f817fbc49b4ba2ac2f1351002e31f75faed07cf9
[dpdk.git] / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26 #include <rte_vect.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "rte_pmd_iavf.h"
31
32 /* Offset of mbuf dynamic field for protocol extraction's metadata */
33 int rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
34
35 /* Mask of mbuf dynamic flags for protocol extraction's type */
36 uint64_t rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
37 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
38 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
39 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
40 uint64_t rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
41 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
42
43 uint8_t
44 iavf_proto_xtr_type_to_rxdid(uint8_t flex_type)
45 {
46         static uint8_t rxdid_map[] = {
47                 [IAVF_PROTO_XTR_NONE]      = IAVF_RXDID_COMMS_OVS_1,
48                 [IAVF_PROTO_XTR_VLAN]      = IAVF_RXDID_COMMS_AUX_VLAN,
49                 [IAVF_PROTO_XTR_IPV4]      = IAVF_RXDID_COMMS_AUX_IPV4,
50                 [IAVF_PROTO_XTR_IPV6]      = IAVF_RXDID_COMMS_AUX_IPV6,
51                 [IAVF_PROTO_XTR_IPV6_FLOW] = IAVF_RXDID_COMMS_AUX_IPV6_FLOW,
52                 [IAVF_PROTO_XTR_TCP]       = IAVF_RXDID_COMMS_AUX_TCP,
53                 [IAVF_PROTO_XTR_IP_OFFSET] = IAVF_RXDID_COMMS_AUX_IP_OFFSET,
54         };
55
56         return flex_type < RTE_DIM(rxdid_map) ?
57                                 rxdid_map[flex_type] : IAVF_RXDID_COMMS_OVS_1;
58 }
59
60 int
61 iavf_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
62 {
63         struct iavf_rx_queue *rxq = rx_queue;
64         volatile union iavf_rx_desc *rxdp;
65         uint16_t desc;
66
67         desc = rxq->rx_tail;
68         rxdp = &rxq->rx_ring[desc];
69         /* watch for changes in status bit */
70         pmc->addr = &rxdp->wb.qword1.status_error_len;
71
72         /*
73          * we expect the DD bit to be set to 1 if this descriptor was already
74          * written to.
75          */
76         pmc->val = rte_cpu_to_le_64(1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
77         pmc->mask = rte_cpu_to_le_64(1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
78
79         /* registers are 64-bit */
80         pmc->size = sizeof(uint64_t);
81
82         return 0;
83 }
84
85 static inline int
86 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
87 {
88         /* The following constraints must be satisfied:
89          *   thresh < rxq->nb_rx_desc
90          */
91         if (thresh >= nb_desc) {
92                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
93                              thresh, nb_desc);
94                 return -EINVAL;
95         }
96         return 0;
97 }
98
99 static inline int
100 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
101                 uint16_t tx_free_thresh)
102 {
103         /* TX descriptors will have their RS bit set after tx_rs_thresh
104          * descriptors have been used. The TX descriptor ring will be cleaned
105          * after tx_free_thresh descriptors are used or if the number of
106          * descriptors required to transmit a packet is greater than the
107          * number of free TX descriptors.
108          *
109          * The following constraints must be satisfied:
110          *  - tx_rs_thresh must be less than the size of the ring minus 2.
111          *  - tx_free_thresh must be less than the size of the ring minus 3.
112          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
113          *  - tx_rs_thresh must be a divisor of the ring size.
114          *
115          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
116          * race condition, hence the maximum threshold constraints. When set
117          * to zero use default values.
118          */
119         if (tx_rs_thresh >= (nb_desc - 2)) {
120                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
121                              "number of TX descriptors (%u) minus 2",
122                              tx_rs_thresh, nb_desc);
123                 return -EINVAL;
124         }
125         if (tx_free_thresh >= (nb_desc - 3)) {
126                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
127                              "number of TX descriptors (%u) minus 3.",
128                              tx_free_thresh, nb_desc);
129                 return -EINVAL;
130         }
131         if (tx_rs_thresh > tx_free_thresh) {
132                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
133                              "equal to tx_free_thresh (%u).",
134                              tx_rs_thresh, tx_free_thresh);
135                 return -EINVAL;
136         }
137         if ((nb_desc % tx_rs_thresh) != 0) {
138                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
139                              "number of TX descriptors (%u).",
140                              tx_rs_thresh, nb_desc);
141                 return -EINVAL;
142         }
143
144         return 0;
145 }
146
147 static inline bool
148 check_rx_vec_allow(struct iavf_rx_queue *rxq)
149 {
150         if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
151             rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
152                 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
153                 return true;
154         }
155
156         PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
157         return false;
158 }
159
160 static inline bool
161 check_tx_vec_allow(struct iavf_tx_queue *txq)
162 {
163         if (!(txq->offloads & IAVF_TX_NO_VECTOR_FLAGS) &&
164             txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
165             txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
166                 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
167                 return true;
168         }
169         PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
170         return false;
171 }
172
173 static inline bool
174 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
175 {
176         int ret = true;
177
178         if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
179                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
180                              "rxq->rx_free_thresh=%d, "
181                              "IAVF_RX_MAX_BURST=%d",
182                              rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
183                 ret = false;
184         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
185                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
186                              "rxq->nb_rx_desc=%d, "
187                              "rxq->rx_free_thresh=%d",
188                              rxq->nb_rx_desc, rxq->rx_free_thresh);
189                 ret = false;
190         }
191         return ret;
192 }
193
194 static inline void
195 reset_rx_queue(struct iavf_rx_queue *rxq)
196 {
197         uint16_t len;
198         uint32_t i;
199
200         if (!rxq)
201                 return;
202
203         len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
204
205         for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
206                 ((volatile char *)rxq->rx_ring)[i] = 0;
207
208         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
209
210         for (i = 0; i < IAVF_RX_MAX_BURST; i++)
211                 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
212
213         /* for rx bulk */
214         rxq->rx_nb_avail = 0;
215         rxq->rx_next_avail = 0;
216         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
217
218         rxq->rx_tail = 0;
219         rxq->nb_rx_hold = 0;
220         rxq->pkt_first_seg = NULL;
221         rxq->pkt_last_seg = NULL;
222         rxq->rxrearm_nb = 0;
223         rxq->rxrearm_start = 0;
224 }
225
226 static inline void
227 reset_tx_queue(struct iavf_tx_queue *txq)
228 {
229         struct iavf_tx_entry *txe;
230         uint32_t i, size;
231         uint16_t prev;
232
233         if (!txq) {
234                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
235                 return;
236         }
237
238         txe = txq->sw_ring;
239         size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
240         for (i = 0; i < size; i++)
241                 ((volatile char *)txq->tx_ring)[i] = 0;
242
243         prev = (uint16_t)(txq->nb_tx_desc - 1);
244         for (i = 0; i < txq->nb_tx_desc; i++) {
245                 txq->tx_ring[i].cmd_type_offset_bsz =
246                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
247                 txe[i].mbuf =  NULL;
248                 txe[i].last_id = i;
249                 txe[prev].next_id = i;
250                 prev = i;
251         }
252
253         txq->tx_tail = 0;
254         txq->nb_used = 0;
255
256         txq->last_desc_cleaned = txq->nb_tx_desc - 1;
257         txq->nb_free = txq->nb_tx_desc - 1;
258
259         txq->next_dd = txq->rs_thresh - 1;
260         txq->next_rs = txq->rs_thresh - 1;
261 }
262
263 static int
264 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
265 {
266         volatile union iavf_rx_desc *rxd;
267         struct rte_mbuf *mbuf = NULL;
268         uint64_t dma_addr;
269         uint16_t i;
270
271         for (i = 0; i < rxq->nb_rx_desc; i++) {
272                 mbuf = rte_mbuf_raw_alloc(rxq->mp);
273                 if (unlikely(!mbuf)) {
274                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
275                         return -ENOMEM;
276                 }
277
278                 rte_mbuf_refcnt_set(mbuf, 1);
279                 mbuf->next = NULL;
280                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
281                 mbuf->nb_segs = 1;
282                 mbuf->port = rxq->port_id;
283
284                 dma_addr =
285                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
286
287                 rxd = &rxq->rx_ring[i];
288                 rxd->read.pkt_addr = dma_addr;
289                 rxd->read.hdr_addr = 0;
290 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
291                 rxd->read.rsvd1 = 0;
292                 rxd->read.rsvd2 = 0;
293 #endif
294
295                 rxq->sw_ring[i] = mbuf;
296         }
297
298         return 0;
299 }
300
301 static inline void
302 release_rxq_mbufs(struct iavf_rx_queue *rxq)
303 {
304         uint16_t i;
305
306         if (!rxq->sw_ring)
307                 return;
308
309         for (i = 0; i < rxq->nb_rx_desc; i++) {
310                 if (rxq->sw_ring[i]) {
311                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
312                         rxq->sw_ring[i] = NULL;
313                 }
314         }
315
316         /* for rx bulk */
317         if (rxq->rx_nb_avail == 0)
318                 return;
319         for (i = 0; i < rxq->rx_nb_avail; i++) {
320                 struct rte_mbuf *mbuf;
321
322                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
323                 rte_pktmbuf_free_seg(mbuf);
324         }
325         rxq->rx_nb_avail = 0;
326 }
327
328 static inline void
329 release_txq_mbufs(struct iavf_tx_queue *txq)
330 {
331         uint16_t i;
332
333         if (!txq || !txq->sw_ring) {
334                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
335                 return;
336         }
337
338         for (i = 0; i < txq->nb_tx_desc; i++) {
339                 if (txq->sw_ring[i].mbuf) {
340                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
341                         txq->sw_ring[i].mbuf = NULL;
342                 }
343         }
344 }
345
346 static const struct iavf_rxq_ops def_rxq_ops = {
347         .release_mbufs = release_rxq_mbufs,
348 };
349
350 static const struct iavf_txq_ops def_txq_ops = {
351         .release_mbufs = release_txq_mbufs,
352 };
353
354 static inline void
355 iavf_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct iavf_rx_queue *rxq,
356                                     struct rte_mbuf *mb,
357                                     volatile union iavf_rx_flex_desc *rxdp)
358 {
359         volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
360                         (volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
361 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
362         uint16_t stat_err;
363 #endif
364
365         if (desc->flow_id != 0xFFFFFFFF) {
366                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
367                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
368         }
369
370 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
371         stat_err = rte_le_to_cpu_16(desc->status_error0);
372         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
373                 mb->ol_flags |= PKT_RX_RSS_HASH;
374                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
375         }
376 #endif
377 }
378
379 static inline void
380 iavf_rxd_to_pkt_fields_by_comms_aux_v1(struct iavf_rx_queue *rxq,
381                                        struct rte_mbuf *mb,
382                                        volatile union iavf_rx_flex_desc *rxdp)
383 {
384         volatile struct iavf_32b_rx_flex_desc_comms *desc =
385                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
386         uint16_t stat_err;
387
388         stat_err = rte_le_to_cpu_16(desc->status_error0);
389         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
390                 mb->ol_flags |= PKT_RX_RSS_HASH;
391                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
392         }
393
394 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
395         if (desc->flow_id != 0xFFFFFFFF) {
396                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
397                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
398         }
399
400         if (rxq->xtr_ol_flag) {
401                 uint32_t metadata = 0;
402
403                 stat_err = rte_le_to_cpu_16(desc->status_error1);
404
405                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
406                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
407
408                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
409                         metadata |=
410                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
411
412                 if (metadata) {
413                         mb->ol_flags |= rxq->xtr_ol_flag;
414
415                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
416                 }
417         }
418 #endif
419 }
420
421 static inline void
422 iavf_rxd_to_pkt_fields_by_comms_aux_v2(struct iavf_rx_queue *rxq,
423                                        struct rte_mbuf *mb,
424                                        volatile union iavf_rx_flex_desc *rxdp)
425 {
426         volatile struct iavf_32b_rx_flex_desc_comms *desc =
427                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
428         uint16_t stat_err;
429
430         stat_err = rte_le_to_cpu_16(desc->status_error0);
431         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
432                 mb->ol_flags |= PKT_RX_RSS_HASH;
433                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
434         }
435
436 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
437         if (desc->flow_id != 0xFFFFFFFF) {
438                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
439                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
440         }
441
442         if (rxq->xtr_ol_flag) {
443                 uint32_t metadata = 0;
444
445                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
446                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
447                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
448                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
449
450                 if (metadata) {
451                         mb->ol_flags |= rxq->xtr_ol_flag;
452
453                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
454                 }
455         }
456 #endif
457 }
458
459 static void
460 iavf_select_rxd_to_pkt_fields_handler(struct iavf_rx_queue *rxq, uint32_t rxdid)
461 {
462         switch (rxdid) {
463         case IAVF_RXDID_COMMS_AUX_VLAN:
464                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
465                 rxq->rxd_to_pkt_fields =
466                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
467                 break;
468         case IAVF_RXDID_COMMS_AUX_IPV4:
469                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
470                 rxq->rxd_to_pkt_fields =
471                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
472                 break;
473         case IAVF_RXDID_COMMS_AUX_IPV6:
474                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
475                 rxq->rxd_to_pkt_fields =
476                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
477                 break;
478         case IAVF_RXDID_COMMS_AUX_IPV6_FLOW:
479                 rxq->xtr_ol_flag =
480                         rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
481                 rxq->rxd_to_pkt_fields =
482                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
483                 break;
484         case IAVF_RXDID_COMMS_AUX_TCP:
485                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
486                 rxq->rxd_to_pkt_fields =
487                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
488                 break;
489         case IAVF_RXDID_COMMS_AUX_IP_OFFSET:
490                 rxq->xtr_ol_flag =
491                         rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
492                 rxq->rxd_to_pkt_fields =
493                         iavf_rxd_to_pkt_fields_by_comms_aux_v2;
494                 break;
495         case IAVF_RXDID_COMMS_OVS_1:
496                 rxq->rxd_to_pkt_fields = iavf_rxd_to_pkt_fields_by_comms_ovs;
497                 break;
498         default:
499                 /* update this according to the RXDID for FLEX_DESC_NONE */
500                 rxq->rxd_to_pkt_fields = iavf_rxd_to_pkt_fields_by_comms_ovs;
501                 break;
502         }
503
504         if (!rte_pmd_ifd_dynf_proto_xtr_metadata_avail())
505                 rxq->xtr_ol_flag = 0;
506 }
507
508 int
509 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
510                        uint16_t nb_desc, unsigned int socket_id,
511                        const struct rte_eth_rxconf *rx_conf,
512                        struct rte_mempool *mp)
513 {
514         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
515         struct iavf_adapter *ad =
516                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
517         struct iavf_info *vf =
518                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
519         struct iavf_vsi *vsi = &vf->vsi;
520         struct iavf_rx_queue *rxq;
521         const struct rte_memzone *mz;
522         uint32_t ring_size;
523         uint8_t proto_xtr;
524         uint16_t len;
525         uint16_t rx_free_thresh;
526         uint64_t offloads;
527
528         PMD_INIT_FUNC_TRACE();
529
530         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
531
532         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
533             nb_desc > IAVF_MAX_RING_DESC ||
534             nb_desc < IAVF_MIN_RING_DESC) {
535                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
536                              "invalid", nb_desc);
537                 return -EINVAL;
538         }
539
540         /* Check free threshold */
541         rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
542                          IAVF_DEFAULT_RX_FREE_THRESH :
543                          rx_conf->rx_free_thresh;
544         if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
545                 return -EINVAL;
546
547         /* Free memory if needed */
548         if (dev->data->rx_queues[queue_idx]) {
549                 iavf_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
550                 dev->data->rx_queues[queue_idx] = NULL;
551         }
552
553         /* Allocate the rx queue data structure */
554         rxq = rte_zmalloc_socket("iavf rxq",
555                                  sizeof(struct iavf_rx_queue),
556                                  RTE_CACHE_LINE_SIZE,
557                                  socket_id);
558         if (!rxq) {
559                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
560                              "rx queue data structure");
561                 return -ENOMEM;
562         }
563
564         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
565                 proto_xtr = vf->proto_xtr ? vf->proto_xtr[queue_idx] :
566                                 IAVF_PROTO_XTR_NONE;
567                 rxq->rxdid = iavf_proto_xtr_type_to_rxdid(proto_xtr);
568                 rxq->proto_xtr = proto_xtr;
569         } else {
570                 rxq->rxdid = IAVF_RXDID_LEGACY_1;
571                 rxq->proto_xtr = IAVF_PROTO_XTR_NONE;
572         }
573
574         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
575                 struct virtchnl_vlan_supported_caps *stripping_support =
576                                 &vf->vlan_v2_caps.offloads.stripping_support;
577                 uint32_t stripping_cap;
578
579                 if (stripping_support->outer)
580                         stripping_cap = stripping_support->outer;
581                 else
582                         stripping_cap = stripping_support->inner;
583
584                 if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
585                         rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
586                 else if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
587                         rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
588         } else {
589                 rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
590         }
591
592         iavf_select_rxd_to_pkt_fields_handler(rxq, rxq->rxdid);
593
594         rxq->mp = mp;
595         rxq->nb_rx_desc = nb_desc;
596         rxq->rx_free_thresh = rx_free_thresh;
597         rxq->queue_id = queue_idx;
598         rxq->port_id = dev->data->port_id;
599         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
600         rxq->rx_hdr_len = 0;
601         rxq->vsi = vsi;
602         rxq->offloads = offloads;
603
604         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
605                 rxq->crc_len = RTE_ETHER_CRC_LEN;
606         else
607                 rxq->crc_len = 0;
608
609         len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
610         rxq->rx_buf_len = RTE_ALIGN(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
611
612         /* Allocate the software ring. */
613         len = nb_desc + IAVF_RX_MAX_BURST;
614         rxq->sw_ring =
615                 rte_zmalloc_socket("iavf rx sw ring",
616                                    sizeof(struct rte_mbuf *) * len,
617                                    RTE_CACHE_LINE_SIZE,
618                                    socket_id);
619         if (!rxq->sw_ring) {
620                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
621                 rte_free(rxq);
622                 return -ENOMEM;
623         }
624
625         /* Allocate the maximun number of RX ring hardware descriptor with
626          * a liitle more to support bulk allocate.
627          */
628         len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
629         ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
630                               IAVF_DMA_MEM_ALIGN);
631         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
632                                       ring_size, IAVF_RING_BASE_ALIGN,
633                                       socket_id);
634         if (!mz) {
635                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
636                 rte_free(rxq->sw_ring);
637                 rte_free(rxq);
638                 return -ENOMEM;
639         }
640         /* Zero all the descriptors in the ring. */
641         memset(mz->addr, 0, ring_size);
642         rxq->rx_ring_phys_addr = mz->iova;
643         rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
644
645         rxq->mz = mz;
646         reset_rx_queue(rxq);
647         rxq->q_set = true;
648         dev->data->rx_queues[queue_idx] = rxq;
649         rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
650         rxq->ops = &def_rxq_ops;
651
652         if (check_rx_bulk_allow(rxq) == true) {
653                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
654                              "satisfied. Rx Burst Bulk Alloc function will be "
655                              "used on port=%d, queue=%d.",
656                              rxq->port_id, rxq->queue_id);
657         } else {
658                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
659                              "not satisfied, Scattered Rx is requested "
660                              "on port=%d, queue=%d.",
661                              rxq->port_id, rxq->queue_id);
662                 ad->rx_bulk_alloc_allowed = false;
663         }
664
665         if (check_rx_vec_allow(rxq) == false)
666                 ad->rx_vec_allowed = false;
667
668         return 0;
669 }
670
671 int
672 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
673                        uint16_t queue_idx,
674                        uint16_t nb_desc,
675                        unsigned int socket_id,
676                        const struct rte_eth_txconf *tx_conf)
677 {
678         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
679         struct iavf_info *vf =
680                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
681         struct iavf_tx_queue *txq;
682         const struct rte_memzone *mz;
683         uint32_t ring_size;
684         uint16_t tx_rs_thresh, tx_free_thresh;
685         uint64_t offloads;
686
687         PMD_INIT_FUNC_TRACE();
688
689         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
690
691         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
692             nb_desc > IAVF_MAX_RING_DESC ||
693             nb_desc < IAVF_MIN_RING_DESC) {
694                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
695                             "invalid", nb_desc);
696                 return -EINVAL;
697         }
698
699         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
700                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
701         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
702                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
703         check_tx_thresh(nb_desc, tx_rs_thresh, tx_rs_thresh);
704
705         /* Free memory if needed. */
706         if (dev->data->tx_queues[queue_idx]) {
707                 iavf_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
708                 dev->data->tx_queues[queue_idx] = NULL;
709         }
710
711         /* Allocate the TX queue data structure. */
712         txq = rte_zmalloc_socket("iavf txq",
713                                  sizeof(struct iavf_tx_queue),
714                                  RTE_CACHE_LINE_SIZE,
715                                  socket_id);
716         if (!txq) {
717                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
718                              "tx queue structure");
719                 return -ENOMEM;
720         }
721
722         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
723                 struct virtchnl_vlan_supported_caps *insertion_support =
724                         &vf->vlan_v2_caps.offloads.insertion_support;
725                 uint32_t insertion_cap;
726
727                 if (insertion_support->outer)
728                         insertion_cap = insertion_support->outer;
729                 else
730                         insertion_cap = insertion_support->inner;
731
732                 if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
733                         txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
734                 else if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
735                         txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2;
736         } else {
737                 txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
738         }
739
740         txq->nb_tx_desc = nb_desc;
741         txq->rs_thresh = tx_rs_thresh;
742         txq->free_thresh = tx_free_thresh;
743         txq->queue_id = queue_idx;
744         txq->port_id = dev->data->port_id;
745         txq->offloads = offloads;
746         txq->tx_deferred_start = tx_conf->tx_deferred_start;
747
748         /* Allocate software ring */
749         txq->sw_ring =
750                 rte_zmalloc_socket("iavf tx sw ring",
751                                    sizeof(struct iavf_tx_entry) * nb_desc,
752                                    RTE_CACHE_LINE_SIZE,
753                                    socket_id);
754         if (!txq->sw_ring) {
755                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
756                 rte_free(txq);
757                 return -ENOMEM;
758         }
759
760         /* Allocate TX hardware ring descriptors. */
761         ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
762         ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
763         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
764                                       ring_size, IAVF_RING_BASE_ALIGN,
765                                       socket_id);
766         if (!mz) {
767                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
768                 rte_free(txq->sw_ring);
769                 rte_free(txq);
770                 return -ENOMEM;
771         }
772         txq->tx_ring_phys_addr = mz->iova;
773         txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
774
775         txq->mz = mz;
776         reset_tx_queue(txq);
777         txq->q_set = true;
778         dev->data->tx_queues[queue_idx] = txq;
779         txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
780         txq->ops = &def_txq_ops;
781
782         if (check_tx_vec_allow(txq) == false) {
783                 struct iavf_adapter *ad =
784                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
785                 ad->tx_vec_allowed = false;
786         }
787
788         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
789             vf->tm_conf.committed) {
790                 int tc;
791                 for (tc = 0; tc < vf->qos_cap->num_elem; tc++) {
792                         if (txq->queue_id >= vf->qtc_map[tc].start_queue_id &&
793                             txq->queue_id < (vf->qtc_map[tc].start_queue_id +
794                             vf->qtc_map[tc].queue_count))
795                                 break;
796                 }
797                 if (tc >= vf->qos_cap->num_elem) {
798                         PMD_INIT_LOG(ERR, "Queue TC mapping is not correct");
799                         return -EINVAL;
800                 }
801                 txq->tc = tc;
802         }
803
804         return 0;
805 }
806
807 int
808 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
809 {
810         struct iavf_adapter *adapter =
811                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
812         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
813         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
814         struct iavf_rx_queue *rxq;
815         int err = 0;
816
817         PMD_DRV_FUNC_TRACE();
818
819         if (rx_queue_id >= dev->data->nb_rx_queues)
820                 return -EINVAL;
821
822         rxq = dev->data->rx_queues[rx_queue_id];
823
824         err = alloc_rxq_mbufs(rxq);
825         if (err) {
826                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
827                 return err;
828         }
829
830         rte_wmb();
831
832         /* Init the RX tail register. */
833         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
834         IAVF_WRITE_FLUSH(hw);
835
836         /* Ready to switch the queue on */
837         if (!vf->lv_enabled)
838                 err = iavf_switch_queue(adapter, rx_queue_id, true, true);
839         else
840                 err = iavf_switch_queue_lv(adapter, rx_queue_id, true, true);
841
842         if (err)
843                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
844                             rx_queue_id);
845         else
846                 dev->data->rx_queue_state[rx_queue_id] =
847                         RTE_ETH_QUEUE_STATE_STARTED;
848
849         return err;
850 }
851
852 int
853 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
854 {
855         struct iavf_adapter *adapter =
856                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
857         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
858         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
859         struct iavf_tx_queue *txq;
860         int err = 0;
861
862         PMD_DRV_FUNC_TRACE();
863
864         if (tx_queue_id >= dev->data->nb_tx_queues)
865                 return -EINVAL;
866
867         txq = dev->data->tx_queues[tx_queue_id];
868
869         /* Init the RX tail register. */
870         IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
871         IAVF_WRITE_FLUSH(hw);
872
873         /* Ready to switch the queue on */
874         if (!vf->lv_enabled)
875                 err = iavf_switch_queue(adapter, tx_queue_id, false, true);
876         else
877                 err = iavf_switch_queue_lv(adapter, tx_queue_id, false, true);
878
879         if (err)
880                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
881                             tx_queue_id);
882         else
883                 dev->data->tx_queue_state[tx_queue_id] =
884                         RTE_ETH_QUEUE_STATE_STARTED;
885
886         return err;
887 }
888
889 int
890 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
891 {
892         struct iavf_adapter *adapter =
893                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
894         struct iavf_rx_queue *rxq;
895         int err;
896
897         PMD_DRV_FUNC_TRACE();
898
899         if (rx_queue_id >= dev->data->nb_rx_queues)
900                 return -EINVAL;
901
902         err = iavf_switch_queue(adapter, rx_queue_id, true, false);
903         if (err) {
904                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
905                             rx_queue_id);
906                 return err;
907         }
908
909         rxq = dev->data->rx_queues[rx_queue_id];
910         rxq->ops->release_mbufs(rxq);
911         reset_rx_queue(rxq);
912         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
913
914         return 0;
915 }
916
917 int
918 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
919 {
920         struct iavf_adapter *adapter =
921                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
922         struct iavf_tx_queue *txq;
923         int err;
924
925         PMD_DRV_FUNC_TRACE();
926
927         if (tx_queue_id >= dev->data->nb_tx_queues)
928                 return -EINVAL;
929
930         err = iavf_switch_queue(adapter, tx_queue_id, false, false);
931         if (err) {
932                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
933                             tx_queue_id);
934                 return err;
935         }
936
937         txq = dev->data->tx_queues[tx_queue_id];
938         txq->ops->release_mbufs(txq);
939         reset_tx_queue(txq);
940         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
941
942         return 0;
943 }
944
945 void
946 iavf_dev_rx_queue_release(void *rxq)
947 {
948         struct iavf_rx_queue *q = (struct iavf_rx_queue *)rxq;
949
950         if (!q)
951                 return;
952
953         q->ops->release_mbufs(q);
954         rte_free(q->sw_ring);
955         rte_memzone_free(q->mz);
956         rte_free(q);
957 }
958
959 void
960 iavf_dev_tx_queue_release(void *txq)
961 {
962         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
963
964         if (!q)
965                 return;
966
967         q->ops->release_mbufs(q);
968         rte_free(q->sw_ring);
969         rte_memzone_free(q->mz);
970         rte_free(q);
971 }
972
973 void
974 iavf_stop_queues(struct rte_eth_dev *dev)
975 {
976         struct iavf_adapter *adapter =
977                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
978         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
979         struct iavf_rx_queue *rxq;
980         struct iavf_tx_queue *txq;
981         int ret, i;
982
983         /* Stop All queues */
984         if (!vf->lv_enabled) {
985                 ret = iavf_disable_queues(adapter);
986                 if (ret)
987                         PMD_DRV_LOG(WARNING, "Fail to stop queues");
988         } else {
989                 ret = iavf_disable_queues_lv(adapter);
990                 if (ret)
991                         PMD_DRV_LOG(WARNING, "Fail to stop queues for large VF");
992         }
993
994         if (ret)
995                 PMD_DRV_LOG(WARNING, "Fail to stop queues");
996
997         for (i = 0; i < dev->data->nb_tx_queues; i++) {
998                 txq = dev->data->tx_queues[i];
999                 if (!txq)
1000                         continue;
1001                 txq->ops->release_mbufs(txq);
1002                 reset_tx_queue(txq);
1003                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1004         }
1005         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1006                 rxq = dev->data->rx_queues[i];
1007                 if (!rxq)
1008                         continue;
1009                 rxq->ops->release_mbufs(rxq);
1010                 reset_rx_queue(rxq);
1011                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1012         }
1013 }
1014
1015 #define IAVF_RX_FLEX_ERR0_BITS  \
1016         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
1017          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
1018          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
1019          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1020          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1021          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1022
1023 static inline void
1024 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
1025 {
1026         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1027                 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1028                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1029                 mb->vlan_tci =
1030                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
1031         } else {
1032                 mb->vlan_tci = 0;
1033         }
1034 }
1035
1036 static inline void
1037 iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
1038                           volatile union iavf_rx_flex_desc *rxdp,
1039                           uint8_t rx_flags)
1040 {
1041         uint16_t vlan_tci = 0;
1042
1043         if (rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1 &&
1044             rte_le_to_cpu_64(rxdp->wb.status_error0) &
1045             (1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S))
1046                 vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag1);
1047
1048 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1049         if (rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2 &&
1050             rte_le_to_cpu_16(rxdp->wb.status_error1) &
1051             (1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S))
1052                 vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1053 #endif
1054
1055         if (vlan_tci) {
1056                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1057                 mb->vlan_tci = vlan_tci;
1058         }
1059 }
1060
1061 /* Translate the rx descriptor status and error fields to pkt flags */
1062 static inline uint64_t
1063 iavf_rxd_to_pkt_flags(uint64_t qword)
1064 {
1065         uint64_t flags;
1066         uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
1067
1068 #define IAVF_RX_ERR_BITS 0x3f
1069
1070         /* Check if RSS_HASH */
1071         flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
1072                                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
1073                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
1074
1075         /* Check if FDIR Match */
1076         flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
1077                                 PKT_RX_FDIR : 0);
1078
1079         if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
1080                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
1081                 return flags;
1082         }
1083
1084         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
1085                 flags |= PKT_RX_IP_CKSUM_BAD;
1086         else
1087                 flags |= PKT_RX_IP_CKSUM_GOOD;
1088
1089         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
1090                 flags |= PKT_RX_L4_CKSUM_BAD;
1091         else
1092                 flags |= PKT_RX_L4_CKSUM_GOOD;
1093
1094         /* TODO: Oversize error bit is not processed here */
1095
1096         return flags;
1097 }
1098
1099 static inline uint64_t
1100 iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
1101 {
1102         uint64_t flags = 0;
1103 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1104         uint16_t flexbh;
1105
1106         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
1107                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
1108                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
1109
1110         if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
1111                 mb->hash.fdir.hi =
1112                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
1113                 flags |= PKT_RX_FDIR_ID;
1114         }
1115 #else
1116         mb->hash.fdir.hi =
1117                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
1118         flags |= PKT_RX_FDIR_ID;
1119 #endif
1120         return flags;
1121 }
1122
1123 #define IAVF_RX_FLEX_ERR0_BITS  \
1124         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
1125          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
1126          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
1127          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1128          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1129          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1130
1131 /* Rx L3/L4 checksum */
1132 static inline uint64_t
1133 iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
1134 {
1135         uint64_t flags = 0;
1136
1137         /* check if HW has decoded the packet and checksum */
1138         if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1139                 return 0;
1140
1141         if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
1142                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
1143                 return flags;
1144         }
1145
1146         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1147                 flags |= PKT_RX_IP_CKSUM_BAD;
1148         else
1149                 flags |= PKT_RX_IP_CKSUM_GOOD;
1150
1151         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1152                 flags |= PKT_RX_L4_CKSUM_BAD;
1153         else
1154                 flags |= PKT_RX_L4_CKSUM_GOOD;
1155
1156         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1157                 flags |= PKT_RX_OUTER_IP_CKSUM_BAD;
1158
1159         return flags;
1160 }
1161
1162 /* If the number of free RX descriptors is greater than the RX free
1163  * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1164  * register. Update the RDT with the value of the last processed RX
1165  * descriptor minus 1, to guarantee that the RDT register is never
1166  * equal to the RDH register, which creates a "full" ring situation
1167  * from the hardware point of view.
1168  */
1169 static inline void
1170 iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
1171 {
1172         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1173
1174         if (nb_hold > rxq->rx_free_thresh) {
1175                 PMD_RX_LOG(DEBUG,
1176                            "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
1177                            rxq->port_id, rxq->queue_id, rx_id, nb_hold);
1178                 rx_id = (uint16_t)((rx_id == 0) ?
1179                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1180                 IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1181                 nb_hold = 0;
1182         }
1183         rxq->nb_rx_hold = nb_hold;
1184 }
1185
1186 /* implement recv_pkts */
1187 uint16_t
1188 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1189 {
1190         volatile union iavf_rx_desc *rx_ring;
1191         volatile union iavf_rx_desc *rxdp;
1192         struct iavf_rx_queue *rxq;
1193         union iavf_rx_desc rxd;
1194         struct rte_mbuf *rxe;
1195         struct rte_eth_dev *dev;
1196         struct rte_mbuf *rxm;
1197         struct rte_mbuf *nmb;
1198         uint16_t nb_rx;
1199         uint32_t rx_status;
1200         uint64_t qword1;
1201         uint16_t rx_packet_len;
1202         uint16_t rx_id, nb_hold;
1203         uint64_t dma_addr;
1204         uint64_t pkt_flags;
1205         const uint32_t *ptype_tbl;
1206
1207         nb_rx = 0;
1208         nb_hold = 0;
1209         rxq = rx_queue;
1210         rx_id = rxq->rx_tail;
1211         rx_ring = rxq->rx_ring;
1212         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1213
1214         while (nb_rx < nb_pkts) {
1215                 rxdp = &rx_ring[rx_id];
1216                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1217                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1218                             IAVF_RXD_QW1_STATUS_SHIFT;
1219
1220                 /* Check the DD bit first */
1221                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1222                         break;
1223                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1224
1225                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1226                 if (unlikely(!nmb)) {
1227                         dev = &rte_eth_devices[rxq->port_id];
1228                         dev->data->rx_mbuf_alloc_failed++;
1229                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1230                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1231                         break;
1232                 }
1233
1234                 rxd = *rxdp;
1235                 nb_hold++;
1236                 rxe = rxq->sw_ring[rx_id];
1237                 rxq->sw_ring[rx_id] = nmb;
1238                 rx_id++;
1239                 if (unlikely(rx_id == rxq->nb_rx_desc))
1240                         rx_id = 0;
1241
1242                 /* Prefetch next mbuf */
1243                 rte_prefetch0(rxq->sw_ring[rx_id]);
1244
1245                 /* When next RX descriptor is on a cache line boundary,
1246                  * prefetch the next 4 RX descriptors and next 8 pointers
1247                  * to mbufs.
1248                  */
1249                 if ((rx_id & 0x3) == 0) {
1250                         rte_prefetch0(&rx_ring[rx_id]);
1251                         rte_prefetch0(rxq->sw_ring[rx_id]);
1252                 }
1253                 rxm = rxe;
1254                 dma_addr =
1255                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1256                 rxdp->read.hdr_addr = 0;
1257                 rxdp->read.pkt_addr = dma_addr;
1258
1259                 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1260                                 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1261
1262                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1263                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1264                 rxm->nb_segs = 1;
1265                 rxm->next = NULL;
1266                 rxm->pkt_len = rx_packet_len;
1267                 rxm->data_len = rx_packet_len;
1268                 rxm->port = rxq->port_id;
1269                 rxm->ol_flags = 0;
1270                 iavf_rxd_to_vlan_tci(rxm, &rxd);
1271                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1272                 rxm->packet_type =
1273                         ptype_tbl[(uint8_t)((qword1 &
1274                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1275
1276                 if (pkt_flags & PKT_RX_RSS_HASH)
1277                         rxm->hash.rss =
1278                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1279
1280                 if (pkt_flags & PKT_RX_FDIR)
1281                         pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
1282
1283                 rxm->ol_flags |= pkt_flags;
1284
1285                 rx_pkts[nb_rx++] = rxm;
1286         }
1287         rxq->rx_tail = rx_id;
1288
1289         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1290
1291         return nb_rx;
1292 }
1293
1294 /* implement recv_pkts for flexible Rx descriptor */
1295 uint16_t
1296 iavf_recv_pkts_flex_rxd(void *rx_queue,
1297                         struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1298 {
1299         volatile union iavf_rx_desc *rx_ring;
1300         volatile union iavf_rx_flex_desc *rxdp;
1301         struct iavf_rx_queue *rxq;
1302         union iavf_rx_flex_desc rxd;
1303         struct rte_mbuf *rxe;
1304         struct rte_eth_dev *dev;
1305         struct rte_mbuf *rxm;
1306         struct rte_mbuf *nmb;
1307         uint16_t nb_rx;
1308         uint16_t rx_stat_err0;
1309         uint16_t rx_packet_len;
1310         uint16_t rx_id, nb_hold;
1311         uint64_t dma_addr;
1312         uint64_t pkt_flags;
1313         const uint32_t *ptype_tbl;
1314
1315         nb_rx = 0;
1316         nb_hold = 0;
1317         rxq = rx_queue;
1318         rx_id = rxq->rx_tail;
1319         rx_ring = rxq->rx_ring;
1320         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1321
1322         while (nb_rx < nb_pkts) {
1323                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1324                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1325
1326                 /* Check the DD bit first */
1327                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1328                         break;
1329                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1330
1331                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1332                 if (unlikely(!nmb)) {
1333                         dev = &rte_eth_devices[rxq->port_id];
1334                         dev->data->rx_mbuf_alloc_failed++;
1335                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1336                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1337                         break;
1338                 }
1339
1340                 rxd = *rxdp;
1341                 nb_hold++;
1342                 rxe = rxq->sw_ring[rx_id];
1343                 rxq->sw_ring[rx_id] = nmb;
1344                 rx_id++;
1345                 if (unlikely(rx_id == rxq->nb_rx_desc))
1346                         rx_id = 0;
1347
1348                 /* Prefetch next mbuf */
1349                 rte_prefetch0(rxq->sw_ring[rx_id]);
1350
1351                 /* When next RX descriptor is on a cache line boundary,
1352                  * prefetch the next 4 RX descriptors and next 8 pointers
1353                  * to mbufs.
1354                  */
1355                 if ((rx_id & 0x3) == 0) {
1356                         rte_prefetch0(&rx_ring[rx_id]);
1357                         rte_prefetch0(rxq->sw_ring[rx_id]);
1358                 }
1359                 rxm = rxe;
1360                 dma_addr =
1361                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1362                 rxdp->read.hdr_addr = 0;
1363                 rxdp->read.pkt_addr = dma_addr;
1364
1365                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
1366                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1367
1368                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1369                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1370                 rxm->nb_segs = 1;
1371                 rxm->next = NULL;
1372                 rxm->pkt_len = rx_packet_len;
1373                 rxm->data_len = rx_packet_len;
1374                 rxm->port = rxq->port_id;
1375                 rxm->ol_flags = 0;
1376                 rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1377                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1378                 iavf_flex_rxd_to_vlan_tci(rxm, &rxd, rxq->rx_flags);
1379                 rxq->rxd_to_pkt_fields(rxq, rxm, &rxd);
1380                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1381                 rxm->ol_flags |= pkt_flags;
1382
1383                 rx_pkts[nb_rx++] = rxm;
1384         }
1385         rxq->rx_tail = rx_id;
1386
1387         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1388
1389         return nb_rx;
1390 }
1391
1392 /* implement recv_scattered_pkts for flexible Rx descriptor */
1393 uint16_t
1394 iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1395                                   uint16_t nb_pkts)
1396 {
1397         struct iavf_rx_queue *rxq = rx_queue;
1398         union iavf_rx_flex_desc rxd;
1399         struct rte_mbuf *rxe;
1400         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1401         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1402         struct rte_mbuf *nmb, *rxm;
1403         uint16_t rx_id = rxq->rx_tail;
1404         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1405         struct rte_eth_dev *dev;
1406         uint16_t rx_stat_err0;
1407         uint64_t dma_addr;
1408         uint64_t pkt_flags;
1409
1410         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1411         volatile union iavf_rx_flex_desc *rxdp;
1412         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1413
1414         while (nb_rx < nb_pkts) {
1415                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1416                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1417
1418                 /* Check the DD bit */
1419                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1420                         break;
1421                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1422
1423                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1424                 if (unlikely(!nmb)) {
1425                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1426                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1427                         dev = &rte_eth_devices[rxq->port_id];
1428                         dev->data->rx_mbuf_alloc_failed++;
1429                         break;
1430                 }
1431
1432                 rxd = *rxdp;
1433                 nb_hold++;
1434                 rxe = rxq->sw_ring[rx_id];
1435                 rxq->sw_ring[rx_id] = nmb;
1436                 rx_id++;
1437                 if (rx_id == rxq->nb_rx_desc)
1438                         rx_id = 0;
1439
1440                 /* Prefetch next mbuf */
1441                 rte_prefetch0(rxq->sw_ring[rx_id]);
1442
1443                 /* When next RX descriptor is on a cache line boundary,
1444                  * prefetch the next 4 RX descriptors and next 8 pointers
1445                  * to mbufs.
1446                  */
1447                 if ((rx_id & 0x3) == 0) {
1448                         rte_prefetch0(&rx_ring[rx_id]);
1449                         rte_prefetch0(rxq->sw_ring[rx_id]);
1450                 }
1451
1452                 rxm = rxe;
1453                 dma_addr =
1454                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1455
1456                 /* Set data buffer address and data length of the mbuf */
1457                 rxdp->read.hdr_addr = 0;
1458                 rxdp->read.pkt_addr = dma_addr;
1459                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1460                                 IAVF_RX_FLX_DESC_PKT_LEN_M;
1461                 rxm->data_len = rx_packet_len;
1462                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1463
1464                 /* If this is the first buffer of the received packet, set the
1465                  * pointer to the first mbuf of the packet and initialize its
1466                  * context. Otherwise, update the total length and the number
1467                  * of segments of the current scattered packet, and update the
1468                  * pointer to the last mbuf of the current packet.
1469                  */
1470                 if (!first_seg) {
1471                         first_seg = rxm;
1472                         first_seg->nb_segs = 1;
1473                         first_seg->pkt_len = rx_packet_len;
1474                 } else {
1475                         first_seg->pkt_len =
1476                                 (uint16_t)(first_seg->pkt_len +
1477                                                 rx_packet_len);
1478                         first_seg->nb_segs++;
1479                         last_seg->next = rxm;
1480                 }
1481
1482                 /* If this is not the last buffer of the received packet,
1483                  * update the pointer to the last mbuf of the current scattered
1484                  * packet and continue to parse the RX ring.
1485                  */
1486                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
1487                         last_seg = rxm;
1488                         continue;
1489                 }
1490
1491                 /* This is the last buffer of the received packet. If the CRC
1492                  * is not stripped by the hardware:
1493                  *  - Subtract the CRC length from the total packet length.
1494                  *  - If the last buffer only contains the whole CRC or a part
1495                  *  of it, free the mbuf associated to the last buffer. If part
1496                  *  of the CRC is also contained in the previous mbuf, subtract
1497                  *  the length of that CRC part from the data length of the
1498                  *  previous mbuf.
1499                  */
1500                 rxm->next = NULL;
1501                 if (unlikely(rxq->crc_len > 0)) {
1502                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1503                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1504                                 rte_pktmbuf_free_seg(rxm);
1505                                 first_seg->nb_segs--;
1506                                 last_seg->data_len =
1507                                         (uint16_t)(last_seg->data_len -
1508                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1509                                 last_seg->next = NULL;
1510                         } else {
1511                                 rxm->data_len = (uint16_t)(rx_packet_len -
1512                                                         RTE_ETHER_CRC_LEN);
1513                         }
1514                 }
1515
1516                 first_seg->port = rxq->port_id;
1517                 first_seg->ol_flags = 0;
1518                 first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1519                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1520                 iavf_flex_rxd_to_vlan_tci(first_seg, &rxd, rxq->rx_flags);
1521                 rxq->rxd_to_pkt_fields(rxq, first_seg, &rxd);
1522                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1523
1524                 first_seg->ol_flags |= pkt_flags;
1525
1526                 /* Prefetch data of first segment, if configured to do so. */
1527                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1528                                           first_seg->data_off));
1529                 rx_pkts[nb_rx++] = first_seg;
1530                 first_seg = NULL;
1531         }
1532
1533         /* Record index of the next RX descriptor to probe. */
1534         rxq->rx_tail = rx_id;
1535         rxq->pkt_first_seg = first_seg;
1536         rxq->pkt_last_seg = last_seg;
1537
1538         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1539
1540         return nb_rx;
1541 }
1542
1543 /* implement recv_scattered_pkts  */
1544 uint16_t
1545 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1546                         uint16_t nb_pkts)
1547 {
1548         struct iavf_rx_queue *rxq = rx_queue;
1549         union iavf_rx_desc rxd;
1550         struct rte_mbuf *rxe;
1551         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1552         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1553         struct rte_mbuf *nmb, *rxm;
1554         uint16_t rx_id = rxq->rx_tail;
1555         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1556         struct rte_eth_dev *dev;
1557         uint32_t rx_status;
1558         uint64_t qword1;
1559         uint64_t dma_addr;
1560         uint64_t pkt_flags;
1561
1562         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1563         volatile union iavf_rx_desc *rxdp;
1564         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1565
1566         while (nb_rx < nb_pkts) {
1567                 rxdp = &rx_ring[rx_id];
1568                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1569                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1570                             IAVF_RXD_QW1_STATUS_SHIFT;
1571
1572                 /* Check the DD bit */
1573                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1574                         break;
1575                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1576
1577                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1578                 if (unlikely(!nmb)) {
1579                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1580                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1581                         dev = &rte_eth_devices[rxq->port_id];
1582                         dev->data->rx_mbuf_alloc_failed++;
1583                         break;
1584                 }
1585
1586                 rxd = *rxdp;
1587                 nb_hold++;
1588                 rxe = rxq->sw_ring[rx_id];
1589                 rxq->sw_ring[rx_id] = nmb;
1590                 rx_id++;
1591                 if (rx_id == rxq->nb_rx_desc)
1592                         rx_id = 0;
1593
1594                 /* Prefetch next mbuf */
1595                 rte_prefetch0(rxq->sw_ring[rx_id]);
1596
1597                 /* When next RX descriptor is on a cache line boundary,
1598                  * prefetch the next 4 RX descriptors and next 8 pointers
1599                  * to mbufs.
1600                  */
1601                 if ((rx_id & 0x3) == 0) {
1602                         rte_prefetch0(&rx_ring[rx_id]);
1603                         rte_prefetch0(rxq->sw_ring[rx_id]);
1604                 }
1605
1606                 rxm = rxe;
1607                 dma_addr =
1608                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1609
1610                 /* Set data buffer address and data length of the mbuf */
1611                 rxdp->read.hdr_addr = 0;
1612                 rxdp->read.pkt_addr = dma_addr;
1613                 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1614                                  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1615                 rxm->data_len = rx_packet_len;
1616                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1617
1618                 /* If this is the first buffer of the received packet, set the
1619                  * pointer to the first mbuf of the packet and initialize its
1620                  * context. Otherwise, update the total length and the number
1621                  * of segments of the current scattered packet, and update the
1622                  * pointer to the last mbuf of the current packet.
1623                  */
1624                 if (!first_seg) {
1625                         first_seg = rxm;
1626                         first_seg->nb_segs = 1;
1627                         first_seg->pkt_len = rx_packet_len;
1628                 } else {
1629                         first_seg->pkt_len =
1630                                 (uint16_t)(first_seg->pkt_len +
1631                                                 rx_packet_len);
1632                         first_seg->nb_segs++;
1633                         last_seg->next = rxm;
1634                 }
1635
1636                 /* If this is not the last buffer of the received packet,
1637                  * update the pointer to the last mbuf of the current scattered
1638                  * packet and continue to parse the RX ring.
1639                  */
1640                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1641                         last_seg = rxm;
1642                         continue;
1643                 }
1644
1645                 /* This is the last buffer of the received packet. If the CRC
1646                  * is not stripped by the hardware:
1647                  *  - Subtract the CRC length from the total packet length.
1648                  *  - If the last buffer only contains the whole CRC or a part
1649                  *  of it, free the mbuf associated to the last buffer. If part
1650                  *  of the CRC is also contained in the previous mbuf, subtract
1651                  *  the length of that CRC part from the data length of the
1652                  *  previous mbuf.
1653                  */
1654                 rxm->next = NULL;
1655                 if (unlikely(rxq->crc_len > 0)) {
1656                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1657                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1658                                 rte_pktmbuf_free_seg(rxm);
1659                                 first_seg->nb_segs--;
1660                                 last_seg->data_len =
1661                                         (uint16_t)(last_seg->data_len -
1662                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1663                                 last_seg->next = NULL;
1664                         } else
1665                                 rxm->data_len = (uint16_t)(rx_packet_len -
1666                                                         RTE_ETHER_CRC_LEN);
1667                 }
1668
1669                 first_seg->port = rxq->port_id;
1670                 first_seg->ol_flags = 0;
1671                 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1672                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1673                 first_seg->packet_type =
1674                         ptype_tbl[(uint8_t)((qword1 &
1675                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1676
1677                 if (pkt_flags & PKT_RX_RSS_HASH)
1678                         first_seg->hash.rss =
1679                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1680
1681                 if (pkt_flags & PKT_RX_FDIR)
1682                         pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
1683
1684                 first_seg->ol_flags |= pkt_flags;
1685
1686                 /* Prefetch data of first segment, if configured to do so. */
1687                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1688                                           first_seg->data_off));
1689                 rx_pkts[nb_rx++] = first_seg;
1690                 first_seg = NULL;
1691         }
1692
1693         /* Record index of the next RX descriptor to probe. */
1694         rxq->rx_tail = rx_id;
1695         rxq->pkt_first_seg = first_seg;
1696         rxq->pkt_last_seg = last_seg;
1697
1698         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1699
1700         return nb_rx;
1701 }
1702
1703 #define IAVF_LOOK_AHEAD 8
1704 static inline int
1705 iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq)
1706 {
1707         volatile union iavf_rx_flex_desc *rxdp;
1708         struct rte_mbuf **rxep;
1709         struct rte_mbuf *mb;
1710         uint16_t stat_err0;
1711         uint16_t pkt_len;
1712         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1713         int32_t i, j, nb_rx = 0;
1714         uint64_t pkt_flags;
1715         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1716
1717         rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
1718         rxep = &rxq->sw_ring[rxq->rx_tail];
1719
1720         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1721
1722         /* Make sure there is at least 1 packet to receive */
1723         if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1724                 return 0;
1725
1726         /* Scan LOOK_AHEAD descriptors at a time to determine which
1727          * descriptors reference packets that are ready to be received.
1728          */
1729         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1730              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1731                 /* Read desc statuses backwards to avoid race condition */
1732                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
1733                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1734
1735                 rte_smp_rmb();
1736
1737                 /* Compute how many status bits were set */
1738                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1739                         nb_dd += s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
1740
1741                 nb_rx += nb_dd;
1742
1743                 /* Translate descriptor info to mbuf parameters */
1744                 for (j = 0; j < nb_dd; j++) {
1745                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1746                                           rxq->rx_tail +
1747                                           i * IAVF_LOOK_AHEAD + j);
1748
1749                         mb = rxep[j];
1750                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1751                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1752                         mb->data_len = pkt_len;
1753                         mb->pkt_len = pkt_len;
1754                         mb->ol_flags = 0;
1755
1756                         mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1757                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1758                         iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j], rxq->rx_flags);
1759                         rxq->rxd_to_pkt_fields(rxq, mb, &rxdp[j]);
1760                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1761                         pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
1762
1763                         mb->ol_flags |= pkt_flags;
1764                 }
1765
1766                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1767                         rxq->rx_stage[i + j] = rxep[j];
1768
1769                 if (nb_dd != IAVF_LOOK_AHEAD)
1770                         break;
1771         }
1772
1773         /* Clear software ring entries */
1774         for (i = 0; i < nb_rx; i++)
1775                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1776
1777         return nb_rx;
1778 }
1779
1780 static inline int
1781 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1782 {
1783         volatile union iavf_rx_desc *rxdp;
1784         struct rte_mbuf **rxep;
1785         struct rte_mbuf *mb;
1786         uint16_t pkt_len;
1787         uint64_t qword1;
1788         uint32_t rx_status;
1789         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1790         int32_t i, j, nb_rx = 0;
1791         uint64_t pkt_flags;
1792         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1793
1794         rxdp = &rxq->rx_ring[rxq->rx_tail];
1795         rxep = &rxq->sw_ring[rxq->rx_tail];
1796
1797         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1798         rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1799                     IAVF_RXD_QW1_STATUS_SHIFT;
1800
1801         /* Make sure there is at least 1 packet to receive */
1802         if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1803                 return 0;
1804
1805         /* Scan LOOK_AHEAD descriptors at a time to determine which
1806          * descriptors reference packets that are ready to be received.
1807          */
1808         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1809              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1810                 /* Read desc statuses backwards to avoid race condition */
1811                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1812                         qword1 = rte_le_to_cpu_64(
1813                                 rxdp[j].wb.qword1.status_error_len);
1814                         s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1815                                IAVF_RXD_QW1_STATUS_SHIFT;
1816                 }
1817
1818                 rte_smp_rmb();
1819
1820                 /* Compute how many status bits were set */
1821                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1822                         nb_dd += s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1823
1824                 nb_rx += nb_dd;
1825
1826                 /* Translate descriptor info to mbuf parameters */
1827                 for (j = 0; j < nb_dd; j++) {
1828                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1829                                          rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1830
1831                         mb = rxep[j];
1832                         qword1 = rte_le_to_cpu_64
1833                                         (rxdp[j].wb.qword1.status_error_len);
1834                         pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1835                                   IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1836                         mb->data_len = pkt_len;
1837                         mb->pkt_len = pkt_len;
1838                         mb->ol_flags = 0;
1839                         iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1840                         pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1841                         mb->packet_type =
1842                                 ptype_tbl[(uint8_t)((qword1 &
1843                                 IAVF_RXD_QW1_PTYPE_MASK) >>
1844                                 IAVF_RXD_QW1_PTYPE_SHIFT)];
1845
1846                         if (pkt_flags & PKT_RX_RSS_HASH)
1847                                 mb->hash.rss = rte_le_to_cpu_32(
1848                                         rxdp[j].wb.qword0.hi_dword.rss);
1849
1850                         if (pkt_flags & PKT_RX_FDIR)
1851                                 pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
1852
1853                         mb->ol_flags |= pkt_flags;
1854                 }
1855
1856                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1857                         rxq->rx_stage[i + j] = rxep[j];
1858
1859                 if (nb_dd != IAVF_LOOK_AHEAD)
1860                         break;
1861         }
1862
1863         /* Clear software ring entries */
1864         for (i = 0; i < nb_rx; i++)
1865                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1866
1867         return nb_rx;
1868 }
1869
1870 static inline uint16_t
1871 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
1872                        struct rte_mbuf **rx_pkts,
1873                        uint16_t nb_pkts)
1874 {
1875         uint16_t i;
1876         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1877
1878         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1879
1880         for (i = 0; i < nb_pkts; i++)
1881                 rx_pkts[i] = stage[i];
1882
1883         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1884         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1885
1886         return nb_pkts;
1887 }
1888
1889 static inline int
1890 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
1891 {
1892         volatile union iavf_rx_desc *rxdp;
1893         struct rte_mbuf **rxep;
1894         struct rte_mbuf *mb;
1895         uint16_t alloc_idx, i;
1896         uint64_t dma_addr;
1897         int diag;
1898
1899         /* Allocate buffers in bulk */
1900         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1901                                 (rxq->rx_free_thresh - 1));
1902         rxep = &rxq->sw_ring[alloc_idx];
1903         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1904                                     rxq->rx_free_thresh);
1905         if (unlikely(diag != 0)) {
1906                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1907                 return -ENOMEM;
1908         }
1909
1910         rxdp = &rxq->rx_ring[alloc_idx];
1911         for (i = 0; i < rxq->rx_free_thresh; i++) {
1912                 if (likely(i < (rxq->rx_free_thresh - 1)))
1913                         /* Prefetch next mbuf */
1914                         rte_prefetch0(rxep[i + 1]);
1915
1916                 mb = rxep[i];
1917                 rte_mbuf_refcnt_set(mb, 1);
1918                 mb->next = NULL;
1919                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1920                 mb->nb_segs = 1;
1921                 mb->port = rxq->port_id;
1922                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1923                 rxdp[i].read.hdr_addr = 0;
1924                 rxdp[i].read.pkt_addr = dma_addr;
1925         }
1926
1927         /* Update rx tail register */
1928         rte_wmb();
1929         IAVF_PCI_REG_WC_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
1930
1931         rxq->rx_free_trigger =
1932                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1933         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1934                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1935
1936         return 0;
1937 }
1938
1939 static inline uint16_t
1940 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1941 {
1942         struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
1943         uint16_t nb_rx = 0;
1944
1945         if (!nb_pkts)
1946                 return 0;
1947
1948         if (rxq->rx_nb_avail)
1949                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1950
1951         if (rxq->rxdid >= IAVF_RXDID_FLEX_NIC && rxq->rxdid <= IAVF_RXDID_LAST)
1952                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq);
1953         else
1954                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
1955         rxq->rx_next_avail = 0;
1956         rxq->rx_nb_avail = nb_rx;
1957         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1958
1959         if (rxq->rx_tail > rxq->rx_free_trigger) {
1960                 if (iavf_rx_alloc_bufs(rxq) != 0) {
1961                         uint16_t i, j;
1962
1963                         /* TODO: count rx_mbuf_alloc_failed here */
1964
1965                         rxq->rx_nb_avail = 0;
1966                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1967                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1968                                 rxq->sw_ring[j] = rxq->rx_stage[i];
1969
1970                         return 0;
1971                 }
1972         }
1973
1974         if (rxq->rx_tail >= rxq->nb_rx_desc)
1975                 rxq->rx_tail = 0;
1976
1977         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
1978                    rxq->port_id, rxq->queue_id,
1979                    rxq->rx_tail, nb_rx);
1980
1981         if (rxq->rx_nb_avail)
1982                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1983
1984         return 0;
1985 }
1986
1987 static uint16_t
1988 iavf_recv_pkts_bulk_alloc(void *rx_queue,
1989                          struct rte_mbuf **rx_pkts,
1990                          uint16_t nb_pkts)
1991 {
1992         uint16_t nb_rx = 0, n, count;
1993
1994         if (unlikely(nb_pkts == 0))
1995                 return 0;
1996
1997         if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
1998                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1999
2000         while (nb_pkts) {
2001                 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
2002                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
2003                 nb_rx = (uint16_t)(nb_rx + count);
2004                 nb_pkts = (uint16_t)(nb_pkts - count);
2005                 if (count < n)
2006                         break;
2007         }
2008
2009         return nb_rx;
2010 }
2011
2012 static inline int
2013 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
2014 {
2015         struct iavf_tx_entry *sw_ring = txq->sw_ring;
2016         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2017         uint16_t nb_tx_desc = txq->nb_tx_desc;
2018         uint16_t desc_to_clean_to;
2019         uint16_t nb_tx_to_clean;
2020
2021         volatile struct iavf_tx_desc *txd = txq->tx_ring;
2022
2023         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
2024         if (desc_to_clean_to >= nb_tx_desc)
2025                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2026
2027         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2028         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
2029                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
2030                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
2031                 PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2032                            "(port=%d queue=%d)", desc_to_clean_to,
2033                            txq->port_id, txq->queue_id);
2034                 return -1;
2035         }
2036
2037         if (last_desc_cleaned > desc_to_clean_to)
2038                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2039                                                         desc_to_clean_to);
2040         else
2041                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2042                                         last_desc_cleaned);
2043
2044         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2045
2046         txq->last_desc_cleaned = desc_to_clean_to;
2047         txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
2048
2049         return 0;
2050 }
2051
2052 /* Check if the context descriptor is needed for TX offloading */
2053 static inline uint16_t
2054 iavf_calc_context_desc(uint64_t flags, uint8_t vlan_flag)
2055 {
2056         if (flags & PKT_TX_TCP_SEG)
2057                 return 1;
2058         if (flags & PKT_TX_VLAN_PKT &&
2059             vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
2060                 return 1;
2061         return 0;
2062 }
2063
2064 static inline void
2065 iavf_txd_enable_checksum(uint64_t ol_flags,
2066                         uint32_t *td_cmd,
2067                         uint32_t *td_offset,
2068                         union iavf_tx_offload tx_offload)
2069 {
2070         /* Set MACLEN */
2071         *td_offset |= (tx_offload.l2_len >> 1) <<
2072                       IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
2073
2074         /* Enable L3 checksum offloads */
2075         if (ol_flags & PKT_TX_IP_CKSUM) {
2076                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
2077                 *td_offset |= (tx_offload.l3_len >> 2) <<
2078                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2079         } else if (ol_flags & PKT_TX_IPV4) {
2080                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
2081                 *td_offset |= (tx_offload.l3_len >> 2) <<
2082                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2083         } else if (ol_flags & PKT_TX_IPV6) {
2084                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2085                 *td_offset |= (tx_offload.l3_len >> 2) <<
2086                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2087         }
2088
2089         if (ol_flags & PKT_TX_TCP_SEG) {
2090                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2091                 *td_offset |= (tx_offload.l4_len >> 2) <<
2092                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2093                 return;
2094         }
2095
2096         /* Enable L4 checksum offloads */
2097         switch (ol_flags & PKT_TX_L4_MASK) {
2098         case PKT_TX_TCP_CKSUM:
2099                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2100                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2101                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2102                 break;
2103         case PKT_TX_SCTP_CKSUM:
2104                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2105                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2106                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2107                 break;
2108         case PKT_TX_UDP_CKSUM:
2109                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2110                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2111                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2112                 break;
2113         default:
2114                 break;
2115         }
2116 }
2117
2118 /* set TSO context descriptor
2119  * support IP -> L4 and IP -> IP -> L4
2120  */
2121 static inline uint64_t
2122 iavf_set_tso_ctx(struct rte_mbuf *mbuf, union iavf_tx_offload tx_offload)
2123 {
2124         uint64_t ctx_desc = 0;
2125         uint32_t cd_cmd, hdr_len, cd_tso_len;
2126
2127         if (!tx_offload.l4_len) {
2128                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
2129                 return ctx_desc;
2130         }
2131
2132         hdr_len = tx_offload.l2_len +
2133                   tx_offload.l3_len +
2134                   tx_offload.l4_len;
2135
2136         cd_cmd = IAVF_TX_CTX_DESC_TSO;
2137         cd_tso_len = mbuf->pkt_len - hdr_len;
2138         ctx_desc |= ((uint64_t)cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
2139                      ((uint64_t)cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2140                      ((uint64_t)mbuf->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT);
2141
2142         return ctx_desc;
2143 }
2144
2145 /* Construct the tx flags */
2146 static inline uint64_t
2147 iavf_build_ctob(uint32_t td_cmd, uint32_t td_offset, unsigned int size,
2148                uint32_t td_tag)
2149 {
2150         return rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DATA |
2151                                 ((uint64_t)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
2152                                 ((uint64_t)td_offset <<
2153                                  IAVF_TXD_QW1_OFFSET_SHIFT) |
2154                                 ((uint64_t)size  <<
2155                                  IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
2156                                 ((uint64_t)td_tag  <<
2157                                  IAVF_TXD_QW1_L2TAG1_SHIFT));
2158 }
2159
2160 /* TX function */
2161 uint16_t
2162 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2163 {
2164         volatile struct iavf_tx_desc *txd;
2165         volatile struct iavf_tx_desc *txr;
2166         struct iavf_tx_queue *txq;
2167         struct iavf_tx_entry *sw_ring;
2168         struct iavf_tx_entry *txe, *txn;
2169         struct rte_mbuf *tx_pkt;
2170         struct rte_mbuf *m_seg;
2171         uint16_t tx_id;
2172         uint16_t nb_tx;
2173         uint32_t td_cmd;
2174         uint32_t td_offset;
2175         uint32_t td_tag;
2176         uint64_t ol_flags;
2177         uint16_t nb_used;
2178         uint16_t nb_ctx;
2179         uint16_t tx_last;
2180         uint16_t slen;
2181         uint64_t buf_dma_addr;
2182         uint16_t cd_l2tag2 = 0;
2183         union iavf_tx_offload tx_offload = {0};
2184
2185         txq = tx_queue;
2186         sw_ring = txq->sw_ring;
2187         txr = txq->tx_ring;
2188         tx_id = txq->tx_tail;
2189         txe = &sw_ring[tx_id];
2190
2191         /* Check if the descriptor ring needs to be cleaned. */
2192         if (txq->nb_free < txq->free_thresh)
2193                 (void)iavf_xmit_cleanup(txq);
2194
2195         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
2196                 td_cmd = 0;
2197                 td_tag = 0;
2198                 td_offset = 0;
2199
2200                 tx_pkt = *tx_pkts++;
2201                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
2202
2203                 ol_flags = tx_pkt->ol_flags;
2204                 tx_offload.l2_len = tx_pkt->l2_len;
2205                 tx_offload.l3_len = tx_pkt->l3_len;
2206                 tx_offload.l4_len = tx_pkt->l4_len;
2207                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
2208                 /* Calculate the number of context descriptors needed. */
2209                 nb_ctx = iavf_calc_context_desc(ol_flags, txq->vlan_flag);
2210
2211                 /* The number of descriptors that must be allocated for
2212                  * a packet equals to the number of the segments of that
2213                  * packet plus 1 context descriptor if needed.
2214                  */
2215                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
2216                 tx_last = (uint16_t)(tx_id + nb_used - 1);
2217
2218                 /* Circular ring */
2219                 if (tx_last >= txq->nb_tx_desc)
2220                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
2221
2222                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
2223                            " tx_first=%u tx_last=%u",
2224                            txq->port_id, txq->queue_id, tx_id, tx_last);
2225
2226                 if (nb_used > txq->nb_free) {
2227                         if (iavf_xmit_cleanup(txq)) {
2228                                 if (nb_tx == 0)
2229                                         return 0;
2230                                 goto end_of_tx;
2231                         }
2232                         if (unlikely(nb_used > txq->rs_thresh)) {
2233                                 while (nb_used > txq->nb_free) {
2234                                         if (iavf_xmit_cleanup(txq)) {
2235                                                 if (nb_tx == 0)
2236                                                         return 0;
2237                                                 goto end_of_tx;
2238                                         }
2239                                 }
2240                         }
2241                 }
2242
2243                 /* Descriptor based VLAN insertion */
2244                 if (ol_flags & PKT_TX_VLAN_PKT &&
2245                     txq->vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
2246                         td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2247                         td_tag = tx_pkt->vlan_tci;
2248                 }
2249
2250                 /* According to datasheet, the bit2 is reserved and must be
2251                  * set to 1.
2252                  */
2253                 td_cmd |= 0x04;
2254
2255                 /* Enable checksum offloading */
2256                 if (ol_flags & IAVF_TX_CKSUM_OFFLOAD_MASK)
2257                         iavf_txd_enable_checksum(ol_flags, &td_cmd,
2258                                                 &td_offset, tx_offload);
2259
2260                 if (nb_ctx) {
2261                         /* Setup TX context descriptor if required */
2262                         uint64_t cd_type_cmd_tso_mss =
2263                                 IAVF_TX_DESC_DTYPE_CONTEXT;
2264                         volatile struct iavf_tx_context_desc *ctx_txd =
2265                                 (volatile struct iavf_tx_context_desc *)
2266                                                         &txr[tx_id];
2267
2268                         /* clear QW0 or the previous writeback value
2269                          * may impact next write
2270                          */
2271                         *(volatile uint64_t *)ctx_txd = 0;
2272
2273                         txn = &sw_ring[txe->next_id];
2274                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2275                         if (txe->mbuf) {
2276                                 rte_pktmbuf_free_seg(txe->mbuf);
2277                                 txe->mbuf = NULL;
2278                         }
2279
2280                         /* TSO enabled */
2281                         if (ol_flags & PKT_TX_TCP_SEG)
2282                                 cd_type_cmd_tso_mss |=
2283                                         iavf_set_tso_ctx(tx_pkt, tx_offload);
2284
2285                         if (ol_flags & PKT_TX_VLAN_PKT &&
2286                            txq->vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2) {
2287                                 cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2
2288                                         << IAVF_TXD_CTX_QW1_CMD_SHIFT;
2289                                 cd_l2tag2 = tx_pkt->vlan_tci;
2290                         }
2291
2292                         ctx_txd->type_cmd_tso_mss =
2293                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2294                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
2295
2296                         IAVF_DUMP_TX_DESC(txq, &txr[tx_id], tx_id);
2297                         txe->last_id = tx_last;
2298                         tx_id = txe->next_id;
2299                         txe = txn;
2300                 }
2301
2302                 m_seg = tx_pkt;
2303                 do {
2304                         txd = &txr[tx_id];
2305                         txn = &sw_ring[txe->next_id];
2306
2307                         if (txe->mbuf)
2308                                 rte_pktmbuf_free_seg(txe->mbuf);
2309                         txe->mbuf = m_seg;
2310
2311                         /* Setup TX Descriptor */
2312                         slen = m_seg->data_len;
2313                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2314                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
2315                         txd->cmd_type_offset_bsz = iavf_build_ctob(td_cmd,
2316                                                                   td_offset,
2317                                                                   slen,
2318                                                                   td_tag);
2319
2320                         IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2321                         txe->last_id = tx_last;
2322                         tx_id = txe->next_id;
2323                         txe = txn;
2324                         m_seg = m_seg->next;
2325                 } while (m_seg);
2326
2327                 /* The last packet data descriptor needs End Of Packet (EOP) */
2328                 td_cmd |= IAVF_TX_DESC_CMD_EOP;
2329                 txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
2330                 txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
2331
2332                 if (txq->nb_used >= txq->rs_thresh) {
2333                         PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
2334                                    "%4u (port=%d queue=%d)",
2335                                    tx_last, txq->port_id, txq->queue_id);
2336
2337                         td_cmd |= IAVF_TX_DESC_CMD_RS;
2338
2339                         /* Update txq RS bit counters */
2340                         txq->nb_used = 0;
2341                 }
2342
2343                 txd->cmd_type_offset_bsz |=
2344                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2345                                          IAVF_TXD_QW1_CMD_SHIFT);
2346                 IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2347         }
2348
2349 end_of_tx:
2350         rte_wmb();
2351
2352         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
2353                    txq->port_id, txq->queue_id, tx_id, nb_tx);
2354
2355         IAVF_PCI_REG_WC_WRITE_RELAXED(txq->qtx_tail, tx_id);
2356         txq->tx_tail = tx_id;
2357
2358         return nb_tx;
2359 }
2360
2361 /* Check if the packet with vlan user priority is transmitted in the
2362  * correct queue.
2363  */
2364 static int
2365 iavf_check_vlan_up2tc(struct iavf_tx_queue *txq, struct rte_mbuf *m)
2366 {
2367         struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
2368         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2369         uint16_t up;
2370
2371         up = m->vlan_tci >> IAVF_VLAN_TAG_PCP_OFFSET;
2372
2373         if (!(vf->qos_cap->cap[txq->tc].tc_prio & BIT(up))) {
2374                 PMD_TX_LOG(ERR, "packet with vlan pcp %u cannot transmit in queue %u\n",
2375                         up, txq->queue_id);
2376                 return -1;
2377         } else {
2378                 return 0;
2379         }
2380 }
2381
2382 /* TX prep functions */
2383 uint16_t
2384 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2385               uint16_t nb_pkts)
2386 {
2387         int i, ret;
2388         uint64_t ol_flags;
2389         struct rte_mbuf *m;
2390         struct iavf_tx_queue *txq = tx_queue;
2391         struct rte_eth_dev *dev = &rte_eth_devices[txq->port_id];
2392         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2393
2394         for (i = 0; i < nb_pkts; i++) {
2395                 m = tx_pkts[i];
2396                 ol_flags = m->ol_flags;
2397
2398                 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
2399                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
2400                         if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
2401                                 rte_errno = EINVAL;
2402                                 return i;
2403                         }
2404                 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
2405                            (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
2406                         /* MSS outside the range are considered malicious */
2407                         rte_errno = EINVAL;
2408                         return i;
2409                 }
2410
2411                 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
2412                         rte_errno = ENOTSUP;
2413                         return i;
2414                 }
2415
2416 #ifdef RTE_ETHDEV_DEBUG_TX
2417                 ret = rte_validate_tx_offload(m);
2418                 if (ret != 0) {
2419                         rte_errno = -ret;
2420                         return i;
2421                 }
2422 #endif
2423                 ret = rte_net_intel_cksum_prepare(m);
2424                 if (ret != 0) {
2425                         rte_errno = -ret;
2426                         return i;
2427                 }
2428
2429                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_QOS &&
2430                     ol_flags & (PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN)) {
2431                         ret = iavf_check_vlan_up2tc(txq, m);
2432                         if (ret != 0) {
2433                                 rte_errno = -ret;
2434                                 return i;
2435                         }
2436                 }
2437         }
2438
2439         return i;
2440 }
2441
2442 /* choose rx function*/
2443 void
2444 iavf_set_rx_function(struct rte_eth_dev *dev)
2445 {
2446         struct iavf_adapter *adapter =
2447                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2448         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2449
2450 #ifdef RTE_ARCH_X86
2451         struct iavf_rx_queue *rxq;
2452         int i;
2453         int check_ret;
2454         bool use_avx2 = false;
2455         bool use_avx512 = false;
2456         bool use_flex = false;
2457
2458         check_ret = iavf_rx_vec_dev_check(dev);
2459         if (check_ret >= 0 &&
2460             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2461                 if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2462                      rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2463                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2464                         use_avx2 = true;
2465
2466 #ifdef CC_AVX512_SUPPORT
2467                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2468                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2469                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2470                         use_avx512 = true;
2471 #endif
2472
2473                 if (vf->vf_res->vf_cap_flags &
2474                         VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2475                         use_flex = true;
2476
2477                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2478                         rxq = dev->data->rx_queues[i];
2479                         (void)iavf_rxq_vec_setup(rxq);
2480                 }
2481
2482                 if (dev->data->scattered_rx) {
2483                         if (!use_avx512) {
2484                                 PMD_DRV_LOG(DEBUG,
2485                                             "Using %sVector Scattered Rx (port %d).",
2486                                             use_avx2 ? "avx2 " : "",
2487                                             dev->data->port_id);
2488                         } else {
2489                                 if (check_ret == IAVF_VECTOR_PATH)
2490                                         PMD_DRV_LOG(DEBUG,
2491                                                     "Using AVX512 Vector Scattered Rx (port %d).",
2492                                                     dev->data->port_id);
2493                                 else
2494                                         PMD_DRV_LOG(DEBUG,
2495                                                     "Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
2496                                                     dev->data->port_id);
2497                         }
2498                         if (use_flex) {
2499                                 dev->rx_pkt_burst = use_avx2 ?
2500                                         iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
2501                                         iavf_recv_scattered_pkts_vec_flex_rxd;
2502 #ifdef CC_AVX512_SUPPORT
2503                                 if (use_avx512) {
2504                                         if (check_ret == IAVF_VECTOR_PATH)
2505                                                 dev->rx_pkt_burst =
2506                                                         iavf_recv_scattered_pkts_vec_avx512_flex_rxd;
2507                                         else
2508                                                 dev->rx_pkt_burst =
2509                                                         iavf_recv_scattered_pkts_vec_avx512_flex_rxd_offload;
2510                                 }
2511 #endif
2512                         } else {
2513                                 dev->rx_pkt_burst = use_avx2 ?
2514                                         iavf_recv_scattered_pkts_vec_avx2 :
2515                                         iavf_recv_scattered_pkts_vec;
2516 #ifdef CC_AVX512_SUPPORT
2517                                 if (use_avx512) {
2518                                         if (check_ret == IAVF_VECTOR_PATH)
2519                                                 dev->rx_pkt_burst =
2520                                                         iavf_recv_scattered_pkts_vec_avx512;
2521                                         else
2522                                                 dev->rx_pkt_burst =
2523                                                         iavf_recv_scattered_pkts_vec_avx512_offload;
2524                                 }
2525 #endif
2526                         }
2527                 } else {
2528                         if (!use_avx512) {
2529                                 PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2530                                             use_avx2 ? "avx2 " : "",
2531                                             dev->data->port_id);
2532                         } else {
2533                                 if (check_ret == IAVF_VECTOR_PATH)
2534                                         PMD_DRV_LOG(DEBUG,
2535                                                     "Using AVX512 Vector Rx (port %d).",
2536                                                     dev->data->port_id);
2537                                 else
2538                                         PMD_DRV_LOG(DEBUG,
2539                                                     "Using AVX512 OFFLOAD Vector Rx (port %d).",
2540                                                     dev->data->port_id);
2541                         }
2542                         if (use_flex) {
2543                                 dev->rx_pkt_burst = use_avx2 ?
2544                                         iavf_recv_pkts_vec_avx2_flex_rxd :
2545                                         iavf_recv_pkts_vec_flex_rxd;
2546 #ifdef CC_AVX512_SUPPORT
2547                                 if (use_avx512) {
2548                                         if (check_ret == IAVF_VECTOR_PATH)
2549                                                 dev->rx_pkt_burst =
2550                                                         iavf_recv_pkts_vec_avx512_flex_rxd;
2551                                         else
2552                                                 dev->rx_pkt_burst =
2553                                                         iavf_recv_pkts_vec_avx512_flex_rxd_offload;
2554                                 }
2555 #endif
2556                         } else {
2557                                 dev->rx_pkt_burst = use_avx2 ?
2558                                         iavf_recv_pkts_vec_avx2 :
2559                                         iavf_recv_pkts_vec;
2560 #ifdef CC_AVX512_SUPPORT
2561                                 if (use_avx512) {
2562                                         if (check_ret == IAVF_VECTOR_PATH)
2563                                                 dev->rx_pkt_burst =
2564                                                         iavf_recv_pkts_vec_avx512;
2565                                         else
2566                                                 dev->rx_pkt_burst =
2567                                                         iavf_recv_pkts_vec_avx512_offload;
2568                                 }
2569 #endif
2570                         }
2571                 }
2572
2573                 return;
2574         }
2575
2576 #endif
2577         if (dev->data->scattered_rx) {
2578                 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
2579                             dev->data->port_id);
2580                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2581                         dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
2582                 else
2583                         dev->rx_pkt_burst = iavf_recv_scattered_pkts;
2584         } else if (adapter->rx_bulk_alloc_allowed) {
2585                 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
2586                             dev->data->port_id);
2587                 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
2588         } else {
2589                 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
2590                             dev->data->port_id);
2591                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2592                         dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
2593                 else
2594                         dev->rx_pkt_burst = iavf_recv_pkts;
2595         }
2596 }
2597
2598 /* choose tx function*/
2599 void
2600 iavf_set_tx_function(struct rte_eth_dev *dev)
2601 {
2602 #ifdef RTE_ARCH_X86
2603         struct iavf_tx_queue *txq;
2604         int i;
2605         int check_ret;
2606         bool use_sse = false;
2607         bool use_avx2 = false;
2608         bool use_avx512 = false;
2609
2610         check_ret = iavf_tx_vec_dev_check(dev);
2611
2612         if (check_ret >= 0 &&
2613             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2614                 /* SSE and AVX2 not support offload path yet. */
2615                 if (check_ret == IAVF_VECTOR_PATH) {
2616                         use_sse = true;
2617                         if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2618                              rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2619                             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2620                                 use_avx2 = true;
2621                 }
2622 #ifdef CC_AVX512_SUPPORT
2623                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2624                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2625                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2626                         use_avx512 = true;
2627 #endif
2628
2629                 if (!use_sse && !use_avx2 && !use_avx512)
2630                         goto normal;
2631
2632                 if (!use_avx512) {
2633                         PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
2634                                     use_avx2 ? "avx2 " : "",
2635                                     dev->data->port_id);
2636                         dev->tx_pkt_burst = use_avx2 ?
2637                                             iavf_xmit_pkts_vec_avx2 :
2638                                             iavf_xmit_pkts_vec;
2639                 }
2640                 dev->tx_pkt_prepare = NULL;
2641 #ifdef CC_AVX512_SUPPORT
2642                 if (use_avx512) {
2643                         if (check_ret == IAVF_VECTOR_PATH) {
2644                                 dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512;
2645                                 PMD_DRV_LOG(DEBUG, "Using AVX512 Vector Tx (port %d).",
2646                                             dev->data->port_id);
2647                         } else {
2648                                 dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512_offload;
2649                                 dev->tx_pkt_prepare = iavf_prep_pkts;
2650                                 PMD_DRV_LOG(DEBUG, "Using AVX512 OFFLOAD Vector Tx (port %d).",
2651                                             dev->data->port_id);
2652                         }
2653                 }
2654 #endif
2655
2656                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2657                         txq = dev->data->tx_queues[i];
2658                         if (!txq)
2659                                 continue;
2660 #ifdef CC_AVX512_SUPPORT
2661                         if (use_avx512)
2662                                 iavf_txq_vec_setup_avx512(txq);
2663                         else
2664                                 iavf_txq_vec_setup(txq);
2665 #else
2666                         iavf_txq_vec_setup(txq);
2667 #endif
2668                 }
2669
2670                 return;
2671         }
2672
2673 normal:
2674 #endif
2675         PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
2676                     dev->data->port_id);
2677         dev->tx_pkt_burst = iavf_xmit_pkts;
2678         dev->tx_pkt_prepare = iavf_prep_pkts;
2679 }
2680
2681 static int
2682 iavf_tx_done_cleanup_full(struct iavf_tx_queue *txq,
2683                         uint32_t free_cnt)
2684 {
2685         struct iavf_tx_entry *swr_ring = txq->sw_ring;
2686         uint16_t i, tx_last, tx_id;
2687         uint16_t nb_tx_free_last;
2688         uint16_t nb_tx_to_clean;
2689         uint32_t pkt_cnt;
2690
2691         /* Start free mbuf from the next of tx_tail */
2692         tx_last = txq->tx_tail;
2693         tx_id  = swr_ring[tx_last].next_id;
2694
2695         if (txq->nb_free == 0 && iavf_xmit_cleanup(txq))
2696                 return 0;
2697
2698         nb_tx_to_clean = txq->nb_free;
2699         nb_tx_free_last = txq->nb_free;
2700         if (!free_cnt)
2701                 free_cnt = txq->nb_tx_desc;
2702
2703         /* Loop through swr_ring to count the amount of
2704          * freeable mubfs and packets.
2705          */
2706         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2707                 for (i = 0; i < nb_tx_to_clean &&
2708                         pkt_cnt < free_cnt &&
2709                         tx_id != tx_last; i++) {
2710                         if (swr_ring[tx_id].mbuf != NULL) {
2711                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2712                                 swr_ring[tx_id].mbuf = NULL;
2713
2714                                 /*
2715                                  * last segment in the packet,
2716                                  * increment packet count
2717                                  */
2718                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2719                         }
2720
2721                         tx_id = swr_ring[tx_id].next_id;
2722                 }
2723
2724                 if (txq->rs_thresh > txq->nb_tx_desc -
2725                         txq->nb_free || tx_id == tx_last)
2726                         break;
2727
2728                 if (pkt_cnt < free_cnt) {
2729                         if (iavf_xmit_cleanup(txq))
2730                                 break;
2731
2732                         nb_tx_to_clean = txq->nb_free - nb_tx_free_last;
2733                         nb_tx_free_last = txq->nb_free;
2734                 }
2735         }
2736
2737         return (int)pkt_cnt;
2738 }
2739
2740 int
2741 iavf_dev_tx_done_cleanup(void *txq, uint32_t free_cnt)
2742 {
2743         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
2744
2745         return iavf_tx_done_cleanup_full(q, free_cnt);
2746 }
2747
2748 void
2749 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2750                      struct rte_eth_rxq_info *qinfo)
2751 {
2752         struct iavf_rx_queue *rxq;
2753
2754         rxq = dev->data->rx_queues[queue_id];
2755
2756         qinfo->mp = rxq->mp;
2757         qinfo->scattered_rx = dev->data->scattered_rx;
2758         qinfo->nb_desc = rxq->nb_rx_desc;
2759
2760         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2761         qinfo->conf.rx_drop_en = true;
2762         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2763 }
2764
2765 void
2766 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2767                      struct rte_eth_txq_info *qinfo)
2768 {
2769         struct iavf_tx_queue *txq;
2770
2771         txq = dev->data->tx_queues[queue_id];
2772
2773         qinfo->nb_desc = txq->nb_tx_desc;
2774
2775         qinfo->conf.tx_free_thresh = txq->free_thresh;
2776         qinfo->conf.tx_rs_thresh = txq->rs_thresh;
2777         qinfo->conf.offloads = txq->offloads;
2778         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2779 }
2780
2781 /* Get the number of used descriptors of a rx queue */
2782 uint32_t
2783 iavf_dev_rxq_count(struct rte_eth_dev *dev, uint16_t queue_id)
2784 {
2785 #define IAVF_RXQ_SCAN_INTERVAL 4
2786         volatile union iavf_rx_desc *rxdp;
2787         struct iavf_rx_queue *rxq;
2788         uint16_t desc = 0;
2789
2790         rxq = dev->data->rx_queues[queue_id];
2791         rxdp = &rxq->rx_ring[rxq->rx_tail];
2792
2793         while ((desc < rxq->nb_rx_desc) &&
2794                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2795                  IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
2796                (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
2797                 /* Check the DD bit of a rx descriptor of each 4 in a group,
2798                  * to avoid checking too frequently and downgrading performance
2799                  * too much.
2800                  */
2801                 desc += IAVF_RXQ_SCAN_INTERVAL;
2802                 rxdp += IAVF_RXQ_SCAN_INTERVAL;
2803                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2804                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2805                                         desc - rxq->nb_rx_desc]);
2806         }
2807
2808         return desc;
2809 }
2810
2811 int
2812 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
2813 {
2814         struct iavf_rx_queue *rxq = rx_queue;
2815         volatile uint64_t *status;
2816         uint64_t mask;
2817         uint32_t desc;
2818
2819         if (unlikely(offset >= rxq->nb_rx_desc))
2820                 return -EINVAL;
2821
2822         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2823                 return RTE_ETH_RX_DESC_UNAVAIL;
2824
2825         desc = rxq->rx_tail + offset;
2826         if (desc >= rxq->nb_rx_desc)
2827                 desc -= rxq->nb_rx_desc;
2828
2829         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2830         mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
2831                 << IAVF_RXD_QW1_STATUS_SHIFT);
2832         if (*status & mask)
2833                 return RTE_ETH_RX_DESC_DONE;
2834
2835         return RTE_ETH_RX_DESC_AVAIL;
2836 }
2837
2838 int
2839 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
2840 {
2841         struct iavf_tx_queue *txq = tx_queue;
2842         volatile uint64_t *status;
2843         uint64_t mask, expect;
2844         uint32_t desc;
2845
2846         if (unlikely(offset >= txq->nb_tx_desc))
2847                 return -EINVAL;
2848
2849         desc = txq->tx_tail + offset;
2850         /* go to next desc that has the RS bit */
2851         desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
2852                 txq->rs_thresh;
2853         if (desc >= txq->nb_tx_desc) {
2854                 desc -= txq->nb_tx_desc;
2855                 if (desc >= txq->nb_tx_desc)
2856                         desc -= txq->nb_tx_desc;
2857         }
2858
2859         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2860         mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
2861         expect = rte_cpu_to_le_64(
2862                  IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
2863         if ((*status & mask) == expect)
2864                 return RTE_ETH_TX_DESC_DONE;
2865
2866         return RTE_ETH_TX_DESC_FULL;
2867 }
2868
2869 const uint32_t *
2870 iavf_get_default_ptype_table(void)
2871 {
2872         static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
2873                 __rte_cache_aligned = {
2874                 /* L2 types */
2875                 /* [0] reserved */
2876                 [1] = RTE_PTYPE_L2_ETHER,
2877                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
2878                 /* [3] - [5] reserved */
2879                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
2880                 /* [7] - [10] reserved */
2881                 [11] = RTE_PTYPE_L2_ETHER_ARP,
2882                 /* [12] - [21] reserved */
2883
2884                 /* Non tunneled IPv4 */
2885                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2886                        RTE_PTYPE_L4_FRAG,
2887                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2888                        RTE_PTYPE_L4_NONFRAG,
2889                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2890                        RTE_PTYPE_L4_UDP,
2891                 /* [25] reserved */
2892                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2893                        RTE_PTYPE_L4_TCP,
2894                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2895                        RTE_PTYPE_L4_SCTP,
2896                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2897                        RTE_PTYPE_L4_ICMP,
2898
2899                 /* IPv4 --> IPv4 */
2900                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2901                        RTE_PTYPE_TUNNEL_IP |
2902                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2903                        RTE_PTYPE_INNER_L4_FRAG,
2904                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2905                        RTE_PTYPE_TUNNEL_IP |
2906                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2907                        RTE_PTYPE_INNER_L4_NONFRAG,
2908                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2909                        RTE_PTYPE_TUNNEL_IP |
2910                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2911                        RTE_PTYPE_INNER_L4_UDP,
2912                 /* [32] reserved */
2913                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2914                        RTE_PTYPE_TUNNEL_IP |
2915                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2916                        RTE_PTYPE_INNER_L4_TCP,
2917                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2918                        RTE_PTYPE_TUNNEL_IP |
2919                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2920                        RTE_PTYPE_INNER_L4_SCTP,
2921                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2922                        RTE_PTYPE_TUNNEL_IP |
2923                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2924                        RTE_PTYPE_INNER_L4_ICMP,
2925
2926                 /* IPv4 --> IPv6 */
2927                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2928                        RTE_PTYPE_TUNNEL_IP |
2929                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2930                        RTE_PTYPE_INNER_L4_FRAG,
2931                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2932                        RTE_PTYPE_TUNNEL_IP |
2933                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2934                        RTE_PTYPE_INNER_L4_NONFRAG,
2935                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2936                        RTE_PTYPE_TUNNEL_IP |
2937                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2938                        RTE_PTYPE_INNER_L4_UDP,
2939                 /* [39] reserved */
2940                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2941                        RTE_PTYPE_TUNNEL_IP |
2942                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2943                        RTE_PTYPE_INNER_L4_TCP,
2944                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2945                        RTE_PTYPE_TUNNEL_IP |
2946                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2947                        RTE_PTYPE_INNER_L4_SCTP,
2948                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2949                        RTE_PTYPE_TUNNEL_IP |
2950                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2951                        RTE_PTYPE_INNER_L4_ICMP,
2952
2953                 /* IPv4 --> GRE/Teredo/VXLAN */
2954                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2955                        RTE_PTYPE_TUNNEL_GRENAT,
2956
2957                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
2958                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2959                        RTE_PTYPE_TUNNEL_GRENAT |
2960                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2961                        RTE_PTYPE_INNER_L4_FRAG,
2962                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2963                        RTE_PTYPE_TUNNEL_GRENAT |
2964                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2965                        RTE_PTYPE_INNER_L4_NONFRAG,
2966                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2967                        RTE_PTYPE_TUNNEL_GRENAT |
2968                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2969                        RTE_PTYPE_INNER_L4_UDP,
2970                 /* [47] reserved */
2971                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2972                        RTE_PTYPE_TUNNEL_GRENAT |
2973                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2974                        RTE_PTYPE_INNER_L4_TCP,
2975                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2976                        RTE_PTYPE_TUNNEL_GRENAT |
2977                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2978                        RTE_PTYPE_INNER_L4_SCTP,
2979                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2980                        RTE_PTYPE_TUNNEL_GRENAT |
2981                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2982                        RTE_PTYPE_INNER_L4_ICMP,
2983
2984                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
2985                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2986                        RTE_PTYPE_TUNNEL_GRENAT |
2987                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2988                        RTE_PTYPE_INNER_L4_FRAG,
2989                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2990                        RTE_PTYPE_TUNNEL_GRENAT |
2991                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2992                        RTE_PTYPE_INNER_L4_NONFRAG,
2993                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2994                        RTE_PTYPE_TUNNEL_GRENAT |
2995                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2996                        RTE_PTYPE_INNER_L4_UDP,
2997                 /* [54] reserved */
2998                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2999                        RTE_PTYPE_TUNNEL_GRENAT |
3000                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3001                        RTE_PTYPE_INNER_L4_TCP,
3002                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3003                        RTE_PTYPE_TUNNEL_GRENAT |
3004                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3005                        RTE_PTYPE_INNER_L4_SCTP,
3006                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3007                        RTE_PTYPE_TUNNEL_GRENAT |
3008                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3009                        RTE_PTYPE_INNER_L4_ICMP,
3010
3011                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
3012                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3013                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3014
3015                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3016                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3017                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3018                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3019                        RTE_PTYPE_INNER_L4_FRAG,
3020                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3021                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3022                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3023                        RTE_PTYPE_INNER_L4_NONFRAG,
3024                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3025                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3026                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3027                        RTE_PTYPE_INNER_L4_UDP,
3028                 /* [62] reserved */
3029                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3030                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3031                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3032                        RTE_PTYPE_INNER_L4_TCP,
3033                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3034                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3035                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3036                        RTE_PTYPE_INNER_L4_SCTP,
3037                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3038                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3039                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3040                        RTE_PTYPE_INNER_L4_ICMP,
3041
3042                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3043                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3044                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3045                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3046                        RTE_PTYPE_INNER_L4_FRAG,
3047                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3048                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3049                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3050                        RTE_PTYPE_INNER_L4_NONFRAG,
3051                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3052                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3053                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3054                        RTE_PTYPE_INNER_L4_UDP,
3055                 /* [69] reserved */
3056                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3057                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3058                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3059                        RTE_PTYPE_INNER_L4_TCP,
3060                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3061                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3062                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3063                        RTE_PTYPE_INNER_L4_SCTP,
3064                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3065                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3066                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3067                        RTE_PTYPE_INNER_L4_ICMP,
3068                 /* [73] - [87] reserved */
3069
3070                 /* Non tunneled IPv6 */
3071                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3072                        RTE_PTYPE_L4_FRAG,
3073                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3074                        RTE_PTYPE_L4_NONFRAG,
3075                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3076                        RTE_PTYPE_L4_UDP,
3077                 /* [91] reserved */
3078                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3079                        RTE_PTYPE_L4_TCP,
3080                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3081                        RTE_PTYPE_L4_SCTP,
3082                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3083                        RTE_PTYPE_L4_ICMP,
3084
3085                 /* IPv6 --> IPv4 */
3086                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3087                        RTE_PTYPE_TUNNEL_IP |
3088                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3089                        RTE_PTYPE_INNER_L4_FRAG,
3090                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3091                        RTE_PTYPE_TUNNEL_IP |
3092                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3093                        RTE_PTYPE_INNER_L4_NONFRAG,
3094                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3095                        RTE_PTYPE_TUNNEL_IP |
3096                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3097                        RTE_PTYPE_INNER_L4_UDP,
3098                 /* [98] reserved */
3099                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3100                        RTE_PTYPE_TUNNEL_IP |
3101                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3102                        RTE_PTYPE_INNER_L4_TCP,
3103                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3104                         RTE_PTYPE_TUNNEL_IP |
3105                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3106                         RTE_PTYPE_INNER_L4_SCTP,
3107                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3108                         RTE_PTYPE_TUNNEL_IP |
3109                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3110                         RTE_PTYPE_INNER_L4_ICMP,
3111
3112                 /* IPv6 --> IPv6 */
3113                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3114                         RTE_PTYPE_TUNNEL_IP |
3115                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3116                         RTE_PTYPE_INNER_L4_FRAG,
3117                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3118                         RTE_PTYPE_TUNNEL_IP |
3119                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3120                         RTE_PTYPE_INNER_L4_NONFRAG,
3121                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3122                         RTE_PTYPE_TUNNEL_IP |
3123                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3124                         RTE_PTYPE_INNER_L4_UDP,
3125                 /* [105] reserved */
3126                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3127                         RTE_PTYPE_TUNNEL_IP |
3128                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3129                         RTE_PTYPE_INNER_L4_TCP,
3130                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3131                         RTE_PTYPE_TUNNEL_IP |
3132                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3133                         RTE_PTYPE_INNER_L4_SCTP,
3134                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3135                         RTE_PTYPE_TUNNEL_IP |
3136                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3137                         RTE_PTYPE_INNER_L4_ICMP,
3138
3139                 /* IPv6 --> GRE/Teredo/VXLAN */
3140                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3141                         RTE_PTYPE_TUNNEL_GRENAT,
3142
3143                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3144                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3145                         RTE_PTYPE_TUNNEL_GRENAT |
3146                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3147                         RTE_PTYPE_INNER_L4_FRAG,
3148                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3149                         RTE_PTYPE_TUNNEL_GRENAT |
3150                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3151                         RTE_PTYPE_INNER_L4_NONFRAG,
3152                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3153                         RTE_PTYPE_TUNNEL_GRENAT |
3154                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3155                         RTE_PTYPE_INNER_L4_UDP,
3156                 /* [113] reserved */
3157                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3158                         RTE_PTYPE_TUNNEL_GRENAT |
3159                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3160                         RTE_PTYPE_INNER_L4_TCP,
3161                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3162                         RTE_PTYPE_TUNNEL_GRENAT |
3163                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3164                         RTE_PTYPE_INNER_L4_SCTP,
3165                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3166                         RTE_PTYPE_TUNNEL_GRENAT |
3167                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3168                         RTE_PTYPE_INNER_L4_ICMP,
3169
3170                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3171                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3172                         RTE_PTYPE_TUNNEL_GRENAT |
3173                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3174                         RTE_PTYPE_INNER_L4_FRAG,
3175                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3176                         RTE_PTYPE_TUNNEL_GRENAT |
3177                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3178                         RTE_PTYPE_INNER_L4_NONFRAG,
3179                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3180                         RTE_PTYPE_TUNNEL_GRENAT |
3181                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3182                         RTE_PTYPE_INNER_L4_UDP,
3183                 /* [120] reserved */
3184                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3185                         RTE_PTYPE_TUNNEL_GRENAT |
3186                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3187                         RTE_PTYPE_INNER_L4_TCP,
3188                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3189                         RTE_PTYPE_TUNNEL_GRENAT |
3190                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3191                         RTE_PTYPE_INNER_L4_SCTP,
3192                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3193                         RTE_PTYPE_TUNNEL_GRENAT |
3194                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3195                         RTE_PTYPE_INNER_L4_ICMP,
3196
3197                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3198                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3199                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3200
3201                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3202                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3203                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3204                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3205                         RTE_PTYPE_INNER_L4_FRAG,
3206                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3207                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3208                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3209                         RTE_PTYPE_INNER_L4_NONFRAG,
3210                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3211                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3212                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3213                         RTE_PTYPE_INNER_L4_UDP,
3214                 /* [128] reserved */
3215                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3216                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3217                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3218                         RTE_PTYPE_INNER_L4_TCP,
3219                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3220                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3221                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3222                         RTE_PTYPE_INNER_L4_SCTP,
3223                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3224                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3225                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3226                         RTE_PTYPE_INNER_L4_ICMP,
3227
3228                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3229                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3230                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3231                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3232                         RTE_PTYPE_INNER_L4_FRAG,
3233                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3234                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3235                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3236                         RTE_PTYPE_INNER_L4_NONFRAG,
3237                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3238                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3239                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3240                         RTE_PTYPE_INNER_L4_UDP,
3241                 /* [135] reserved */
3242                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3243                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3244                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3245                         RTE_PTYPE_INNER_L4_TCP,
3246                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3247                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3248                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3249                         RTE_PTYPE_INNER_L4_SCTP,
3250                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3251                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3252                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3253                         RTE_PTYPE_INNER_L4_ICMP,
3254                 /* [139] - [299] reserved */
3255
3256                 /* PPPoE */
3257                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
3258                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
3259
3260                 /* PPPoE --> IPv4 */
3261                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
3262                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3263                         RTE_PTYPE_L4_FRAG,
3264                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
3265                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3266                         RTE_PTYPE_L4_NONFRAG,
3267                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
3268                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3269                         RTE_PTYPE_L4_UDP,
3270                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
3271                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3272                         RTE_PTYPE_L4_TCP,
3273                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
3274                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3275                         RTE_PTYPE_L4_SCTP,
3276                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
3277                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3278                         RTE_PTYPE_L4_ICMP,
3279
3280                 /* PPPoE --> IPv6 */
3281                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
3282                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3283                         RTE_PTYPE_L4_FRAG,
3284                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
3285                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3286                         RTE_PTYPE_L4_NONFRAG,
3287                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
3288                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3289                         RTE_PTYPE_L4_UDP,
3290                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
3291                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3292                         RTE_PTYPE_L4_TCP,
3293                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
3294                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3295                         RTE_PTYPE_L4_SCTP,
3296                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
3297                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3298                         RTE_PTYPE_L4_ICMP,
3299                 /* [314] - [324] reserved */
3300
3301                 /* IPv4/IPv6 --> GTPC/GTPU */
3302                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3303                         RTE_PTYPE_TUNNEL_GTPC,
3304                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3305                         RTE_PTYPE_TUNNEL_GTPC,
3306                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3307                         RTE_PTYPE_TUNNEL_GTPC,
3308                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3309                         RTE_PTYPE_TUNNEL_GTPC,
3310                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3311                         RTE_PTYPE_TUNNEL_GTPU,
3312                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3313                         RTE_PTYPE_TUNNEL_GTPU,
3314
3315                 /* IPv4 --> GTPU --> IPv4 */
3316                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3317                         RTE_PTYPE_TUNNEL_GTPU |
3318                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3319                         RTE_PTYPE_INNER_L4_FRAG,
3320                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3321                         RTE_PTYPE_TUNNEL_GTPU |
3322                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3323                         RTE_PTYPE_INNER_L4_NONFRAG,
3324                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3325                         RTE_PTYPE_TUNNEL_GTPU |
3326                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3327                         RTE_PTYPE_INNER_L4_UDP,
3328                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3329                         RTE_PTYPE_TUNNEL_GTPU |
3330                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3331                         RTE_PTYPE_INNER_L4_TCP,
3332                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3333                         RTE_PTYPE_TUNNEL_GTPU |
3334                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3335                         RTE_PTYPE_INNER_L4_ICMP,
3336
3337                 /* IPv6 --> GTPU --> IPv4 */
3338                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3339                         RTE_PTYPE_TUNNEL_GTPU |
3340                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3341                         RTE_PTYPE_INNER_L4_FRAG,
3342                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3343                         RTE_PTYPE_TUNNEL_GTPU |
3344                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3345                         RTE_PTYPE_INNER_L4_NONFRAG,
3346                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3347                         RTE_PTYPE_TUNNEL_GTPU |
3348                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3349                         RTE_PTYPE_INNER_L4_UDP,
3350                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3351                         RTE_PTYPE_TUNNEL_GTPU |
3352                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3353                         RTE_PTYPE_INNER_L4_TCP,
3354                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3355                         RTE_PTYPE_TUNNEL_GTPU |
3356                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3357                         RTE_PTYPE_INNER_L4_ICMP,
3358
3359                 /* IPv4 --> GTPU --> IPv6 */
3360                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3361                         RTE_PTYPE_TUNNEL_GTPU |
3362                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3363                         RTE_PTYPE_INNER_L4_FRAG,
3364                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3365                         RTE_PTYPE_TUNNEL_GTPU |
3366                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3367                         RTE_PTYPE_INNER_L4_NONFRAG,
3368                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3369                         RTE_PTYPE_TUNNEL_GTPU |
3370                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3371                         RTE_PTYPE_INNER_L4_UDP,
3372                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3373                         RTE_PTYPE_TUNNEL_GTPU |
3374                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3375                         RTE_PTYPE_INNER_L4_TCP,
3376                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3377                         RTE_PTYPE_TUNNEL_GTPU |
3378                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3379                         RTE_PTYPE_INNER_L4_ICMP,
3380
3381                 /* IPv6 --> GTPU --> IPv6 */
3382                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3383                         RTE_PTYPE_TUNNEL_GTPU |
3384                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3385                         RTE_PTYPE_INNER_L4_FRAG,
3386                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3387                         RTE_PTYPE_TUNNEL_GTPU |
3388                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3389                         RTE_PTYPE_INNER_L4_NONFRAG,
3390                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3391                         RTE_PTYPE_TUNNEL_GTPU |
3392                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3393                         RTE_PTYPE_INNER_L4_UDP,
3394                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3395                         RTE_PTYPE_TUNNEL_GTPU |
3396                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3397                         RTE_PTYPE_INNER_L4_TCP,
3398                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3399                         RTE_PTYPE_TUNNEL_GTPU |
3400                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3401                         RTE_PTYPE_INNER_L4_ICMP,
3402
3403                 /* IPv4 --> UDP ECPRI */
3404                 [372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3405                         RTE_PTYPE_L4_UDP,
3406                 [373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3407                         RTE_PTYPE_L4_UDP,
3408                 [374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3409                         RTE_PTYPE_L4_UDP,
3410                 [375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3411                         RTE_PTYPE_L4_UDP,
3412                 [376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3413                         RTE_PTYPE_L4_UDP,
3414                 [377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3415                         RTE_PTYPE_L4_UDP,
3416                 [378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3417                         RTE_PTYPE_L4_UDP,
3418                 [379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3419                         RTE_PTYPE_L4_UDP,
3420                 [380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3421                         RTE_PTYPE_L4_UDP,
3422                 [381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3423                         RTE_PTYPE_L4_UDP,
3424
3425                 /* IPV6 --> UDP ECPRI */
3426                 [382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3427                         RTE_PTYPE_L4_UDP,
3428                 [383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3429                         RTE_PTYPE_L4_UDP,
3430                 [384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3431                         RTE_PTYPE_L4_UDP,
3432                 [385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3433                         RTE_PTYPE_L4_UDP,
3434                 [386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3435                         RTE_PTYPE_L4_UDP,
3436                 [387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3437                         RTE_PTYPE_L4_UDP,
3438                 [388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3439                         RTE_PTYPE_L4_UDP,
3440                 [389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3441                         RTE_PTYPE_L4_UDP,
3442                 [390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3443                         RTE_PTYPE_L4_UDP,
3444                 [391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3445                         RTE_PTYPE_L4_UDP,
3446                 /* All others reserved */
3447         };
3448
3449         return ptype_tbl;
3450 }