net/iavf: add offload path for Tx AVX512
[dpdk.git] / drivers / net / iavf / iavf_rxtx_vec_common.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #ifndef _IAVF_RXTX_VEC_COMMON_H_
6 #define _IAVF_RXTX_VEC_COMMON_H_
7 #include <stdint.h>
8 #include <ethdev_driver.h>
9 #include <rte_malloc.h>
10
11 #include "iavf.h"
12 #include "iavf_rxtx.h"
13
14 #ifndef __INTEL_COMPILER
15 #pragma GCC diagnostic ignored "-Wcast-qual"
16 #endif
17
18 static inline uint16_t
19 reassemble_packets(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_bufs,
20                    uint16_t nb_bufs, uint8_t *split_flags)
21 {
22         struct rte_mbuf *pkts[IAVF_VPMD_RX_MAX_BURST];
23         struct rte_mbuf *start = rxq->pkt_first_seg;
24         struct rte_mbuf *end =  rxq->pkt_last_seg;
25         unsigned int pkt_idx, buf_idx;
26
27         for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
28                 if (end) {
29                         /* processing a split packet */
30                         end->next = rx_bufs[buf_idx];
31                         rx_bufs[buf_idx]->data_len += rxq->crc_len;
32
33                         start->nb_segs++;
34                         start->pkt_len += rx_bufs[buf_idx]->data_len;
35                         end = end->next;
36
37                         if (!split_flags[buf_idx]) {
38                                 /* it's the last packet of the set */
39                                 start->hash = end->hash;
40                                 start->vlan_tci = end->vlan_tci;
41                                 start->ol_flags = end->ol_flags;
42                                 /* we need to strip crc for the whole packet */
43                                 start->pkt_len -= rxq->crc_len;
44                                 if (end->data_len > rxq->crc_len) {
45                                         end->data_len -= rxq->crc_len;
46                                 } else {
47                                         /* free up last mbuf */
48                                         struct rte_mbuf *secondlast = start;
49
50                                         start->nb_segs--;
51                                         while (secondlast->next != end)
52                                                 secondlast = secondlast->next;
53                                         secondlast->data_len -= (rxq->crc_len -
54                                                         end->data_len);
55                                         secondlast->next = NULL;
56                                         rte_pktmbuf_free_seg(end);
57                                 }
58                                 pkts[pkt_idx++] = start;
59                                 start = NULL;
60                                 end = NULL;
61                         }
62                 } else {
63                         /* not processing a split packet */
64                         if (!split_flags[buf_idx]) {
65                                 /* not a split packet, save and skip */
66                                 pkts[pkt_idx++] = rx_bufs[buf_idx];
67                                 continue;
68                         }
69                         end = start = rx_bufs[buf_idx];
70                         rx_bufs[buf_idx]->data_len += rxq->crc_len;
71                         rx_bufs[buf_idx]->pkt_len += rxq->crc_len;
72                 }
73         }
74
75         /* save the partial packet for next time */
76         rxq->pkt_first_seg = start;
77         rxq->pkt_last_seg = end;
78         memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
79         return pkt_idx;
80 }
81
82 static __rte_always_inline int
83 iavf_tx_free_bufs(struct iavf_tx_queue *txq)
84 {
85         struct iavf_tx_entry *txep;
86         uint32_t n;
87         uint32_t i;
88         int nb_free = 0;
89         struct rte_mbuf *m, *free[IAVF_VPMD_TX_MAX_FREE_BUF];
90
91         /* check DD bits on threshold descriptor */
92         if ((txq->tx_ring[txq->next_dd].cmd_type_offset_bsz &
93                         rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) !=
94                         rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE))
95                 return 0;
96
97         n = txq->rs_thresh;
98
99          /* first buffer to free from S/W ring is at index
100           * tx_next_dd - (tx_rs_thresh-1)
101           */
102         txep = &txq->sw_ring[txq->next_dd - (n - 1)];
103         m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
104         if (likely(m != NULL)) {
105                 free[0] = m;
106                 nb_free = 1;
107                 for (i = 1; i < n; i++) {
108                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
109                         if (likely(m != NULL)) {
110                                 if (likely(m->pool == free[0]->pool)) {
111                                         free[nb_free++] = m;
112                                 } else {
113                                         rte_mempool_put_bulk(free[0]->pool,
114                                                              (void *)free,
115                                                              nb_free);
116                                         free[0] = m;
117                                         nb_free = 1;
118                                 }
119                         }
120                 }
121                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
122         } else {
123                 for (i = 1; i < n; i++) {
124                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
125                         if (m)
126                                 rte_mempool_put(m->pool, m);
127                 }
128         }
129
130         /* buffers were freed, update counters */
131         txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
132         txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
133         if (txq->next_dd >= txq->nb_tx_desc)
134                 txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
135
136         return txq->rs_thresh;
137 }
138
139 static __rte_always_inline void
140 tx_backlog_entry(struct iavf_tx_entry *txep,
141                  struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
142 {
143         int i;
144
145         for (i = 0; i < (int)nb_pkts; ++i)
146                 txep[i].mbuf = tx_pkts[i];
147 }
148
149 static inline void
150 _iavf_rx_queue_release_mbufs_vec(struct iavf_rx_queue *rxq)
151 {
152         const unsigned int mask = rxq->nb_rx_desc - 1;
153         unsigned int i;
154
155         if (!rxq->sw_ring || rxq->rxrearm_nb >= rxq->nb_rx_desc)
156                 return;
157
158         /* free all mbufs that are valid in the ring */
159         if (rxq->rxrearm_nb == 0) {
160                 for (i = 0; i < rxq->nb_rx_desc; i++) {
161                         if (rxq->sw_ring[i])
162                                 rte_pktmbuf_free_seg(rxq->sw_ring[i]);
163                 }
164         } else {
165                 for (i = rxq->rx_tail;
166                      i != rxq->rxrearm_start;
167                      i = (i + 1) & mask) {
168                         if (rxq->sw_ring[i])
169                                 rte_pktmbuf_free_seg(rxq->sw_ring[i]);
170                 }
171         }
172
173         rxq->rxrearm_nb = rxq->nb_rx_desc;
174
175         /* set all entries to NULL */
176         memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_rx_desc);
177 }
178
179 static inline void
180 _iavf_tx_queue_release_mbufs_vec(struct iavf_tx_queue *txq)
181 {
182         unsigned i;
183         const uint16_t max_desc = (uint16_t)(txq->nb_tx_desc - 1);
184
185         if (!txq->sw_ring || txq->nb_free == max_desc)
186                 return;
187
188         i = txq->next_dd - txq->rs_thresh + 1;
189         if (txq->tx_tail < i) {
190                 for (; i < txq->nb_tx_desc; i++) {
191                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
192                         txq->sw_ring[i].mbuf = NULL;
193                 }
194                 i = 0;
195         }
196 }
197
198 static inline int
199 iavf_rxq_vec_setup_default(struct iavf_rx_queue *rxq)
200 {
201         uintptr_t p;
202         struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
203
204         mb_def.nb_segs = 1;
205         mb_def.data_off = RTE_PKTMBUF_HEADROOM;
206         mb_def.port = rxq->port_id;
207         rte_mbuf_refcnt_set(&mb_def, 1);
208
209         /* prevent compiler reordering: rearm_data covers previous fields */
210         rte_compiler_barrier();
211         p = (uintptr_t)&mb_def.rearm_data;
212         rxq->mbuf_initializer = *(uint64_t *)p;
213         return 0;
214 }
215
216 static inline int
217 iavf_rx_vec_queue_default(struct iavf_rx_queue *rxq)
218 {
219         if (!rxq)
220                 return -1;
221
222         if (!rte_is_power_of_2(rxq->nb_rx_desc))
223                 return -1;
224
225         if (rxq->rx_free_thresh < IAVF_VPMD_RX_MAX_BURST)
226                 return -1;
227
228         if (rxq->nb_rx_desc % rxq->rx_free_thresh)
229                 return -1;
230
231         if (rxq->proto_xtr != IAVF_PROTO_XTR_NONE)
232                 return -1;
233
234         return 0;
235 }
236
237 static inline int
238 iavf_tx_vec_queue_default(struct iavf_tx_queue *txq)
239 {
240         if (!txq)
241                 return -1;
242
243         if (txq->rs_thresh < IAVF_VPMD_TX_MAX_BURST ||
244             txq->rs_thresh > IAVF_VPMD_TX_MAX_FREE_BUF)
245                 return -1;
246
247         if (txq->offloads & IAVF_TX_NO_VECTOR_FLAGS)
248                 return -1;
249
250         if (txq->offloads & IAVF_TX_VECTOR_OFFLOAD)
251                 return IAVF_VECTOR_OFFLOAD_PATH;
252
253         return IAVF_VECTOR_PATH;
254 }
255
256 static inline int
257 iavf_rx_vec_dev_check_default(struct rte_eth_dev *dev)
258 {
259         int i;
260         struct iavf_rx_queue *rxq;
261
262         for (i = 0; i < dev->data->nb_rx_queues; i++) {
263                 rxq = dev->data->rx_queues[i];
264                 if (iavf_rx_vec_queue_default(rxq))
265                         return -1;
266         }
267
268         return 0;
269 }
270
271 static inline int
272 iavf_tx_vec_dev_check_default(struct rte_eth_dev *dev)
273 {
274         int i;
275         struct iavf_tx_queue *txq;
276         int ret;
277         int result = 0;
278
279         for (i = 0; i < dev->data->nb_tx_queues; i++) {
280                 txq = dev->data->tx_queues[i];
281                 ret = iavf_tx_vec_queue_default(txq);
282
283                 if (ret < 0)
284                         return -1;
285                 if (ret > result)
286                         result = ret;
287         }
288
289         return result;
290 }
291
292 /******************************************************************************
293  * If user knows a specific offload is not enabled by APP,
294  * the macro can be commented to save the effort of fast path.
295  * Currently below 2 features are supported in TX path,
296  * 1, checksum offload
297  * 2, VLAN/QINQ insertion
298  ******************************************************************************/
299 #define IAVF_TX_CSUM_OFFLOAD
300 #define IAVF_TX_VLAN_QINQ_OFFLOAD
301
302 static __rte_always_inline void
303 iavf_txd_enable_offload(__rte_unused struct rte_mbuf *tx_pkt,
304                         uint64_t *txd_hi)
305 {
306 #if defined(IAVF_TX_CSUM_OFFLOAD) || defined(IAVF_TX_VLAN_QINQ_OFFLOAD)
307         uint64_t ol_flags = tx_pkt->ol_flags;
308 #endif
309         uint32_t td_cmd = 0;
310 #ifdef IAVF_TX_CSUM_OFFLOAD
311         uint32_t td_offset = 0;
312 #endif
313
314 #ifdef IAVF_TX_CSUM_OFFLOAD
315         /* Set MACLEN */
316         td_offset |= (tx_pkt->l2_len >> 1) <<
317                      IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
318
319         /* Enable L3 checksum offloads */
320         if (ol_flags & PKT_TX_IP_CKSUM) {
321                 td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
322                 td_offset |= (tx_pkt->l3_len >> 2) <<
323                              IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
324         } else if (ol_flags & PKT_TX_IPV4) {
325                 td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV4;
326                 td_offset |= (tx_pkt->l3_len >> 2) <<
327                              IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
328         } else if (ol_flags & PKT_TX_IPV6) {
329                 td_cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
330                 td_offset |= (tx_pkt->l3_len >> 2) <<
331                              IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
332         }
333
334         /* Enable L4 checksum offloads */
335         switch (ol_flags & PKT_TX_L4_MASK) {
336         case PKT_TX_TCP_CKSUM:
337                 td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
338                 td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
339                              IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
340                 break;
341         case PKT_TX_SCTP_CKSUM:
342                 td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
343                 td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
344                              IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
345                 break;
346         case PKT_TX_UDP_CKSUM:
347                 td_cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
348                 td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
349                              IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
350                 break;
351         default:
352                 break;
353         }
354
355         *txd_hi |= ((uint64_t)td_offset) << IAVF_TXD_QW1_OFFSET_SHIFT;
356 #endif
357
358 #ifdef IAVF_TX_VLAN_QINQ_OFFLOAD
359         if (ol_flags & (PKT_TX_VLAN | PKT_TX_QINQ)) {
360                 td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
361                 *txd_hi |= ((uint64_t)tx_pkt->vlan_tci <<
362                             IAVF_TXD_QW1_L2TAG1_SHIFT);
363         }
364 #endif
365
366         *txd_hi |= ((uint64_t)td_cmd) << IAVF_TXD_QW1_CMD_SHIFT;
367 }
368
369 #ifdef CC_AVX2_SUPPORT
370 static __rte_always_inline void
371 iavf_rxq_rearm_common(struct iavf_rx_queue *rxq, __rte_unused bool avx512)
372 {
373         int i;
374         uint16_t rx_id;
375         volatile union iavf_rx_desc *rxdp;
376         struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
377
378         rxdp = rxq->rx_ring + rxq->rxrearm_start;
379
380         /* Pull 'n' more MBUFs into the software ring */
381         if (rte_mempool_get_bulk(rxq->mp,
382                                  (void *)rxp,
383                                  IAVF_RXQ_REARM_THRESH) < 0) {
384                 if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
385                     rxq->nb_rx_desc) {
386                         __m128i dma_addr0;
387
388                         dma_addr0 = _mm_setzero_si128();
389                         for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
390                                 rxp[i] = &rxq->fake_mbuf;
391                                 _mm_store_si128((__m128i *)&rxdp[i].read,
392                                                 dma_addr0);
393                         }
394                 }
395                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
396                         IAVF_RXQ_REARM_THRESH;
397                 return;
398         }
399
400 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
401         struct rte_mbuf *mb0, *mb1;
402         __m128i dma_addr0, dma_addr1;
403         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
404                         RTE_PKTMBUF_HEADROOM);
405         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
406         for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxp += 2) {
407                 __m128i vaddr0, vaddr1;
408
409                 mb0 = rxp[0];
410                 mb1 = rxp[1];
411
412                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
413                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
414                                 offsetof(struct rte_mbuf, buf_addr) + 8);
415                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
416                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
417
418                 /* convert pa to dma_addr hdr/data */
419                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
420                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
421
422                 /* add headroom to pa values */
423                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
424                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
425
426                 /* flush desc with pa dma_addr */
427                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
428                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
429         }
430 #else
431 #ifdef CC_AVX512_SUPPORT
432         if (avx512) {
433                 struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
434                 struct rte_mbuf *mb4, *mb5, *mb6, *mb7;
435                 __m512i dma_addr0_3, dma_addr4_7;
436                 __m512i hdr_room = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
437                 /* Initialize the mbufs in vector, process 8 mbufs in one loop */
438                 for (i = 0; i < IAVF_RXQ_REARM_THRESH;
439                                 i += 8, rxp += 8, rxdp += 8) {
440                         __m128i vaddr0, vaddr1, vaddr2, vaddr3;
441                         __m128i vaddr4, vaddr5, vaddr6, vaddr7;
442                         __m256i vaddr0_1, vaddr2_3;
443                         __m256i vaddr4_5, vaddr6_7;
444                         __m512i vaddr0_3, vaddr4_7;
445
446                         mb0 = rxp[0];
447                         mb1 = rxp[1];
448                         mb2 = rxp[2];
449                         mb3 = rxp[3];
450                         mb4 = rxp[4];
451                         mb5 = rxp[5];
452                         mb6 = rxp[6];
453                         mb7 = rxp[7];
454
455                         /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
456                         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
457                                         offsetof(struct rte_mbuf, buf_addr) + 8);
458                         vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
459                         vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
460                         vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
461                         vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
462                         vaddr4 = _mm_loadu_si128((__m128i *)&mb4->buf_addr);
463                         vaddr5 = _mm_loadu_si128((__m128i *)&mb5->buf_addr);
464                         vaddr6 = _mm_loadu_si128((__m128i *)&mb6->buf_addr);
465                         vaddr7 = _mm_loadu_si128((__m128i *)&mb7->buf_addr);
466
467                         /**
468                          * merge 0 & 1, by casting 0 to 256-bit and inserting 1
469                          * into the high lanes. Similarly for 2 & 3, and so on.
470                          */
471                         vaddr0_1 =
472                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
473                                                         vaddr1, 1);
474                         vaddr2_3 =
475                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
476                                                         vaddr3, 1);
477                         vaddr4_5 =
478                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr4),
479                                                         vaddr5, 1);
480                         vaddr6_7 =
481                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr6),
482                                                         vaddr7, 1);
483                         vaddr0_3 =
484                                 _mm512_inserti64x4(_mm512_castsi256_si512(vaddr0_1),
485                                                         vaddr2_3, 1);
486                         vaddr4_7 =
487                                 _mm512_inserti64x4(_mm512_castsi256_si512(vaddr4_5),
488                                                         vaddr6_7, 1);
489
490                         /* convert pa to dma_addr hdr/data */
491                         dma_addr0_3 = _mm512_unpackhi_epi64(vaddr0_3, vaddr0_3);
492                         dma_addr4_7 = _mm512_unpackhi_epi64(vaddr4_7, vaddr4_7);
493
494                         /* add headroom to pa values */
495                         dma_addr0_3 = _mm512_add_epi64(dma_addr0_3, hdr_room);
496                         dma_addr4_7 = _mm512_add_epi64(dma_addr4_7, hdr_room);
497
498                         /* flush desc with pa dma_addr */
499                         _mm512_store_si512((__m512i *)&rxdp->read, dma_addr0_3);
500                         _mm512_store_si512((__m512i *)&(rxdp + 4)->read, dma_addr4_7);
501                 }
502         } else
503 #endif
504         {
505                 struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
506                 __m256i dma_addr0_1, dma_addr2_3;
507                 __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
508                 /* Initialize the mbufs in vector, process 4 mbufs in one loop */
509                 for (i = 0; i < IAVF_RXQ_REARM_THRESH;
510                                 i += 4, rxp += 4, rxdp += 4) {
511                         __m128i vaddr0, vaddr1, vaddr2, vaddr3;
512                         __m256i vaddr0_1, vaddr2_3;
513
514                         mb0 = rxp[0];
515                         mb1 = rxp[1];
516                         mb2 = rxp[2];
517                         mb3 = rxp[3];
518
519                         /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
520                         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
521                                         offsetof(struct rte_mbuf, buf_addr) + 8);
522                         vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
523                         vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
524                         vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
525                         vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
526
527                         /**
528                          * merge 0 & 1, by casting 0 to 256-bit and inserting 1
529                          * into the high lanes. Similarly for 2 & 3
530                          */
531                         vaddr0_1 =
532                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
533                                                         vaddr1, 1);
534                         vaddr2_3 =
535                                 _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
536                                                         vaddr3, 1);
537
538                         /* convert pa to dma_addr hdr/data */
539                         dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
540                         dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
541
542                         /* add headroom to pa values */
543                         dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
544                         dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
545
546                         /* flush desc with pa dma_addr */
547                         _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
548                         _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
549                 }
550         }
551
552 #endif
553
554         rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
555         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
556                 rxq->rxrearm_start = 0;
557
558         rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
559
560         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
561                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
562
563         /* Update the tail pointer on the NIC */
564         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
565 }
566 #endif
567
568 #endif