net/iavf: unify Rx packet type table
[dpdk.git] / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26
27 #include "iavf.h"
28 #include "iavf_rxtx.h"
29
30 static inline int
31 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
32 {
33         /* The following constraints must be satisfied:
34          *   thresh < rxq->nb_rx_desc
35          */
36         if (thresh >= nb_desc) {
37                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
38                              thresh, nb_desc);
39                 return -EINVAL;
40         }
41         return 0;
42 }
43
44 static inline int
45 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
46                 uint16_t tx_free_thresh)
47 {
48         /* TX descriptors will have their RS bit set after tx_rs_thresh
49          * descriptors have been used. The TX descriptor ring will be cleaned
50          * after tx_free_thresh descriptors are used or if the number of
51          * descriptors required to transmit a packet is greater than the
52          * number of free TX descriptors.
53          *
54          * The following constraints must be satisfied:
55          *  - tx_rs_thresh must be less than the size of the ring minus 2.
56          *  - tx_free_thresh must be less than the size of the ring minus 3.
57          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
58          *  - tx_rs_thresh must be a divisor of the ring size.
59          *
60          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
61          * race condition, hence the maximum threshold constraints. When set
62          * to zero use default values.
63          */
64         if (tx_rs_thresh >= (nb_desc - 2)) {
65                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
66                              "number of TX descriptors (%u) minus 2",
67                              tx_rs_thresh, nb_desc);
68                 return -EINVAL;
69         }
70         if (tx_free_thresh >= (nb_desc - 3)) {
71                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
72                              "number of TX descriptors (%u) minus 3.",
73                              tx_free_thresh, nb_desc);
74                 return -EINVAL;
75         }
76         if (tx_rs_thresh > tx_free_thresh) {
77                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
78                              "equal to tx_free_thresh (%u).",
79                              tx_rs_thresh, tx_free_thresh);
80                 return -EINVAL;
81         }
82         if ((nb_desc % tx_rs_thresh) != 0) {
83                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
84                              "number of TX descriptors (%u).",
85                              tx_rs_thresh, nb_desc);
86                 return -EINVAL;
87         }
88
89         return 0;
90 }
91
92 static inline bool
93 check_rx_vec_allow(struct iavf_rx_queue *rxq)
94 {
95         if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
96             rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
97                 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
98                 return true;
99         }
100
101         PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
102         return false;
103 }
104
105 static inline bool
106 check_tx_vec_allow(struct iavf_tx_queue *txq)
107 {
108         if (!(txq->offloads & IAVF_NO_VECTOR_FLAGS) &&
109             txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
110             txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
111                 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
112                 return true;
113         }
114         PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
115         return false;
116 }
117
118 static inline bool
119 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
120 {
121         int ret = true;
122
123         if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
124                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
125                              "rxq->rx_free_thresh=%d, "
126                              "IAVF_RX_MAX_BURST=%d",
127                              rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
128                 ret = false;
129         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
130                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
131                              "rxq->nb_rx_desc=%d, "
132                              "rxq->rx_free_thresh=%d",
133                              rxq->nb_rx_desc, rxq->rx_free_thresh);
134                 ret = false;
135         }
136         return ret;
137 }
138
139 static inline void
140 reset_rx_queue(struct iavf_rx_queue *rxq)
141 {
142         uint16_t len;
143         uint32_t i;
144
145         if (!rxq)
146                 return;
147
148         len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
149
150         for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
151                 ((volatile char *)rxq->rx_ring)[i] = 0;
152
153         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
154
155         for (i = 0; i < IAVF_RX_MAX_BURST; i++)
156                 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
157
158         /* for rx bulk */
159         rxq->rx_nb_avail = 0;
160         rxq->rx_next_avail = 0;
161         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
162
163         rxq->rx_tail = 0;
164         rxq->nb_rx_hold = 0;
165         rxq->pkt_first_seg = NULL;
166         rxq->pkt_last_seg = NULL;
167 }
168
169 static inline void
170 reset_tx_queue(struct iavf_tx_queue *txq)
171 {
172         struct iavf_tx_entry *txe;
173         uint32_t i, size;
174         uint16_t prev;
175
176         if (!txq) {
177                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
178                 return;
179         }
180
181         txe = txq->sw_ring;
182         size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
183         for (i = 0; i < size; i++)
184                 ((volatile char *)txq->tx_ring)[i] = 0;
185
186         prev = (uint16_t)(txq->nb_tx_desc - 1);
187         for (i = 0; i < txq->nb_tx_desc; i++) {
188                 txq->tx_ring[i].cmd_type_offset_bsz =
189                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
190                 txe[i].mbuf =  NULL;
191                 txe[i].last_id = i;
192                 txe[prev].next_id = i;
193                 prev = i;
194         }
195
196         txq->tx_tail = 0;
197         txq->nb_used = 0;
198
199         txq->last_desc_cleaned = txq->nb_tx_desc - 1;
200         txq->nb_free = txq->nb_tx_desc - 1;
201
202         txq->next_dd = txq->rs_thresh - 1;
203         txq->next_rs = txq->rs_thresh - 1;
204 }
205
206 static int
207 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
208 {
209         volatile union iavf_rx_desc *rxd;
210         struct rte_mbuf *mbuf = NULL;
211         uint64_t dma_addr;
212         uint16_t i;
213
214         for (i = 0; i < rxq->nb_rx_desc; i++) {
215                 mbuf = rte_mbuf_raw_alloc(rxq->mp);
216                 if (unlikely(!mbuf)) {
217                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
218                         return -ENOMEM;
219                 }
220
221                 rte_mbuf_refcnt_set(mbuf, 1);
222                 mbuf->next = NULL;
223                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
224                 mbuf->nb_segs = 1;
225                 mbuf->port = rxq->port_id;
226
227                 dma_addr =
228                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
229
230                 rxd = &rxq->rx_ring[i];
231                 rxd->read.pkt_addr = dma_addr;
232                 rxd->read.hdr_addr = 0;
233 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
234                 rxd->read.rsvd1 = 0;
235                 rxd->read.rsvd2 = 0;
236 #endif
237
238                 rxq->sw_ring[i] = mbuf;
239         }
240
241         return 0;
242 }
243
244 static inline void
245 release_rxq_mbufs(struct iavf_rx_queue *rxq)
246 {
247         uint16_t i;
248
249         if (!rxq->sw_ring)
250                 return;
251
252         for (i = 0; i < rxq->nb_rx_desc; i++) {
253                 if (rxq->sw_ring[i]) {
254                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
255                         rxq->sw_ring[i] = NULL;
256                 }
257         }
258
259         /* for rx bulk */
260         if (rxq->rx_nb_avail == 0)
261                 return;
262         for (i = 0; i < rxq->rx_nb_avail; i++) {
263                 struct rte_mbuf *mbuf;
264
265                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
266                 rte_pktmbuf_free_seg(mbuf);
267         }
268         rxq->rx_nb_avail = 0;
269 }
270
271 static inline void
272 release_txq_mbufs(struct iavf_tx_queue *txq)
273 {
274         uint16_t i;
275
276         if (!txq || !txq->sw_ring) {
277                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
278                 return;
279         }
280
281         for (i = 0; i < txq->nb_tx_desc; i++) {
282                 if (txq->sw_ring[i].mbuf) {
283                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
284                         txq->sw_ring[i].mbuf = NULL;
285                 }
286         }
287 }
288
289 static const struct iavf_rxq_ops def_rxq_ops = {
290         .release_mbufs = release_rxq_mbufs,
291 };
292
293 static const struct iavf_txq_ops def_txq_ops = {
294         .release_mbufs = release_txq_mbufs,
295 };
296
297 int
298 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
299                        uint16_t nb_desc, unsigned int socket_id,
300                        const struct rte_eth_rxconf *rx_conf,
301                        struct rte_mempool *mp)
302 {
303         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
304         struct iavf_adapter *ad =
305                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
306         struct iavf_info *vf =
307                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
308         struct iavf_vsi *vsi = &vf->vsi;
309         struct iavf_rx_queue *rxq;
310         const struct rte_memzone *mz;
311         uint32_t ring_size;
312         uint16_t len;
313         uint16_t rx_free_thresh;
314
315         PMD_INIT_FUNC_TRACE();
316
317         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
318             nb_desc > IAVF_MAX_RING_DESC ||
319             nb_desc < IAVF_MIN_RING_DESC) {
320                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
321                              "invalid", nb_desc);
322                 return -EINVAL;
323         }
324
325         /* Check free threshold */
326         rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
327                          IAVF_DEFAULT_RX_FREE_THRESH :
328                          rx_conf->rx_free_thresh;
329         if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
330                 return -EINVAL;
331
332         /* Free memory if needed */
333         if (dev->data->rx_queues[queue_idx]) {
334                 iavf_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
335                 dev->data->rx_queues[queue_idx] = NULL;
336         }
337
338         /* Allocate the rx queue data structure */
339         rxq = rte_zmalloc_socket("iavf rxq",
340                                  sizeof(struct iavf_rx_queue),
341                                  RTE_CACHE_LINE_SIZE,
342                                  socket_id);
343         if (!rxq) {
344                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
345                              "rx queue data structure");
346                 return -ENOMEM;
347         }
348
349         rxq->mp = mp;
350         rxq->nb_rx_desc = nb_desc;
351         rxq->rx_free_thresh = rx_free_thresh;
352         rxq->queue_id = queue_idx;
353         rxq->port_id = dev->data->port_id;
354         rxq->crc_len = 0; /* crc stripping by default */
355         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
356         rxq->rx_hdr_len = 0;
357         rxq->vsi = vsi;
358
359         len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
360         rxq->rx_buf_len = RTE_ALIGN(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
361
362         /* Allocate the software ring. */
363         len = nb_desc + IAVF_RX_MAX_BURST;
364         rxq->sw_ring =
365                 rte_zmalloc_socket("iavf rx sw ring",
366                                    sizeof(struct rte_mbuf *) * len,
367                                    RTE_CACHE_LINE_SIZE,
368                                    socket_id);
369         if (!rxq->sw_ring) {
370                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
371                 rte_free(rxq);
372                 return -ENOMEM;
373         }
374
375         /* Allocate the maximun number of RX ring hardware descriptor with
376          * a liitle more to support bulk allocate.
377          */
378         len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
379         ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
380                               IAVF_DMA_MEM_ALIGN);
381         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
382                                       ring_size, IAVF_RING_BASE_ALIGN,
383                                       socket_id);
384         if (!mz) {
385                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
386                 rte_free(rxq->sw_ring);
387                 rte_free(rxq);
388                 return -ENOMEM;
389         }
390         /* Zero all the descriptors in the ring. */
391         memset(mz->addr, 0, ring_size);
392         rxq->rx_ring_phys_addr = mz->iova;
393         rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
394
395         rxq->mz = mz;
396         reset_rx_queue(rxq);
397         rxq->q_set = true;
398         dev->data->rx_queues[queue_idx] = rxq;
399         rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
400         rxq->ops = &def_rxq_ops;
401
402         if (check_rx_bulk_allow(rxq) == true) {
403                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
404                              "satisfied. Rx Burst Bulk Alloc function will be "
405                              "used on port=%d, queue=%d.",
406                              rxq->port_id, rxq->queue_id);
407         } else {
408                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
409                              "not satisfied, Scattered Rx is requested "
410                              "on port=%d, queue=%d.",
411                              rxq->port_id, rxq->queue_id);
412                 ad->rx_bulk_alloc_allowed = false;
413         }
414
415         if (check_rx_vec_allow(rxq) == false)
416                 ad->rx_vec_allowed = false;
417
418         return 0;
419 }
420
421 int
422 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
423                        uint16_t queue_idx,
424                        uint16_t nb_desc,
425                        unsigned int socket_id,
426                        const struct rte_eth_txconf *tx_conf)
427 {
428         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
429         struct iavf_tx_queue *txq;
430         const struct rte_memzone *mz;
431         uint32_t ring_size;
432         uint16_t tx_rs_thresh, tx_free_thresh;
433         uint64_t offloads;
434
435         PMD_INIT_FUNC_TRACE();
436
437         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
438
439         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
440             nb_desc > IAVF_MAX_RING_DESC ||
441             nb_desc < IAVF_MIN_RING_DESC) {
442                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
443                             "invalid", nb_desc);
444                 return -EINVAL;
445         }
446
447         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
448                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
449         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
450                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
451         check_tx_thresh(nb_desc, tx_rs_thresh, tx_rs_thresh);
452
453         /* Free memory if needed. */
454         if (dev->data->tx_queues[queue_idx]) {
455                 iavf_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
456                 dev->data->tx_queues[queue_idx] = NULL;
457         }
458
459         /* Allocate the TX queue data structure. */
460         txq = rte_zmalloc_socket("iavf txq",
461                                  sizeof(struct iavf_tx_queue),
462                                  RTE_CACHE_LINE_SIZE,
463                                  socket_id);
464         if (!txq) {
465                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
466                              "tx queue structure");
467                 return -ENOMEM;
468         }
469
470         txq->nb_tx_desc = nb_desc;
471         txq->rs_thresh = tx_rs_thresh;
472         txq->free_thresh = tx_free_thresh;
473         txq->queue_id = queue_idx;
474         txq->port_id = dev->data->port_id;
475         txq->offloads = offloads;
476         txq->tx_deferred_start = tx_conf->tx_deferred_start;
477
478         /* Allocate software ring */
479         txq->sw_ring =
480                 rte_zmalloc_socket("iavf tx sw ring",
481                                    sizeof(struct iavf_tx_entry) * nb_desc,
482                                    RTE_CACHE_LINE_SIZE,
483                                    socket_id);
484         if (!txq->sw_ring) {
485                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
486                 rte_free(txq);
487                 return -ENOMEM;
488         }
489
490         /* Allocate TX hardware ring descriptors. */
491         ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
492         ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
493         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
494                                       ring_size, IAVF_RING_BASE_ALIGN,
495                                       socket_id);
496         if (!mz) {
497                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
498                 rte_free(txq->sw_ring);
499                 rte_free(txq);
500                 return -ENOMEM;
501         }
502         txq->tx_ring_phys_addr = mz->iova;
503         txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
504
505         txq->mz = mz;
506         reset_tx_queue(txq);
507         txq->q_set = true;
508         dev->data->tx_queues[queue_idx] = txq;
509         txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
510         txq->ops = &def_txq_ops;
511
512         if (check_tx_vec_allow(txq) == false) {
513                 struct iavf_adapter *ad =
514                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
515                 ad->tx_vec_allowed = false;
516         }
517
518         return 0;
519 }
520
521 int
522 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
523 {
524         struct iavf_adapter *adapter =
525                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
526         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
527         struct iavf_rx_queue *rxq;
528         int err = 0;
529
530         PMD_DRV_FUNC_TRACE();
531
532         if (rx_queue_id >= dev->data->nb_rx_queues)
533                 return -EINVAL;
534
535         rxq = dev->data->rx_queues[rx_queue_id];
536
537         err = alloc_rxq_mbufs(rxq);
538         if (err) {
539                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
540                 return err;
541         }
542
543         rte_wmb();
544
545         /* Init the RX tail register. */
546         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
547         IAVF_WRITE_FLUSH(hw);
548
549         /* Ready to switch the queue on */
550         err = iavf_switch_queue(adapter, rx_queue_id, true, true);
551         if (err)
552                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
553                             rx_queue_id);
554         else
555                 dev->data->rx_queue_state[rx_queue_id] =
556                         RTE_ETH_QUEUE_STATE_STARTED;
557
558         return err;
559 }
560
561 int
562 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
563 {
564         struct iavf_adapter *adapter =
565                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
566         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
567         struct iavf_tx_queue *txq;
568         int err = 0;
569
570         PMD_DRV_FUNC_TRACE();
571
572         if (tx_queue_id >= dev->data->nb_tx_queues)
573                 return -EINVAL;
574
575         txq = dev->data->tx_queues[tx_queue_id];
576
577         /* Init the RX tail register. */
578         IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
579         IAVF_WRITE_FLUSH(hw);
580
581         /* Ready to switch the queue on */
582         err = iavf_switch_queue(adapter, tx_queue_id, false, true);
583
584         if (err)
585                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
586                             tx_queue_id);
587         else
588                 dev->data->tx_queue_state[tx_queue_id] =
589                         RTE_ETH_QUEUE_STATE_STARTED;
590
591         return err;
592 }
593
594 int
595 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
596 {
597         struct iavf_adapter *adapter =
598                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
599         struct iavf_rx_queue *rxq;
600         int err;
601
602         PMD_DRV_FUNC_TRACE();
603
604         if (rx_queue_id >= dev->data->nb_rx_queues)
605                 return -EINVAL;
606
607         err = iavf_switch_queue(adapter, rx_queue_id, true, false);
608         if (err) {
609                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
610                             rx_queue_id);
611                 return err;
612         }
613
614         rxq = dev->data->rx_queues[rx_queue_id];
615         rxq->ops->release_mbufs(rxq);
616         reset_rx_queue(rxq);
617         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
618
619         return 0;
620 }
621
622 int
623 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
624 {
625         struct iavf_adapter *adapter =
626                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
627         struct iavf_tx_queue *txq;
628         int err;
629
630         PMD_DRV_FUNC_TRACE();
631
632         if (tx_queue_id >= dev->data->nb_tx_queues)
633                 return -EINVAL;
634
635         err = iavf_switch_queue(adapter, tx_queue_id, false, false);
636         if (err) {
637                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
638                             tx_queue_id);
639                 return err;
640         }
641
642         txq = dev->data->tx_queues[tx_queue_id];
643         txq->ops->release_mbufs(txq);
644         reset_tx_queue(txq);
645         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
646
647         return 0;
648 }
649
650 void
651 iavf_dev_rx_queue_release(void *rxq)
652 {
653         struct iavf_rx_queue *q = (struct iavf_rx_queue *)rxq;
654
655         if (!q)
656                 return;
657
658         q->ops->release_mbufs(q);
659         rte_free(q->sw_ring);
660         rte_memzone_free(q->mz);
661         rte_free(q);
662 }
663
664 void
665 iavf_dev_tx_queue_release(void *txq)
666 {
667         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
668
669         if (!q)
670                 return;
671
672         q->ops->release_mbufs(q);
673         rte_free(q->sw_ring);
674         rte_memzone_free(q->mz);
675         rte_free(q);
676 }
677
678 void
679 iavf_stop_queues(struct rte_eth_dev *dev)
680 {
681         struct iavf_adapter *adapter =
682                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
683         struct iavf_rx_queue *rxq;
684         struct iavf_tx_queue *txq;
685         int ret, i;
686
687         /* Stop All queues */
688         ret = iavf_disable_queues(adapter);
689         if (ret)
690                 PMD_DRV_LOG(WARNING, "Fail to stop queues");
691
692         for (i = 0; i < dev->data->nb_tx_queues; i++) {
693                 txq = dev->data->tx_queues[i];
694                 if (!txq)
695                         continue;
696                 txq->ops->release_mbufs(txq);
697                 reset_tx_queue(txq);
698                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
699         }
700         for (i = 0; i < dev->data->nb_rx_queues; i++) {
701                 rxq = dev->data->rx_queues[i];
702                 if (!rxq)
703                         continue;
704                 rxq->ops->release_mbufs(rxq);
705                 reset_rx_queue(rxq);
706                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
707         }
708 }
709
710 static inline void
711 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
712 {
713         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
714                 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
715                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
716                 mb->vlan_tci =
717                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
718         } else {
719                 mb->vlan_tci = 0;
720         }
721 }
722
723 /* Translate the rx descriptor status and error fields to pkt flags */
724 static inline uint64_t
725 iavf_rxd_to_pkt_flags(uint64_t qword)
726 {
727         uint64_t flags;
728         uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
729
730 #define IAVF_RX_ERR_BITS 0x3f
731
732         /* Check if RSS_HASH */
733         flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
734                                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
735                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
736
737         if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
738                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
739                 return flags;
740         }
741
742         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
743                 flags |= PKT_RX_IP_CKSUM_BAD;
744         else
745                 flags |= PKT_RX_IP_CKSUM_GOOD;
746
747         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
748                 flags |= PKT_RX_L4_CKSUM_BAD;
749         else
750                 flags |= PKT_RX_L4_CKSUM_GOOD;
751
752         /* TODO: Oversize error bit is not processed here */
753
754         return flags;
755 }
756
757 /* implement recv_pkts */
758 uint16_t
759 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
760 {
761         volatile union iavf_rx_desc *rx_ring;
762         volatile union iavf_rx_desc *rxdp;
763         struct iavf_rx_queue *rxq;
764         union iavf_rx_desc rxd;
765         struct rte_mbuf *rxe;
766         struct rte_eth_dev *dev;
767         struct rte_mbuf *rxm;
768         struct rte_mbuf *nmb;
769         uint16_t nb_rx;
770         uint32_t rx_status;
771         uint64_t qword1;
772         uint16_t rx_packet_len;
773         uint16_t rx_id, nb_hold;
774         uint64_t dma_addr;
775         uint64_t pkt_flags;
776         const uint32_t *ptype_tbl;
777
778         nb_rx = 0;
779         nb_hold = 0;
780         rxq = rx_queue;
781         rx_id = rxq->rx_tail;
782         rx_ring = rxq->rx_ring;
783         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
784
785         while (nb_rx < nb_pkts) {
786                 rxdp = &rx_ring[rx_id];
787                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
788                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
789                             IAVF_RXD_QW1_STATUS_SHIFT;
790
791                 /* Check the DD bit first */
792                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
793                         break;
794                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
795
796                 nmb = rte_mbuf_raw_alloc(rxq->mp);
797                 if (unlikely(!nmb)) {
798                         dev = &rte_eth_devices[rxq->port_id];
799                         dev->data->rx_mbuf_alloc_failed++;
800                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
801                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
802                         break;
803                 }
804
805                 rxd = *rxdp;
806                 nb_hold++;
807                 rxe = rxq->sw_ring[rx_id];
808                 rx_id++;
809                 if (unlikely(rx_id == rxq->nb_rx_desc))
810                         rx_id = 0;
811
812                 /* Prefetch next mbuf */
813                 rte_prefetch0(rxq->sw_ring[rx_id]);
814
815                 /* When next RX descriptor is on a cache line boundary,
816                  * prefetch the next 4 RX descriptors and next 8 pointers
817                  * to mbufs.
818                  */
819                 if ((rx_id & 0x3) == 0) {
820                         rte_prefetch0(&rx_ring[rx_id]);
821                         rte_prefetch0(rxq->sw_ring[rx_id]);
822                 }
823                 rxm = rxe;
824                 rxe = nmb;
825                 dma_addr =
826                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
827                 rxdp->read.hdr_addr = 0;
828                 rxdp->read.pkt_addr = dma_addr;
829
830                 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
831                                 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
832
833                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
834                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
835                 rxm->nb_segs = 1;
836                 rxm->next = NULL;
837                 rxm->pkt_len = rx_packet_len;
838                 rxm->data_len = rx_packet_len;
839                 rxm->port = rxq->port_id;
840                 rxm->ol_flags = 0;
841                 iavf_rxd_to_vlan_tci(rxm, &rxd);
842                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
843                 rxm->packet_type =
844                         ptype_tbl[(uint8_t)((qword1 &
845                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
846
847                 if (pkt_flags & PKT_RX_RSS_HASH)
848                         rxm->hash.rss =
849                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
850
851                 rxm->ol_flags |= pkt_flags;
852
853                 rx_pkts[nb_rx++] = rxm;
854         }
855         rxq->rx_tail = rx_id;
856
857         /* If the number of free RX descriptors is greater than the RX free
858          * threshold of the queue, advance the receive tail register of queue.
859          * Update that register with the value of the last processed RX
860          * descriptor minus 1.
861          */
862         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
863         if (nb_hold > rxq->rx_free_thresh) {
864                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
865                            "nb_hold=%u nb_rx=%u",
866                            rxq->port_id, rxq->queue_id,
867                            rx_id, nb_hold, nb_rx);
868                 rx_id = (uint16_t)((rx_id == 0) ?
869                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
870                 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
871                 nb_hold = 0;
872         }
873         rxq->nb_rx_hold = nb_hold;
874
875         return nb_rx;
876 }
877
878 /* implement recv_scattered_pkts  */
879 uint16_t
880 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
881                         uint16_t nb_pkts)
882 {
883         struct iavf_rx_queue *rxq = rx_queue;
884         union iavf_rx_desc rxd;
885         struct rte_mbuf *rxe;
886         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
887         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
888         struct rte_mbuf *nmb, *rxm;
889         uint16_t rx_id = rxq->rx_tail;
890         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
891         struct rte_eth_dev *dev;
892         uint32_t rx_status;
893         uint64_t qword1;
894         uint64_t dma_addr;
895         uint64_t pkt_flags;
896
897         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
898         volatile union iavf_rx_desc *rxdp;
899         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
900
901         while (nb_rx < nb_pkts) {
902                 rxdp = &rx_ring[rx_id];
903                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
904                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
905                             IAVF_RXD_QW1_STATUS_SHIFT;
906
907                 /* Check the DD bit */
908                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
909                         break;
910                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
911
912                 nmb = rte_mbuf_raw_alloc(rxq->mp);
913                 if (unlikely(!nmb)) {
914                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
915                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
916                         dev = &rte_eth_devices[rxq->port_id];
917                         dev->data->rx_mbuf_alloc_failed++;
918                         break;
919                 }
920
921                 rxd = *rxdp;
922                 nb_hold++;
923                 rxe = rxq->sw_ring[rx_id];
924                 rx_id++;
925                 if (rx_id == rxq->nb_rx_desc)
926                         rx_id = 0;
927
928                 /* Prefetch next mbuf */
929                 rte_prefetch0(rxq->sw_ring[rx_id]);
930
931                 /* When next RX descriptor is on a cache line boundary,
932                  * prefetch the next 4 RX descriptors and next 8 pointers
933                  * to mbufs.
934                  */
935                 if ((rx_id & 0x3) == 0) {
936                         rte_prefetch0(&rx_ring[rx_id]);
937                         rte_prefetch0(rxq->sw_ring[rx_id]);
938                 }
939
940                 rxm = rxe;
941                 rxe = nmb;
942                 dma_addr =
943                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
944
945                 /* Set data buffer address and data length of the mbuf */
946                 rxdp->read.hdr_addr = 0;
947                 rxdp->read.pkt_addr = dma_addr;
948                 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
949                                  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
950                 rxm->data_len = rx_packet_len;
951                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
952
953                 /* If this is the first buffer of the received packet, set the
954                  * pointer to the first mbuf of the packet and initialize its
955                  * context. Otherwise, update the total length and the number
956                  * of segments of the current scattered packet, and update the
957                  * pointer to the last mbuf of the current packet.
958                  */
959                 if (!first_seg) {
960                         first_seg = rxm;
961                         first_seg->nb_segs = 1;
962                         first_seg->pkt_len = rx_packet_len;
963                 } else {
964                         first_seg->pkt_len =
965                                 (uint16_t)(first_seg->pkt_len +
966                                                 rx_packet_len);
967                         first_seg->nb_segs++;
968                         last_seg->next = rxm;
969                 }
970
971                 /* If this is not the last buffer of the received packet,
972                  * update the pointer to the last mbuf of the current scattered
973                  * packet and continue to parse the RX ring.
974                  */
975                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
976                         last_seg = rxm;
977                         continue;
978                 }
979
980                 /* This is the last buffer of the received packet. If the CRC
981                  * is not stripped by the hardware:
982                  *  - Subtract the CRC length from the total packet length.
983                  *  - If the last buffer only contains the whole CRC or a part
984                  *  of it, free the mbuf associated to the last buffer. If part
985                  *  of the CRC is also contained in the previous mbuf, subtract
986                  *  the length of that CRC part from the data length of the
987                  *  previous mbuf.
988                  */
989                 rxm->next = NULL;
990                 if (unlikely(rxq->crc_len > 0)) {
991                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
992                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
993                                 rte_pktmbuf_free_seg(rxm);
994                                 first_seg->nb_segs--;
995                                 last_seg->data_len =
996                                         (uint16_t)(last_seg->data_len -
997                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
998                                 last_seg->next = NULL;
999                         } else
1000                                 rxm->data_len = (uint16_t)(rx_packet_len -
1001                                                         RTE_ETHER_CRC_LEN);
1002                 }
1003
1004                 first_seg->port = rxq->port_id;
1005                 first_seg->ol_flags = 0;
1006                 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1007                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1008                 first_seg->packet_type =
1009                         ptype_tbl[(uint8_t)((qword1 &
1010                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1011
1012                 if (pkt_flags & PKT_RX_RSS_HASH)
1013                         first_seg->hash.rss =
1014                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1015
1016                 first_seg->ol_flags |= pkt_flags;
1017
1018                 /* Prefetch data of first segment, if configured to do so. */
1019                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1020                                           first_seg->data_off));
1021                 rx_pkts[nb_rx++] = first_seg;
1022                 first_seg = NULL;
1023         }
1024
1025         /* Record index of the next RX descriptor to probe. */
1026         rxq->rx_tail = rx_id;
1027         rxq->pkt_first_seg = first_seg;
1028         rxq->pkt_last_seg = last_seg;
1029
1030         /* If the number of free RX descriptors is greater than the RX free
1031          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1032          * register. Update the RDT with the value of the last processed RX
1033          * descriptor minus 1, to guarantee that the RDT register is never
1034          * equal to the RDH register, which creates a "full" ring situtation
1035          * from the hardware point of view.
1036          */
1037         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1038         if (nb_hold > rxq->rx_free_thresh) {
1039                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1040                            "nb_hold=%u nb_rx=%u",
1041                            rxq->port_id, rxq->queue_id,
1042                            rx_id, nb_hold, nb_rx);
1043                 rx_id = (uint16_t)(rx_id == 0 ?
1044                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1045                 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1046                 nb_hold = 0;
1047         }
1048         rxq->nb_rx_hold = nb_hold;
1049
1050         return nb_rx;
1051 }
1052
1053 #define IAVF_LOOK_AHEAD 8
1054 static inline int
1055 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1056 {
1057         volatile union iavf_rx_desc *rxdp;
1058         struct rte_mbuf **rxep;
1059         struct rte_mbuf *mb;
1060         uint16_t pkt_len;
1061         uint64_t qword1;
1062         uint32_t rx_status;
1063         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1064         int32_t i, j, nb_rx = 0;
1065         uint64_t pkt_flags;
1066         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1067
1068         rxdp = &rxq->rx_ring[rxq->rx_tail];
1069         rxep = &rxq->sw_ring[rxq->rx_tail];
1070
1071         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1072         rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1073                     IAVF_RXD_QW1_STATUS_SHIFT;
1074
1075         /* Make sure there is at least 1 packet to receive */
1076         if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1077                 return 0;
1078
1079         /* Scan LOOK_AHEAD descriptors at a time to determine which
1080          * descriptors reference packets that are ready to be received.
1081          */
1082         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1083              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1084                 /* Read desc statuses backwards to avoid race condition */
1085                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1086                         qword1 = rte_le_to_cpu_64(
1087                                 rxdp[j].wb.qword1.status_error_len);
1088                         s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1089                                IAVF_RXD_QW1_STATUS_SHIFT;
1090                 }
1091
1092                 rte_smp_rmb();
1093
1094                 /* Compute how many status bits were set */
1095                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1096                         nb_dd += s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1097
1098                 nb_rx += nb_dd;
1099
1100                 /* Translate descriptor info to mbuf parameters */
1101                 for (j = 0; j < nb_dd; j++) {
1102                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1103                                          rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1104
1105                         mb = rxep[j];
1106                         qword1 = rte_le_to_cpu_64
1107                                         (rxdp[j].wb.qword1.status_error_len);
1108                         pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1109                                   IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1110                         mb->data_len = pkt_len;
1111                         mb->pkt_len = pkt_len;
1112                         mb->ol_flags = 0;
1113                         iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1114                         pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1115                         mb->packet_type =
1116                                 ptype_tbl[(uint8_t)((qword1 &
1117                                 IAVF_RXD_QW1_PTYPE_MASK) >>
1118                                 IAVF_RXD_QW1_PTYPE_SHIFT)];
1119
1120                         if (pkt_flags & PKT_RX_RSS_HASH)
1121                                 mb->hash.rss = rte_le_to_cpu_32(
1122                                         rxdp[j].wb.qword0.hi_dword.rss);
1123
1124                         mb->ol_flags |= pkt_flags;
1125                 }
1126
1127                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1128                         rxq->rx_stage[i + j] = rxep[j];
1129
1130                 if (nb_dd != IAVF_LOOK_AHEAD)
1131                         break;
1132         }
1133
1134         /* Clear software ring entries */
1135         for (i = 0; i < nb_rx; i++)
1136                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1137
1138         return nb_rx;
1139 }
1140
1141 static inline uint16_t
1142 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
1143                        struct rte_mbuf **rx_pkts,
1144                        uint16_t nb_pkts)
1145 {
1146         uint16_t i;
1147         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1148
1149         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1150
1151         for (i = 0; i < nb_pkts; i++)
1152                 rx_pkts[i] = stage[i];
1153
1154         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1155         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1156
1157         return nb_pkts;
1158 }
1159
1160 static inline int
1161 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
1162 {
1163         volatile union iavf_rx_desc *rxdp;
1164         struct rte_mbuf **rxep;
1165         struct rte_mbuf *mb;
1166         uint16_t alloc_idx, i;
1167         uint64_t dma_addr;
1168         int diag;
1169
1170         /* Allocate buffers in bulk */
1171         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1172                                 (rxq->rx_free_thresh - 1));
1173         rxep = &rxq->sw_ring[alloc_idx];
1174         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1175                                     rxq->rx_free_thresh);
1176         if (unlikely(diag != 0)) {
1177                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1178                 return -ENOMEM;
1179         }
1180
1181         rxdp = &rxq->rx_ring[alloc_idx];
1182         for (i = 0; i < rxq->rx_free_thresh; i++) {
1183                 if (likely(i < (rxq->rx_free_thresh - 1)))
1184                         /* Prefetch next mbuf */
1185                         rte_prefetch0(rxep[i + 1]);
1186
1187                 mb = rxep[i];
1188                 rte_mbuf_refcnt_set(mb, 1);
1189                 mb->next = NULL;
1190                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1191                 mb->nb_segs = 1;
1192                 mb->port = rxq->port_id;
1193                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1194                 rxdp[i].read.hdr_addr = 0;
1195                 rxdp[i].read.pkt_addr = dma_addr;
1196         }
1197
1198         /* Update rx tail register */
1199         rte_wmb();
1200         IAVF_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
1201
1202         rxq->rx_free_trigger =
1203                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1204         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1205                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1206
1207         return 0;
1208 }
1209
1210 static inline uint16_t
1211 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1212 {
1213         struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
1214         uint16_t nb_rx = 0;
1215
1216         if (!nb_pkts)
1217                 return 0;
1218
1219         if (rxq->rx_nb_avail)
1220                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1221
1222         nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
1223         rxq->rx_next_avail = 0;
1224         rxq->rx_nb_avail = nb_rx;
1225         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1226
1227         if (rxq->rx_tail > rxq->rx_free_trigger) {
1228                 if (iavf_rx_alloc_bufs(rxq) != 0) {
1229                         uint16_t i, j;
1230
1231                         /* TODO: count rx_mbuf_alloc_failed here */
1232
1233                         rxq->rx_nb_avail = 0;
1234                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1235                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1236                                 rxq->sw_ring[j] = rxq->rx_stage[i];
1237
1238                         return 0;
1239                 }
1240         }
1241
1242         if (rxq->rx_tail >= rxq->nb_rx_desc)
1243                 rxq->rx_tail = 0;
1244
1245         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
1246                    rxq->port_id, rxq->queue_id,
1247                    rxq->rx_tail, nb_rx);
1248
1249         if (rxq->rx_nb_avail)
1250                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1251
1252         return 0;
1253 }
1254
1255 static uint16_t
1256 iavf_recv_pkts_bulk_alloc(void *rx_queue,
1257                          struct rte_mbuf **rx_pkts,
1258                          uint16_t nb_pkts)
1259 {
1260         uint16_t nb_rx = 0, n, count;
1261
1262         if (unlikely(nb_pkts == 0))
1263                 return 0;
1264
1265         if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
1266                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1267
1268         while (nb_pkts) {
1269                 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
1270                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1271                 nb_rx = (uint16_t)(nb_rx + count);
1272                 nb_pkts = (uint16_t)(nb_pkts - count);
1273                 if (count < n)
1274                         break;
1275         }
1276
1277         return nb_rx;
1278 }
1279
1280 static inline int
1281 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
1282 {
1283         struct iavf_tx_entry *sw_ring = txq->sw_ring;
1284         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
1285         uint16_t nb_tx_desc = txq->nb_tx_desc;
1286         uint16_t desc_to_clean_to;
1287         uint16_t nb_tx_to_clean;
1288
1289         volatile struct iavf_tx_desc *txd = txq->tx_ring;
1290
1291         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
1292         if (desc_to_clean_to >= nb_tx_desc)
1293                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
1294
1295         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
1296         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
1297                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
1298                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
1299                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
1300                                 "(port=%d queue=%d)", desc_to_clean_to,
1301                                 txq->port_id, txq->queue_id);
1302                 return -1;
1303         }
1304
1305         if (last_desc_cleaned > desc_to_clean_to)
1306                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
1307                                                         desc_to_clean_to);
1308         else
1309                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
1310                                         last_desc_cleaned);
1311
1312         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
1313
1314         txq->last_desc_cleaned = desc_to_clean_to;
1315         txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
1316
1317         return 0;
1318 }
1319
1320 /* Check if the context descriptor is needed for TX offloading */
1321 static inline uint16_t
1322 iavf_calc_context_desc(uint64_t flags)
1323 {
1324         static uint64_t mask = PKT_TX_TCP_SEG;
1325
1326         return (flags & mask) ? 1 : 0;
1327 }
1328
1329 static inline void
1330 iavf_txd_enable_checksum(uint64_t ol_flags,
1331                         uint32_t *td_cmd,
1332                         uint32_t *td_offset,
1333                         union iavf_tx_offload tx_offload)
1334 {
1335         /* Set MACLEN */
1336         *td_offset |= (tx_offload.l2_len >> 1) <<
1337                       IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1338
1339         /* Enable L3 checksum offloads */
1340         if (ol_flags & PKT_TX_IP_CKSUM) {
1341                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
1342                 *td_offset |= (tx_offload.l3_len >> 2) <<
1343                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1344         } else if (ol_flags & PKT_TX_IPV4) {
1345                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
1346                 *td_offset |= (tx_offload.l3_len >> 2) <<
1347                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1348         } else if (ol_flags & PKT_TX_IPV6) {
1349                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
1350                 *td_offset |= (tx_offload.l3_len >> 2) <<
1351                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1352         }
1353
1354         if (ol_flags & PKT_TX_TCP_SEG) {
1355                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1356                 *td_offset |= (tx_offload.l4_len >> 2) <<
1357                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1358                 return;
1359         }
1360
1361         /* Enable L4 checksum offloads */
1362         switch (ol_flags & PKT_TX_L4_MASK) {
1363         case PKT_TX_TCP_CKSUM:
1364                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1365                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
1366                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1367                 break;
1368         case PKT_TX_SCTP_CKSUM:
1369                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
1370                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
1371                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1372                 break;
1373         case PKT_TX_UDP_CKSUM:
1374                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
1375                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
1376                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1377                 break;
1378         default:
1379                 break;
1380         }
1381 }
1382
1383 /* set TSO context descriptor
1384  * support IP -> L4 and IP -> IP -> L4
1385  */
1386 static inline uint64_t
1387 iavf_set_tso_ctx(struct rte_mbuf *mbuf, union iavf_tx_offload tx_offload)
1388 {
1389         uint64_t ctx_desc = 0;
1390         uint32_t cd_cmd, hdr_len, cd_tso_len;
1391
1392         if (!tx_offload.l4_len) {
1393                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
1394                 return ctx_desc;
1395         }
1396
1397         hdr_len = tx_offload.l2_len +
1398                   tx_offload.l3_len +
1399                   tx_offload.l4_len;
1400
1401         cd_cmd = IAVF_TX_CTX_DESC_TSO;
1402         cd_tso_len = mbuf->pkt_len - hdr_len;
1403         ctx_desc |= ((uint64_t)cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1404                      ((uint64_t)cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1405                      ((uint64_t)mbuf->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1406
1407         return ctx_desc;
1408 }
1409
1410 /* Construct the tx flags */
1411 static inline uint64_t
1412 iavf_build_ctob(uint32_t td_cmd, uint32_t td_offset, unsigned int size,
1413                uint32_t td_tag)
1414 {
1415         return rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DATA |
1416                                 ((uint64_t)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
1417                                 ((uint64_t)td_offset <<
1418                                  IAVF_TXD_QW1_OFFSET_SHIFT) |
1419                                 ((uint64_t)size  <<
1420                                  IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
1421                                 ((uint64_t)td_tag  <<
1422                                  IAVF_TXD_QW1_L2TAG1_SHIFT));
1423 }
1424
1425 /* TX function */
1426 uint16_t
1427 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1428 {
1429         volatile struct iavf_tx_desc *txd;
1430         volatile struct iavf_tx_desc *txr;
1431         struct iavf_tx_queue *txq;
1432         struct iavf_tx_entry *sw_ring;
1433         struct iavf_tx_entry *txe, *txn;
1434         struct rte_mbuf *tx_pkt;
1435         struct rte_mbuf *m_seg;
1436         uint16_t tx_id;
1437         uint16_t nb_tx;
1438         uint32_t td_cmd;
1439         uint32_t td_offset;
1440         uint32_t td_tag;
1441         uint64_t ol_flags;
1442         uint16_t nb_used;
1443         uint16_t nb_ctx;
1444         uint16_t tx_last;
1445         uint16_t slen;
1446         uint64_t buf_dma_addr;
1447         union iavf_tx_offload tx_offload = {0};
1448
1449         txq = tx_queue;
1450         sw_ring = txq->sw_ring;
1451         txr = txq->tx_ring;
1452         tx_id = txq->tx_tail;
1453         txe = &sw_ring[tx_id];
1454
1455         /* Check if the descriptor ring needs to be cleaned. */
1456         if (txq->nb_free < txq->free_thresh)
1457                 iavf_xmit_cleanup(txq);
1458
1459         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1460                 td_cmd = 0;
1461                 td_tag = 0;
1462                 td_offset = 0;
1463
1464                 tx_pkt = *tx_pkts++;
1465                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1466
1467                 ol_flags = tx_pkt->ol_flags;
1468                 tx_offload.l2_len = tx_pkt->l2_len;
1469                 tx_offload.l3_len = tx_pkt->l3_len;
1470                 tx_offload.l4_len = tx_pkt->l4_len;
1471                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1472
1473                 /* Calculate the number of context descriptors needed. */
1474                 nb_ctx = iavf_calc_context_desc(ol_flags);
1475
1476                 /* The number of descriptors that must be allocated for
1477                  * a packet equals to the number of the segments of that
1478                  * packet plus 1 context descriptor if needed.
1479                  */
1480                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1481                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1482
1483                 /* Circular ring */
1484                 if (tx_last >= txq->nb_tx_desc)
1485                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1486
1487                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
1488                            " tx_first=%u tx_last=%u",
1489                            txq->port_id, txq->queue_id, tx_id, tx_last);
1490
1491                 if (nb_used > txq->nb_free) {
1492                         if (iavf_xmit_cleanup(txq)) {
1493                                 if (nb_tx == 0)
1494                                         return 0;
1495                                 goto end_of_tx;
1496                         }
1497                         if (unlikely(nb_used > txq->rs_thresh)) {
1498                                 while (nb_used > txq->nb_free) {
1499                                         if (iavf_xmit_cleanup(txq)) {
1500                                                 if (nb_tx == 0)
1501                                                         return 0;
1502                                                 goto end_of_tx;
1503                                         }
1504                                 }
1505                         }
1506                 }
1507
1508                 /* Descriptor based VLAN insertion */
1509                 if (ol_flags & PKT_TX_VLAN_PKT) {
1510                         td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
1511                         td_tag = tx_pkt->vlan_tci;
1512                 }
1513
1514                 /* According to datasheet, the bit2 is reserved and must be
1515                  * set to 1.
1516                  */
1517                 td_cmd |= 0x04;
1518
1519                 /* Enable checksum offloading */
1520                 if (ol_flags & IAVF_TX_CKSUM_OFFLOAD_MASK)
1521                         iavf_txd_enable_checksum(ol_flags, &td_cmd,
1522                                                 &td_offset, tx_offload);
1523
1524                 if (nb_ctx) {
1525                         /* Setup TX context descriptor if required */
1526                         uint64_t cd_type_cmd_tso_mss =
1527                                 IAVF_TX_DESC_DTYPE_CONTEXT;
1528                         volatile struct iavf_tx_context_desc *ctx_txd =
1529                                 (volatile struct iavf_tx_context_desc *)
1530                                                         &txr[tx_id];
1531
1532                         txn = &sw_ring[txe->next_id];
1533                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1534                         if (txe->mbuf) {
1535                                 rte_pktmbuf_free_seg(txe->mbuf);
1536                                 txe->mbuf = NULL;
1537                         }
1538
1539                         /* TSO enabled */
1540                         if (ol_flags & PKT_TX_TCP_SEG)
1541                                 cd_type_cmd_tso_mss |=
1542                                         iavf_set_tso_ctx(tx_pkt, tx_offload);
1543
1544                         ctx_txd->type_cmd_tso_mss =
1545                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1546
1547                         IAVF_DUMP_TX_DESC(txq, &txr[tx_id], tx_id);
1548                         txe->last_id = tx_last;
1549                         tx_id = txe->next_id;
1550                         txe = txn;
1551                 }
1552
1553                 m_seg = tx_pkt;
1554                 do {
1555                         txd = &txr[tx_id];
1556                         txn = &sw_ring[txe->next_id];
1557
1558                         if (txe->mbuf)
1559                                 rte_pktmbuf_free_seg(txe->mbuf);
1560                         txe->mbuf = m_seg;
1561
1562                         /* Setup TX Descriptor */
1563                         slen = m_seg->data_len;
1564                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
1565                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1566                         txd->cmd_type_offset_bsz = iavf_build_ctob(td_cmd,
1567                                                                   td_offset,
1568                                                                   slen,
1569                                                                   td_tag);
1570
1571                         IAVF_DUMP_TX_DESC(txq, txd, tx_id);
1572                         txe->last_id = tx_last;
1573                         tx_id = txe->next_id;
1574                         txe = txn;
1575                         m_seg = m_seg->next;
1576                 } while (m_seg);
1577
1578                 /* The last packet data descriptor needs End Of Packet (EOP) */
1579                 td_cmd |= IAVF_TX_DESC_CMD_EOP;
1580                 txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
1581                 txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
1582
1583                 if (txq->nb_used >= txq->rs_thresh) {
1584                         PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
1585                                    "%4u (port=%d queue=%d)",
1586                                    tx_last, txq->port_id, txq->queue_id);
1587
1588                         td_cmd |= IAVF_TX_DESC_CMD_RS;
1589
1590                         /* Update txq RS bit counters */
1591                         txq->nb_used = 0;
1592                 }
1593
1594                 txd->cmd_type_offset_bsz |=
1595                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1596                                          IAVF_TXD_QW1_CMD_SHIFT);
1597                 IAVF_DUMP_TX_DESC(txq, txd, tx_id);
1598         }
1599
1600 end_of_tx:
1601         rte_wmb();
1602
1603         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1604                    txq->port_id, txq->queue_id, tx_id, nb_tx);
1605
1606         IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
1607         txq->tx_tail = tx_id;
1608
1609         return nb_tx;
1610 }
1611
1612 /* TX prep functions */
1613 uint16_t
1614 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1615               uint16_t nb_pkts)
1616 {
1617         int i, ret;
1618         uint64_t ol_flags;
1619         struct rte_mbuf *m;
1620
1621         for (i = 0; i < nb_pkts; i++) {
1622                 m = tx_pkts[i];
1623                 ol_flags = m->ol_flags;
1624
1625                 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
1626                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
1627                         if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
1628                                 rte_errno = EINVAL;
1629                                 return i;
1630                         }
1631                 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
1632                            (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
1633                         /* MSS outside the range are considered malicious */
1634                         rte_errno = EINVAL;
1635                         return i;
1636                 }
1637
1638                 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
1639                         rte_errno = ENOTSUP;
1640                         return i;
1641                 }
1642
1643 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
1644                 ret = rte_validate_tx_offload(m);
1645                 if (ret != 0) {
1646                         rte_errno = -ret;
1647                         return i;
1648                 }
1649 #endif
1650                 ret = rte_net_intel_cksum_prepare(m);
1651                 if (ret != 0) {
1652                         rte_errno = -ret;
1653                         return i;
1654                 }
1655         }
1656
1657         return i;
1658 }
1659
1660 /* choose rx function*/
1661 void
1662 iavf_set_rx_function(struct rte_eth_dev *dev)
1663 {
1664         struct iavf_adapter *adapter =
1665                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1666 #ifdef RTE_ARCH_X86
1667         struct iavf_rx_queue *rxq;
1668         int i;
1669         bool use_avx2 = false;
1670
1671         if (!iavf_rx_vec_dev_check(dev)) {
1672                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
1673                         rxq = dev->data->rx_queues[i];
1674                         (void)iavf_rxq_vec_setup(rxq);
1675                 }
1676
1677                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
1678                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
1679                         use_avx2 = true;
1680
1681                 if (dev->data->scattered_rx) {
1682                         PMD_DRV_LOG(DEBUG,
1683                                     "Using %sVector Scattered Rx (port %d).",
1684                                     use_avx2 ? "avx2 " : "",
1685                                     dev->data->port_id);
1686                         dev->rx_pkt_burst = use_avx2 ?
1687                                             iavf_recv_scattered_pkts_vec_avx2 :
1688                                             iavf_recv_scattered_pkts_vec;
1689                 } else {
1690                         PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
1691                                     use_avx2 ? "avx2 " : "",
1692                                     dev->data->port_id);
1693                         dev->rx_pkt_burst = use_avx2 ?
1694                                             iavf_recv_pkts_vec_avx2 :
1695                                             iavf_recv_pkts_vec;
1696                 }
1697
1698                 return;
1699         }
1700 #endif
1701
1702         if (dev->data->scattered_rx) {
1703                 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
1704                             dev->data->port_id);
1705                 dev->rx_pkt_burst = iavf_recv_scattered_pkts;
1706         } else if (adapter->rx_bulk_alloc_allowed) {
1707                 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
1708                             dev->data->port_id);
1709                 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
1710         } else {
1711                 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
1712                             dev->data->port_id);
1713                 dev->rx_pkt_burst = iavf_recv_pkts;
1714         }
1715 }
1716
1717 /* choose tx function*/
1718 void
1719 iavf_set_tx_function(struct rte_eth_dev *dev)
1720 {
1721 #ifdef RTE_ARCH_X86
1722         struct iavf_tx_queue *txq;
1723         int i;
1724         bool use_avx2 = false;
1725
1726         if (!iavf_tx_vec_dev_check(dev)) {
1727                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
1728                         txq = dev->data->tx_queues[i];
1729                         if (!txq)
1730                                 continue;
1731                         iavf_txq_vec_setup(txq);
1732                 }
1733
1734                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
1735                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
1736                         use_avx2 = true;
1737
1738                 PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
1739                             use_avx2 ? "avx2 " : "",
1740                             dev->data->port_id);
1741                 dev->tx_pkt_burst = use_avx2 ?
1742                                     iavf_xmit_pkts_vec_avx2 :
1743                                     iavf_xmit_pkts_vec;
1744                 dev->tx_pkt_prepare = NULL;
1745
1746                 return;
1747         }
1748 #endif
1749
1750         PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
1751                     dev->data->port_id);
1752         dev->tx_pkt_burst = iavf_xmit_pkts;
1753         dev->tx_pkt_prepare = iavf_prep_pkts;
1754 }
1755
1756 void
1757 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1758                      struct rte_eth_rxq_info *qinfo)
1759 {
1760         struct iavf_rx_queue *rxq;
1761
1762         rxq = dev->data->rx_queues[queue_id];
1763
1764         qinfo->mp = rxq->mp;
1765         qinfo->scattered_rx = dev->data->scattered_rx;
1766         qinfo->nb_desc = rxq->nb_rx_desc;
1767
1768         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1769         qinfo->conf.rx_drop_en = true;
1770         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
1771 }
1772
1773 void
1774 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1775                      struct rte_eth_txq_info *qinfo)
1776 {
1777         struct iavf_tx_queue *txq;
1778
1779         txq = dev->data->tx_queues[queue_id];
1780
1781         qinfo->nb_desc = txq->nb_tx_desc;
1782
1783         qinfo->conf.tx_free_thresh = txq->free_thresh;
1784         qinfo->conf.tx_rs_thresh = txq->rs_thresh;
1785         qinfo->conf.offloads = txq->offloads;
1786         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1787 }
1788
1789 /* Get the number of used descriptors of a rx queue */
1790 uint32_t
1791 iavf_dev_rxq_count(struct rte_eth_dev *dev, uint16_t queue_id)
1792 {
1793 #define IAVF_RXQ_SCAN_INTERVAL 4
1794         volatile union iavf_rx_desc *rxdp;
1795         struct iavf_rx_queue *rxq;
1796         uint16_t desc = 0;
1797
1798         rxq = dev->data->rx_queues[queue_id];
1799         rxdp = &rxq->rx_ring[rxq->rx_tail];
1800         while ((desc < rxq->nb_rx_desc) &&
1801                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1802                  IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
1803                (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
1804                 /* Check the DD bit of a rx descriptor of each 4 in a group,
1805                  * to avoid checking too frequently and downgrading performance
1806                  * too much.
1807                  */
1808                 desc += IAVF_RXQ_SCAN_INTERVAL;
1809                 rxdp += IAVF_RXQ_SCAN_INTERVAL;
1810                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1811                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1812                                         desc - rxq->nb_rx_desc]);
1813         }
1814
1815         return desc;
1816 }
1817
1818 int
1819 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
1820 {
1821         struct iavf_rx_queue *rxq = rx_queue;
1822         volatile uint64_t *status;
1823         uint64_t mask;
1824         uint32_t desc;
1825
1826         if (unlikely(offset >= rxq->nb_rx_desc))
1827                 return -EINVAL;
1828
1829         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1830                 return RTE_ETH_RX_DESC_UNAVAIL;
1831
1832         desc = rxq->rx_tail + offset;
1833         if (desc >= rxq->nb_rx_desc)
1834                 desc -= rxq->nb_rx_desc;
1835
1836         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
1837         mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
1838                 << IAVF_RXD_QW1_STATUS_SHIFT);
1839         if (*status & mask)
1840                 return RTE_ETH_RX_DESC_DONE;
1841
1842         return RTE_ETH_RX_DESC_AVAIL;
1843 }
1844
1845 int
1846 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
1847 {
1848         struct iavf_tx_queue *txq = tx_queue;
1849         volatile uint64_t *status;
1850         uint64_t mask, expect;
1851         uint32_t desc;
1852
1853         if (unlikely(offset >= txq->nb_tx_desc))
1854                 return -EINVAL;
1855
1856         desc = txq->tx_tail + offset;
1857         /* go to next desc that has the RS bit */
1858         desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
1859                 txq->rs_thresh;
1860         if (desc >= txq->nb_tx_desc) {
1861                 desc -= txq->nb_tx_desc;
1862                 if (desc >= txq->nb_tx_desc)
1863                         desc -= txq->nb_tx_desc;
1864         }
1865
1866         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
1867         mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
1868         expect = rte_cpu_to_le_64(
1869                  IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
1870         if ((*status & mask) == expect)
1871                 return RTE_ETH_TX_DESC_DONE;
1872
1873         return RTE_ETH_TX_DESC_FULL;
1874 }
1875
1876 const uint32_t *
1877 iavf_get_default_ptype_table(void)
1878 {
1879         static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
1880                 __rte_cache_aligned = {
1881                 /* L2 types */
1882                 /* [0] reserved */
1883                 [1] = RTE_PTYPE_L2_ETHER,
1884                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
1885                 /* [3] - [5] reserved */
1886                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
1887                 /* [7] - [10] reserved */
1888                 [11] = RTE_PTYPE_L2_ETHER_ARP,
1889                 /* [12] - [21] reserved */
1890
1891                 /* Non tunneled IPv4 */
1892                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1893                        RTE_PTYPE_L4_FRAG,
1894                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1895                        RTE_PTYPE_L4_NONFRAG,
1896                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1897                        RTE_PTYPE_L4_UDP,
1898                 /* [25] reserved */
1899                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1900                        RTE_PTYPE_L4_TCP,
1901                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1902                        RTE_PTYPE_L4_SCTP,
1903                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1904                        RTE_PTYPE_L4_ICMP,
1905
1906                 /* IPv4 --> IPv4 */
1907                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1908                        RTE_PTYPE_TUNNEL_IP |
1909                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
1910                        RTE_PTYPE_INNER_L4_FRAG,
1911                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1912                        RTE_PTYPE_TUNNEL_IP |
1913                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
1914                        RTE_PTYPE_INNER_L4_NONFRAG,
1915                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1916                        RTE_PTYPE_TUNNEL_IP |
1917                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
1918                        RTE_PTYPE_INNER_L4_UDP,
1919                 /* [32] reserved */
1920                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1921                        RTE_PTYPE_TUNNEL_IP |
1922                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
1923                        RTE_PTYPE_INNER_L4_TCP,
1924                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1925                        RTE_PTYPE_TUNNEL_IP |
1926                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
1927                        RTE_PTYPE_INNER_L4_SCTP,
1928                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1929                        RTE_PTYPE_TUNNEL_IP |
1930                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
1931                        RTE_PTYPE_INNER_L4_ICMP,
1932
1933                 /* IPv4 --> IPv6 */
1934                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1935                        RTE_PTYPE_TUNNEL_IP |
1936                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
1937                        RTE_PTYPE_INNER_L4_FRAG,
1938                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1939                        RTE_PTYPE_TUNNEL_IP |
1940                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
1941                        RTE_PTYPE_INNER_L4_NONFRAG,
1942                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1943                        RTE_PTYPE_TUNNEL_IP |
1944                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
1945                        RTE_PTYPE_INNER_L4_UDP,
1946                 /* [39] reserved */
1947                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1948                        RTE_PTYPE_TUNNEL_IP |
1949                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
1950                        RTE_PTYPE_INNER_L4_TCP,
1951                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1952                        RTE_PTYPE_TUNNEL_IP |
1953                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
1954                        RTE_PTYPE_INNER_L4_SCTP,
1955                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1956                        RTE_PTYPE_TUNNEL_IP |
1957                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
1958                        RTE_PTYPE_INNER_L4_ICMP,
1959
1960                 /* IPv4 --> GRE/Teredo/VXLAN */
1961                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1962                        RTE_PTYPE_TUNNEL_GRENAT,
1963
1964                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
1965                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1966                        RTE_PTYPE_TUNNEL_GRENAT |
1967                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
1968                        RTE_PTYPE_INNER_L4_FRAG,
1969                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1970                        RTE_PTYPE_TUNNEL_GRENAT |
1971                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
1972                        RTE_PTYPE_INNER_L4_NONFRAG,
1973                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1974                        RTE_PTYPE_TUNNEL_GRENAT |
1975                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
1976                        RTE_PTYPE_INNER_L4_UDP,
1977                 /* [47] reserved */
1978                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1979                        RTE_PTYPE_TUNNEL_GRENAT |
1980                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
1981                        RTE_PTYPE_INNER_L4_TCP,
1982                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1983                        RTE_PTYPE_TUNNEL_GRENAT |
1984                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
1985                        RTE_PTYPE_INNER_L4_SCTP,
1986                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1987                        RTE_PTYPE_TUNNEL_GRENAT |
1988                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
1989                        RTE_PTYPE_INNER_L4_ICMP,
1990
1991                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
1992                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1993                        RTE_PTYPE_TUNNEL_GRENAT |
1994                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
1995                        RTE_PTYPE_INNER_L4_FRAG,
1996                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1997                        RTE_PTYPE_TUNNEL_GRENAT |
1998                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
1999                        RTE_PTYPE_INNER_L4_NONFRAG,
2000                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2001                        RTE_PTYPE_TUNNEL_GRENAT |
2002                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2003                        RTE_PTYPE_INNER_L4_UDP,
2004                 /* [54] reserved */
2005                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2006                        RTE_PTYPE_TUNNEL_GRENAT |
2007                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2008                        RTE_PTYPE_INNER_L4_TCP,
2009                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2010                        RTE_PTYPE_TUNNEL_GRENAT |
2011                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2012                        RTE_PTYPE_INNER_L4_SCTP,
2013                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2014                        RTE_PTYPE_TUNNEL_GRENAT |
2015                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2016                        RTE_PTYPE_INNER_L4_ICMP,
2017
2018                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
2019                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2020                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2021
2022                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2023                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2024                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2025                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2026                        RTE_PTYPE_INNER_L4_FRAG,
2027                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2028                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2029                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2030                        RTE_PTYPE_INNER_L4_NONFRAG,
2031                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2032                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2033                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2034                        RTE_PTYPE_INNER_L4_UDP,
2035                 /* [62] reserved */
2036                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2037                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2038                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2039                        RTE_PTYPE_INNER_L4_TCP,
2040                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2041                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2042                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2043                        RTE_PTYPE_INNER_L4_SCTP,
2044                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2045                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2046                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2047                        RTE_PTYPE_INNER_L4_ICMP,
2048
2049                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2050                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2051                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2052                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2053                        RTE_PTYPE_INNER_L4_FRAG,
2054                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2055                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2056                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2057                        RTE_PTYPE_INNER_L4_NONFRAG,
2058                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2059                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2060                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2061                        RTE_PTYPE_INNER_L4_UDP,
2062                 /* [69] reserved */
2063                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2064                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2065                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2066                        RTE_PTYPE_INNER_L4_TCP,
2067                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2068                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2069                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2070                        RTE_PTYPE_INNER_L4_SCTP,
2071                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2072                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2073                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2074                        RTE_PTYPE_INNER_L4_ICMP,
2075                 /* [73] - [87] reserved */
2076
2077                 /* Non tunneled IPv6 */
2078                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2079                        RTE_PTYPE_L4_FRAG,
2080                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2081                        RTE_PTYPE_L4_NONFRAG,
2082                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2083                        RTE_PTYPE_L4_UDP,
2084                 /* [91] reserved */
2085                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2086                        RTE_PTYPE_L4_TCP,
2087                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2088                        RTE_PTYPE_L4_SCTP,
2089                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2090                        RTE_PTYPE_L4_ICMP,
2091
2092                 /* IPv6 --> IPv4 */
2093                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2094                        RTE_PTYPE_TUNNEL_IP |
2095                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2096                        RTE_PTYPE_INNER_L4_FRAG,
2097                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2098                        RTE_PTYPE_TUNNEL_IP |
2099                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2100                        RTE_PTYPE_INNER_L4_NONFRAG,
2101                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2102                        RTE_PTYPE_TUNNEL_IP |
2103                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2104                        RTE_PTYPE_INNER_L4_UDP,
2105                 /* [98] reserved */
2106                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2107                        RTE_PTYPE_TUNNEL_IP |
2108                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2109                        RTE_PTYPE_INNER_L4_TCP,
2110                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2111                         RTE_PTYPE_TUNNEL_IP |
2112                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2113                         RTE_PTYPE_INNER_L4_SCTP,
2114                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2115                         RTE_PTYPE_TUNNEL_IP |
2116                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2117                         RTE_PTYPE_INNER_L4_ICMP,
2118
2119                 /* IPv6 --> IPv6 */
2120                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2121                         RTE_PTYPE_TUNNEL_IP |
2122                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2123                         RTE_PTYPE_INNER_L4_FRAG,
2124                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2125                         RTE_PTYPE_TUNNEL_IP |
2126                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2127                         RTE_PTYPE_INNER_L4_NONFRAG,
2128                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2129                         RTE_PTYPE_TUNNEL_IP |
2130                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2131                         RTE_PTYPE_INNER_L4_UDP,
2132                 /* [105] reserved */
2133                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2134                         RTE_PTYPE_TUNNEL_IP |
2135                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2136                         RTE_PTYPE_INNER_L4_TCP,
2137                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2138                         RTE_PTYPE_TUNNEL_IP |
2139                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2140                         RTE_PTYPE_INNER_L4_SCTP,
2141                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2142                         RTE_PTYPE_TUNNEL_IP |
2143                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2144                         RTE_PTYPE_INNER_L4_ICMP,
2145
2146                 /* IPv6 --> GRE/Teredo/VXLAN */
2147                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2148                         RTE_PTYPE_TUNNEL_GRENAT,
2149
2150                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
2151                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2152                         RTE_PTYPE_TUNNEL_GRENAT |
2153                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2154                         RTE_PTYPE_INNER_L4_FRAG,
2155                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2156                         RTE_PTYPE_TUNNEL_GRENAT |
2157                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2158                         RTE_PTYPE_INNER_L4_NONFRAG,
2159                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2160                         RTE_PTYPE_TUNNEL_GRENAT |
2161                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2162                         RTE_PTYPE_INNER_L4_UDP,
2163                 /* [113] reserved */
2164                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2165                         RTE_PTYPE_TUNNEL_GRENAT |
2166                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2167                         RTE_PTYPE_INNER_L4_TCP,
2168                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2169                         RTE_PTYPE_TUNNEL_GRENAT |
2170                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2171                         RTE_PTYPE_INNER_L4_SCTP,
2172                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2173                         RTE_PTYPE_TUNNEL_GRENAT |
2174                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2175                         RTE_PTYPE_INNER_L4_ICMP,
2176
2177                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
2178                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2179                         RTE_PTYPE_TUNNEL_GRENAT |
2180                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2181                         RTE_PTYPE_INNER_L4_FRAG,
2182                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2183                         RTE_PTYPE_TUNNEL_GRENAT |
2184                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2185                         RTE_PTYPE_INNER_L4_NONFRAG,
2186                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2187                         RTE_PTYPE_TUNNEL_GRENAT |
2188                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2189                         RTE_PTYPE_INNER_L4_UDP,
2190                 /* [120] reserved */
2191                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2192                         RTE_PTYPE_TUNNEL_GRENAT |
2193                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2194                         RTE_PTYPE_INNER_L4_TCP,
2195                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2196                         RTE_PTYPE_TUNNEL_GRENAT |
2197                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2198                         RTE_PTYPE_INNER_L4_SCTP,
2199                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2200                         RTE_PTYPE_TUNNEL_GRENAT |
2201                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2202                         RTE_PTYPE_INNER_L4_ICMP,
2203
2204                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
2205                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2206                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2207
2208                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2209                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2210                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2211                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2212                         RTE_PTYPE_INNER_L4_FRAG,
2213                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2214                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2215                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2216                         RTE_PTYPE_INNER_L4_NONFRAG,
2217                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2218                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2219                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2220                         RTE_PTYPE_INNER_L4_UDP,
2221                 /* [128] reserved */
2222                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2223                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2224                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2225                         RTE_PTYPE_INNER_L4_TCP,
2226                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2227                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2228                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2229                         RTE_PTYPE_INNER_L4_SCTP,
2230                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2231                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2232                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2233                         RTE_PTYPE_INNER_L4_ICMP,
2234
2235                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2236                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2237                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2238                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2239                         RTE_PTYPE_INNER_L4_FRAG,
2240                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2241                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2242                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2243                         RTE_PTYPE_INNER_L4_NONFRAG,
2244                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2245                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2246                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2247                         RTE_PTYPE_INNER_L4_UDP,
2248                 /* [135] reserved */
2249                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2250                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2251                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2252                         RTE_PTYPE_INNER_L4_TCP,
2253                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2254                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2255                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2256                         RTE_PTYPE_INNER_L4_SCTP,
2257                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2258                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2259                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2260                         RTE_PTYPE_INNER_L4_ICMP,
2261                 /* [139] - [299] reserved */
2262
2263                 /* PPPoE */
2264                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
2265                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
2266
2267                 /* PPPoE --> IPv4 */
2268                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
2269                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2270                         RTE_PTYPE_L4_FRAG,
2271                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
2272                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2273                         RTE_PTYPE_L4_NONFRAG,
2274                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
2275                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2276                         RTE_PTYPE_L4_UDP,
2277                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
2278                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2279                         RTE_PTYPE_L4_TCP,
2280                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
2281                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2282                         RTE_PTYPE_L4_SCTP,
2283                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
2284                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2285                         RTE_PTYPE_L4_ICMP,
2286
2287                 /* PPPoE --> IPv6 */
2288                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
2289                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2290                         RTE_PTYPE_L4_FRAG,
2291                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
2292                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2293                         RTE_PTYPE_L4_NONFRAG,
2294                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
2295                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2296                         RTE_PTYPE_L4_UDP,
2297                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
2298                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2299                         RTE_PTYPE_L4_TCP,
2300                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
2301                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2302                         RTE_PTYPE_L4_SCTP,
2303                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
2304                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2305                         RTE_PTYPE_L4_ICMP,
2306                 /* [314] - [324] reserved */
2307
2308                 /* IPv4/IPv6 --> GTPC/GTPU */
2309                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2310                         RTE_PTYPE_TUNNEL_GTPC,
2311                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2312                         RTE_PTYPE_TUNNEL_GTPC,
2313                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2314                         RTE_PTYPE_TUNNEL_GTPC,
2315                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2316                         RTE_PTYPE_TUNNEL_GTPC,
2317                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2318                         RTE_PTYPE_TUNNEL_GTPU,
2319                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2320                         RTE_PTYPE_TUNNEL_GTPU,
2321
2322                 /* IPv4 --> GTPU --> IPv4 */
2323                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2324                         RTE_PTYPE_TUNNEL_GTPU |
2325                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2326                         RTE_PTYPE_INNER_L4_FRAG,
2327                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2328                         RTE_PTYPE_TUNNEL_GTPU |
2329                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2330                         RTE_PTYPE_INNER_L4_NONFRAG,
2331                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2332                         RTE_PTYPE_TUNNEL_GTPU |
2333                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2334                         RTE_PTYPE_INNER_L4_UDP,
2335                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2336                         RTE_PTYPE_TUNNEL_GTPU |
2337                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2338                         RTE_PTYPE_INNER_L4_TCP,
2339                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2340                         RTE_PTYPE_TUNNEL_GTPU |
2341                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2342                         RTE_PTYPE_INNER_L4_ICMP,
2343
2344                 /* IPv6 --> GTPU --> IPv4 */
2345                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2346                         RTE_PTYPE_TUNNEL_GTPU |
2347                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2348                         RTE_PTYPE_INNER_L4_FRAG,
2349                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2350                         RTE_PTYPE_TUNNEL_GTPU |
2351                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2352                         RTE_PTYPE_INNER_L4_NONFRAG,
2353                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2354                         RTE_PTYPE_TUNNEL_GTPU |
2355                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2356                         RTE_PTYPE_INNER_L4_UDP,
2357                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2358                         RTE_PTYPE_TUNNEL_GTPU |
2359                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2360                         RTE_PTYPE_INNER_L4_TCP,
2361                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2362                         RTE_PTYPE_TUNNEL_GTPU |
2363                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2364                         RTE_PTYPE_INNER_L4_ICMP,
2365
2366                 /* IPv4 --> GTPU --> IPv6 */
2367                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2368                         RTE_PTYPE_TUNNEL_GTPU |
2369                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2370                         RTE_PTYPE_INNER_L4_FRAG,
2371                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2372                         RTE_PTYPE_TUNNEL_GTPU |
2373                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2374                         RTE_PTYPE_INNER_L4_NONFRAG,
2375                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2376                         RTE_PTYPE_TUNNEL_GTPU |
2377                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2378                         RTE_PTYPE_INNER_L4_UDP,
2379                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2380                         RTE_PTYPE_TUNNEL_GTPU |
2381                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2382                         RTE_PTYPE_INNER_L4_TCP,
2383                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2384                         RTE_PTYPE_TUNNEL_GTPU |
2385                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2386                         RTE_PTYPE_INNER_L4_ICMP,
2387
2388                 /* IPv6 --> GTPU --> IPv6 */
2389                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2390                         RTE_PTYPE_TUNNEL_GTPU |
2391                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2392                         RTE_PTYPE_INNER_L4_FRAG,
2393                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2394                         RTE_PTYPE_TUNNEL_GTPU |
2395                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2396                         RTE_PTYPE_INNER_L4_NONFRAG,
2397                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2398                         RTE_PTYPE_TUNNEL_GTPU |
2399                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2400                         RTE_PTYPE_INNER_L4_UDP,
2401                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2402                         RTE_PTYPE_TUNNEL_GTPU |
2403                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2404                         RTE_PTYPE_INNER_L4_TCP,
2405                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2406                         RTE_PTYPE_TUNNEL_GTPU |
2407                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2408                         RTE_PTYPE_INNER_L4_ICMP,
2409                 /* All others reserved */
2410         };
2411
2412         return ptype_tbl;
2413 }