net/iavf: refine debug build option
[dpdk.git] / drivers / net / iavf / iavf_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <stdarg.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13 #include <sys/queue.h>
14
15 #include <rte_string_fns.h>
16 #include <rte_memzone.h>
17 #include <rte_mbuf.h>
18 #include <rte_malloc.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <rte_tcp.h>
22 #include <rte_sctp.h>
23 #include <rte_udp.h>
24 #include <rte_ip.h>
25 #include <rte_net.h>
26 #include <rte_vect.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "rte_pmd_iavf.h"
31
32 /* Offset of mbuf dynamic field for protocol extraction's metadata */
33 int rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
34
35 /* Mask of mbuf dynamic flags for protocol extraction's type */
36 uint64_t rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
37 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
38 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
39 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
40 uint64_t rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
41 uint64_t rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
42
43 uint8_t
44 iavf_proto_xtr_type_to_rxdid(uint8_t flex_type)
45 {
46         static uint8_t rxdid_map[] = {
47                 [IAVF_PROTO_XTR_NONE]      = IAVF_RXDID_COMMS_OVS_1,
48                 [IAVF_PROTO_XTR_VLAN]      = IAVF_RXDID_COMMS_AUX_VLAN,
49                 [IAVF_PROTO_XTR_IPV4]      = IAVF_RXDID_COMMS_AUX_IPV4,
50                 [IAVF_PROTO_XTR_IPV6]      = IAVF_RXDID_COMMS_AUX_IPV6,
51                 [IAVF_PROTO_XTR_IPV6_FLOW] = IAVF_RXDID_COMMS_AUX_IPV6_FLOW,
52                 [IAVF_PROTO_XTR_TCP]       = IAVF_RXDID_COMMS_AUX_TCP,
53                 [IAVF_PROTO_XTR_IP_OFFSET] = IAVF_RXDID_COMMS_AUX_IP_OFFSET,
54         };
55
56         return flex_type < RTE_DIM(rxdid_map) ?
57                                 rxdid_map[flex_type] : IAVF_RXDID_COMMS_OVS_1;
58 }
59
60 int
61 iavf_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
62 {
63         struct iavf_rx_queue *rxq = rx_queue;
64         volatile union iavf_rx_desc *rxdp;
65         uint16_t desc;
66
67         desc = rxq->rx_tail;
68         rxdp = &rxq->rx_ring[desc];
69         /* watch for changes in status bit */
70         pmc->addr = &rxdp->wb.qword1.status_error_len;
71
72         /*
73          * we expect the DD bit to be set to 1 if this descriptor was already
74          * written to.
75          */
76         pmc->val = rte_cpu_to_le_64(1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
77         pmc->mask = rte_cpu_to_le_64(1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
78
79         /* registers are 64-bit */
80         pmc->size = sizeof(uint64_t);
81
82         return 0;
83 }
84
85 static inline int
86 check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
87 {
88         /* The following constraints must be satisfied:
89          *   thresh < rxq->nb_rx_desc
90          */
91         if (thresh >= nb_desc) {
92                 PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
93                              thresh, nb_desc);
94                 return -EINVAL;
95         }
96         return 0;
97 }
98
99 static inline int
100 check_tx_thresh(uint16_t nb_desc, uint16_t tx_rs_thresh,
101                 uint16_t tx_free_thresh)
102 {
103         /* TX descriptors will have their RS bit set after tx_rs_thresh
104          * descriptors have been used. The TX descriptor ring will be cleaned
105          * after tx_free_thresh descriptors are used or if the number of
106          * descriptors required to transmit a packet is greater than the
107          * number of free TX descriptors.
108          *
109          * The following constraints must be satisfied:
110          *  - tx_rs_thresh must be less than the size of the ring minus 2.
111          *  - tx_free_thresh must be less than the size of the ring minus 3.
112          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
113          *  - tx_rs_thresh must be a divisor of the ring size.
114          *
115          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
116          * race condition, hence the maximum threshold constraints. When set
117          * to zero use default values.
118          */
119         if (tx_rs_thresh >= (nb_desc - 2)) {
120                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than the "
121                              "number of TX descriptors (%u) minus 2",
122                              tx_rs_thresh, nb_desc);
123                 return -EINVAL;
124         }
125         if (tx_free_thresh >= (nb_desc - 3)) {
126                 PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be less than the "
127                              "number of TX descriptors (%u) minus 3.",
128                              tx_free_thresh, nb_desc);
129                 return -EINVAL;
130         }
131         if (tx_rs_thresh > tx_free_thresh) {
132                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be less than or "
133                              "equal to tx_free_thresh (%u).",
134                              tx_rs_thresh, tx_free_thresh);
135                 return -EINVAL;
136         }
137         if ((nb_desc % tx_rs_thresh) != 0) {
138                 PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be a divisor of the "
139                              "number of TX descriptors (%u).",
140                              tx_rs_thresh, nb_desc);
141                 return -EINVAL;
142         }
143
144         return 0;
145 }
146
147 static inline bool
148 check_rx_vec_allow(struct iavf_rx_queue *rxq)
149 {
150         if (rxq->rx_free_thresh >= IAVF_VPMD_RX_MAX_BURST &&
151             rxq->nb_rx_desc % rxq->rx_free_thresh == 0) {
152                 PMD_INIT_LOG(DEBUG, "Vector Rx can be enabled on this rxq.");
153                 return true;
154         }
155
156         PMD_INIT_LOG(DEBUG, "Vector Rx cannot be enabled on this rxq.");
157         return false;
158 }
159
160 static inline bool
161 check_tx_vec_allow(struct iavf_tx_queue *txq)
162 {
163         if (!(txq->offloads & IAVF_NO_VECTOR_FLAGS) &&
164             txq->rs_thresh >= IAVF_VPMD_TX_MAX_BURST &&
165             txq->rs_thresh <= IAVF_VPMD_TX_MAX_FREE_BUF) {
166                 PMD_INIT_LOG(DEBUG, "Vector tx can be enabled on this txq.");
167                 return true;
168         }
169         PMD_INIT_LOG(DEBUG, "Vector Tx cannot be enabled on this txq.");
170         return false;
171 }
172
173 static inline bool
174 check_rx_bulk_allow(struct iavf_rx_queue *rxq)
175 {
176         int ret = true;
177
178         if (!(rxq->rx_free_thresh >= IAVF_RX_MAX_BURST)) {
179                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
180                              "rxq->rx_free_thresh=%d, "
181                              "IAVF_RX_MAX_BURST=%d",
182                              rxq->rx_free_thresh, IAVF_RX_MAX_BURST);
183                 ret = false;
184         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
185                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
186                              "rxq->nb_rx_desc=%d, "
187                              "rxq->rx_free_thresh=%d",
188                              rxq->nb_rx_desc, rxq->rx_free_thresh);
189                 ret = false;
190         }
191         return ret;
192 }
193
194 static inline void
195 reset_rx_queue(struct iavf_rx_queue *rxq)
196 {
197         uint16_t len;
198         uint32_t i;
199
200         if (!rxq)
201                 return;
202
203         len = rxq->nb_rx_desc + IAVF_RX_MAX_BURST;
204
205         for (i = 0; i < len * sizeof(union iavf_rx_desc); i++)
206                 ((volatile char *)rxq->rx_ring)[i] = 0;
207
208         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
209
210         for (i = 0; i < IAVF_RX_MAX_BURST; i++)
211                 rxq->sw_ring[rxq->nb_rx_desc + i] = &rxq->fake_mbuf;
212
213         /* for rx bulk */
214         rxq->rx_nb_avail = 0;
215         rxq->rx_next_avail = 0;
216         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
217
218         rxq->rx_tail = 0;
219         rxq->nb_rx_hold = 0;
220         rxq->pkt_first_seg = NULL;
221         rxq->pkt_last_seg = NULL;
222         rxq->rxrearm_nb = 0;
223         rxq->rxrearm_start = 0;
224 }
225
226 static inline void
227 reset_tx_queue(struct iavf_tx_queue *txq)
228 {
229         struct iavf_tx_entry *txe;
230         uint32_t i, size;
231         uint16_t prev;
232
233         if (!txq) {
234                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
235                 return;
236         }
237
238         txe = txq->sw_ring;
239         size = sizeof(struct iavf_tx_desc) * txq->nb_tx_desc;
240         for (i = 0; i < size; i++)
241                 ((volatile char *)txq->tx_ring)[i] = 0;
242
243         prev = (uint16_t)(txq->nb_tx_desc - 1);
244         for (i = 0; i < txq->nb_tx_desc; i++) {
245                 txq->tx_ring[i].cmd_type_offset_bsz =
246                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
247                 txe[i].mbuf =  NULL;
248                 txe[i].last_id = i;
249                 txe[prev].next_id = i;
250                 prev = i;
251         }
252
253         txq->tx_tail = 0;
254         txq->nb_used = 0;
255
256         txq->last_desc_cleaned = txq->nb_tx_desc - 1;
257         txq->nb_free = txq->nb_tx_desc - 1;
258
259         txq->next_dd = txq->rs_thresh - 1;
260         txq->next_rs = txq->rs_thresh - 1;
261 }
262
263 static int
264 alloc_rxq_mbufs(struct iavf_rx_queue *rxq)
265 {
266         volatile union iavf_rx_desc *rxd;
267         struct rte_mbuf *mbuf = NULL;
268         uint64_t dma_addr;
269         uint16_t i;
270
271         for (i = 0; i < rxq->nb_rx_desc; i++) {
272                 mbuf = rte_mbuf_raw_alloc(rxq->mp);
273                 if (unlikely(!mbuf)) {
274                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
275                         return -ENOMEM;
276                 }
277
278                 rte_mbuf_refcnt_set(mbuf, 1);
279                 mbuf->next = NULL;
280                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
281                 mbuf->nb_segs = 1;
282                 mbuf->port = rxq->port_id;
283
284                 dma_addr =
285                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
286
287                 rxd = &rxq->rx_ring[i];
288                 rxd->read.pkt_addr = dma_addr;
289                 rxd->read.hdr_addr = 0;
290 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
291                 rxd->read.rsvd1 = 0;
292                 rxd->read.rsvd2 = 0;
293 #endif
294
295                 rxq->sw_ring[i] = mbuf;
296         }
297
298         return 0;
299 }
300
301 static inline void
302 release_rxq_mbufs(struct iavf_rx_queue *rxq)
303 {
304         uint16_t i;
305
306         if (!rxq->sw_ring)
307                 return;
308
309         for (i = 0; i < rxq->nb_rx_desc; i++) {
310                 if (rxq->sw_ring[i]) {
311                         rte_pktmbuf_free_seg(rxq->sw_ring[i]);
312                         rxq->sw_ring[i] = NULL;
313                 }
314         }
315
316         /* for rx bulk */
317         if (rxq->rx_nb_avail == 0)
318                 return;
319         for (i = 0; i < rxq->rx_nb_avail; i++) {
320                 struct rte_mbuf *mbuf;
321
322                 mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
323                 rte_pktmbuf_free_seg(mbuf);
324         }
325         rxq->rx_nb_avail = 0;
326 }
327
328 static inline void
329 release_txq_mbufs(struct iavf_tx_queue *txq)
330 {
331         uint16_t i;
332
333         if (!txq || !txq->sw_ring) {
334                 PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
335                 return;
336         }
337
338         for (i = 0; i < txq->nb_tx_desc; i++) {
339                 if (txq->sw_ring[i].mbuf) {
340                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
341                         txq->sw_ring[i].mbuf = NULL;
342                 }
343         }
344 }
345
346 static const struct iavf_rxq_ops def_rxq_ops = {
347         .release_mbufs = release_rxq_mbufs,
348 };
349
350 static const struct iavf_txq_ops def_txq_ops = {
351         .release_mbufs = release_txq_mbufs,
352 };
353
354 static inline void
355 iavf_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct iavf_rx_queue *rxq,
356                                     struct rte_mbuf *mb,
357                                     volatile union iavf_rx_flex_desc *rxdp)
358 {
359         volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
360                         (volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
361 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
362         uint16_t stat_err;
363 #endif
364
365         if (desc->flow_id != 0xFFFFFFFF) {
366                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
367                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
368         }
369
370 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
371         stat_err = rte_le_to_cpu_16(desc->status_error0);
372         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
373                 mb->ol_flags |= PKT_RX_RSS_HASH;
374                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
375         }
376 #endif
377 }
378
379 static inline void
380 iavf_rxd_to_pkt_fields_by_comms_aux_v1(struct iavf_rx_queue *rxq,
381                                        struct rte_mbuf *mb,
382                                        volatile union iavf_rx_flex_desc *rxdp)
383 {
384         volatile struct iavf_32b_rx_flex_desc_comms *desc =
385                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
386         uint16_t stat_err;
387
388         stat_err = rte_le_to_cpu_16(desc->status_error0);
389         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
390                 mb->ol_flags |= PKT_RX_RSS_HASH;
391                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
392         }
393
394 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
395         if (desc->flow_id != 0xFFFFFFFF) {
396                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
397                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
398         }
399
400         if (rxq->xtr_ol_flag) {
401                 uint32_t metadata = 0;
402
403                 stat_err = rte_le_to_cpu_16(desc->status_error1);
404
405                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
406                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
407
408                 if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
409                         metadata |=
410                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
411
412                 if (metadata) {
413                         mb->ol_flags |= rxq->xtr_ol_flag;
414
415                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
416                 }
417         }
418 #endif
419 }
420
421 static inline void
422 iavf_rxd_to_pkt_fields_by_comms_aux_v2(struct iavf_rx_queue *rxq,
423                                        struct rte_mbuf *mb,
424                                        volatile union iavf_rx_flex_desc *rxdp)
425 {
426         volatile struct iavf_32b_rx_flex_desc_comms *desc =
427                         (volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
428         uint16_t stat_err;
429
430         stat_err = rte_le_to_cpu_16(desc->status_error0);
431         if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
432                 mb->ol_flags |= PKT_RX_RSS_HASH;
433                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
434         }
435
436 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
437         if (desc->flow_id != 0xFFFFFFFF) {
438                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
439                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
440         }
441
442         if (rxq->xtr_ol_flag) {
443                 uint32_t metadata = 0;
444
445                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
446                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
447                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
448                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
449
450                 if (metadata) {
451                         mb->ol_flags |= rxq->xtr_ol_flag;
452
453                         *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
454                 }
455         }
456 #endif
457 }
458
459 static void
460 iavf_select_rxd_to_pkt_fields_handler(struct iavf_rx_queue *rxq, uint32_t rxdid)
461 {
462         switch (rxdid) {
463         case IAVF_RXDID_COMMS_AUX_VLAN:
464                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
465                 rxq->rxd_to_pkt_fields =
466                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
467                 break;
468         case IAVF_RXDID_COMMS_AUX_IPV4:
469                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
470                 rxq->rxd_to_pkt_fields =
471                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
472                 break;
473         case IAVF_RXDID_COMMS_AUX_IPV6:
474                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
475                 rxq->rxd_to_pkt_fields =
476                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
477                 break;
478         case IAVF_RXDID_COMMS_AUX_IPV6_FLOW:
479                 rxq->xtr_ol_flag =
480                         rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
481                 rxq->rxd_to_pkt_fields =
482                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
483                 break;
484         case IAVF_RXDID_COMMS_AUX_TCP:
485                 rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
486                 rxq->rxd_to_pkt_fields =
487                         iavf_rxd_to_pkt_fields_by_comms_aux_v1;
488                 break;
489         case IAVF_RXDID_COMMS_AUX_IP_OFFSET:
490                 rxq->xtr_ol_flag =
491                         rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
492                 rxq->rxd_to_pkt_fields =
493                         iavf_rxd_to_pkt_fields_by_comms_aux_v2;
494                 break;
495         case IAVF_RXDID_COMMS_OVS_1:
496                 rxq->rxd_to_pkt_fields = iavf_rxd_to_pkt_fields_by_comms_ovs;
497                 break;
498         default:
499                 /* update this according to the RXDID for FLEX_DESC_NONE */
500                 rxq->rxd_to_pkt_fields = iavf_rxd_to_pkt_fields_by_comms_ovs;
501                 break;
502         }
503
504         if (!rte_pmd_ifd_dynf_proto_xtr_metadata_avail())
505                 rxq->xtr_ol_flag = 0;
506 }
507
508 int
509 iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
510                        uint16_t nb_desc, unsigned int socket_id,
511                        const struct rte_eth_rxconf *rx_conf,
512                        struct rte_mempool *mp)
513 {
514         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
515         struct iavf_adapter *ad =
516                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
517         struct iavf_info *vf =
518                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
519         struct iavf_vsi *vsi = &vf->vsi;
520         struct iavf_rx_queue *rxq;
521         const struct rte_memzone *mz;
522         uint32_t ring_size;
523         uint8_t proto_xtr;
524         uint16_t len;
525         uint16_t rx_free_thresh;
526
527         PMD_INIT_FUNC_TRACE();
528
529         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
530             nb_desc > IAVF_MAX_RING_DESC ||
531             nb_desc < IAVF_MIN_RING_DESC) {
532                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
533                              "invalid", nb_desc);
534                 return -EINVAL;
535         }
536
537         /* Check free threshold */
538         rx_free_thresh = (rx_conf->rx_free_thresh == 0) ?
539                          IAVF_DEFAULT_RX_FREE_THRESH :
540                          rx_conf->rx_free_thresh;
541         if (check_rx_thresh(nb_desc, rx_free_thresh) != 0)
542                 return -EINVAL;
543
544         /* Free memory if needed */
545         if (dev->data->rx_queues[queue_idx]) {
546                 iavf_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
547                 dev->data->rx_queues[queue_idx] = NULL;
548         }
549
550         /* Allocate the rx queue data structure */
551         rxq = rte_zmalloc_socket("iavf rxq",
552                                  sizeof(struct iavf_rx_queue),
553                                  RTE_CACHE_LINE_SIZE,
554                                  socket_id);
555         if (!rxq) {
556                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
557                              "rx queue data structure");
558                 return -ENOMEM;
559         }
560
561         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
562                 proto_xtr = vf->proto_xtr ? vf->proto_xtr[queue_idx] :
563                                 IAVF_PROTO_XTR_NONE;
564                 rxq->rxdid = iavf_proto_xtr_type_to_rxdid(proto_xtr);
565                 rxq->proto_xtr = proto_xtr;
566         } else {
567                 rxq->rxdid = IAVF_RXDID_LEGACY_1;
568                 rxq->proto_xtr = IAVF_PROTO_XTR_NONE;
569         }
570
571         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
572                 struct virtchnl_vlan_supported_caps *stripping_support =
573                                 &vf->vlan_v2_caps.offloads.stripping_support;
574                 uint32_t stripping_cap;
575
576                 if (stripping_support->outer)
577                         stripping_cap = stripping_support->outer;
578                 else
579                         stripping_cap = stripping_support->inner;
580
581                 if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
582                         rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
583                 else if (stripping_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
584                         rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
585         } else {
586                 rxq->rx_flags = IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1;
587         }
588
589         iavf_select_rxd_to_pkt_fields_handler(rxq, rxq->rxdid);
590
591         rxq->mp = mp;
592         rxq->nb_rx_desc = nb_desc;
593         rxq->rx_free_thresh = rx_free_thresh;
594         rxq->queue_id = queue_idx;
595         rxq->port_id = dev->data->port_id;
596         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
597         rxq->rx_hdr_len = 0;
598         rxq->vsi = vsi;
599
600         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
601                 rxq->crc_len = RTE_ETHER_CRC_LEN;
602         else
603                 rxq->crc_len = 0;
604
605         len = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
606         rxq->rx_buf_len = RTE_ALIGN(len, (1 << IAVF_RXQ_CTX_DBUFF_SHIFT));
607
608         /* Allocate the software ring. */
609         len = nb_desc + IAVF_RX_MAX_BURST;
610         rxq->sw_ring =
611                 rte_zmalloc_socket("iavf rx sw ring",
612                                    sizeof(struct rte_mbuf *) * len,
613                                    RTE_CACHE_LINE_SIZE,
614                                    socket_id);
615         if (!rxq->sw_ring) {
616                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
617                 rte_free(rxq);
618                 return -ENOMEM;
619         }
620
621         /* Allocate the maximun number of RX ring hardware descriptor with
622          * a liitle more to support bulk allocate.
623          */
624         len = IAVF_MAX_RING_DESC + IAVF_RX_MAX_BURST;
625         ring_size = RTE_ALIGN(len * sizeof(union iavf_rx_desc),
626                               IAVF_DMA_MEM_ALIGN);
627         mz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
628                                       ring_size, IAVF_RING_BASE_ALIGN,
629                                       socket_id);
630         if (!mz) {
631                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
632                 rte_free(rxq->sw_ring);
633                 rte_free(rxq);
634                 return -ENOMEM;
635         }
636         /* Zero all the descriptors in the ring. */
637         memset(mz->addr, 0, ring_size);
638         rxq->rx_ring_phys_addr = mz->iova;
639         rxq->rx_ring = (union iavf_rx_desc *)mz->addr;
640
641         rxq->mz = mz;
642         reset_rx_queue(rxq);
643         rxq->q_set = true;
644         dev->data->rx_queues[queue_idx] = rxq;
645         rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
646         rxq->ops = &def_rxq_ops;
647
648         if (check_rx_bulk_allow(rxq) == true) {
649                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
650                              "satisfied. Rx Burst Bulk Alloc function will be "
651                              "used on port=%d, queue=%d.",
652                              rxq->port_id, rxq->queue_id);
653         } else {
654                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
655                              "not satisfied, Scattered Rx is requested "
656                              "on port=%d, queue=%d.",
657                              rxq->port_id, rxq->queue_id);
658                 ad->rx_bulk_alloc_allowed = false;
659         }
660
661         if (check_rx_vec_allow(rxq) == false)
662                 ad->rx_vec_allowed = false;
663
664         return 0;
665 }
666
667 int
668 iavf_dev_tx_queue_setup(struct rte_eth_dev *dev,
669                        uint16_t queue_idx,
670                        uint16_t nb_desc,
671                        unsigned int socket_id,
672                        const struct rte_eth_txconf *tx_conf)
673 {
674         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
675         struct iavf_info *vf =
676                 IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
677         struct iavf_tx_queue *txq;
678         const struct rte_memzone *mz;
679         uint32_t ring_size;
680         uint16_t tx_rs_thresh, tx_free_thresh;
681         uint64_t offloads;
682
683         PMD_INIT_FUNC_TRACE();
684
685         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
686
687         if (nb_desc % IAVF_ALIGN_RING_DESC != 0 ||
688             nb_desc > IAVF_MAX_RING_DESC ||
689             nb_desc < IAVF_MIN_RING_DESC) {
690                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
691                             "invalid", nb_desc);
692                 return -EINVAL;
693         }
694
695         tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
696                 tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
697         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
698                 tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
699         check_tx_thresh(nb_desc, tx_rs_thresh, tx_rs_thresh);
700
701         /* Free memory if needed. */
702         if (dev->data->tx_queues[queue_idx]) {
703                 iavf_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
704                 dev->data->tx_queues[queue_idx] = NULL;
705         }
706
707         /* Allocate the TX queue data structure. */
708         txq = rte_zmalloc_socket("iavf txq",
709                                  sizeof(struct iavf_tx_queue),
710                                  RTE_CACHE_LINE_SIZE,
711                                  socket_id);
712         if (!txq) {
713                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
714                              "tx queue structure");
715                 return -ENOMEM;
716         }
717
718         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
719                 struct virtchnl_vlan_supported_caps *insertion_support =
720                         &vf->vlan_v2_caps.offloads.insertion_support;
721                 uint32_t insertion_cap;
722
723                 if (insertion_support->outer)
724                         insertion_cap = insertion_support->outer;
725                 else
726                         insertion_cap = insertion_support->inner;
727
728                 if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
729                         txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
730                 else if (insertion_cap & VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
731                         txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2;
732         } else {
733                 txq->vlan_flag = IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1;
734         }
735
736         txq->nb_tx_desc = nb_desc;
737         txq->rs_thresh = tx_rs_thresh;
738         txq->free_thresh = tx_free_thresh;
739         txq->queue_id = queue_idx;
740         txq->port_id = dev->data->port_id;
741         txq->offloads = offloads;
742         txq->tx_deferred_start = tx_conf->tx_deferred_start;
743
744         /* Allocate software ring */
745         txq->sw_ring =
746                 rte_zmalloc_socket("iavf tx sw ring",
747                                    sizeof(struct iavf_tx_entry) * nb_desc,
748                                    RTE_CACHE_LINE_SIZE,
749                                    socket_id);
750         if (!txq->sw_ring) {
751                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
752                 rte_free(txq);
753                 return -ENOMEM;
754         }
755
756         /* Allocate TX hardware ring descriptors. */
757         ring_size = sizeof(struct iavf_tx_desc) * IAVF_MAX_RING_DESC;
758         ring_size = RTE_ALIGN(ring_size, IAVF_DMA_MEM_ALIGN);
759         mz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
760                                       ring_size, IAVF_RING_BASE_ALIGN,
761                                       socket_id);
762         if (!mz) {
763                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
764                 rte_free(txq->sw_ring);
765                 rte_free(txq);
766                 return -ENOMEM;
767         }
768         txq->tx_ring_phys_addr = mz->iova;
769         txq->tx_ring = (struct iavf_tx_desc *)mz->addr;
770
771         txq->mz = mz;
772         reset_tx_queue(txq);
773         txq->q_set = true;
774         dev->data->tx_queues[queue_idx] = txq;
775         txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(queue_idx);
776         txq->ops = &def_txq_ops;
777
778         if (check_tx_vec_allow(txq) == false) {
779                 struct iavf_adapter *ad =
780                         IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
781                 ad->tx_vec_allowed = false;
782         }
783
784         return 0;
785 }
786
787 int
788 iavf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
789 {
790         struct iavf_adapter *adapter =
791                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
792         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
793         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
794         struct iavf_rx_queue *rxq;
795         int err = 0;
796
797         PMD_DRV_FUNC_TRACE();
798
799         if (rx_queue_id >= dev->data->nb_rx_queues)
800                 return -EINVAL;
801
802         rxq = dev->data->rx_queues[rx_queue_id];
803
804         err = alloc_rxq_mbufs(rxq);
805         if (err) {
806                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
807                 return err;
808         }
809
810         rte_wmb();
811
812         /* Init the RX tail register. */
813         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
814         IAVF_WRITE_FLUSH(hw);
815
816         /* Ready to switch the queue on */
817         if (!vf->lv_enabled)
818                 err = iavf_switch_queue(adapter, rx_queue_id, true, true);
819         else
820                 err = iavf_switch_queue_lv(adapter, rx_queue_id, true, true);
821
822         if (err)
823                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
824                             rx_queue_id);
825         else
826                 dev->data->rx_queue_state[rx_queue_id] =
827                         RTE_ETH_QUEUE_STATE_STARTED;
828
829         return err;
830 }
831
832 int
833 iavf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
834 {
835         struct iavf_adapter *adapter =
836                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
837         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
838         struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
839         struct iavf_tx_queue *txq;
840         int err = 0;
841
842         PMD_DRV_FUNC_TRACE();
843
844         if (tx_queue_id >= dev->data->nb_tx_queues)
845                 return -EINVAL;
846
847         txq = dev->data->tx_queues[tx_queue_id];
848
849         /* Init the RX tail register. */
850         IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
851         IAVF_WRITE_FLUSH(hw);
852
853         /* Ready to switch the queue on */
854         if (!vf->lv_enabled)
855                 err = iavf_switch_queue(adapter, tx_queue_id, false, true);
856         else
857                 err = iavf_switch_queue_lv(adapter, tx_queue_id, false, true);
858
859         if (err)
860                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
861                             tx_queue_id);
862         else
863                 dev->data->tx_queue_state[tx_queue_id] =
864                         RTE_ETH_QUEUE_STATE_STARTED;
865
866         return err;
867 }
868
869 int
870 iavf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
871 {
872         struct iavf_adapter *adapter =
873                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
874         struct iavf_rx_queue *rxq;
875         int err;
876
877         PMD_DRV_FUNC_TRACE();
878
879         if (rx_queue_id >= dev->data->nb_rx_queues)
880                 return -EINVAL;
881
882         err = iavf_switch_queue(adapter, rx_queue_id, true, false);
883         if (err) {
884                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
885                             rx_queue_id);
886                 return err;
887         }
888
889         rxq = dev->data->rx_queues[rx_queue_id];
890         rxq->ops->release_mbufs(rxq);
891         reset_rx_queue(rxq);
892         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
893
894         return 0;
895 }
896
897 int
898 iavf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
899 {
900         struct iavf_adapter *adapter =
901                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
902         struct iavf_tx_queue *txq;
903         int err;
904
905         PMD_DRV_FUNC_TRACE();
906
907         if (tx_queue_id >= dev->data->nb_tx_queues)
908                 return -EINVAL;
909
910         err = iavf_switch_queue(adapter, tx_queue_id, false, false);
911         if (err) {
912                 PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
913                             tx_queue_id);
914                 return err;
915         }
916
917         txq = dev->data->tx_queues[tx_queue_id];
918         txq->ops->release_mbufs(txq);
919         reset_tx_queue(txq);
920         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
921
922         return 0;
923 }
924
925 void
926 iavf_dev_rx_queue_release(void *rxq)
927 {
928         struct iavf_rx_queue *q = (struct iavf_rx_queue *)rxq;
929
930         if (!q)
931                 return;
932
933         q->ops->release_mbufs(q);
934         rte_free(q->sw_ring);
935         rte_memzone_free(q->mz);
936         rte_free(q);
937 }
938
939 void
940 iavf_dev_tx_queue_release(void *txq)
941 {
942         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
943
944         if (!q)
945                 return;
946
947         q->ops->release_mbufs(q);
948         rte_free(q->sw_ring);
949         rte_memzone_free(q->mz);
950         rte_free(q);
951 }
952
953 void
954 iavf_stop_queues(struct rte_eth_dev *dev)
955 {
956         struct iavf_adapter *adapter =
957                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
958         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
959         struct iavf_rx_queue *rxq;
960         struct iavf_tx_queue *txq;
961         int ret, i;
962
963         /* Stop All queues */
964         if (!vf->lv_enabled) {
965                 ret = iavf_disable_queues(adapter);
966                 if (ret)
967                         PMD_DRV_LOG(WARNING, "Fail to stop queues");
968         } else {
969                 ret = iavf_disable_queues_lv(adapter);
970                 if (ret)
971                         PMD_DRV_LOG(WARNING, "Fail to stop queues for large VF");
972         }
973
974         if (ret)
975                 PMD_DRV_LOG(WARNING, "Fail to stop queues");
976
977         for (i = 0; i < dev->data->nb_tx_queues; i++) {
978                 txq = dev->data->tx_queues[i];
979                 if (!txq)
980                         continue;
981                 txq->ops->release_mbufs(txq);
982                 reset_tx_queue(txq);
983                 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
984         }
985         for (i = 0; i < dev->data->nb_rx_queues; i++) {
986                 rxq = dev->data->rx_queues[i];
987                 if (!rxq)
988                         continue;
989                 rxq->ops->release_mbufs(rxq);
990                 reset_rx_queue(rxq);
991                 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
992         }
993 }
994
995 #define IAVF_RX_FLEX_ERR0_BITS  \
996         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
997          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
998          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
999          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1000          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1001          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1002
1003 static inline void
1004 iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
1005 {
1006         if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
1007                 (1 << IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1008                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1009                 mb->vlan_tci =
1010                         rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
1011         } else {
1012                 mb->vlan_tci = 0;
1013         }
1014 }
1015
1016 static inline void
1017 iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
1018                           volatile union iavf_rx_flex_desc *rxdp,
1019                           uint8_t rx_flags)
1020 {
1021         uint16_t vlan_tci = 0;
1022
1023         if (rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1 &&
1024             rte_le_to_cpu_64(rxdp->wb.status_error0) &
1025             (1 << IAVF_RX_FLEX_DESC_STATUS0_L2TAG1P_S))
1026                 vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag1);
1027
1028 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1029         if (rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2 &&
1030             rte_le_to_cpu_16(rxdp->wb.status_error1) &
1031             (1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S))
1032                 vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1033 #endif
1034
1035         if (vlan_tci) {
1036                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1037                 mb->vlan_tci = vlan_tci;
1038         }
1039 }
1040
1041 /* Translate the rx descriptor status and error fields to pkt flags */
1042 static inline uint64_t
1043 iavf_rxd_to_pkt_flags(uint64_t qword)
1044 {
1045         uint64_t flags;
1046         uint64_t error_bits = (qword >> IAVF_RXD_QW1_ERROR_SHIFT);
1047
1048 #define IAVF_RX_ERR_BITS 0x3f
1049
1050         /* Check if RSS_HASH */
1051         flags = (((qword >> IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
1052                                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ==
1053                         IAVF_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
1054
1055         /* Check if FDIR Match */
1056         flags |= (qword & (1 << IAVF_RX_DESC_STATUS_FLM_SHIFT) ?
1057                                 PKT_RX_FDIR : 0);
1058
1059         if (likely((error_bits & IAVF_RX_ERR_BITS) == 0)) {
1060                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
1061                 return flags;
1062         }
1063
1064         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_IPE_SHIFT)))
1065                 flags |= PKT_RX_IP_CKSUM_BAD;
1066         else
1067                 flags |= PKT_RX_IP_CKSUM_GOOD;
1068
1069         if (unlikely(error_bits & (1 << IAVF_RX_DESC_ERROR_L4E_SHIFT)))
1070                 flags |= PKT_RX_L4_CKSUM_BAD;
1071         else
1072                 flags |= PKT_RX_L4_CKSUM_GOOD;
1073
1074         /* TODO: Oversize error bit is not processed here */
1075
1076         return flags;
1077 }
1078
1079 static inline uint64_t
1080 iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
1081 {
1082         uint64_t flags = 0;
1083 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
1084         uint16_t flexbh;
1085
1086         flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
1087                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
1088                 IAVF_RX_DESC_EXT_STATUS_FLEXBH_MASK;
1089
1090         if (flexbh == IAVF_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
1091                 mb->hash.fdir.hi =
1092                         rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
1093                 flags |= PKT_RX_FDIR_ID;
1094         }
1095 #else
1096         mb->hash.fdir.hi =
1097                 rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
1098         flags |= PKT_RX_FDIR_ID;
1099 #endif
1100         return flags;
1101 }
1102
1103 #define IAVF_RX_FLEX_ERR0_BITS  \
1104         ((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) |       \
1105          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |  \
1106          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |  \
1107          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
1108          (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) |        \
1109          (1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
1110
1111 /* Rx L3/L4 checksum */
1112 static inline uint64_t
1113 iavf_flex_rxd_error_to_pkt_flags(uint16_t stat_err0)
1114 {
1115         uint64_t flags = 0;
1116
1117         /* check if HW has decoded the packet and checksum */
1118         if (unlikely(!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1119                 return 0;
1120
1121         if (likely(!(stat_err0 & IAVF_RX_FLEX_ERR0_BITS))) {
1122                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
1123                 return flags;
1124         }
1125
1126         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1127                 flags |= PKT_RX_IP_CKSUM_BAD;
1128         else
1129                 flags |= PKT_RX_IP_CKSUM_GOOD;
1130
1131         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1132                 flags |= PKT_RX_L4_CKSUM_BAD;
1133         else
1134                 flags |= PKT_RX_L4_CKSUM_GOOD;
1135
1136         if (unlikely(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1137                 flags |= PKT_RX_OUTER_IP_CKSUM_BAD;
1138
1139         return flags;
1140 }
1141
1142 /* If the number of free RX descriptors is greater than the RX free
1143  * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1144  * register. Update the RDT with the value of the last processed RX
1145  * descriptor minus 1, to guarantee that the RDT register is never
1146  * equal to the RDH register, which creates a "full" ring situation
1147  * from the hardware point of view.
1148  */
1149 static inline void
1150 iavf_update_rx_tail(struct iavf_rx_queue *rxq, uint16_t nb_hold, uint16_t rx_id)
1151 {
1152         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1153
1154         if (nb_hold > rxq->rx_free_thresh) {
1155                 PMD_RX_LOG(DEBUG,
1156                            "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u",
1157                            rxq->port_id, rxq->queue_id, rx_id, nb_hold);
1158                 rx_id = (uint16_t)((rx_id == 0) ?
1159                         (rxq->nb_rx_desc - 1) : (rx_id - 1));
1160                 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
1161                 nb_hold = 0;
1162         }
1163         rxq->nb_rx_hold = nb_hold;
1164 }
1165
1166 /* implement recv_pkts */
1167 uint16_t
1168 iavf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1169 {
1170         volatile union iavf_rx_desc *rx_ring;
1171         volatile union iavf_rx_desc *rxdp;
1172         struct iavf_rx_queue *rxq;
1173         union iavf_rx_desc rxd;
1174         struct rte_mbuf *rxe;
1175         struct rte_eth_dev *dev;
1176         struct rte_mbuf *rxm;
1177         struct rte_mbuf *nmb;
1178         uint16_t nb_rx;
1179         uint32_t rx_status;
1180         uint64_t qword1;
1181         uint16_t rx_packet_len;
1182         uint16_t rx_id, nb_hold;
1183         uint64_t dma_addr;
1184         uint64_t pkt_flags;
1185         const uint32_t *ptype_tbl;
1186
1187         nb_rx = 0;
1188         nb_hold = 0;
1189         rxq = rx_queue;
1190         rx_id = rxq->rx_tail;
1191         rx_ring = rxq->rx_ring;
1192         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1193
1194         while (nb_rx < nb_pkts) {
1195                 rxdp = &rx_ring[rx_id];
1196                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1197                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1198                             IAVF_RXD_QW1_STATUS_SHIFT;
1199
1200                 /* Check the DD bit first */
1201                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1202                         break;
1203                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1204
1205                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1206                 if (unlikely(!nmb)) {
1207                         dev = &rte_eth_devices[rxq->port_id];
1208                         dev->data->rx_mbuf_alloc_failed++;
1209                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1210                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1211                         break;
1212                 }
1213
1214                 rxd = *rxdp;
1215                 nb_hold++;
1216                 rxe = rxq->sw_ring[rx_id];
1217                 rx_id++;
1218                 if (unlikely(rx_id == rxq->nb_rx_desc))
1219                         rx_id = 0;
1220
1221                 /* Prefetch next mbuf */
1222                 rte_prefetch0(rxq->sw_ring[rx_id]);
1223
1224                 /* When next RX descriptor is on a cache line boundary,
1225                  * prefetch the next 4 RX descriptors and next 8 pointers
1226                  * to mbufs.
1227                  */
1228                 if ((rx_id & 0x3) == 0) {
1229                         rte_prefetch0(&rx_ring[rx_id]);
1230                         rte_prefetch0(rxq->sw_ring[rx_id]);
1231                 }
1232                 rxm = rxe;
1233                 dma_addr =
1234                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1235                 rxdp->read.hdr_addr = 0;
1236                 rxdp->read.pkt_addr = dma_addr;
1237
1238                 rx_packet_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1239                                 IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1240
1241                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1242                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1243                 rxm->nb_segs = 1;
1244                 rxm->next = NULL;
1245                 rxm->pkt_len = rx_packet_len;
1246                 rxm->data_len = rx_packet_len;
1247                 rxm->port = rxq->port_id;
1248                 rxm->ol_flags = 0;
1249                 iavf_rxd_to_vlan_tci(rxm, &rxd);
1250                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1251                 rxm->packet_type =
1252                         ptype_tbl[(uint8_t)((qword1 &
1253                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1254
1255                 if (pkt_flags & PKT_RX_RSS_HASH)
1256                         rxm->hash.rss =
1257                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1258
1259                 if (pkt_flags & PKT_RX_FDIR)
1260                         pkt_flags |= iavf_rxd_build_fdir(&rxd, rxm);
1261
1262                 rxm->ol_flags |= pkt_flags;
1263
1264                 rx_pkts[nb_rx++] = rxm;
1265         }
1266         rxq->rx_tail = rx_id;
1267
1268         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1269
1270         return nb_rx;
1271 }
1272
1273 /* implement recv_pkts for flexible Rx descriptor */
1274 uint16_t
1275 iavf_recv_pkts_flex_rxd(void *rx_queue,
1276                         struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1277 {
1278         volatile union iavf_rx_desc *rx_ring;
1279         volatile union iavf_rx_flex_desc *rxdp;
1280         struct iavf_rx_queue *rxq;
1281         union iavf_rx_flex_desc rxd;
1282         struct rte_mbuf *rxe;
1283         struct rte_eth_dev *dev;
1284         struct rte_mbuf *rxm;
1285         struct rte_mbuf *nmb;
1286         uint16_t nb_rx;
1287         uint16_t rx_stat_err0;
1288         uint16_t rx_packet_len;
1289         uint16_t rx_id, nb_hold;
1290         uint64_t dma_addr;
1291         uint64_t pkt_flags;
1292         const uint32_t *ptype_tbl;
1293
1294         nb_rx = 0;
1295         nb_hold = 0;
1296         rxq = rx_queue;
1297         rx_id = rxq->rx_tail;
1298         rx_ring = rxq->rx_ring;
1299         ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1300
1301         while (nb_rx < nb_pkts) {
1302                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1303                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1304
1305                 /* Check the DD bit first */
1306                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1307                         break;
1308                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1309
1310                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1311                 if (unlikely(!nmb)) {
1312                         dev = &rte_eth_devices[rxq->port_id];
1313                         dev->data->rx_mbuf_alloc_failed++;
1314                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1315                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1316                         break;
1317                 }
1318
1319                 rxd = *rxdp;
1320                 nb_hold++;
1321                 rxe = rxq->sw_ring[rx_id];
1322                 rx_id++;
1323                 if (unlikely(rx_id == rxq->nb_rx_desc))
1324                         rx_id = 0;
1325
1326                 /* Prefetch next mbuf */
1327                 rte_prefetch0(rxq->sw_ring[rx_id]);
1328
1329                 /* When next RX descriptor is on a cache line boundary,
1330                  * prefetch the next 4 RX descriptors and next 8 pointers
1331                  * to mbufs.
1332                  */
1333                 if ((rx_id & 0x3) == 0) {
1334                         rte_prefetch0(&rx_ring[rx_id]);
1335                         rte_prefetch0(rxq->sw_ring[rx_id]);
1336                 }
1337                 rxm = rxe;
1338                 dma_addr =
1339                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1340                 rxdp->read.hdr_addr = 0;
1341                 rxdp->read.pkt_addr = dma_addr;
1342
1343                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
1344                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1345
1346                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1347                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
1348                 rxm->nb_segs = 1;
1349                 rxm->next = NULL;
1350                 rxm->pkt_len = rx_packet_len;
1351                 rxm->data_len = rx_packet_len;
1352                 rxm->port = rxq->port_id;
1353                 rxm->ol_flags = 0;
1354                 rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1355                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1356                 iavf_flex_rxd_to_vlan_tci(rxm, &rxd, rxq->rx_flags);
1357                 rxq->rxd_to_pkt_fields(rxq, rxm, &rxd);
1358                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1359                 rxm->ol_flags |= pkt_flags;
1360
1361                 rx_pkts[nb_rx++] = rxm;
1362         }
1363         rxq->rx_tail = rx_id;
1364
1365         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1366
1367         return nb_rx;
1368 }
1369
1370 /* implement recv_scattered_pkts for flexible Rx descriptor */
1371 uint16_t
1372 iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
1373                                   uint16_t nb_pkts)
1374 {
1375         struct iavf_rx_queue *rxq = rx_queue;
1376         union iavf_rx_flex_desc rxd;
1377         struct rte_mbuf *rxe;
1378         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1379         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1380         struct rte_mbuf *nmb, *rxm;
1381         uint16_t rx_id = rxq->rx_tail;
1382         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1383         struct rte_eth_dev *dev;
1384         uint16_t rx_stat_err0;
1385         uint64_t dma_addr;
1386         uint64_t pkt_flags;
1387
1388         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1389         volatile union iavf_rx_flex_desc *rxdp;
1390         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1391
1392         while (nb_rx < nb_pkts) {
1393                 rxdp = (volatile union iavf_rx_flex_desc *)&rx_ring[rx_id];
1394                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1395
1396                 /* Check the DD bit */
1397                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1398                         break;
1399                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1400
1401                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1402                 if (unlikely(!nmb)) {
1403                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1404                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1405                         dev = &rte_eth_devices[rxq->port_id];
1406                         dev->data->rx_mbuf_alloc_failed++;
1407                         break;
1408                 }
1409
1410                 rxd = *rxdp;
1411                 nb_hold++;
1412                 rxe = rxq->sw_ring[rx_id];
1413                 rx_id++;
1414                 if (rx_id == rxq->nb_rx_desc)
1415                         rx_id = 0;
1416
1417                 /* Prefetch next mbuf */
1418                 rte_prefetch0(rxq->sw_ring[rx_id]);
1419
1420                 /* When next RX descriptor is on a cache line boundary,
1421                  * prefetch the next 4 RX descriptors and next 8 pointers
1422                  * to mbufs.
1423                  */
1424                 if ((rx_id & 0x3) == 0) {
1425                         rte_prefetch0(&rx_ring[rx_id]);
1426                         rte_prefetch0(rxq->sw_ring[rx_id]);
1427                 }
1428
1429                 rxm = rxe;
1430                 dma_addr =
1431                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1432
1433                 /* Set data buffer address and data length of the mbuf */
1434                 rxdp->read.hdr_addr = 0;
1435                 rxdp->read.pkt_addr = dma_addr;
1436                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1437                                 IAVF_RX_FLX_DESC_PKT_LEN_M;
1438                 rxm->data_len = rx_packet_len;
1439                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1440
1441                 /* If this is the first buffer of the received packet, set the
1442                  * pointer to the first mbuf of the packet and initialize its
1443                  * context. Otherwise, update the total length and the number
1444                  * of segments of the current scattered packet, and update the
1445                  * pointer to the last mbuf of the current packet.
1446                  */
1447                 if (!first_seg) {
1448                         first_seg = rxm;
1449                         first_seg->nb_segs = 1;
1450                         first_seg->pkt_len = rx_packet_len;
1451                 } else {
1452                         first_seg->pkt_len =
1453                                 (uint16_t)(first_seg->pkt_len +
1454                                                 rx_packet_len);
1455                         first_seg->nb_segs++;
1456                         last_seg->next = rxm;
1457                 }
1458
1459                 /* If this is not the last buffer of the received packet,
1460                  * update the pointer to the last mbuf of the current scattered
1461                  * packet and continue to parse the RX ring.
1462                  */
1463                 if (!(rx_stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_EOF_S))) {
1464                         last_seg = rxm;
1465                         continue;
1466                 }
1467
1468                 /* This is the last buffer of the received packet. If the CRC
1469                  * is not stripped by the hardware:
1470                  *  - Subtract the CRC length from the total packet length.
1471                  *  - If the last buffer only contains the whole CRC or a part
1472                  *  of it, free the mbuf associated to the last buffer. If part
1473                  *  of the CRC is also contained in the previous mbuf, subtract
1474                  *  the length of that CRC part from the data length of the
1475                  *  previous mbuf.
1476                  */
1477                 rxm->next = NULL;
1478                 if (unlikely(rxq->crc_len > 0)) {
1479                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1480                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1481                                 rte_pktmbuf_free_seg(rxm);
1482                                 first_seg->nb_segs--;
1483                                 last_seg->data_len =
1484                                         (uint16_t)(last_seg->data_len -
1485                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1486                                 last_seg->next = NULL;
1487                         } else {
1488                                 rxm->data_len = (uint16_t)(rx_packet_len -
1489                                                         RTE_ETHER_CRC_LEN);
1490                         }
1491                 }
1492
1493                 first_seg->port = rxq->port_id;
1494                 first_seg->ol_flags = 0;
1495                 first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1496                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1497                 iavf_flex_rxd_to_vlan_tci(first_seg, &rxd, rxq->rx_flags);
1498                 rxq->rxd_to_pkt_fields(rxq, first_seg, &rxd);
1499                 pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
1500
1501                 first_seg->ol_flags |= pkt_flags;
1502
1503                 /* Prefetch data of first segment, if configured to do so. */
1504                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1505                                           first_seg->data_off));
1506                 rx_pkts[nb_rx++] = first_seg;
1507                 first_seg = NULL;
1508         }
1509
1510         /* Record index of the next RX descriptor to probe. */
1511         rxq->rx_tail = rx_id;
1512         rxq->pkt_first_seg = first_seg;
1513         rxq->pkt_last_seg = last_seg;
1514
1515         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1516
1517         return nb_rx;
1518 }
1519
1520 /* implement recv_scattered_pkts  */
1521 uint16_t
1522 iavf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1523                         uint16_t nb_pkts)
1524 {
1525         struct iavf_rx_queue *rxq = rx_queue;
1526         union iavf_rx_desc rxd;
1527         struct rte_mbuf *rxe;
1528         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1529         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1530         struct rte_mbuf *nmb, *rxm;
1531         uint16_t rx_id = rxq->rx_tail;
1532         uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
1533         struct rte_eth_dev *dev;
1534         uint32_t rx_status;
1535         uint64_t qword1;
1536         uint64_t dma_addr;
1537         uint64_t pkt_flags;
1538
1539         volatile union iavf_rx_desc *rx_ring = rxq->rx_ring;
1540         volatile union iavf_rx_desc *rxdp;
1541         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1542
1543         while (nb_rx < nb_pkts) {
1544                 rxdp = &rx_ring[rx_id];
1545                 qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1546                 rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1547                             IAVF_RXD_QW1_STATUS_SHIFT;
1548
1549                 /* Check the DD bit */
1550                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1551                         break;
1552                 IAVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
1553
1554                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1555                 if (unlikely(!nmb)) {
1556                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1557                                    "queue_id=%u", rxq->port_id, rxq->queue_id);
1558                         dev = &rte_eth_devices[rxq->port_id];
1559                         dev->data->rx_mbuf_alloc_failed++;
1560                         break;
1561                 }
1562
1563                 rxd = *rxdp;
1564                 nb_hold++;
1565                 rxe = rxq->sw_ring[rx_id];
1566                 rx_id++;
1567                 if (rx_id == rxq->nb_rx_desc)
1568                         rx_id = 0;
1569
1570                 /* Prefetch next mbuf */
1571                 rte_prefetch0(rxq->sw_ring[rx_id]);
1572
1573                 /* When next RX descriptor is on a cache line boundary,
1574                  * prefetch the next 4 RX descriptors and next 8 pointers
1575                  * to mbufs.
1576                  */
1577                 if ((rx_id & 0x3) == 0) {
1578                         rte_prefetch0(&rx_ring[rx_id]);
1579                         rte_prefetch0(rxq->sw_ring[rx_id]);
1580                 }
1581
1582                 rxm = rxe;
1583                 dma_addr =
1584                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1585
1586                 /* Set data buffer address and data length of the mbuf */
1587                 rxdp->read.hdr_addr = 0;
1588                 rxdp->read.pkt_addr = dma_addr;
1589                 rx_packet_len = (qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1590                                  IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1591                 rxm->data_len = rx_packet_len;
1592                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1593
1594                 /* If this is the first buffer of the received packet, set the
1595                  * pointer to the first mbuf of the packet and initialize its
1596                  * context. Otherwise, update the total length and the number
1597                  * of segments of the current scattered packet, and update the
1598                  * pointer to the last mbuf of the current packet.
1599                  */
1600                 if (!first_seg) {
1601                         first_seg = rxm;
1602                         first_seg->nb_segs = 1;
1603                         first_seg->pkt_len = rx_packet_len;
1604                 } else {
1605                         first_seg->pkt_len =
1606                                 (uint16_t)(first_seg->pkt_len +
1607                                                 rx_packet_len);
1608                         first_seg->nb_segs++;
1609                         last_seg->next = rxm;
1610                 }
1611
1612                 /* If this is not the last buffer of the received packet,
1613                  * update the pointer to the last mbuf of the current scattered
1614                  * packet and continue to parse the RX ring.
1615                  */
1616                 if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_EOF_SHIFT))) {
1617                         last_seg = rxm;
1618                         continue;
1619                 }
1620
1621                 /* This is the last buffer of the received packet. If the CRC
1622                  * is not stripped by the hardware:
1623                  *  - Subtract the CRC length from the total packet length.
1624                  *  - If the last buffer only contains the whole CRC or a part
1625                  *  of it, free the mbuf associated to the last buffer. If part
1626                  *  of the CRC is also contained in the previous mbuf, subtract
1627                  *  the length of that CRC part from the data length of the
1628                  *  previous mbuf.
1629                  */
1630                 rxm->next = NULL;
1631                 if (unlikely(rxq->crc_len > 0)) {
1632                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1633                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1634                                 rte_pktmbuf_free_seg(rxm);
1635                                 first_seg->nb_segs--;
1636                                 last_seg->data_len =
1637                                         (uint16_t)(last_seg->data_len -
1638                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1639                                 last_seg->next = NULL;
1640                         } else
1641                                 rxm->data_len = (uint16_t)(rx_packet_len -
1642                                                         RTE_ETHER_CRC_LEN);
1643                 }
1644
1645                 first_seg->port = rxq->port_id;
1646                 first_seg->ol_flags = 0;
1647                 iavf_rxd_to_vlan_tci(first_seg, &rxd);
1648                 pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1649                 first_seg->packet_type =
1650                         ptype_tbl[(uint8_t)((qword1 &
1651                         IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT)];
1652
1653                 if (pkt_flags & PKT_RX_RSS_HASH)
1654                         first_seg->hash.rss =
1655                                 rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
1656
1657                 if (pkt_flags & PKT_RX_FDIR)
1658                         pkt_flags |= iavf_rxd_build_fdir(&rxd, first_seg);
1659
1660                 first_seg->ol_flags |= pkt_flags;
1661
1662                 /* Prefetch data of first segment, if configured to do so. */
1663                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1664                                           first_seg->data_off));
1665                 rx_pkts[nb_rx++] = first_seg;
1666                 first_seg = NULL;
1667         }
1668
1669         /* Record index of the next RX descriptor to probe. */
1670         rxq->rx_tail = rx_id;
1671         rxq->pkt_first_seg = first_seg;
1672         rxq->pkt_last_seg = last_seg;
1673
1674         iavf_update_rx_tail(rxq, nb_hold, rx_id);
1675
1676         return nb_rx;
1677 }
1678
1679 #define IAVF_LOOK_AHEAD 8
1680 static inline int
1681 iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq)
1682 {
1683         volatile union iavf_rx_flex_desc *rxdp;
1684         struct rte_mbuf **rxep;
1685         struct rte_mbuf *mb;
1686         uint16_t stat_err0;
1687         uint16_t pkt_len;
1688         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1689         int32_t i, j, nb_rx = 0;
1690         uint64_t pkt_flags;
1691         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1692
1693         rxdp = (volatile union iavf_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
1694         rxep = &rxq->sw_ring[rxq->rx_tail];
1695
1696         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1697
1698         /* Make sure there is at least 1 packet to receive */
1699         if (!(stat_err0 & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
1700                 return 0;
1701
1702         /* Scan LOOK_AHEAD descriptors at a time to determine which
1703          * descriptors reference packets that are ready to be received.
1704          */
1705         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1706              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1707                 /* Read desc statuses backwards to avoid race condition */
1708                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--)
1709                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1710
1711                 rte_smp_rmb();
1712
1713                 /* Compute how many status bits were set */
1714                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1715                         nb_dd += s[j] & (1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S);
1716
1717                 nb_rx += nb_dd;
1718
1719                 /* Translate descriptor info to mbuf parameters */
1720                 for (j = 0; j < nb_dd; j++) {
1721                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1722                                           rxq->rx_tail +
1723                                           i * IAVF_LOOK_AHEAD + j);
1724
1725                         mb = rxep[j];
1726                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1727                                 IAVF_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1728                         mb->data_len = pkt_len;
1729                         mb->pkt_len = pkt_len;
1730                         mb->ol_flags = 0;
1731
1732                         mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
1733                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1734                         iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j], rxq->rx_flags);
1735                         rxq->rxd_to_pkt_fields(rxq, mb, &rxdp[j]);
1736                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1737                         pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
1738
1739                         mb->ol_flags |= pkt_flags;
1740                 }
1741
1742                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1743                         rxq->rx_stage[i + j] = rxep[j];
1744
1745                 if (nb_dd != IAVF_LOOK_AHEAD)
1746                         break;
1747         }
1748
1749         /* Clear software ring entries */
1750         for (i = 0; i < nb_rx; i++)
1751                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1752
1753         return nb_rx;
1754 }
1755
1756 static inline int
1757 iavf_rx_scan_hw_ring(struct iavf_rx_queue *rxq)
1758 {
1759         volatile union iavf_rx_desc *rxdp;
1760         struct rte_mbuf **rxep;
1761         struct rte_mbuf *mb;
1762         uint16_t pkt_len;
1763         uint64_t qword1;
1764         uint32_t rx_status;
1765         int32_t s[IAVF_LOOK_AHEAD], nb_dd;
1766         int32_t i, j, nb_rx = 0;
1767         uint64_t pkt_flags;
1768         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1769
1770         rxdp = &rxq->rx_ring[rxq->rx_tail];
1771         rxep = &rxq->sw_ring[rxq->rx_tail];
1772
1773         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
1774         rx_status = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1775                     IAVF_RXD_QW1_STATUS_SHIFT;
1776
1777         /* Make sure there is at least 1 packet to receive */
1778         if (!(rx_status & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
1779                 return 0;
1780
1781         /* Scan LOOK_AHEAD descriptors at a time to determine which
1782          * descriptors reference packets that are ready to be received.
1783          */
1784         for (i = 0; i < IAVF_RX_MAX_BURST; i += IAVF_LOOK_AHEAD,
1785              rxdp += IAVF_LOOK_AHEAD, rxep += IAVF_LOOK_AHEAD) {
1786                 /* Read desc statuses backwards to avoid race condition */
1787                 for (j = IAVF_LOOK_AHEAD - 1; j >= 0; j--) {
1788                         qword1 = rte_le_to_cpu_64(
1789                                 rxdp[j].wb.qword1.status_error_len);
1790                         s[j] = (qword1 & IAVF_RXD_QW1_STATUS_MASK) >>
1791                                IAVF_RXD_QW1_STATUS_SHIFT;
1792                 }
1793
1794                 rte_smp_rmb();
1795
1796                 /* Compute how many status bits were set */
1797                 for (j = 0, nb_dd = 0; j < IAVF_LOOK_AHEAD; j++)
1798                         nb_dd += s[j] & (1 << IAVF_RX_DESC_STATUS_DD_SHIFT);
1799
1800                 nb_rx += nb_dd;
1801
1802                 /* Translate descriptor info to mbuf parameters */
1803                 for (j = 0; j < nb_dd; j++) {
1804                         IAVF_DUMP_RX_DESC(rxq, &rxdp[j],
1805                                          rxq->rx_tail + i * IAVF_LOOK_AHEAD + j);
1806
1807                         mb = rxep[j];
1808                         qword1 = rte_le_to_cpu_64
1809                                         (rxdp[j].wb.qword1.status_error_len);
1810                         pkt_len = ((qword1 & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1811                                   IAVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
1812                         mb->data_len = pkt_len;
1813                         mb->pkt_len = pkt_len;
1814                         mb->ol_flags = 0;
1815                         iavf_rxd_to_vlan_tci(mb, &rxdp[j]);
1816                         pkt_flags = iavf_rxd_to_pkt_flags(qword1);
1817                         mb->packet_type =
1818                                 ptype_tbl[(uint8_t)((qword1 &
1819                                 IAVF_RXD_QW1_PTYPE_MASK) >>
1820                                 IAVF_RXD_QW1_PTYPE_SHIFT)];
1821
1822                         if (pkt_flags & PKT_RX_RSS_HASH)
1823                                 mb->hash.rss = rte_le_to_cpu_32(
1824                                         rxdp[j].wb.qword0.hi_dword.rss);
1825
1826                         if (pkt_flags & PKT_RX_FDIR)
1827                                 pkt_flags |= iavf_rxd_build_fdir(&rxdp[j], mb);
1828
1829                         mb->ol_flags |= pkt_flags;
1830                 }
1831
1832                 for (j = 0; j < IAVF_LOOK_AHEAD; j++)
1833                         rxq->rx_stage[i + j] = rxep[j];
1834
1835                 if (nb_dd != IAVF_LOOK_AHEAD)
1836                         break;
1837         }
1838
1839         /* Clear software ring entries */
1840         for (i = 0; i < nb_rx; i++)
1841                 rxq->sw_ring[rxq->rx_tail + i] = NULL;
1842
1843         return nb_rx;
1844 }
1845
1846 static inline uint16_t
1847 iavf_rx_fill_from_stage(struct iavf_rx_queue *rxq,
1848                        struct rte_mbuf **rx_pkts,
1849                        uint16_t nb_pkts)
1850 {
1851         uint16_t i;
1852         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1853
1854         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1855
1856         for (i = 0; i < nb_pkts; i++)
1857                 rx_pkts[i] = stage[i];
1858
1859         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1860         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1861
1862         return nb_pkts;
1863 }
1864
1865 static inline int
1866 iavf_rx_alloc_bufs(struct iavf_rx_queue *rxq)
1867 {
1868         volatile union iavf_rx_desc *rxdp;
1869         struct rte_mbuf **rxep;
1870         struct rte_mbuf *mb;
1871         uint16_t alloc_idx, i;
1872         uint64_t dma_addr;
1873         int diag;
1874
1875         /* Allocate buffers in bulk */
1876         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1877                                 (rxq->rx_free_thresh - 1));
1878         rxep = &rxq->sw_ring[alloc_idx];
1879         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1880                                     rxq->rx_free_thresh);
1881         if (unlikely(diag != 0)) {
1882                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1883                 return -ENOMEM;
1884         }
1885
1886         rxdp = &rxq->rx_ring[alloc_idx];
1887         for (i = 0; i < rxq->rx_free_thresh; i++) {
1888                 if (likely(i < (rxq->rx_free_thresh - 1)))
1889                         /* Prefetch next mbuf */
1890                         rte_prefetch0(rxep[i + 1]);
1891
1892                 mb = rxep[i];
1893                 rte_mbuf_refcnt_set(mb, 1);
1894                 mb->next = NULL;
1895                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1896                 mb->nb_segs = 1;
1897                 mb->port = rxq->port_id;
1898                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1899                 rxdp[i].read.hdr_addr = 0;
1900                 rxdp[i].read.pkt_addr = dma_addr;
1901         }
1902
1903         /* Update rx tail register */
1904         rte_wmb();
1905         IAVF_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rxq->rx_free_trigger);
1906
1907         rxq->rx_free_trigger =
1908                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1909         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1910                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1911
1912         return 0;
1913 }
1914
1915 static inline uint16_t
1916 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1917 {
1918         struct iavf_rx_queue *rxq = (struct iavf_rx_queue *)rx_queue;
1919         uint16_t nb_rx = 0;
1920
1921         if (!nb_pkts)
1922                 return 0;
1923
1924         if (rxq->rx_nb_avail)
1925                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1926
1927         if (rxq->rxdid >= IAVF_RXDID_FLEX_NIC && rxq->rxdid <= IAVF_RXDID_LAST)
1928                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq);
1929         else
1930                 nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
1931         rxq->rx_next_avail = 0;
1932         rxq->rx_nb_avail = nb_rx;
1933         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1934
1935         if (rxq->rx_tail > rxq->rx_free_trigger) {
1936                 if (iavf_rx_alloc_bufs(rxq) != 0) {
1937                         uint16_t i, j;
1938
1939                         /* TODO: count rx_mbuf_alloc_failed here */
1940
1941                         rxq->rx_nb_avail = 0;
1942                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1943                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1944                                 rxq->sw_ring[j] = rxq->rx_stage[i];
1945
1946                         return 0;
1947                 }
1948         }
1949
1950         if (rxq->rx_tail >= rxq->nb_rx_desc)
1951                 rxq->rx_tail = 0;
1952
1953         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u, nb_rx=%u",
1954                    rxq->port_id, rxq->queue_id,
1955                    rxq->rx_tail, nb_rx);
1956
1957         if (rxq->rx_nb_avail)
1958                 return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1959
1960         return 0;
1961 }
1962
1963 static uint16_t
1964 iavf_recv_pkts_bulk_alloc(void *rx_queue,
1965                          struct rte_mbuf **rx_pkts,
1966                          uint16_t nb_pkts)
1967 {
1968         uint16_t nb_rx = 0, n, count;
1969
1970         if (unlikely(nb_pkts == 0))
1971                 return 0;
1972
1973         if (likely(nb_pkts <= IAVF_RX_MAX_BURST))
1974                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1975
1976         while (nb_pkts) {
1977                 n = RTE_MIN(nb_pkts, IAVF_RX_MAX_BURST);
1978                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1979                 nb_rx = (uint16_t)(nb_rx + count);
1980                 nb_pkts = (uint16_t)(nb_pkts - count);
1981                 if (count < n)
1982                         break;
1983         }
1984
1985         return nb_rx;
1986 }
1987
1988 static inline int
1989 iavf_xmit_cleanup(struct iavf_tx_queue *txq)
1990 {
1991         struct iavf_tx_entry *sw_ring = txq->sw_ring;
1992         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
1993         uint16_t nb_tx_desc = txq->nb_tx_desc;
1994         uint16_t desc_to_clean_to;
1995         uint16_t nb_tx_to_clean;
1996
1997         volatile struct iavf_tx_desc *txd = txq->tx_ring;
1998
1999         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
2000         if (desc_to_clean_to >= nb_tx_desc)
2001                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2002
2003         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2004         if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
2005                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
2006                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) {
2007                 PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2008                            "(port=%d queue=%d)", desc_to_clean_to,
2009                            txq->port_id, txq->queue_id);
2010                 return -1;
2011         }
2012
2013         if (last_desc_cleaned > desc_to_clean_to)
2014                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2015                                                         desc_to_clean_to);
2016         else
2017                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2018                                         last_desc_cleaned);
2019
2020         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2021
2022         txq->last_desc_cleaned = desc_to_clean_to;
2023         txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
2024
2025         return 0;
2026 }
2027
2028 /* Check if the context descriptor is needed for TX offloading */
2029 static inline uint16_t
2030 iavf_calc_context_desc(uint64_t flags, uint8_t vlan_flag)
2031 {
2032         if (flags & PKT_TX_TCP_SEG)
2033                 return 1;
2034         if (flags & PKT_TX_VLAN_PKT &&
2035             vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2)
2036                 return 1;
2037         return 0;
2038 }
2039
2040 static inline void
2041 iavf_txd_enable_checksum(uint64_t ol_flags,
2042                         uint32_t *td_cmd,
2043                         uint32_t *td_offset,
2044                         union iavf_tx_offload tx_offload)
2045 {
2046         /* Set MACLEN */
2047         *td_offset |= (tx_offload.l2_len >> 1) <<
2048                       IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
2049
2050         /* Enable L3 checksum offloads */
2051         if (ol_flags & PKT_TX_IP_CKSUM) {
2052                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
2053                 *td_offset |= (tx_offload.l3_len >> 2) <<
2054                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2055         } else if (ol_flags & PKT_TX_IPV4) {
2056                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
2057                 *td_offset |= (tx_offload.l3_len >> 2) <<
2058                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2059         } else if (ol_flags & PKT_TX_IPV6) {
2060                 *td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2061                 *td_offset |= (tx_offload.l3_len >> 2) <<
2062                               IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2063         }
2064
2065         if (ol_flags & PKT_TX_TCP_SEG) {
2066                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2067                 *td_offset |= (tx_offload.l4_len >> 2) <<
2068                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2069                 return;
2070         }
2071
2072         /* Enable L4 checksum offloads */
2073         switch (ol_flags & PKT_TX_L4_MASK) {
2074         case PKT_TX_TCP_CKSUM:
2075                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2076                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2077                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2078                 break;
2079         case PKT_TX_SCTP_CKSUM:
2080                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2081                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2082                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2083                 break;
2084         case PKT_TX_UDP_CKSUM:
2085                 *td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2086                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2087                               IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2088                 break;
2089         default:
2090                 break;
2091         }
2092 }
2093
2094 /* set TSO context descriptor
2095  * support IP -> L4 and IP -> IP -> L4
2096  */
2097 static inline uint64_t
2098 iavf_set_tso_ctx(struct rte_mbuf *mbuf, union iavf_tx_offload tx_offload)
2099 {
2100         uint64_t ctx_desc = 0;
2101         uint32_t cd_cmd, hdr_len, cd_tso_len;
2102
2103         if (!tx_offload.l4_len) {
2104                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
2105                 return ctx_desc;
2106         }
2107
2108         hdr_len = tx_offload.l2_len +
2109                   tx_offload.l3_len +
2110                   tx_offload.l4_len;
2111
2112         cd_cmd = IAVF_TX_CTX_DESC_TSO;
2113         cd_tso_len = mbuf->pkt_len - hdr_len;
2114         ctx_desc |= ((uint64_t)cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
2115                      ((uint64_t)cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2116                      ((uint64_t)mbuf->tso_segsz << IAVF_TXD_CTX_QW1_MSS_SHIFT);
2117
2118         return ctx_desc;
2119 }
2120
2121 /* Construct the tx flags */
2122 static inline uint64_t
2123 iavf_build_ctob(uint32_t td_cmd, uint32_t td_offset, unsigned int size,
2124                uint32_t td_tag)
2125 {
2126         return rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DATA |
2127                                 ((uint64_t)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
2128                                 ((uint64_t)td_offset <<
2129                                  IAVF_TXD_QW1_OFFSET_SHIFT) |
2130                                 ((uint64_t)size  <<
2131                                  IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
2132                                 ((uint64_t)td_tag  <<
2133                                  IAVF_TXD_QW1_L2TAG1_SHIFT));
2134 }
2135
2136 /* TX function */
2137 uint16_t
2138 iavf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2139 {
2140         volatile struct iavf_tx_desc *txd;
2141         volatile struct iavf_tx_desc *txr;
2142         struct iavf_tx_queue *txq;
2143         struct iavf_tx_entry *sw_ring;
2144         struct iavf_tx_entry *txe, *txn;
2145         struct rte_mbuf *tx_pkt;
2146         struct rte_mbuf *m_seg;
2147         uint16_t tx_id;
2148         uint16_t nb_tx;
2149         uint32_t td_cmd;
2150         uint32_t td_offset;
2151         uint32_t td_tag;
2152         uint64_t ol_flags;
2153         uint16_t nb_used;
2154         uint16_t nb_ctx;
2155         uint16_t tx_last;
2156         uint16_t slen;
2157         uint64_t buf_dma_addr;
2158         uint16_t cd_l2tag2 = 0;
2159         union iavf_tx_offload tx_offload = {0};
2160
2161         txq = tx_queue;
2162         sw_ring = txq->sw_ring;
2163         txr = txq->tx_ring;
2164         tx_id = txq->tx_tail;
2165         txe = &sw_ring[tx_id];
2166
2167         /* Check if the descriptor ring needs to be cleaned. */
2168         if (txq->nb_free < txq->free_thresh)
2169                 (void)iavf_xmit_cleanup(txq);
2170
2171         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
2172                 td_cmd = 0;
2173                 td_tag = 0;
2174                 td_offset = 0;
2175
2176                 tx_pkt = *tx_pkts++;
2177                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
2178
2179                 ol_flags = tx_pkt->ol_flags;
2180                 tx_offload.l2_len = tx_pkt->l2_len;
2181                 tx_offload.l3_len = tx_pkt->l3_len;
2182                 tx_offload.l4_len = tx_pkt->l4_len;
2183                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
2184                 /* Calculate the number of context descriptors needed. */
2185                 nb_ctx = iavf_calc_context_desc(ol_flags, txq->vlan_flag);
2186
2187                 /* The number of descriptors that must be allocated for
2188                  * a packet equals to the number of the segments of that
2189                  * packet plus 1 context descriptor if needed.
2190                  */
2191                 nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
2192                 tx_last = (uint16_t)(tx_id + nb_used - 1);
2193
2194                 /* Circular ring */
2195                 if (tx_last >= txq->nb_tx_desc)
2196                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
2197
2198                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
2199                            " tx_first=%u tx_last=%u",
2200                            txq->port_id, txq->queue_id, tx_id, tx_last);
2201
2202                 if (nb_used > txq->nb_free) {
2203                         if (iavf_xmit_cleanup(txq)) {
2204                                 if (nb_tx == 0)
2205                                         return 0;
2206                                 goto end_of_tx;
2207                         }
2208                         if (unlikely(nb_used > txq->rs_thresh)) {
2209                                 while (nb_used > txq->nb_free) {
2210                                         if (iavf_xmit_cleanup(txq)) {
2211                                                 if (nb_tx == 0)
2212                                                         return 0;
2213                                                 goto end_of_tx;
2214                                         }
2215                                 }
2216                         }
2217                 }
2218
2219                 /* Descriptor based VLAN insertion */
2220                 if (ol_flags & PKT_TX_VLAN_PKT &&
2221                     txq->vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
2222                         td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2223                         td_tag = tx_pkt->vlan_tci;
2224                 }
2225
2226                 /* According to datasheet, the bit2 is reserved and must be
2227                  * set to 1.
2228                  */
2229                 td_cmd |= 0x04;
2230
2231                 /* Enable checksum offloading */
2232                 if (ol_flags & IAVF_TX_CKSUM_OFFLOAD_MASK)
2233                         iavf_txd_enable_checksum(ol_flags, &td_cmd,
2234                                                 &td_offset, tx_offload);
2235
2236                 if (nb_ctx) {
2237                         /* Setup TX context descriptor if required */
2238                         uint64_t cd_type_cmd_tso_mss =
2239                                 IAVF_TX_DESC_DTYPE_CONTEXT;
2240                         volatile struct iavf_tx_context_desc *ctx_txd =
2241                                 (volatile struct iavf_tx_context_desc *)
2242                                                         &txr[tx_id];
2243
2244                         txn = &sw_ring[txe->next_id];
2245                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2246                         if (txe->mbuf) {
2247                                 rte_pktmbuf_free_seg(txe->mbuf);
2248                                 txe->mbuf = NULL;
2249                         }
2250
2251                         /* TSO enabled */
2252                         if (ol_flags & PKT_TX_TCP_SEG)
2253                                 cd_type_cmd_tso_mss |=
2254                                         iavf_set_tso_ctx(tx_pkt, tx_offload);
2255
2256                         if (ol_flags & PKT_TX_VLAN_PKT &&
2257                            txq->vlan_flag & IAVF_TX_FLAGS_VLAN_TAG_LOC_L2TAG2) {
2258                                 cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2
2259                                         << IAVF_TXD_CTX_QW1_CMD_SHIFT;
2260                                 cd_l2tag2 = tx_pkt->vlan_tci;
2261                         }
2262
2263                         ctx_txd->type_cmd_tso_mss =
2264                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2265                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
2266
2267                         IAVF_DUMP_TX_DESC(txq, &txr[tx_id], tx_id);
2268                         txe->last_id = tx_last;
2269                         tx_id = txe->next_id;
2270                         txe = txn;
2271                 }
2272
2273                 m_seg = tx_pkt;
2274                 do {
2275                         txd = &txr[tx_id];
2276                         txn = &sw_ring[txe->next_id];
2277
2278                         if (txe->mbuf)
2279                                 rte_pktmbuf_free_seg(txe->mbuf);
2280                         txe->mbuf = m_seg;
2281
2282                         /* Setup TX Descriptor */
2283                         slen = m_seg->data_len;
2284                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2285                         txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
2286                         txd->cmd_type_offset_bsz = iavf_build_ctob(td_cmd,
2287                                                                   td_offset,
2288                                                                   slen,
2289                                                                   td_tag);
2290
2291                         IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2292                         txe->last_id = tx_last;
2293                         tx_id = txe->next_id;
2294                         txe = txn;
2295                         m_seg = m_seg->next;
2296                 } while (m_seg);
2297
2298                 /* The last packet data descriptor needs End Of Packet (EOP) */
2299                 td_cmd |= IAVF_TX_DESC_CMD_EOP;
2300                 txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
2301                 txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
2302
2303                 if (txq->nb_used >= txq->rs_thresh) {
2304                         PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
2305                                    "%4u (port=%d queue=%d)",
2306                                    tx_last, txq->port_id, txq->queue_id);
2307
2308                         td_cmd |= IAVF_TX_DESC_CMD_RS;
2309
2310                         /* Update txq RS bit counters */
2311                         txq->nb_used = 0;
2312                 }
2313
2314                 txd->cmd_type_offset_bsz |=
2315                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2316                                          IAVF_TXD_QW1_CMD_SHIFT);
2317                 IAVF_DUMP_TX_DESC(txq, txd, tx_id);
2318         }
2319
2320 end_of_tx:
2321         rte_wmb();
2322
2323         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
2324                    txq->port_id, txq->queue_id, tx_id, nb_tx);
2325
2326         IAVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
2327         txq->tx_tail = tx_id;
2328
2329         return nb_tx;
2330 }
2331
2332 /* TX prep functions */
2333 uint16_t
2334 iavf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
2335               uint16_t nb_pkts)
2336 {
2337         int i, ret;
2338         uint64_t ol_flags;
2339         struct rte_mbuf *m;
2340
2341         for (i = 0; i < nb_pkts; i++) {
2342                 m = tx_pkts[i];
2343                 ol_flags = m->ol_flags;
2344
2345                 /* Check condition for nb_segs > IAVF_TX_MAX_MTU_SEG. */
2346                 if (!(ol_flags & PKT_TX_TCP_SEG)) {
2347                         if (m->nb_segs > IAVF_TX_MAX_MTU_SEG) {
2348                                 rte_errno = EINVAL;
2349                                 return i;
2350                         }
2351                 } else if ((m->tso_segsz < IAVF_MIN_TSO_MSS) ||
2352                            (m->tso_segsz > IAVF_MAX_TSO_MSS)) {
2353                         /* MSS outside the range are considered malicious */
2354                         rte_errno = EINVAL;
2355                         return i;
2356                 }
2357
2358                 if (ol_flags & IAVF_TX_OFFLOAD_NOTSUP_MASK) {
2359                         rte_errno = ENOTSUP;
2360                         return i;
2361                 }
2362
2363 #ifdef RTE_ETHDEV_DEBUG_TX
2364                 ret = rte_validate_tx_offload(m);
2365                 if (ret != 0) {
2366                         rte_errno = -ret;
2367                         return i;
2368                 }
2369 #endif
2370                 ret = rte_net_intel_cksum_prepare(m);
2371                 if (ret != 0) {
2372                         rte_errno = -ret;
2373                         return i;
2374                 }
2375         }
2376
2377         return i;
2378 }
2379
2380 /* choose rx function*/
2381 void
2382 iavf_set_rx_function(struct rte_eth_dev *dev)
2383 {
2384         struct iavf_adapter *adapter =
2385                 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2386         struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2387
2388 #ifdef RTE_ARCH_X86
2389         struct iavf_rx_queue *rxq;
2390         int i;
2391         bool use_avx2 = false;
2392 #ifdef CC_AVX512_SUPPORT
2393         bool use_avx512 = false;
2394 #endif
2395
2396         if (!iavf_rx_vec_dev_check(dev) &&
2397                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2398                 for (i = 0; i < dev->data->nb_rx_queues; i++) {
2399                         rxq = dev->data->rx_queues[i];
2400                         (void)iavf_rxq_vec_setup(rxq);
2401                 }
2402
2403                 if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2404                      rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2405                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2406                         use_avx2 = true;
2407 #ifdef CC_AVX512_SUPPORT
2408                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2409                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2410                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2411                         use_avx512 = true;
2412 #endif
2413
2414                 if (dev->data->scattered_rx) {
2415                         PMD_DRV_LOG(DEBUG,
2416                                     "Using %sVector Scattered Rx (port %d).",
2417                                     use_avx2 ? "avx2 " : "",
2418                                     dev->data->port_id);
2419                         if (vf->vf_res->vf_cap_flags &
2420                                 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2421                                 dev->rx_pkt_burst = use_avx2 ?
2422                                         iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
2423                                         iavf_recv_scattered_pkts_vec_flex_rxd;
2424 #ifdef CC_AVX512_SUPPORT
2425                                 if (use_avx512)
2426                                         dev->rx_pkt_burst =
2427                                                 iavf_recv_scattered_pkts_vec_avx512_flex_rxd;
2428 #endif
2429                         } else {
2430                                 dev->rx_pkt_burst = use_avx2 ?
2431                                         iavf_recv_scattered_pkts_vec_avx2 :
2432                                         iavf_recv_scattered_pkts_vec;
2433 #ifdef CC_AVX512_SUPPORT
2434                                 if (use_avx512)
2435                                         dev->rx_pkt_burst =
2436                                                 iavf_recv_scattered_pkts_vec_avx512;
2437 #endif
2438                         }
2439                 } else {
2440                         PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
2441                                     use_avx2 ? "avx2 " : "",
2442                                     dev->data->port_id);
2443                         if (vf->vf_res->vf_cap_flags &
2444                                 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
2445                                 dev->rx_pkt_burst = use_avx2 ?
2446                                         iavf_recv_pkts_vec_avx2_flex_rxd :
2447                                         iavf_recv_pkts_vec_flex_rxd;
2448 #ifdef CC_AVX512_SUPPORT
2449                                 if (use_avx512)
2450                                         dev->rx_pkt_burst =
2451                                                 iavf_recv_pkts_vec_avx512_flex_rxd;
2452 #endif
2453                         } else {
2454                                 dev->rx_pkt_burst = use_avx2 ?
2455                                         iavf_recv_pkts_vec_avx2 :
2456                                         iavf_recv_pkts_vec;
2457 #ifdef CC_AVX512_SUPPORT
2458                                 if (use_avx512)
2459                                         dev->rx_pkt_burst =
2460                                                 iavf_recv_pkts_vec_avx512;
2461 #endif
2462                         }
2463                 }
2464
2465                 return;
2466         }
2467 #endif
2468
2469         if (dev->data->scattered_rx) {
2470                 PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
2471                             dev->data->port_id);
2472                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2473                         dev->rx_pkt_burst = iavf_recv_scattered_pkts_flex_rxd;
2474                 else
2475                         dev->rx_pkt_burst = iavf_recv_scattered_pkts;
2476         } else if (adapter->rx_bulk_alloc_allowed) {
2477                 PMD_DRV_LOG(DEBUG, "Using bulk Rx callback (port=%d).",
2478                             dev->data->port_id);
2479                 dev->rx_pkt_burst = iavf_recv_pkts_bulk_alloc;
2480         } else {
2481                 PMD_DRV_LOG(DEBUG, "Using Basic Rx callback (port=%d).",
2482                             dev->data->port_id);
2483                 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
2484                         dev->rx_pkt_burst = iavf_recv_pkts_flex_rxd;
2485                 else
2486                         dev->rx_pkt_burst = iavf_recv_pkts;
2487         }
2488 }
2489
2490 /* choose tx function*/
2491 void
2492 iavf_set_tx_function(struct rte_eth_dev *dev)
2493 {
2494 #ifdef RTE_ARCH_X86
2495         struct iavf_tx_queue *txq;
2496         int i;
2497         bool use_avx2 = false;
2498 #ifdef CC_AVX512_SUPPORT
2499         bool use_avx512 = false;
2500 #endif
2501
2502         if (!iavf_tx_vec_dev_check(dev) &&
2503                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
2504                 if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
2505                      rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
2506                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
2507                         use_avx2 = true;
2508 #ifdef CC_AVX512_SUPPORT
2509                 if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
2510                     rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
2511                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
2512                         use_avx512 = true;
2513 #endif
2514
2515                 PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
2516                             use_avx2 ? "avx2 " : "",
2517                             dev->data->port_id);
2518                 dev->tx_pkt_burst = use_avx2 ?
2519                                     iavf_xmit_pkts_vec_avx2 :
2520                                     iavf_xmit_pkts_vec;
2521 #ifdef CC_AVX512_SUPPORT
2522                 if (use_avx512)
2523                         dev->tx_pkt_burst = iavf_xmit_pkts_vec_avx512;
2524 #endif
2525                 dev->tx_pkt_prepare = NULL;
2526
2527                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
2528                         txq = dev->data->tx_queues[i];
2529                         if (!txq)
2530                                 continue;
2531 #ifdef CC_AVX512_SUPPORT
2532                         if (use_avx512)
2533                                 iavf_txq_vec_setup_avx512(txq);
2534                         else
2535                                 iavf_txq_vec_setup(txq);
2536 #else
2537                         iavf_txq_vec_setup(txq);
2538 #endif
2539                 }
2540
2541                 return;
2542         }
2543 #endif
2544
2545         PMD_DRV_LOG(DEBUG, "Using Basic Tx callback (port=%d).",
2546                     dev->data->port_id);
2547         dev->tx_pkt_burst = iavf_xmit_pkts;
2548         dev->tx_pkt_prepare = iavf_prep_pkts;
2549 }
2550
2551 static int
2552 iavf_tx_done_cleanup_full(struct iavf_tx_queue *txq,
2553                         uint32_t free_cnt)
2554 {
2555         struct iavf_tx_entry *swr_ring = txq->sw_ring;
2556         uint16_t i, tx_last, tx_id;
2557         uint16_t nb_tx_free_last;
2558         uint16_t nb_tx_to_clean;
2559         uint32_t pkt_cnt;
2560
2561         /* Start free mbuf from the next of tx_tail */
2562         tx_last = txq->tx_tail;
2563         tx_id  = swr_ring[tx_last].next_id;
2564
2565         if (txq->nb_free == 0 && iavf_xmit_cleanup(txq))
2566                 return 0;
2567
2568         nb_tx_to_clean = txq->nb_free;
2569         nb_tx_free_last = txq->nb_free;
2570         if (!free_cnt)
2571                 free_cnt = txq->nb_tx_desc;
2572
2573         /* Loop through swr_ring to count the amount of
2574          * freeable mubfs and packets.
2575          */
2576         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2577                 for (i = 0; i < nb_tx_to_clean &&
2578                         pkt_cnt < free_cnt &&
2579                         tx_id != tx_last; i++) {
2580                         if (swr_ring[tx_id].mbuf != NULL) {
2581                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2582                                 swr_ring[tx_id].mbuf = NULL;
2583
2584                                 /*
2585                                  * last segment in the packet,
2586                                  * increment packet count
2587                                  */
2588                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2589                         }
2590
2591                         tx_id = swr_ring[tx_id].next_id;
2592                 }
2593
2594                 if (txq->rs_thresh > txq->nb_tx_desc -
2595                         txq->nb_free || tx_id == tx_last)
2596                         break;
2597
2598                 if (pkt_cnt < free_cnt) {
2599                         if (iavf_xmit_cleanup(txq))
2600                                 break;
2601
2602                         nb_tx_to_clean = txq->nb_free - nb_tx_free_last;
2603                         nb_tx_free_last = txq->nb_free;
2604                 }
2605         }
2606
2607         return (int)pkt_cnt;
2608 }
2609
2610 int
2611 iavf_dev_tx_done_cleanup(void *txq, uint32_t free_cnt)
2612 {
2613         struct iavf_tx_queue *q = (struct iavf_tx_queue *)txq;
2614
2615         return iavf_tx_done_cleanup_full(q, free_cnt);
2616 }
2617
2618 void
2619 iavf_dev_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2620                      struct rte_eth_rxq_info *qinfo)
2621 {
2622         struct iavf_rx_queue *rxq;
2623
2624         rxq = dev->data->rx_queues[queue_id];
2625
2626         qinfo->mp = rxq->mp;
2627         qinfo->scattered_rx = dev->data->scattered_rx;
2628         qinfo->nb_desc = rxq->nb_rx_desc;
2629
2630         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2631         qinfo->conf.rx_drop_en = true;
2632         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
2633 }
2634
2635 void
2636 iavf_dev_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2637                      struct rte_eth_txq_info *qinfo)
2638 {
2639         struct iavf_tx_queue *txq;
2640
2641         txq = dev->data->tx_queues[queue_id];
2642
2643         qinfo->nb_desc = txq->nb_tx_desc;
2644
2645         qinfo->conf.tx_free_thresh = txq->free_thresh;
2646         qinfo->conf.tx_rs_thresh = txq->rs_thresh;
2647         qinfo->conf.offloads = txq->offloads;
2648         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
2649 }
2650
2651 /* Get the number of used descriptors of a rx queue */
2652 uint32_t
2653 iavf_dev_rxq_count(struct rte_eth_dev *dev, uint16_t queue_id)
2654 {
2655 #define IAVF_RXQ_SCAN_INTERVAL 4
2656         volatile union iavf_rx_desc *rxdp;
2657         struct iavf_rx_queue *rxq;
2658         uint16_t desc = 0;
2659
2660         rxq = dev->data->rx_queues[queue_id];
2661         rxdp = &rxq->rx_ring[rxq->rx_tail];
2662
2663         while ((desc < rxq->nb_rx_desc) &&
2664                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2665                  IAVF_RXD_QW1_STATUS_MASK) >> IAVF_RXD_QW1_STATUS_SHIFT) &
2666                (1 << IAVF_RX_DESC_STATUS_DD_SHIFT)) {
2667                 /* Check the DD bit of a rx descriptor of each 4 in a group,
2668                  * to avoid checking too frequently and downgrading performance
2669                  * too much.
2670                  */
2671                 desc += IAVF_RXQ_SCAN_INTERVAL;
2672                 rxdp += IAVF_RXQ_SCAN_INTERVAL;
2673                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2674                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
2675                                         desc - rxq->nb_rx_desc]);
2676         }
2677
2678         return desc;
2679 }
2680
2681 int
2682 iavf_dev_rx_desc_status(void *rx_queue, uint16_t offset)
2683 {
2684         struct iavf_rx_queue *rxq = rx_queue;
2685         volatile uint64_t *status;
2686         uint64_t mask;
2687         uint32_t desc;
2688
2689         if (unlikely(offset >= rxq->nb_rx_desc))
2690                 return -EINVAL;
2691
2692         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2693                 return RTE_ETH_RX_DESC_UNAVAIL;
2694
2695         desc = rxq->rx_tail + offset;
2696         if (desc >= rxq->nb_rx_desc)
2697                 desc -= rxq->nb_rx_desc;
2698
2699         status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2700         mask = rte_le_to_cpu_64((1ULL << IAVF_RX_DESC_STATUS_DD_SHIFT)
2701                 << IAVF_RXD_QW1_STATUS_SHIFT);
2702         if (*status & mask)
2703                 return RTE_ETH_RX_DESC_DONE;
2704
2705         return RTE_ETH_RX_DESC_AVAIL;
2706 }
2707
2708 int
2709 iavf_dev_tx_desc_status(void *tx_queue, uint16_t offset)
2710 {
2711         struct iavf_tx_queue *txq = tx_queue;
2712         volatile uint64_t *status;
2713         uint64_t mask, expect;
2714         uint32_t desc;
2715
2716         if (unlikely(offset >= txq->nb_tx_desc))
2717                 return -EINVAL;
2718
2719         desc = txq->tx_tail + offset;
2720         /* go to next desc that has the RS bit */
2721         desc = ((desc + txq->rs_thresh - 1) / txq->rs_thresh) *
2722                 txq->rs_thresh;
2723         if (desc >= txq->nb_tx_desc) {
2724                 desc -= txq->nb_tx_desc;
2725                 if (desc >= txq->nb_tx_desc)
2726                         desc -= txq->nb_tx_desc;
2727         }
2728
2729         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2730         mask = rte_le_to_cpu_64(IAVF_TXD_QW1_DTYPE_MASK);
2731         expect = rte_cpu_to_le_64(
2732                  IAVF_TX_DESC_DTYPE_DESC_DONE << IAVF_TXD_QW1_DTYPE_SHIFT);
2733         if ((*status & mask) == expect)
2734                 return RTE_ETH_TX_DESC_DONE;
2735
2736         return RTE_ETH_TX_DESC_FULL;
2737 }
2738
2739 const uint32_t *
2740 iavf_get_default_ptype_table(void)
2741 {
2742         static const uint32_t ptype_tbl[IAVF_MAX_PKT_TYPE]
2743                 __rte_cache_aligned = {
2744                 /* L2 types */
2745                 /* [0] reserved */
2746                 [1] = RTE_PTYPE_L2_ETHER,
2747                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
2748                 /* [3] - [5] reserved */
2749                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
2750                 /* [7] - [10] reserved */
2751                 [11] = RTE_PTYPE_L2_ETHER_ARP,
2752                 /* [12] - [21] reserved */
2753
2754                 /* Non tunneled IPv4 */
2755                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2756                        RTE_PTYPE_L4_FRAG,
2757                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2758                        RTE_PTYPE_L4_NONFRAG,
2759                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2760                        RTE_PTYPE_L4_UDP,
2761                 /* [25] reserved */
2762                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2763                        RTE_PTYPE_L4_TCP,
2764                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2765                        RTE_PTYPE_L4_SCTP,
2766                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2767                        RTE_PTYPE_L4_ICMP,
2768
2769                 /* IPv4 --> IPv4 */
2770                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2771                        RTE_PTYPE_TUNNEL_IP |
2772                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2773                        RTE_PTYPE_INNER_L4_FRAG,
2774                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2775                        RTE_PTYPE_TUNNEL_IP |
2776                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2777                        RTE_PTYPE_INNER_L4_NONFRAG,
2778                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2779                        RTE_PTYPE_TUNNEL_IP |
2780                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2781                        RTE_PTYPE_INNER_L4_UDP,
2782                 /* [32] reserved */
2783                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2784                        RTE_PTYPE_TUNNEL_IP |
2785                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2786                        RTE_PTYPE_INNER_L4_TCP,
2787                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2788                        RTE_PTYPE_TUNNEL_IP |
2789                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2790                        RTE_PTYPE_INNER_L4_SCTP,
2791                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2792                        RTE_PTYPE_TUNNEL_IP |
2793                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2794                        RTE_PTYPE_INNER_L4_ICMP,
2795
2796                 /* IPv4 --> IPv6 */
2797                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2798                        RTE_PTYPE_TUNNEL_IP |
2799                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2800                        RTE_PTYPE_INNER_L4_FRAG,
2801                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2802                        RTE_PTYPE_TUNNEL_IP |
2803                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2804                        RTE_PTYPE_INNER_L4_NONFRAG,
2805                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2806                        RTE_PTYPE_TUNNEL_IP |
2807                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2808                        RTE_PTYPE_INNER_L4_UDP,
2809                 /* [39] reserved */
2810                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2811                        RTE_PTYPE_TUNNEL_IP |
2812                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2813                        RTE_PTYPE_INNER_L4_TCP,
2814                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2815                        RTE_PTYPE_TUNNEL_IP |
2816                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2817                        RTE_PTYPE_INNER_L4_SCTP,
2818                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2819                        RTE_PTYPE_TUNNEL_IP |
2820                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2821                        RTE_PTYPE_INNER_L4_ICMP,
2822
2823                 /* IPv4 --> GRE/Teredo/VXLAN */
2824                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2825                        RTE_PTYPE_TUNNEL_GRENAT,
2826
2827                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
2828                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2829                        RTE_PTYPE_TUNNEL_GRENAT |
2830                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2831                        RTE_PTYPE_INNER_L4_FRAG,
2832                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2833                        RTE_PTYPE_TUNNEL_GRENAT |
2834                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2835                        RTE_PTYPE_INNER_L4_NONFRAG,
2836                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2837                        RTE_PTYPE_TUNNEL_GRENAT |
2838                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2839                        RTE_PTYPE_INNER_L4_UDP,
2840                 /* [47] reserved */
2841                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2842                        RTE_PTYPE_TUNNEL_GRENAT |
2843                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2844                        RTE_PTYPE_INNER_L4_TCP,
2845                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2846                        RTE_PTYPE_TUNNEL_GRENAT |
2847                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2848                        RTE_PTYPE_INNER_L4_SCTP,
2849                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2850                        RTE_PTYPE_TUNNEL_GRENAT |
2851                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2852                        RTE_PTYPE_INNER_L4_ICMP,
2853
2854                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
2855                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2856                        RTE_PTYPE_TUNNEL_GRENAT |
2857                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2858                        RTE_PTYPE_INNER_L4_FRAG,
2859                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2860                        RTE_PTYPE_TUNNEL_GRENAT |
2861                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2862                        RTE_PTYPE_INNER_L4_NONFRAG,
2863                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2864                        RTE_PTYPE_TUNNEL_GRENAT |
2865                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2866                        RTE_PTYPE_INNER_L4_UDP,
2867                 /* [54] reserved */
2868                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2869                        RTE_PTYPE_TUNNEL_GRENAT |
2870                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2871                        RTE_PTYPE_INNER_L4_TCP,
2872                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2873                        RTE_PTYPE_TUNNEL_GRENAT |
2874                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2875                        RTE_PTYPE_INNER_L4_SCTP,
2876                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2877                        RTE_PTYPE_TUNNEL_GRENAT |
2878                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2879                        RTE_PTYPE_INNER_L4_ICMP,
2880
2881                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
2882                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2883                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
2884
2885                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2886                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2887                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2888                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2889                        RTE_PTYPE_INNER_L4_FRAG,
2890                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2891                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2892                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2893                        RTE_PTYPE_INNER_L4_NONFRAG,
2894                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2895                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2896                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2897                        RTE_PTYPE_INNER_L4_UDP,
2898                 /* [62] reserved */
2899                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2900                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2901                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2902                        RTE_PTYPE_INNER_L4_TCP,
2903                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2904                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2905                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2906                        RTE_PTYPE_INNER_L4_SCTP,
2907                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2908                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2909                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2910                        RTE_PTYPE_INNER_L4_ICMP,
2911
2912                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2913                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2914                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2915                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2916                        RTE_PTYPE_INNER_L4_FRAG,
2917                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2918                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2919                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2920                        RTE_PTYPE_INNER_L4_NONFRAG,
2921                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2922                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2923                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2924                        RTE_PTYPE_INNER_L4_UDP,
2925                 /* [69] reserved */
2926                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2927                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2928                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2929                        RTE_PTYPE_INNER_L4_TCP,
2930                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2931                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2932                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2933                        RTE_PTYPE_INNER_L4_SCTP,
2934                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2935                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2936                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2937                        RTE_PTYPE_INNER_L4_ICMP,
2938                 /* [73] - [87] reserved */
2939
2940                 /* Non tunneled IPv6 */
2941                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2942                        RTE_PTYPE_L4_FRAG,
2943                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2944                        RTE_PTYPE_L4_NONFRAG,
2945                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2946                        RTE_PTYPE_L4_UDP,
2947                 /* [91] reserved */
2948                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2949                        RTE_PTYPE_L4_TCP,
2950                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2951                        RTE_PTYPE_L4_SCTP,
2952                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2953                        RTE_PTYPE_L4_ICMP,
2954
2955                 /* IPv6 --> IPv4 */
2956                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2957                        RTE_PTYPE_TUNNEL_IP |
2958                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2959                        RTE_PTYPE_INNER_L4_FRAG,
2960                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2961                        RTE_PTYPE_TUNNEL_IP |
2962                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2963                        RTE_PTYPE_INNER_L4_NONFRAG,
2964                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2965                        RTE_PTYPE_TUNNEL_IP |
2966                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2967                        RTE_PTYPE_INNER_L4_UDP,
2968                 /* [98] reserved */
2969                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2970                        RTE_PTYPE_TUNNEL_IP |
2971                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2972                        RTE_PTYPE_INNER_L4_TCP,
2973                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2974                         RTE_PTYPE_TUNNEL_IP |
2975                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2976                         RTE_PTYPE_INNER_L4_SCTP,
2977                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2978                         RTE_PTYPE_TUNNEL_IP |
2979                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2980                         RTE_PTYPE_INNER_L4_ICMP,
2981
2982                 /* IPv6 --> IPv6 */
2983                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2984                         RTE_PTYPE_TUNNEL_IP |
2985                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2986                         RTE_PTYPE_INNER_L4_FRAG,
2987                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2988                         RTE_PTYPE_TUNNEL_IP |
2989                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2990                         RTE_PTYPE_INNER_L4_NONFRAG,
2991                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2992                         RTE_PTYPE_TUNNEL_IP |
2993                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2994                         RTE_PTYPE_INNER_L4_UDP,
2995                 /* [105] reserved */
2996                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2997                         RTE_PTYPE_TUNNEL_IP |
2998                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2999                         RTE_PTYPE_INNER_L4_TCP,
3000                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3001                         RTE_PTYPE_TUNNEL_IP |
3002                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3003                         RTE_PTYPE_INNER_L4_SCTP,
3004                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3005                         RTE_PTYPE_TUNNEL_IP |
3006                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3007                         RTE_PTYPE_INNER_L4_ICMP,
3008
3009                 /* IPv6 --> GRE/Teredo/VXLAN */
3010                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3011                         RTE_PTYPE_TUNNEL_GRENAT,
3012
3013                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3014                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3015                         RTE_PTYPE_TUNNEL_GRENAT |
3016                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3017                         RTE_PTYPE_INNER_L4_FRAG,
3018                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3019                         RTE_PTYPE_TUNNEL_GRENAT |
3020                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3021                         RTE_PTYPE_INNER_L4_NONFRAG,
3022                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3023                         RTE_PTYPE_TUNNEL_GRENAT |
3024                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3025                         RTE_PTYPE_INNER_L4_UDP,
3026                 /* [113] reserved */
3027                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3028                         RTE_PTYPE_TUNNEL_GRENAT |
3029                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3030                         RTE_PTYPE_INNER_L4_TCP,
3031                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3032                         RTE_PTYPE_TUNNEL_GRENAT |
3033                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3034                         RTE_PTYPE_INNER_L4_SCTP,
3035                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3036                         RTE_PTYPE_TUNNEL_GRENAT |
3037                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3038                         RTE_PTYPE_INNER_L4_ICMP,
3039
3040                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3041                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3042                         RTE_PTYPE_TUNNEL_GRENAT |
3043                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3044                         RTE_PTYPE_INNER_L4_FRAG,
3045                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3046                         RTE_PTYPE_TUNNEL_GRENAT |
3047                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3048                         RTE_PTYPE_INNER_L4_NONFRAG,
3049                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3050                         RTE_PTYPE_TUNNEL_GRENAT |
3051                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3052                         RTE_PTYPE_INNER_L4_UDP,
3053                 /* [120] reserved */
3054                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3055                         RTE_PTYPE_TUNNEL_GRENAT |
3056                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3057                         RTE_PTYPE_INNER_L4_TCP,
3058                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3059                         RTE_PTYPE_TUNNEL_GRENAT |
3060                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3061                         RTE_PTYPE_INNER_L4_SCTP,
3062                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3063                         RTE_PTYPE_TUNNEL_GRENAT |
3064                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3065                         RTE_PTYPE_INNER_L4_ICMP,
3066
3067                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3068                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3069                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3070
3071                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3072                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3073                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3074                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3075                         RTE_PTYPE_INNER_L4_FRAG,
3076                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3077                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3078                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3079                         RTE_PTYPE_INNER_L4_NONFRAG,
3080                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3081                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3082                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3083                         RTE_PTYPE_INNER_L4_UDP,
3084                 /* [128] reserved */
3085                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3086                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3087                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3088                         RTE_PTYPE_INNER_L4_TCP,
3089                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3090                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3091                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3092                         RTE_PTYPE_INNER_L4_SCTP,
3093                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3094                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3095                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3096                         RTE_PTYPE_INNER_L4_ICMP,
3097
3098                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3099                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3100                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3101                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3102                         RTE_PTYPE_INNER_L4_FRAG,
3103                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3104                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3105                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3106                         RTE_PTYPE_INNER_L4_NONFRAG,
3107                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3108                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3109                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3110                         RTE_PTYPE_INNER_L4_UDP,
3111                 /* [135] reserved */
3112                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3113                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3114                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3115                         RTE_PTYPE_INNER_L4_TCP,
3116                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3117                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3118                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3119                         RTE_PTYPE_INNER_L4_SCTP,
3120                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3121                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3122                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3123                         RTE_PTYPE_INNER_L4_ICMP,
3124                 /* [139] - [299] reserved */
3125
3126                 /* PPPoE */
3127                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
3128                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
3129
3130                 /* PPPoE --> IPv4 */
3131                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
3132                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3133                         RTE_PTYPE_L4_FRAG,
3134                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
3135                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3136                         RTE_PTYPE_L4_NONFRAG,
3137                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
3138                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3139                         RTE_PTYPE_L4_UDP,
3140                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
3141                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3142                         RTE_PTYPE_L4_TCP,
3143                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
3144                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3145                         RTE_PTYPE_L4_SCTP,
3146                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
3147                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3148                         RTE_PTYPE_L4_ICMP,
3149
3150                 /* PPPoE --> IPv6 */
3151                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
3152                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3153                         RTE_PTYPE_L4_FRAG,
3154                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
3155                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3156                         RTE_PTYPE_L4_NONFRAG,
3157                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
3158                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3159                         RTE_PTYPE_L4_UDP,
3160                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
3161                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3162                         RTE_PTYPE_L4_TCP,
3163                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
3164                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3165                         RTE_PTYPE_L4_SCTP,
3166                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
3167                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3168                         RTE_PTYPE_L4_ICMP,
3169                 /* [314] - [324] reserved */
3170
3171                 /* IPv4/IPv6 --> GTPC/GTPU */
3172                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3173                         RTE_PTYPE_TUNNEL_GTPC,
3174                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3175                         RTE_PTYPE_TUNNEL_GTPC,
3176                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3177                         RTE_PTYPE_TUNNEL_GTPC,
3178                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3179                         RTE_PTYPE_TUNNEL_GTPC,
3180                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3181                         RTE_PTYPE_TUNNEL_GTPU,
3182                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3183                         RTE_PTYPE_TUNNEL_GTPU,
3184
3185                 /* IPv4 --> GTPU --> IPv4 */
3186                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3187                         RTE_PTYPE_TUNNEL_GTPU |
3188                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3189                         RTE_PTYPE_INNER_L4_FRAG,
3190                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3191                         RTE_PTYPE_TUNNEL_GTPU |
3192                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3193                         RTE_PTYPE_INNER_L4_NONFRAG,
3194                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3195                         RTE_PTYPE_TUNNEL_GTPU |
3196                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3197                         RTE_PTYPE_INNER_L4_UDP,
3198                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3199                         RTE_PTYPE_TUNNEL_GTPU |
3200                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3201                         RTE_PTYPE_INNER_L4_TCP,
3202                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3203                         RTE_PTYPE_TUNNEL_GTPU |
3204                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3205                         RTE_PTYPE_INNER_L4_ICMP,
3206
3207                 /* IPv6 --> GTPU --> IPv4 */
3208                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3209                         RTE_PTYPE_TUNNEL_GTPU |
3210                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3211                         RTE_PTYPE_INNER_L4_FRAG,
3212                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3213                         RTE_PTYPE_TUNNEL_GTPU |
3214                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3215                         RTE_PTYPE_INNER_L4_NONFRAG,
3216                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3217                         RTE_PTYPE_TUNNEL_GTPU |
3218                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3219                         RTE_PTYPE_INNER_L4_UDP,
3220                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3221                         RTE_PTYPE_TUNNEL_GTPU |
3222                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3223                         RTE_PTYPE_INNER_L4_TCP,
3224                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3225                         RTE_PTYPE_TUNNEL_GTPU |
3226                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3227                         RTE_PTYPE_INNER_L4_ICMP,
3228
3229                 /* IPv4 --> GTPU --> IPv6 */
3230                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3231                         RTE_PTYPE_TUNNEL_GTPU |
3232                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3233                         RTE_PTYPE_INNER_L4_FRAG,
3234                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3235                         RTE_PTYPE_TUNNEL_GTPU |
3236                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3237                         RTE_PTYPE_INNER_L4_NONFRAG,
3238                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3239                         RTE_PTYPE_TUNNEL_GTPU |
3240                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3241                         RTE_PTYPE_INNER_L4_UDP,
3242                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3243                         RTE_PTYPE_TUNNEL_GTPU |
3244                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3245                         RTE_PTYPE_INNER_L4_TCP,
3246                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3247                         RTE_PTYPE_TUNNEL_GTPU |
3248                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3249                         RTE_PTYPE_INNER_L4_ICMP,
3250
3251                 /* IPv6 --> GTPU --> IPv6 */
3252                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3253                         RTE_PTYPE_TUNNEL_GTPU |
3254                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3255                         RTE_PTYPE_INNER_L4_FRAG,
3256                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3257                         RTE_PTYPE_TUNNEL_GTPU |
3258                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3259                         RTE_PTYPE_INNER_L4_NONFRAG,
3260                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3261                         RTE_PTYPE_TUNNEL_GTPU |
3262                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3263                         RTE_PTYPE_INNER_L4_UDP,
3264                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3265                         RTE_PTYPE_TUNNEL_GTPU |
3266                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3267                         RTE_PTYPE_INNER_L4_TCP,
3268                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3269                         RTE_PTYPE_TUNNEL_GTPU |
3270                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3271                         RTE_PTYPE_INNER_L4_ICMP,
3272
3273                 /* IPv4 --> UDP ECPRI */
3274                 [372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3275                         RTE_PTYPE_L4_UDP,
3276                 [373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3277                         RTE_PTYPE_L4_UDP,
3278                 [374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3279                         RTE_PTYPE_L4_UDP,
3280                 [375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3281                         RTE_PTYPE_L4_UDP,
3282                 [376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3283                         RTE_PTYPE_L4_UDP,
3284                 [377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3285                         RTE_PTYPE_L4_UDP,
3286                 [378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3287                         RTE_PTYPE_L4_UDP,
3288                 [379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3289                         RTE_PTYPE_L4_UDP,
3290                 [380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3291                         RTE_PTYPE_L4_UDP,
3292                 [381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3293                         RTE_PTYPE_L4_UDP,
3294
3295                 /* IPV6 --> UDP ECPRI */
3296                 [382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3297                         RTE_PTYPE_L4_UDP,
3298                 [383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3299                         RTE_PTYPE_L4_UDP,
3300                 [384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3301                         RTE_PTYPE_L4_UDP,
3302                 [385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3303                         RTE_PTYPE_L4_UDP,
3304                 [386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3305                         RTE_PTYPE_L4_UDP,
3306                 [387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3307                         RTE_PTYPE_L4_UDP,
3308                 [388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3309                         RTE_PTYPE_L4_UDP,
3310                 [389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3311                         RTE_PTYPE_L4_UDP,
3312                 [390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3313                         RTE_PTYPE_L4_UDP,
3314                 [391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3315                         RTE_PTYPE_L4_UDP,
3316                 /* All others reserved */
3317         };
3318
3319         return ptype_tbl;
3320 }