net/iavf: enable AVX512 for legacy Rx
[dpdk.git] / drivers / net / iavf / iavf_rxtx_vec_avx512.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2020 Intel Corporation
3  */
4
5 #include "iavf_rxtx_vec_common.h"
6
7 #include <x86intrin.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 #define IAVF_DESCS_PER_LOOP_AVX 8
14 #define PKTLEN_SHIFT 10
15
16 static inline void
17 iavf_rxq_rearm(struct iavf_rx_queue *rxq)
18 {
19         int i;
20         uint16_t rx_id;
21         volatile union iavf_rx_desc *rxdp;
22         struct rte_mempool_cache *cache =
23                 rte_mempool_default_cache(rxq->mp, rte_lcore_id());
24         struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
25
26         rxdp = rxq->rx_ring + rxq->rxrearm_start;
27
28         /* We need to pull 'n' more MBUFs into the software ring from mempool
29          * We inline the mempool function here, so we can vectorize the copy
30          * from the cache into the shadow ring.
31          */
32
33         /* Can this be satisfied from the cache? */
34         if (cache->len < IAVF_RXQ_REARM_THRESH) {
35                 /* No. Backfill the cache first, and then fill from it */
36                 uint32_t req = IAVF_RXQ_REARM_THRESH + (cache->size -
37                                                         cache->len);
38
39                 /* How many do we require i.e. number to fill the cache + the request */
40                 int ret = rte_mempool_ops_dequeue_bulk
41                                 (rxq->mp, &cache->objs[cache->len], req);
42                 if (ret == 0) {
43                         cache->len += req;
44                 } else {
45                         if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
46                             rxq->nb_rx_desc) {
47                                 __m128i dma_addr0;
48
49                                 dma_addr0 = _mm_setzero_si128();
50                                 for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
51                                         rxp[i] = &rxq->fake_mbuf;
52                                         _mm_storeu_si128((__m128i *)&rxdp[i].read,
53                                                          dma_addr0);
54                                 }
55                         }
56                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
57                                         IAVF_RXQ_REARM_THRESH;
58                         return;
59                 }
60         }
61
62         const __m512i iova_offsets =  _mm512_set1_epi64(offsetof
63                                                         (struct rte_mbuf, buf_iova));
64         const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
65
66 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
67         /* to shuffle the addresses to correct slots. Values 4-7 will contain
68          * zeros, so use 7 for a zero-value.
69          */
70         const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
71 #else
72         const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
73 #endif
74
75         /* Initialize the mbufs in vector, process 8 mbufs in one loop, taking
76          * from mempool cache and populating both shadow and HW rings
77          */
78         for (i = 0; i < IAVF_RXQ_REARM_THRESH / IAVF_DESCS_PER_LOOP_AVX; i++) {
79                 const __m512i mbuf_ptrs = _mm512_loadu_si512
80                         (&cache->objs[cache->len - IAVF_DESCS_PER_LOOP_AVX]);
81                 _mm512_storeu_si512(rxp, mbuf_ptrs);
82
83                 const __m512i iova_base_addrs = _mm512_i64gather_epi64
84                                 (_mm512_add_epi64(mbuf_ptrs, iova_offsets),
85                                  0, /* base */
86                                  1  /* scale */);
87                 const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
88                                 headroom);
89 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
90                 const __m512i iovas0 = _mm512_castsi256_si512
91                                 (_mm512_extracti64x4_epi64(iova_addrs, 0));
92                 const __m512i iovas1 = _mm512_castsi256_si512
93                                 (_mm512_extracti64x4_epi64(iova_addrs, 1));
94
95                 /* permute leaves desc 2-3 addresses in header address slots 0-1
96                  * but these are ignored by driver since header split not
97                  * enabled. Similarly for desc 6 & 7.
98                  */
99                 const __m512i desc0_1 = _mm512_permutexvar_epi64
100                                 (permute_idx,
101                                  iovas0);
102                 const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
103
104                 const __m512i desc4_5 = _mm512_permutexvar_epi64
105                                 (permute_idx,
106                                  iovas1);
107                 const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
108
109                 _mm512_storeu_si512((void *)rxdp, desc0_1);
110                 _mm512_storeu_si512((void *)(rxdp + 2), desc2_3);
111                 _mm512_storeu_si512((void *)(rxdp + 4), desc4_5);
112                 _mm512_storeu_si512((void *)(rxdp + 6), desc6_7);
113 #else
114                 /* permute leaves desc 4-7 addresses in header address slots 0-3
115                  * but these are ignored by driver since header split not
116                  * enabled.
117                  */
118                 const __m512i desc0_3 = _mm512_permutexvar_epi64(permute_idx,
119                                                                  iova_addrs);
120                 const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
121
122                 _mm512_storeu_si512((void *)rxdp, desc0_3);
123                 _mm512_storeu_si512((void *)(rxdp + 4), desc4_7);
124 #endif
125                 rxp += IAVF_DESCS_PER_LOOP_AVX;
126                 rxdp += IAVF_DESCS_PER_LOOP_AVX;
127                 cache->len -= IAVF_DESCS_PER_LOOP_AVX;
128         }
129
130         rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
131         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
132                 rxq->rxrearm_start = 0;
133
134         rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
135
136         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
137                            (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
138
139         /* Update the tail pointer on the NIC */
140         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
141 }
142
143 #define IAVF_RX_LEN_MASK 0x80808080
144 static inline uint16_t
145 _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
146                                struct rte_mbuf **rx_pkts,
147                                uint16_t nb_pkts, uint8_t *split_packet)
148 {
149         const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl;
150
151         const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0,
152                                                     rxq->mbuf_initializer);
153         struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
154         volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
155
156         rte_prefetch0(rxdp);
157
158         /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
159         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
160
161         /* See if we need to rearm the RX queue - gives the prefetch a bit
162          * of time to act
163          */
164         if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
165                 iavf_rxq_rearm(rxq);
166
167         /* Before we start moving massive data around, check to see if
168          * there is actually a packet available
169          */
170         if (!(rxdp->wb.qword1.status_error_len &
171               rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
172                 return 0;
173
174         /* constants used in processing loop */
175         const __m512i crc_adjust =
176                 _mm512_set_epi32
177                         (/* 1st descriptor */
178                          0,             /* ignore non-length fields */
179                          -rxq->crc_len, /* sub crc on data_len */
180                          -rxq->crc_len, /* sub crc on pkt_len */
181                          0,             /* ignore pkt_type field */
182                          /* 2nd descriptor */
183                          0,             /* ignore non-length fields */
184                          -rxq->crc_len, /* sub crc on data_len */
185                          -rxq->crc_len, /* sub crc on pkt_len */
186                          0,             /* ignore pkt_type field */
187                          /* 3rd descriptor */
188                          0,             /* ignore non-length fields */
189                          -rxq->crc_len, /* sub crc on data_len */
190                          -rxq->crc_len, /* sub crc on pkt_len */
191                          0,             /* ignore pkt_type field */
192                          /* 4th descriptor */
193                          0,             /* ignore non-length fields */
194                          -rxq->crc_len, /* sub crc on data_len */
195                          -rxq->crc_len, /* sub crc on pkt_len */
196                          0              /* ignore pkt_type field */
197                         );
198
199         /* 8 packets DD mask, LSB in each 32-bit value */
200         const __m256i dd_check = _mm256_set1_epi32(1);
201
202         /* 8 packets EOP mask, second-LSB in each 32-bit value */
203         const __m256i eop_check = _mm256_slli_epi32(dd_check,
204                         IAVF_RX_DESC_STATUS_EOF_SHIFT);
205
206         /* mask to shuffle from desc. to mbuf (4 descriptors)*/
207         const __m512i shuf_msk =
208                 _mm512_set_epi32
209                         (/* 1st descriptor */
210                          0x07060504,    /* octet 4~7, 32bits rss */
211                          0x03020F0E,    /* octet 2~3, low 16 bits vlan_macip */
212                                         /* octet 15~14, 16 bits data_len */
213                          0xFFFF0F0E,    /* skip high 16 bits pkt_len, zero out */
214                                         /* octet 15~14, low 16 bits pkt_len */
215                          0xFFFFFFFF,    /* pkt_type set as unknown */
216                          /* 2nd descriptor */
217                          0x07060504,    /* octet 4~7, 32bits rss */
218                          0x03020F0E,    /* octet 2~3, low 16 bits vlan_macip */
219                                         /* octet 15~14, 16 bits data_len */
220                          0xFFFF0F0E,    /* skip high 16 bits pkt_len, zero out */
221                                         /* octet 15~14, low 16 bits pkt_len */
222                          0xFFFFFFFF,    /* pkt_type set as unknown */
223                          /* 3rd descriptor */
224                          0x07060504,    /* octet 4~7, 32bits rss */
225                          0x03020F0E,    /* octet 2~3, low 16 bits vlan_macip */
226                                         /* octet 15~14, 16 bits data_len */
227                          0xFFFF0F0E,    /* skip high 16 bits pkt_len, zero out */
228                                         /* octet 15~14, low 16 bits pkt_len */
229                          0xFFFFFFFF,    /* pkt_type set as unknown */
230                          /* 4th descriptor */
231                          0x07060504,    /* octet 4~7, 32bits rss */
232                          0x03020F0E,    /* octet 2~3, low 16 bits vlan_macip */
233                                         /* octet 15~14, 16 bits data_len */
234                          0xFFFF0F0E,    /* skip high 16 bits pkt_len, zero out */
235                                         /* octet 15~14, low 16 bits pkt_len */
236                          0xFFFFFFFF     /* pkt_type set as unknown */
237                         );
238         /**
239          * compile-time check the above crc and shuffle layout is correct.
240          * NOTE: the first field (lowest address) is given last in set_epi
241          * calls above.
242          */
243         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
244                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
245         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
246                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
247         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
248                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
249         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
250                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
251
252         /* Status/Error flag masks */
253         /**
254          * mask everything except RSS, flow director and VLAN flags
255          * bit2 is for VLAN tag, bit11 for flow director indication
256          * bit13:12 for RSS indication. Bits 3-5 of error
257          * field (bits 22-24) are for IP/L4 checksum errors
258          */
259         const __m256i flags_mask =
260                 _mm256_set1_epi32((1 << 2) | (1 << 11) |
261                                   (3 << 12) | (7 << 22));
262         /**
263          * data to be shuffled by result of flag mask. If VLAN bit is set,
264          * (bit 2), then position 4 in this array will be used in the
265          * destination
266          */
267         const __m256i vlan_flags_shuf =
268                 _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
269                                  0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
270         /**
271          * data to be shuffled by result of flag mask, shifted down 11.
272          * If RSS/FDIR bits are set, shuffle moves appropriate flags in
273          * place.
274          */
275         const __m256i rss_flags_shuf =
276                 _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
277                                 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
278                                 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
279                                 0, 0, 0, 0, 0, 0, 0, 0,
280                                 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
281                                 0, 0, 0, 0, PKT_RX_FDIR, 0);
282
283         /**
284          * data to be shuffled by the result of the flags mask shifted by 22
285          * bits.  This gives use the l3_l4 flags.
286          */
287         const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
288                         /* shift right 1 bit to make sure it not exceed 255 */
289                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
290                          PKT_RX_IP_CKSUM_BAD) >> 1,
291                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
292                          PKT_RX_L4_CKSUM_BAD) >> 1,
293                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
294                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
295                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
296                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
297                         PKT_RX_IP_CKSUM_BAD >> 1,
298                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
299                         /* second 128-bits */
300                         0, 0, 0, 0, 0, 0, 0, 0,
301                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
302                          PKT_RX_IP_CKSUM_BAD) >> 1,
303                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
304                          PKT_RX_L4_CKSUM_BAD) >> 1,
305                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
306                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
307                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
308                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
309                         PKT_RX_IP_CKSUM_BAD >> 1,
310                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
311
312         const __m256i cksum_mask =
313                 _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
314                                   PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
315                                   PKT_RX_EIP_CKSUM_BAD);
316
317         uint16_t i, received;
318
319         for (i = 0, received = 0; i < nb_pkts;
320              i += IAVF_DESCS_PER_LOOP_AVX,
321              rxdp += IAVF_DESCS_PER_LOOP_AVX) {
322                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
323                 _mm256_storeu_si256((void *)&rx_pkts[i],
324                                     _mm256_loadu_si256((void *)&sw_ring[i]));
325 #ifdef RTE_ARCH_X86_64
326                 _mm256_storeu_si256
327                         ((void *)&rx_pkts[i + 4],
328                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
329 #endif
330
331                 __m512i raw_desc0_3, raw_desc4_7;
332                 const __m128i raw_desc7 =
333                         _mm_load_si128((void *)(rxdp + 7));
334                 rte_compiler_barrier();
335                 const __m128i raw_desc6 =
336                         _mm_load_si128((void *)(rxdp + 6));
337                 rte_compiler_barrier();
338                 const __m128i raw_desc5 =
339                         _mm_load_si128((void *)(rxdp + 5));
340                 rte_compiler_barrier();
341                 const __m128i raw_desc4 =
342                         _mm_load_si128((void *)(rxdp + 4));
343                 rte_compiler_barrier();
344                 const __m128i raw_desc3 =
345                         _mm_load_si128((void *)(rxdp + 3));
346                 rte_compiler_barrier();
347                 const __m128i raw_desc2 =
348                         _mm_load_si128((void *)(rxdp + 2));
349                 rte_compiler_barrier();
350                 const __m128i raw_desc1 =
351                         _mm_load_si128((void *)(rxdp + 1));
352                 rte_compiler_barrier();
353                 const __m128i raw_desc0 =
354                         _mm_load_si128((void *)(rxdp + 0));
355
356                 raw_desc4_7 = _mm512_broadcast_i32x4(raw_desc4);
357                 raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc5, 1);
358                 raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc6, 2);
359                 raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc7, 3);
360                 raw_desc0_3 = _mm512_broadcast_i32x4(raw_desc0);
361                 raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc1, 1);
362                 raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc2, 2);
363                 raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc3, 3);
364
365                 if (split_packet) {
366                         int j;
367
368                         for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
369                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
370                 }
371
372                 /**
373                  * convert descriptors 4-7 into mbufs, adjusting length and
374                  * re-arranging fields. Then write into the mbuf
375                  */
376                 const __m512i len4_7 = _mm512_slli_epi32(raw_desc4_7,
377                                                          PKTLEN_SHIFT);
378                 const __m512i desc4_7 = _mm512_mask_blend_epi16(IAVF_RX_LEN_MASK,
379                                                                 raw_desc4_7,
380                                                                 len4_7);
381                 __m512i mb4_7 = _mm512_shuffle_epi8(desc4_7, shuf_msk);
382
383                 mb4_7 = _mm512_add_epi16(mb4_7, crc_adjust);
384                 /**
385                  * to get packet types, shift 64-bit values down 30 bits
386                  * and so ptype is in lower 8-bits in each
387                  */
388                 const __m512i ptypes4_7 = _mm512_srli_epi64(desc4_7, 30);
389                 const __m256i ptypes6_7 = _mm512_extracti64x4_epi64(ptypes4_7, 1);
390                 const __m256i ptypes4_5 = _mm512_extracti64x4_epi64(ptypes4_7, 0);
391                 const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
392                 const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
393                 const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
394                 const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
395
396                 const __m512i ptype4_7 = _mm512_set_epi32
397                         (0, 0, 0, type_table[ptype7],
398                          0, 0, 0, type_table[ptype6],
399                          0, 0, 0, type_table[ptype5],
400                          0, 0, 0, type_table[ptype4]);
401                 mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
402
403                 /**
404                  * convert descriptors 0-3 into mbufs, adjusting length and
405                  * re-arranging fields. Then write into the mbuf
406                  */
407                 const __m512i len0_3 = _mm512_slli_epi32(raw_desc0_3,
408                                                          PKTLEN_SHIFT);
409                 const __m512i desc0_3 = _mm512_mask_blend_epi16(IAVF_RX_LEN_MASK,
410                                                                 raw_desc0_3,
411                                                                 len0_3);
412                 __m512i mb0_3 = _mm512_shuffle_epi8(desc0_3, shuf_msk);
413
414                 mb0_3 = _mm512_add_epi16(mb0_3, crc_adjust);
415                 /* get the packet types */
416                 const __m512i ptypes0_3 = _mm512_srli_epi64(desc0_3, 30);
417                 const __m256i ptypes2_3 = _mm512_extracti64x4_epi64(ptypes0_3, 1);
418                 const __m256i ptypes0_1 = _mm512_extracti64x4_epi64(ptypes0_3, 0);
419                 const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
420                 const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
421                 const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
422                 const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
423
424                 const __m512i ptype0_3 = _mm512_set_epi32
425                         (0, 0, 0, type_table[ptype3],
426                          0, 0, 0, type_table[ptype2],
427                          0, 0, 0, type_table[ptype1],
428                          0, 0, 0, type_table[ptype0]);
429                 mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
430
431                 /**
432                  * use permute/extract to get status content
433                  * After the operations, the packets status flags are in the
434                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
435                  */
436                 /* merge the status bits into one register */
437                 const __m512i status_permute_msk = _mm512_set_epi32
438                         (0, 0, 0, 0,
439                          0, 0, 0, 0,
440                          22, 30, 6, 14,
441                          18, 26, 2, 10);
442                 const __m512i raw_status0_7 = _mm512_permutex2var_epi32
443                         (raw_desc4_7, status_permute_msk, raw_desc0_3);
444                 __m256i status0_7 = _mm512_extracti64x4_epi64
445                         (raw_status0_7, 0);
446
447                 /* now do flag manipulation */
448
449                 /* get only flag/error bits we want */
450                 const __m256i flag_bits =
451                         _mm256_and_si256(status0_7, flags_mask);
452                 /* set vlan and rss flags */
453                 const __m256i vlan_flags =
454                         _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
455                 const __m256i rss_flags =
456                         _mm256_shuffle_epi8(rss_flags_shuf,
457                                             _mm256_srli_epi32(flag_bits, 11));
458                 /**
459                  * l3_l4_error flags, shuffle, then shift to correct adjustment
460                  * of flags in flags_shuf, and finally mask out extra bits
461                  */
462                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
463                                                 _mm256_srli_epi32(flag_bits, 22));
464                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
465                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
466
467                 /* merge flags */
468                 const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
469                                 _mm256_or_si256(rss_flags, vlan_flags));
470                 /**
471                  * At this point, we have the 8 sets of flags in the low 16-bits
472                  * of each 32-bit value in vlan0.
473                  * We want to extract these, and merge them with the mbuf init
474                  * data so we can do a single write to the mbuf to set the flags
475                  * and all the other initialization fields. Extracting the
476                  * appropriate flags means that we have to do a shift and blend
477                  * for each mbuf before we do the write. However, we can also
478                  * add in the previously computed rx_descriptor fields to
479                  * make a single 256-bit write per mbuf
480                  */
481                 /* check the structure matches expectations */
482                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
483                                  offsetof(struct rte_mbuf, rearm_data) + 8);
484                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
485                                  RTE_ALIGN(offsetof(struct rte_mbuf,
486                                                     rearm_data),
487                                            16));
488                 /* build up data and do writes */
489                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
490                         rearm6, rearm7;
491                 const __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
492                 const __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
493                 const __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
494                 const __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
495
496                 rearm6 = _mm256_blend_epi32(mbuf_init,
497                                             _mm256_slli_si256(mbuf_flags, 8),
498                                             0x04);
499                 rearm4 = _mm256_blend_epi32(mbuf_init,
500                                             _mm256_slli_si256(mbuf_flags, 4),
501                                             0x04);
502                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
503                 rearm0 = _mm256_blend_epi32(mbuf_init,
504                                             _mm256_srli_si256(mbuf_flags, 4),
505                                             0x04);
506                 /* permute to add in the rx_descriptor e.g. rss fields */
507                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
508                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
509                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
510                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
511                 /* write to mbuf */
512                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
513                                     rearm6);
514                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
515                                     rearm4);
516                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
517                                     rearm2);
518                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
519                                     rearm0);
520
521                 /* repeat for the odd mbufs */
522                 const __m256i odd_flags =
523                         _mm256_castsi128_si256
524                                 (_mm256_extracti128_si256(mbuf_flags, 1));
525                 rearm7 = _mm256_blend_epi32(mbuf_init,
526                                             _mm256_slli_si256(odd_flags, 8),
527                                             0x04);
528                 rearm5 = _mm256_blend_epi32(mbuf_init,
529                                             _mm256_slli_si256(odd_flags, 4),
530                                             0x04);
531                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
532                 rearm1 = _mm256_blend_epi32(mbuf_init,
533                                             _mm256_srli_si256(odd_flags, 4),
534                                             0x04);
535                 /* since odd mbufs are already in hi 128-bits use blend */
536                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
537                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
538                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
539                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
540                 /* again write to mbufs */
541                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
542                                     rearm7);
543                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
544                                     rearm5);
545                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
546                                     rearm3);
547                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
548                                     rearm1);
549
550                 /* extract and record EOP bit */
551                 if (split_packet) {
552                         const __m128i eop_mask =
553                                 _mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT);
554                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
555                                                                      eop_check);
556                         /* pack status bits into a single 128-bit register */
557                         const __m128i eop_bits =
558                                 _mm_packus_epi32
559                                         (_mm256_castsi256_si128(eop_bits256),
560                                          _mm256_extractf128_si256(eop_bits256,
561                                                                   1));
562                         /**
563                          * flip bits, and mask out the EOP bit, which is now
564                          * a split-packet bit i.e. !EOP, rather than EOP one.
565                          */
566                         __m128i split_bits = _mm_andnot_si128(eop_bits,
567                                                               eop_mask);
568                         /**
569                          * eop bits are out of order, so we need to shuffle them
570                          * back into order again. In doing so, only use low 8
571                          * bits, which acts like another pack instruction
572                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
573                          * [Since we use epi8, the 16-bit positions are
574                          * multiplied by 2 in the eop_shuffle value.]
575                          */
576                         __m128i eop_shuffle =
577                                 _mm_set_epi8(/* zero hi 64b */
578                                              0xFF, 0xFF, 0xFF, 0xFF,
579                                              0xFF, 0xFF, 0xFF, 0xFF,
580                                              /* move values to lo 64b */
581                                              8, 0, 10, 2,
582                                              12, 4, 14, 6);
583                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
584                         *(uint64_t *)split_packet =
585                                 _mm_cvtsi128_si64(split_bits);
586                         split_packet += IAVF_DESCS_PER_LOOP_AVX;
587                 }
588
589                 /* perform dd_check */
590                 status0_7 = _mm256_and_si256(status0_7, dd_check);
591                 status0_7 = _mm256_packs_epi32(status0_7,
592                                                _mm256_setzero_si256());
593
594                 uint64_t burst = __builtin_popcountll
595                                         (_mm_cvtsi128_si64
596                                                 (_mm256_extracti128_si256
597                                                         (status0_7, 1)));
598                 burst += __builtin_popcountll
599                                 (_mm_cvtsi128_si64
600                                         (_mm256_castsi256_si128(status0_7)));
601                 received += burst;
602                 if (burst != IAVF_DESCS_PER_LOOP_AVX)
603                         break;
604         }
605
606         /* update tail pointers */
607         rxq->rx_tail += received;
608         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
609         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep aligned */
610                 rxq->rx_tail--;
611                 received--;
612         }
613         rxq->rxrearm_nb += received;
614         return received;
615 }
616
617 /**
618  * Notice:
619  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
620  */
621 uint16_t
622 iavf_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
623                           uint16_t nb_pkts)
624 {
625         return _iavf_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL);
626 }
627
628 /**
629  * vPMD receive routine that reassembles single burst of 32 scattered packets
630  * Notice:
631  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
632  */
633 static uint16_t
634 iavf_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
635                                      uint16_t nb_pkts)
636 {
637         struct iavf_rx_queue *rxq = rx_queue;
638         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
639
640         /* get some new buffers */
641         uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
642                                                           split_flags);
643         if (nb_bufs == 0)
644                 return 0;
645
646         /* happy day case, full burst + no packets to be joined */
647         const uint64_t *split_fl64 = (uint64_t *)split_flags;
648
649         if (!rxq->pkt_first_seg &&
650             split_fl64[0] == 0 && split_fl64[1] == 0 &&
651             split_fl64[2] == 0 && split_fl64[3] == 0)
652                 return nb_bufs;
653
654         /* reassemble any packets that need reassembly*/
655         unsigned int i = 0;
656
657         if (!rxq->pkt_first_seg) {
658                 /* find the first split flag, and only reassemble then*/
659                 while (i < nb_bufs && !split_flags[i])
660                         i++;
661                 if (i == nb_bufs)
662                         return nb_bufs;
663                 rxq->pkt_first_seg = rx_pkts[i];
664         }
665         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
666                                       &split_flags[i]);
667 }
668
669 /**
670  * vPMD receive routine that reassembles scattered packets.
671  * Main receive routine that can handle arbitrary burst sizes
672  * Notice:
673  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
674  */
675 uint16_t
676 iavf_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
677                                     uint16_t nb_pkts)
678 {
679         uint16_t retval = 0;
680
681         while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
682                 uint16_t burst = iavf_recv_scattered_burst_vec_avx512(rx_queue,
683                                 rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
684                 retval += burst;
685                 nb_pkts -= burst;
686                 if (burst < IAVF_VPMD_RX_MAX_BURST)
687                         return retval;
688         }
689         return retval + iavf_recv_scattered_burst_vec_avx512(rx_queue,
690                                 rx_pkts + retval, nb_pkts);
691 }