net/iavf: fix releasing mbufs
[dpdk.git] / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26 #include <rte_vect.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "rte_pmd_iavf.h"
31
32 /* Offset of mbuf dynamic field for protocol extraction's metadata */
33 int rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
34
35 /* Mask of mbuf dynamic flags for protocol extraction's type */
36 uint64_t rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
37 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
38 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
39 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
40 uint64_t rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
41 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
42
43 uint8_t
44 iavf_proto_xtr_type_to_rxdid(uint8_t flex_type)
45 {
46         static uint8_t rxdid_map[] = {
47                 [IAVF_PROTO_XTR_NONE]      = IAVF_RXDID_COMMS_OVS_1,
48                 [IAVF_PROTO_XTR_VLAN]      = IAVF_RXDID_COMMS_AUX_VLAN,
49                 [IAVF_PROTO_XTR_IPV4]      = IAVF_RXDID_COMMS_AUX_IPV4,
50                 [IAVF_PROTO_XTR_IPV6]      = IAVF_RXDID_COMMS_AUX_IPV6,
51                 [IAVF_PROTO_XTR_IPV6_FLOW] = IAVF_RXDID_COMMS_AUX_IPV6_FLOW,
52                 [IAVF_PROTO_XTR_TCP]       = IAVF_RXDID_COMMS_AUX_TCP,
53                 [IAVF_PROTO_XTR_IP_OFFSET] = IAVF_RXDID_COMMS_AUX_IP_OFFSET,
54         };
55
56         return flex_type < RTE_DIM(rxdid_map) ?
57                                 rxdid_map[flex_type] : IAVF_RXDID_COMMS_OVS_1;
58 }
59
60 static inline int
61 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
62 {
63         /* The following constraints must be satisfied:
64          *   thresh < rxq->nb_rx_desc
65          */
66         if (thresh >= nb_desc) {
67                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
68                              thresh, nb_desc);
69                 return -EINVAL;
70         }
71         return 0;
72 }
73
74 static inline int
75 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
76                 uint16_t tx_free_thresh)
77 {
78         /* TX descriptors will have their RS bit set after tx_rs_thresh
79          * descriptors have been used. The TX descriptor ring will be cleaned
80          * after tx_free_thresh descriptors are used or if the number of
81          * descriptors required to transmit a packet is greater than the
82          * number of free TX descriptors.
83          *
84          * The following constraints must be satisfied:
85          *  - tx_rs_thresh must be less than the size of the ring minus 2.
86          *  - tx_free_thresh must be less than the size of the ring minus 3.
87          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
88          *  - tx_rs_thresh must be a divisor of the ring size.
89          *
90          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
91          * race condition, hence the maximum threshold constraints. When set
92          * to zero use default values.
93          */
94         if (tx_rs_thresh >= (nb_desc - 2)) {
95                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
96                              "number of TX descriptors (%u) minus 2",
97                              tx_rs_thresh, nb_desc);
98                 return -EINVAL;
99         }
100         if (tx_free_thresh >= (nb_desc - 3)) {
101                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
102                              "number of TX descriptors (%u) minus 3.",
103                              tx_free_thresh, nb_desc);
104                 return -EINVAL;
105         }
106         if (tx_rs_thresh > tx_free_thresh) {
107                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
108                              "equal to tx_free_thresh (%u).",
109                              tx_rs_thresh, tx_free_thresh);
110                 return -EINVAL;
111         }
112         if ((nb_desc % tx_rs_thresh) != 0) {
113                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
114                              "number of TX descriptors (%u).",
115                              tx_rs_thresh, nb_desc);
116                 return -EINVAL;
117         }
118
119         return 0;
120 }
121
122 static inline bool
123 check_rx_vec_allow(struct iavf_rx_queue *rxq)
124 {
125         if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
126             rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
127                 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
128                 return true;
129         }
130
131         PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
132         return false;
133 }
134
135 static inline bool
136 check_tx_vec_allow(struct iavf_tx_queue *txq)
137 {
138         if (!(txq->offloads & IAVF_NO_VECTOR_FLAGS) &&
139             txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
140             txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
141                 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
142                 return true;
143         }
144         PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
145         return false;
146 }
147
148 static inline bool
149 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
150 {
151         int ret = true;
152
153         if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
154                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
155                              "rxq->rx_free_thresh=%d, "
156                              "IAVF_RX_MAX_BURST=%d",
157                              rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
158                 ret = false;
159         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
160                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
161                              "rxq->nb_rx_desc=%d, "
162                              "rxq->rx_free_thresh=%d",
163                              rxq->nb_rx_desc, rxq->rx_free_thresh);
164                 ret = false;
165         }
166         return ret;
167 }
168
169 static inline void
170 reset_rx_queue(struct iavf_rx_queue *rxq)
171 {
172         uint16_t len;
173         uint32_t i;
174
175         if (!rxq)
176                 return;
177
178         len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
179
180         for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
181                 ((volatile char *)rxq->rx_ring)[i] = 0;
182
183         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
184
185         for (i = 0; i < IAVF_RX_MAX_BURST; i++)
186                 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
187
188         /* for rx bulk */
189         rxq->rx_nb_avail = 0;
190         rxq->rx_next_avail = 0;
191         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
192
193         rxq->rx_tail = 0;
194         rxq->nb_rx_hold = 0;
195         rxq->pkt_first_seg = NULL;
196         rxq->pkt_last_seg = NULL;
197         rxq->rxrearm_nb = 0;
198 }
199
200 static inline void
201 reset_tx_queue(struct iavf_tx_queue *txq)
202 {
203         struct iavf_tx_entry *txe;
204         uint32_t i, size;
205         uint16_t prev;
206
207         if (!txq) {
208                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
209                 return;
210         }
211
212         txe = txq->sw_ring;
213         size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
214         for (i = 0; i < size; i++)
215                 ((volatile char *)txq->tx_ring)[i] = 0;
216
217         prev = (uint16_t)(txq->nb_tx_desc - 1);
218         for (i = 0; i < txq->nb_tx_desc; i++) {
219                 txq->tx_ring[i].cmd_type_offset_bsz =
220                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
221                 txe[i].mbuf =  NULL;
222                 txe[i].last_id = i;
223                 txe[prev].next_id = i;
224                 prev = i;
225         }
226
227         txq->tx_tail = 0;
228         txq->nb_used = 0;
229
230         txq->last_desc_cleaned = txq->nb_tx_desc - 1;
231         txq->nb_free = txq->nb_tx_desc - 1;
232
233         txq->next_dd = txq->rs_thresh - 1;
234         txq->next_rs = txq->rs_thresh - 1;
235 }
236
237 static int
238 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
239 {
240         volatile union iavf_rx_desc *rxd;
241         struct rte_mbuf *mbuf = NULL;
242         uint64_t dma_addr;
243         uint16_t i;
244
245         for (i = 0; i < rxq->nb_rx_desc; i++) {
246                 mbuf = rte_mbuf_raw_alloc(rxq->mp);
247                 if (unlikely(!mbuf)) {
248                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
249                         return -ENOMEM;
250                 }
251
252                 rte_mbuf_refcnt_set(mbuf, 1);
253                 mbuf->next = NULL;
254                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
255                 mbuf->nb_segs = 1;
256                 mbuf->port = rxq->port_id;
257
258                 dma_addr =
259                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
260
261                 rxd = &rxq->rx_ring[i];
262                 rxd->read.pkt_addr = dma_addr;
263                 rxd->read.hdr_addr = 0;
264 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
265                 rxd->read.rsvd1 = 0;
266                 rxd->read.rsvd2 = 0;
267 #endif
268
269                 rxq->sw_ring[i] = mbuf;
270         }
271
272         return 0;
273 }
274
275 static inline void
276 release_rxq_mbufs(struct iavf_rx_queue *rxq)
277 {
278         uint16_t i;
279
280         if (!rxq->sw_ring)
281                 return;
282
283         for (i = 0; i < rxq->nb_rx_desc; i++) {
284                 if (rxq->sw_ring[i]) {
285                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
286                         rxq->sw_ring[i] = NULL;
287                 }
288         }
289
290         /* for rx bulk */
291         if (rxq->rx_nb_avail == 0)
292                 return;
293         for (i = 0; i < rxq->rx_nb_avail; i++) {
294                 struct rte_mbuf *mbuf;
295
296                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
297                 rte_pktmbuf_free_seg(mbuf);
298         }
299         rxq->rx_nb_avail = 0;
300 }
301
302 static inline void
303 release_txq_mbufs(struct iavf_tx_queue *txq)
304 {
305         uint16_t i;
306
307         if (!txq || !txq->sw_ring) {
308                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
309                 return;
310         }
311
312         for (i = 0; i < txq->nb_tx_desc; i++) {
313                 if (txq->sw_ring[i].mbuf) {
314                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
315                         txq->sw_ring[i].mbuf = NULL;
316                 }
317         }
318 }
319
320 static const struct iavf_rxq_ops def_rxq_ops = {
321         .release_mbufs = release_rxq_mbufs,
322 };
323
324 static const struct iavf_txq_ops def_txq_ops = {
325         .release_mbufs = release_txq_mbufs,
326 };
327
328 static inline void
329 iavf_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct iavf_rx_queue *rxq,
330                                     struct rte_mbuf *mb,
331                                     volatile union iavf_rx_flex_desc *rxdp)
332 {
333         volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
334                         (volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
335 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
336         uint16_t stat_err;
337 #endif
338
339         if (desc->flow_id != 0xFFFFFFFF) {
340                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
341                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
342         }
343
344 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
345         stat_err = rte_le_to_cpu_16(desc->status_error0);
346         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
347                 mb->ol_flags |= PKT_RX_RSS_HASH;
348                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
349         }
350 #endif
351 }
352
353 static inline void
354 iavf_rxd_to_pkt_fields_by_comms_aux_v1(struct iavf_rx_queue *rxq,
355                                        struct rte_mbuf *mb,
356                                        volatile union iavf_rx_flex_desc *rxdp)
357 {
358         volatile struct iavf_32b_rx_flex_desc_comms *desc =
359                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
360         uint16_t stat_err;
361
362         stat_err = rte_le_to_cpu_16(desc->status_error0);
363         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
364                 mb->ol_flags |= PKT_RX_RSS_HASH;
365                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
366         }
367
368 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
369         if (desc->flow_id != 0xFFFFFFFF) {
370                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
371                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
372         }
373
374         if (rxq->xtr_ol_flag) {
375                 uint32_t metadata = 0;
376
377                 stat_err = rte_le_to_cpu_16(desc->status_error1);
378
379                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
380                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
381
382                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
383                         metadata |=
384                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
385
386                 if (metadata) {
387                         mb->ol_flags |= rxq->xtr_ol_flag;
388
389                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
390                 }
391         }
392 #endif
393 }
394
395 static inline void
396 iavf_rxd_to_pkt_fields_by_comms_aux_v2(struct iavf_rx_queue *rxq,
397                                        struct rte_mbuf *mb,
398                                        volatile union iavf_rx_flex_desc *rxdp)
399 {
400         volatile struct iavf_32b_rx_flex_desc_comms *desc =
401                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
402         uint16_t stat_err;
403
404         stat_err = rte_le_to_cpu_16(desc->status_error0);
405         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
406                 mb->ol_flags |= PKT_RX_RSS_HASH;
407                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
408         }
409
410 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
411         if (desc->flow_id != 0xFFFFFFFF) {
412                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
413                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
414         }
415
416         if (rxq->xtr_ol_flag) {
417                 uint32_t metadata = 0;
418
419                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
420                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
421                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
422                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
423
424                 if (metadata) {
425                         mb->ol_flags |= rxq->xtr_ol_flag;
426
427                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
428                 }
429         }
430 #endif
431 }
432
433 static void
434 iavf_select_rxd_to_pkt_fields_handler(struct iavf_rx_queue *rxq, uint32_t rxdid)
435 {
436         switch (rxdid) {
437         case IAVF_RXDID_COMMS_AUX_VLAN:
438                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
439                 rxq->rxd_to_pkt_fields =
440                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
441                 break;
442         case IAVF_RXDID_COMMS_AUX_IPV4:
443                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
444                 rxq->rxd_to_pkt_fields =
445                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
446                 break;
447         case IAVF_RXDID_COMMS_AUX_IPV6:
448                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
449                 rxq->rxd_to_pkt_fields =
450                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
451                 break;
452         case IAVF_RXDID_COMMS_AUX_IPV6_FLOW:
453                 rxq->xtr_ol_flag =
454                         rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
455                 rxq->rxd_to_pkt_fields =
456                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
457                 break;
458         case IAVF_RXDID_COMMS_AUX_TCP:
459                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
460                 rxq->rxd_to_pkt_fields =
461                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
462                 break;
463         case IAVF_RXDID_COMMS_AUX_IP_OFFSET:
464                 rxq->xtr_ol_flag =
465                         rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
466                 rxq->rxd_to_pkt_fields =
467                         iavf_rxd_to_pkt_fields_by_comms_aux_v2;
468                 break;
469         case IAVF_RXDID_COMMS_OVS_1:
470                 rxq->rxd_to_pkt_fields = iavf_rxd_to_pkt_fields_by_comms_ovs;
471                 break;
472         default:
473                 /* update this according to the RXDID for FLEX_DESC_NONE */
474                 rxq->rxd_to_pkt_fields = iavf_rxd_to_pkt_fields_by_comms_ovs;
475                 break;
476         }
477
478         if (!rte_pmd_ifd_dynf_proto_xtr_metadata_avail())
479                 rxq->xtr_ol_flag = 0;
480 }
481
482 int
483 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
484                        uint16_t nb_desc, unsigned int socket_id,
485                        const struct rte_eth_rxconf *rx_conf,
486                        struct rte_mempool *mp)
487 {
488         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
489         struct iavf_adapter *ad =
490                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
491         struct iavf_info *vf =
492                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
493         struct iavf_vsi *vsi = &vf->vsi;
494         struct iavf_rx_queue *rxq;
495         const struct rte_memzone *mz;
496         uint32_t ring_size;
497         uint8_t proto_xtr;
498         uint16_t len;
499         uint16_t rx_free_thresh;
500
501         PMD_INIT_FUNC_TRACE();
502
503         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
504             nb_desc > IAVF_MAX_RING_DESC ||
505             nb_desc < IAVF_MIN_RING_DESC) {
506                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
507                              "invalid", nb_desc);
508                 return -EINVAL;
509         }
510
511         /* Check free threshold */
512         rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
513                          IAVF_DEFAULT_RX_FREE_THRESH :
514                          rx_conf->rx_free_thresh;
515         if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
516                 return -EINVAL;
517
518         /* Free memory if needed */
519         if (dev->data->rx_queues[queue_idx]) {
520                 iavf_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
521                 dev->data->rx_queues[queue_idx] = NULL;
522         }
523
524         /* Allocate the rx queue data structure */
525         rxq = rte_zmalloc_socket("iavf rxq",
526                                  sizeof(struct iavf_rx_queue),
527                                  RTE_CACHE_LINE_SIZE,
528                                  socket_id);
529         if (!rxq) {
530                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
531                              "rx queue data structure");
532                 return -ENOMEM;
533         }
534
535         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
536                 proto_xtr = vf->proto_xtr ? vf->proto_xtr[queue_idx] :
537                                 IAVF_PROTO_XTR_NONE;
538                 rxq->rxdid = iavf_proto_xtr_type_to_rxdid(proto_xtr);
539                 rxq->proto_xtr = proto_xtr;
540         } else {
541                 rxq->rxdid = IAVF_RXDID_LEGACY_1;
542                 rxq->proto_xtr = IAVF_PROTO_XTR_NONE;
543         }
544
545         iavf_select_rxd_to_pkt_fields_handler(rxq, rxq->rxdid);
546
547         rxq->mp = mp;
548         rxq->nb_rx_desc = nb_desc;
549         rxq->rx_free_thresh = rx_free_thresh;
550         rxq->queue_id = queue_idx;
551         rxq->port_id = dev->data->port_id;
552         rxq->crc_len = 0; /* crc stripping by default */
553         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
554         rxq->rx_hdr_len = 0;
555         rxq->vsi = vsi;
556
557         len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
558         rxq->rx_buf_len = RTE_ALIGN(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
559
560         /* Allocate the software ring. */
561         len = nb_desc + IAVF_RX_MAX_BURST;
562         rxq->sw_ring =
563                 rte_zmalloc_socket("iavf rx sw ring",
564                                    sizeof(struct rte_mbuf *) * len,
565                                    RTE_CACHE_LINE_SIZE,
566                                    socket_id);
567         if (!rxq->sw_ring) {
568                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
569                 rte_free(rxq);
570                 return -ENOMEM;
571         }
572
573         /* Allocate the maximun number of RX ring hardware descriptor with
574          * a liitle more to support bulk allocate.
575          */
576         len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
577         ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
578                               IAVF_DMA_MEM_ALIGN);
579         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
580                                       ring_size, IAVF_RING_BASE_ALIGN,
581                                       socket_id);
582         if (!mz) {
583                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
584                 rte_free(rxq->sw_ring);
585                 rte_free(rxq);
586                 return -ENOMEM;
587         }
588         /* Zero all the descriptors in the ring. */
589         memset(mz->addr, 0, ring_size);
590         rxq->rx_ring_phys_addr = mz->iova;
591         rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
592
593         rxq->mz = mz;
594         reset_rx_queue(rxq);
595         rxq->q_set = true;
596         dev->data->rx_queues[queue_idx] = rxq;
597         rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
598         rxq->ops = &def_rxq_ops;
599
600         if (check_rx_bulk_allow(rxq) == true) {
601                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
602                              "satisfied. Rx Burst Bulk Alloc function will be "
603                              "used on port=%d, queue=%d.",
604                              rxq->port_id, rxq->queue_id);
605         } else {
606                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
607                              "not satisfied, Scattered Rx is requested "
608                              "on port=%d, queue=%d.",
609                              rxq->port_id, rxq->queue_id);
610                 ad->rx_bulk_alloc_allowed = false;
611         }
612
613         if (check_rx_vec_allow(rxq) == false)
614                 ad->rx_vec_allowed = false;
615
616         return 0;
617 }
618
619 int
620 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
621                        uint16_t queue_idx,
622                        uint16_t nb_desc,
623                        unsigned int socket_id,
624                        const struct rte_eth_txconf *tx_conf)
625 {
626         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
627         struct iavf_tx_queue *txq;
628         const struct rte_memzone *mz;
629         uint32_t ring_size;
630         uint16_t tx_rs_thresh, tx_free_thresh;
631         uint64_t offloads;
632
633         PMD_INIT_FUNC_TRACE();
634
635         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
636
637         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
638             nb_desc > IAVF_MAX_RING_DESC ||
639             nb_desc < IAVF_MIN_RING_DESC) {
640                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
641                             "invalid", nb_desc);
642                 return -EINVAL;
643         }
644
645         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
646                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
647         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
648                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
649         check_tx_thresh(nb_desc, tx_rs_thresh, tx_rs_thresh);
650
651         /* Free memory if needed. */
652         if (dev->data->tx_queues[queue_idx]) {
653                 iavf_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
654                 dev->data->tx_queues[queue_idx] = NULL;
655         }
656
657         /* Allocate the TX queue data structure. */
658         txq = rte_zmalloc_socket("iavf txq",
659                                  sizeof(struct iavf_tx_queue),
660                                  RTE_CACHE_LINE_SIZE,
661                                  socket_id);
662         if (!txq) {
663                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
664                              "tx queue structure");
665                 return -ENOMEM;
666         }
667
668         txq->nb_tx_desc = nb_desc;
669         txq->rs_thresh = tx_rs_thresh;
670         txq->free_thresh = tx_free_thresh;
671         txq->queue_id = queue_idx;
672         txq->port_id = dev->data->port_id;
673         txq->offloads = offloads;
674         txq->tx_deferred_start = tx_conf->tx_deferred_start;
675
676         /* Allocate software ring */
677         txq->sw_ring =
678                 rte_zmalloc_socket("iavf tx sw ring",
679                                    sizeof(struct iavf_tx_entry) * nb_desc,
680                                    RTE_CACHE_LINE_SIZE,
681                                    socket_id);
682         if (!txq->sw_ring) {
683                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
684                 rte_free(txq);
685                 return -ENOMEM;
686         }
687
688         /* Allocate TX hardware ring descriptors. */
689         ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
690         ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
691         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
692                                       ring_size, IAVF_RING_BASE_ALIGN,
693                                       socket_id);
694         if (!mz) {
695                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
696                 rte_free(txq->sw_ring);
697                 rte_free(txq);
698                 return -ENOMEM;
699         }
700         txq->tx_ring_phys_addr = mz->iova;
701         txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
702
703         txq->mz = mz;
704         reset_tx_queue(txq);
705         txq->q_set = true;
706         dev->data->tx_queues[queue_idx] = txq;
707         txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
708         txq->ops = &def_txq_ops;
709
710         if (check_tx_vec_allow(txq) == false) {
711                 struct iavf_adapter *ad =
712                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
713                 ad->tx_vec_allowed = false;
714         }
715
716         return 0;
717 }
718
719 int
720 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
721 {
722         struct iavf_adapter *adapter =
723                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
724         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
725         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
726         struct iavf_rx_queue *rxq;
727         int err = 0;
728
729         PMD_DRV_FUNC_TRACE();
730
731         if (rx_queue_id >= dev->data->nb_rx_queues)
732                 return -EINVAL;
733
734         rxq = dev->data->rx_queues[rx_queue_id];
735
736         err = alloc_rxq_mbufs(rxq);
737         if (err) {
738                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
739                 return err;
740         }
741
742         rte_wmb();
743
744         /* Init the RX tail register. */
745         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
746         IAVF_WRITE_FLUSH(hw);
747
748         /* Ready to switch the queue on */
749         if (!vf->lv_enabled)
750                 err = iavf_switch_queue(adapter, rx_queue_id, true, true);
751         else
752                 err = iavf_switch_queue_lv(adapter, rx_queue_id, true, true);
753
754         if (err)
755                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
756                             rx_queue_id);
757         else
758                 dev->data->rx_queue_state[rx_queue_id] =
759                         RTE_ETH_QUEUE_STATE_STARTED;
760
761         return err;
762 }
763
764 int
765 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
766 {
767         struct iavf_adapter *adapter =
768                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
769         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
770         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
771         struct iavf_tx_queue *txq;
772         int err = 0;
773
774         PMD_DRV_FUNC_TRACE();
775
776         if (tx_queue_id >= dev->data->nb_tx_queues)
777                 return -EINVAL;
778
779         txq = dev->data->tx_queues[tx_queue_id];
780
781         /* Init the RX tail register. */
782         IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
783         IAVF_WRITE_FLUSH(hw);
784
785         /* Ready to switch the queue on */
786         if (!vf->lv_enabled)
787                 err = iavf_switch_queue(adapter, tx_queue_id, false, true);
788         else
789                 err = iavf_switch_queue_lv(adapter, tx_queue_id, false, true);
790
791         if (err)
792                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
793                             tx_queue_id);
794         else
795                 dev->data->tx_queue_state[tx_queue_id] =
796                         RTE_ETH_QUEUE_STATE_STARTED;
797
798         return err;
799 }
800
801 int
802 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
803 {
804         struct iavf_adapter *adapter =
805                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
806         struct iavf_rx_queue *rxq;
807         int err;
808
809         PMD_DRV_FUNC_TRACE();
810
811         if (rx_queue_id >= dev->data->nb_rx_queues)
812                 return -EINVAL;
813
814         err = iavf_switch_queue(adapter, rx_queue_id, true, false);
815         if (err) {
816                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
817                             rx_queue_id);
818                 return err;
819         }
820
821         rxq = dev->data->rx_queues[rx_queue_id];
822         rxq->ops->release_mbufs(rxq);
823         reset_rx_queue(rxq);
824         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
825
826         return 0;
827 }
828
829 int
830 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
831 {
832         struct iavf_adapter *adapter =
833                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
834         struct iavf_tx_queue *txq;
835         int err;
836
837         PMD_DRV_FUNC_TRACE();
838
839         if (tx_queue_id >= dev->data->nb_tx_queues)
840                 return -EINVAL;
841
842         err = iavf_switch_queue(adapter, tx_queue_id, false, false);
843         if (err) {
844                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
845                             tx_queue_id);
846                 return err;
847         }
848
849         txq = dev->data->tx_queues[tx_queue_id];
850         txq->ops->release_mbufs(txq);
851         reset_tx_queue(txq);
852         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
853
854         return 0;
855 }
856
857 void
858 iavf_dev_rx_queue_release(void *rxq)
859 {
860         struct iavf_rx_queue *q = (struct iavf_rx_queue *)rxq;
861
862         if (!q)
863                 return;
864
865         q->ops->release_mbufs(q);
866         rte_free(q->sw_ring);
867         rte_memzone_free(q->mz);
868         rte_free(q);
869 }
870
871 void
872 iavf_dev_tx_queue_release(void *txq)
873 {
874         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
875
876         if (!q)
877                 return;
878
879         q->ops->release_mbufs(q);
880         rte_free(q->sw_ring);
881         rte_memzone_free(q->mz);
882         rte_free(q);
883 }
884
885 void
886 iavf_stop_queues(struct rte_eth_dev *dev)
887 {
888         struct iavf_adapter *adapter =
889                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
890         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
891         struct iavf_rx_queue *rxq;
892         struct iavf_tx_queue *txq;
893         int ret, i;
894
895         /* Stop All queues */
896         if (!vf->lv_enabled) {
897                 ret = iavf_disable_queues(adapter);
898                 if (ret)
899                         PMD_DRV_LOG(WARNING, "Fail to stop queues");
900         } else {
901                 ret = iavf_disable_queues_lv(adapter);
902                 if (ret)
903                         PMD_DRV_LOG(WARNING, "Fail to stop queues for large VF");
904         }
905
906         if (ret)
907                 PMD_DRV_LOG(WARNING, "Fail to stop queues");
908
909         for (i = 0; i < dev->data->nb_tx_queues; i++) {
910                 txq = dev->data->tx_queues[i];
911                 if (!txq)
912                         continue;
913                 txq->ops->release_mbufs(txq);
914                 reset_tx_queue(txq);
915                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
916         }
917         for (i = 0; i < dev->data->nb_rx_queues; i++) {
918                 rxq = dev->data->rx_queues[i];
919                 if (!rxq)
920                         continue;
921                 rxq->ops->release_mbufs(rxq);
922                 reset_rx_queue(rxq);
923                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
924         }
925 }
926
927 #define IAVF_RX_FLEX_ERR0_BITS  \
928         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
929          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
930          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
931          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
932          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
933          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
934
935 static inline void
936 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
937 {
938         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
939                 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
940                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
941                 mb->vlan_tci =
942                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
943         } else {
944                 mb->vlan_tci = 0;
945         }
946 }
947
948 static inline void
949 iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
950                           volatile union iavf_rx_flex_desc *rxdp)
951 {
952         if (rte_le_to_cpu_64(rxdp->wb.status_error0) &
953                 (1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
954                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
955                 mb->vlan_tci =
956                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
957         } else {
958                 mb->vlan_tci = 0;
959         }
960
961 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
962         if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
963             (1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
964                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
965                                 PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
966                 mb->vlan_tci_outer = mb->vlan_tci;
967                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
968                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
969                            rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
970                            rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
971         } else {
972                 mb->vlan_tci_outer = 0;
973         }
974 #endif
975 }
976
977 /* Translate the rx descriptor status and error fields to pkt flags */
978 static inline uint64_t
979 iavf_rxd_to_pkt_flags(uint64_t qword)
980 {
981         uint64_t flags;
982         uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
983
984 #define IAVF_RX_ERR_BITS 0x3f
985
986         /* Check if RSS_HASH */
987         flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
988                                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
989                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
990
991         /* Check if FDIR Match */
992         flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
993                                 PKT_RX_FDIR : 0);
994
995         if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
996                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
997                 return flags;
998         }
999
1000         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
1001                 flags |= PKT_RX_IP_CKSUM_BAD;
1002         else
1003                 flags |= PKT_RX_IP_CKSUM_GOOD;
1004
1005         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
1006                 flags |= PKT_RX_L4_CKSUM_BAD;
1007         else
1008                 flags |= PKT_RX_L4_CKSUM_GOOD;
1009
1010         /* TODO: Oversize error bit is not processed here */
1011
1012         return flags;
1013 }
1014
1015 static inline uint64_t
1016 iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
1017 {
1018         uint64_t flags = 0;
1019 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1020         uint16_t flexbh;
1021
1022         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
1023                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
1024                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
1025
1026         if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
1027                 mb->hash.fdir.hi =
1028                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
1029                 flags |= PKT_RX_FDIR_ID;
1030         }
1031 #else
1032         mb->hash.fdir.hi =
1033                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
1034         flags |= PKT_RX_FDIR_ID;
1035 #endif
1036         return flags;
1037 }
1038
1039 #define IAVF_RX_FLEX_ERR0_BITS  \
1040         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
1041          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
1042          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
1043          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1044          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1045          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1046
1047 /* Rx L3/L4 checksum */
1048 static inline uint64_t
1049 iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
1050 {
1051         uint64_t flags = 0;
1052
1053         /* check if HW has decoded the packet and checksum */
1054         if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1055                 return 0;
1056
1057         if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
1058                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
1059                 return flags;
1060         }
1061
1062         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1063                 flags |= PKT_RX_IP_CKSUM_BAD;
1064         else
1065                 flags |= PKT_RX_IP_CKSUM_GOOD;
1066
1067         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1068                 flags |= PKT_RX_L4_CKSUM_BAD;
1069         else
1070                 flags |= PKT_RX_L4_CKSUM_GOOD;
1071
1072         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1073                 flags |= PKT_RX_EIP_CKSUM_BAD;
1074
1075         return flags;
1076 }
1077
1078 /* If the number of free RX descriptors is greater than the RX free
1079  * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1080  * register. Update the RDT with the value of the last processed RX
1081  * descriptor minus 1, to guarantee that the RDT register is never
1082  * equal to the RDH register, which creates a "full" ring situation
1083  * from the hardware point of view.
1084  */
1085 static inline void
1086 iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
1087 {
1088         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1089
1090         if (nb_hold > rxq->rx_free_thresh) {
1091                 PMD_RX_LOG(DEBUG,
1092                            "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
1093                            rxq->port_id, rxq->queue_id, rx_id, nb_hold);
1094                 rx_id = (uint16_t)((rx_id == 0) ?
1095                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1096                 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1097                 nb_hold = 0;
1098         }
1099         rxq->nb_rx_hold = nb_hold;
1100 }
1101
1102 /* implement recv_pkts */
1103 uint16_t
1104 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1105 {
1106         volatile union iavf_rx_desc *rx_ring;
1107         volatile union iavf_rx_desc *rxdp;
1108         struct iavf_rx_queue *rxq;
1109         union iavf_rx_desc rxd;
1110         struct rte_mbuf *rxe;
1111         struct rte_eth_dev *dev;
1112         struct rte_mbuf *rxm;
1113         struct rte_mbuf *nmb;
1114         uint16_t nb_rx;
1115         uint32_t rx_status;
1116         uint64_t qword1;
1117         uint16_t rx_packet_len;
1118         uint16_t rx_id, nb_hold;
1119         uint64_t dma_addr;
1120         uint64_t pkt_flags;
1121         const uint32_t *ptype_tbl;
1122
1123         nb_rx = 0;
1124         nb_hold = 0;
1125         rxq = rx_queue;
1126         rx_id = rxq->rx_tail;
1127         rx_ring = rxq->rx_ring;
1128         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1129
1130         while (nb_rx < nb_pkts) {
1131                 rxdp = &rx_ring[rx_id];
1132                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1133                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1134                             IAVF_RXD_QW1_STATUS_SHIFT;
1135
1136                 /* Check the DD bit first */
1137                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1138                         break;
1139                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1140
1141                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1142                 if (unlikely(!nmb)) {
1143                         dev = &rte_eth_devices[rxq->port_id];
1144                         dev->data->rx_mbuf_alloc_failed++;
1145                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1146                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1147                         break;
1148                 }
1149
1150                 rxd = *rxdp;
1151                 nb_hold++;
1152                 rxe = rxq->sw_ring[rx_id];
1153                 rx_id++;
1154                 if (unlikely(rx_id == rxq->nb_rx_desc))
1155                         rx_id = 0;
1156
1157                 /* Prefetch next mbuf */
1158                 rte_prefetch0(rxq->sw_ring[rx_id]);
1159
1160                 /* When next RX descriptor is on a cache line boundary,
1161                  * prefetch the next 4 RX descriptors and next 8 pointers
1162                  * to mbufs.
1163                  */
1164                 if ((rx_id & 0x3) == 0) {
1165                         rte_prefetch0(&rx_ring[rx_id]);
1166                         rte_prefetch0(rxq->sw_ring[rx_id]);
1167                 }
1168                 rxm = rxe;
1169                 dma_addr =
1170                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1171                 rxdp->read.hdr_addr = 0;
1172                 rxdp->read.pkt_addr = dma_addr;
1173
1174                 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1175                                 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1176
1177                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1178                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1179                 rxm->nb_segs = 1;
1180                 rxm->next = NULL;
1181                 rxm->pkt_len = rx_packet_len;
1182                 rxm->data_len = rx_packet_len;
1183                 rxm->port = rxq->port_id;
1184                 rxm->ol_flags = 0;
1185                 iavf_rxd_to_vlan_tci(rxm, &rxd);
1186                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1187                 rxm->packet_type =
1188                         ptype_tbl[(uint8_t)((qword1 &
1189                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1190
1191                 if (pkt_flags & PKT_RX_RSS_HASH)
1192                         rxm->hash.rss =
1193                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1194
1195                 if (pkt_flags & PKT_RX_FDIR)
1196                         pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
1197
1198                 rxm->ol_flags |= pkt_flags;
1199
1200                 rx_pkts[nb_rx++] = rxm;
1201         }
1202         rxq->rx_tail = rx_id;
1203
1204         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1205
1206         return nb_rx;
1207 }
1208
1209 /* implement recv_pkts for flexible Rx descriptor */
1210 uint16_t
1211 iavf_recv_pkts_flex_rxd(void *rx_queue,
1212                         struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1213 {
1214         volatile union iavf_rx_desc *rx_ring;
1215         volatile union iavf_rx_flex_desc *rxdp;
1216         struct iavf_rx_queue *rxq;
1217         union iavf_rx_flex_desc rxd;
1218         struct rte_mbuf *rxe;
1219         struct rte_eth_dev *dev;
1220         struct rte_mbuf *rxm;
1221         struct rte_mbuf *nmb;
1222         uint16_t nb_rx;
1223         uint16_t rx_stat_err0;
1224         uint16_t rx_packet_len;
1225         uint16_t rx_id, nb_hold;
1226         uint64_t dma_addr;
1227         uint64_t pkt_flags;
1228         const uint32_t *ptype_tbl;
1229
1230         nb_rx = 0;
1231         nb_hold = 0;
1232         rxq = rx_queue;
1233         rx_id = rxq->rx_tail;
1234         rx_ring = rxq->rx_ring;
1235         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1236
1237         while (nb_rx < nb_pkts) {
1238                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1239                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1240
1241                 /* Check the DD bit first */
1242                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1243                         break;
1244                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1245
1246                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1247                 if (unlikely(!nmb)) {
1248                         dev = &rte_eth_devices[rxq->port_id];
1249                         dev->data->rx_mbuf_alloc_failed++;
1250                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1251                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1252                         break;
1253                 }
1254
1255                 rxd = *rxdp;
1256                 nb_hold++;
1257                 rxe = rxq->sw_ring[rx_id];
1258                 rx_id++;
1259                 if (unlikely(rx_id == rxq->nb_rx_desc))
1260                         rx_id = 0;
1261
1262                 /* Prefetch next mbuf */
1263                 rte_prefetch0(rxq->sw_ring[rx_id]);
1264
1265                 /* When next RX descriptor is on a cache line boundary,
1266                  * prefetch the next 4 RX descriptors and next 8 pointers
1267                  * to mbufs.
1268                  */
1269                 if ((rx_id & 0x3) == 0) {
1270                         rte_prefetch0(&rx_ring[rx_id]);
1271                         rte_prefetch0(rxq->sw_ring[rx_id]);
1272                 }
1273                 rxm = rxe;
1274                 dma_addr =
1275                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1276                 rxdp->read.hdr_addr = 0;
1277                 rxdp->read.pkt_addr = dma_addr;
1278
1279                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
1280                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1281
1282                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1283                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1284                 rxm->nb_segs = 1;
1285                 rxm->next = NULL;
1286                 rxm->pkt_len = rx_packet_len;
1287                 rxm->data_len = rx_packet_len;
1288                 rxm->port = rxq->port_id;
1289                 rxm->ol_flags = 0;
1290                 rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1291                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1292                 iavf_flex_rxd_to_vlan_tci(rxm, &rxd);
1293                 rxq->rxd_to_pkt_fields(rxq, rxm, &rxd);
1294                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1295                 rxm->ol_flags |= pkt_flags;
1296
1297                 rx_pkts[nb_rx++] = rxm;
1298         }
1299         rxq->rx_tail = rx_id;
1300
1301         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1302
1303         return nb_rx;
1304 }
1305
1306 /* implement recv_scattered_pkts for flexible Rx descriptor */
1307 uint16_t
1308 iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1309                                   uint16_t nb_pkts)
1310 {
1311         struct iavf_rx_queue *rxq = rx_queue;
1312         union iavf_rx_flex_desc rxd;
1313         struct rte_mbuf *rxe;
1314         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1315         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1316         struct rte_mbuf *nmb, *rxm;
1317         uint16_t rx_id = rxq->rx_tail;
1318         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1319         struct rte_eth_dev *dev;
1320         uint16_t rx_stat_err0;
1321         uint64_t dma_addr;
1322         uint64_t pkt_flags;
1323
1324         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1325         volatile union iavf_rx_flex_desc *rxdp;
1326         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1327
1328         while (nb_rx < nb_pkts) {
1329                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1330                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1331
1332                 /* Check the DD bit */
1333                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1334                         break;
1335                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1336
1337                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1338                 if (unlikely(!nmb)) {
1339                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1340                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1341                         dev = &rte_eth_devices[rxq->port_id];
1342                         dev->data->rx_mbuf_alloc_failed++;
1343                         break;
1344                 }
1345
1346                 rxd = *rxdp;
1347                 nb_hold++;
1348                 rxe = rxq->sw_ring[rx_id];
1349                 rx_id++;
1350                 if (rx_id == rxq->nb_rx_desc)
1351                         rx_id = 0;
1352
1353                 /* Prefetch next mbuf */
1354                 rte_prefetch0(rxq->sw_ring[rx_id]);
1355
1356                 /* When next RX descriptor is on a cache line boundary,
1357                  * prefetch the next 4 RX descriptors and next 8 pointers
1358                  * to mbufs.
1359                  */
1360                 if ((rx_id & 0x3) == 0) {
1361                         rte_prefetch0(&rx_ring[rx_id]);
1362                         rte_prefetch0(rxq->sw_ring[rx_id]);
1363                 }
1364
1365                 rxm = rxe;
1366                 dma_addr =
1367                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1368
1369                 /* Set data buffer address and data length of the mbuf */
1370                 rxdp->read.hdr_addr = 0;
1371                 rxdp->read.pkt_addr = dma_addr;
1372                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1373                                 IAVF_RX_FLX_DESC_PKT_LEN_M;
1374                 rxm->data_len = rx_packet_len;
1375                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1376
1377                 /* If this is the first buffer of the received packet, set the
1378                  * pointer to the first mbuf of the packet and initialize its
1379                  * context. Otherwise, update the total length and the number
1380                  * of segments of the current scattered packet, and update the
1381                  * pointer to the last mbuf of the current packet.
1382                  */
1383                 if (!first_seg) {
1384                         first_seg = rxm;
1385                         first_seg->nb_segs = 1;
1386                         first_seg->pkt_len = rx_packet_len;
1387                 } else {
1388                         first_seg->pkt_len =
1389                                 (uint16_t)(first_seg->pkt_len +
1390                                                 rx_packet_len);
1391                         first_seg->nb_segs++;
1392                         last_seg->next = rxm;
1393                 }
1394
1395                 /* If this is not the last buffer of the received packet,
1396                  * update the pointer to the last mbuf of the current scattered
1397                  * packet and continue to parse the RX ring.
1398                  */
1399                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
1400                         last_seg = rxm;
1401                         continue;
1402                 }
1403
1404                 /* This is the last buffer of the received packet. If the CRC
1405                  * is not stripped by the hardware:
1406                  *  - Subtract the CRC length from the total packet length.
1407                  *  - If the last buffer only contains the whole CRC or a part
1408                  *  of it, free the mbuf associated to the last buffer. If part
1409                  *  of the CRC is also contained in the previous mbuf, subtract
1410                  *  the length of that CRC part from the data length of the
1411                  *  previous mbuf.
1412                  */
1413                 rxm->next = NULL;
1414                 if (unlikely(rxq->crc_len > 0)) {
1415                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1416                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1417                                 rte_pktmbuf_free_seg(rxm);
1418                                 first_seg->nb_segs--;
1419                                 last_seg->data_len =
1420                                         (uint16_t)(last_seg->data_len -
1421                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1422                                 last_seg->next = NULL;
1423                         } else {
1424                                 rxm->data_len = (uint16_t)(rx_packet_len -
1425                                                         RTE_ETHER_CRC_LEN);
1426                         }
1427                 }
1428
1429                 first_seg->port = rxq->port_id;
1430                 first_seg->ol_flags = 0;
1431                 first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1432                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1433                 iavf_flex_rxd_to_vlan_tci(first_seg, &rxd);
1434                 rxq->rxd_to_pkt_fields(rxq, first_seg, &rxd);
1435                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1436
1437                 first_seg->ol_flags |= pkt_flags;
1438
1439                 /* Prefetch data of first segment, if configured to do so. */
1440                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1441                                           first_seg->data_off));
1442                 rx_pkts[nb_rx++] = first_seg;
1443                 first_seg = NULL;
1444         }
1445
1446         /* Record index of the next RX descriptor to probe. */
1447         rxq->rx_tail = rx_id;
1448         rxq->pkt_first_seg = first_seg;
1449         rxq->pkt_last_seg = last_seg;
1450
1451         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1452
1453         return nb_rx;
1454 }
1455
1456 /* implement recv_scattered_pkts  */
1457 uint16_t
1458 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1459                         uint16_t nb_pkts)
1460 {
1461         struct iavf_rx_queue *rxq = rx_queue;
1462         union iavf_rx_desc rxd;
1463         struct rte_mbuf *rxe;
1464         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1465         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1466         struct rte_mbuf *nmb, *rxm;
1467         uint16_t rx_id = rxq->rx_tail;
1468         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1469         struct rte_eth_dev *dev;
1470         uint32_t rx_status;
1471         uint64_t qword1;
1472         uint64_t dma_addr;
1473         uint64_t pkt_flags;
1474
1475         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1476         volatile union iavf_rx_desc *rxdp;
1477         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1478
1479         while (nb_rx < nb_pkts) {
1480                 rxdp = &rx_ring[rx_id];
1481                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1482                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1483                             IAVF_RXD_QW1_STATUS_SHIFT;
1484
1485                 /* Check the DD bit */
1486                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1487                         break;
1488                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1489
1490                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1491                 if (unlikely(!nmb)) {
1492                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1493                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1494                         dev = &rte_eth_devices[rxq->port_id];
1495                         dev->data->rx_mbuf_alloc_failed++;
1496                         break;
1497                 }
1498
1499                 rxd = *rxdp;
1500                 nb_hold++;
1501                 rxe = rxq->sw_ring[rx_id];
1502                 rx_id++;
1503                 if (rx_id == rxq->nb_rx_desc)
1504                         rx_id = 0;
1505
1506                 /* Prefetch next mbuf */
1507                 rte_prefetch0(rxq->sw_ring[rx_id]);
1508
1509                 /* When next RX descriptor is on a cache line boundary,
1510                  * prefetch the next 4 RX descriptors and next 8 pointers
1511                  * to mbufs.
1512                  */
1513                 if ((rx_id & 0x3) == 0) {
1514                         rte_prefetch0(&rx_ring[rx_id]);
1515                         rte_prefetch0(rxq->sw_ring[rx_id]);
1516                 }
1517
1518                 rxm = rxe;
1519                 dma_addr =
1520                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1521
1522                 /* Set data buffer address and data length of the mbuf */
1523                 rxdp->read.hdr_addr = 0;
1524                 rxdp->read.pkt_addr = dma_addr;
1525                 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1526                                  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1527                 rxm->data_len = rx_packet_len;
1528                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1529
1530                 /* If this is the first buffer of the received packet, set the
1531                  * pointer to the first mbuf of the packet and initialize its
1532                  * context. Otherwise, update the total length and the number
1533                  * of segments of the current scattered packet, and update the
1534                  * pointer to the last mbuf of the current packet.
1535                  */
1536                 if (!first_seg) {
1537                         first_seg = rxm;
1538                         first_seg->nb_segs = 1;
1539                         first_seg->pkt_len = rx_packet_len;
1540                 } else {
1541                         first_seg->pkt_len =
1542                                 (uint16_t)(first_seg->pkt_len +
1543                                                 rx_packet_len);
1544                         first_seg->nb_segs++;
1545                         last_seg->next = rxm;
1546                 }
1547
1548                 /* If this is not the last buffer of the received packet,
1549                  * update the pointer to the last mbuf of the current scattered
1550                  * packet and continue to parse the RX ring.
1551                  */
1552                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1553                         last_seg = rxm;
1554                         continue;
1555                 }
1556
1557                 /* This is the last buffer of the received packet. If the CRC
1558                  * is not stripped by the hardware:
1559                  *  - Subtract the CRC length from the total packet length.
1560                  *  - If the last buffer only contains the whole CRC or a part
1561                  *  of it, free the mbuf associated to the last buffer. If part
1562                  *  of the CRC is also contained in the previous mbuf, subtract
1563                  *  the length of that CRC part from the data length of the
1564                  *  previous mbuf.
1565                  */
1566                 rxm->next = NULL;
1567                 if (unlikely(rxq->crc_len > 0)) {
1568                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1569                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1570                                 rte_pktmbuf_free_seg(rxm);
1571                                 first_seg->nb_segs--;
1572                                 last_seg->data_len =
1573                                         (uint16_t)(last_seg->data_len -
1574                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1575                                 last_seg->next = NULL;
1576                         } else
1577                                 rxm->data_len = (uint16_t)(rx_packet_len -
1578                                                         RTE_ETHER_CRC_LEN);
1579                 }
1580
1581                 first_seg->port = rxq->port_id;
1582                 first_seg->ol_flags = 0;
1583                 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1584                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1585                 first_seg->packet_type =
1586                         ptype_tbl[(uint8_t)((qword1 &
1587                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1588
1589                 if (pkt_flags & PKT_RX_RSS_HASH)
1590                         first_seg->hash.rss =
1591                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1592
1593                 if (pkt_flags & PKT_RX_FDIR)
1594                         pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
1595
1596                 first_seg->ol_flags |= pkt_flags;
1597
1598                 /* Prefetch data of first segment, if configured to do so. */
1599                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1600                                           first_seg->data_off));
1601                 rx_pkts[nb_rx++] = first_seg;
1602                 first_seg = NULL;
1603         }
1604
1605         /* Record index of the next RX descriptor to probe. */
1606         rxq->rx_tail = rx_id;
1607         rxq->pkt_first_seg = first_seg;
1608         rxq->pkt_last_seg = last_seg;
1609
1610         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1611
1612         return nb_rx;
1613 }
1614
1615 #define IAVF_LOOK_AHEAD 8
1616 static inline int
1617 iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq)
1618 {
1619         volatile union iavf_rx_flex_desc *rxdp;
1620         struct rte_mbuf **rxep;
1621         struct rte_mbuf *mb;
1622         uint16_t stat_err0;
1623         uint16_t pkt_len;
1624         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1625         int32_t i, j, nb_rx = 0;
1626         uint64_t pkt_flags;
1627         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1628
1629         rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
1630         rxep = &rxq->sw_ring[rxq->rx_tail];
1631
1632         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1633
1634         /* Make sure there is at least 1 packet to receive */
1635         if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1636                 return 0;
1637
1638         /* Scan LOOK_AHEAD descriptors at a time to determine which
1639          * descriptors reference packets that are ready to be received.
1640          */
1641         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1642              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1643                 /* Read desc statuses backwards to avoid race condition */
1644                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
1645                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1646
1647                 rte_smp_rmb();
1648
1649                 /* Compute how many status bits were set */
1650                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1651                         nb_dd += s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
1652
1653                 nb_rx += nb_dd;
1654
1655                 /* Translate descriptor info to mbuf parameters */
1656                 for (j = 0; j < nb_dd; j++) {
1657                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1658                                           rxq->rx_tail +
1659                                           i * IAVF_LOOK_AHEAD + j);
1660
1661                         mb = rxep[j];
1662                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1663                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1664                         mb->data_len = pkt_len;
1665                         mb->pkt_len = pkt_len;
1666                         mb->ol_flags = 0;
1667
1668                         mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1669                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1670                         iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j]);
1671                         rxq->rxd_to_pkt_fields(rxq, mb, &rxdp[j]);
1672                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1673                         pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
1674
1675                         mb->ol_flags |= pkt_flags;
1676                 }
1677
1678                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1679                         rxq->rx_stage[i + j] = rxep[j];
1680
1681                 if (nb_dd != IAVF_LOOK_AHEAD)
1682                         break;
1683         }
1684
1685         /* Clear software ring entries */
1686         for (i = 0; i < nb_rx; i++)
1687                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1688
1689         return nb_rx;
1690 }
1691
1692 static inline int
1693 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1694 {
1695         volatile union iavf_rx_desc *rxdp;
1696         struct rte_mbuf **rxep;
1697         struct rte_mbuf *mb;
1698         uint16_t pkt_len;
1699         uint64_t qword1;
1700         uint32_t rx_status;
1701         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1702         int32_t i, j, nb_rx = 0;
1703         uint64_t pkt_flags;
1704         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1705
1706         rxdp = &rxq->rx_ring[rxq->rx_tail];
1707         rxep = &rxq->sw_ring[rxq->rx_tail];
1708
1709         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1710         rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1711                     IAVF_RXD_QW1_STATUS_SHIFT;
1712
1713         /* Make sure there is at least 1 packet to receive */
1714         if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1715                 return 0;
1716
1717         /* Scan LOOK_AHEAD descriptors at a time to determine which
1718          * descriptors reference packets that are ready to be received.
1719          */
1720         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1721              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1722                 /* Read desc statuses backwards to avoid race condition */
1723                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1724                         qword1 = rte_le_to_cpu_64(
1725                                 rxdp[j].wb.qword1.status_error_len);
1726                         s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1727                                IAVF_RXD_QW1_STATUS_SHIFT;
1728                 }
1729
1730                 rte_smp_rmb();
1731
1732                 /* Compute how many status bits were set */
1733                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1734                         nb_dd += s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1735
1736                 nb_rx += nb_dd;
1737
1738                 /* Translate descriptor info to mbuf parameters */
1739                 for (j = 0; j < nb_dd; j++) {
1740                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1741                                          rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1742
1743                         mb = rxep[j];
1744                         qword1 = rte_le_to_cpu_64
1745                                         (rxdp[j].wb.qword1.status_error_len);
1746                         pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1747                                   IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1748                         mb->data_len = pkt_len;
1749                         mb->pkt_len = pkt_len;
1750                         mb->ol_flags = 0;
1751                         iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1752                         pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1753                         mb->packet_type =
1754                                 ptype_tbl[(uint8_t)((qword1 &
1755                                 IAVF_RXD_QW1_PTYPE_MASK) >>
1756                                 IAVF_RXD_QW1_PTYPE_SHIFT)];
1757
1758                         if (pkt_flags & PKT_RX_RSS_HASH)
1759                                 mb->hash.rss = rte_le_to_cpu_32(
1760                                         rxdp[j].wb.qword0.hi_dword.rss);
1761
1762                         if (pkt_flags & PKT_RX_FDIR)
1763                                 pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
1764
1765                         mb->ol_flags |= pkt_flags;
1766                 }
1767
1768                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1769                         rxq->rx_stage[i + j] = rxep[j];
1770
1771                 if (nb_dd != IAVF_LOOK_AHEAD)
1772                         break;
1773         }
1774
1775         /* Clear software ring entries */
1776         for (i = 0; i < nb_rx; i++)
1777                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1778
1779         return nb_rx;
1780 }
1781
1782 static inline uint16_t
1783 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
1784                        struct rte_mbuf **rx_pkts,
1785                        uint16_t nb_pkts)
1786 {
1787         uint16_t i;
1788         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1789
1790         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1791
1792         for (i = 0; i < nb_pkts; i++)
1793                 rx_pkts[i] = stage[i];
1794
1795         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1796         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1797
1798         return nb_pkts;
1799 }
1800
1801 static inline int
1802 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
1803 {
1804         volatile union iavf_rx_desc *rxdp;
1805         struct rte_mbuf **rxep;
1806         struct rte_mbuf *mb;
1807         uint16_t alloc_idx, i;
1808         uint64_t dma_addr;
1809         int diag;
1810
1811         /* Allocate buffers in bulk */
1812         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1813                                 (rxq->rx_free_thresh - 1));
1814         rxep = &rxq->sw_ring[alloc_idx];
1815         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1816                                     rxq->rx_free_thresh);
1817         if (unlikely(diag != 0)) {
1818                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1819                 return -ENOMEM;
1820         }
1821
1822         rxdp = &rxq->rx_ring[alloc_idx];
1823         for (i = 0; i < rxq->rx_free_thresh; i++) {
1824                 if (likely(i < (rxq->rx_free_thresh - 1)))
1825                         /* Prefetch next mbuf */
1826                         rte_prefetch0(rxep[i + 1]);
1827
1828                 mb = rxep[i];
1829                 rte_mbuf_refcnt_set(mb, 1);
1830                 mb->next = NULL;
1831                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1832                 mb->nb_segs = 1;
1833                 mb->port = rxq->port_id;
1834                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1835                 rxdp[i].read.hdr_addr = 0;
1836                 rxdp[i].read.pkt_addr = dma_addr;
1837         }
1838
1839         /* Update rx tail register */
1840         rte_wmb();
1841         IAVF_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
1842
1843         rxq->rx_free_trigger =
1844                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1845         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1846                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1847
1848         return 0;
1849 }
1850
1851 static inline uint16_t
1852 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1853 {
1854         struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
1855         uint16_t nb_rx = 0;
1856
1857         if (!nb_pkts)
1858                 return 0;
1859
1860         if (rxq->rx_nb_avail)
1861                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1862
1863         if (rxq->rxdid >= IAVF_RXDID_FLEX_NIC && rxq->rxdid <= IAVF_RXDID_LAST)
1864                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq);
1865         else
1866                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
1867         rxq->rx_next_avail = 0;
1868         rxq->rx_nb_avail = nb_rx;
1869         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1870
1871         if (rxq->rx_tail > rxq->rx_free_trigger) {
1872                 if (iavf_rx_alloc_bufs(rxq) != 0) {
1873                         uint16_t i, j;
1874
1875                         /* TODO: count rx_mbuf_alloc_failed here */
1876
1877                         rxq->rx_nb_avail = 0;
1878                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1879                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1880                                 rxq->sw_ring[j] = rxq->rx_stage[i];
1881
1882                         return 0;
1883                 }
1884         }
1885
1886         if (rxq->rx_tail >= rxq->nb_rx_desc)
1887                 rxq->rx_tail = 0;
1888
1889         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
1890                    rxq->port_id, rxq->queue_id,
1891                    rxq->rx_tail, nb_rx);
1892
1893         if (rxq->rx_nb_avail)
1894                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1895
1896         return 0;
1897 }
1898
1899 static uint16_t
1900 iavf_recv_pkts_bulk_alloc(void *rx_queue,
1901                          struct rte_mbuf **rx_pkts,
1902                          uint16_t nb_pkts)
1903 {
1904         uint16_t nb_rx = 0, n, count;
1905
1906         if (unlikely(nb_pkts == 0))
1907                 return 0;
1908
1909         if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
1910                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1911
1912         while (nb_pkts) {
1913                 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
1914                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1915                 nb_rx = (uint16_t)(nb_rx + count);
1916                 nb_pkts = (uint16_t)(nb_pkts - count);
1917                 if (count < n)
1918                         break;
1919         }
1920
1921         return nb_rx;
1922 }
1923
1924 static inline int
1925 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
1926 {
1927         struct iavf_tx_entry *sw_ring = txq->sw_ring;
1928         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
1929         uint16_t nb_tx_desc = txq->nb_tx_desc;
1930         uint16_t desc_to_clean_to;
1931         uint16_t nb_tx_to_clean;
1932
1933         volatile struct iavf_tx_desc *txd = txq->tx_ring;
1934
1935         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
1936         if (desc_to_clean_to >= nb_tx_desc)
1937                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
1938
1939         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
1940         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
1941                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
1942                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
1943                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
1944                                 "(port=%d queue=%d)", desc_to_clean_to,
1945                                 txq->port_id, txq->queue_id);
1946                 return -1;
1947         }
1948
1949         if (last_desc_cleaned > desc_to_clean_to)
1950                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
1951                                                         desc_to_clean_to);
1952         else
1953                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
1954                                         last_desc_cleaned);
1955
1956         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
1957
1958         txq->last_desc_cleaned = desc_to_clean_to;
1959         txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
1960
1961         return 0;
1962 }
1963
1964 /* Check if the context descriptor is needed for TX offloading */
1965 static inline uint16_t
1966 iavf_calc_context_desc(uint64_t flags)
1967 {
1968         static uint64_t mask = PKT_TX_TCP_SEG;
1969
1970         return (flags & mask) ? 1 : 0;
1971 }
1972
1973 static inline void
1974 iavf_txd_enable_checksum(uint64_t ol_flags,
1975                         uint32_t *td_cmd,
1976                         uint32_t *td_offset,
1977                         union iavf_tx_offload tx_offload)
1978 {
1979         /* Set MACLEN */
1980         *td_offset |= (tx_offload.l2_len >> 1) <<
1981                       IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1982
1983         /* Enable L3 checksum offloads */
1984         if (ol_flags & PKT_TX_IP_CKSUM) {
1985                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
1986                 *td_offset |= (tx_offload.l3_len >> 2) <<
1987                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1988         } else if (ol_flags & PKT_TX_IPV4) {
1989                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
1990                 *td_offset |= (tx_offload.l3_len >> 2) <<
1991                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1992         } else if (ol_flags & PKT_TX_IPV6) {
1993                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
1994                 *td_offset |= (tx_offload.l3_len >> 2) <<
1995                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1996         }
1997
1998         if (ol_flags & PKT_TX_TCP_SEG) {
1999                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2000                 *td_offset |= (tx_offload.l4_len >> 2) <<
2001                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2002                 return;
2003         }
2004
2005         /* Enable L4 checksum offloads */
2006         switch (ol_flags & PKT_TX_L4_MASK) {
2007         case PKT_TX_TCP_CKSUM:
2008                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2009                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2010                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2011                 break;
2012         case PKT_TX_SCTP_CKSUM:
2013                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2014                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2015                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2016                 break;
2017         case PKT_TX_UDP_CKSUM:
2018                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2019                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2020                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2021                 break;
2022         default:
2023                 break;
2024         }
2025 }
2026
2027 /* set TSO context descriptor
2028  * support IP -> L4 and IP -> IP -> L4
2029  */
2030 static inline uint64_t
2031 iavf_set_tso_ctx(struct rte_mbuf *mbuf, union iavf_tx_offload tx_offload)
2032 {
2033         uint64_t ctx_desc = 0;
2034         uint32_t cd_cmd, hdr_len, cd_tso_len;
2035
2036         if (!tx_offload.l4_len) {
2037                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
2038                 return ctx_desc;
2039         }
2040
2041         hdr_len = tx_offload.l2_len +
2042                   tx_offload.l3_len +
2043                   tx_offload.l4_len;
2044
2045         cd_cmd = IAVF_TX_CTX_DESC_TSO;
2046         cd_tso_len = mbuf->pkt_len - hdr_len;
2047         ctx_desc |= ((uint64_t)cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
2048                      ((uint64_t)cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2049                      ((uint64_t)mbuf->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT);
2050
2051         return ctx_desc;
2052 }
2053
2054 /* Construct the tx flags */
2055 static inline uint64_t
2056 iavf_build_ctob(uint32_t td_cmd, uint32_t td_offset, unsigned int size,
2057                uint32_t td_tag)
2058 {
2059         return rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DATA |
2060                                 ((uint64_t)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
2061                                 ((uint64_t)td_offset <<
2062                                  IAVF_TXD_QW1_OFFSET_SHIFT) |
2063                                 ((uint64_t)size  <<
2064                                  IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
2065                                 ((uint64_t)td_tag  <<
2066                                  IAVF_TXD_QW1_L2TAG1_SHIFT));
2067 }
2068
2069 /* TX function */
2070 uint16_t
2071 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2072 {
2073         volatile struct iavf_tx_desc *txd;
2074         volatile struct iavf_tx_desc *txr;
2075         struct iavf_tx_queue *txq;
2076         struct iavf_tx_entry *sw_ring;
2077         struct iavf_tx_entry *txe, *txn;
2078         struct rte_mbuf *tx_pkt;
2079         struct rte_mbuf *m_seg;
2080         uint16_t tx_id;
2081         uint16_t nb_tx;
2082         uint32_t td_cmd;
2083         uint32_t td_offset;
2084         uint32_t td_tag;
2085         uint64_t ol_flags;
2086         uint16_t nb_used;
2087         uint16_t nb_ctx;
2088         uint16_t tx_last;
2089         uint16_t slen;
2090         uint64_t buf_dma_addr;
2091         union iavf_tx_offload tx_offload = {0};
2092
2093         txq = tx_queue;
2094         sw_ring = txq->sw_ring;
2095         txr = txq->tx_ring;
2096         tx_id = txq->tx_tail;
2097         txe = &sw_ring[tx_id];
2098
2099         /* Check if the descriptor ring needs to be cleaned. */
2100         if (txq->nb_free < txq->free_thresh)
2101                 (void)iavf_xmit_cleanup(txq);
2102
2103         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
2104                 td_cmd = 0;
2105                 td_tag = 0;
2106                 td_offset = 0;
2107
2108                 tx_pkt = *tx_pkts++;
2109                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
2110
2111                 ol_flags = tx_pkt->ol_flags;
2112                 tx_offload.l2_len = tx_pkt->l2_len;
2113                 tx_offload.l3_len = tx_pkt->l3_len;
2114                 tx_offload.l4_len = tx_pkt->l4_len;
2115                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
2116                 /* Calculate the number of context descriptors needed. */
2117                 nb_ctx = iavf_calc_context_desc(ol_flags);
2118
2119                 /* The number of descriptors that must be allocated for
2120                  * a packet equals to the number of the segments of that
2121                  * packet plus 1 context descriptor if needed.
2122                  */
2123                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
2124                 tx_last = (uint16_t)(tx_id + nb_used - 1);
2125
2126                 /* Circular ring */
2127                 if (tx_last >= txq->nb_tx_desc)
2128                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
2129
2130                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
2131                            " tx_first=%u tx_last=%u",
2132                            txq->port_id, txq->queue_id, tx_id, tx_last);
2133
2134                 if (nb_used > txq->nb_free) {
2135                         if (iavf_xmit_cleanup(txq)) {
2136                                 if (nb_tx == 0)
2137                                         return 0;
2138                                 goto end_of_tx;
2139                         }
2140                         if (unlikely(nb_used > txq->rs_thresh)) {
2141                                 while (nb_used > txq->nb_free) {
2142                                         if (iavf_xmit_cleanup(txq)) {
2143                                                 if (nb_tx == 0)
2144                                                         return 0;
2145                                                 goto end_of_tx;
2146                                         }
2147                                 }
2148                         }
2149                 }
2150
2151                 /* Descriptor based VLAN insertion */
2152                 if (ol_flags & PKT_TX_VLAN_PKT) {
2153                         td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2154                         td_tag = tx_pkt->vlan_tci;
2155                 }
2156
2157                 /* According to datasheet, the bit2 is reserved and must be
2158                  * set to 1.
2159                  */
2160                 td_cmd |= 0x04;
2161
2162                 /* Enable checksum offloading */
2163                 if (ol_flags & IAVF_TX_CKSUM_OFFLOAD_MASK)
2164                         iavf_txd_enable_checksum(ol_flags, &td_cmd,
2165                                                 &td_offset, tx_offload);
2166
2167                 if (nb_ctx) {
2168                         /* Setup TX context descriptor if required */
2169                         uint64_t cd_type_cmd_tso_mss =
2170                                 IAVF_TX_DESC_DTYPE_CONTEXT;
2171                         volatile struct iavf_tx_context_desc *ctx_txd =
2172                                 (volatile struct iavf_tx_context_desc *)
2173                                                         &txr[tx_id];
2174
2175                         txn = &sw_ring[txe->next_id];
2176                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2177                         if (txe->mbuf) {
2178                                 rte_pktmbuf_free_seg(txe->mbuf);
2179                                 txe->mbuf = NULL;
2180                         }
2181
2182                         /* TSO enabled */
2183                         if (ol_flags & PKT_TX_TCP_SEG)
2184                                 cd_type_cmd_tso_mss |=
2185                                         iavf_set_tso_ctx(tx_pkt, tx_offload);
2186
2187                         ctx_txd->type_cmd_tso_mss =
2188                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2189
2190                         IAVF_DUMP_TX_DESC(txq, &txr[tx_id], tx_id);
2191                         txe->last_id = tx_last;
2192                         tx_id = txe->next_id;
2193                         txe = txn;
2194                 }
2195
2196                 m_seg = tx_pkt;
2197                 do {
2198                         txd = &txr[tx_id];
2199                         txn = &sw_ring[txe->next_id];
2200
2201                         if (txe->mbuf)
2202                                 rte_pktmbuf_free_seg(txe->mbuf);
2203                         txe->mbuf = m_seg;
2204
2205                         /* Setup TX Descriptor */
2206                         slen = m_seg->data_len;
2207                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2208                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
2209                         txd->cmd_type_offset_bsz = iavf_build_ctob(td_cmd,
2210                                                                   td_offset,
2211                                                                   slen,
2212                                                                   td_tag);
2213
2214                         IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2215                         txe->last_id = tx_last;
2216                         tx_id = txe->next_id;
2217                         txe = txn;
2218                         m_seg = m_seg->next;
2219                 } while (m_seg);
2220
2221                 /* The last packet data descriptor needs End Of Packet (EOP) */
2222                 td_cmd |= IAVF_TX_DESC_CMD_EOP;
2223                 txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
2224                 txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
2225
2226                 if (txq->nb_used >= txq->rs_thresh) {
2227                         PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
2228                                    "%4u (port=%d queue=%d)",
2229                                    tx_last, txq->port_id, txq->queue_id);
2230
2231                         td_cmd |= IAVF_TX_DESC_CMD_RS;
2232
2233                         /* Update txq RS bit counters */
2234                         txq->nb_used = 0;
2235                 }
2236
2237                 txd->cmd_type_offset_bsz |=
2238                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2239                                          IAVF_TXD_QW1_CMD_SHIFT);
2240                 IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2241         }
2242
2243 end_of_tx:
2244         rte_wmb();
2245
2246         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
2247                    txq->port_id, txq->queue_id, tx_id, nb_tx);
2248
2249         IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
2250         txq->tx_tail = tx_id;
2251
2252         return nb_tx;
2253 }
2254
2255 /* TX prep functions */
2256 uint16_t
2257 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2258               uint16_t nb_pkts)
2259 {
2260         int i, ret;
2261         uint64_t ol_flags;
2262         struct rte_mbuf *m;
2263
2264         for (i = 0; i < nb_pkts; i++) {
2265                 m = tx_pkts[i];
2266                 ol_flags = m->ol_flags;
2267
2268                 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
2269                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
2270                         if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
2271                                 rte_errno = EINVAL;
2272                                 return i;
2273                         }
2274                 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
2275                            (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
2276                         /* MSS outside the range are considered malicious */
2277                         rte_errno = EINVAL;
2278                         return i;
2279                 }
2280
2281                 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
2282                         rte_errno = ENOTSUP;
2283                         return i;
2284                 }
2285
2286 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2287                 ret = rte_validate_tx_offload(m);
2288                 if (ret != 0) {
2289                         rte_errno = -ret;
2290                         return i;
2291                 }
2292 #endif
2293                 ret = rte_net_intel_cksum_prepare(m);
2294                 if (ret != 0) {
2295                         rte_errno = -ret;
2296                         return i;
2297                 }
2298         }
2299
2300         return i;
2301 }
2302
2303 /* choose rx function*/
2304 void
2305 iavf_set_rx_function(struct rte_eth_dev *dev)
2306 {
2307         struct iavf_adapter *adapter =
2308                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2309         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2310
2311 #ifdef RTE_ARCH_X86
2312         struct iavf_rx_queue *rxq;
2313         int i;
2314         bool use_avx2 = false;
2315 #ifdef CC_AVX512_SUPPORT
2316         bool use_avx512 = false;
2317 #endif
2318
2319         if (!iavf_rx_vec_dev_check(dev) &&
2320                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2321                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2322                         rxq = dev->data->rx_queues[i];
2323                         (void)iavf_rxq_vec_setup(rxq);
2324                 }
2325
2326                 if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2327                      rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2328                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2329                         use_avx2 = true;
2330 #ifdef CC_AVX512_SUPPORT
2331                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2332                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2333                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2334                         use_avx512 = true;
2335 #endif
2336
2337                 if (dev->data->scattered_rx) {
2338                         PMD_DRV_LOG(DEBUG,
2339                                     "Using %sVector Scattered Rx (port %d).",
2340                                     use_avx2 ? "avx2 " : "",
2341                                     dev->data->port_id);
2342                         if (vf->vf_res->vf_cap_flags &
2343                                 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2344                                 dev->rx_pkt_burst = use_avx2 ?
2345                                         iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
2346                                         iavf_recv_scattered_pkts_vec_flex_rxd;
2347 #ifdef CC_AVX512_SUPPORT
2348                                 if (use_avx512)
2349                                         dev->rx_pkt_burst =
2350                                                 iavf_recv_scattered_pkts_vec_avx512_flex_rxd;
2351 #endif
2352                         } else {
2353                                 dev->rx_pkt_burst = use_avx2 ?
2354                                         iavf_recv_scattered_pkts_vec_avx2 :
2355                                         iavf_recv_scattered_pkts_vec;
2356 #ifdef CC_AVX512_SUPPORT
2357                                 if (use_avx512)
2358                                         dev->rx_pkt_burst =
2359                                                 iavf_recv_scattered_pkts_vec_avx512;
2360 #endif
2361                         }
2362                 } else {
2363                         PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2364                                     use_avx2 ? "avx2 " : "",
2365                                     dev->data->port_id);
2366                         if (vf->vf_res->vf_cap_flags &
2367                                 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2368                                 dev->rx_pkt_burst = use_avx2 ?
2369                                         iavf_recv_pkts_vec_avx2_flex_rxd :
2370                                         iavf_recv_pkts_vec_flex_rxd;
2371 #ifdef CC_AVX512_SUPPORT
2372                                 if (use_avx512)
2373                                         dev->rx_pkt_burst =
2374                                                 iavf_recv_pkts_vec_avx512_flex_rxd;
2375 #endif
2376                         } else {
2377                                 dev->rx_pkt_burst = use_avx2 ?
2378                                         iavf_recv_pkts_vec_avx2 :
2379                                         iavf_recv_pkts_vec;
2380 #ifdef CC_AVX512_SUPPORT
2381                                 if (use_avx512)
2382                                         dev->rx_pkt_burst =
2383                                                 iavf_recv_pkts_vec_avx512;
2384 #endif
2385                         }
2386                 }
2387
2388                 return;
2389         }
2390 #endif
2391
2392         if (dev->data->scattered_rx) {
2393                 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
2394                             dev->data->port_id);
2395                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2396                         dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
2397                 else
2398                         dev->rx_pkt_burst = iavf_recv_scattered_pkts;
2399         } else if (adapter->rx_bulk_alloc_allowed) {
2400                 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
2401                             dev->data->port_id);
2402                 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
2403         } else {
2404                 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
2405                             dev->data->port_id);
2406                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2407                         dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
2408                 else
2409                         dev->rx_pkt_burst = iavf_recv_pkts;
2410         }
2411 }
2412
2413 /* choose tx function*/
2414 void
2415 iavf_set_tx_function(struct rte_eth_dev *dev)
2416 {
2417 #ifdef RTE_ARCH_X86
2418         struct iavf_tx_queue *txq;
2419         int i;
2420         bool use_avx2 = false;
2421 #ifdef CC_AVX512_SUPPORT
2422         bool use_avx512 = false;
2423 #endif
2424
2425         if (!iavf_tx_vec_dev_check(dev) &&
2426                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2427                 if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2428                      rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2429                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2430                         use_avx2 = true;
2431 #ifdef CC_AVX512_SUPPORT
2432                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2433                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2434                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2435                         use_avx512 = true;
2436 #endif
2437
2438                 PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
2439                             use_avx2 ? "avx2 " : "",
2440                             dev->data->port_id);
2441                 dev->tx_pkt_burst = use_avx2 ?
2442                                     iavf_xmit_pkts_vec_avx2 :
2443                                     iavf_xmit_pkts_vec;
2444 #ifdef CC_AVX512_SUPPORT
2445                 if (use_avx512)
2446                         dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512;
2447 #endif
2448                 dev->tx_pkt_prepare = NULL;
2449
2450                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2451                         txq = dev->data->tx_queues[i];
2452                         if (!txq)
2453                                 continue;
2454 #ifdef CC_AVX512_SUPPORT
2455                         if (use_avx512)
2456                                 iavf_txq_vec_setup_avx512(txq);
2457                         else
2458                                 iavf_txq_vec_setup(txq);
2459 #else
2460                         iavf_txq_vec_setup(txq);
2461 #endif
2462                 }
2463
2464                 return;
2465         }
2466 #endif
2467
2468         PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
2469                     dev->data->port_id);
2470         dev->tx_pkt_burst = iavf_xmit_pkts;
2471         dev->tx_pkt_prepare = iavf_prep_pkts;
2472 }
2473
2474 static int
2475 iavf_tx_done_cleanup_full(struct iavf_tx_queue *txq,
2476                         uint32_t free_cnt)
2477 {
2478         struct iavf_tx_entry *swr_ring = txq->sw_ring;
2479         uint16_t i, tx_last, tx_id;
2480         uint16_t nb_tx_free_last;
2481         uint16_t nb_tx_to_clean;
2482         uint32_t pkt_cnt;
2483
2484         /* Start free mbuf from the next of tx_tail */
2485         tx_last = txq->tx_tail;
2486         tx_id  = swr_ring[tx_last].next_id;
2487
2488         if (txq->nb_free == 0 && iavf_xmit_cleanup(txq))
2489                 return 0;
2490
2491         nb_tx_to_clean = txq->nb_free;
2492         nb_tx_free_last = txq->nb_free;
2493         if (!free_cnt)
2494                 free_cnt = txq->nb_tx_desc;
2495
2496         /* Loop through swr_ring to count the amount of
2497          * freeable mubfs and packets.
2498          */
2499         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2500                 for (i = 0; i < nb_tx_to_clean &&
2501                         pkt_cnt < free_cnt &&
2502                         tx_id != tx_last; i++) {
2503                         if (swr_ring[tx_id].mbuf != NULL) {
2504                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2505                                 swr_ring[tx_id].mbuf = NULL;
2506
2507                                 /*
2508                                  * last segment in the packet,
2509                                  * increment packet count
2510                                  */
2511                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2512                         }
2513
2514                         tx_id = swr_ring[tx_id].next_id;
2515                 }
2516
2517                 if (txq->rs_thresh > txq->nb_tx_desc -
2518                         txq->nb_free || tx_id == tx_last)
2519                         break;
2520
2521                 if (pkt_cnt < free_cnt) {
2522                         if (iavf_xmit_cleanup(txq))
2523                                 break;
2524
2525                         nb_tx_to_clean = txq->nb_free - nb_tx_free_last;
2526                         nb_tx_free_last = txq->nb_free;
2527                 }
2528         }
2529
2530         return (int)pkt_cnt;
2531 }
2532
2533 int
2534 iavf_dev_tx_done_cleanup(void *txq, uint32_t free_cnt)
2535 {
2536         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
2537
2538         return iavf_tx_done_cleanup_full(q, free_cnt);
2539 }
2540
2541 void
2542 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2543                      struct rte_eth_rxq_info *qinfo)
2544 {
2545         struct iavf_rx_queue *rxq;
2546
2547         rxq = dev->data->rx_queues[queue_id];
2548
2549         qinfo->mp = rxq->mp;
2550         qinfo->scattered_rx = dev->data->scattered_rx;
2551         qinfo->nb_desc = rxq->nb_rx_desc;
2552
2553         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2554         qinfo->conf.rx_drop_en = true;
2555         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2556 }
2557
2558 void
2559 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2560                      struct rte_eth_txq_info *qinfo)
2561 {
2562         struct iavf_tx_queue *txq;
2563
2564         txq = dev->data->tx_queues[queue_id];
2565
2566         qinfo->nb_desc = txq->nb_tx_desc;
2567
2568         qinfo->conf.tx_free_thresh = txq->free_thresh;
2569         qinfo->conf.tx_rs_thresh = txq->rs_thresh;
2570         qinfo->conf.offloads = txq->offloads;
2571         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2572 }
2573
2574 /* Get the number of used descriptors of a rx queue */
2575 uint32_t
2576 iavf_dev_rxq_count(struct rte_eth_dev *dev, uint16_t queue_id)
2577 {
2578 #define IAVF_RXQ_SCAN_INTERVAL 4
2579         volatile union iavf_rx_desc *rxdp;
2580         struct iavf_rx_queue *rxq;
2581         uint16_t desc = 0;
2582
2583         rxq = dev->data->rx_queues[queue_id];
2584         rxdp = &rxq->rx_ring[rxq->rx_tail];
2585
2586         while ((desc < rxq->nb_rx_desc) &&
2587                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2588                  IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
2589                (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
2590                 /* Check the DD bit of a rx descriptor of each 4 in a group,
2591                  * to avoid checking too frequently and downgrading performance
2592                  * too much.
2593                  */
2594                 desc += IAVF_RXQ_SCAN_INTERVAL;
2595                 rxdp += IAVF_RXQ_SCAN_INTERVAL;
2596                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2597                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2598                                         desc - rxq->nb_rx_desc]);
2599         }
2600
2601         return desc;
2602 }
2603
2604 int
2605 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
2606 {
2607         struct iavf_rx_queue *rxq = rx_queue;
2608         volatile uint64_t *status;
2609         uint64_t mask;
2610         uint32_t desc;
2611
2612         if (unlikely(offset >= rxq->nb_rx_desc))
2613                 return -EINVAL;
2614
2615         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2616                 return RTE_ETH_RX_DESC_UNAVAIL;
2617
2618         desc = rxq->rx_tail + offset;
2619         if (desc >= rxq->nb_rx_desc)
2620                 desc -= rxq->nb_rx_desc;
2621
2622         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2623         mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
2624                 << IAVF_RXD_QW1_STATUS_SHIFT);
2625         if (*status & mask)
2626                 return RTE_ETH_RX_DESC_DONE;
2627
2628         return RTE_ETH_RX_DESC_AVAIL;
2629 }
2630
2631 int
2632 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
2633 {
2634         struct iavf_tx_queue *txq = tx_queue;
2635         volatile uint64_t *status;
2636         uint64_t mask, expect;
2637         uint32_t desc;
2638
2639         if (unlikely(offset >= txq->nb_tx_desc))
2640                 return -EINVAL;
2641
2642         desc = txq->tx_tail + offset;
2643         /* go to next desc that has the RS bit */
2644         desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
2645                 txq->rs_thresh;
2646         if (desc >= txq->nb_tx_desc) {
2647                 desc -= txq->nb_tx_desc;
2648                 if (desc >= txq->nb_tx_desc)
2649                         desc -= txq->nb_tx_desc;
2650         }
2651
2652         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2653         mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
2654         expect = rte_cpu_to_le_64(
2655                  IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
2656         if ((*status & mask) == expect)
2657                 return RTE_ETH_TX_DESC_DONE;
2658
2659         return RTE_ETH_TX_DESC_FULL;
2660 }
2661
2662 const uint32_t *
2663 iavf_get_default_ptype_table(void)
2664 {
2665         static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
2666                 __rte_cache_aligned = {
2667                 /* L2 types */
2668                 /* [0] reserved */
2669                 [1] = RTE_PTYPE_L2_ETHER,
2670                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
2671                 /* [3] - [5] reserved */
2672                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
2673                 /* [7] - [10] reserved */
2674                 [11] = RTE_PTYPE_L2_ETHER_ARP,
2675                 /* [12] - [21] reserved */
2676
2677                 /* Non tunneled IPv4 */
2678                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2679                        RTE_PTYPE_L4_FRAG,
2680                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2681                        RTE_PTYPE_L4_NONFRAG,
2682                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2683                        RTE_PTYPE_L4_UDP,
2684                 /* [25] reserved */
2685                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2686                        RTE_PTYPE_L4_TCP,
2687                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2688                        RTE_PTYPE_L4_SCTP,
2689                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2690                        RTE_PTYPE_L4_ICMP,
2691
2692                 /* IPv4 --> IPv4 */
2693                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2694                        RTE_PTYPE_TUNNEL_IP |
2695                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2696                        RTE_PTYPE_INNER_L4_FRAG,
2697                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2698                        RTE_PTYPE_TUNNEL_IP |
2699                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2700                        RTE_PTYPE_INNER_L4_NONFRAG,
2701                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2702                        RTE_PTYPE_TUNNEL_IP |
2703                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2704                        RTE_PTYPE_INNER_L4_UDP,
2705                 /* [32] reserved */
2706                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2707                        RTE_PTYPE_TUNNEL_IP |
2708                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2709                        RTE_PTYPE_INNER_L4_TCP,
2710                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2711                        RTE_PTYPE_TUNNEL_IP |
2712                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2713                        RTE_PTYPE_INNER_L4_SCTP,
2714                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2715                        RTE_PTYPE_TUNNEL_IP |
2716                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2717                        RTE_PTYPE_INNER_L4_ICMP,
2718
2719                 /* IPv4 --> IPv6 */
2720                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2721                        RTE_PTYPE_TUNNEL_IP |
2722                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2723                        RTE_PTYPE_INNER_L4_FRAG,
2724                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2725                        RTE_PTYPE_TUNNEL_IP |
2726                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2727                        RTE_PTYPE_INNER_L4_NONFRAG,
2728                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2729                        RTE_PTYPE_TUNNEL_IP |
2730                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2731                        RTE_PTYPE_INNER_L4_UDP,
2732                 /* [39] reserved */
2733                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2734                        RTE_PTYPE_TUNNEL_IP |
2735                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2736                        RTE_PTYPE_INNER_L4_TCP,
2737                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2738                        RTE_PTYPE_TUNNEL_IP |
2739                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2740                        RTE_PTYPE_INNER_L4_SCTP,
2741                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2742                        RTE_PTYPE_TUNNEL_IP |
2743                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2744                        RTE_PTYPE_INNER_L4_ICMP,
2745
2746                 /* IPv4 --> GRE/Teredo/VXLAN */
2747                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2748                        RTE_PTYPE_TUNNEL_GRENAT,
2749
2750                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
2751                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2752                        RTE_PTYPE_TUNNEL_GRENAT |
2753                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2754                        RTE_PTYPE_INNER_L4_FRAG,
2755                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2756                        RTE_PTYPE_TUNNEL_GRENAT |
2757                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2758                        RTE_PTYPE_INNER_L4_NONFRAG,
2759                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2760                        RTE_PTYPE_TUNNEL_GRENAT |
2761                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2762                        RTE_PTYPE_INNER_L4_UDP,
2763                 /* [47] reserved */
2764                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2765                        RTE_PTYPE_TUNNEL_GRENAT |
2766                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2767                        RTE_PTYPE_INNER_L4_TCP,
2768                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2769                        RTE_PTYPE_TUNNEL_GRENAT |
2770                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2771                        RTE_PTYPE_INNER_L4_SCTP,
2772                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2773                        RTE_PTYPE_TUNNEL_GRENAT |
2774                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2775                        RTE_PTYPE_INNER_L4_ICMP,
2776
2777                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
2778                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2779                        RTE_PTYPE_TUNNEL_GRENAT |
2780                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2781                        RTE_PTYPE_INNER_L4_FRAG,
2782                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2783                        RTE_PTYPE_TUNNEL_GRENAT |
2784                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2785                        RTE_PTYPE_INNER_L4_NONFRAG,
2786                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2787                        RTE_PTYPE_TUNNEL_GRENAT |
2788                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2789                        RTE_PTYPE_INNER_L4_UDP,
2790                 /* [54] reserved */
2791                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2792                        RTE_PTYPE_TUNNEL_GRENAT |
2793                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2794                        RTE_PTYPE_INNER_L4_TCP,
2795                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2796                        RTE_PTYPE_TUNNEL_GRENAT |
2797                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2798                        RTE_PTYPE_INNER_L4_SCTP,
2799                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2800                        RTE_PTYPE_TUNNEL_GRENAT |
2801                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2802                        RTE_PTYPE_INNER_L4_ICMP,
2803
2804                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
2805                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2806                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2807
2808                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2809                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2810                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2811                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2812                        RTE_PTYPE_INNER_L4_FRAG,
2813                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2814                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2815                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2816                        RTE_PTYPE_INNER_L4_NONFRAG,
2817                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2818                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2819                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2820                        RTE_PTYPE_INNER_L4_UDP,
2821                 /* [62] reserved */
2822                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2823                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2824                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2825                        RTE_PTYPE_INNER_L4_TCP,
2826                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2827                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2828                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2829                        RTE_PTYPE_INNER_L4_SCTP,
2830                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2831                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2832                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2833                        RTE_PTYPE_INNER_L4_ICMP,
2834
2835                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2836                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2837                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2838                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2839                        RTE_PTYPE_INNER_L4_FRAG,
2840                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2841                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2842                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2843                        RTE_PTYPE_INNER_L4_NONFRAG,
2844                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2845                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2846                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2847                        RTE_PTYPE_INNER_L4_UDP,
2848                 /* [69] reserved */
2849                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2850                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2851                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2852                        RTE_PTYPE_INNER_L4_TCP,
2853                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2854                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2855                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2856                        RTE_PTYPE_INNER_L4_SCTP,
2857                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2858                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2859                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2860                        RTE_PTYPE_INNER_L4_ICMP,
2861                 /* [73] - [87] reserved */
2862
2863                 /* Non tunneled IPv6 */
2864                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2865                        RTE_PTYPE_L4_FRAG,
2866                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2867                        RTE_PTYPE_L4_NONFRAG,
2868                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2869                        RTE_PTYPE_L4_UDP,
2870                 /* [91] reserved */
2871                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2872                        RTE_PTYPE_L4_TCP,
2873                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2874                        RTE_PTYPE_L4_SCTP,
2875                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2876                        RTE_PTYPE_L4_ICMP,
2877
2878                 /* IPv6 --> IPv4 */
2879                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2880                        RTE_PTYPE_TUNNEL_IP |
2881                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2882                        RTE_PTYPE_INNER_L4_FRAG,
2883                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2884                        RTE_PTYPE_TUNNEL_IP |
2885                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2886                        RTE_PTYPE_INNER_L4_NONFRAG,
2887                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2888                        RTE_PTYPE_TUNNEL_IP |
2889                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2890                        RTE_PTYPE_INNER_L4_UDP,
2891                 /* [98] reserved */
2892                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2893                        RTE_PTYPE_TUNNEL_IP |
2894                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2895                        RTE_PTYPE_INNER_L4_TCP,
2896                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2897                         RTE_PTYPE_TUNNEL_IP |
2898                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2899                         RTE_PTYPE_INNER_L4_SCTP,
2900                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2901                         RTE_PTYPE_TUNNEL_IP |
2902                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2903                         RTE_PTYPE_INNER_L4_ICMP,
2904
2905                 /* IPv6 --> IPv6 */
2906                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2907                         RTE_PTYPE_TUNNEL_IP |
2908                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2909                         RTE_PTYPE_INNER_L4_FRAG,
2910                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2911                         RTE_PTYPE_TUNNEL_IP |
2912                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2913                         RTE_PTYPE_INNER_L4_NONFRAG,
2914                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2915                         RTE_PTYPE_TUNNEL_IP |
2916                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2917                         RTE_PTYPE_INNER_L4_UDP,
2918                 /* [105] reserved */
2919                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2920                         RTE_PTYPE_TUNNEL_IP |
2921                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2922                         RTE_PTYPE_INNER_L4_TCP,
2923                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2924                         RTE_PTYPE_TUNNEL_IP |
2925                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2926                         RTE_PTYPE_INNER_L4_SCTP,
2927                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2928                         RTE_PTYPE_TUNNEL_IP |
2929                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2930                         RTE_PTYPE_INNER_L4_ICMP,
2931
2932                 /* IPv6 --> GRE/Teredo/VXLAN */
2933                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2934                         RTE_PTYPE_TUNNEL_GRENAT,
2935
2936                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
2937                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2938                         RTE_PTYPE_TUNNEL_GRENAT |
2939                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2940                         RTE_PTYPE_INNER_L4_FRAG,
2941                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2942                         RTE_PTYPE_TUNNEL_GRENAT |
2943                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2944                         RTE_PTYPE_INNER_L4_NONFRAG,
2945                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2946                         RTE_PTYPE_TUNNEL_GRENAT |
2947                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2948                         RTE_PTYPE_INNER_L4_UDP,
2949                 /* [113] reserved */
2950                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2951                         RTE_PTYPE_TUNNEL_GRENAT |
2952                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2953                         RTE_PTYPE_INNER_L4_TCP,
2954                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2955                         RTE_PTYPE_TUNNEL_GRENAT |
2956                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2957                         RTE_PTYPE_INNER_L4_SCTP,
2958                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2959                         RTE_PTYPE_TUNNEL_GRENAT |
2960                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2961                         RTE_PTYPE_INNER_L4_ICMP,
2962
2963                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
2964                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2965                         RTE_PTYPE_TUNNEL_GRENAT |
2966                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2967                         RTE_PTYPE_INNER_L4_FRAG,
2968                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2969                         RTE_PTYPE_TUNNEL_GRENAT |
2970                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2971                         RTE_PTYPE_INNER_L4_NONFRAG,
2972                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2973                         RTE_PTYPE_TUNNEL_GRENAT |
2974                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2975                         RTE_PTYPE_INNER_L4_UDP,
2976                 /* [120] reserved */
2977                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2978                         RTE_PTYPE_TUNNEL_GRENAT |
2979                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2980                         RTE_PTYPE_INNER_L4_TCP,
2981                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2982                         RTE_PTYPE_TUNNEL_GRENAT |
2983                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2984                         RTE_PTYPE_INNER_L4_SCTP,
2985                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2986                         RTE_PTYPE_TUNNEL_GRENAT |
2987                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2988                         RTE_PTYPE_INNER_L4_ICMP,
2989
2990                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
2991                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2992                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2993
2994                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2995                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2996                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2997                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2998                         RTE_PTYPE_INNER_L4_FRAG,
2999                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3000                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3001                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3002                         RTE_PTYPE_INNER_L4_NONFRAG,
3003                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3004                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3005                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3006                         RTE_PTYPE_INNER_L4_UDP,
3007                 /* [128] reserved */
3008                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3009                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3010                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3011                         RTE_PTYPE_INNER_L4_TCP,
3012                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3013                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3014                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3015                         RTE_PTYPE_INNER_L4_SCTP,
3016                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3017                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3018                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3019                         RTE_PTYPE_INNER_L4_ICMP,
3020
3021                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3022                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3023                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3024                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3025                         RTE_PTYPE_INNER_L4_FRAG,
3026                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3027                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3028                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3029                         RTE_PTYPE_INNER_L4_NONFRAG,
3030                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3031                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3032                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3033                         RTE_PTYPE_INNER_L4_UDP,
3034                 /* [135] reserved */
3035                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3036                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3037                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3038                         RTE_PTYPE_INNER_L4_TCP,
3039                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3040                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3041                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3042                         RTE_PTYPE_INNER_L4_SCTP,
3043                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3044                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3045                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3046                         RTE_PTYPE_INNER_L4_ICMP,
3047                 /* [139] - [299] reserved */
3048
3049                 /* PPPoE */
3050                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
3051                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
3052
3053                 /* PPPoE --> IPv4 */
3054                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
3055                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3056                         RTE_PTYPE_L4_FRAG,
3057                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
3058                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3059                         RTE_PTYPE_L4_NONFRAG,
3060                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
3061                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3062                         RTE_PTYPE_L4_UDP,
3063                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
3064                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3065                         RTE_PTYPE_L4_TCP,
3066                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
3067                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3068                         RTE_PTYPE_L4_SCTP,
3069                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
3070                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3071                         RTE_PTYPE_L4_ICMP,
3072
3073                 /* PPPoE --> IPv6 */
3074                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
3075                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3076                         RTE_PTYPE_L4_FRAG,
3077                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
3078                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3079                         RTE_PTYPE_L4_NONFRAG,
3080                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
3081                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3082                         RTE_PTYPE_L4_UDP,
3083                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
3084                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3085                         RTE_PTYPE_L4_TCP,
3086                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
3087                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3088                         RTE_PTYPE_L4_SCTP,
3089                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
3090                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3091                         RTE_PTYPE_L4_ICMP,
3092                 /* [314] - [324] reserved */
3093
3094                 /* IPv4/IPv6 --> GTPC/GTPU */
3095                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3096                         RTE_PTYPE_TUNNEL_GTPC,
3097                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3098                         RTE_PTYPE_TUNNEL_GTPC,
3099                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3100                         RTE_PTYPE_TUNNEL_GTPC,
3101                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3102                         RTE_PTYPE_TUNNEL_GTPC,
3103                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3104                         RTE_PTYPE_TUNNEL_GTPU,
3105                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3106                         RTE_PTYPE_TUNNEL_GTPU,
3107
3108                 /* IPv4 --> GTPU --> IPv4 */
3109                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3110                         RTE_PTYPE_TUNNEL_GTPU |
3111                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3112                         RTE_PTYPE_INNER_L4_FRAG,
3113                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3114                         RTE_PTYPE_TUNNEL_GTPU |
3115                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3116                         RTE_PTYPE_INNER_L4_NONFRAG,
3117                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3118                         RTE_PTYPE_TUNNEL_GTPU |
3119                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3120                         RTE_PTYPE_INNER_L4_UDP,
3121                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3122                         RTE_PTYPE_TUNNEL_GTPU |
3123                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3124                         RTE_PTYPE_INNER_L4_TCP,
3125                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3126                         RTE_PTYPE_TUNNEL_GTPU |
3127                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3128                         RTE_PTYPE_INNER_L4_ICMP,
3129
3130                 /* IPv6 --> GTPU --> IPv4 */
3131                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3132                         RTE_PTYPE_TUNNEL_GTPU |
3133                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3134                         RTE_PTYPE_INNER_L4_FRAG,
3135                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3136                         RTE_PTYPE_TUNNEL_GTPU |
3137                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3138                         RTE_PTYPE_INNER_L4_NONFRAG,
3139                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3140                         RTE_PTYPE_TUNNEL_GTPU |
3141                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3142                         RTE_PTYPE_INNER_L4_UDP,
3143                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3144                         RTE_PTYPE_TUNNEL_GTPU |
3145                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3146                         RTE_PTYPE_INNER_L4_TCP,
3147                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3148                         RTE_PTYPE_TUNNEL_GTPU |
3149                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3150                         RTE_PTYPE_INNER_L4_ICMP,
3151
3152                 /* IPv4 --> GTPU --> IPv6 */
3153                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3154                         RTE_PTYPE_TUNNEL_GTPU |
3155                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3156                         RTE_PTYPE_INNER_L4_FRAG,
3157                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3158                         RTE_PTYPE_TUNNEL_GTPU |
3159                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3160                         RTE_PTYPE_INNER_L4_NONFRAG,
3161                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3162                         RTE_PTYPE_TUNNEL_GTPU |
3163                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3164                         RTE_PTYPE_INNER_L4_UDP,
3165                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3166                         RTE_PTYPE_TUNNEL_GTPU |
3167                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3168                         RTE_PTYPE_INNER_L4_TCP,
3169                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3170                         RTE_PTYPE_TUNNEL_GTPU |
3171                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3172                         RTE_PTYPE_INNER_L4_ICMP,
3173
3174                 /* IPv6 --> GTPU --> IPv6 */
3175                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3176                         RTE_PTYPE_TUNNEL_GTPU |
3177                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3178                         RTE_PTYPE_INNER_L4_FRAG,
3179                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3180                         RTE_PTYPE_TUNNEL_GTPU |
3181                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3182                         RTE_PTYPE_INNER_L4_NONFRAG,
3183                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3184                         RTE_PTYPE_TUNNEL_GTPU |
3185                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3186                         RTE_PTYPE_INNER_L4_UDP,
3187                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3188                         RTE_PTYPE_TUNNEL_GTPU |
3189                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3190                         RTE_PTYPE_INNER_L4_TCP,
3191                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3192                         RTE_PTYPE_TUNNEL_GTPU |
3193                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3194                         RTE_PTYPE_INNER_L4_ICMP,
3195                 /* All others reserved */
3196         };
3197
3198         return ptype_tbl;
3199 }