net/iavf: fix scalar Rx
[dpdk.git] / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26 #include <rte_vect.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "rte_pmd_iavf.h"
31
32 /* Offset of mbuf dynamic field for protocol extraction's metadata */
33 int rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
34
35 /* Mask of mbuf dynamic flags for protocol extraction's type */
36 uint64_t rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
37 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
38 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
39 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
40 uint64_t rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
41 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
42
43 uint8_t
44 iavf_proto_xtr_type_to_rxdid(uint8_t flex_type)
45 {
46         static uint8_t rxdid_map[] = {
47                 [IAVF_PROTO_XTR_NONE]      = IAVF_RXDID_COMMS_OVS_1,
48                 [IAVF_PROTO_XTR_VLAN]      = IAVF_RXDID_COMMS_AUX_VLAN,
49                 [IAVF_PROTO_XTR_IPV4]      = IAVF_RXDID_COMMS_AUX_IPV4,
50                 [IAVF_PROTO_XTR_IPV6]      = IAVF_RXDID_COMMS_AUX_IPV6,
51                 [IAVF_PROTO_XTR_IPV6_FLOW] = IAVF_RXDID_COMMS_AUX_IPV6_FLOW,
52                 [IAVF_PROTO_XTR_TCP]       = IAVF_RXDID_COMMS_AUX_TCP,
53                 [IAVF_PROTO_XTR_IP_OFFSET] = IAVF_RXDID_COMMS_AUX_IP_OFFSET,
54         };
55
56         return flex_type < RTE_DIM(rxdid_map) ?
57                                 rxdid_map[flex_type] : IAVF_RXDID_COMMS_OVS_1;
58 }
59
60 int
61 iavf_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
62 {
63         struct iavf_rx_queue *rxq = rx_queue;
64         volatile union iavf_rx_desc *rxdp;
65         uint16_t desc;
66
67         desc = rxq->rx_tail;
68         rxdp = &rxq->rx_ring[desc];
69         /* watch for changes in status bit */
70         pmc->addr = &rxdp->wb.qword1.status_error_len;
71
72         /*
73          * we expect the DD bit to be set to 1 if this descriptor was already
74          * written to.
75          */
76         pmc->val = rte_cpu_to_le_64(1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
77         pmc->mask = rte_cpu_to_le_64(1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
78
79         /* registers are 64-bit */
80         pmc->size = sizeof(uint64_t);
81
82         return 0;
83 }
84
85 static inline int
86 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
87 {
88         /* The following constraints must be satisfied:
89          *   thresh < rxq->nb_rx_desc
90          */
91         if (thresh >= nb_desc) {
92                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
93                              thresh, nb_desc);
94                 return -EINVAL;
95         }
96         return 0;
97 }
98
99 static inline int
100 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
101                 uint16_t tx_free_thresh)
102 {
103         /* TX descriptors will have their RS bit set after tx_rs_thresh
104          * descriptors have been used. The TX descriptor ring will be cleaned
105          * after tx_free_thresh descriptors are used or if the number of
106          * descriptors required to transmit a packet is greater than the
107          * number of free TX descriptors.
108          *
109          * The following constraints must be satisfied:
110          *  - tx_rs_thresh must be less than the size of the ring minus 2.
111          *  - tx_free_thresh must be less than the size of the ring minus 3.
112          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
113          *  - tx_rs_thresh must be a divisor of the ring size.
114          *
115          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
116          * race condition, hence the maximum threshold constraints. When set
117          * to zero use default values.
118          */
119         if (tx_rs_thresh >= (nb_desc - 2)) {
120                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
121                              "number of TX descriptors (%u) minus 2",
122                              tx_rs_thresh, nb_desc);
123                 return -EINVAL;
124         }
125         if (tx_free_thresh >= (nb_desc - 3)) {
126                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
127                              "number of TX descriptors (%u) minus 3.",
128                              tx_free_thresh, nb_desc);
129                 return -EINVAL;
130         }
131         if (tx_rs_thresh > tx_free_thresh) {
132                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
133                              "equal to tx_free_thresh (%u).",
134                              tx_rs_thresh, tx_free_thresh);
135                 return -EINVAL;
136         }
137         if ((nb_desc % tx_rs_thresh) != 0) {
138                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
139                              "number of TX descriptors (%u).",
140                              tx_rs_thresh, nb_desc);
141                 return -EINVAL;
142         }
143
144         return 0;
145 }
146
147 static inline bool
148 check_rx_vec_allow(struct iavf_rx_queue *rxq)
149 {
150         if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
151             rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
152                 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
153                 return true;
154         }
155
156         PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
157         return false;
158 }
159
160 static inline bool
161 check_tx_vec_allow(struct iavf_tx_queue *txq)
162 {
163         if (!(txq->offloads & IAVF_TX_NO_VECTOR_FLAGS) &&
164             txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
165             txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
166                 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
167                 return true;
168         }
169         PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
170         return false;
171 }
172
173 static inline bool
174 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
175 {
176         int ret = true;
177
178         if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
179                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
180                              "rxq->rx_free_thresh=%d, "
181                              "IAVF_RX_MAX_BURST=%d",
182                              rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
183                 ret = false;
184         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
185                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
186                              "rxq->nb_rx_desc=%d, "
187                              "rxq->rx_free_thresh=%d",
188                              rxq->nb_rx_desc, rxq->rx_free_thresh);
189                 ret = false;
190         }
191         return ret;
192 }
193
194 static inline void
195 reset_rx_queue(struct iavf_rx_queue *rxq)
196 {
197         uint16_t len;
198         uint32_t i;
199
200         if (!rxq)
201                 return;
202
203         len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
204
205         for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
206                 ((volatile char *)rxq->rx_ring)[i] = 0;
207
208         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
209
210         for (i = 0; i < IAVF_RX_MAX_BURST; i++)
211                 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
212
213         /* for rx bulk */
214         rxq->rx_nb_avail = 0;
215         rxq->rx_next_avail = 0;
216         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
217
218         rxq->rx_tail = 0;
219         rxq->nb_rx_hold = 0;
220         rxq->pkt_first_seg = NULL;
221         rxq->pkt_last_seg = NULL;
222         rxq->rxrearm_nb = 0;
223         rxq->rxrearm_start = 0;
224 }
225
226 static inline void
227 reset_tx_queue(struct iavf_tx_queue *txq)
228 {
229         struct iavf_tx_entry *txe;
230         uint32_t i, size;
231         uint16_t prev;
232
233         if (!txq) {
234                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
235                 return;
236         }
237
238         txe = txq->sw_ring;
239         size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
240         for (i = 0; i < size; i++)
241                 ((volatile char *)txq->tx_ring)[i] = 0;
242
243         prev = (uint16_t)(txq->nb_tx_desc - 1);
244         for (i = 0; i < txq->nb_tx_desc; i++) {
245                 txq->tx_ring[i].cmd_type_offset_bsz =
246                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
247                 txe[i].mbuf =  NULL;
248                 txe[i].last_id = i;
249                 txe[prev].next_id = i;
250                 prev = i;
251         }
252
253         txq->tx_tail = 0;
254         txq->nb_used = 0;
255
256         txq->last_desc_cleaned = txq->nb_tx_desc - 1;
257         txq->nb_free = txq->nb_tx_desc - 1;
258
259         txq->next_dd = txq->rs_thresh - 1;
260         txq->next_rs = txq->rs_thresh - 1;
261 }
262
263 static int
264 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
265 {
266         volatile union iavf_rx_desc *rxd;
267         struct rte_mbuf *mbuf = NULL;
268         uint64_t dma_addr;
269         uint16_t i;
270
271         for (i = 0; i < rxq->nb_rx_desc; i++) {
272                 mbuf = rte_mbuf_raw_alloc(rxq->mp);
273                 if (unlikely(!mbuf)) {
274                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
275                         return -ENOMEM;
276                 }
277
278                 rte_mbuf_refcnt_set(mbuf, 1);
279                 mbuf->next = NULL;
280                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
281                 mbuf->nb_segs = 1;
282                 mbuf->port = rxq->port_id;
283
284                 dma_addr =
285                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
286
287                 rxd = &rxq->rx_ring[i];
288                 rxd->read.pkt_addr = dma_addr;
289                 rxd->read.hdr_addr = 0;
290 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
291                 rxd->read.rsvd1 = 0;
292                 rxd->read.rsvd2 = 0;
293 #endif
294
295                 rxq->sw_ring[i] = mbuf;
296         }
297
298         return 0;
299 }
300
301 static inline void
302 release_rxq_mbufs(struct iavf_rx_queue *rxq)
303 {
304         uint16_t i;
305
306         if (!rxq->sw_ring)
307                 return;
308
309         for (i = 0; i < rxq->nb_rx_desc; i++) {
310                 if (rxq->sw_ring[i]) {
311                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
312                         rxq->sw_ring[i] = NULL;
313                 }
314         }
315
316         /* for rx bulk */
317         if (rxq->rx_nb_avail == 0)
318                 return;
319         for (i = 0; i < rxq->rx_nb_avail; i++) {
320                 struct rte_mbuf *mbuf;
321
322                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
323                 rte_pktmbuf_free_seg(mbuf);
324         }
325         rxq->rx_nb_avail = 0;
326 }
327
328 static inline void
329 release_txq_mbufs(struct iavf_tx_queue *txq)
330 {
331         uint16_t i;
332
333         if (!txq || !txq->sw_ring) {
334                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
335                 return;
336         }
337
338         for (i = 0; i < txq->nb_tx_desc; i++) {
339                 if (txq->sw_ring[i].mbuf) {
340                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
341                         txq->sw_ring[i].mbuf = NULL;
342                 }
343         }
344 }
345
346 static const struct iavf_rxq_ops def_rxq_ops = {
347         .release_mbufs = release_rxq_mbufs,
348 };
349
350 static const struct iavf_txq_ops def_txq_ops = {
351         .release_mbufs = release_txq_mbufs,
352 };
353
354 static inline void
355 iavf_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct iavf_rx_queue *rxq,
356                                     struct rte_mbuf *mb,
357                                     volatile union iavf_rx_flex_desc *rxdp)
358 {
359         volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
360                         (volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
361 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
362         uint16_t stat_err;
363 #endif
364
365         if (desc->flow_id != 0xFFFFFFFF) {
366                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
367                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
368         }
369
370 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
371         stat_err = rte_le_to_cpu_16(desc->status_error0);
372         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
373                 mb->ol_flags |= PKT_RX_RSS_HASH;
374                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
375         }
376 #endif
377 }
378
379 static inline void
380 iavf_rxd_to_pkt_fields_by_comms_aux_v1(struct iavf_rx_queue *rxq,
381                                        struct rte_mbuf *mb,
382                                        volatile union iavf_rx_flex_desc *rxdp)
383 {
384         volatile struct iavf_32b_rx_flex_desc_comms *desc =
385                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
386         uint16_t stat_err;
387
388         stat_err = rte_le_to_cpu_16(desc->status_error0);
389         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
390                 mb->ol_flags |= PKT_RX_RSS_HASH;
391                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
392         }
393
394 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
395         if (desc->flow_id != 0xFFFFFFFF) {
396                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
397                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
398         }
399
400         if (rxq->xtr_ol_flag) {
401                 uint32_t metadata = 0;
402
403                 stat_err = rte_le_to_cpu_16(desc->status_error1);
404
405                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
406                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
407
408                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
409                         metadata |=
410                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
411
412                 if (metadata) {
413                         mb->ol_flags |= rxq->xtr_ol_flag;
414
415                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
416                 }
417         }
418 #endif
419 }
420
421 static inline void
422 iavf_rxd_to_pkt_fields_by_comms_aux_v2(struct iavf_rx_queue *rxq,
423                                        struct rte_mbuf *mb,
424                                        volatile union iavf_rx_flex_desc *rxdp)
425 {
426         volatile struct iavf_32b_rx_flex_desc_comms *desc =
427                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
428         uint16_t stat_err;
429
430         stat_err = rte_le_to_cpu_16(desc->status_error0);
431         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
432                 mb->ol_flags |= PKT_RX_RSS_HASH;
433                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
434         }
435
436 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
437         if (desc->flow_id != 0xFFFFFFFF) {
438                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
439                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
440         }
441
442         if (rxq->xtr_ol_flag) {
443                 uint32_t metadata = 0;
444
445                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
446                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
447                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
448                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
449
450                 if (metadata) {
451                         mb->ol_flags |= rxq->xtr_ol_flag;
452
453                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
454                 }
455         }
456 #endif
457 }
458
459 static void
460 iavf_select_rxd_to_pkt_fields_handler(struct iavf_rx_queue *rxq, uint32_t rxdid)
461 {
462         switch (rxdid) {
463         case IAVF_RXDID_COMMS_AUX_VLAN:
464                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
465                 rxq->rxd_to_pkt_fields =
466                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
467                 break;
468         case IAVF_RXDID_COMMS_AUX_IPV4:
469                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
470                 rxq->rxd_to_pkt_fields =
471                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
472                 break;
473         case IAVF_RXDID_COMMS_AUX_IPV6:
474                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
475                 rxq->rxd_to_pkt_fields =
476                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
477                 break;
478         case IAVF_RXDID_COMMS_AUX_IPV6_FLOW:
479                 rxq->xtr_ol_flag =
480                         rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
481                 rxq->rxd_to_pkt_fields =
482                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
483                 break;
484         case IAVF_RXDID_COMMS_AUX_TCP:
485                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
486                 rxq->rxd_to_pkt_fields =
487                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
488                 break;
489         case IAVF_RXDID_COMMS_AUX_IP_OFFSET:
490                 rxq->xtr_ol_flag =
491                         rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
492                 rxq->rxd_to_pkt_fields =
493                         iavf_rxd_to_pkt_fields_by_comms_aux_v2;
494                 break;
495         case IAVF_RXDID_COMMS_OVS_1:
496                 rxq->rxd_to_pkt_fields = iavf_rxd_to_pkt_fields_by_comms_ovs;
497                 break;
498         default:
499                 /* update this according to the RXDID for FLEX_DESC_NONE */
500                 rxq->rxd_to_pkt_fields = iavf_rxd_to_pkt_fields_by_comms_ovs;
501                 break;
502         }
503
504         if (!rte_pmd_ifd_dynf_proto_xtr_metadata_avail())
505                 rxq->xtr_ol_flag = 0;
506 }
507
508 int
509 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
510                        uint16_t nb_desc, unsigned int socket_id,
511                        const struct rte_eth_rxconf *rx_conf,
512                        struct rte_mempool *mp)
513 {
514         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
515         struct iavf_adapter *ad =
516                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
517         struct iavf_info *vf =
518                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
519         struct iavf_vsi *vsi = &vf->vsi;
520         struct iavf_rx_queue *rxq;
521         const struct rte_memzone *mz;
522         uint32_t ring_size;
523         uint8_t proto_xtr;
524         uint16_t len;
525         uint16_t rx_free_thresh;
526         uint64_t offloads;
527
528         PMD_INIT_FUNC_TRACE();
529
530         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
531
532         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
533             nb_desc > IAVF_MAX_RING_DESC ||
534             nb_desc < IAVF_MIN_RING_DESC) {
535                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
536                              "invalid", nb_desc);
537                 return -EINVAL;
538         }
539
540         /* Check free threshold */
541         rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
542                          IAVF_DEFAULT_RX_FREE_THRESH :
543                          rx_conf->rx_free_thresh;
544         if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
545                 return -EINVAL;
546
547         /* Free memory if needed */
548         if (dev->data->rx_queues[queue_idx]) {
549                 iavf_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
550                 dev->data->rx_queues[queue_idx] = NULL;
551         }
552
553         /* Allocate the rx queue data structure */
554         rxq = rte_zmalloc_socket("iavf rxq",
555                                  sizeof(struct iavf_rx_queue),
556                                  RTE_CACHE_LINE_SIZE,
557                                  socket_id);
558         if (!rxq) {
559                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
560                              "rx queue data structure");
561                 return -ENOMEM;
562         }
563
564         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
565                 proto_xtr = vf->proto_xtr ? vf->proto_xtr[queue_idx] :
566                                 IAVF_PROTO_XTR_NONE;
567                 rxq->rxdid = iavf_proto_xtr_type_to_rxdid(proto_xtr);
568                 rxq->proto_xtr = proto_xtr;
569         } else {
570                 rxq->rxdid = IAVF_RXDID_LEGACY_1;
571                 rxq->proto_xtr = IAVF_PROTO_XTR_NONE;
572         }
573
574         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
575                 struct virtchnl_vlan_supported_caps *stripping_support =
576                                 &vf->vlan_v2_caps.offloads.stripping_support;
577                 uint32_t stripping_cap;
578
579                 if (stripping_support->outer)
580                         stripping_cap = stripping_support->outer;
581                 else
582                         stripping_cap = stripping_support->inner;
583
584                 if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
585                         rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
586                 else if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
587                         rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
588         } else {
589                 rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
590         }
591
592         iavf_select_rxd_to_pkt_fields_handler(rxq, rxq->rxdid);
593
594         rxq->mp = mp;
595         rxq->nb_rx_desc = nb_desc;
596         rxq->rx_free_thresh = rx_free_thresh;
597         rxq->queue_id = queue_idx;
598         rxq->port_id = dev->data->port_id;
599         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
600         rxq->rx_hdr_len = 0;
601         rxq->vsi = vsi;
602         rxq->offloads = offloads;
603
604         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
605                 rxq->crc_len = RTE_ETHER_CRC_LEN;
606         else
607                 rxq->crc_len = 0;
608
609         len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
610         rxq->rx_buf_len = RTE_ALIGN(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
611
612         /* Allocate the software ring. */
613         len = nb_desc + IAVF_RX_MAX_BURST;
614         rxq->sw_ring =
615                 rte_zmalloc_socket("iavf rx sw ring",
616                                    sizeof(struct rte_mbuf *) * len,
617                                    RTE_CACHE_LINE_SIZE,
618                                    socket_id);
619         if (!rxq->sw_ring) {
620                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
621                 rte_free(rxq);
622                 return -ENOMEM;
623         }
624
625         /* Allocate the maximun number of RX ring hardware descriptor with
626          * a liitle more to support bulk allocate.
627          */
628         len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
629         ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
630                               IAVF_DMA_MEM_ALIGN);
631         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
632                                       ring_size, IAVF_RING_BASE_ALIGN,
633                                       socket_id);
634         if (!mz) {
635                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
636                 rte_free(rxq->sw_ring);
637                 rte_free(rxq);
638                 return -ENOMEM;
639         }
640         /* Zero all the descriptors in the ring. */
641         memset(mz->addr, 0, ring_size);
642         rxq->rx_ring_phys_addr = mz->iova;
643         rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
644
645         rxq->mz = mz;
646         reset_rx_queue(rxq);
647         rxq->q_set = true;
648         dev->data->rx_queues[queue_idx] = rxq;
649         rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
650         rxq->ops = &def_rxq_ops;
651
652         if (check_rx_bulk_allow(rxq) == true) {
653                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
654                              "satisfied. Rx Burst Bulk Alloc function will be "
655                              "used on port=%d, queue=%d.",
656                              rxq->port_id, rxq->queue_id);
657         } else {
658                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
659                              "not satisfied, Scattered Rx is requested "
660                              "on port=%d, queue=%d.",
661                              rxq->port_id, rxq->queue_id);
662                 ad->rx_bulk_alloc_allowed = false;
663         }
664
665         if (check_rx_vec_allow(rxq) == false)
666                 ad->rx_vec_allowed = false;
667
668         return 0;
669 }
670
671 int
672 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
673                        uint16_t queue_idx,
674                        uint16_t nb_desc,
675                        unsigned int socket_id,
676                        const struct rte_eth_txconf *tx_conf)
677 {
678         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
679         struct iavf_info *vf =
680                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
681         struct iavf_tx_queue *txq;
682         const struct rte_memzone *mz;
683         uint32_t ring_size;
684         uint16_t tx_rs_thresh, tx_free_thresh;
685         uint64_t offloads;
686
687         PMD_INIT_FUNC_TRACE();
688
689         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
690
691         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
692             nb_desc > IAVF_MAX_RING_DESC ||
693             nb_desc < IAVF_MIN_RING_DESC) {
694                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
695                             "invalid", nb_desc);
696                 return -EINVAL;
697         }
698
699         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
700                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
701         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
702                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
703         check_tx_thresh(nb_desc, tx_rs_thresh, tx_rs_thresh);
704
705         /* Free memory if needed. */
706         if (dev->data->tx_queues[queue_idx]) {
707                 iavf_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
708                 dev->data->tx_queues[queue_idx] = NULL;
709         }
710
711         /* Allocate the TX queue data structure. */
712         txq = rte_zmalloc_socket("iavf txq",
713                                  sizeof(struct iavf_tx_queue),
714                                  RTE_CACHE_LINE_SIZE,
715                                  socket_id);
716         if (!txq) {
717                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
718                              "tx queue structure");
719                 return -ENOMEM;
720         }
721
722         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
723                 struct virtchnl_vlan_supported_caps *insertion_support =
724                         &vf->vlan_v2_caps.offloads.insertion_support;
725                 uint32_t insertion_cap;
726
727                 if (insertion_support->outer)
728                         insertion_cap = insertion_support->outer;
729                 else
730                         insertion_cap = insertion_support->inner;
731
732                 if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
733                         txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
734                 else if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
735                         txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2;
736         } else {
737                 txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
738         }
739
740         txq->nb_tx_desc = nb_desc;
741         txq->rs_thresh = tx_rs_thresh;
742         txq->free_thresh = tx_free_thresh;
743         txq->queue_id = queue_idx;
744         txq->port_id = dev->data->port_id;
745         txq->offloads = offloads;
746         txq->tx_deferred_start = tx_conf->tx_deferred_start;
747
748         /* Allocate software ring */
749         txq->sw_ring =
750                 rte_zmalloc_socket("iavf tx sw ring",
751                                    sizeof(struct iavf_tx_entry) * nb_desc,
752                                    RTE_CACHE_LINE_SIZE,
753                                    socket_id);
754         if (!txq->sw_ring) {
755                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
756                 rte_free(txq);
757                 return -ENOMEM;
758         }
759
760         /* Allocate TX hardware ring descriptors. */
761         ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
762         ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
763         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
764                                       ring_size, IAVF_RING_BASE_ALIGN,
765                                       socket_id);
766         if (!mz) {
767                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
768                 rte_free(txq->sw_ring);
769                 rte_free(txq);
770                 return -ENOMEM;
771         }
772         txq->tx_ring_phys_addr = mz->iova;
773         txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
774
775         txq->mz = mz;
776         reset_tx_queue(txq);
777         txq->q_set = true;
778         dev->data->tx_queues[queue_idx] = txq;
779         txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
780         txq->ops = &def_txq_ops;
781
782         if (check_tx_vec_allow(txq) == false) {
783                 struct iavf_adapter *ad =
784                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
785                 ad->tx_vec_allowed = false;
786         }
787
788         return 0;
789 }
790
791 int
792 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
793 {
794         struct iavf_adapter *adapter =
795                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
796         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
797         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
798         struct iavf_rx_queue *rxq;
799         int err = 0;
800
801         PMD_DRV_FUNC_TRACE();
802
803         if (rx_queue_id >= dev->data->nb_rx_queues)
804                 return -EINVAL;
805
806         rxq = dev->data->rx_queues[rx_queue_id];
807
808         err = alloc_rxq_mbufs(rxq);
809         if (err) {
810                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
811                 return err;
812         }
813
814         rte_wmb();
815
816         /* Init the RX tail register. */
817         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
818         IAVF_WRITE_FLUSH(hw);
819
820         /* Ready to switch the queue on */
821         if (!vf->lv_enabled)
822                 err = iavf_switch_queue(adapter, rx_queue_id, true, true);
823         else
824                 err = iavf_switch_queue_lv(adapter, rx_queue_id, true, true);
825
826         if (err)
827                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
828                             rx_queue_id);
829         else
830                 dev->data->rx_queue_state[rx_queue_id] =
831                         RTE_ETH_QUEUE_STATE_STARTED;
832
833         return err;
834 }
835
836 int
837 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
838 {
839         struct iavf_adapter *adapter =
840                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
841         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
842         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
843         struct iavf_tx_queue *txq;
844         int err = 0;
845
846         PMD_DRV_FUNC_TRACE();
847
848         if (tx_queue_id >= dev->data->nb_tx_queues)
849                 return -EINVAL;
850
851         txq = dev->data->tx_queues[tx_queue_id];
852
853         /* Init the RX tail register. */
854         IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
855         IAVF_WRITE_FLUSH(hw);
856
857         /* Ready to switch the queue on */
858         if (!vf->lv_enabled)
859                 err = iavf_switch_queue(adapter, tx_queue_id, false, true);
860         else
861                 err = iavf_switch_queue_lv(adapter, tx_queue_id, false, true);
862
863         if (err)
864                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
865                             tx_queue_id);
866         else
867                 dev->data->tx_queue_state[tx_queue_id] =
868                         RTE_ETH_QUEUE_STATE_STARTED;
869
870         return err;
871 }
872
873 int
874 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
875 {
876         struct iavf_adapter *adapter =
877                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
878         struct iavf_rx_queue *rxq;
879         int err;
880
881         PMD_DRV_FUNC_TRACE();
882
883         if (rx_queue_id >= dev->data->nb_rx_queues)
884                 return -EINVAL;
885
886         err = iavf_switch_queue(adapter, rx_queue_id, true, false);
887         if (err) {
888                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
889                             rx_queue_id);
890                 return err;
891         }
892
893         rxq = dev->data->rx_queues[rx_queue_id];
894         rxq->ops->release_mbufs(rxq);
895         reset_rx_queue(rxq);
896         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
897
898         return 0;
899 }
900
901 int
902 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
903 {
904         struct iavf_adapter *adapter =
905                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
906         struct iavf_tx_queue *txq;
907         int err;
908
909         PMD_DRV_FUNC_TRACE();
910
911         if (tx_queue_id >= dev->data->nb_tx_queues)
912                 return -EINVAL;
913
914         err = iavf_switch_queue(adapter, tx_queue_id, false, false);
915         if (err) {
916                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
917                             tx_queue_id);
918                 return err;
919         }
920
921         txq = dev->data->tx_queues[tx_queue_id];
922         txq->ops->release_mbufs(txq);
923         reset_tx_queue(txq);
924         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
925
926         return 0;
927 }
928
929 void
930 iavf_dev_rx_queue_release(void *rxq)
931 {
932         struct iavf_rx_queue *q = (struct iavf_rx_queue *)rxq;
933
934         if (!q)
935                 return;
936
937         q->ops->release_mbufs(q);
938         rte_free(q->sw_ring);
939         rte_memzone_free(q->mz);
940         rte_free(q);
941 }
942
943 void
944 iavf_dev_tx_queue_release(void *txq)
945 {
946         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
947
948         if (!q)
949                 return;
950
951         q->ops->release_mbufs(q);
952         rte_free(q->sw_ring);
953         rte_memzone_free(q->mz);
954         rte_free(q);
955 }
956
957 void
958 iavf_stop_queues(struct rte_eth_dev *dev)
959 {
960         struct iavf_adapter *adapter =
961                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
962         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
963         struct iavf_rx_queue *rxq;
964         struct iavf_tx_queue *txq;
965         int ret, i;
966
967         /* Stop All queues */
968         if (!vf->lv_enabled) {
969                 ret = iavf_disable_queues(adapter);
970                 if (ret)
971                         PMD_DRV_LOG(WARNING, "Fail to stop queues");
972         } else {
973                 ret = iavf_disable_queues_lv(adapter);
974                 if (ret)
975                         PMD_DRV_LOG(WARNING, "Fail to stop queues for large VF");
976         }
977
978         if (ret)
979                 PMD_DRV_LOG(WARNING, "Fail to stop queues");
980
981         for (i = 0; i < dev->data->nb_tx_queues; i++) {
982                 txq = dev->data->tx_queues[i];
983                 if (!txq)
984                         continue;
985                 txq->ops->release_mbufs(txq);
986                 reset_tx_queue(txq);
987                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
988         }
989         for (i = 0; i < dev->data->nb_rx_queues; i++) {
990                 rxq = dev->data->rx_queues[i];
991                 if (!rxq)
992                         continue;
993                 rxq->ops->release_mbufs(rxq);
994                 reset_rx_queue(rxq);
995                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
996         }
997 }
998
999 #define IAVF_RX_FLEX_ERR0_BITS  \
1000         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
1001          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
1002          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
1003          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1004          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1005          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1006
1007 static inline void
1008 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
1009 {
1010         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1011                 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1012                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1013                 mb->vlan_tci =
1014                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
1015         } else {
1016                 mb->vlan_tci = 0;
1017         }
1018 }
1019
1020 static inline void
1021 iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
1022                           volatile union iavf_rx_flex_desc *rxdp,
1023                           uint8_t rx_flags)
1024 {
1025         uint16_t vlan_tci = 0;
1026
1027         if (rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1 &&
1028             rte_le_to_cpu_64(rxdp->wb.status_error0) &
1029             (1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S))
1030                 vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag1);
1031
1032 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1033         if (rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2 &&
1034             rte_le_to_cpu_16(rxdp->wb.status_error1) &
1035             (1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S))
1036                 vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1037 #endif
1038
1039         if (vlan_tci) {
1040                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1041                 mb->vlan_tci = vlan_tci;
1042         }
1043 }
1044
1045 /* Translate the rx descriptor status and error fields to pkt flags */
1046 static inline uint64_t
1047 iavf_rxd_to_pkt_flags(uint64_t qword)
1048 {
1049         uint64_t flags;
1050         uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
1051
1052 #define IAVF_RX_ERR_BITS 0x3f
1053
1054         /* Check if RSS_HASH */
1055         flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
1056                                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
1057                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
1058
1059         /* Check if FDIR Match */
1060         flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
1061                                 PKT_RX_FDIR : 0);
1062
1063         if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
1064                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
1065                 return flags;
1066         }
1067
1068         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
1069                 flags |= PKT_RX_IP_CKSUM_BAD;
1070         else
1071                 flags |= PKT_RX_IP_CKSUM_GOOD;
1072
1073         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
1074                 flags |= PKT_RX_L4_CKSUM_BAD;
1075         else
1076                 flags |= PKT_RX_L4_CKSUM_GOOD;
1077
1078         /* TODO: Oversize error bit is not processed here */
1079
1080         return flags;
1081 }
1082
1083 static inline uint64_t
1084 iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
1085 {
1086         uint64_t flags = 0;
1087 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1088         uint16_t flexbh;
1089
1090         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
1091                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
1092                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
1093
1094         if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
1095                 mb->hash.fdir.hi =
1096                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
1097                 flags |= PKT_RX_FDIR_ID;
1098         }
1099 #else
1100         mb->hash.fdir.hi =
1101                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
1102         flags |= PKT_RX_FDIR_ID;
1103 #endif
1104         return flags;
1105 }
1106
1107 #define IAVF_RX_FLEX_ERR0_BITS  \
1108         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
1109          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
1110          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
1111          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1112          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1113          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1114
1115 /* Rx L3/L4 checksum */
1116 static inline uint64_t
1117 iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
1118 {
1119         uint64_t flags = 0;
1120
1121         /* check if HW has decoded the packet and checksum */
1122         if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1123                 return 0;
1124
1125         if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
1126                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
1127                 return flags;
1128         }
1129
1130         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1131                 flags |= PKT_RX_IP_CKSUM_BAD;
1132         else
1133                 flags |= PKT_RX_IP_CKSUM_GOOD;
1134
1135         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1136                 flags |= PKT_RX_L4_CKSUM_BAD;
1137         else
1138                 flags |= PKT_RX_L4_CKSUM_GOOD;
1139
1140         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1141                 flags |= PKT_RX_OUTER_IP_CKSUM_BAD;
1142
1143         return flags;
1144 }
1145
1146 /* If the number of free RX descriptors is greater than the RX free
1147  * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1148  * register. Update the RDT with the value of the last processed RX
1149  * descriptor minus 1, to guarantee that the RDT register is never
1150  * equal to the RDH register, which creates a "full" ring situation
1151  * from the hardware point of view.
1152  */
1153 static inline void
1154 iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
1155 {
1156         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1157
1158         if (nb_hold > rxq->rx_free_thresh) {
1159                 PMD_RX_LOG(DEBUG,
1160                            "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
1161                            rxq->port_id, rxq->queue_id, rx_id, nb_hold);
1162                 rx_id = (uint16_t)((rx_id == 0) ?
1163                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1164                 IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1165                 nb_hold = 0;
1166         }
1167         rxq->nb_rx_hold = nb_hold;
1168 }
1169
1170 /* implement recv_pkts */
1171 uint16_t
1172 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1173 {
1174         volatile union iavf_rx_desc *rx_ring;
1175         volatile union iavf_rx_desc *rxdp;
1176         struct iavf_rx_queue *rxq;
1177         union iavf_rx_desc rxd;
1178         struct rte_mbuf *rxe;
1179         struct rte_eth_dev *dev;
1180         struct rte_mbuf *rxm;
1181         struct rte_mbuf *nmb;
1182         uint16_t nb_rx;
1183         uint32_t rx_status;
1184         uint64_t qword1;
1185         uint16_t rx_packet_len;
1186         uint16_t rx_id, nb_hold;
1187         uint64_t dma_addr;
1188         uint64_t pkt_flags;
1189         const uint32_t *ptype_tbl;
1190
1191         nb_rx = 0;
1192         nb_hold = 0;
1193         rxq = rx_queue;
1194         rx_id = rxq->rx_tail;
1195         rx_ring = rxq->rx_ring;
1196         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1197
1198         while (nb_rx < nb_pkts) {
1199                 rxdp = &rx_ring[rx_id];
1200                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1201                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1202                             IAVF_RXD_QW1_STATUS_SHIFT;
1203
1204                 /* Check the DD bit first */
1205                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1206                         break;
1207                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1208
1209                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1210                 if (unlikely(!nmb)) {
1211                         dev = &rte_eth_devices[rxq->port_id];
1212                         dev->data->rx_mbuf_alloc_failed++;
1213                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1214                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1215                         break;
1216                 }
1217
1218                 rxd = *rxdp;
1219                 nb_hold++;
1220                 rxe = rxq->sw_ring[rx_id];
1221                 rxq->sw_ring[rx_id] = nmb;
1222                 rx_id++;
1223                 if (unlikely(rx_id == rxq->nb_rx_desc))
1224                         rx_id = 0;
1225
1226                 /* Prefetch next mbuf */
1227                 rte_prefetch0(rxq->sw_ring[rx_id]);
1228
1229                 /* When next RX descriptor is on a cache line boundary,
1230                  * prefetch the next 4 RX descriptors and next 8 pointers
1231                  * to mbufs.
1232                  */
1233                 if ((rx_id & 0x3) == 0) {
1234                         rte_prefetch0(&rx_ring[rx_id]);
1235                         rte_prefetch0(rxq->sw_ring[rx_id]);
1236                 }
1237                 rxm = rxe;
1238                 dma_addr =
1239                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1240                 rxdp->read.hdr_addr = 0;
1241                 rxdp->read.pkt_addr = dma_addr;
1242
1243                 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1244                                 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1245
1246                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1247                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1248                 rxm->nb_segs = 1;
1249                 rxm->next = NULL;
1250                 rxm->pkt_len = rx_packet_len;
1251                 rxm->data_len = rx_packet_len;
1252                 rxm->port = rxq->port_id;
1253                 rxm->ol_flags = 0;
1254                 iavf_rxd_to_vlan_tci(rxm, &rxd);
1255                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1256                 rxm->packet_type =
1257                         ptype_tbl[(uint8_t)((qword1 &
1258                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1259
1260                 if (pkt_flags & PKT_RX_RSS_HASH)
1261                         rxm->hash.rss =
1262                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1263
1264                 if (pkt_flags & PKT_RX_FDIR)
1265                         pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
1266
1267                 rxm->ol_flags |= pkt_flags;
1268
1269                 rx_pkts[nb_rx++] = rxm;
1270         }
1271         rxq->rx_tail = rx_id;
1272
1273         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1274
1275         return nb_rx;
1276 }
1277
1278 /* implement recv_pkts for flexible Rx descriptor */
1279 uint16_t
1280 iavf_recv_pkts_flex_rxd(void *rx_queue,
1281                         struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1282 {
1283         volatile union iavf_rx_desc *rx_ring;
1284         volatile union iavf_rx_flex_desc *rxdp;
1285         struct iavf_rx_queue *rxq;
1286         union iavf_rx_flex_desc rxd;
1287         struct rte_mbuf *rxe;
1288         struct rte_eth_dev *dev;
1289         struct rte_mbuf *rxm;
1290         struct rte_mbuf *nmb;
1291         uint16_t nb_rx;
1292         uint16_t rx_stat_err0;
1293         uint16_t rx_packet_len;
1294         uint16_t rx_id, nb_hold;
1295         uint64_t dma_addr;
1296         uint64_t pkt_flags;
1297         const uint32_t *ptype_tbl;
1298
1299         nb_rx = 0;
1300         nb_hold = 0;
1301         rxq = rx_queue;
1302         rx_id = rxq->rx_tail;
1303         rx_ring = rxq->rx_ring;
1304         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1305
1306         while (nb_rx < nb_pkts) {
1307                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1308                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1309
1310                 /* Check the DD bit first */
1311                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1312                         break;
1313                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1314
1315                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1316                 if (unlikely(!nmb)) {
1317                         dev = &rte_eth_devices[rxq->port_id];
1318                         dev->data->rx_mbuf_alloc_failed++;
1319                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1320                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1321                         break;
1322                 }
1323
1324                 rxd = *rxdp;
1325                 nb_hold++;
1326                 rxe = rxq->sw_ring[rx_id];
1327                 rxq->sw_ring[rx_id] = nmb;
1328                 rx_id++;
1329                 if (unlikely(rx_id == rxq->nb_rx_desc))
1330                         rx_id = 0;
1331
1332                 /* Prefetch next mbuf */
1333                 rte_prefetch0(rxq->sw_ring[rx_id]);
1334
1335                 /* When next RX descriptor is on a cache line boundary,
1336                  * prefetch the next 4 RX descriptors and next 8 pointers
1337                  * to mbufs.
1338                  */
1339                 if ((rx_id & 0x3) == 0) {
1340                         rte_prefetch0(&rx_ring[rx_id]);
1341                         rte_prefetch0(rxq->sw_ring[rx_id]);
1342                 }
1343                 rxm = rxe;
1344                 dma_addr =
1345                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1346                 rxdp->read.hdr_addr = 0;
1347                 rxdp->read.pkt_addr = dma_addr;
1348
1349                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
1350                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1351
1352                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1353                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1354                 rxm->nb_segs = 1;
1355                 rxm->next = NULL;
1356                 rxm->pkt_len = rx_packet_len;
1357                 rxm->data_len = rx_packet_len;
1358                 rxm->port = rxq->port_id;
1359                 rxm->ol_flags = 0;
1360                 rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1361                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1362                 iavf_flex_rxd_to_vlan_tci(rxm, &rxd, rxq->rx_flags);
1363                 rxq->rxd_to_pkt_fields(rxq, rxm, &rxd);
1364                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1365                 rxm->ol_flags |= pkt_flags;
1366
1367                 rx_pkts[nb_rx++] = rxm;
1368         }
1369         rxq->rx_tail = rx_id;
1370
1371         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1372
1373         return nb_rx;
1374 }
1375
1376 /* implement recv_scattered_pkts for flexible Rx descriptor */
1377 uint16_t
1378 iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1379                                   uint16_t nb_pkts)
1380 {
1381         struct iavf_rx_queue *rxq = rx_queue;
1382         union iavf_rx_flex_desc rxd;
1383         struct rte_mbuf *rxe;
1384         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1385         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1386         struct rte_mbuf *nmb, *rxm;
1387         uint16_t rx_id = rxq->rx_tail;
1388         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1389         struct rte_eth_dev *dev;
1390         uint16_t rx_stat_err0;
1391         uint64_t dma_addr;
1392         uint64_t pkt_flags;
1393
1394         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1395         volatile union iavf_rx_flex_desc *rxdp;
1396         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1397
1398         while (nb_rx < nb_pkts) {
1399                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1400                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1401
1402                 /* Check the DD bit */
1403                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1404                         break;
1405                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1406
1407                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1408                 if (unlikely(!nmb)) {
1409                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1410                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1411                         dev = &rte_eth_devices[rxq->port_id];
1412                         dev->data->rx_mbuf_alloc_failed++;
1413                         break;
1414                 }
1415
1416                 rxd = *rxdp;
1417                 nb_hold++;
1418                 rxe = rxq->sw_ring[rx_id];
1419                 rxq->sw_ring[rx_id] = nmb;
1420                 rx_id++;
1421                 if (rx_id == rxq->nb_rx_desc)
1422                         rx_id = 0;
1423
1424                 /* Prefetch next mbuf */
1425                 rte_prefetch0(rxq->sw_ring[rx_id]);
1426
1427                 /* When next RX descriptor is on a cache line boundary,
1428                  * prefetch the next 4 RX descriptors and next 8 pointers
1429                  * to mbufs.
1430                  */
1431                 if ((rx_id & 0x3) == 0) {
1432                         rte_prefetch0(&rx_ring[rx_id]);
1433                         rte_prefetch0(rxq->sw_ring[rx_id]);
1434                 }
1435
1436                 rxm = rxe;
1437                 dma_addr =
1438                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1439
1440                 /* Set data buffer address and data length of the mbuf */
1441                 rxdp->read.hdr_addr = 0;
1442                 rxdp->read.pkt_addr = dma_addr;
1443                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1444                                 IAVF_RX_FLX_DESC_PKT_LEN_M;
1445                 rxm->data_len = rx_packet_len;
1446                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1447
1448                 /* If this is the first buffer of the received packet, set the
1449                  * pointer to the first mbuf of the packet and initialize its
1450                  * context. Otherwise, update the total length and the number
1451                  * of segments of the current scattered packet, and update the
1452                  * pointer to the last mbuf of the current packet.
1453                  */
1454                 if (!first_seg) {
1455                         first_seg = rxm;
1456                         first_seg->nb_segs = 1;
1457                         first_seg->pkt_len = rx_packet_len;
1458                 } else {
1459                         first_seg->pkt_len =
1460                                 (uint16_t)(first_seg->pkt_len +
1461                                                 rx_packet_len);
1462                         first_seg->nb_segs++;
1463                         last_seg->next = rxm;
1464                 }
1465
1466                 /* If this is not the last buffer of the received packet,
1467                  * update the pointer to the last mbuf of the current scattered
1468                  * packet and continue to parse the RX ring.
1469                  */
1470                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
1471                         last_seg = rxm;
1472                         continue;
1473                 }
1474
1475                 /* This is the last buffer of the received packet. If the CRC
1476                  * is not stripped by the hardware:
1477                  *  - Subtract the CRC length from the total packet length.
1478                  *  - If the last buffer only contains the whole CRC or a part
1479                  *  of it, free the mbuf associated to the last buffer. If part
1480                  *  of the CRC is also contained in the previous mbuf, subtract
1481                  *  the length of that CRC part from the data length of the
1482                  *  previous mbuf.
1483                  */
1484                 rxm->next = NULL;
1485                 if (unlikely(rxq->crc_len > 0)) {
1486                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1487                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1488                                 rte_pktmbuf_free_seg(rxm);
1489                                 first_seg->nb_segs--;
1490                                 last_seg->data_len =
1491                                         (uint16_t)(last_seg->data_len -
1492                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1493                                 last_seg->next = NULL;
1494                         } else {
1495                                 rxm->data_len = (uint16_t)(rx_packet_len -
1496                                                         RTE_ETHER_CRC_LEN);
1497                         }
1498                 }
1499
1500                 first_seg->port = rxq->port_id;
1501                 first_seg->ol_flags = 0;
1502                 first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1503                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1504                 iavf_flex_rxd_to_vlan_tci(first_seg, &rxd, rxq->rx_flags);
1505                 rxq->rxd_to_pkt_fields(rxq, first_seg, &rxd);
1506                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1507
1508                 first_seg->ol_flags |= pkt_flags;
1509
1510                 /* Prefetch data of first segment, if configured to do so. */
1511                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1512                                           first_seg->data_off));
1513                 rx_pkts[nb_rx++] = first_seg;
1514                 first_seg = NULL;
1515         }
1516
1517         /* Record index of the next RX descriptor to probe. */
1518         rxq->rx_tail = rx_id;
1519         rxq->pkt_first_seg = first_seg;
1520         rxq->pkt_last_seg = last_seg;
1521
1522         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1523
1524         return nb_rx;
1525 }
1526
1527 /* implement recv_scattered_pkts  */
1528 uint16_t
1529 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1530                         uint16_t nb_pkts)
1531 {
1532         struct iavf_rx_queue *rxq = rx_queue;
1533         union iavf_rx_desc rxd;
1534         struct rte_mbuf *rxe;
1535         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1536         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1537         struct rte_mbuf *nmb, *rxm;
1538         uint16_t rx_id = rxq->rx_tail;
1539         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1540         struct rte_eth_dev *dev;
1541         uint32_t rx_status;
1542         uint64_t qword1;
1543         uint64_t dma_addr;
1544         uint64_t pkt_flags;
1545
1546         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1547         volatile union iavf_rx_desc *rxdp;
1548         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1549
1550         while (nb_rx < nb_pkts) {
1551                 rxdp = &rx_ring[rx_id];
1552                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1553                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1554                             IAVF_RXD_QW1_STATUS_SHIFT;
1555
1556                 /* Check the DD bit */
1557                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1558                         break;
1559                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1560
1561                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1562                 if (unlikely(!nmb)) {
1563                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1564                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1565                         dev = &rte_eth_devices[rxq->port_id];
1566                         dev->data->rx_mbuf_alloc_failed++;
1567                         break;
1568                 }
1569
1570                 rxd = *rxdp;
1571                 nb_hold++;
1572                 rxe = rxq->sw_ring[rx_id];
1573                 rxq->sw_ring[rx_id] = nmb;
1574                 rx_id++;
1575                 if (rx_id == rxq->nb_rx_desc)
1576                         rx_id = 0;
1577
1578                 /* Prefetch next mbuf */
1579                 rte_prefetch0(rxq->sw_ring[rx_id]);
1580
1581                 /* When next RX descriptor is on a cache line boundary,
1582                  * prefetch the next 4 RX descriptors and next 8 pointers
1583                  * to mbufs.
1584                  */
1585                 if ((rx_id & 0x3) == 0) {
1586                         rte_prefetch0(&rx_ring[rx_id]);
1587                         rte_prefetch0(rxq->sw_ring[rx_id]);
1588                 }
1589
1590                 rxm = rxe;
1591                 dma_addr =
1592                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1593
1594                 /* Set data buffer address and data length of the mbuf */
1595                 rxdp->read.hdr_addr = 0;
1596                 rxdp->read.pkt_addr = dma_addr;
1597                 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1598                                  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1599                 rxm->data_len = rx_packet_len;
1600                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1601
1602                 /* If this is the first buffer of the received packet, set the
1603                  * pointer to the first mbuf of the packet and initialize its
1604                  * context. Otherwise, update the total length and the number
1605                  * of segments of the current scattered packet, and update the
1606                  * pointer to the last mbuf of the current packet.
1607                  */
1608                 if (!first_seg) {
1609                         first_seg = rxm;
1610                         first_seg->nb_segs = 1;
1611                         first_seg->pkt_len = rx_packet_len;
1612                 } else {
1613                         first_seg->pkt_len =
1614                                 (uint16_t)(first_seg->pkt_len +
1615                                                 rx_packet_len);
1616                         first_seg->nb_segs++;
1617                         last_seg->next = rxm;
1618                 }
1619
1620                 /* If this is not the last buffer of the received packet,
1621                  * update the pointer to the last mbuf of the current scattered
1622                  * packet and continue to parse the RX ring.
1623                  */
1624                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1625                         last_seg = rxm;
1626                         continue;
1627                 }
1628
1629                 /* This is the last buffer of the received packet. If the CRC
1630                  * is not stripped by the hardware:
1631                  *  - Subtract the CRC length from the total packet length.
1632                  *  - If the last buffer only contains the whole CRC or a part
1633                  *  of it, free the mbuf associated to the last buffer. If part
1634                  *  of the CRC is also contained in the previous mbuf, subtract
1635                  *  the length of that CRC part from the data length of the
1636                  *  previous mbuf.
1637                  */
1638                 rxm->next = NULL;
1639                 if (unlikely(rxq->crc_len > 0)) {
1640                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1641                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1642                                 rte_pktmbuf_free_seg(rxm);
1643                                 first_seg->nb_segs--;
1644                                 last_seg->data_len =
1645                                         (uint16_t)(last_seg->data_len -
1646                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1647                                 last_seg->next = NULL;
1648                         } else
1649                                 rxm->data_len = (uint16_t)(rx_packet_len -
1650                                                         RTE_ETHER_CRC_LEN);
1651                 }
1652
1653                 first_seg->port = rxq->port_id;
1654                 first_seg->ol_flags = 0;
1655                 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1656                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1657                 first_seg->packet_type =
1658                         ptype_tbl[(uint8_t)((qword1 &
1659                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1660
1661                 if (pkt_flags & PKT_RX_RSS_HASH)
1662                         first_seg->hash.rss =
1663                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1664
1665                 if (pkt_flags & PKT_RX_FDIR)
1666                         pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
1667
1668                 first_seg->ol_flags |= pkt_flags;
1669
1670                 /* Prefetch data of first segment, if configured to do so. */
1671                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1672                                           first_seg->data_off));
1673                 rx_pkts[nb_rx++] = first_seg;
1674                 first_seg = NULL;
1675         }
1676
1677         /* Record index of the next RX descriptor to probe. */
1678         rxq->rx_tail = rx_id;
1679         rxq->pkt_first_seg = first_seg;
1680         rxq->pkt_last_seg = last_seg;
1681
1682         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1683
1684         return nb_rx;
1685 }
1686
1687 #define IAVF_LOOK_AHEAD 8
1688 static inline int
1689 iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq)
1690 {
1691         volatile union iavf_rx_flex_desc *rxdp;
1692         struct rte_mbuf **rxep;
1693         struct rte_mbuf *mb;
1694         uint16_t stat_err0;
1695         uint16_t pkt_len;
1696         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1697         int32_t i, j, nb_rx = 0;
1698         uint64_t pkt_flags;
1699         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1700
1701         rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
1702         rxep = &rxq->sw_ring[rxq->rx_tail];
1703
1704         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1705
1706         /* Make sure there is at least 1 packet to receive */
1707         if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1708                 return 0;
1709
1710         /* Scan LOOK_AHEAD descriptors at a time to determine which
1711          * descriptors reference packets that are ready to be received.
1712          */
1713         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1714              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1715                 /* Read desc statuses backwards to avoid race condition */
1716                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
1717                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1718
1719                 rte_smp_rmb();
1720
1721                 /* Compute how many status bits were set */
1722                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1723                         nb_dd += s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
1724
1725                 nb_rx += nb_dd;
1726
1727                 /* Translate descriptor info to mbuf parameters */
1728                 for (j = 0; j < nb_dd; j++) {
1729                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1730                                           rxq->rx_tail +
1731                                           i * IAVF_LOOK_AHEAD + j);
1732
1733                         mb = rxep[j];
1734                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1735                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1736                         mb->data_len = pkt_len;
1737                         mb->pkt_len = pkt_len;
1738                         mb->ol_flags = 0;
1739
1740                         mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1741                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1742                         iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j], rxq->rx_flags);
1743                         rxq->rxd_to_pkt_fields(rxq, mb, &rxdp[j]);
1744                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1745                         pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
1746
1747                         mb->ol_flags |= pkt_flags;
1748                 }
1749
1750                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1751                         rxq->rx_stage[i + j] = rxep[j];
1752
1753                 if (nb_dd != IAVF_LOOK_AHEAD)
1754                         break;
1755         }
1756
1757         /* Clear software ring entries */
1758         for (i = 0; i < nb_rx; i++)
1759                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1760
1761         return nb_rx;
1762 }
1763
1764 static inline int
1765 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1766 {
1767         volatile union iavf_rx_desc *rxdp;
1768         struct rte_mbuf **rxep;
1769         struct rte_mbuf *mb;
1770         uint16_t pkt_len;
1771         uint64_t qword1;
1772         uint32_t rx_status;
1773         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1774         int32_t i, j, nb_rx = 0;
1775         uint64_t pkt_flags;
1776         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1777
1778         rxdp = &rxq->rx_ring[rxq->rx_tail];
1779         rxep = &rxq->sw_ring[rxq->rx_tail];
1780
1781         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1782         rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1783                     IAVF_RXD_QW1_STATUS_SHIFT;
1784
1785         /* Make sure there is at least 1 packet to receive */
1786         if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1787                 return 0;
1788
1789         /* Scan LOOK_AHEAD descriptors at a time to determine which
1790          * descriptors reference packets that are ready to be received.
1791          */
1792         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1793              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1794                 /* Read desc statuses backwards to avoid race condition */
1795                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1796                         qword1 = rte_le_to_cpu_64(
1797                                 rxdp[j].wb.qword1.status_error_len);
1798                         s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1799                                IAVF_RXD_QW1_STATUS_SHIFT;
1800                 }
1801
1802                 rte_smp_rmb();
1803
1804                 /* Compute how many status bits were set */
1805                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1806                         nb_dd += s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1807
1808                 nb_rx += nb_dd;
1809
1810                 /* Translate descriptor info to mbuf parameters */
1811                 for (j = 0; j < nb_dd; j++) {
1812                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1813                                          rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1814
1815                         mb = rxep[j];
1816                         qword1 = rte_le_to_cpu_64
1817                                         (rxdp[j].wb.qword1.status_error_len);
1818                         pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1819                                   IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1820                         mb->data_len = pkt_len;
1821                         mb->pkt_len = pkt_len;
1822                         mb->ol_flags = 0;
1823                         iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1824                         pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1825                         mb->packet_type =
1826                                 ptype_tbl[(uint8_t)((qword1 &
1827                                 IAVF_RXD_QW1_PTYPE_MASK) >>
1828                                 IAVF_RXD_QW1_PTYPE_SHIFT)];
1829
1830                         if (pkt_flags & PKT_RX_RSS_HASH)
1831                                 mb->hash.rss = rte_le_to_cpu_32(
1832                                         rxdp[j].wb.qword0.hi_dword.rss);
1833
1834                         if (pkt_flags & PKT_RX_FDIR)
1835                                 pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
1836
1837                         mb->ol_flags |= pkt_flags;
1838                 }
1839
1840                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1841                         rxq->rx_stage[i + j] = rxep[j];
1842
1843                 if (nb_dd != IAVF_LOOK_AHEAD)
1844                         break;
1845         }
1846
1847         /* Clear software ring entries */
1848         for (i = 0; i < nb_rx; i++)
1849                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1850
1851         return nb_rx;
1852 }
1853
1854 static inline uint16_t
1855 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
1856                        struct rte_mbuf **rx_pkts,
1857                        uint16_t nb_pkts)
1858 {
1859         uint16_t i;
1860         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1861
1862         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1863
1864         for (i = 0; i < nb_pkts; i++)
1865                 rx_pkts[i] = stage[i];
1866
1867         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1868         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1869
1870         return nb_pkts;
1871 }
1872
1873 static inline int
1874 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
1875 {
1876         volatile union iavf_rx_desc *rxdp;
1877         struct rte_mbuf **rxep;
1878         struct rte_mbuf *mb;
1879         uint16_t alloc_idx, i;
1880         uint64_t dma_addr;
1881         int diag;
1882
1883         /* Allocate buffers in bulk */
1884         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1885                                 (rxq->rx_free_thresh - 1));
1886         rxep = &rxq->sw_ring[alloc_idx];
1887         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1888                                     rxq->rx_free_thresh);
1889         if (unlikely(diag != 0)) {
1890                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1891                 return -ENOMEM;
1892         }
1893
1894         rxdp = &rxq->rx_ring[alloc_idx];
1895         for (i = 0; i < rxq->rx_free_thresh; i++) {
1896                 if (likely(i < (rxq->rx_free_thresh - 1)))
1897                         /* Prefetch next mbuf */
1898                         rte_prefetch0(rxep[i + 1]);
1899
1900                 mb = rxep[i];
1901                 rte_mbuf_refcnt_set(mb, 1);
1902                 mb->next = NULL;
1903                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1904                 mb->nb_segs = 1;
1905                 mb->port = rxq->port_id;
1906                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1907                 rxdp[i].read.hdr_addr = 0;
1908                 rxdp[i].read.pkt_addr = dma_addr;
1909         }
1910
1911         /* Update rx tail register */
1912         rte_wmb();
1913         IAVF_PCI_REG_WC_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
1914
1915         rxq->rx_free_trigger =
1916                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1917         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1918                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1919
1920         return 0;
1921 }
1922
1923 static inline uint16_t
1924 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1925 {
1926         struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
1927         uint16_t nb_rx = 0;
1928
1929         if (!nb_pkts)
1930                 return 0;
1931
1932         if (rxq->rx_nb_avail)
1933                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1934
1935         if (rxq->rxdid >= IAVF_RXDID_FLEX_NIC && rxq->rxdid <= IAVF_RXDID_LAST)
1936                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq);
1937         else
1938                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
1939         rxq->rx_next_avail = 0;
1940         rxq->rx_nb_avail = nb_rx;
1941         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1942
1943         if (rxq->rx_tail > rxq->rx_free_trigger) {
1944                 if (iavf_rx_alloc_bufs(rxq) != 0) {
1945                         uint16_t i, j;
1946
1947                         /* TODO: count rx_mbuf_alloc_failed here */
1948
1949                         rxq->rx_nb_avail = 0;
1950                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1951                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1952                                 rxq->sw_ring[j] = rxq->rx_stage[i];
1953
1954                         return 0;
1955                 }
1956         }
1957
1958         if (rxq->rx_tail >= rxq->nb_rx_desc)
1959                 rxq->rx_tail = 0;
1960
1961         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
1962                    rxq->port_id, rxq->queue_id,
1963                    rxq->rx_tail, nb_rx);
1964
1965         if (rxq->rx_nb_avail)
1966                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1967
1968         return 0;
1969 }
1970
1971 static uint16_t
1972 iavf_recv_pkts_bulk_alloc(void *rx_queue,
1973                          struct rte_mbuf **rx_pkts,
1974                          uint16_t nb_pkts)
1975 {
1976         uint16_t nb_rx = 0, n, count;
1977
1978         if (unlikely(nb_pkts == 0))
1979                 return 0;
1980
1981         if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
1982                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1983
1984         while (nb_pkts) {
1985                 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
1986                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1987                 nb_rx = (uint16_t)(nb_rx + count);
1988                 nb_pkts = (uint16_t)(nb_pkts - count);
1989                 if (count < n)
1990                         break;
1991         }
1992
1993         return nb_rx;
1994 }
1995
1996 static inline int
1997 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
1998 {
1999         struct iavf_tx_entry *sw_ring = txq->sw_ring;
2000         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2001         uint16_t nb_tx_desc = txq->nb_tx_desc;
2002         uint16_t desc_to_clean_to;
2003         uint16_t nb_tx_to_clean;
2004
2005         volatile struct iavf_tx_desc *txd = txq->tx_ring;
2006
2007         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
2008         if (desc_to_clean_to >= nb_tx_desc)
2009                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2010
2011         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2012         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
2013                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
2014                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
2015                 PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2016                            "(port=%d queue=%d)", desc_to_clean_to,
2017                            txq->port_id, txq->queue_id);
2018                 return -1;
2019         }
2020
2021         if (last_desc_cleaned > desc_to_clean_to)
2022                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2023                                                         desc_to_clean_to);
2024         else
2025                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2026                                         last_desc_cleaned);
2027
2028         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2029
2030         txq->last_desc_cleaned = desc_to_clean_to;
2031         txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
2032
2033         return 0;
2034 }
2035
2036 /* Check if the context descriptor is needed for TX offloading */
2037 static inline uint16_t
2038 iavf_calc_context_desc(uint64_t flags, uint8_t vlan_flag)
2039 {
2040         if (flags & PKT_TX_TCP_SEG)
2041                 return 1;
2042         if (flags & PKT_TX_VLAN_PKT &&
2043             vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
2044                 return 1;
2045         return 0;
2046 }
2047
2048 static inline void
2049 iavf_txd_enable_checksum(uint64_t ol_flags,
2050                         uint32_t *td_cmd,
2051                         uint32_t *td_offset,
2052                         union iavf_tx_offload tx_offload)
2053 {
2054         /* Set MACLEN */
2055         *td_offset |= (tx_offload.l2_len >> 1) <<
2056                       IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
2057
2058         /* Enable L3 checksum offloads */
2059         if (ol_flags & PKT_TX_IP_CKSUM) {
2060                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
2061                 *td_offset |= (tx_offload.l3_len >> 2) <<
2062                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2063         } else if (ol_flags & PKT_TX_IPV4) {
2064                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
2065                 *td_offset |= (tx_offload.l3_len >> 2) <<
2066                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2067         } else if (ol_flags & PKT_TX_IPV6) {
2068                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2069                 *td_offset |= (tx_offload.l3_len >> 2) <<
2070                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2071         }
2072
2073         if (ol_flags & PKT_TX_TCP_SEG) {
2074                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2075                 *td_offset |= (tx_offload.l4_len >> 2) <<
2076                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2077                 return;
2078         }
2079
2080         /* Enable L4 checksum offloads */
2081         switch (ol_flags & PKT_TX_L4_MASK) {
2082         case PKT_TX_TCP_CKSUM:
2083                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2084                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2085                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2086                 break;
2087         case PKT_TX_SCTP_CKSUM:
2088                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2089                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2090                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2091                 break;
2092         case PKT_TX_UDP_CKSUM:
2093                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2094                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2095                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2096                 break;
2097         default:
2098                 break;
2099         }
2100 }
2101
2102 /* set TSO context descriptor
2103  * support IP -> L4 and IP -> IP -> L4
2104  */
2105 static inline uint64_t
2106 iavf_set_tso_ctx(struct rte_mbuf *mbuf, union iavf_tx_offload tx_offload)
2107 {
2108         uint64_t ctx_desc = 0;
2109         uint32_t cd_cmd, hdr_len, cd_tso_len;
2110
2111         if (!tx_offload.l4_len) {
2112                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
2113                 return ctx_desc;
2114         }
2115
2116         hdr_len = tx_offload.l2_len +
2117                   tx_offload.l3_len +
2118                   tx_offload.l4_len;
2119
2120         cd_cmd = IAVF_TX_CTX_DESC_TSO;
2121         cd_tso_len = mbuf->pkt_len - hdr_len;
2122         ctx_desc |= ((uint64_t)cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
2123                      ((uint64_t)cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2124                      ((uint64_t)mbuf->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT);
2125
2126         return ctx_desc;
2127 }
2128
2129 /* Construct the tx flags */
2130 static inline uint64_t
2131 iavf_build_ctob(uint32_t td_cmd, uint32_t td_offset, unsigned int size,
2132                uint32_t td_tag)
2133 {
2134         return rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DATA |
2135                                 ((uint64_t)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
2136                                 ((uint64_t)td_offset <<
2137                                  IAVF_TXD_QW1_OFFSET_SHIFT) |
2138                                 ((uint64_t)size  <<
2139                                  IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
2140                                 ((uint64_t)td_tag  <<
2141                                  IAVF_TXD_QW1_L2TAG1_SHIFT));
2142 }
2143
2144 /* TX function */
2145 uint16_t
2146 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2147 {
2148         volatile struct iavf_tx_desc *txd;
2149         volatile struct iavf_tx_desc *txr;
2150         struct iavf_tx_queue *txq;
2151         struct iavf_tx_entry *sw_ring;
2152         struct iavf_tx_entry *txe, *txn;
2153         struct rte_mbuf *tx_pkt;
2154         struct rte_mbuf *m_seg;
2155         uint16_t tx_id;
2156         uint16_t nb_tx;
2157         uint32_t td_cmd;
2158         uint32_t td_offset;
2159         uint32_t td_tag;
2160         uint64_t ol_flags;
2161         uint16_t nb_used;
2162         uint16_t nb_ctx;
2163         uint16_t tx_last;
2164         uint16_t slen;
2165         uint64_t buf_dma_addr;
2166         uint16_t cd_l2tag2 = 0;
2167         union iavf_tx_offload tx_offload = {0};
2168
2169         txq = tx_queue;
2170         sw_ring = txq->sw_ring;
2171         txr = txq->tx_ring;
2172         tx_id = txq->tx_tail;
2173         txe = &sw_ring[tx_id];
2174
2175         /* Check if the descriptor ring needs to be cleaned. */
2176         if (txq->nb_free < txq->free_thresh)
2177                 (void)iavf_xmit_cleanup(txq);
2178
2179         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
2180                 td_cmd = 0;
2181                 td_tag = 0;
2182                 td_offset = 0;
2183
2184                 tx_pkt = *tx_pkts++;
2185                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
2186
2187                 ol_flags = tx_pkt->ol_flags;
2188                 tx_offload.l2_len = tx_pkt->l2_len;
2189                 tx_offload.l3_len = tx_pkt->l3_len;
2190                 tx_offload.l4_len = tx_pkt->l4_len;
2191                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
2192                 /* Calculate the number of context descriptors needed. */
2193                 nb_ctx = iavf_calc_context_desc(ol_flags, txq->vlan_flag);
2194
2195                 /* The number of descriptors that must be allocated for
2196                  * a packet equals to the number of the segments of that
2197                  * packet plus 1 context descriptor if needed.
2198                  */
2199                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
2200                 tx_last = (uint16_t)(tx_id + nb_used - 1);
2201
2202                 /* Circular ring */
2203                 if (tx_last >= txq->nb_tx_desc)
2204                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
2205
2206                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
2207                            " tx_first=%u tx_last=%u",
2208                            txq->port_id, txq->queue_id, tx_id, tx_last);
2209
2210                 if (nb_used > txq->nb_free) {
2211                         if (iavf_xmit_cleanup(txq)) {
2212                                 if (nb_tx == 0)
2213                                         return 0;
2214                                 goto end_of_tx;
2215                         }
2216                         if (unlikely(nb_used > txq->rs_thresh)) {
2217                                 while (nb_used > txq->nb_free) {
2218                                         if (iavf_xmit_cleanup(txq)) {
2219                                                 if (nb_tx == 0)
2220                                                         return 0;
2221                                                 goto end_of_tx;
2222                                         }
2223                                 }
2224                         }
2225                 }
2226
2227                 /* Descriptor based VLAN insertion */
2228                 if (ol_flags & PKT_TX_VLAN_PKT &&
2229                     txq->vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
2230                         td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2231                         td_tag = tx_pkt->vlan_tci;
2232                 }
2233
2234                 /* According to datasheet, the bit2 is reserved and must be
2235                  * set to 1.
2236                  */
2237                 td_cmd |= 0x04;
2238
2239                 /* Enable checksum offloading */
2240                 if (ol_flags & IAVF_TX_CKSUM_OFFLOAD_MASK)
2241                         iavf_txd_enable_checksum(ol_flags, &td_cmd,
2242                                                 &td_offset, tx_offload);
2243
2244                 if (nb_ctx) {
2245                         /* Setup TX context descriptor if required */
2246                         uint64_t cd_type_cmd_tso_mss =
2247                                 IAVF_TX_DESC_DTYPE_CONTEXT;
2248                         volatile struct iavf_tx_context_desc *ctx_txd =
2249                                 (volatile struct iavf_tx_context_desc *)
2250                                                         &txr[tx_id];
2251
2252                         /* clear QW0 or the previous writeback value
2253                          * may impact next write
2254                          */
2255                         *(volatile uint64_t *)ctx_txd = 0;
2256
2257                         txn = &sw_ring[txe->next_id];
2258                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2259                         if (txe->mbuf) {
2260                                 rte_pktmbuf_free_seg(txe->mbuf);
2261                                 txe->mbuf = NULL;
2262                         }
2263
2264                         /* TSO enabled */
2265                         if (ol_flags & PKT_TX_TCP_SEG)
2266                                 cd_type_cmd_tso_mss |=
2267                                         iavf_set_tso_ctx(tx_pkt, tx_offload);
2268
2269                         if (ol_flags & PKT_TX_VLAN_PKT &&
2270                            txq->vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2) {
2271                                 cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2
2272                                         << IAVF_TXD_CTX_QW1_CMD_SHIFT;
2273                                 cd_l2tag2 = tx_pkt->vlan_tci;
2274                         }
2275
2276                         ctx_txd->type_cmd_tso_mss =
2277                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2278                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
2279
2280                         IAVF_DUMP_TX_DESC(txq, &txr[tx_id], tx_id);
2281                         txe->last_id = tx_last;
2282                         tx_id = txe->next_id;
2283                         txe = txn;
2284                 }
2285
2286                 m_seg = tx_pkt;
2287                 do {
2288                         txd = &txr[tx_id];
2289                         txn = &sw_ring[txe->next_id];
2290
2291                         if (txe->mbuf)
2292                                 rte_pktmbuf_free_seg(txe->mbuf);
2293                         txe->mbuf = m_seg;
2294
2295                         /* Setup TX Descriptor */
2296                         slen = m_seg->data_len;
2297                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2298                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
2299                         txd->cmd_type_offset_bsz = iavf_build_ctob(td_cmd,
2300                                                                   td_offset,
2301                                                                   slen,
2302                                                                   td_tag);
2303
2304                         IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2305                         txe->last_id = tx_last;
2306                         tx_id = txe->next_id;
2307                         txe = txn;
2308                         m_seg = m_seg->next;
2309                 } while (m_seg);
2310
2311                 /* The last packet data descriptor needs End Of Packet (EOP) */
2312                 td_cmd |= IAVF_TX_DESC_CMD_EOP;
2313                 txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
2314                 txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
2315
2316                 if (txq->nb_used >= txq->rs_thresh) {
2317                         PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
2318                                    "%4u (port=%d queue=%d)",
2319                                    tx_last, txq->port_id, txq->queue_id);
2320
2321                         td_cmd |= IAVF_TX_DESC_CMD_RS;
2322
2323                         /* Update txq RS bit counters */
2324                         txq->nb_used = 0;
2325                 }
2326
2327                 txd->cmd_type_offset_bsz |=
2328                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2329                                          IAVF_TXD_QW1_CMD_SHIFT);
2330                 IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2331         }
2332
2333 end_of_tx:
2334         rte_wmb();
2335
2336         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
2337                    txq->port_id, txq->queue_id, tx_id, nb_tx);
2338
2339         IAVF_PCI_REG_WC_WRITE_RELAXED(txq->qtx_tail, tx_id);
2340         txq->tx_tail = tx_id;
2341
2342         return nb_tx;
2343 }
2344
2345 /* TX prep functions */
2346 uint16_t
2347 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2348               uint16_t nb_pkts)
2349 {
2350         int i, ret;
2351         uint64_t ol_flags;
2352         struct rte_mbuf *m;
2353
2354         for (i = 0; i < nb_pkts; i++) {
2355                 m = tx_pkts[i];
2356                 ol_flags = m->ol_flags;
2357
2358                 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
2359                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
2360                         if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
2361                                 rte_errno = EINVAL;
2362                                 return i;
2363                         }
2364                 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
2365                            (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
2366                         /* MSS outside the range are considered malicious */
2367                         rte_errno = EINVAL;
2368                         return i;
2369                 }
2370
2371                 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
2372                         rte_errno = ENOTSUP;
2373                         return i;
2374                 }
2375
2376 #ifdef RTE_ETHDEV_DEBUG_TX
2377                 ret = rte_validate_tx_offload(m);
2378                 if (ret != 0) {
2379                         rte_errno = -ret;
2380                         return i;
2381                 }
2382 #endif
2383                 ret = rte_net_intel_cksum_prepare(m);
2384                 if (ret != 0) {
2385                         rte_errno = -ret;
2386                         return i;
2387                 }
2388         }
2389
2390         return i;
2391 }
2392
2393 /* choose rx function*/
2394 void
2395 iavf_set_rx_function(struct rte_eth_dev *dev)
2396 {
2397         struct iavf_adapter *adapter =
2398                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2399         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2400
2401 #ifdef RTE_ARCH_X86
2402         struct iavf_rx_queue *rxq;
2403         int i;
2404         int check_ret;
2405         bool use_avx2 = false;
2406         bool use_avx512 = false;
2407         bool use_flex = false;
2408
2409         check_ret = iavf_rx_vec_dev_check(dev);
2410         if (check_ret >= 0 &&
2411             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2412                 if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2413                      rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2414                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2415                         use_avx2 = true;
2416
2417 #ifdef CC_AVX512_SUPPORT
2418                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2419                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2420                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2421                         use_avx512 = true;
2422 #endif
2423
2424                 if (vf->vf_res->vf_cap_flags &
2425                         VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2426                         use_flex = true;
2427
2428                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2429                         rxq = dev->data->rx_queues[i];
2430                         (void)iavf_rxq_vec_setup(rxq);
2431                 }
2432
2433                 if (dev->data->scattered_rx) {
2434                         if (!use_avx512) {
2435                                 PMD_DRV_LOG(DEBUG,
2436                                             "Using %sVector Scattered Rx (port %d).",
2437                                             use_avx2 ? "avx2 " : "",
2438                                             dev->data->port_id);
2439                         } else {
2440                                 if (check_ret == IAVF_VECTOR_PATH)
2441                                         PMD_DRV_LOG(DEBUG,
2442                                                     "Using AVX512 Vector Scattered Rx (port %d).",
2443                                                     dev->data->port_id);
2444                                 else
2445                                         PMD_DRV_LOG(DEBUG,
2446                                                     "Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
2447                                                     dev->data->port_id);
2448                         }
2449                         if (use_flex) {
2450                                 dev->rx_pkt_burst = use_avx2 ?
2451                                         iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
2452                                         iavf_recv_scattered_pkts_vec_flex_rxd;
2453 #ifdef CC_AVX512_SUPPORT
2454                                 if (use_avx512) {
2455                                         if (check_ret == IAVF_VECTOR_PATH)
2456                                                 dev->rx_pkt_burst =
2457                                                         iavf_recv_scattered_pkts_vec_avx512_flex_rxd;
2458                                         else
2459                                                 dev->rx_pkt_burst =
2460                                                         iavf_recv_scattered_pkts_vec_avx512_flex_rxd_offload;
2461                                 }
2462 #endif
2463                         } else {
2464                                 dev->rx_pkt_burst = use_avx2 ?
2465                                         iavf_recv_scattered_pkts_vec_avx2 :
2466                                         iavf_recv_scattered_pkts_vec;
2467 #ifdef CC_AVX512_SUPPORT
2468                                 if (use_avx512) {
2469                                         if (check_ret == IAVF_VECTOR_PATH)
2470                                                 dev->rx_pkt_burst =
2471                                                         iavf_recv_scattered_pkts_vec_avx512;
2472                                         else
2473                                                 dev->rx_pkt_burst =
2474                                                         iavf_recv_scattered_pkts_vec_avx512_offload;
2475                                 }
2476 #endif
2477                         }
2478                 } else {
2479                         if (!use_avx512) {
2480                                 PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2481                                             use_avx2 ? "avx2 " : "",
2482                                             dev->data->port_id);
2483                         } else {
2484                                 if (check_ret == IAVF_VECTOR_PATH)
2485                                         PMD_DRV_LOG(DEBUG,
2486                                                     "Using AVX512 Vector Rx (port %d).",
2487                                                     dev->data->port_id);
2488                                 else
2489                                         PMD_DRV_LOG(DEBUG,
2490                                                     "Using AVX512 OFFLOAD Vector Rx (port %d).",
2491                                                     dev->data->port_id);
2492                         }
2493                         if (use_flex) {
2494                                 dev->rx_pkt_burst = use_avx2 ?
2495                                         iavf_recv_pkts_vec_avx2_flex_rxd :
2496                                         iavf_recv_pkts_vec_flex_rxd;
2497 #ifdef CC_AVX512_SUPPORT
2498                                 if (use_avx512) {
2499                                         if (check_ret == IAVF_VECTOR_PATH)
2500                                                 dev->rx_pkt_burst =
2501                                                         iavf_recv_pkts_vec_avx512_flex_rxd;
2502                                         else
2503                                                 dev->rx_pkt_burst =
2504                                                         iavf_recv_pkts_vec_avx512_flex_rxd_offload;
2505                                 }
2506 #endif
2507                         } else {
2508                                 dev->rx_pkt_burst = use_avx2 ?
2509                                         iavf_recv_pkts_vec_avx2 :
2510                                         iavf_recv_pkts_vec;
2511 #ifdef CC_AVX512_SUPPORT
2512                                 if (use_avx512) {
2513                                         if (check_ret == IAVF_VECTOR_PATH)
2514                                                 dev->rx_pkt_burst =
2515                                                         iavf_recv_pkts_vec_avx512;
2516                                         else
2517                                                 dev->rx_pkt_burst =
2518                                                         iavf_recv_pkts_vec_avx512_offload;
2519                                 }
2520 #endif
2521                         }
2522                 }
2523
2524                 return;
2525         }
2526
2527 #endif
2528         if (dev->data->scattered_rx) {
2529                 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
2530                             dev->data->port_id);
2531                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2532                         dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
2533                 else
2534                         dev->rx_pkt_burst = iavf_recv_scattered_pkts;
2535         } else if (adapter->rx_bulk_alloc_allowed) {
2536                 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
2537                             dev->data->port_id);
2538                 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
2539         } else {
2540                 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
2541                             dev->data->port_id);
2542                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2543                         dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
2544                 else
2545                         dev->rx_pkt_burst = iavf_recv_pkts;
2546         }
2547 }
2548
2549 /* choose tx function*/
2550 void
2551 iavf_set_tx_function(struct rte_eth_dev *dev)
2552 {
2553 #ifdef RTE_ARCH_X86
2554         struct iavf_tx_queue *txq;
2555         int i;
2556         int check_ret;
2557         bool use_sse = false;
2558         bool use_avx2 = false;
2559         bool use_avx512 = false;
2560
2561         check_ret = iavf_tx_vec_dev_check(dev);
2562
2563         if (check_ret >= 0 &&
2564             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2565                 /* SSE and AVX2 not support offload path yet. */
2566                 if (check_ret == IAVF_VECTOR_PATH) {
2567                         use_sse = true;
2568                         if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2569                              rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2570                             rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2571                                 use_avx2 = true;
2572                 }
2573 #ifdef CC_AVX512_SUPPORT
2574                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2575                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2576                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2577                         use_avx512 = true;
2578 #endif
2579
2580                 if (!use_sse && !use_avx2 && !use_avx512)
2581                         goto normal;
2582
2583                 if (!use_avx512) {
2584                         PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
2585                                     use_avx2 ? "avx2 " : "",
2586                                     dev->data->port_id);
2587                         dev->tx_pkt_burst = use_avx2 ?
2588                                             iavf_xmit_pkts_vec_avx2 :
2589                                             iavf_xmit_pkts_vec;
2590                 }
2591                 dev->tx_pkt_prepare = NULL;
2592 #ifdef CC_AVX512_SUPPORT
2593                 if (use_avx512) {
2594                         if (check_ret == IAVF_VECTOR_PATH) {
2595                                 dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512;
2596                                 PMD_DRV_LOG(DEBUG, "Using AVX512 Vector Tx (port %d).",
2597                                             dev->data->port_id);
2598                         } else {
2599                                 dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512_offload;
2600                                 dev->tx_pkt_prepare = iavf_prep_pkts;
2601                                 PMD_DRV_LOG(DEBUG, "Using AVX512 OFFLOAD Vector Tx (port %d).",
2602                                             dev->data->port_id);
2603                         }
2604                 }
2605 #endif
2606
2607                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2608                         txq = dev->data->tx_queues[i];
2609                         if (!txq)
2610                                 continue;
2611 #ifdef CC_AVX512_SUPPORT
2612                         if (use_avx512)
2613                                 iavf_txq_vec_setup_avx512(txq);
2614                         else
2615                                 iavf_txq_vec_setup(txq);
2616 #else
2617                         iavf_txq_vec_setup(txq);
2618 #endif
2619                 }
2620
2621                 return;
2622         }
2623
2624 normal:
2625 #endif
2626         PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
2627                     dev->data->port_id);
2628         dev->tx_pkt_burst = iavf_xmit_pkts;
2629         dev->tx_pkt_prepare = iavf_prep_pkts;
2630 }
2631
2632 static int
2633 iavf_tx_done_cleanup_full(struct iavf_tx_queue *txq,
2634                         uint32_t free_cnt)
2635 {
2636         struct iavf_tx_entry *swr_ring = txq->sw_ring;
2637         uint16_t i, tx_last, tx_id;
2638         uint16_t nb_tx_free_last;
2639         uint16_t nb_tx_to_clean;
2640         uint32_t pkt_cnt;
2641
2642         /* Start free mbuf from the next of tx_tail */
2643         tx_last = txq->tx_tail;
2644         tx_id  = swr_ring[tx_last].next_id;
2645
2646         if (txq->nb_free == 0 && iavf_xmit_cleanup(txq))
2647                 return 0;
2648
2649         nb_tx_to_clean = txq->nb_free;
2650         nb_tx_free_last = txq->nb_free;
2651         if (!free_cnt)
2652                 free_cnt = txq->nb_tx_desc;
2653
2654         /* Loop through swr_ring to count the amount of
2655          * freeable mubfs and packets.
2656          */
2657         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2658                 for (i = 0; i < nb_tx_to_clean &&
2659                         pkt_cnt < free_cnt &&
2660                         tx_id != tx_last; i++) {
2661                         if (swr_ring[tx_id].mbuf != NULL) {
2662                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2663                                 swr_ring[tx_id].mbuf = NULL;
2664
2665                                 /*
2666                                  * last segment in the packet,
2667                                  * increment packet count
2668                                  */
2669                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2670                         }
2671
2672                         tx_id = swr_ring[tx_id].next_id;
2673                 }
2674
2675                 if (txq->rs_thresh > txq->nb_tx_desc -
2676                         txq->nb_free || tx_id == tx_last)
2677                         break;
2678
2679                 if (pkt_cnt < free_cnt) {
2680                         if (iavf_xmit_cleanup(txq))
2681                                 break;
2682
2683                         nb_tx_to_clean = txq->nb_free - nb_tx_free_last;
2684                         nb_tx_free_last = txq->nb_free;
2685                 }
2686         }
2687
2688         return (int)pkt_cnt;
2689 }
2690
2691 int
2692 iavf_dev_tx_done_cleanup(void *txq, uint32_t free_cnt)
2693 {
2694         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
2695
2696         return iavf_tx_done_cleanup_full(q, free_cnt);
2697 }
2698
2699 void
2700 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2701                      struct rte_eth_rxq_info *qinfo)
2702 {
2703         struct iavf_rx_queue *rxq;
2704
2705         rxq = dev->data->rx_queues[queue_id];
2706
2707         qinfo->mp = rxq->mp;
2708         qinfo->scattered_rx = dev->data->scattered_rx;
2709         qinfo->nb_desc = rxq->nb_rx_desc;
2710
2711         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2712         qinfo->conf.rx_drop_en = true;
2713         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2714 }
2715
2716 void
2717 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2718                      struct rte_eth_txq_info *qinfo)
2719 {
2720         struct iavf_tx_queue *txq;
2721
2722         txq = dev->data->tx_queues[queue_id];
2723
2724         qinfo->nb_desc = txq->nb_tx_desc;
2725
2726         qinfo->conf.tx_free_thresh = txq->free_thresh;
2727         qinfo->conf.tx_rs_thresh = txq->rs_thresh;
2728         qinfo->conf.offloads = txq->offloads;
2729         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2730 }
2731
2732 /* Get the number of used descriptors of a rx queue */
2733 uint32_t
2734 iavf_dev_rxq_count(struct rte_eth_dev *dev, uint16_t queue_id)
2735 {
2736 #define IAVF_RXQ_SCAN_INTERVAL 4
2737         volatile union iavf_rx_desc *rxdp;
2738         struct iavf_rx_queue *rxq;
2739         uint16_t desc = 0;
2740
2741         rxq = dev->data->rx_queues[queue_id];
2742         rxdp = &rxq->rx_ring[rxq->rx_tail];
2743
2744         while ((desc < rxq->nb_rx_desc) &&
2745                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2746                  IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
2747                (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
2748                 /* Check the DD bit of a rx descriptor of each 4 in a group,
2749                  * to avoid checking too frequently and downgrading performance
2750                  * too much.
2751                  */
2752                 desc += IAVF_RXQ_SCAN_INTERVAL;
2753                 rxdp += IAVF_RXQ_SCAN_INTERVAL;
2754                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2755                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2756                                         desc - rxq->nb_rx_desc]);
2757         }
2758
2759         return desc;
2760 }
2761
2762 int
2763 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
2764 {
2765         struct iavf_rx_queue *rxq = rx_queue;
2766         volatile uint64_t *status;
2767         uint64_t mask;
2768         uint32_t desc;
2769
2770         if (unlikely(offset >= rxq->nb_rx_desc))
2771                 return -EINVAL;
2772
2773         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2774                 return RTE_ETH_RX_DESC_UNAVAIL;
2775
2776         desc = rxq->rx_tail + offset;
2777         if (desc >= rxq->nb_rx_desc)
2778                 desc -= rxq->nb_rx_desc;
2779
2780         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2781         mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
2782                 << IAVF_RXD_QW1_STATUS_SHIFT);
2783         if (*status & mask)
2784                 return RTE_ETH_RX_DESC_DONE;
2785
2786         return RTE_ETH_RX_DESC_AVAIL;
2787 }
2788
2789 int
2790 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
2791 {
2792         struct iavf_tx_queue *txq = tx_queue;
2793         volatile uint64_t *status;
2794         uint64_t mask, expect;
2795         uint32_t desc;
2796
2797         if (unlikely(offset >= txq->nb_tx_desc))
2798                 return -EINVAL;
2799
2800         desc = txq->tx_tail + offset;
2801         /* go to next desc that has the RS bit */
2802         desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
2803                 txq->rs_thresh;
2804         if (desc >= txq->nb_tx_desc) {
2805                 desc -= txq->nb_tx_desc;
2806                 if (desc >= txq->nb_tx_desc)
2807                         desc -= txq->nb_tx_desc;
2808         }
2809
2810         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2811         mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
2812         expect = rte_cpu_to_le_64(
2813                  IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
2814         if ((*status & mask) == expect)
2815                 return RTE_ETH_TX_DESC_DONE;
2816
2817         return RTE_ETH_TX_DESC_FULL;
2818 }
2819
2820 const uint32_t *
2821 iavf_get_default_ptype_table(void)
2822 {
2823         static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
2824                 __rte_cache_aligned = {
2825                 /* L2 types */
2826                 /* [0] reserved */
2827                 [1] = RTE_PTYPE_L2_ETHER,
2828                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
2829                 /* [3] - [5] reserved */
2830                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
2831                 /* [7] - [10] reserved */
2832                 [11] = RTE_PTYPE_L2_ETHER_ARP,
2833                 /* [12] - [21] reserved */
2834
2835                 /* Non tunneled IPv4 */
2836                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2837                        RTE_PTYPE_L4_FRAG,
2838                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2839                        RTE_PTYPE_L4_NONFRAG,
2840                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2841                        RTE_PTYPE_L4_UDP,
2842                 /* [25] reserved */
2843                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2844                        RTE_PTYPE_L4_TCP,
2845                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2846                        RTE_PTYPE_L4_SCTP,
2847                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2848                        RTE_PTYPE_L4_ICMP,
2849
2850                 /* IPv4 --> IPv4 */
2851                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2852                        RTE_PTYPE_TUNNEL_IP |
2853                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2854                        RTE_PTYPE_INNER_L4_FRAG,
2855                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2856                        RTE_PTYPE_TUNNEL_IP |
2857                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2858                        RTE_PTYPE_INNER_L4_NONFRAG,
2859                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2860                        RTE_PTYPE_TUNNEL_IP |
2861                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2862                        RTE_PTYPE_INNER_L4_UDP,
2863                 /* [32] reserved */
2864                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2865                        RTE_PTYPE_TUNNEL_IP |
2866                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2867                        RTE_PTYPE_INNER_L4_TCP,
2868                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2869                        RTE_PTYPE_TUNNEL_IP |
2870                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2871                        RTE_PTYPE_INNER_L4_SCTP,
2872                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2873                        RTE_PTYPE_TUNNEL_IP |
2874                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2875                        RTE_PTYPE_INNER_L4_ICMP,
2876
2877                 /* IPv4 --> IPv6 */
2878                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2879                        RTE_PTYPE_TUNNEL_IP |
2880                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2881                        RTE_PTYPE_INNER_L4_FRAG,
2882                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2883                        RTE_PTYPE_TUNNEL_IP |
2884                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2885                        RTE_PTYPE_INNER_L4_NONFRAG,
2886                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2887                        RTE_PTYPE_TUNNEL_IP |
2888                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2889                        RTE_PTYPE_INNER_L4_UDP,
2890                 /* [39] reserved */
2891                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2892                        RTE_PTYPE_TUNNEL_IP |
2893                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2894                        RTE_PTYPE_INNER_L4_TCP,
2895                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2896                        RTE_PTYPE_TUNNEL_IP |
2897                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2898                        RTE_PTYPE_INNER_L4_SCTP,
2899                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2900                        RTE_PTYPE_TUNNEL_IP |
2901                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2902                        RTE_PTYPE_INNER_L4_ICMP,
2903
2904                 /* IPv4 --> GRE/Teredo/VXLAN */
2905                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2906                        RTE_PTYPE_TUNNEL_GRENAT,
2907
2908                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
2909                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2910                        RTE_PTYPE_TUNNEL_GRENAT |
2911                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2912                        RTE_PTYPE_INNER_L4_FRAG,
2913                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2914                        RTE_PTYPE_TUNNEL_GRENAT |
2915                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2916                        RTE_PTYPE_INNER_L4_NONFRAG,
2917                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2918                        RTE_PTYPE_TUNNEL_GRENAT |
2919                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2920                        RTE_PTYPE_INNER_L4_UDP,
2921                 /* [47] reserved */
2922                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2923                        RTE_PTYPE_TUNNEL_GRENAT |
2924                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2925                        RTE_PTYPE_INNER_L4_TCP,
2926                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2927                        RTE_PTYPE_TUNNEL_GRENAT |
2928                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2929                        RTE_PTYPE_INNER_L4_SCTP,
2930                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2931                        RTE_PTYPE_TUNNEL_GRENAT |
2932                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2933                        RTE_PTYPE_INNER_L4_ICMP,
2934
2935                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
2936                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2937                        RTE_PTYPE_TUNNEL_GRENAT |
2938                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2939                        RTE_PTYPE_INNER_L4_FRAG,
2940                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2941                        RTE_PTYPE_TUNNEL_GRENAT |
2942                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2943                        RTE_PTYPE_INNER_L4_NONFRAG,
2944                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2945                        RTE_PTYPE_TUNNEL_GRENAT |
2946                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2947                        RTE_PTYPE_INNER_L4_UDP,
2948                 /* [54] reserved */
2949                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2950                        RTE_PTYPE_TUNNEL_GRENAT |
2951                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2952                        RTE_PTYPE_INNER_L4_TCP,
2953                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2954                        RTE_PTYPE_TUNNEL_GRENAT |
2955                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2956                        RTE_PTYPE_INNER_L4_SCTP,
2957                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2958                        RTE_PTYPE_TUNNEL_GRENAT |
2959                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2960                        RTE_PTYPE_INNER_L4_ICMP,
2961
2962                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
2963                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2964                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2965
2966                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2967                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2968                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2969                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2970                        RTE_PTYPE_INNER_L4_FRAG,
2971                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2972                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2973                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2974                        RTE_PTYPE_INNER_L4_NONFRAG,
2975                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2976                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2977                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2978                        RTE_PTYPE_INNER_L4_UDP,
2979                 /* [62] reserved */
2980                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2981                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2982                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2983                        RTE_PTYPE_INNER_L4_TCP,
2984                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2985                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2986                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2987                        RTE_PTYPE_INNER_L4_SCTP,
2988                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2989                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2990                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2991                        RTE_PTYPE_INNER_L4_ICMP,
2992
2993                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2994                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2995                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2996                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2997                        RTE_PTYPE_INNER_L4_FRAG,
2998                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2999                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3000                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3001                        RTE_PTYPE_INNER_L4_NONFRAG,
3002                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3003                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3004                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3005                        RTE_PTYPE_INNER_L4_UDP,
3006                 /* [69] reserved */
3007                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3008                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3009                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3010                        RTE_PTYPE_INNER_L4_TCP,
3011                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3012                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3013                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3014                        RTE_PTYPE_INNER_L4_SCTP,
3015                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3016                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3017                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3018                        RTE_PTYPE_INNER_L4_ICMP,
3019                 /* [73] - [87] reserved */
3020
3021                 /* Non tunneled IPv6 */
3022                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3023                        RTE_PTYPE_L4_FRAG,
3024                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3025                        RTE_PTYPE_L4_NONFRAG,
3026                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3027                        RTE_PTYPE_L4_UDP,
3028                 /* [91] reserved */
3029                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3030                        RTE_PTYPE_L4_TCP,
3031                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3032                        RTE_PTYPE_L4_SCTP,
3033                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3034                        RTE_PTYPE_L4_ICMP,
3035
3036                 /* IPv6 --> IPv4 */
3037                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3038                        RTE_PTYPE_TUNNEL_IP |
3039                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3040                        RTE_PTYPE_INNER_L4_FRAG,
3041                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3042                        RTE_PTYPE_TUNNEL_IP |
3043                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3044                        RTE_PTYPE_INNER_L4_NONFRAG,
3045                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3046                        RTE_PTYPE_TUNNEL_IP |
3047                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3048                        RTE_PTYPE_INNER_L4_UDP,
3049                 /* [98] reserved */
3050                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3051                        RTE_PTYPE_TUNNEL_IP |
3052                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3053                        RTE_PTYPE_INNER_L4_TCP,
3054                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3055                         RTE_PTYPE_TUNNEL_IP |
3056                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3057                         RTE_PTYPE_INNER_L4_SCTP,
3058                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3059                         RTE_PTYPE_TUNNEL_IP |
3060                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3061                         RTE_PTYPE_INNER_L4_ICMP,
3062
3063                 /* IPv6 --> IPv6 */
3064                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3065                         RTE_PTYPE_TUNNEL_IP |
3066                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3067                         RTE_PTYPE_INNER_L4_FRAG,
3068                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3069                         RTE_PTYPE_TUNNEL_IP |
3070                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3071                         RTE_PTYPE_INNER_L4_NONFRAG,
3072                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3073                         RTE_PTYPE_TUNNEL_IP |
3074                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3075                         RTE_PTYPE_INNER_L4_UDP,
3076                 /* [105] reserved */
3077                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3078                         RTE_PTYPE_TUNNEL_IP |
3079                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3080                         RTE_PTYPE_INNER_L4_TCP,
3081                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3082                         RTE_PTYPE_TUNNEL_IP |
3083                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3084                         RTE_PTYPE_INNER_L4_SCTP,
3085                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3086                         RTE_PTYPE_TUNNEL_IP |
3087                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3088                         RTE_PTYPE_INNER_L4_ICMP,
3089
3090                 /* IPv6 --> GRE/Teredo/VXLAN */
3091                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3092                         RTE_PTYPE_TUNNEL_GRENAT,
3093
3094                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3095                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3096                         RTE_PTYPE_TUNNEL_GRENAT |
3097                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3098                         RTE_PTYPE_INNER_L4_FRAG,
3099                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3100                         RTE_PTYPE_TUNNEL_GRENAT |
3101                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3102                         RTE_PTYPE_INNER_L4_NONFRAG,
3103                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3104                         RTE_PTYPE_TUNNEL_GRENAT |
3105                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3106                         RTE_PTYPE_INNER_L4_UDP,
3107                 /* [113] reserved */
3108                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3109                         RTE_PTYPE_TUNNEL_GRENAT |
3110                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3111                         RTE_PTYPE_INNER_L4_TCP,
3112                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3113                         RTE_PTYPE_TUNNEL_GRENAT |
3114                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3115                         RTE_PTYPE_INNER_L4_SCTP,
3116                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3117                         RTE_PTYPE_TUNNEL_GRENAT |
3118                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3119                         RTE_PTYPE_INNER_L4_ICMP,
3120
3121                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3122                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3123                         RTE_PTYPE_TUNNEL_GRENAT |
3124                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3125                         RTE_PTYPE_INNER_L4_FRAG,
3126                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3127                         RTE_PTYPE_TUNNEL_GRENAT |
3128                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3129                         RTE_PTYPE_INNER_L4_NONFRAG,
3130                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3131                         RTE_PTYPE_TUNNEL_GRENAT |
3132                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3133                         RTE_PTYPE_INNER_L4_UDP,
3134                 /* [120] reserved */
3135                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3136                         RTE_PTYPE_TUNNEL_GRENAT |
3137                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3138                         RTE_PTYPE_INNER_L4_TCP,
3139                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3140                         RTE_PTYPE_TUNNEL_GRENAT |
3141                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3142                         RTE_PTYPE_INNER_L4_SCTP,
3143                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3144                         RTE_PTYPE_TUNNEL_GRENAT |
3145                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3146                         RTE_PTYPE_INNER_L4_ICMP,
3147
3148                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3149                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3150                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3151
3152                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3153                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3154                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3155                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3156                         RTE_PTYPE_INNER_L4_FRAG,
3157                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3158                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3159                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3160                         RTE_PTYPE_INNER_L4_NONFRAG,
3161                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3162                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3163                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3164                         RTE_PTYPE_INNER_L4_UDP,
3165                 /* [128] reserved */
3166                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3167                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3168                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3169                         RTE_PTYPE_INNER_L4_TCP,
3170                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3171                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3172                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3173                         RTE_PTYPE_INNER_L4_SCTP,
3174                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3175                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3176                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3177                         RTE_PTYPE_INNER_L4_ICMP,
3178
3179                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3180                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3181                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3182                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3183                         RTE_PTYPE_INNER_L4_FRAG,
3184                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3185                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3186                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3187                         RTE_PTYPE_INNER_L4_NONFRAG,
3188                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3189                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3190                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3191                         RTE_PTYPE_INNER_L4_UDP,
3192                 /* [135] reserved */
3193                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3194                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3195                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3196                         RTE_PTYPE_INNER_L4_TCP,
3197                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3198                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3199                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3200                         RTE_PTYPE_INNER_L4_SCTP,
3201                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3202                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3203                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3204                         RTE_PTYPE_INNER_L4_ICMP,
3205                 /* [139] - [299] reserved */
3206
3207                 /* PPPoE */
3208                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
3209                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
3210
3211                 /* PPPoE --> IPv4 */
3212                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
3213                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3214                         RTE_PTYPE_L4_FRAG,
3215                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
3216                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3217                         RTE_PTYPE_L4_NONFRAG,
3218                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
3219                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3220                         RTE_PTYPE_L4_UDP,
3221                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
3222                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3223                         RTE_PTYPE_L4_TCP,
3224                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
3225                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3226                         RTE_PTYPE_L4_SCTP,
3227                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
3228                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3229                         RTE_PTYPE_L4_ICMP,
3230
3231                 /* PPPoE --> IPv6 */
3232                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
3233                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3234                         RTE_PTYPE_L4_FRAG,
3235                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
3236                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3237                         RTE_PTYPE_L4_NONFRAG,
3238                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
3239                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3240                         RTE_PTYPE_L4_UDP,
3241                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
3242                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3243                         RTE_PTYPE_L4_TCP,
3244                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
3245                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3246                         RTE_PTYPE_L4_SCTP,
3247                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
3248                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3249                         RTE_PTYPE_L4_ICMP,
3250                 /* [314] - [324] reserved */
3251
3252                 /* IPv4/IPv6 --> GTPC/GTPU */
3253                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3254                         RTE_PTYPE_TUNNEL_GTPC,
3255                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3256                         RTE_PTYPE_TUNNEL_GTPC,
3257                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3258                         RTE_PTYPE_TUNNEL_GTPC,
3259                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3260                         RTE_PTYPE_TUNNEL_GTPC,
3261                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3262                         RTE_PTYPE_TUNNEL_GTPU,
3263                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3264                         RTE_PTYPE_TUNNEL_GTPU,
3265
3266                 /* IPv4 --> GTPU --> IPv4 */
3267                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3268                         RTE_PTYPE_TUNNEL_GTPU |
3269                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3270                         RTE_PTYPE_INNER_L4_FRAG,
3271                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3272                         RTE_PTYPE_TUNNEL_GTPU |
3273                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3274                         RTE_PTYPE_INNER_L4_NONFRAG,
3275                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3276                         RTE_PTYPE_TUNNEL_GTPU |
3277                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3278                         RTE_PTYPE_INNER_L4_UDP,
3279                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3280                         RTE_PTYPE_TUNNEL_GTPU |
3281                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3282                         RTE_PTYPE_INNER_L4_TCP,
3283                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3284                         RTE_PTYPE_TUNNEL_GTPU |
3285                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3286                         RTE_PTYPE_INNER_L4_ICMP,
3287
3288                 /* IPv6 --> GTPU --> IPv4 */
3289                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3290                         RTE_PTYPE_TUNNEL_GTPU |
3291                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3292                         RTE_PTYPE_INNER_L4_FRAG,
3293                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3294                         RTE_PTYPE_TUNNEL_GTPU |
3295                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3296                         RTE_PTYPE_INNER_L4_NONFRAG,
3297                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3298                         RTE_PTYPE_TUNNEL_GTPU |
3299                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3300                         RTE_PTYPE_INNER_L4_UDP,
3301                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3302                         RTE_PTYPE_TUNNEL_GTPU |
3303                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3304                         RTE_PTYPE_INNER_L4_TCP,
3305                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3306                         RTE_PTYPE_TUNNEL_GTPU |
3307                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3308                         RTE_PTYPE_INNER_L4_ICMP,
3309
3310                 /* IPv4 --> GTPU --> IPv6 */
3311                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3312                         RTE_PTYPE_TUNNEL_GTPU |
3313                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3314                         RTE_PTYPE_INNER_L4_FRAG,
3315                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3316                         RTE_PTYPE_TUNNEL_GTPU |
3317                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3318                         RTE_PTYPE_INNER_L4_NONFRAG,
3319                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3320                         RTE_PTYPE_TUNNEL_GTPU |
3321                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3322                         RTE_PTYPE_INNER_L4_UDP,
3323                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3324                         RTE_PTYPE_TUNNEL_GTPU |
3325                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3326                         RTE_PTYPE_INNER_L4_TCP,
3327                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3328                         RTE_PTYPE_TUNNEL_GTPU |
3329                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3330                         RTE_PTYPE_INNER_L4_ICMP,
3331
3332                 /* IPv6 --> GTPU --> IPv6 */
3333                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3334                         RTE_PTYPE_TUNNEL_GTPU |
3335                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3336                         RTE_PTYPE_INNER_L4_FRAG,
3337                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3338                         RTE_PTYPE_TUNNEL_GTPU |
3339                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3340                         RTE_PTYPE_INNER_L4_NONFRAG,
3341                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3342                         RTE_PTYPE_TUNNEL_GTPU |
3343                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3344                         RTE_PTYPE_INNER_L4_UDP,
3345                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3346                         RTE_PTYPE_TUNNEL_GTPU |
3347                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3348                         RTE_PTYPE_INNER_L4_TCP,
3349                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3350                         RTE_PTYPE_TUNNEL_GTPU |
3351                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3352                         RTE_PTYPE_INNER_L4_ICMP,
3353
3354                 /* IPv4 --> UDP ECPRI */
3355                 [372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3356                         RTE_PTYPE_L4_UDP,
3357                 [373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3358                         RTE_PTYPE_L4_UDP,
3359                 [374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3360                         RTE_PTYPE_L4_UDP,
3361                 [375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3362                         RTE_PTYPE_L4_UDP,
3363                 [376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3364                         RTE_PTYPE_L4_UDP,
3365                 [377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3366                         RTE_PTYPE_L4_UDP,
3367                 [378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3368                         RTE_PTYPE_L4_UDP,
3369                 [379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3370                         RTE_PTYPE_L4_UDP,
3371                 [380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3372                         RTE_PTYPE_L4_UDP,
3373                 [381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3374                         RTE_PTYPE_L4_UDP,
3375
3376                 /* IPV6 --> UDP ECPRI */
3377                 [382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3378                         RTE_PTYPE_L4_UDP,
3379                 [383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3380                         RTE_PTYPE_L4_UDP,
3381                 [384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3382                         RTE_PTYPE_L4_UDP,
3383                 [385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3384                         RTE_PTYPE_L4_UDP,
3385                 [386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3386                         RTE_PTYPE_L4_UDP,
3387                 [387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3388                         RTE_PTYPE_L4_UDP,
3389                 [388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3390                         RTE_PTYPE_L4_UDP,
3391                 [389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3392                         RTE_PTYPE_L4_UDP,
3393                 [390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3394                         RTE_PTYPE_L4_UDP,
3395                 [391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3396                         RTE_PTYPE_L4_UDP,
3397                 /* All others reserved */
3398         };
3399
3400         return ptype_tbl;
3401 }