net/iavf: enable AVX512 for flexible Rx
[dpdk.git] / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26 #include <rte_vect.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30
31 static inline int
32 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
33 {
34         /* The following constraints must be satisfied:
35          *   thresh < rxq->nb_rx_desc
36          */
37         if (thresh >= nb_desc) {
38                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
39                              thresh, nb_desc);
40                 return -EINVAL;
41         }
42         return 0;
43 }
44
45 static inline int
46 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
47                 uint16_t tx_free_thresh)
48 {
49         /* TX descriptors will have their RS bit set after tx_rs_thresh
50          * descriptors have been used. The TX descriptor ring will be cleaned
51          * after tx_free_thresh descriptors are used or if the number of
52          * descriptors required to transmit a packet is greater than the
53          * number of free TX descriptors.
54          *
55          * The following constraints must be satisfied:
56          *  - tx_rs_thresh must be less than the size of the ring minus 2.
57          *  - tx_free_thresh must be less than the size of the ring minus 3.
58          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
59          *  - tx_rs_thresh must be a divisor of the ring size.
60          *
61          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
62          * race condition, hence the maximum threshold constraints. When set
63          * to zero use default values.
64          */
65         if (tx_rs_thresh >= (nb_desc - 2)) {
66                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
67                              "number of TX descriptors (%u) minus 2",
68                              tx_rs_thresh, nb_desc);
69                 return -EINVAL;
70         }
71         if (tx_free_thresh >= (nb_desc - 3)) {
72                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
73                              "number of TX descriptors (%u) minus 3.",
74                              tx_free_thresh, nb_desc);
75                 return -EINVAL;
76         }
77         if (tx_rs_thresh > tx_free_thresh) {
78                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
79                              "equal to tx_free_thresh (%u).",
80                              tx_rs_thresh, tx_free_thresh);
81                 return -EINVAL;
82         }
83         if ((nb_desc % tx_rs_thresh) != 0) {
84                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
85                              "number of TX descriptors (%u).",
86                              tx_rs_thresh, nb_desc);
87                 return -EINVAL;
88         }
89
90         return 0;
91 }
92
93 static inline bool
94 check_rx_vec_allow(struct iavf_rx_queue *rxq)
95 {
96         if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
97             rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
98                 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
99                 return true;
100         }
101
102         PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
103         return false;
104 }
105
106 static inline bool
107 check_tx_vec_allow(struct iavf_tx_queue *txq)
108 {
109         if (!(txq->offloads & IAVF_NO_VECTOR_FLAGS) &&
110             txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
111             txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
112                 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
113                 return true;
114         }
115         PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
116         return false;
117 }
118
119 static inline bool
120 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
121 {
122         int ret = true;
123
124         if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
125                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
126                              "rxq->rx_free_thresh=%d, "
127                              "IAVF_RX_MAX_BURST=%d",
128                              rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
129                 ret = false;
130         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
131                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
132                              "rxq->nb_rx_desc=%d, "
133                              "rxq->rx_free_thresh=%d",
134                              rxq->nb_rx_desc, rxq->rx_free_thresh);
135                 ret = false;
136         }
137         return ret;
138 }
139
140 static inline void
141 reset_rx_queue(struct iavf_rx_queue *rxq)
142 {
143         uint16_t len;
144         uint32_t i;
145
146         if (!rxq)
147                 return;
148
149         len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
150
151         for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
152                 ((volatile char *)rxq->rx_ring)[i] = 0;
153
154         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
155
156         for (i = 0; i < IAVF_RX_MAX_BURST; i++)
157                 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
158
159         /* for rx bulk */
160         rxq->rx_nb_avail = 0;
161         rxq->rx_next_avail = 0;
162         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
163
164         rxq->rx_tail = 0;
165         rxq->nb_rx_hold = 0;
166         rxq->pkt_first_seg = NULL;
167         rxq->pkt_last_seg = NULL;
168 }
169
170 static inline void
171 reset_tx_queue(struct iavf_tx_queue *txq)
172 {
173         struct iavf_tx_entry *txe;
174         uint32_t i, size;
175         uint16_t prev;
176
177         if (!txq) {
178                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
179                 return;
180         }
181
182         txe = txq->sw_ring;
183         size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
184         for (i = 0; i < size; i++)
185                 ((volatile char *)txq->tx_ring)[i] = 0;
186
187         prev = (uint16_t)(txq->nb_tx_desc - 1);
188         for (i = 0; i < txq->nb_tx_desc; i++) {
189                 txq->tx_ring[i].cmd_type_offset_bsz =
190                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
191                 txe[i].mbuf =  NULL;
192                 txe[i].last_id = i;
193                 txe[prev].next_id = i;
194                 prev = i;
195         }
196
197         txq->tx_tail = 0;
198         txq->nb_used = 0;
199
200         txq->last_desc_cleaned = txq->nb_tx_desc - 1;
201         txq->nb_free = txq->nb_tx_desc - 1;
202
203         txq->next_dd = txq->rs_thresh - 1;
204         txq->next_rs = txq->rs_thresh - 1;
205 }
206
207 static int
208 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
209 {
210         volatile union iavf_rx_desc *rxd;
211         struct rte_mbuf *mbuf = NULL;
212         uint64_t dma_addr;
213         uint16_t i;
214
215         for (i = 0; i < rxq->nb_rx_desc; i++) {
216                 mbuf = rte_mbuf_raw_alloc(rxq->mp);
217                 if (unlikely(!mbuf)) {
218                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
219                         return -ENOMEM;
220                 }
221
222                 rte_mbuf_refcnt_set(mbuf, 1);
223                 mbuf->next = NULL;
224                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
225                 mbuf->nb_segs = 1;
226                 mbuf->port = rxq->port_id;
227
228                 dma_addr =
229                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
230
231                 rxd = &rxq->rx_ring[i];
232                 rxd->read.pkt_addr = dma_addr;
233                 rxd->read.hdr_addr = 0;
234 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
235                 rxd->read.rsvd1 = 0;
236                 rxd->read.rsvd2 = 0;
237 #endif
238
239                 rxq->sw_ring[i] = mbuf;
240         }
241
242         return 0;
243 }
244
245 static inline void
246 release_rxq_mbufs(struct iavf_rx_queue *rxq)
247 {
248         uint16_t i;
249
250         if (!rxq->sw_ring)
251                 return;
252
253         for (i = 0; i < rxq->nb_rx_desc; i++) {
254                 if (rxq->sw_ring[i]) {
255                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
256                         rxq->sw_ring[i] = NULL;
257                 }
258         }
259
260         /* for rx bulk */
261         if (rxq->rx_nb_avail == 0)
262                 return;
263         for (i = 0; i < rxq->rx_nb_avail; i++) {
264                 struct rte_mbuf *mbuf;
265
266                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
267                 rte_pktmbuf_free_seg(mbuf);
268         }
269         rxq->rx_nb_avail = 0;
270 }
271
272 static inline void
273 release_txq_mbufs(struct iavf_tx_queue *txq)
274 {
275         uint16_t i;
276
277         if (!txq || !txq->sw_ring) {
278                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
279                 return;
280         }
281
282         for (i = 0; i < txq->nb_tx_desc; i++) {
283                 if (txq->sw_ring[i].mbuf) {
284                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
285                         txq->sw_ring[i].mbuf = NULL;
286                 }
287         }
288 }
289
290 static const struct iavf_rxq_ops def_rxq_ops = {
291         .release_mbufs = release_rxq_mbufs,
292 };
293
294 static const struct iavf_txq_ops def_txq_ops = {
295         .release_mbufs = release_txq_mbufs,
296 };
297
298 int
299 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
300                        uint16_t nb_desc, unsigned int socket_id,
301                        const struct rte_eth_rxconf *rx_conf,
302                        struct rte_mempool *mp)
303 {
304         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
305         struct iavf_adapter *ad =
306                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
307         struct iavf_info *vf =
308                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
309         struct iavf_vsi *vsi = &vf->vsi;
310         struct iavf_rx_queue *rxq;
311         const struct rte_memzone *mz;
312         uint32_t ring_size;
313         uint16_t len;
314         uint16_t rx_free_thresh;
315
316         PMD_INIT_FUNC_TRACE();
317
318         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
319             nb_desc > IAVF_MAX_RING_DESC ||
320             nb_desc < IAVF_MIN_RING_DESC) {
321                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
322                              "invalid", nb_desc);
323                 return -EINVAL;
324         }
325
326         /* Check free threshold */
327         rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
328                          IAVF_DEFAULT_RX_FREE_THRESH :
329                          rx_conf->rx_free_thresh;
330         if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
331                 return -EINVAL;
332
333         /* Free memory if needed */
334         if (dev->data->rx_queues[queue_idx]) {
335                 iavf_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
336                 dev->data->rx_queues[queue_idx] = NULL;
337         }
338
339         /* Allocate the rx queue data structure */
340         rxq = rte_zmalloc_socket("iavf rxq",
341                                  sizeof(struct iavf_rx_queue),
342                                  RTE_CACHE_LINE_SIZE,
343                                  socket_id);
344         if (!rxq) {
345                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
346                              "rx queue data structure");
347                 return -ENOMEM;
348         }
349
350         if (vf->vf_res->vf_cap_flags &
351             VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC &&
352             vf->supported_rxdid & BIT(IAVF_RXDID_COMMS_OVS_1)) {
353                 rxq->rxdid = IAVF_RXDID_COMMS_OVS_1;
354         } else {
355                 rxq->rxdid = IAVF_RXDID_LEGACY_1;
356         }
357
358         rxq->mp = mp;
359         rxq->nb_rx_desc = nb_desc;
360         rxq->rx_free_thresh = rx_free_thresh;
361         rxq->queue_id = queue_idx;
362         rxq->port_id = dev->data->port_id;
363         rxq->crc_len = 0; /* crc stripping by default */
364         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
365         rxq->rx_hdr_len = 0;
366         rxq->vsi = vsi;
367
368         len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
369         rxq->rx_buf_len = RTE_ALIGN(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
370
371         /* Allocate the software ring. */
372         len = nb_desc + IAVF_RX_MAX_BURST;
373         rxq->sw_ring =
374                 rte_zmalloc_socket("iavf rx sw ring",
375                                    sizeof(struct rte_mbuf *) * len,
376                                    RTE_CACHE_LINE_SIZE,
377                                    socket_id);
378         if (!rxq->sw_ring) {
379                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
380                 rte_free(rxq);
381                 return -ENOMEM;
382         }
383
384         /* Allocate the maximun number of RX ring hardware descriptor with
385          * a liitle more to support bulk allocate.
386          */
387         len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
388         ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
389                               IAVF_DMA_MEM_ALIGN);
390         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
391                                       ring_size, IAVF_RING_BASE_ALIGN,
392                                       socket_id);
393         if (!mz) {
394                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
395                 rte_free(rxq->sw_ring);
396                 rte_free(rxq);
397                 return -ENOMEM;
398         }
399         /* Zero all the descriptors in the ring. */
400         memset(mz->addr, 0, ring_size);
401         rxq->rx_ring_phys_addr = mz->iova;
402         rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
403
404         rxq->mz = mz;
405         reset_rx_queue(rxq);
406         rxq->q_set = true;
407         dev->data->rx_queues[queue_idx] = rxq;
408         rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
409         rxq->ops = &def_rxq_ops;
410
411         if (check_rx_bulk_allow(rxq) == true) {
412                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
413                              "satisfied. Rx Burst Bulk Alloc function will be "
414                              "used on port=%d, queue=%d.",
415                              rxq->port_id, rxq->queue_id);
416         } else {
417                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
418                              "not satisfied, Scattered Rx is requested "
419                              "on port=%d, queue=%d.",
420                              rxq->port_id, rxq->queue_id);
421                 ad->rx_bulk_alloc_allowed = false;
422         }
423
424         if (check_rx_vec_allow(rxq) == false)
425                 ad->rx_vec_allowed = false;
426
427         return 0;
428 }
429
430 int
431 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
432                        uint16_t queue_idx,
433                        uint16_t nb_desc,
434                        unsigned int socket_id,
435                        const struct rte_eth_txconf *tx_conf)
436 {
437         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
438         struct iavf_tx_queue *txq;
439         const struct rte_memzone *mz;
440         uint32_t ring_size;
441         uint16_t tx_rs_thresh, tx_free_thresh;
442         uint64_t offloads;
443
444         PMD_INIT_FUNC_TRACE();
445
446         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
447
448         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
449             nb_desc > IAVF_MAX_RING_DESC ||
450             nb_desc < IAVF_MIN_RING_DESC) {
451                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
452                             "invalid", nb_desc);
453                 return -EINVAL;
454         }
455
456         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
457                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
458         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
459                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
460         check_tx_thresh(nb_desc, tx_rs_thresh, tx_rs_thresh);
461
462         /* Free memory if needed. */
463         if (dev->data->tx_queues[queue_idx]) {
464                 iavf_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
465                 dev->data->tx_queues[queue_idx] = NULL;
466         }
467
468         /* Allocate the TX queue data structure. */
469         txq = rte_zmalloc_socket("iavf txq",
470                                  sizeof(struct iavf_tx_queue),
471                                  RTE_CACHE_LINE_SIZE,
472                                  socket_id);
473         if (!txq) {
474                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
475                              "tx queue structure");
476                 return -ENOMEM;
477         }
478
479         txq->nb_tx_desc = nb_desc;
480         txq->rs_thresh = tx_rs_thresh;
481         txq->free_thresh = tx_free_thresh;
482         txq->queue_id = queue_idx;
483         txq->port_id = dev->data->port_id;
484         txq->offloads = offloads;
485         txq->tx_deferred_start = tx_conf->tx_deferred_start;
486
487         /* Allocate software ring */
488         txq->sw_ring =
489                 rte_zmalloc_socket("iavf tx sw ring",
490                                    sizeof(struct iavf_tx_entry) * nb_desc,
491                                    RTE_CACHE_LINE_SIZE,
492                                    socket_id);
493         if (!txq->sw_ring) {
494                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
495                 rte_free(txq);
496                 return -ENOMEM;
497         }
498
499         /* Allocate TX hardware ring descriptors. */
500         ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
501         ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
502         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
503                                       ring_size, IAVF_RING_BASE_ALIGN,
504                                       socket_id);
505         if (!mz) {
506                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
507                 rte_free(txq->sw_ring);
508                 rte_free(txq);
509                 return -ENOMEM;
510         }
511         txq->tx_ring_phys_addr = mz->iova;
512         txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
513
514         txq->mz = mz;
515         reset_tx_queue(txq);
516         txq->q_set = true;
517         dev->data->tx_queues[queue_idx] = txq;
518         txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
519         txq->ops = &def_txq_ops;
520
521         if (check_tx_vec_allow(txq) == false) {
522                 struct iavf_adapter *ad =
523                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
524                 ad->tx_vec_allowed = false;
525         }
526
527         return 0;
528 }
529
530 int
531 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
532 {
533         struct iavf_adapter *adapter =
534                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
535         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
536         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
537         struct iavf_rx_queue *rxq;
538         int err = 0;
539
540         PMD_DRV_FUNC_TRACE();
541
542         if (rx_queue_id >= dev->data->nb_rx_queues)
543                 return -EINVAL;
544
545         rxq = dev->data->rx_queues[rx_queue_id];
546
547         err = alloc_rxq_mbufs(rxq);
548         if (err) {
549                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
550                 return err;
551         }
552
553         rte_wmb();
554
555         /* Init the RX tail register. */
556         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
557         IAVF_WRITE_FLUSH(hw);
558
559         /* Ready to switch the queue on */
560         if (!vf->lv_enabled)
561                 err = iavf_switch_queue(adapter, rx_queue_id, true, true);
562         else
563                 err = iavf_switch_queue_lv(adapter, rx_queue_id, true, true);
564
565         if (err)
566                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
567                             rx_queue_id);
568         else
569                 dev->data->rx_queue_state[rx_queue_id] =
570                         RTE_ETH_QUEUE_STATE_STARTED;
571
572         return err;
573 }
574
575 int
576 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
577 {
578         struct iavf_adapter *adapter =
579                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
580         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
581         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
582         struct iavf_tx_queue *txq;
583         int err = 0;
584
585         PMD_DRV_FUNC_TRACE();
586
587         if (tx_queue_id >= dev->data->nb_tx_queues)
588                 return -EINVAL;
589
590         txq = dev->data->tx_queues[tx_queue_id];
591
592         /* Init the RX tail register. */
593         IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
594         IAVF_WRITE_FLUSH(hw);
595
596         /* Ready to switch the queue on */
597         if (!vf->lv_enabled)
598                 err = iavf_switch_queue(adapter, tx_queue_id, false, true);
599         else
600                 err = iavf_switch_queue_lv(adapter, tx_queue_id, false, true);
601
602         if (err)
603                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
604                             tx_queue_id);
605         else
606                 dev->data->tx_queue_state[tx_queue_id] =
607                         RTE_ETH_QUEUE_STATE_STARTED;
608
609         return err;
610 }
611
612 int
613 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
614 {
615         struct iavf_adapter *adapter =
616                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
617         struct iavf_rx_queue *rxq;
618         int err;
619
620         PMD_DRV_FUNC_TRACE();
621
622         if (rx_queue_id >= dev->data->nb_rx_queues)
623                 return -EINVAL;
624
625         err = iavf_switch_queue(adapter, rx_queue_id, true, false);
626         if (err) {
627                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
628                             rx_queue_id);
629                 return err;
630         }
631
632         rxq = dev->data->rx_queues[rx_queue_id];
633         rxq->ops->release_mbufs(rxq);
634         reset_rx_queue(rxq);
635         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
636
637         return 0;
638 }
639
640 int
641 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
642 {
643         struct iavf_adapter *adapter =
644                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
645         struct iavf_tx_queue *txq;
646         int err;
647
648         PMD_DRV_FUNC_TRACE();
649
650         if (tx_queue_id >= dev->data->nb_tx_queues)
651                 return -EINVAL;
652
653         err = iavf_switch_queue(adapter, tx_queue_id, false, false);
654         if (err) {
655                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
656                             tx_queue_id);
657                 return err;
658         }
659
660         txq = dev->data->tx_queues[tx_queue_id];
661         txq->ops->release_mbufs(txq);
662         reset_tx_queue(txq);
663         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
664
665         return 0;
666 }
667
668 void
669 iavf_dev_rx_queue_release(void *rxq)
670 {
671         struct iavf_rx_queue *q = (struct iavf_rx_queue *)rxq;
672
673         if (!q)
674                 return;
675
676         q->ops->release_mbufs(q);
677         rte_free(q->sw_ring);
678         rte_memzone_free(q->mz);
679         rte_free(q);
680 }
681
682 void
683 iavf_dev_tx_queue_release(void *txq)
684 {
685         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
686
687         if (!q)
688                 return;
689
690         q->ops->release_mbufs(q);
691         rte_free(q->sw_ring);
692         rte_memzone_free(q->mz);
693         rte_free(q);
694 }
695
696 void
697 iavf_stop_queues(struct rte_eth_dev *dev)
698 {
699         struct iavf_adapter *adapter =
700                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
701         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
702         struct iavf_rx_queue *rxq;
703         struct iavf_tx_queue *txq;
704         int ret, i;
705
706         /* Stop All queues */
707         if (!vf->lv_enabled) {
708                 ret = iavf_disable_queues(adapter);
709                 if (ret)
710                         PMD_DRV_LOG(WARNING, "Fail to stop queues");
711         } else {
712                 ret = iavf_disable_queues_lv(adapter);
713                 if (ret)
714                         PMD_DRV_LOG(WARNING, "Fail to stop queues for large VF");
715         }
716
717         if (ret)
718                 PMD_DRV_LOG(WARNING, "Fail to stop queues");
719
720         for (i = 0; i < dev->data->nb_tx_queues; i++) {
721                 txq = dev->data->tx_queues[i];
722                 if (!txq)
723                         continue;
724                 txq->ops->release_mbufs(txq);
725                 reset_tx_queue(txq);
726                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
727         }
728         for (i = 0; i < dev->data->nb_rx_queues; i++) {
729                 rxq = dev->data->rx_queues[i];
730                 if (!rxq)
731                         continue;
732                 rxq->ops->release_mbufs(rxq);
733                 reset_rx_queue(rxq);
734                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
735         }
736 }
737
738 static inline void
739 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
740 {
741         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
742                 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
743                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
744                 mb->vlan_tci =
745                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
746         } else {
747                 mb->vlan_tci = 0;
748         }
749 }
750
751 static inline void
752 iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
753                           volatile union iavf_rx_flex_desc *rxdp)
754 {
755         if (rte_le_to_cpu_64(rxdp->wb.status_error0) &
756                 (1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
757                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
758                 mb->vlan_tci =
759                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
760         } else {
761                 mb->vlan_tci = 0;
762         }
763 }
764
765 /* Translate the rx descriptor status and error fields to pkt flags */
766 static inline uint64_t
767 iavf_rxd_to_pkt_flags(uint64_t qword)
768 {
769         uint64_t flags;
770         uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
771
772 #define IAVF_RX_ERR_BITS 0x3f
773
774         /* Check if RSS_HASH */
775         flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
776                                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
777                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
778
779         /* Check if FDIR Match */
780         flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
781                                 PKT_RX_FDIR : 0);
782
783         if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
784                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
785                 return flags;
786         }
787
788         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
789                 flags |= PKT_RX_IP_CKSUM_BAD;
790         else
791                 flags |= PKT_RX_IP_CKSUM_GOOD;
792
793         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
794                 flags |= PKT_RX_L4_CKSUM_BAD;
795         else
796                 flags |= PKT_RX_L4_CKSUM_GOOD;
797
798         /* TODO: Oversize error bit is not processed here */
799
800         return flags;
801 }
802
803 static inline uint64_t
804 iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
805 {
806         uint64_t flags = 0;
807 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
808         uint16_t flexbh;
809
810         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
811                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
812                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
813
814         if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
815                 mb->hash.fdir.hi =
816                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
817                 flags |= PKT_RX_FDIR_ID;
818         }
819 #else
820         mb->hash.fdir.hi =
821                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
822         flags |= PKT_RX_FDIR_ID;
823 #endif
824         return flags;
825 }
826
827
828 /* Translate the rx flex descriptor status to pkt flags */
829 static inline void
830 iavf_rxd_to_pkt_fields(struct rte_mbuf *mb,
831                        volatile union iavf_rx_flex_desc *rxdp)
832 {
833         volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
834                         (volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
835 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
836         uint16_t stat_err;
837
838         stat_err = rte_le_to_cpu_16(desc->status_error0);
839         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
840                 mb->ol_flags |= PKT_RX_RSS_HASH;
841                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
842         }
843 #endif
844
845         if (desc->flow_id != 0xFFFFFFFF) {
846                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
847                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
848         }
849 }
850
851 #define IAVF_RX_FLEX_ERR0_BITS  \
852         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
853          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
854          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
855          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
856          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
857          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
858
859 /* Rx L3/L4 checksum */
860 static inline uint64_t
861 iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
862 {
863         uint64_t flags = 0;
864
865         /* check if HW has decoded the packet and checksum */
866         if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
867                 return 0;
868
869         if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
870                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
871                 return flags;
872         }
873
874         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
875                 flags |= PKT_RX_IP_CKSUM_BAD;
876         else
877                 flags |= PKT_RX_IP_CKSUM_GOOD;
878
879         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
880                 flags |= PKT_RX_L4_CKSUM_BAD;
881         else
882                 flags |= PKT_RX_L4_CKSUM_GOOD;
883
884         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
885                 flags |= PKT_RX_EIP_CKSUM_BAD;
886
887         return flags;
888 }
889
890 /* If the number of free RX descriptors is greater than the RX free
891  * threshold of the queue, advance the Receive Descriptor Tail (RDT)
892  * register. Update the RDT with the value of the last processed RX
893  * descriptor minus 1, to guarantee that the RDT register is never
894  * equal to the RDH register, which creates a "full" ring situation
895  * from the hardware point of view.
896  */
897 static inline void
898 iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
899 {
900         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
901
902         if (nb_hold > rxq->rx_free_thresh) {
903                 PMD_RX_LOG(DEBUG,
904                            "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
905                            rxq->port_id, rxq->queue_id, rx_id, nb_hold);
906                 rx_id = (uint16_t)((rx_id == 0) ?
907                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
908                 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
909                 nb_hold = 0;
910         }
911         rxq->nb_rx_hold = nb_hold;
912 }
913
914 /* implement recv_pkts */
915 uint16_t
916 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
917 {
918         volatile union iavf_rx_desc *rx_ring;
919         volatile union iavf_rx_desc *rxdp;
920         struct iavf_rx_queue *rxq;
921         union iavf_rx_desc rxd;
922         struct rte_mbuf *rxe;
923         struct rte_eth_dev *dev;
924         struct rte_mbuf *rxm;
925         struct rte_mbuf *nmb;
926         uint16_t nb_rx;
927         uint32_t rx_status;
928         uint64_t qword1;
929         uint16_t rx_packet_len;
930         uint16_t rx_id, nb_hold;
931         uint64_t dma_addr;
932         uint64_t pkt_flags;
933         const uint32_t *ptype_tbl;
934
935         nb_rx = 0;
936         nb_hold = 0;
937         rxq = rx_queue;
938         rx_id = rxq->rx_tail;
939         rx_ring = rxq->rx_ring;
940         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
941
942         while (nb_rx < nb_pkts) {
943                 rxdp = &rx_ring[rx_id];
944                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
945                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
946                             IAVF_RXD_QW1_STATUS_SHIFT;
947
948                 /* Check the DD bit first */
949                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
950                         break;
951                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
952
953                 nmb = rte_mbuf_raw_alloc(rxq->mp);
954                 if (unlikely(!nmb)) {
955                         dev = &rte_eth_devices[rxq->port_id];
956                         dev->data->rx_mbuf_alloc_failed++;
957                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
958                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
959                         break;
960                 }
961
962                 rxd = *rxdp;
963                 nb_hold++;
964                 rxe = rxq->sw_ring[rx_id];
965                 rx_id++;
966                 if (unlikely(rx_id == rxq->nb_rx_desc))
967                         rx_id = 0;
968
969                 /* Prefetch next mbuf */
970                 rte_prefetch0(rxq->sw_ring[rx_id]);
971
972                 /* When next RX descriptor is on a cache line boundary,
973                  * prefetch the next 4 RX descriptors and next 8 pointers
974                  * to mbufs.
975                  */
976                 if ((rx_id & 0x3) == 0) {
977                         rte_prefetch0(&rx_ring[rx_id]);
978                         rte_prefetch0(rxq->sw_ring[rx_id]);
979                 }
980                 rxm = rxe;
981                 dma_addr =
982                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
983                 rxdp->read.hdr_addr = 0;
984                 rxdp->read.pkt_addr = dma_addr;
985
986                 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
987                                 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
988
989                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
990                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
991                 rxm->nb_segs = 1;
992                 rxm->next = NULL;
993                 rxm->pkt_len = rx_packet_len;
994                 rxm->data_len = rx_packet_len;
995                 rxm->port = rxq->port_id;
996                 rxm->ol_flags = 0;
997                 iavf_rxd_to_vlan_tci(rxm, &rxd);
998                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
999                 rxm->packet_type =
1000                         ptype_tbl[(uint8_t)((qword1 &
1001                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1002
1003                 if (pkt_flags & PKT_RX_RSS_HASH)
1004                         rxm->hash.rss =
1005                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1006
1007                 if (pkt_flags & PKT_RX_FDIR)
1008                         pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
1009
1010                 rxm->ol_flags |= pkt_flags;
1011
1012                 rx_pkts[nb_rx++] = rxm;
1013         }
1014         rxq->rx_tail = rx_id;
1015
1016         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1017
1018         return nb_rx;
1019 }
1020
1021 /* implement recv_pkts for flexible Rx descriptor */
1022 uint16_t
1023 iavf_recv_pkts_flex_rxd(void *rx_queue,
1024                         struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1025 {
1026         volatile union iavf_rx_desc *rx_ring;
1027         volatile union iavf_rx_flex_desc *rxdp;
1028         struct iavf_rx_queue *rxq;
1029         union iavf_rx_flex_desc rxd;
1030         struct rte_mbuf *rxe;
1031         struct rte_eth_dev *dev;
1032         struct rte_mbuf *rxm;
1033         struct rte_mbuf *nmb;
1034         uint16_t nb_rx;
1035         uint16_t rx_stat_err0;
1036         uint16_t rx_packet_len;
1037         uint16_t rx_id, nb_hold;
1038         uint64_t dma_addr;
1039         uint64_t pkt_flags;
1040         const uint32_t *ptype_tbl;
1041
1042         nb_rx = 0;
1043         nb_hold = 0;
1044         rxq = rx_queue;
1045         rx_id = rxq->rx_tail;
1046         rx_ring = rxq->rx_ring;
1047         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1048
1049         while (nb_rx < nb_pkts) {
1050                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1051                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1052
1053                 /* Check the DD bit first */
1054                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1055                         break;
1056                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1057
1058                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1059                 if (unlikely(!nmb)) {
1060                         dev = &rte_eth_devices[rxq->port_id];
1061                         dev->data->rx_mbuf_alloc_failed++;
1062                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1063                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1064                         break;
1065                 }
1066
1067                 rxd = *rxdp;
1068                 nb_hold++;
1069                 rxe = rxq->sw_ring[rx_id];
1070                 rx_id++;
1071                 if (unlikely(rx_id == rxq->nb_rx_desc))
1072                         rx_id = 0;
1073
1074                 /* Prefetch next mbuf */
1075                 rte_prefetch0(rxq->sw_ring[rx_id]);
1076
1077                 /* When next RX descriptor is on a cache line boundary,
1078                  * prefetch the next 4 RX descriptors and next 8 pointers
1079                  * to mbufs.
1080                  */
1081                 if ((rx_id & 0x3) == 0) {
1082                         rte_prefetch0(&rx_ring[rx_id]);
1083                         rte_prefetch0(rxq->sw_ring[rx_id]);
1084                 }
1085                 rxm = rxe;
1086                 dma_addr =
1087                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1088                 rxdp->read.hdr_addr = 0;
1089                 rxdp->read.pkt_addr = dma_addr;
1090
1091                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
1092                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1093
1094                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1095                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1096                 rxm->nb_segs = 1;
1097                 rxm->next = NULL;
1098                 rxm->pkt_len = rx_packet_len;
1099                 rxm->data_len = rx_packet_len;
1100                 rxm->port = rxq->port_id;
1101                 rxm->ol_flags = 0;
1102                 rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1103                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1104                 iavf_flex_rxd_to_vlan_tci(rxm, &rxd);
1105                 iavf_rxd_to_pkt_fields(rxm, &rxd);
1106                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1107                 rxm->ol_flags |= pkt_flags;
1108
1109                 rx_pkts[nb_rx++] = rxm;
1110         }
1111         rxq->rx_tail = rx_id;
1112
1113         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1114
1115         return nb_rx;
1116 }
1117
1118 /* implement recv_scattered_pkts for flexible Rx descriptor */
1119 uint16_t
1120 iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1121                                   uint16_t nb_pkts)
1122 {
1123         struct iavf_rx_queue *rxq = rx_queue;
1124         union iavf_rx_flex_desc rxd;
1125         struct rte_mbuf *rxe;
1126         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1127         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1128         struct rte_mbuf *nmb, *rxm;
1129         uint16_t rx_id = rxq->rx_tail;
1130         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1131         struct rte_eth_dev *dev;
1132         uint16_t rx_stat_err0;
1133         uint64_t dma_addr;
1134         uint64_t pkt_flags;
1135
1136         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1137         volatile union iavf_rx_flex_desc *rxdp;
1138         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1139
1140         while (nb_rx < nb_pkts) {
1141                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1142                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1143
1144                 /* Check the DD bit */
1145                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1146                         break;
1147                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1148
1149                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1150                 if (unlikely(!nmb)) {
1151                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1152                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1153                         dev = &rte_eth_devices[rxq->port_id];
1154                         dev->data->rx_mbuf_alloc_failed++;
1155                         break;
1156                 }
1157
1158                 rxd = *rxdp;
1159                 nb_hold++;
1160                 rxe = rxq->sw_ring[rx_id];
1161                 rx_id++;
1162                 if (rx_id == rxq->nb_rx_desc)
1163                         rx_id = 0;
1164
1165                 /* Prefetch next mbuf */
1166                 rte_prefetch0(rxq->sw_ring[rx_id]);
1167
1168                 /* When next RX descriptor is on a cache line boundary,
1169                  * prefetch the next 4 RX descriptors and next 8 pointers
1170                  * to mbufs.
1171                  */
1172                 if ((rx_id & 0x3) == 0) {
1173                         rte_prefetch0(&rx_ring[rx_id]);
1174                         rte_prefetch0(rxq->sw_ring[rx_id]);
1175                 }
1176
1177                 rxm = rxe;
1178                 dma_addr =
1179                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1180
1181                 /* Set data buffer address and data length of the mbuf */
1182                 rxdp->read.hdr_addr = 0;
1183                 rxdp->read.pkt_addr = dma_addr;
1184                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1185                                 IAVF_RX_FLX_DESC_PKT_LEN_M;
1186                 rxm->data_len = rx_packet_len;
1187                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1188
1189                 /* If this is the first buffer of the received packet, set the
1190                  * pointer to the first mbuf of the packet and initialize its
1191                  * context. Otherwise, update the total length and the number
1192                  * of segments of the current scattered packet, and update the
1193                  * pointer to the last mbuf of the current packet.
1194                  */
1195                 if (!first_seg) {
1196                         first_seg = rxm;
1197                         first_seg->nb_segs = 1;
1198                         first_seg->pkt_len = rx_packet_len;
1199                 } else {
1200                         first_seg->pkt_len =
1201                                 (uint16_t)(first_seg->pkt_len +
1202                                                 rx_packet_len);
1203                         first_seg->nb_segs++;
1204                         last_seg->next = rxm;
1205                 }
1206
1207                 /* If this is not the last buffer of the received packet,
1208                  * update the pointer to the last mbuf of the current scattered
1209                  * packet and continue to parse the RX ring.
1210                  */
1211                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
1212                         last_seg = rxm;
1213                         continue;
1214                 }
1215
1216                 /* This is the last buffer of the received packet. If the CRC
1217                  * is not stripped by the hardware:
1218                  *  - Subtract the CRC length from the total packet length.
1219                  *  - If the last buffer only contains the whole CRC or a part
1220                  *  of it, free the mbuf associated to the last buffer. If part
1221                  *  of the CRC is also contained in the previous mbuf, subtract
1222                  *  the length of that CRC part from the data length of the
1223                  *  previous mbuf.
1224                  */
1225                 rxm->next = NULL;
1226                 if (unlikely(rxq->crc_len > 0)) {
1227                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1228                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1229                                 rte_pktmbuf_free_seg(rxm);
1230                                 first_seg->nb_segs--;
1231                                 last_seg->data_len =
1232                                         (uint16_t)(last_seg->data_len -
1233                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1234                                 last_seg->next = NULL;
1235                         } else {
1236                                 rxm->data_len = (uint16_t)(rx_packet_len -
1237                                                         RTE_ETHER_CRC_LEN);
1238                         }
1239                 }
1240
1241                 first_seg->port = rxq->port_id;
1242                 first_seg->ol_flags = 0;
1243                 first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1244                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1245                 iavf_flex_rxd_to_vlan_tci(first_seg, &rxd);
1246                 iavf_rxd_to_pkt_fields(first_seg, &rxd);
1247                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1248
1249                 first_seg->ol_flags |= pkt_flags;
1250
1251                 /* Prefetch data of first segment, if configured to do so. */
1252                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1253                                           first_seg->data_off));
1254                 rx_pkts[nb_rx++] = first_seg;
1255                 first_seg = NULL;
1256         }
1257
1258         /* Record index of the next RX descriptor to probe. */
1259         rxq->rx_tail = rx_id;
1260         rxq->pkt_first_seg = first_seg;
1261         rxq->pkt_last_seg = last_seg;
1262
1263         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1264
1265         return nb_rx;
1266 }
1267
1268 /* implement recv_scattered_pkts  */
1269 uint16_t
1270 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1271                         uint16_t nb_pkts)
1272 {
1273         struct iavf_rx_queue *rxq = rx_queue;
1274         union iavf_rx_desc rxd;
1275         struct rte_mbuf *rxe;
1276         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1277         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1278         struct rte_mbuf *nmb, *rxm;
1279         uint16_t rx_id = rxq->rx_tail;
1280         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1281         struct rte_eth_dev *dev;
1282         uint32_t rx_status;
1283         uint64_t qword1;
1284         uint64_t dma_addr;
1285         uint64_t pkt_flags;
1286
1287         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1288         volatile union iavf_rx_desc *rxdp;
1289         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1290
1291         while (nb_rx < nb_pkts) {
1292                 rxdp = &rx_ring[rx_id];
1293                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1294                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1295                             IAVF_RXD_QW1_STATUS_SHIFT;
1296
1297                 /* Check the DD bit */
1298                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1299                         break;
1300                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1301
1302                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1303                 if (unlikely(!nmb)) {
1304                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1305                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1306                         dev = &rte_eth_devices[rxq->port_id];
1307                         dev->data->rx_mbuf_alloc_failed++;
1308                         break;
1309                 }
1310
1311                 rxd = *rxdp;
1312                 nb_hold++;
1313                 rxe = rxq->sw_ring[rx_id];
1314                 rx_id++;
1315                 if (rx_id == rxq->nb_rx_desc)
1316                         rx_id = 0;
1317
1318                 /* Prefetch next mbuf */
1319                 rte_prefetch0(rxq->sw_ring[rx_id]);
1320
1321                 /* When next RX descriptor is on a cache line boundary,
1322                  * prefetch the next 4 RX descriptors and next 8 pointers
1323                  * to mbufs.
1324                  */
1325                 if ((rx_id & 0x3) == 0) {
1326                         rte_prefetch0(&rx_ring[rx_id]);
1327                         rte_prefetch0(rxq->sw_ring[rx_id]);
1328                 }
1329
1330                 rxm = rxe;
1331                 dma_addr =
1332                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1333
1334                 /* Set data buffer address and data length of the mbuf */
1335                 rxdp->read.hdr_addr = 0;
1336                 rxdp->read.pkt_addr = dma_addr;
1337                 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1338                                  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1339                 rxm->data_len = rx_packet_len;
1340                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1341
1342                 /* If this is the first buffer of the received packet, set the
1343                  * pointer to the first mbuf of the packet and initialize its
1344                  * context. Otherwise, update the total length and the number
1345                  * of segments of the current scattered packet, and update the
1346                  * pointer to the last mbuf of the current packet.
1347                  */
1348                 if (!first_seg) {
1349                         first_seg = rxm;
1350                         first_seg->nb_segs = 1;
1351                         first_seg->pkt_len = rx_packet_len;
1352                 } else {
1353                         first_seg->pkt_len =
1354                                 (uint16_t)(first_seg->pkt_len +
1355                                                 rx_packet_len);
1356                         first_seg->nb_segs++;
1357                         last_seg->next = rxm;
1358                 }
1359
1360                 /* If this is not the last buffer of the received packet,
1361                  * update the pointer to the last mbuf of the current scattered
1362                  * packet and continue to parse the RX ring.
1363                  */
1364                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1365                         last_seg = rxm;
1366                         continue;
1367                 }
1368
1369                 /* This is the last buffer of the received packet. If the CRC
1370                  * is not stripped by the hardware:
1371                  *  - Subtract the CRC length from the total packet length.
1372                  *  - If the last buffer only contains the whole CRC or a part
1373                  *  of it, free the mbuf associated to the last buffer. If part
1374                  *  of the CRC is also contained in the previous mbuf, subtract
1375                  *  the length of that CRC part from the data length of the
1376                  *  previous mbuf.
1377                  */
1378                 rxm->next = NULL;
1379                 if (unlikely(rxq->crc_len > 0)) {
1380                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1381                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1382                                 rte_pktmbuf_free_seg(rxm);
1383                                 first_seg->nb_segs--;
1384                                 last_seg->data_len =
1385                                         (uint16_t)(last_seg->data_len -
1386                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1387                                 last_seg->next = NULL;
1388                         } else
1389                                 rxm->data_len = (uint16_t)(rx_packet_len -
1390                                                         RTE_ETHER_CRC_LEN);
1391                 }
1392
1393                 first_seg->port = rxq->port_id;
1394                 first_seg->ol_flags = 0;
1395                 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1396                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1397                 first_seg->packet_type =
1398                         ptype_tbl[(uint8_t)((qword1 &
1399                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1400
1401                 if (pkt_flags & PKT_RX_RSS_HASH)
1402                         first_seg->hash.rss =
1403                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1404
1405                 if (pkt_flags & PKT_RX_FDIR)
1406                         pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
1407
1408                 first_seg->ol_flags |= pkt_flags;
1409
1410                 /* Prefetch data of first segment, if configured to do so. */
1411                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1412                                           first_seg->data_off));
1413                 rx_pkts[nb_rx++] = first_seg;
1414                 first_seg = NULL;
1415         }
1416
1417         /* Record index of the next RX descriptor to probe. */
1418         rxq->rx_tail = rx_id;
1419         rxq->pkt_first_seg = first_seg;
1420         rxq->pkt_last_seg = last_seg;
1421
1422         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1423
1424         return nb_rx;
1425 }
1426
1427 #define IAVF_LOOK_AHEAD 8
1428 static inline int
1429 iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq)
1430 {
1431         volatile union iavf_rx_flex_desc *rxdp;
1432         struct rte_mbuf **rxep;
1433         struct rte_mbuf *mb;
1434         uint16_t stat_err0;
1435         uint16_t pkt_len;
1436         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1437         int32_t i, j, nb_rx = 0;
1438         uint64_t pkt_flags;
1439         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1440
1441         rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
1442         rxep = &rxq->sw_ring[rxq->rx_tail];
1443
1444         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1445
1446         /* Make sure there is at least 1 packet to receive */
1447         if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1448                 return 0;
1449
1450         /* Scan LOOK_AHEAD descriptors at a time to determine which
1451          * descriptors reference packets that are ready to be received.
1452          */
1453         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1454              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1455                 /* Read desc statuses backwards to avoid race condition */
1456                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
1457                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1458
1459                 rte_smp_rmb();
1460
1461                 /* Compute how many status bits were set */
1462                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1463                         nb_dd += s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
1464
1465                 nb_rx += nb_dd;
1466
1467                 /* Translate descriptor info to mbuf parameters */
1468                 for (j = 0; j < nb_dd; j++) {
1469                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1470                                           rxq->rx_tail +
1471                                           i * IAVF_LOOK_AHEAD + j);
1472
1473                         mb = rxep[j];
1474                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1475                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1476                         mb->data_len = pkt_len;
1477                         mb->pkt_len = pkt_len;
1478                         mb->ol_flags = 0;
1479
1480                         mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1481                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1482                         iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j]);
1483                         iavf_rxd_to_pkt_fields(mb, &rxdp[j]);
1484                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1485                         pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
1486
1487                         mb->ol_flags |= pkt_flags;
1488                 }
1489
1490                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1491                         rxq->rx_stage[i + j] = rxep[j];
1492
1493                 if (nb_dd != IAVF_LOOK_AHEAD)
1494                         break;
1495         }
1496
1497         /* Clear software ring entries */
1498         for (i = 0; i < nb_rx; i++)
1499                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1500
1501         return nb_rx;
1502 }
1503
1504 static inline int
1505 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1506 {
1507         volatile union iavf_rx_desc *rxdp;
1508         struct rte_mbuf **rxep;
1509         struct rte_mbuf *mb;
1510         uint16_t pkt_len;
1511         uint64_t qword1;
1512         uint32_t rx_status;
1513         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1514         int32_t i, j, nb_rx = 0;
1515         uint64_t pkt_flags;
1516         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1517
1518         rxdp = &rxq->rx_ring[rxq->rx_tail];
1519         rxep = &rxq->sw_ring[rxq->rx_tail];
1520
1521         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1522         rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1523                     IAVF_RXD_QW1_STATUS_SHIFT;
1524
1525         /* Make sure there is at least 1 packet to receive */
1526         if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1527                 return 0;
1528
1529         /* Scan LOOK_AHEAD descriptors at a time to determine which
1530          * descriptors reference packets that are ready to be received.
1531          */
1532         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1533              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1534                 /* Read desc statuses backwards to avoid race condition */
1535                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1536                         qword1 = rte_le_to_cpu_64(
1537                                 rxdp[j].wb.qword1.status_error_len);
1538                         s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1539                                IAVF_RXD_QW1_STATUS_SHIFT;
1540                 }
1541
1542                 rte_smp_rmb();
1543
1544                 /* Compute how many status bits were set */
1545                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1546                         nb_dd += s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1547
1548                 nb_rx += nb_dd;
1549
1550                 /* Translate descriptor info to mbuf parameters */
1551                 for (j = 0; j < nb_dd; j++) {
1552                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1553                                          rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1554
1555                         mb = rxep[j];
1556                         qword1 = rte_le_to_cpu_64
1557                                         (rxdp[j].wb.qword1.status_error_len);
1558                         pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1559                                   IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1560                         mb->data_len = pkt_len;
1561                         mb->pkt_len = pkt_len;
1562                         mb->ol_flags = 0;
1563                         iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1564                         pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1565                         mb->packet_type =
1566                                 ptype_tbl[(uint8_t)((qword1 &
1567                                 IAVF_RXD_QW1_PTYPE_MASK) >>
1568                                 IAVF_RXD_QW1_PTYPE_SHIFT)];
1569
1570                         if (pkt_flags & PKT_RX_RSS_HASH)
1571                                 mb->hash.rss = rte_le_to_cpu_32(
1572                                         rxdp[j].wb.qword0.hi_dword.rss);
1573
1574                         if (pkt_flags & PKT_RX_FDIR)
1575                                 pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
1576
1577                         mb->ol_flags |= pkt_flags;
1578                 }
1579
1580                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1581                         rxq->rx_stage[i + j] = rxep[j];
1582
1583                 if (nb_dd != IAVF_LOOK_AHEAD)
1584                         break;
1585         }
1586
1587         /* Clear software ring entries */
1588         for (i = 0; i < nb_rx; i++)
1589                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1590
1591         return nb_rx;
1592 }
1593
1594 static inline uint16_t
1595 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
1596                        struct rte_mbuf **rx_pkts,
1597                        uint16_t nb_pkts)
1598 {
1599         uint16_t i;
1600         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1601
1602         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1603
1604         for (i = 0; i < nb_pkts; i++)
1605                 rx_pkts[i] = stage[i];
1606
1607         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1608         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1609
1610         return nb_pkts;
1611 }
1612
1613 static inline int
1614 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
1615 {
1616         volatile union iavf_rx_desc *rxdp;
1617         struct rte_mbuf **rxep;
1618         struct rte_mbuf *mb;
1619         uint16_t alloc_idx, i;
1620         uint64_t dma_addr;
1621         int diag;
1622
1623         /* Allocate buffers in bulk */
1624         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1625                                 (rxq->rx_free_thresh - 1));
1626         rxep = &rxq->sw_ring[alloc_idx];
1627         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1628                                     rxq->rx_free_thresh);
1629         if (unlikely(diag != 0)) {
1630                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1631                 return -ENOMEM;
1632         }
1633
1634         rxdp = &rxq->rx_ring[alloc_idx];
1635         for (i = 0; i < rxq->rx_free_thresh; i++) {
1636                 if (likely(i < (rxq->rx_free_thresh - 1)))
1637                         /* Prefetch next mbuf */
1638                         rte_prefetch0(rxep[i + 1]);
1639
1640                 mb = rxep[i];
1641                 rte_mbuf_refcnt_set(mb, 1);
1642                 mb->next = NULL;
1643                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1644                 mb->nb_segs = 1;
1645                 mb->port = rxq->port_id;
1646                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1647                 rxdp[i].read.hdr_addr = 0;
1648                 rxdp[i].read.pkt_addr = dma_addr;
1649         }
1650
1651         /* Update rx tail register */
1652         rte_wmb();
1653         IAVF_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
1654
1655         rxq->rx_free_trigger =
1656                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1657         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1658                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1659
1660         return 0;
1661 }
1662
1663 static inline uint16_t
1664 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1665 {
1666         struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
1667         uint16_t nb_rx = 0;
1668
1669         if (!nb_pkts)
1670                 return 0;
1671
1672         if (rxq->rx_nb_avail)
1673                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1674
1675         if (rxq->rxdid == IAVF_RXDID_COMMS_OVS_1)
1676                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq);
1677         else
1678                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
1679         rxq->rx_next_avail = 0;
1680         rxq->rx_nb_avail = nb_rx;
1681         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1682
1683         if (rxq->rx_tail > rxq->rx_free_trigger) {
1684                 if (iavf_rx_alloc_bufs(rxq) != 0) {
1685                         uint16_t i, j;
1686
1687                         /* TODO: count rx_mbuf_alloc_failed here */
1688
1689                         rxq->rx_nb_avail = 0;
1690                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1691                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1692                                 rxq->sw_ring[j] = rxq->rx_stage[i];
1693
1694                         return 0;
1695                 }
1696         }
1697
1698         if (rxq->rx_tail >= rxq->nb_rx_desc)
1699                 rxq->rx_tail = 0;
1700
1701         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
1702                    rxq->port_id, rxq->queue_id,
1703                    rxq->rx_tail, nb_rx);
1704
1705         if (rxq->rx_nb_avail)
1706                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1707
1708         return 0;
1709 }
1710
1711 static uint16_t
1712 iavf_recv_pkts_bulk_alloc(void *rx_queue,
1713                          struct rte_mbuf **rx_pkts,
1714                          uint16_t nb_pkts)
1715 {
1716         uint16_t nb_rx = 0, n, count;
1717
1718         if (unlikely(nb_pkts == 0))
1719                 return 0;
1720
1721         if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
1722                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1723
1724         while (nb_pkts) {
1725                 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
1726                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1727                 nb_rx = (uint16_t)(nb_rx + count);
1728                 nb_pkts = (uint16_t)(nb_pkts - count);
1729                 if (count < n)
1730                         break;
1731         }
1732
1733         return nb_rx;
1734 }
1735
1736 static inline int
1737 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
1738 {
1739         struct iavf_tx_entry *sw_ring = txq->sw_ring;
1740         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
1741         uint16_t nb_tx_desc = txq->nb_tx_desc;
1742         uint16_t desc_to_clean_to;
1743         uint16_t nb_tx_to_clean;
1744
1745         volatile struct iavf_tx_desc *txd = txq->tx_ring;
1746
1747         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
1748         if (desc_to_clean_to >= nb_tx_desc)
1749                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
1750
1751         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
1752         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
1753                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
1754                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
1755                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
1756                                 "(port=%d queue=%d)", desc_to_clean_to,
1757                                 txq->port_id, txq->queue_id);
1758                 return -1;
1759         }
1760
1761         if (last_desc_cleaned > desc_to_clean_to)
1762                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
1763                                                         desc_to_clean_to);
1764         else
1765                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
1766                                         last_desc_cleaned);
1767
1768         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
1769
1770         txq->last_desc_cleaned = desc_to_clean_to;
1771         txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
1772
1773         return 0;
1774 }
1775
1776 /* Check if the context descriptor is needed for TX offloading */
1777 static inline uint16_t
1778 iavf_calc_context_desc(uint64_t flags)
1779 {
1780         static uint64_t mask = PKT_TX_TCP_SEG;
1781
1782         return (flags & mask) ? 1 : 0;
1783 }
1784
1785 static inline void
1786 iavf_txd_enable_checksum(uint64_t ol_flags,
1787                         uint32_t *td_cmd,
1788                         uint32_t *td_offset,
1789                         union iavf_tx_offload tx_offload)
1790 {
1791         /* Set MACLEN */
1792         *td_offset |= (tx_offload.l2_len >> 1) <<
1793                       IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1794
1795         /* Enable L3 checksum offloads */
1796         if (ol_flags & PKT_TX_IP_CKSUM) {
1797                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
1798                 *td_offset |= (tx_offload.l3_len >> 2) <<
1799                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1800         } else if (ol_flags & PKT_TX_IPV4) {
1801                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
1802                 *td_offset |= (tx_offload.l3_len >> 2) <<
1803                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1804         } else if (ol_flags & PKT_TX_IPV6) {
1805                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
1806                 *td_offset |= (tx_offload.l3_len >> 2) <<
1807                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1808         }
1809
1810         if (ol_flags & PKT_TX_TCP_SEG) {
1811                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1812                 *td_offset |= (tx_offload.l4_len >> 2) <<
1813                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1814                 return;
1815         }
1816
1817         /* Enable L4 checksum offloads */
1818         switch (ol_flags & PKT_TX_L4_MASK) {
1819         case PKT_TX_TCP_CKSUM:
1820                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1821                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
1822                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1823                 break;
1824         case PKT_TX_SCTP_CKSUM:
1825                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
1826                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
1827                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1828                 break;
1829         case PKT_TX_UDP_CKSUM:
1830                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
1831                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
1832                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1833                 break;
1834         default:
1835                 break;
1836         }
1837 }
1838
1839 /* set TSO context descriptor
1840  * support IP -> L4 and IP -> IP -> L4
1841  */
1842 static inline uint64_t
1843 iavf_set_tso_ctx(struct rte_mbuf *mbuf, union iavf_tx_offload tx_offload)
1844 {
1845         uint64_t ctx_desc = 0;
1846         uint32_t cd_cmd, hdr_len, cd_tso_len;
1847
1848         if (!tx_offload.l4_len) {
1849                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
1850                 return ctx_desc;
1851         }
1852
1853         hdr_len = tx_offload.l2_len +
1854                   tx_offload.l3_len +
1855                   tx_offload.l4_len;
1856
1857         cd_cmd = IAVF_TX_CTX_DESC_TSO;
1858         cd_tso_len = mbuf->pkt_len - hdr_len;
1859         ctx_desc |= ((uint64_t)cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1860                      ((uint64_t)cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1861                      ((uint64_t)mbuf->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1862
1863         return ctx_desc;
1864 }
1865
1866 /* Construct the tx flags */
1867 static inline uint64_t
1868 iavf_build_ctob(uint32_t td_cmd, uint32_t td_offset, unsigned int size,
1869                uint32_t td_tag)
1870 {
1871         return rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DATA |
1872                                 ((uint64_t)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
1873                                 ((uint64_t)td_offset <<
1874                                  IAVF_TXD_QW1_OFFSET_SHIFT) |
1875                                 ((uint64_t)size  <<
1876                                  IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
1877                                 ((uint64_t)td_tag  <<
1878                                  IAVF_TXD_QW1_L2TAG1_SHIFT));
1879 }
1880
1881 /* TX function */
1882 uint16_t
1883 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1884 {
1885         volatile struct iavf_tx_desc *txd;
1886         volatile struct iavf_tx_desc *txr;
1887         struct iavf_tx_queue *txq;
1888         struct iavf_tx_entry *sw_ring;
1889         struct iavf_tx_entry *txe, *txn;
1890         struct rte_mbuf *tx_pkt;
1891         struct rte_mbuf *m_seg;
1892         uint16_t tx_id;
1893         uint16_t nb_tx;
1894         uint32_t td_cmd;
1895         uint32_t td_offset;
1896         uint32_t td_tag;
1897         uint64_t ol_flags;
1898         uint16_t nb_used;
1899         uint16_t nb_ctx;
1900         uint16_t tx_last;
1901         uint16_t slen;
1902         uint64_t buf_dma_addr;
1903         union iavf_tx_offload tx_offload = {0};
1904
1905         txq = tx_queue;
1906         sw_ring = txq->sw_ring;
1907         txr = txq->tx_ring;
1908         tx_id = txq->tx_tail;
1909         txe = &sw_ring[tx_id];
1910
1911         /* Check if the descriptor ring needs to be cleaned. */
1912         if (txq->nb_free < txq->free_thresh)
1913                 (void)iavf_xmit_cleanup(txq);
1914
1915         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1916                 td_cmd = 0;
1917                 td_tag = 0;
1918                 td_offset = 0;
1919
1920                 tx_pkt = *tx_pkts++;
1921                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1922
1923                 ol_flags = tx_pkt->ol_flags;
1924                 tx_offload.l2_len = tx_pkt->l2_len;
1925                 tx_offload.l3_len = tx_pkt->l3_len;
1926                 tx_offload.l4_len = tx_pkt->l4_len;
1927                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
1928                 /* Calculate the number of context descriptors needed. */
1929                 nb_ctx = iavf_calc_context_desc(ol_flags);
1930
1931                 /* The number of descriptors that must be allocated for
1932                  * a packet equals to the number of the segments of that
1933                  * packet plus 1 context descriptor if needed.
1934                  */
1935                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1936                 tx_last = (uint16_t)(tx_id + nb_used - 1);
1937
1938                 /* Circular ring */
1939                 if (tx_last >= txq->nb_tx_desc)
1940                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1941
1942                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
1943                            " tx_first=%u tx_last=%u",
1944                            txq->port_id, txq->queue_id, tx_id, tx_last);
1945
1946                 if (nb_used > txq->nb_free) {
1947                         if (iavf_xmit_cleanup(txq)) {
1948                                 if (nb_tx == 0)
1949                                         return 0;
1950                                 goto end_of_tx;
1951                         }
1952                         if (unlikely(nb_used > txq->rs_thresh)) {
1953                                 while (nb_used > txq->nb_free) {
1954                                         if (iavf_xmit_cleanup(txq)) {
1955                                                 if (nb_tx == 0)
1956                                                         return 0;
1957                                                 goto end_of_tx;
1958                                         }
1959                                 }
1960                         }
1961                 }
1962
1963                 /* Descriptor based VLAN insertion */
1964                 if (ol_flags & PKT_TX_VLAN_PKT) {
1965                         td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
1966                         td_tag = tx_pkt->vlan_tci;
1967                 }
1968
1969                 /* According to datasheet, the bit2 is reserved and must be
1970                  * set to 1.
1971                  */
1972                 td_cmd |= 0x04;
1973
1974                 /* Enable checksum offloading */
1975                 if (ol_flags & IAVF_TX_CKSUM_OFFLOAD_MASK)
1976                         iavf_txd_enable_checksum(ol_flags, &td_cmd,
1977                                                 &td_offset, tx_offload);
1978
1979                 if (nb_ctx) {
1980                         /* Setup TX context descriptor if required */
1981                         uint64_t cd_type_cmd_tso_mss =
1982                                 IAVF_TX_DESC_DTYPE_CONTEXT;
1983                         volatile struct iavf_tx_context_desc *ctx_txd =
1984                                 (volatile struct iavf_tx_context_desc *)
1985                                                         &txr[tx_id];
1986
1987                         txn = &sw_ring[txe->next_id];
1988                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1989                         if (txe->mbuf) {
1990                                 rte_pktmbuf_free_seg(txe->mbuf);
1991                                 txe->mbuf = NULL;
1992                         }
1993
1994                         /* TSO enabled */
1995                         if (ol_flags & PKT_TX_TCP_SEG)
1996                                 cd_type_cmd_tso_mss |=
1997                                         iavf_set_tso_ctx(tx_pkt, tx_offload);
1998
1999                         ctx_txd->type_cmd_tso_mss =
2000                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2001
2002                         IAVF_DUMP_TX_DESC(txq, &txr[tx_id], tx_id);
2003                         txe->last_id = tx_last;
2004                         tx_id = txe->next_id;
2005                         txe = txn;
2006                 }
2007
2008                 m_seg = tx_pkt;
2009                 do {
2010                         txd = &txr[tx_id];
2011                         txn = &sw_ring[txe->next_id];
2012
2013                         if (txe->mbuf)
2014                                 rte_pktmbuf_free_seg(txe->mbuf);
2015                         txe->mbuf = m_seg;
2016
2017                         /* Setup TX Descriptor */
2018                         slen = m_seg->data_len;
2019                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2020                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
2021                         txd->cmd_type_offset_bsz = iavf_build_ctob(td_cmd,
2022                                                                   td_offset,
2023                                                                   slen,
2024                                                                   td_tag);
2025
2026                         IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2027                         txe->last_id = tx_last;
2028                         tx_id = txe->next_id;
2029                         txe = txn;
2030                         m_seg = m_seg->next;
2031                 } while (m_seg);
2032
2033                 /* The last packet data descriptor needs End Of Packet (EOP) */
2034                 td_cmd |= IAVF_TX_DESC_CMD_EOP;
2035                 txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
2036                 txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
2037
2038                 if (txq->nb_used >= txq->rs_thresh) {
2039                         PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
2040                                    "%4u (port=%d queue=%d)",
2041                                    tx_last, txq->port_id, txq->queue_id);
2042
2043                         td_cmd |= IAVF_TX_DESC_CMD_RS;
2044
2045                         /* Update txq RS bit counters */
2046                         txq->nb_used = 0;
2047                 }
2048
2049                 txd->cmd_type_offset_bsz |=
2050                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2051                                          IAVF_TXD_QW1_CMD_SHIFT);
2052                 IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2053         }
2054
2055 end_of_tx:
2056         rte_wmb();
2057
2058         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
2059                    txq->port_id, txq->queue_id, tx_id, nb_tx);
2060
2061         IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
2062         txq->tx_tail = tx_id;
2063
2064         return nb_tx;
2065 }
2066
2067 /* TX prep functions */
2068 uint16_t
2069 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2070               uint16_t nb_pkts)
2071 {
2072         int i, ret;
2073         uint64_t ol_flags;
2074         struct rte_mbuf *m;
2075
2076         for (i = 0; i < nb_pkts; i++) {
2077                 m = tx_pkts[i];
2078                 ol_flags = m->ol_flags;
2079
2080                 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
2081                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
2082                         if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
2083                                 rte_errno = EINVAL;
2084                                 return i;
2085                         }
2086                 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
2087                            (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
2088                         /* MSS outside the range are considered malicious */
2089                         rte_errno = EINVAL;
2090                         return i;
2091                 }
2092
2093                 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
2094                         rte_errno = ENOTSUP;
2095                         return i;
2096                 }
2097
2098 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2099                 ret = rte_validate_tx_offload(m);
2100                 if (ret != 0) {
2101                         rte_errno = -ret;
2102                         return i;
2103                 }
2104 #endif
2105                 ret = rte_net_intel_cksum_prepare(m);
2106                 if (ret != 0) {
2107                         rte_errno = -ret;
2108                         return i;
2109                 }
2110         }
2111
2112         return i;
2113 }
2114
2115 /* choose rx function*/
2116 void
2117 iavf_set_rx_function(struct rte_eth_dev *dev)
2118 {
2119         struct iavf_adapter *adapter =
2120                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2121         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2122 #ifdef RTE_ARCH_X86
2123         struct iavf_rx_queue *rxq;
2124         int i;
2125         bool use_avx2 = false;
2126 #ifdef CC_AVX512_SUPPORT
2127         bool use_avx512 = false;
2128 #endif
2129
2130         if (!iavf_rx_vec_dev_check(dev) &&
2131                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2132                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2133                         rxq = dev->data->rx_queues[i];
2134                         (void)iavf_rxq_vec_setup(rxq);
2135                 }
2136
2137                 if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2138                      rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2139                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2140                         use_avx2 = true;
2141 #ifdef CC_AVX512_SUPPORT
2142                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2143                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2144                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2145                         use_avx512 = true;
2146 #endif
2147
2148                 if (dev->data->scattered_rx) {
2149                         PMD_DRV_LOG(DEBUG,
2150                                     "Using %sVector Scattered Rx (port %d).",
2151                                     use_avx2 ? "avx2 " : "",
2152                                     dev->data->port_id);
2153                         if (vf->vf_res->vf_cap_flags &
2154                                 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2155                                 dev->rx_pkt_burst = use_avx2 ?
2156                                         iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
2157                                         iavf_recv_scattered_pkts_vec_flex_rxd;
2158 #ifdef CC_AVX512_SUPPORT
2159                                 if (use_avx512)
2160                                         dev->rx_pkt_burst =
2161                                                 iavf_recv_scattered_pkts_vec_avx512_flex_rxd;
2162 #endif
2163                         } else {
2164                                 dev->rx_pkt_burst = use_avx2 ?
2165                                         iavf_recv_scattered_pkts_vec_avx2 :
2166                                         iavf_recv_scattered_pkts_vec;
2167 #ifdef CC_AVX512_SUPPORT
2168                                 if (use_avx512)
2169                                         dev->rx_pkt_burst =
2170                                                 iavf_recv_scattered_pkts_vec_avx512;
2171 #endif
2172                         }
2173                 } else {
2174                         PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2175                                     use_avx2 ? "avx2 " : "",
2176                                     dev->data->port_id);
2177                         if (vf->vf_res->vf_cap_flags &
2178                                 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2179                                 dev->rx_pkt_burst = use_avx2 ?
2180                                         iavf_recv_pkts_vec_avx2_flex_rxd :
2181                                         iavf_recv_pkts_vec_flex_rxd;
2182 #ifdef CC_AVX512_SUPPORT
2183                                 if (use_avx512)
2184                                         dev->rx_pkt_burst =
2185                                                 iavf_recv_pkts_vec_avx512_flex_rxd;
2186 #endif
2187                         } else {
2188                                 dev->rx_pkt_burst = use_avx2 ?
2189                                         iavf_recv_pkts_vec_avx2 :
2190                                         iavf_recv_pkts_vec;
2191 #ifdef CC_AVX512_SUPPORT
2192                                 if (use_avx512)
2193                                         dev->rx_pkt_burst =
2194                                                 iavf_recv_pkts_vec_avx512;
2195 #endif
2196                         }
2197                 }
2198
2199                 return;
2200         }
2201 #endif
2202
2203         if (dev->data->scattered_rx) {
2204                 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
2205                             dev->data->port_id);
2206                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2207                         dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
2208                 else
2209                         dev->rx_pkt_burst = iavf_recv_scattered_pkts;
2210         } else if (adapter->rx_bulk_alloc_allowed) {
2211                 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
2212                             dev->data->port_id);
2213                 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
2214         } else {
2215                 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
2216                             dev->data->port_id);
2217                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2218                         dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
2219                 else
2220                         dev->rx_pkt_burst = iavf_recv_pkts;
2221         }
2222 }
2223
2224 /* choose tx function*/
2225 void
2226 iavf_set_tx_function(struct rte_eth_dev *dev)
2227 {
2228 #ifdef RTE_ARCH_X86
2229         struct iavf_tx_queue *txq;
2230         int i;
2231         bool use_avx2 = false;
2232
2233         if (!iavf_tx_vec_dev_check(dev) &&
2234                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2235                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2236                         txq = dev->data->tx_queues[i];
2237                         if (!txq)
2238                                 continue;
2239                         iavf_txq_vec_setup(txq);
2240                 }
2241
2242                 if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2243                      rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2244                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2245                         use_avx2 = true;
2246
2247                 PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
2248                             use_avx2 ? "avx2 " : "",
2249                             dev->data->port_id);
2250                 dev->tx_pkt_burst = use_avx2 ?
2251                                     iavf_xmit_pkts_vec_avx2 :
2252                                     iavf_xmit_pkts_vec;
2253                 dev->tx_pkt_prepare = NULL;
2254
2255                 return;
2256         }
2257 #endif
2258
2259         PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
2260                     dev->data->port_id);
2261         dev->tx_pkt_burst = iavf_xmit_pkts;
2262         dev->tx_pkt_prepare = iavf_prep_pkts;
2263 }
2264
2265 static int
2266 iavf_tx_done_cleanup_full(struct iavf_tx_queue *txq,
2267                         uint32_t free_cnt)
2268 {
2269         struct iavf_tx_entry *swr_ring = txq->sw_ring;
2270         uint16_t i, tx_last, tx_id;
2271         uint16_t nb_tx_free_last;
2272         uint16_t nb_tx_to_clean;
2273         uint32_t pkt_cnt;
2274
2275         /* Start free mbuf from the next of tx_tail */
2276         tx_last = txq->tx_tail;
2277         tx_id  = swr_ring[tx_last].next_id;
2278
2279         if (txq->nb_free == 0 && iavf_xmit_cleanup(txq))
2280                 return 0;
2281
2282         nb_tx_to_clean = txq->nb_free;
2283         nb_tx_free_last = txq->nb_free;
2284         if (!free_cnt)
2285                 free_cnt = txq->nb_tx_desc;
2286
2287         /* Loop through swr_ring to count the amount of
2288          * freeable mubfs and packets.
2289          */
2290         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2291                 for (i = 0; i < nb_tx_to_clean &&
2292                         pkt_cnt < free_cnt &&
2293                         tx_id != tx_last; i++) {
2294                         if (swr_ring[tx_id].mbuf != NULL) {
2295                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2296                                 swr_ring[tx_id].mbuf = NULL;
2297
2298                                 /*
2299                                  * last segment in the packet,
2300                                  * increment packet count
2301                                  */
2302                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2303                         }
2304
2305                         tx_id = swr_ring[tx_id].next_id;
2306                 }
2307
2308                 if (txq->rs_thresh > txq->nb_tx_desc -
2309                         txq->nb_free || tx_id == tx_last)
2310                         break;
2311
2312                 if (pkt_cnt < free_cnt) {
2313                         if (iavf_xmit_cleanup(txq))
2314                                 break;
2315
2316                         nb_tx_to_clean = txq->nb_free - nb_tx_free_last;
2317                         nb_tx_free_last = txq->nb_free;
2318                 }
2319         }
2320
2321         return (int)pkt_cnt;
2322 }
2323
2324 int
2325 iavf_dev_tx_done_cleanup(void *txq, uint32_t free_cnt)
2326 {
2327         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
2328
2329         return iavf_tx_done_cleanup_full(q, free_cnt);
2330 }
2331
2332 void
2333 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2334                      struct rte_eth_rxq_info *qinfo)
2335 {
2336         struct iavf_rx_queue *rxq;
2337
2338         rxq = dev->data->rx_queues[queue_id];
2339
2340         qinfo->mp = rxq->mp;
2341         qinfo->scattered_rx = dev->data->scattered_rx;
2342         qinfo->nb_desc = rxq->nb_rx_desc;
2343
2344         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2345         qinfo->conf.rx_drop_en = true;
2346         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2347 }
2348
2349 void
2350 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2351                      struct rte_eth_txq_info *qinfo)
2352 {
2353         struct iavf_tx_queue *txq;
2354
2355         txq = dev->data->tx_queues[queue_id];
2356
2357         qinfo->nb_desc = txq->nb_tx_desc;
2358
2359         qinfo->conf.tx_free_thresh = txq->free_thresh;
2360         qinfo->conf.tx_rs_thresh = txq->rs_thresh;
2361         qinfo->conf.offloads = txq->offloads;
2362         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2363 }
2364
2365 /* Get the number of used descriptors of a rx queue */
2366 uint32_t
2367 iavf_dev_rxq_count(struct rte_eth_dev *dev, uint16_t queue_id)
2368 {
2369 #define IAVF_RXQ_SCAN_INTERVAL 4
2370         volatile union iavf_rx_desc *rxdp;
2371         struct iavf_rx_queue *rxq;
2372         uint16_t desc = 0;
2373
2374         rxq = dev->data->rx_queues[queue_id];
2375         rxdp = &rxq->rx_ring[rxq->rx_tail];
2376
2377         while ((desc < rxq->nb_rx_desc) &&
2378                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2379                  IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
2380                (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
2381                 /* Check the DD bit of a rx descriptor of each 4 in a group,
2382                  * to avoid checking too frequently and downgrading performance
2383                  * too much.
2384                  */
2385                 desc += IAVF_RXQ_SCAN_INTERVAL;
2386                 rxdp += IAVF_RXQ_SCAN_INTERVAL;
2387                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2388                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2389                                         desc - rxq->nb_rx_desc]);
2390         }
2391
2392         return desc;
2393 }
2394
2395 int
2396 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
2397 {
2398         struct iavf_rx_queue *rxq = rx_queue;
2399         volatile uint64_t *status;
2400         uint64_t mask;
2401         uint32_t desc;
2402
2403         if (unlikely(offset >= rxq->nb_rx_desc))
2404                 return -EINVAL;
2405
2406         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2407                 return RTE_ETH_RX_DESC_UNAVAIL;
2408
2409         desc = rxq->rx_tail + offset;
2410         if (desc >= rxq->nb_rx_desc)
2411                 desc -= rxq->nb_rx_desc;
2412
2413         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2414         mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
2415                 << IAVF_RXD_QW1_STATUS_SHIFT);
2416         if (*status & mask)
2417                 return RTE_ETH_RX_DESC_DONE;
2418
2419         return RTE_ETH_RX_DESC_AVAIL;
2420 }
2421
2422 int
2423 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
2424 {
2425         struct iavf_tx_queue *txq = tx_queue;
2426         volatile uint64_t *status;
2427         uint64_t mask, expect;
2428         uint32_t desc;
2429
2430         if (unlikely(offset >= txq->nb_tx_desc))
2431                 return -EINVAL;
2432
2433         desc = txq->tx_tail + offset;
2434         /* go to next desc that has the RS bit */
2435         desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
2436                 txq->rs_thresh;
2437         if (desc >= txq->nb_tx_desc) {
2438                 desc -= txq->nb_tx_desc;
2439                 if (desc >= txq->nb_tx_desc)
2440                         desc -= txq->nb_tx_desc;
2441         }
2442
2443         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2444         mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
2445         expect = rte_cpu_to_le_64(
2446                  IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
2447         if ((*status & mask) == expect)
2448                 return RTE_ETH_TX_DESC_DONE;
2449
2450         return RTE_ETH_TX_DESC_FULL;
2451 }
2452
2453 const uint32_t *
2454 iavf_get_default_ptype_table(void)
2455 {
2456         static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
2457                 __rte_cache_aligned = {
2458                 /* L2 types */
2459                 /* [0] reserved */
2460                 [1] = RTE_PTYPE_L2_ETHER,
2461                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
2462                 /* [3] - [5] reserved */
2463                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
2464                 /* [7] - [10] reserved */
2465                 [11] = RTE_PTYPE_L2_ETHER_ARP,
2466                 /* [12] - [21] reserved */
2467
2468                 /* Non tunneled IPv4 */
2469                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2470                        RTE_PTYPE_L4_FRAG,
2471                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2472                        RTE_PTYPE_L4_NONFRAG,
2473                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2474                        RTE_PTYPE_L4_UDP,
2475                 /* [25] reserved */
2476                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2477                        RTE_PTYPE_L4_TCP,
2478                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2479                        RTE_PTYPE_L4_SCTP,
2480                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2481                        RTE_PTYPE_L4_ICMP,
2482
2483                 /* IPv4 --> IPv4 */
2484                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2485                        RTE_PTYPE_TUNNEL_IP |
2486                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2487                        RTE_PTYPE_INNER_L4_FRAG,
2488                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2489                        RTE_PTYPE_TUNNEL_IP |
2490                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2491                        RTE_PTYPE_INNER_L4_NONFRAG,
2492                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2493                        RTE_PTYPE_TUNNEL_IP |
2494                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2495                        RTE_PTYPE_INNER_L4_UDP,
2496                 /* [32] reserved */
2497                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2498                        RTE_PTYPE_TUNNEL_IP |
2499                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2500                        RTE_PTYPE_INNER_L4_TCP,
2501                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2502                        RTE_PTYPE_TUNNEL_IP |
2503                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2504                        RTE_PTYPE_INNER_L4_SCTP,
2505                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2506                        RTE_PTYPE_TUNNEL_IP |
2507                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2508                        RTE_PTYPE_INNER_L4_ICMP,
2509
2510                 /* IPv4 --> IPv6 */
2511                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2512                        RTE_PTYPE_TUNNEL_IP |
2513                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2514                        RTE_PTYPE_INNER_L4_FRAG,
2515                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2516                        RTE_PTYPE_TUNNEL_IP |
2517                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2518                        RTE_PTYPE_INNER_L4_NONFRAG,
2519                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2520                        RTE_PTYPE_TUNNEL_IP |
2521                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2522                        RTE_PTYPE_INNER_L4_UDP,
2523                 /* [39] reserved */
2524                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2525                        RTE_PTYPE_TUNNEL_IP |
2526                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2527                        RTE_PTYPE_INNER_L4_TCP,
2528                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2529                        RTE_PTYPE_TUNNEL_IP |
2530                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2531                        RTE_PTYPE_INNER_L4_SCTP,
2532                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2533                        RTE_PTYPE_TUNNEL_IP |
2534                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2535                        RTE_PTYPE_INNER_L4_ICMP,
2536
2537                 /* IPv4 --> GRE/Teredo/VXLAN */
2538                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2539                        RTE_PTYPE_TUNNEL_GRENAT,
2540
2541                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
2542                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2543                        RTE_PTYPE_TUNNEL_GRENAT |
2544                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2545                        RTE_PTYPE_INNER_L4_FRAG,
2546                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2547                        RTE_PTYPE_TUNNEL_GRENAT |
2548                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2549                        RTE_PTYPE_INNER_L4_NONFRAG,
2550                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2551                        RTE_PTYPE_TUNNEL_GRENAT |
2552                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2553                        RTE_PTYPE_INNER_L4_UDP,
2554                 /* [47] reserved */
2555                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2556                        RTE_PTYPE_TUNNEL_GRENAT |
2557                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2558                        RTE_PTYPE_INNER_L4_TCP,
2559                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2560                        RTE_PTYPE_TUNNEL_GRENAT |
2561                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2562                        RTE_PTYPE_INNER_L4_SCTP,
2563                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2564                        RTE_PTYPE_TUNNEL_GRENAT |
2565                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2566                        RTE_PTYPE_INNER_L4_ICMP,
2567
2568                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
2569                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2570                        RTE_PTYPE_TUNNEL_GRENAT |
2571                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2572                        RTE_PTYPE_INNER_L4_FRAG,
2573                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2574                        RTE_PTYPE_TUNNEL_GRENAT |
2575                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2576                        RTE_PTYPE_INNER_L4_NONFRAG,
2577                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2578                        RTE_PTYPE_TUNNEL_GRENAT |
2579                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2580                        RTE_PTYPE_INNER_L4_UDP,
2581                 /* [54] reserved */
2582                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2583                        RTE_PTYPE_TUNNEL_GRENAT |
2584                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2585                        RTE_PTYPE_INNER_L4_TCP,
2586                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2587                        RTE_PTYPE_TUNNEL_GRENAT |
2588                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2589                        RTE_PTYPE_INNER_L4_SCTP,
2590                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2591                        RTE_PTYPE_TUNNEL_GRENAT |
2592                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2593                        RTE_PTYPE_INNER_L4_ICMP,
2594
2595                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
2596                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2597                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2598
2599                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2600                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2601                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2602                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2603                        RTE_PTYPE_INNER_L4_FRAG,
2604                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2605                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2606                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2607                        RTE_PTYPE_INNER_L4_NONFRAG,
2608                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2609                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2610                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2611                        RTE_PTYPE_INNER_L4_UDP,
2612                 /* [62] reserved */
2613                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2614                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2615                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2616                        RTE_PTYPE_INNER_L4_TCP,
2617                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2618                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2619                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2620                        RTE_PTYPE_INNER_L4_SCTP,
2621                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2622                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2623                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2624                        RTE_PTYPE_INNER_L4_ICMP,
2625
2626                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2627                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2628                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2629                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2630                        RTE_PTYPE_INNER_L4_FRAG,
2631                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2632                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2633                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2634                        RTE_PTYPE_INNER_L4_NONFRAG,
2635                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2636                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2637                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2638                        RTE_PTYPE_INNER_L4_UDP,
2639                 /* [69] reserved */
2640                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2641                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2642                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2643                        RTE_PTYPE_INNER_L4_TCP,
2644                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2645                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2646                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2647                        RTE_PTYPE_INNER_L4_SCTP,
2648                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2649                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2650                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2651                        RTE_PTYPE_INNER_L4_ICMP,
2652                 /* [73] - [87] reserved */
2653
2654                 /* Non tunneled IPv6 */
2655                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2656                        RTE_PTYPE_L4_FRAG,
2657                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2658                        RTE_PTYPE_L4_NONFRAG,
2659                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2660                        RTE_PTYPE_L4_UDP,
2661                 /* [91] reserved */
2662                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2663                        RTE_PTYPE_L4_TCP,
2664                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2665                        RTE_PTYPE_L4_SCTP,
2666                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2667                        RTE_PTYPE_L4_ICMP,
2668
2669                 /* IPv6 --> IPv4 */
2670                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2671                        RTE_PTYPE_TUNNEL_IP |
2672                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2673                        RTE_PTYPE_INNER_L4_FRAG,
2674                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2675                        RTE_PTYPE_TUNNEL_IP |
2676                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2677                        RTE_PTYPE_INNER_L4_NONFRAG,
2678                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2679                        RTE_PTYPE_TUNNEL_IP |
2680                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2681                        RTE_PTYPE_INNER_L4_UDP,
2682                 /* [98] reserved */
2683                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2684                        RTE_PTYPE_TUNNEL_IP |
2685                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2686                        RTE_PTYPE_INNER_L4_TCP,
2687                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2688                         RTE_PTYPE_TUNNEL_IP |
2689                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2690                         RTE_PTYPE_INNER_L4_SCTP,
2691                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2692                         RTE_PTYPE_TUNNEL_IP |
2693                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2694                         RTE_PTYPE_INNER_L4_ICMP,
2695
2696                 /* IPv6 --> IPv6 */
2697                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2698                         RTE_PTYPE_TUNNEL_IP |
2699                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2700                         RTE_PTYPE_INNER_L4_FRAG,
2701                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2702                         RTE_PTYPE_TUNNEL_IP |
2703                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2704                         RTE_PTYPE_INNER_L4_NONFRAG,
2705                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2706                         RTE_PTYPE_TUNNEL_IP |
2707                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2708                         RTE_PTYPE_INNER_L4_UDP,
2709                 /* [105] reserved */
2710                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2711                         RTE_PTYPE_TUNNEL_IP |
2712                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2713                         RTE_PTYPE_INNER_L4_TCP,
2714                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2715                         RTE_PTYPE_TUNNEL_IP |
2716                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2717                         RTE_PTYPE_INNER_L4_SCTP,
2718                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2719                         RTE_PTYPE_TUNNEL_IP |
2720                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2721                         RTE_PTYPE_INNER_L4_ICMP,
2722
2723                 /* IPv6 --> GRE/Teredo/VXLAN */
2724                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2725                         RTE_PTYPE_TUNNEL_GRENAT,
2726
2727                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
2728                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2729                         RTE_PTYPE_TUNNEL_GRENAT |
2730                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2731                         RTE_PTYPE_INNER_L4_FRAG,
2732                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2733                         RTE_PTYPE_TUNNEL_GRENAT |
2734                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2735                         RTE_PTYPE_INNER_L4_NONFRAG,
2736                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2737                         RTE_PTYPE_TUNNEL_GRENAT |
2738                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2739                         RTE_PTYPE_INNER_L4_UDP,
2740                 /* [113] reserved */
2741                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2742                         RTE_PTYPE_TUNNEL_GRENAT |
2743                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2744                         RTE_PTYPE_INNER_L4_TCP,
2745                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2746                         RTE_PTYPE_TUNNEL_GRENAT |
2747                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2748                         RTE_PTYPE_INNER_L4_SCTP,
2749                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2750                         RTE_PTYPE_TUNNEL_GRENAT |
2751                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2752                         RTE_PTYPE_INNER_L4_ICMP,
2753
2754                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
2755                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2756                         RTE_PTYPE_TUNNEL_GRENAT |
2757                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2758                         RTE_PTYPE_INNER_L4_FRAG,
2759                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2760                         RTE_PTYPE_TUNNEL_GRENAT |
2761                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2762                         RTE_PTYPE_INNER_L4_NONFRAG,
2763                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2764                         RTE_PTYPE_TUNNEL_GRENAT |
2765                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2766                         RTE_PTYPE_INNER_L4_UDP,
2767                 /* [120] reserved */
2768                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2769                         RTE_PTYPE_TUNNEL_GRENAT |
2770                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2771                         RTE_PTYPE_INNER_L4_TCP,
2772                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2773                         RTE_PTYPE_TUNNEL_GRENAT |
2774                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2775                         RTE_PTYPE_INNER_L4_SCTP,
2776                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2777                         RTE_PTYPE_TUNNEL_GRENAT |
2778                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2779                         RTE_PTYPE_INNER_L4_ICMP,
2780
2781                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
2782                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2783                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2784
2785                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2786                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2787                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2788                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2789                         RTE_PTYPE_INNER_L4_FRAG,
2790                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2791                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2792                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2793                         RTE_PTYPE_INNER_L4_NONFRAG,
2794                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2795                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2796                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2797                         RTE_PTYPE_INNER_L4_UDP,
2798                 /* [128] reserved */
2799                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2800                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2801                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2802                         RTE_PTYPE_INNER_L4_TCP,
2803                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2804                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2805                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2806                         RTE_PTYPE_INNER_L4_SCTP,
2807                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2808                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2809                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2810                         RTE_PTYPE_INNER_L4_ICMP,
2811
2812                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2813                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2814                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2815                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2816                         RTE_PTYPE_INNER_L4_FRAG,
2817                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2818                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2819                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2820                         RTE_PTYPE_INNER_L4_NONFRAG,
2821                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2822                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2823                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2824                         RTE_PTYPE_INNER_L4_UDP,
2825                 /* [135] reserved */
2826                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2827                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2828                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2829                         RTE_PTYPE_INNER_L4_TCP,
2830                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2831                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2832                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2833                         RTE_PTYPE_INNER_L4_SCTP,
2834                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2835                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2836                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2837                         RTE_PTYPE_INNER_L4_ICMP,
2838                 /* [139] - [299] reserved */
2839
2840                 /* PPPoE */
2841                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
2842                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
2843
2844                 /* PPPoE --> IPv4 */
2845                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
2846                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2847                         RTE_PTYPE_L4_FRAG,
2848                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
2849                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2850                         RTE_PTYPE_L4_NONFRAG,
2851                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
2852                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2853                         RTE_PTYPE_L4_UDP,
2854                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
2855                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2856                         RTE_PTYPE_L4_TCP,
2857                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
2858                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2859                         RTE_PTYPE_L4_SCTP,
2860                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
2861                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2862                         RTE_PTYPE_L4_ICMP,
2863
2864                 /* PPPoE --> IPv6 */
2865                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
2866                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2867                         RTE_PTYPE_L4_FRAG,
2868                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
2869                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2870                         RTE_PTYPE_L4_NONFRAG,
2871                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
2872                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2873                         RTE_PTYPE_L4_UDP,
2874                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
2875                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2876                         RTE_PTYPE_L4_TCP,
2877                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
2878                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2879                         RTE_PTYPE_L4_SCTP,
2880                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
2881                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2882                         RTE_PTYPE_L4_ICMP,
2883                 /* [314] - [324] reserved */
2884
2885                 /* IPv4/IPv6 --> GTPC/GTPU */
2886                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2887                         RTE_PTYPE_TUNNEL_GTPC,
2888                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2889                         RTE_PTYPE_TUNNEL_GTPC,
2890                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2891                         RTE_PTYPE_TUNNEL_GTPC,
2892                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2893                         RTE_PTYPE_TUNNEL_GTPC,
2894                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2895                         RTE_PTYPE_TUNNEL_GTPU,
2896                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2897                         RTE_PTYPE_TUNNEL_GTPU,
2898
2899                 /* IPv4 --> GTPU --> IPv4 */
2900                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2901                         RTE_PTYPE_TUNNEL_GTPU |
2902                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2903                         RTE_PTYPE_INNER_L4_FRAG,
2904                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2905                         RTE_PTYPE_TUNNEL_GTPU |
2906                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2907                         RTE_PTYPE_INNER_L4_NONFRAG,
2908                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2909                         RTE_PTYPE_TUNNEL_GTPU |
2910                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2911                         RTE_PTYPE_INNER_L4_UDP,
2912                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2913                         RTE_PTYPE_TUNNEL_GTPU |
2914                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2915                         RTE_PTYPE_INNER_L4_TCP,
2916                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2917                         RTE_PTYPE_TUNNEL_GTPU |
2918                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2919                         RTE_PTYPE_INNER_L4_ICMP,
2920
2921                 /* IPv6 --> GTPU --> IPv4 */
2922                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2923                         RTE_PTYPE_TUNNEL_GTPU |
2924                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2925                         RTE_PTYPE_INNER_L4_FRAG,
2926                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2927                         RTE_PTYPE_TUNNEL_GTPU |
2928                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2929                         RTE_PTYPE_INNER_L4_NONFRAG,
2930                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2931                         RTE_PTYPE_TUNNEL_GTPU |
2932                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2933                         RTE_PTYPE_INNER_L4_UDP,
2934                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2935                         RTE_PTYPE_TUNNEL_GTPU |
2936                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2937                         RTE_PTYPE_INNER_L4_TCP,
2938                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2939                         RTE_PTYPE_TUNNEL_GTPU |
2940                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2941                         RTE_PTYPE_INNER_L4_ICMP,
2942
2943                 /* IPv4 --> GTPU --> IPv6 */
2944                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2945                         RTE_PTYPE_TUNNEL_GTPU |
2946                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2947                         RTE_PTYPE_INNER_L4_FRAG,
2948                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2949                         RTE_PTYPE_TUNNEL_GTPU |
2950                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2951                         RTE_PTYPE_INNER_L4_NONFRAG,
2952                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2953                         RTE_PTYPE_TUNNEL_GTPU |
2954                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2955                         RTE_PTYPE_INNER_L4_UDP,
2956                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2957                         RTE_PTYPE_TUNNEL_GTPU |
2958                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2959                         RTE_PTYPE_INNER_L4_TCP,
2960                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2961                         RTE_PTYPE_TUNNEL_GTPU |
2962                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2963                         RTE_PTYPE_INNER_L4_ICMP,
2964
2965                 /* IPv6 --> GTPU --> IPv6 */
2966                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2967                         RTE_PTYPE_TUNNEL_GTPU |
2968                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2969                         RTE_PTYPE_INNER_L4_FRAG,
2970                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2971                         RTE_PTYPE_TUNNEL_GTPU |
2972                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2973                         RTE_PTYPE_INNER_L4_NONFRAG,
2974                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2975                         RTE_PTYPE_TUNNEL_GTPU |
2976                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2977                         RTE_PTYPE_INNER_L4_UDP,
2978                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2979                         RTE_PTYPE_TUNNEL_GTPU |
2980                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2981                         RTE_PTYPE_INNER_L4_TCP,
2982                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2983                         RTE_PTYPE_TUNNEL_GTPU |
2984                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2985                         RTE_PTYPE_INNER_L4_ICMP,
2986                 /* All others reserved */
2987         };
2988
2989         return ptype_tbl;
2990 }