net/iavf: fix endless loop
[dpdk.git] / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26
27 #include "iavf_log.h"
28 #include "base/iavf_prototype.h"
29 #include "base/iavf_type.h"
30 #include "iavf.h"
31 #include "iavf_rxtx.h"
32
33 static inline int
34 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
35 {
36         /* The following constraints must be satisfied:
37          *   thresh < rxq->nb_rx_desc
38          */
39         if (thresh >= nb_desc) {
40                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
41                              thresh, nb_desc);
42                 return -EINVAL;
43         }
44         return 0;
45 }
46
47 static inline int
48 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
49                 uint16_t tx_free_thresh)
50 {
51         /* TX descriptors will have their RS bit set after tx_rs_thresh
52          * descriptors have been used. The TX descriptor ring will be cleaned
53          * after tx_free_thresh descriptors are used or if the number of
54          * descriptors required to transmit a packet is greater than the
55          * number of free TX descriptors.
56          *
57          * The following constraints must be satisfied:
58          *  - tx_rs_thresh must be less than the size of the ring minus 2.
59          *  - tx_free_thresh must be less than the size of the ring minus 3.
60          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
61          *  - tx_rs_thresh must be a divisor of the ring size.
62          *
63          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
64          * race condition, hence the maximum threshold constraints. When set
65          * to zero use default values.
66          */
67         if (tx_rs_thresh >= (nb_desc - 2)) {
68                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
69                              "number of TX descriptors (%u) minus 2",
70                              tx_rs_thresh, nb_desc);
71                 return -EINVAL;
72         }
73         if (tx_free_thresh >= (nb_desc - 3)) {
74                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
75                              "number of TX descriptors (%u) minus 3.",
76                              tx_free_thresh, nb_desc);
77                 return -EINVAL;
78         }
79         if (tx_rs_thresh > tx_free_thresh) {
80                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
81                              "equal to tx_free_thresh (%u).",
82                              tx_rs_thresh, tx_free_thresh);
83                 return -EINVAL;
84         }
85         if ((nb_desc % tx_rs_thresh) != 0) {
86                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
87                              "number of TX descriptors (%u).",
88                              tx_rs_thresh, nb_desc);
89                 return -EINVAL;
90         }
91
92         return 0;
93 }
94
95 #ifdef RTE_LIBRTE_IAVF_INC_VECTOR
96 static inline bool
97 check_rx_vec_allow(struct iavf_rx_queue *rxq)
98 {
99         if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
100             rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
101                 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
102                 return TRUE;
103         }
104
105         PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
106         return FALSE;
107 }
108
109 static inline bool
110 check_tx_vec_allow(struct iavf_tx_queue *txq)
111 {
112         if (!(txq->offloads & IAVF_NO_VECTOR_FLAGS) &&
113             txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
114             txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
115                 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
116                 return TRUE;
117         }
118         PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
119         return FALSE;
120 }
121 #endif
122
123 static inline bool
124 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
125 {
126         int ret = TRUE;
127
128         if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
129                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
130                              "rxq->rx_free_thresh=%d, "
131                              "IAVF_RX_MAX_BURST=%d",
132                              rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
133                 ret = FALSE;
134         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
135                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
136                              "rxq->nb_rx_desc=%d, "
137                              "rxq->rx_free_thresh=%d",
138                              rxq->nb_rx_desc, rxq->rx_free_thresh);
139                 ret = FALSE;
140         }
141         return ret;
142 }
143
144 static inline void
145 reset_rx_queue(struct iavf_rx_queue *rxq)
146 {
147         uint16_t len;
148         uint32_t i;
149
150         if (!rxq)
151                 return;
152
153         len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
154
155         for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
156                 ((volatile char *)rxq->rx_ring)[i] = 0;
157
158         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
159
160         for (i = 0; i < IAVF_RX_MAX_BURST; i++)
161                 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
162
163         /* for rx bulk */
164         rxq->rx_nb_avail = 0;
165         rxq->rx_next_avail = 0;
166         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
167
168         rxq->rx_tail = 0;
169         rxq->nb_rx_hold = 0;
170         rxq->pkt_first_seg = NULL;
171         rxq->pkt_last_seg = NULL;
172 }
173
174 static inline void
175 reset_tx_queue(struct iavf_tx_queue *txq)
176 {
177         struct iavf_tx_entry *txe;
178         uint32_t i, size;
179         uint16_t prev;
180
181         if (!txq) {
182                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
183                 return;
184         }
185
186         txe = txq->sw_ring;
187         size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
188         for (i = 0; i < size; i++)
189                 ((volatile char *)txq->tx_ring)[i] = 0;
190
191         prev = (uint16_t)(txq->nb_tx_desc - 1);
192         for (i = 0; i < txq->nb_tx_desc; i++) {
193                 txq->tx_ring[i].cmd_type_offset_bsz =
194                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
195                 txe[i].mbuf =  NULL;
196                 txe[i].last_id = i;
197                 txe[prev].next_id = i;
198                 prev = i;
199         }
200
201         txq->tx_tail = 0;
202         txq->nb_used = 0;
203
204         txq->last_desc_cleaned = txq->nb_tx_desc - 1;
205         txq->nb_free = txq->nb_tx_desc - 1;
206
207         txq->next_dd = txq->rs_thresh - 1;
208         txq->next_rs = txq->rs_thresh - 1;
209 }
210
211 static int
212 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
213 {
214         volatile union iavf_rx_desc *rxd;
215         struct rte_mbuf *mbuf = NULL;
216         uint64_t dma_addr;
217         uint16_t i;
218
219         for (i = 0; i < rxq->nb_rx_desc; i++) {
220                 mbuf = rte_mbuf_raw_alloc(rxq->mp);
221                 if (unlikely(!mbuf)) {
222                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
223                         return -ENOMEM;
224                 }
225
226                 rte_mbuf_refcnt_set(mbuf, 1);
227                 mbuf->next = NULL;
228                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
229                 mbuf->nb_segs = 1;
230                 mbuf->port = rxq->port_id;
231
232                 dma_addr =
233                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
234
235                 rxd = &rxq->rx_ring[i];
236                 rxd->read.pkt_addr = dma_addr;
237                 rxd->read.hdr_addr = 0;
238 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
239                 rxd->read.rsvd1 = 0;
240                 rxd->read.rsvd2 = 0;
241 #endif
242
243                 rxq->sw_ring[i] = mbuf;
244         }
245
246         return 0;
247 }
248
249 static inline void
250 release_rxq_mbufs(struct iavf_rx_queue *rxq)
251 {
252         uint16_t i;
253
254         if (!rxq->sw_ring)
255                 return;
256
257         for (i = 0; i < rxq->nb_rx_desc; i++) {
258                 if (rxq->sw_ring[i]) {
259                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
260                         rxq->sw_ring[i] = NULL;
261                 }
262         }
263
264         /* for rx bulk */
265         if (rxq->rx_nb_avail == 0)
266                 return;
267         for (i = 0; i < rxq->rx_nb_avail; i++) {
268                 struct rte_mbuf *mbuf;
269
270                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
271                 rte_pktmbuf_free_seg(mbuf);
272         }
273         rxq->rx_nb_avail = 0;
274 }
275
276 static inline void
277 release_txq_mbufs(struct iavf_tx_queue *txq)
278 {
279         uint16_t i;
280
281         if (!txq || !txq->sw_ring) {
282                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
283                 return;
284         }
285
286         for (i = 0; i < txq->nb_tx_desc; i++) {
287                 if (txq->sw_ring[i].mbuf) {
288                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
289                         txq->sw_ring[i].mbuf = NULL;
290                 }
291         }
292 }
293
294 static const struct iavf_rxq_ops def_rxq_ops = {
295         .release_mbufs = release_rxq_mbufs,
296 };
297
298 static const struct iavf_txq_ops def_txq_ops = {
299         .release_mbufs = release_txq_mbufs,
300 };
301
302 int
303 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
304                        uint16_t nb_desc, unsigned int socket_id,
305                        const struct rte_eth_rxconf *rx_conf,
306                        struct rte_mempool *mp)
307 {
308         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
309         struct iavf_adapter *ad =
310                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
311         struct iavf_rx_queue *rxq;
312         const struct rte_memzone *mz;
313         uint32_t ring_size;
314         uint16_t len;
315         uint16_t rx_free_thresh;
316
317         PMD_INIT_FUNC_TRACE();
318
319         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
320             nb_desc > IAVF_MAX_RING_DESC ||
321             nb_desc < IAVF_MIN_RING_DESC) {
322                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
323                              "invalid", nb_desc);
324                 return -EINVAL;
325         }
326
327         /* Check free threshold */
328         rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
329                          IAVF_DEFAULT_RX_FREE_THRESH :
330                          rx_conf->rx_free_thresh;
331         if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
332                 return -EINVAL;
333
334         /* Free memory if needed */
335         if (dev->data->rx_queues[queue_idx]) {
336                 iavf_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
337                 dev->data->rx_queues[queue_idx] = NULL;
338         }
339
340         /* Allocate the rx queue data structure */
341         rxq = rte_zmalloc_socket("iavf rxq",
342                                  sizeof(struct iavf_rx_queue),
343                                  RTE_CACHE_LINE_SIZE,
344                                  socket_id);
345         if (!rxq) {
346                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
347                              "rx queue data structure");
348                 return -ENOMEM;
349         }
350
351         rxq->mp = mp;
352         rxq->nb_rx_desc = nb_desc;
353         rxq->rx_free_thresh = rx_free_thresh;
354         rxq->queue_id = queue_idx;
355         rxq->port_id = dev->data->port_id;
356         rxq->crc_len = 0; /* crc stripping by default */
357         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
358         rxq->rx_hdr_len = 0;
359
360         len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
361         rxq->rx_buf_len = RTE_ALIGN(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
362
363         /* Allocate the software ring. */
364         len = nb_desc + IAVF_RX_MAX_BURST;
365         rxq->sw_ring =
366                 rte_zmalloc_socket("iavf rx sw ring",
367                                    sizeof(struct rte_mbuf *) * len,
368                                    RTE_CACHE_LINE_SIZE,
369                                    socket_id);
370         if (!rxq->sw_ring) {
371                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
372                 rte_free(rxq);
373                 return -ENOMEM;
374         }
375
376         /* Allocate the maximun number of RX ring hardware descriptor with
377          * a liitle more to support bulk allocate.
378          */
379         len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
380         ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
381                               IAVF_DMA_MEM_ALIGN);
382         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
383                                       ring_size, IAVF_RING_BASE_ALIGN,
384                                       socket_id);
385         if (!mz) {
386                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
387                 rte_free(rxq->sw_ring);
388                 rte_free(rxq);
389                 return -ENOMEM;
390         }
391         /* Zero all the descriptors in the ring. */
392         memset(mz->addr, 0, ring_size);
393         rxq->rx_ring_phys_addr = mz->iova;
394         rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
395
396         rxq->mz = mz;
397         reset_rx_queue(rxq);
398         rxq->q_set = TRUE;
399         dev->data->rx_queues[queue_idx] = rxq;
400         rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
401         rxq->ops = &def_rxq_ops;
402
403         if (check_rx_bulk_allow(rxq) == TRUE) {
404                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
405                              "satisfied. Rx Burst Bulk Alloc function will be "
406                              "used on port=%d, queue=%d.",
407                              rxq->port_id, rxq->queue_id);
408         } else {
409                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
410                              "not satisfied, Scattered Rx is requested "
411                              "on port=%d, queue=%d.",
412                              rxq->port_id, rxq->queue_id);
413                 ad->rx_bulk_alloc_allowed = false;
414         }
415
416 #ifdef RTE_LIBRTE_IAVF_INC_VECTOR
417         if (check_rx_vec_allow(rxq) == FALSE)
418                 ad->rx_vec_allowed = false;
419 #endif
420         return 0;
421 }
422
423 int
424 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
425                        uint16_t queue_idx,
426                        uint16_t nb_desc,
427                        unsigned int socket_id,
428                        const struct rte_eth_txconf *tx_conf)
429 {
430         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
431         struct iavf_tx_queue *txq;
432         const struct rte_memzone *mz;
433         uint32_t ring_size;
434         uint16_t tx_rs_thresh, tx_free_thresh;
435         uint64_t offloads;
436
437         PMD_INIT_FUNC_TRACE();
438
439         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
440
441         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
442             nb_desc > IAVF_MAX_RING_DESC ||
443             nb_desc < IAVF_MIN_RING_DESC) {
444                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
445                             "invalid", nb_desc);
446                 return -EINVAL;
447         }
448
449         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
450                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
451         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
452                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
453         check_tx_thresh(nb_desc, tx_rs_thresh, tx_rs_thresh);
454
455         /* Free memory if needed. */
456         if (dev->data->tx_queues[queue_idx]) {
457                 iavf_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
458                 dev->data->tx_queues[queue_idx] = NULL;
459         }
460
461         /* Allocate the TX queue data structure. */
462         txq = rte_zmalloc_socket("iavf txq",
463                                  sizeof(struct iavf_tx_queue),
464                                  RTE_CACHE_LINE_SIZE,
465                                  socket_id);
466         if (!txq) {
467                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
468                              "tx queue structure");
469                 return -ENOMEM;
470         }
471
472         txq->nb_tx_desc = nb_desc;
473         txq->rs_thresh = tx_rs_thresh;
474         txq->free_thresh = tx_free_thresh;
475         txq->queue_id = queue_idx;
476         txq->port_id = dev->data->port_id;
477         txq->offloads = offloads;
478         txq->tx_deferred_start = tx_conf->tx_deferred_start;
479
480         /* Allocate software ring */
481         txq->sw_ring =
482                 rte_zmalloc_socket("iavf tx sw ring",
483                                    sizeof(struct iavf_tx_entry) * nb_desc,
484                                    RTE_CACHE_LINE_SIZE,
485                                    socket_id);
486         if (!txq->sw_ring) {
487                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
488                 rte_free(txq);
489                 return -ENOMEM;
490         }
491
492         /* Allocate TX hardware ring descriptors. */
493         ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
494         ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
495         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
496                                       ring_size, IAVF_RING_BASE_ALIGN,
497                                       socket_id);
498         if (!mz) {
499                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
500                 rte_free(txq->sw_ring);
501                 rte_free(txq);
502                 return -ENOMEM;
503         }
504         txq->tx_ring_phys_addr = mz->iova;
505         txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
506
507         txq->mz = mz;
508         reset_tx_queue(txq);
509         txq->q_set = TRUE;
510         dev->data->tx_queues[queue_idx] = txq;
511         txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
512         txq->ops = &def_txq_ops;
513
514 #ifdef RTE_LIBRTE_IAVF_INC_VECTOR
515         if (check_tx_vec_allow(txq) == FALSE) {
516                 struct iavf_adapter *ad =
517                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
518                 ad->tx_vec_allowed = false;
519         }
520 #endif
521
522         return 0;
523 }
524
525 int
526 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
527 {
528         struct iavf_adapter *adapter =
529                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
530         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
531         struct iavf_rx_queue *rxq;
532         int err = 0;
533
534         PMD_DRV_FUNC_TRACE();
535
536         if (rx_queue_id >= dev->data->nb_rx_queues)
537                 return -EINVAL;
538
539         rxq = dev->data->rx_queues[rx_queue_id];
540
541         err = alloc_rxq_mbufs(rxq);
542         if (err) {
543                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
544                 return err;
545         }
546
547         rte_wmb();
548
549         /* Init the RX tail register. */
550         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
551         IAVF_WRITE_FLUSH(hw);
552
553         /* Ready to switch the queue on */
554         err = iavf_switch_queue(adapter, rx_queue_id, TRUE, TRUE);
555         if (err)
556                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
557                             rx_queue_id);
558         else
559                 dev->data->rx_queue_state[rx_queue_id] =
560                         RTE_ETH_QUEUE_STATE_STARTED;
561
562         return err;
563 }
564
565 int
566 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
567 {
568         struct iavf_adapter *adapter =
569                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
570         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
571         struct iavf_tx_queue *txq;
572         int err = 0;
573
574         PMD_DRV_FUNC_TRACE();
575
576         if (tx_queue_id >= dev->data->nb_tx_queues)
577                 return -EINVAL;
578
579         txq = dev->data->tx_queues[tx_queue_id];
580
581         /* Init the RX tail register. */
582         IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
583         IAVF_WRITE_FLUSH(hw);
584
585         /* Ready to switch the queue on */
586         err = iavf_switch_queue(adapter, tx_queue_id, FALSE, TRUE);
587
588         if (err)
589                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
590                             tx_queue_id);
591         else
592                 dev->data->tx_queue_state[tx_queue_id] =
593                         RTE_ETH_QUEUE_STATE_STARTED;
594
595         return err;
596 }
597
598 int
599 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
600 {
601         struct iavf_adapter *adapter =
602                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
603         struct iavf_rx_queue *rxq;
604         int err;
605
606         PMD_DRV_FUNC_TRACE();
607
608         if (rx_queue_id >= dev->data->nb_rx_queues)
609                 return -EINVAL;
610
611         err = iavf_switch_queue(adapter, rx_queue_id, TRUE, FALSE);
612         if (err) {
613                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
614                             rx_queue_id);
615                 return err;
616         }
617
618         rxq = dev->data->rx_queues[rx_queue_id];
619         rxq->ops->release_mbufs(rxq);
620         reset_rx_queue(rxq);
621         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
622
623         return 0;
624 }
625
626 int
627 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
628 {
629         struct iavf_adapter *adapter =
630                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
631         struct iavf_tx_queue *txq;
632         int err;
633
634         PMD_DRV_FUNC_TRACE();
635
636         if (tx_queue_id >= dev->data->nb_tx_queues)
637                 return -EINVAL;
638
639         err = iavf_switch_queue(adapter, tx_queue_id, FALSE, FALSE);
640         if (err) {
641                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
642                             tx_queue_id);
643                 return err;
644         }
645
646         txq = dev->data->tx_queues[tx_queue_id];
647         txq->ops->release_mbufs(txq);
648         reset_tx_queue(txq);
649         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
650
651         return 0;
652 }
653
654 void
655 iavf_dev_rx_queue_release(void *rxq)
656 {
657         struct iavf_rx_queue *q = (struct iavf_rx_queue *)rxq;
658
659         if (!q)
660                 return;
661
662         q->ops->release_mbufs(q);
663         rte_free(q->sw_ring);
664         rte_memzone_free(q->mz);
665         rte_free(q);
666 }
667
668 void
669 iavf_dev_tx_queue_release(void *txq)
670 {
671         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
672
673         if (!q)
674                 return;
675
676         q->ops->release_mbufs(q);
677         rte_free(q->sw_ring);
678         rte_memzone_free(q->mz);
679         rte_free(q);
680 }
681
682 void
683 iavf_stop_queues(struct rte_eth_dev *dev)
684 {
685         struct iavf_adapter *adapter =
686                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
687         struct iavf_rx_queue *rxq;
688         struct iavf_tx_queue *txq;
689         int ret, i;
690
691         /* Stop All queues */
692         ret = iavf_disable_queues(adapter);
693         if (ret)
694                 PMD_DRV_LOG(WARNING, "Fail to stop queues");
695
696         for (i = 0; i < dev->data->nb_tx_queues; i++) {
697                 txq = dev->data->tx_queues[i];
698                 if (!txq)
699                         continue;
700                 txq->ops->release_mbufs(txq);
701                 reset_tx_queue(txq);
702                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
703         }
704         for (i = 0; i < dev->data->nb_rx_queues; i++) {
705                 rxq = dev->data->rx_queues[i];
706                 if (!rxq)
707                         continue;
708                 rxq->ops->release_mbufs(rxq);
709                 reset_rx_queue(rxq);
710                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
711         }
712 }
713
714 static inline void
715 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
716 {
717         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
718                 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
719                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
720                 mb->vlan_tci =
721                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
722         } else {
723                 mb->vlan_tci = 0;
724         }
725 }
726
727 /* Translate the rx descriptor status and error fields to pkt flags */
728 static inline uint64_t
729 iavf_rxd_to_pkt_flags(uint64_t qword)
730 {
731         uint64_t flags;
732         uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
733
734 #define IAVF_RX_ERR_BITS 0x3f
735
736         /* Check if RSS_HASH */
737         flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
738                                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
739                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
740
741         if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
742                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
743                 return flags;
744         }
745
746         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
747                 flags |= PKT_RX_IP_CKSUM_BAD;
748         else
749                 flags |= PKT_RX_IP_CKSUM_GOOD;
750
751         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
752                 flags |= PKT_RX_L4_CKSUM_BAD;
753         else
754                 flags |= PKT_RX_L4_CKSUM_GOOD;
755
756         /* TODO: Oversize error bit is not processed here */
757
758         return flags;
759 }
760
761 /* implement recv_pkts */
762 uint16_t
763 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
764 {
765         volatile union iavf_rx_desc *rx_ring;
766         volatile union iavf_rx_desc *rxdp;
767         struct iavf_rx_queue *rxq;
768         union iavf_rx_desc rxd;
769         struct rte_mbuf *rxe;
770         struct rte_eth_dev *dev;
771         struct rte_mbuf *rxm;
772         struct rte_mbuf *nmb;
773         uint16_t nb_rx;
774         uint32_t rx_status;
775         uint64_t qword1;
776         uint16_t rx_packet_len;
777         uint16_t rx_id, nb_hold;
778         uint64_t dma_addr;
779         uint64_t pkt_flags;
780         static const uint32_t ptype_tbl[UINT8_MAX + 1] __rte_cache_aligned = {
781                 /* [0] reserved */
782                 [1] = RTE_PTYPE_L2_ETHER,
783                 /* [2] - [21] reserved */
784                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
785                         RTE_PTYPE_L4_FRAG,
786                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
787                         RTE_PTYPE_L4_NONFRAG,
788                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
789                         RTE_PTYPE_L4_UDP,
790                 /* [25] reserved */
791                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
792                         RTE_PTYPE_L4_TCP,
793                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
794                         RTE_PTYPE_L4_SCTP,
795                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
796                         RTE_PTYPE_L4_ICMP,
797                 /* All others reserved */
798         };
799
800         nb_rx = 0;
801         nb_hold = 0;
802         rxq = rx_queue;
803         rx_id = rxq->rx_tail;
804         rx_ring = rxq->rx_ring;
805
806         while (nb_rx < nb_pkts) {
807                 rxdp = &rx_ring[rx_id];
808                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
809                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
810                             IAVF_RXD_QW1_STATUS_SHIFT;
811
812                 /* Check the DD bit first */
813                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
814                         break;
815                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
816
817                 nmb = rte_mbuf_raw_alloc(rxq->mp);
818                 if (unlikely(!nmb)) {
819                         dev = &rte_eth_devices[rxq->port_id];
820                         dev->data->rx_mbuf_alloc_failed++;
821                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
822                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
823                         break;
824                 }
825
826                 rxd = *rxdp;
827                 nb_hold++;
828                 rxe = rxq->sw_ring[rx_id];
829                 rx_id++;
830                 if (unlikely(rx_id == rxq->nb_rx_desc))
831                         rx_id = 0;
832
833                 /* Prefetch next mbuf */
834                 rte_prefetch0(rxq->sw_ring[rx_id]);
835
836                 /* When next RX descriptor is on a cache line boundary,
837                  * prefetch the next 4 RX descriptors and next 8 pointers
838                  * to mbufs.
839                  */
840                 if ((rx_id & 0x3) == 0) {
841                         rte_prefetch0(&rx_ring[rx_id]);
842                         rte_prefetch0(rxq->sw_ring[rx_id]);
843                 }
844                 rxm = rxe;
845                 rxe = nmb;
846                 dma_addr =
847                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
848                 rxdp->read.hdr_addr = 0;
849                 rxdp->read.pkt_addr = dma_addr;
850
851                 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
852                                 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
853
854                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
855                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
856                 rxm->nb_segs = 1;
857                 rxm->next = NULL;
858                 rxm->pkt_len = rx_packet_len;
859                 rxm->data_len = rx_packet_len;
860                 rxm->port = rxq->port_id;
861                 rxm->ol_flags = 0;
862                 iavf_rxd_to_vlan_tci(rxm, &rxd);
863                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
864                 rxm->packet_type =
865                         ptype_tbl[(uint8_t)((qword1 &
866                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
867
868                 if (pkt_flags & PKT_RX_RSS_HASH)
869                         rxm->hash.rss =
870                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
871
872                 rxm->ol_flags |= pkt_flags;
873
874                 rx_pkts[nb_rx++] = rxm;
875         }
876         rxq->rx_tail = rx_id;
877
878         /* If the number of free RX descriptors is greater than the RX free
879          * threshold of the queue, advance the receive tail register of queue.
880          * Update that register with the value of the last processed RX
881          * descriptor minus 1.
882          */
883         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
884         if (nb_hold > rxq->rx_free_thresh) {
885                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
886                            "nb_hold=%u nb_rx=%u",
887                            rxq->port_id, rxq->queue_id,
888                            rx_id, nb_hold, nb_rx);
889                 rx_id = (uint16_t)((rx_id == 0) ?
890                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
891                 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
892                 nb_hold = 0;
893         }
894         rxq->nb_rx_hold = nb_hold;
895
896         return nb_rx;
897 }
898
899 /* implement recv_scattered_pkts  */
900 uint16_t
901 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
902                         uint16_t nb_pkts)
903 {
904         struct iavf_rx_queue *rxq = rx_queue;
905         union iavf_rx_desc rxd;
906         struct rte_mbuf *rxe;
907         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
908         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
909         struct rte_mbuf *nmb, *rxm;
910         uint16_t rx_id = rxq->rx_tail;
911         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
912         struct rte_eth_dev *dev;
913         uint32_t rx_status;
914         uint64_t qword1;
915         uint64_t dma_addr;
916         uint64_t pkt_flags;
917
918         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
919         volatile union iavf_rx_desc *rxdp;
920         static const uint32_t ptype_tbl[UINT8_MAX + 1] __rte_cache_aligned = {
921                 /* [0] reserved */
922                 [1] = RTE_PTYPE_L2_ETHER,
923                 /* [2] - [21] reserved */
924                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
925                         RTE_PTYPE_L4_FRAG,
926                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
927                         RTE_PTYPE_L4_NONFRAG,
928                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
929                         RTE_PTYPE_L4_UDP,
930                 /* [25] reserved */
931                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
932                         RTE_PTYPE_L4_TCP,
933                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
934                         RTE_PTYPE_L4_SCTP,
935                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
936                         RTE_PTYPE_L4_ICMP,
937                 /* All others reserved */
938         };
939
940         while (nb_rx < nb_pkts) {
941                 rxdp = &rx_ring[rx_id];
942                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
943                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
944                             IAVF_RXD_QW1_STATUS_SHIFT;
945
946                 /* Check the DD bit */
947                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
948                         break;
949                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
950
951                 nmb = rte_mbuf_raw_alloc(rxq->mp);
952                 if (unlikely(!nmb)) {
953                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
954                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
955                         dev = &rte_eth_devices[rxq->port_id];
956                         dev->data->rx_mbuf_alloc_failed++;
957                         break;
958                 }
959
960                 rxd = *rxdp;
961                 nb_hold++;
962                 rxe = rxq->sw_ring[rx_id];
963                 rx_id++;
964                 if (rx_id == rxq->nb_rx_desc)
965                         rx_id = 0;
966
967                 /* Prefetch next mbuf */
968                 rte_prefetch0(rxq->sw_ring[rx_id]);
969
970                 /* When next RX descriptor is on a cache line boundary,
971                  * prefetch the next 4 RX descriptors and next 8 pointers
972                  * to mbufs.
973                  */
974                 if ((rx_id & 0x3) == 0) {
975                         rte_prefetch0(&rx_ring[rx_id]);
976                         rte_prefetch0(rxq->sw_ring[rx_id]);
977                 }
978
979                 rxm = rxe;
980                 rxe = nmb;
981                 dma_addr =
982                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
983
984                 /* Set data buffer address and data length of the mbuf */
985                 rxdp->read.hdr_addr = 0;
986                 rxdp->read.pkt_addr = dma_addr;
987                 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
988                                  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
989                 rxm->data_len = rx_packet_len;
990                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
991
992                 /* If this is the first buffer of the received packet, set the
993                  * pointer to the first mbuf of the packet and initialize its
994                  * context. Otherwise, update the total length and the number
995                  * of segments of the current scattered packet, and update the
996                  * pointer to the last mbuf of the current packet.
997                  */
998                 if (!first_seg) {
999                         first_seg = rxm;
1000                         first_seg->nb_segs = 1;
1001                         first_seg->pkt_len = rx_packet_len;
1002                 } else {
1003                         first_seg->pkt_len =
1004                                 (uint16_t)(first_seg->pkt_len +
1005                                                 rx_packet_len);
1006                         first_seg->nb_segs++;
1007                         last_seg->next = rxm;
1008                 }
1009
1010                 /* If this is not the last buffer of the received packet,
1011                  * update the pointer to the last mbuf of the current scattered
1012                  * packet and continue to parse the RX ring.
1013                  */
1014                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1015                         last_seg = rxm;
1016                         continue;
1017                 }
1018
1019                 /* This is the last buffer of the received packet. If the CRC
1020                  * is not stripped by the hardware:
1021                  *  - Subtract the CRC length from the total packet length.
1022                  *  - If the last buffer only contains the whole CRC or a part
1023                  *  of it, free the mbuf associated to the last buffer. If part
1024                  *  of the CRC is also contained in the previous mbuf, subtract
1025                  *  the length of that CRC part from the data length of the
1026                  *  previous mbuf.
1027                  */
1028                 rxm->next = NULL;
1029                 if (unlikely(rxq->crc_len > 0)) {
1030                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1031                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1032                                 rte_pktmbuf_free_seg(rxm);
1033                                 first_seg->nb_segs--;
1034                                 last_seg->data_len =
1035                                         (uint16_t)(last_seg->data_len -
1036                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1037                                 last_seg->next = NULL;
1038                         } else
1039                                 rxm->data_len = (uint16_t)(rx_packet_len -
1040                                                         RTE_ETHER_CRC_LEN);
1041                 }
1042
1043                 first_seg->port = rxq->port_id;
1044                 first_seg->ol_flags = 0;
1045                 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1046                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1047                 first_seg->packet_type =
1048                         ptype_tbl[(uint8_t)((qword1 &
1049                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1050
1051                 if (pkt_flags & PKT_RX_RSS_HASH)
1052                         first_seg->hash.rss =
1053                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1054
1055                 first_seg->ol_flags |= pkt_flags;
1056
1057                 /* Prefetch data of first segment, if configured to do so. */
1058                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1059                                           first_seg->data_off));
1060                 rx_pkts[nb_rx++] = first_seg;
1061                 first_seg = NULL;
1062         }
1063
1064         /* Record index of the next RX descriptor to probe. */
1065         rxq->rx_tail = rx_id;
1066         rxq->pkt_first_seg = first_seg;
1067         rxq->pkt_last_seg = last_seg;
1068
1069         /* If the number of free RX descriptors is greater than the RX free
1070          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1071          * register. Update the RDT with the value of the last processed RX
1072          * descriptor minus 1, to guarantee that the RDT register is never
1073          * equal to the RDH register, which creates a "full" ring situtation
1074          * from the hardware point of view.
1075          */
1076         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1077         if (nb_hold > rxq->rx_free_thresh) {
1078                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1079                            "nb_hold=%u nb_rx=%u",
1080                            rxq->port_id, rxq->queue_id,
1081                            rx_id, nb_hold, nb_rx);
1082                 rx_id = (uint16_t)(rx_id == 0 ?
1083                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1084                 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1085                 nb_hold = 0;
1086         }
1087         rxq->nb_rx_hold = nb_hold;
1088
1089         return nb_rx;
1090 }
1091
1092 #define IAVF_LOOK_AHEAD 8
1093 static inline int
1094 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1095 {
1096         volatile union iavf_rx_desc *rxdp;
1097         struct rte_mbuf **rxep;
1098         struct rte_mbuf *mb;
1099         uint16_t pkt_len;
1100         uint64_t qword1;
1101         uint32_t rx_status;
1102         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1103         int32_t i, j, nb_rx = 0;
1104         uint64_t pkt_flags;
1105         static const uint32_t ptype_tbl[UINT8_MAX + 1] __rte_cache_aligned = {
1106                 /* [0] reserved */
1107                 [1] = RTE_PTYPE_L2_ETHER,
1108                 /* [2] - [21] reserved */
1109                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1110                         RTE_PTYPE_L4_FRAG,
1111                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1112                         RTE_PTYPE_L4_NONFRAG,
1113                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1114                         RTE_PTYPE_L4_UDP,
1115                 /* [25] reserved */
1116                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1117                         RTE_PTYPE_L4_TCP,
1118                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1119                         RTE_PTYPE_L4_SCTP,
1120                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1121                         RTE_PTYPE_L4_ICMP,
1122                 /* All others reserved */
1123         };
1124
1125         rxdp = &rxq->rx_ring[rxq->rx_tail];
1126         rxep = &rxq->sw_ring[rxq->rx_tail];
1127
1128         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1129         rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1130                     IAVF_RXD_QW1_STATUS_SHIFT;
1131
1132         /* Make sure there is at least 1 packet to receive */
1133         if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1134                 return 0;
1135
1136         /* Scan LOOK_AHEAD descriptors at a time to determine which
1137          * descriptors reference packets that are ready to be received.
1138          */
1139         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1140              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1141                 /* Read desc statuses backwards to avoid race condition */
1142                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1143                         qword1 = rte_le_to_cpu_64(
1144                                 rxdp[j].wb.qword1.status_error_len);
1145                         s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1146                                IAVF_RXD_QW1_STATUS_SHIFT;
1147                 }
1148
1149                 rte_smp_rmb();
1150
1151                 /* Compute how many status bits were set */
1152                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1153                         nb_dd += s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1154
1155                 nb_rx += nb_dd;
1156
1157                 /* Translate descriptor info to mbuf parameters */
1158                 for (j = 0; j < nb_dd; j++) {
1159                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1160                                          rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1161
1162                         mb = rxep[j];
1163                         qword1 = rte_le_to_cpu_64
1164                                         (rxdp[j].wb.qword1.status_error_len);
1165                         pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1166                                   IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1167                         mb->data_len = pkt_len;
1168                         mb->pkt_len = pkt_len;
1169                         mb->ol_flags = 0;
1170                         iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1171                         pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1172                         mb->packet_type =
1173                                 ptype_tbl[(uint8_t)((qword1 &
1174                                 IAVF_RXD_QW1_PTYPE_MASK) >>
1175                                 IAVF_RXD_QW1_PTYPE_SHIFT)];
1176
1177                         if (pkt_flags & PKT_RX_RSS_HASH)
1178                                 mb->hash.rss = rte_le_to_cpu_32(
1179                                         rxdp[j].wb.qword0.hi_dword.rss);
1180
1181                         mb->ol_flags |= pkt_flags;
1182                 }
1183
1184                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1185                         rxq->rx_stage[i + j] = rxep[j];
1186
1187                 if (nb_dd != IAVF_LOOK_AHEAD)
1188                         break;
1189         }
1190
1191         /* Clear software ring entries */
1192         for (i = 0; i < nb_rx; i++)
1193                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1194
1195         return nb_rx;
1196 }
1197
1198 static inline uint16_t
1199 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
1200                        struct rte_mbuf **rx_pkts,
1201                        uint16_t nb_pkts)
1202 {
1203         uint16_t i;
1204         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1205
1206         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1207
1208         for (i = 0; i < nb_pkts; i++)
1209                 rx_pkts[i] = stage[i];
1210
1211         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1212         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1213
1214         return nb_pkts;
1215 }
1216
1217 static inline int
1218 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
1219 {
1220         volatile union iavf_rx_desc *rxdp;
1221         struct rte_mbuf **rxep;
1222         struct rte_mbuf *mb;
1223         uint16_t alloc_idx, i;
1224         uint64_t dma_addr;
1225         int diag;
1226
1227         /* Allocate buffers in bulk */
1228         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1229                                 (rxq->rx_free_thresh - 1));
1230         rxep = &rxq->sw_ring[alloc_idx];
1231         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1232                                     rxq->rx_free_thresh);
1233         if (unlikely(diag != 0)) {
1234                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1235                 return -ENOMEM;
1236         }
1237
1238         rxdp = &rxq->rx_ring[alloc_idx];
1239         for (i = 0; i < rxq->rx_free_thresh; i++) {
1240                 if (likely(i < (rxq->rx_free_thresh - 1)))
1241                         /* Prefetch next mbuf */
1242                         rte_prefetch0(rxep[i + 1]);
1243
1244                 mb = rxep[i];
1245                 rte_mbuf_refcnt_set(mb, 1);
1246                 mb->next = NULL;
1247                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1248                 mb->nb_segs = 1;
1249                 mb->port = rxq->port_id;
1250                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1251                 rxdp[i].read.hdr_addr = 0;
1252                 rxdp[i].read.pkt_addr = dma_addr;
1253         }
1254
1255         /* Update rx tail register */
1256         rte_wmb();
1257         IAVF_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
1258
1259         rxq->rx_free_trigger =
1260                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1261         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1262                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1263
1264         return 0;
1265 }
1266
1267 static inline uint16_t
1268 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1269 {
1270         struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
1271         uint16_t nb_rx = 0;
1272
1273         if (!nb_pkts)
1274                 return 0;
1275
1276         if (rxq->rx_nb_avail)
1277                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1278
1279         nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
1280         rxq->rx_next_avail = 0;
1281         rxq->rx_nb_avail = nb_rx;
1282         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1283
1284         if (rxq->rx_tail > rxq->rx_free_trigger) {
1285                 if (iavf_rx_alloc_bufs(rxq) != 0) {
1286                         uint16_t i, j;
1287
1288                         /* TODO: count rx_mbuf_alloc_failed here */
1289
1290                         rxq->rx_nb_avail = 0;
1291                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1292                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1293                                 rxq->sw_ring[j] = rxq->rx_stage[i];
1294
1295                         return 0;
1296                 }
1297         }
1298
1299         if (rxq->rx_tail >= rxq->nb_rx_desc)
1300                 rxq->rx_tail = 0;
1301
1302         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
1303                    rxq->port_id, rxq->queue_id,
1304                    rxq->rx_tail, nb_rx);
1305
1306         if (rxq->rx_nb_avail)
1307                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1308
1309         return 0;
1310 }
1311
1312 static uint16_t
1313 iavf_recv_pkts_bulk_alloc(void *rx_queue,
1314                          struct rte_mbuf **rx_pkts,
1315                          uint16_t nb_pkts)
1316 {
1317         uint16_t nb_rx = 0, n, count;
1318
1319         if (unlikely(nb_pkts == 0))
1320                 return 0;
1321
1322         if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
1323                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1324
1325         while (nb_pkts) {
1326                 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
1327                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1328                 nb_rx = (uint16_t)(nb_rx + count);
1329                 nb_pkts = (uint16_t)(nb_pkts - count);
1330                 if (count < n)
1331                         break;
1332         }
1333
1334         return nb_rx;
1335 }
1336
1337 static inline int
1338 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
1339 {
1340         struct iavf_tx_entry *sw_ring = txq->sw_ring;
1341         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
1342         uint16_t nb_tx_desc = txq->nb_tx_desc;
1343         uint16_t desc_to_clean_to;
1344         uint16_t nb_tx_to_clean;
1345
1346         volatile struct iavf_tx_desc *txd = txq->tx_ring;
1347
1348         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
1349         if (desc_to_clean_to >= nb_tx_desc)
1350                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
1351
1352         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
1353         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
1354                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
1355                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
1356                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
1357                                 "(port=%d queue=%d)", desc_to_clean_to,
1358                                 txq->port_id, txq->queue_id);
1359                 return -1;
1360         }
1361
1362         if (last_desc_cleaned > desc_to_clean_to)
1363                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
1364                                                         desc_to_clean_to);
1365         else
1366                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
1367                                         last_desc_cleaned);
1368
1369         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
1370
1371         txq->last_desc_cleaned = desc_to_clean_to;
1372         txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
1373
1374         return 0;
1375 }
1376
1377 /* Check if the context descriptor is needed for TX offloading */
1378 static inline uint16_t
1379 iavf_calc_context_desc(uint64_t flags)
1380 {
1381         static uint64_t mask = PKT_TX_TCP_SEG;
1382
1383         return (flags & mask) ? 1 : 0;
1384 }
1385
1386 static inline void
1387 iavf_txd_enable_checksum(uint64_t ol_flags,
1388                         uint32_t *td_cmd,
1389                         uint32_t *td_offset,
1390                         union iavf_tx_offload tx_offload)
1391 {
1392         /* Set MACLEN */
1393         *td_offset |= (tx_offload.l2_len >> 1) <<
1394                       IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1395
1396         /* Enable L3 checksum offloads */
1397         if (ol_flags & PKT_TX_IP_CKSUM) {
1398                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
1399                 *td_offset |= (tx_offload.l3_len >> 2) <<
1400                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1401         } else if (ol_flags & PKT_TX_IPV4) {
1402                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
1403                 *td_offset |= (tx_offload.l3_len >> 2) <<
1404                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1405         } else if (ol_flags & PKT_TX_IPV6) {
1406                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
1407                 *td_offset |= (tx_offload.l3_len >> 2) <<
1408                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1409         }
1410
1411         if (ol_flags & PKT_TX_TCP_SEG) {
1412                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1413                 *td_offset |= (tx_offload.l4_len >> 2) <<
1414                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1415                 return;
1416         }
1417
1418         /* Enable L4 checksum offloads */
1419         switch (ol_flags & PKT_TX_L4_MASK) {
1420         case PKT_TX_TCP_CKSUM:
1421                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1422                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
1423                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1424                 break;
1425         case PKT_TX_SCTP_CKSUM:
1426                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
1427                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
1428                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1429                 break;
1430         case PKT_TX_UDP_CKSUM:
1431                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
1432                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
1433                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1434                 break;
1435         default:
1436                 break;
1437         }
1438 }
1439
1440 /* set TSO context descriptor
1441  * support IP -> L4 and IP -> IP -> L4
1442  */
1443 static inline uint64_t
1444 iavf_set_tso_ctx(struct rte_mbuf *mbuf, union iavf_tx_offload tx_offload)
1445 {
1446         uint64_t ctx_desc = 0;
1447         uint32_t cd_cmd, hdr_len, cd_tso_len;
1448
1449         if (!tx_offload.l4_len) {
1450                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
1451                 return ctx_desc;
1452         }
1453
1454         hdr_len = tx_offload.l2_len +
1455                   tx_offload.l3_len +
1456                   tx_offload.l4_len;
1457
1458         cd_cmd = IAVF_TX_CTX_DESC_TSO;
1459         cd_tso_len = mbuf->pkt_len - hdr_len;
1460         ctx_desc |= ((uint64_t)cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1461                      ((uint64_t)cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1462                      ((uint64_t)mbuf->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1463
1464         return ctx_desc;
1465 }
1466
1467 /* Construct the tx flags */
1468 static inline uint64_t
1469 iavf_build_ctob(uint32_t td_cmd, uint32_t td_offset, unsigned int size,
1470                uint32_t td_tag)
1471 {
1472         return rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DATA |
1473                                 ((uint64_t)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
1474                                 ((uint64_t)td_offset <<
1475                                  IAVF_TXD_QW1_OFFSET_SHIFT) |
1476                                 ((uint64_t)size  <<
1477                                  IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
1478                                 ((uint64_t)td_tag  <<
1479                                  IAVF_TXD_QW1_L2TAG1_SHIFT));
1480 }
1481
1482 /* TX function */
1483 uint16_t
1484 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1485 {
1486         volatile struct iavf_tx_desc *txd;
1487         volatile struct iavf_tx_desc *txr;
1488         struct iavf_tx_queue *txq;
1489         struct iavf_tx_entry *sw_ring;
1490         struct iavf_tx_entry *txe, *txn;
1491         struct rte_mbuf *tx_pkt;
1492         struct rte_mbuf *m_seg;
1493         uint16_t tx_id;
1494         uint16_t nb_tx;
1495         uint32_t td_cmd;
1496         uint32_t td_offset;
1497         uint32_t td_tag;
1498         uint64_t ol_flags;
1499         uint16_t nb_used;
1500         uint16_t nb_ctx;
1501         uint16_t tx_last;
1502         uint16_t slen;
1503         uint64_t buf_dma_addr;
1504         union iavf_tx_offload tx_offload = {0};
1505
1506         txq = tx_queue;
1507         sw_ring = txq->sw_ring;
1508         txr = txq->tx_ring;
1509         tx_id = txq->tx_tail;
1510         txe = &sw_ring[tx_id];
1511
1512         /* Check if the descriptor ring needs to be cleaned. */
1513         if (txq->nb_free < txq->free_thresh)
1514                 iavf_xmit_cleanup(txq);
1515
1516         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1517                 td_cmd = 0;
1518                 td_tag = 0;
1519                 td_offset = 0;
1520
1521                 tx_pkt = *tx_pkts++;
1522                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1523
1524                 ol_flags = tx_pkt->ol_flags;
1525                 tx_offload.l2_len = tx_pkt->l2_len;
1526                 tx_offload.l3_len = tx_pkt->l3_len;
1527                 tx_offload.l4_len = tx_pkt->l4_len;
1528                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1529
1530                 /* Calculate the number of context descriptors needed. */
1531                 nb_ctx = iavf_calc_context_desc(ol_flags);
1532
1533                 /* The number of descriptors that must be allocated for
1534                  * a packet equals to the number of the segments of that
1535                  * packet plus 1 context descriptor if needed.
1536                  */
1537                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1538                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1539
1540                 /* Circular ring */
1541                 if (tx_last >= txq->nb_tx_desc)
1542                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1543
1544                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
1545                            " tx_first=%u tx_last=%u",
1546                            txq->port_id, txq->queue_id, tx_id, tx_last);
1547
1548                 if (nb_used > txq->nb_free) {
1549                         if (iavf_xmit_cleanup(txq)) {
1550                                 if (nb_tx == 0)
1551                                         return 0;
1552                                 goto end_of_tx;
1553                         }
1554                         if (unlikely(nb_used > txq->rs_thresh)) {
1555                                 while (nb_used > txq->nb_free) {
1556                                         if (iavf_xmit_cleanup(txq)) {
1557                                                 if (nb_tx == 0)
1558                                                         return 0;
1559                                                 goto end_of_tx;
1560                                         }
1561                                 }
1562                         }
1563                 }
1564
1565                 /* Descriptor based VLAN insertion */
1566                 if (ol_flags & PKT_TX_VLAN_PKT) {
1567                         td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
1568                         td_tag = tx_pkt->vlan_tci;
1569                 }
1570
1571                 /* According to datasheet, the bit2 is reserved and must be
1572                  * set to 1.
1573                  */
1574                 td_cmd |= 0x04;
1575
1576                 /* Enable checksum offloading */
1577                 if (ol_flags & IAVF_TX_CKSUM_OFFLOAD_MASK)
1578                         iavf_txd_enable_checksum(ol_flags, &td_cmd,
1579                                                 &td_offset, tx_offload);
1580
1581                 if (nb_ctx) {
1582                         /* Setup TX context descriptor if required */
1583                         uint64_t cd_type_cmd_tso_mss =
1584                                 IAVF_TX_DESC_DTYPE_CONTEXT;
1585                         volatile struct iavf_tx_context_desc *ctx_txd =
1586                                 (volatile struct iavf_tx_context_desc *)
1587                                                         &txr[tx_id];
1588
1589                         txn = &sw_ring[txe->next_id];
1590                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1591                         if (txe->mbuf) {
1592                                 rte_pktmbuf_free_seg(txe->mbuf);
1593                                 txe->mbuf = NULL;
1594                         }
1595
1596                         /* TSO enabled */
1597                         if (ol_flags & PKT_TX_TCP_SEG)
1598                                 cd_type_cmd_tso_mss |=
1599                                         iavf_set_tso_ctx(tx_pkt, tx_offload);
1600
1601                         ctx_txd->type_cmd_tso_mss =
1602                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1603
1604                         IAVF_DUMP_TX_DESC(txq, &txr[tx_id], tx_id);
1605                         txe->last_id = tx_last;
1606                         tx_id = txe->next_id;
1607                         txe = txn;
1608                 }
1609
1610                 m_seg = tx_pkt;
1611                 do {
1612                         txd = &txr[tx_id];
1613                         txn = &sw_ring[txe->next_id];
1614
1615                         if (txe->mbuf)
1616                                 rte_pktmbuf_free_seg(txe->mbuf);
1617                         txe->mbuf = m_seg;
1618
1619                         /* Setup TX Descriptor */
1620                         slen = m_seg->data_len;
1621                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
1622                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1623                         txd->cmd_type_offset_bsz = iavf_build_ctob(td_cmd,
1624                                                                   td_offset,
1625                                                                   slen,
1626                                                                   td_tag);
1627
1628                         IAVF_DUMP_TX_DESC(txq, txd, tx_id);
1629                         txe->last_id = tx_last;
1630                         tx_id = txe->next_id;
1631                         txe = txn;
1632                         m_seg = m_seg->next;
1633                 } while (m_seg);
1634
1635                 /* The last packet data descriptor needs End Of Packet (EOP) */
1636                 td_cmd |= IAVF_TX_DESC_CMD_EOP;
1637                 txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
1638                 txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
1639
1640                 if (txq->nb_used >= txq->rs_thresh) {
1641                         PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
1642                                    "%4u (port=%d queue=%d)",
1643                                    tx_last, txq->port_id, txq->queue_id);
1644
1645                         td_cmd |= IAVF_TX_DESC_CMD_RS;
1646
1647                         /* Update txq RS bit counters */
1648                         txq->nb_used = 0;
1649                 }
1650
1651                 txd->cmd_type_offset_bsz |=
1652                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1653                                          IAVF_TXD_QW1_CMD_SHIFT);
1654                 IAVF_DUMP_TX_DESC(txq, txd, tx_id);
1655         }
1656
1657 end_of_tx:
1658         rte_wmb();
1659
1660         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1661                    txq->port_id, txq->queue_id, tx_id, nb_tx);
1662
1663         IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
1664         txq->tx_tail = tx_id;
1665
1666         return nb_tx;
1667 }
1668
1669 static uint16_t
1670 iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1671                   uint16_t nb_pkts)
1672 {
1673         uint16_t nb_tx = 0;
1674         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1675
1676         while (nb_pkts) {
1677                 uint16_t ret, num;
1678
1679                 num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
1680                 ret = iavf_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
1681                 nb_tx += ret;
1682                 nb_pkts -= ret;
1683                 if (ret < num)
1684                         break;
1685         }
1686
1687         return nb_tx;
1688 }
1689
1690 /* TX prep functions */
1691 uint16_t
1692 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1693               uint16_t nb_pkts)
1694 {
1695         int i, ret;
1696         uint64_t ol_flags;
1697         struct rte_mbuf *m;
1698
1699         for (i = 0; i < nb_pkts; i++) {
1700                 m = tx_pkts[i];
1701                 ol_flags = m->ol_flags;
1702
1703                 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
1704                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
1705                         if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
1706                                 rte_errno = EINVAL;
1707                                 return i;
1708                         }
1709                 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
1710                            (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
1711                         /* MSS outside the range are considered malicious */
1712                         rte_errno = EINVAL;
1713                         return i;
1714                 }
1715
1716                 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
1717                         rte_errno = ENOTSUP;
1718                         return i;
1719                 }
1720
1721 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1722                 ret = rte_validate_tx_offload(m);
1723                 if (ret != 0) {
1724                         rte_errno = -ret;
1725                         return i;
1726                 }
1727 #endif
1728                 ret = rte_net_intel_cksum_prepare(m);
1729                 if (ret != 0) {
1730                         rte_errno = -ret;
1731                         return i;
1732                 }
1733         }
1734
1735         return i;
1736 }
1737
1738 /* choose rx function*/
1739 void
1740 iavf_set_rx_function(struct rte_eth_dev *dev)
1741 {
1742         struct iavf_adapter *adapter =
1743                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1744         struct iavf_rx_queue *rxq;
1745         int i;
1746
1747         if (adapter->rx_vec_allowed) {
1748                 if (dev->data->scattered_rx) {
1749                         PMD_DRV_LOG(DEBUG, "Using Vector Scattered Rx callback"
1750                                     " (port=%d).", dev->data->port_id);
1751                         dev->rx_pkt_burst = iavf_recv_scattered_pkts_vec;
1752                 } else {
1753                         PMD_DRV_LOG(DEBUG, "Using Vector Rx callback"
1754                                     " (port=%d).", dev->data->port_id);
1755                         dev->rx_pkt_burst = iavf_recv_pkts_vec;
1756                 }
1757                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1758                         rxq = dev->data->rx_queues[i];
1759                         if (!rxq)
1760                                 continue;
1761                         iavf_rxq_vec_setup(rxq);
1762                 }
1763         } else if (dev->data->scattered_rx) {
1764                 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
1765                             dev->data->port_id);
1766                 dev->rx_pkt_burst = iavf_recv_scattered_pkts;
1767         } else if (adapter->rx_bulk_alloc_allowed) {
1768                 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
1769                             dev->data->port_id);
1770                 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
1771         } else {
1772                 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
1773                             dev->data->port_id);
1774                 dev->rx_pkt_burst = iavf_recv_pkts;
1775         }
1776 }
1777
1778 /* choose tx function*/
1779 void
1780 iavf_set_tx_function(struct rte_eth_dev *dev)
1781 {
1782         struct iavf_adapter *adapter =
1783                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1784         struct iavf_tx_queue *txq;
1785         int i;
1786
1787         if (adapter->tx_vec_allowed) {
1788                 PMD_DRV_LOG(DEBUG, "Using Vector Tx callback (port=%d).",
1789                             dev->data->port_id);
1790                 dev->tx_pkt_burst = iavf_xmit_pkts_vec;
1791                 dev->tx_pkt_prepare = NULL;
1792                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
1793                         txq = dev->data->tx_queues[i];
1794                         if (!txq)
1795                                 continue;
1796                         iavf_txq_vec_setup(txq);
1797                 }
1798         } else {
1799                 PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
1800                             dev->data->port_id);
1801                 dev->tx_pkt_burst = iavf_xmit_pkts;
1802                 dev->tx_pkt_prepare = iavf_prep_pkts;
1803         }
1804 }
1805
1806 void
1807 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1808                      struct rte_eth_rxq_info *qinfo)
1809 {
1810         struct iavf_rx_queue *rxq;
1811
1812         rxq = dev->data->rx_queues[queue_id];
1813
1814         qinfo->mp = rxq->mp;
1815         qinfo->scattered_rx = dev->data->scattered_rx;
1816         qinfo->nb_desc = rxq->nb_rx_desc;
1817
1818         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1819         qinfo->conf.rx_drop_en = TRUE;
1820         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
1821 }
1822
1823 void
1824 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1825                      struct rte_eth_txq_info *qinfo)
1826 {
1827         struct iavf_tx_queue *txq;
1828
1829         txq = dev->data->tx_queues[queue_id];
1830
1831         qinfo->nb_desc = txq->nb_tx_desc;
1832
1833         qinfo->conf.tx_free_thresh = txq->free_thresh;
1834         qinfo->conf.tx_rs_thresh = txq->rs_thresh;
1835         qinfo->conf.offloads = txq->offloads;
1836         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1837 }
1838
1839 /* Get the number of used descriptors of a rx queue */
1840 uint32_t
1841 iavf_dev_rxq_count(struct rte_eth_dev *dev, uint16_t queue_id)
1842 {
1843 #define IAVF_RXQ_SCAN_INTERVAL 4
1844         volatile union iavf_rx_desc *rxdp;
1845         struct iavf_rx_queue *rxq;
1846         uint16_t desc = 0;
1847
1848         rxq = dev->data->rx_queues[queue_id];
1849         rxdp = &rxq->rx_ring[rxq->rx_tail];
1850         while ((desc < rxq->nb_rx_desc) &&
1851                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1852                  IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
1853                (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
1854                 /* Check the DD bit of a rx descriptor of each 4 in a group,
1855                  * to avoid checking too frequently and downgrading performance
1856                  * too much.
1857                  */
1858                 desc += IAVF_RXQ_SCAN_INTERVAL;
1859                 rxdp += IAVF_RXQ_SCAN_INTERVAL;
1860                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1861                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1862                                         desc - rxq->nb_rx_desc]);
1863         }
1864
1865         return desc;
1866 }
1867
1868 int
1869 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
1870 {
1871         struct iavf_rx_queue *rxq = rx_queue;
1872         volatile uint64_t *status;
1873         uint64_t mask;
1874         uint32_t desc;
1875
1876         if (unlikely(offset >= rxq->nb_rx_desc))
1877                 return -EINVAL;
1878
1879         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1880                 return RTE_ETH_RX_DESC_UNAVAIL;
1881
1882         desc = rxq->rx_tail + offset;
1883         if (desc >= rxq->nb_rx_desc)
1884                 desc -= rxq->nb_rx_desc;
1885
1886         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
1887         mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
1888                 << IAVF_RXD_QW1_STATUS_SHIFT);
1889         if (*status & mask)
1890                 return RTE_ETH_RX_DESC_DONE;
1891
1892         return RTE_ETH_RX_DESC_AVAIL;
1893 }
1894
1895 int
1896 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
1897 {
1898         struct iavf_tx_queue *txq = tx_queue;
1899         volatile uint64_t *status;
1900         uint64_t mask, expect;
1901         uint32_t desc;
1902
1903         if (unlikely(offset >= txq->nb_tx_desc))
1904                 return -EINVAL;
1905
1906         desc = txq->tx_tail + offset;
1907         /* go to next desc that has the RS bit */
1908         desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
1909                 txq->rs_thresh;
1910         if (desc >= txq->nb_tx_desc) {
1911                 desc -= txq->nb_tx_desc;
1912                 if (desc >= txq->nb_tx_desc)
1913                         desc -= txq->nb_tx_desc;
1914         }
1915
1916         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
1917         mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
1918         expect = rte_cpu_to_le_64(
1919                  IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
1920         if ((*status & mask) == expect)
1921                 return RTE_ETH_TX_DESC_DONE;
1922
1923         return RTE_ETH_TX_DESC_FULL;
1924 }
1925
1926 __rte_weak uint16_t
1927 iavf_recv_pkts_vec(__rte_unused void *rx_queue,
1928                   __rte_unused struct rte_mbuf **rx_pkts,
1929                   __rte_unused uint16_t nb_pkts)
1930 {
1931         return 0;
1932 }
1933
1934 __rte_weak uint16_t
1935 iavf_recv_scattered_pkts_vec(__rte_unused void *rx_queue,
1936                             __rte_unused struct rte_mbuf **rx_pkts,
1937                             __rte_unused uint16_t nb_pkts)
1938 {
1939         return 0;
1940 }
1941
1942 __rte_weak uint16_t
1943 iavf_xmit_fixed_burst_vec(__rte_unused void *tx_queue,
1944                          __rte_unused struct rte_mbuf **tx_pkts,
1945                          __rte_unused uint16_t nb_pkts)
1946 {
1947         return 0;
1948 }
1949
1950 __rte_weak int
1951 iavf_rxq_vec_setup(__rte_unused struct iavf_rx_queue *rxq)
1952 {
1953         return -1;
1954 }
1955
1956 __rte_weak int
1957 iavf_txq_vec_setup(__rte_unused struct iavf_tx_queue *txq)
1958 {
1959         return -1;
1960 }