PTYPE_INNER_L4_ICMP,
2931                 /* All others reserved */
2932         };
2933
2934         return ptype_tbl;
2935 }