net/iavf: add RSS hash parsing in SSE path
[dpdk.git] / drivers / net / iavf / iavf_rxtx_vec_sse.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <rte_ethdev_driver.h>
7 #include <rte_malloc.h>
8
9 #include "iavf.h"
10 #include "iavf_rxtx.h"
11 #include "iavf_rxtx_vec_common.h"
12
13 #include <tmmintrin.h>
14
15 #ifndef __INTEL_COMPILER
16 #pragma GCC diagnostic ignored "-Wcast-qual"
17 #endif
18
19 static inline void
20 iavf_rxq_rearm(struct iavf_rx_queue *rxq)
21 {
22         int i;
23         uint16_t rx_id;
24
25         volatile union iavf_rx_desc *rxdp;
26         struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
27         struct rte_mbuf *mb0, *mb1;
28         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
29                         RTE_PKTMBUF_HEADROOM);
30         __m128i dma_addr0, dma_addr1;
31
32         rxdp = rxq->rx_ring + rxq->rxrearm_start;
33
34         /* Pull 'n' more MBUFs into the software ring */
35         if (rte_mempool_get_bulk(rxq->mp, (void *)rxp,
36                                  rxq->rx_free_thresh) < 0) {
37                 if (rxq->rxrearm_nb + rxq->rx_free_thresh >= rxq->nb_rx_desc) {
38                         dma_addr0 = _mm_setzero_si128();
39                         for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
40                                 rxp[i] = &rxq->fake_mbuf;
41                                 _mm_store_si128((__m128i *)&rxdp[i].read,
42                                                 dma_addr0);
43                         }
44                 }
45                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
46                         rxq->rx_free_thresh;
47                 return;
48         }
49
50         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
51         for (i = 0; i < rxq->rx_free_thresh; i += 2, rxp += 2) {
52                 __m128i vaddr0, vaddr1;
53
54                 mb0 = rxp[0];
55                 mb1 = rxp[1];
56
57                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
58                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
59                                 offsetof(struct rte_mbuf, buf_addr) + 8);
60                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
61                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
62
63                 /* convert pa to dma_addr hdr/data */
64                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
65                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
66
67                 /* add headroom to pa values */
68                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
69                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
70
71                 /* flush desc with pa dma_addr */
72                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
73                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
74         }
75
76         rxq->rxrearm_start += rxq->rx_free_thresh;
77         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
78                 rxq->rxrearm_start = 0;
79
80         rxq->rxrearm_nb -= rxq->rx_free_thresh;
81
82         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
83                            (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
84
85         PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
86                    "rearm_start=%u rearm_nb=%u",
87                    rxq->port_id, rxq->queue_id,
88                    rx_id, rxq->rxrearm_start, rxq->rxrearm_nb);
89
90         /* Update the tail pointer on the NIC */
91         IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
92 }
93
94 static inline void
95 desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4],
96                   struct rte_mbuf **rx_pkts)
97 {
98         const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
99         __m128i rearm0, rearm1, rearm2, rearm3;
100
101         __m128i vlan0, vlan1, rss, l3_l4e;
102
103         /* mask everything except RSS, flow director and VLAN flags
104          * bit2 is for VLAN tag, bit11 for flow director indication
105          * bit13:12 for RSS indication.
106          */
107         const __m128i rss_vlan_msk = _mm_set_epi32(
108                         0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804);
109
110         const __m128i cksum_mask = _mm_set_epi32(
111                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
112                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
113                         PKT_RX_EIP_CKSUM_BAD,
114                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
115                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
116                         PKT_RX_EIP_CKSUM_BAD,
117                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
118                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
119                         PKT_RX_EIP_CKSUM_BAD,
120                         PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
121                         PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
122                         PKT_RX_EIP_CKSUM_BAD);
123
124         /* map rss and vlan type to rss hash and vlan flag */
125         const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
126                         0, 0, 0, 0,
127                         0, 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
128                         0, 0, 0, 0);
129
130         const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
131                         0, 0, 0, 0,
132                         PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
133                         0, 0, PKT_RX_FDIR, 0);
134
135         const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
136                         /* shift right 1 bit to make sure it not exceed 255 */
137                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
138                          PKT_RX_IP_CKSUM_BAD) >> 1,
139                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
140                          PKT_RX_L4_CKSUM_BAD) >> 1,
141                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
142                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
143                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
144                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
145                         PKT_RX_IP_CKSUM_BAD >> 1,
146                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
147
148         vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
149         vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
150         vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);
151
152         vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
153         vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
154
155         rss = _mm_srli_epi32(vlan1, 11);
156         rss = _mm_shuffle_epi8(rss_flags, rss);
157
158         l3_l4e = _mm_srli_epi32(vlan1, 22);
159         l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
160         /* then we shift left 1 bit */
161         l3_l4e = _mm_slli_epi32(l3_l4e, 1);
162         /* we need to mask out the reduntant bits */
163         l3_l4e = _mm_and_si128(l3_l4e, cksum_mask);
164
165         vlan0 = _mm_or_si128(vlan0, rss);
166         vlan0 = _mm_or_si128(vlan0, l3_l4e);
167
168         /* At this point, we have the 4 sets of flags in the low 16-bits
169          * of each 32-bit value in vlan0.
170          * We want to extract these, and merge them with the mbuf init data
171          * so we can do a single 16-byte write to the mbuf to set the flags
172          * and all the other initialization fields. Extracting the
173          * appropriate flags means that we have to do a shift and blend for
174          * each mbuf before we do the write.
175          */
176         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
177         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
178         rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
179         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);
180
181         /* write the rearm data and the olflags in one write */
182         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
183                         offsetof(struct rte_mbuf, rearm_data) + 8);
184         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
185                         RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
186         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
187         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
188         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
189         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
190 }
191
192 static inline __m128i
193 flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)
194 {
195 #define FDID_MIS_MAGIC 0xFFFFFFFF
196         RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
197         RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
198         const __m128i pkt_fdir_bit = _mm_set1_epi32(PKT_RX_FDIR |
199                         PKT_RX_FDIR_ID);
200         /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
201         const __m128i fdir_mis_mask = _mm_set1_epi32(FDID_MIS_MAGIC);
202         __m128i fdir_mask = _mm_cmpeq_epi32(fdir_id0_3,
203                         fdir_mis_mask);
204         /* this XOR op results to bit-reverse the fdir_mask */
205         fdir_mask = _mm_xor_si128(fdir_mask, fdir_mis_mask);
206         const __m128i fdir_flags = _mm_and_si128(fdir_mask, pkt_fdir_bit);
207
208         return fdir_flags;
209 }
210
211 static inline void
212 flex_desc_to_olflags_v(struct iavf_rx_queue *rxq, __m128i descs[4],
213                        struct rte_mbuf **rx_pkts)
214 {
215         const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
216         __m128i rearm0, rearm1, rearm2, rearm3;
217
218         __m128i tmp_desc, flags, rss_vlan;
219
220         /* mask everything except checksum, RSS and VLAN flags.
221          * bit6:4 for checksum.
222          * bit12 for RSS indication.
223          * bit13 for VLAN indication.
224          */
225         const __m128i desc_mask = _mm_set_epi32(0x3070, 0x3070,
226                                                 0x3070, 0x3070);
227
228         const __m128i cksum_mask = _mm_set_epi32(PKT_RX_IP_CKSUM_MASK |
229                                                  PKT_RX_L4_CKSUM_MASK |
230                                                  PKT_RX_EIP_CKSUM_BAD,
231                                                  PKT_RX_IP_CKSUM_MASK |
232                                                  PKT_RX_L4_CKSUM_MASK |
233                                                  PKT_RX_EIP_CKSUM_BAD,
234                                                  PKT_RX_IP_CKSUM_MASK |
235                                                  PKT_RX_L4_CKSUM_MASK |
236                                                  PKT_RX_EIP_CKSUM_BAD,
237                                                  PKT_RX_IP_CKSUM_MASK |
238                                                  PKT_RX_L4_CKSUM_MASK |
239                                                  PKT_RX_EIP_CKSUM_BAD);
240
241         /* map the checksum, rss and vlan fields to the checksum, rss
242          * and vlan flag
243          */
244         const __m128i cksum_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
245                         /* shift right 1 bit to make sure it not exceed 255 */
246                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
247                          PKT_RX_IP_CKSUM_BAD) >> 1,
248                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
249                          PKT_RX_IP_CKSUM_GOOD) >> 1,
250                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
251                          PKT_RX_IP_CKSUM_BAD) >> 1,
252                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
253                          PKT_RX_IP_CKSUM_GOOD) >> 1,
254                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
255                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
256                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
257                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
258
259         const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0,
260                         0, 0, 0, 0,
261                         0, 0, 0, 0,
262                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
263                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
264                         PKT_RX_RSS_HASH, 0);
265
266         /* merge 4 descriptors */
267         flags = _mm_unpackhi_epi32(descs[0], descs[1]);
268         tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]);
269         tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc);
270         tmp_desc = _mm_and_si128(flags, desc_mask);
271
272         /* checksum flags */
273         tmp_desc = _mm_srli_epi32(tmp_desc, 4);
274         flags = _mm_shuffle_epi8(cksum_flags, tmp_desc);
275         /* then we shift left 1 bit */
276         flags = _mm_slli_epi32(flags, 1);
277         /* we need to mask out the redundant bits introduced by RSS or
278          * VLAN fields.
279          */
280         flags = _mm_and_si128(flags, cksum_mask);
281
282         /* RSS, VLAN flag */
283         tmp_desc = _mm_srli_epi32(tmp_desc, 8);
284         rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc);
285
286         /* merge the flags */
287         flags = _mm_or_si128(flags, rss_vlan);
288
289         if (rxq->fdir_enabled) {
290                 const __m128i fdir_id0_1 =
291                         _mm_unpackhi_epi32(descs[0], descs[1]);
292
293                 const __m128i fdir_id2_3 =
294                         _mm_unpackhi_epi32(descs[2], descs[3]);
295
296                 const __m128i fdir_id0_3 =
297                         _mm_unpackhi_epi64(fdir_id0_1, fdir_id2_3);
298
299                 const __m128i fdir_flags =
300                         flex_rxd_to_fdir_flags_vec(fdir_id0_3);
301
302                 /* merge with fdir_flags */
303                 flags = _mm_or_si128(flags, fdir_flags);
304
305                 /* write fdir_id to mbuf */
306                 rx_pkts[0]->hash.fdir.hi =
307                         _mm_extract_epi32(fdir_id0_3, 0);
308
309                 rx_pkts[1]->hash.fdir.hi =
310                         _mm_extract_epi32(fdir_id0_3, 1);
311
312                 rx_pkts[2]->hash.fdir.hi =
313                         _mm_extract_epi32(fdir_id0_3, 2);
314
315                 rx_pkts[3]->hash.fdir.hi =
316                         _mm_extract_epi32(fdir_id0_3, 3);
317         } /* if() on fdir_enabled */
318
319         /**
320          * At this point, we have the 4 sets of flags in the low 16-bits
321          * of each 32-bit value in flags.
322          * We want to extract these, and merge them with the mbuf init data
323          * so we can do a single 16-byte write to the mbuf to set the flags
324          * and all the other initialization fields. Extracting the
325          * appropriate flags means that we have to do a shift and blend for
326          * each mbuf before we do the write.
327          */
328         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x10);
329         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x10);
330         rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x10);
331         rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x10);
332
333         /* write the rearm data and the olflags in one write */
334         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
335                          offsetof(struct rte_mbuf, rearm_data) + 8);
336         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
337                          RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
338         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
339         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
340         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
341         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
342 }
343
344 #define PKTLEN_SHIFT     10
345
346 static inline void
347 desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
348                 const uint32_t *type_table)
349 {
350         __m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
351         __m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
352
353         ptype0 = _mm_srli_epi64(ptype0, 30);
354         ptype1 = _mm_srli_epi64(ptype1, 30);
355
356         rx_pkts[0]->packet_type = type_table[_mm_extract_epi8(ptype0, 0)];
357         rx_pkts[1]->packet_type = type_table[_mm_extract_epi8(ptype0, 8)];
358         rx_pkts[2]->packet_type = type_table[_mm_extract_epi8(ptype1, 0)];
359         rx_pkts[3]->packet_type = type_table[_mm_extract_epi8(ptype1, 8)];
360 }
361
362 static inline void
363 flex_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
364                      const uint32_t *type_table)
365 {
366         const __m128i ptype_mask = _mm_set_epi16(0, IAVF_RX_FLEX_DESC_PTYPE_M,
367                                                  0, IAVF_RX_FLEX_DESC_PTYPE_M,
368                                                  0, IAVF_RX_FLEX_DESC_PTYPE_M,
369                                                  0, IAVF_RX_FLEX_DESC_PTYPE_M);
370         __m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
371         __m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
372         __m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23);
373
374         ptype_all = _mm_and_si128(ptype_all, ptype_mask);
375
376         rx_pkts[0]->packet_type = type_table[_mm_extract_epi16(ptype_all, 1)];
377         rx_pkts[1]->packet_type = type_table[_mm_extract_epi16(ptype_all, 3)];
378         rx_pkts[2]->packet_type = type_table[_mm_extract_epi16(ptype_all, 5)];
379         rx_pkts[3]->packet_type = type_table[_mm_extract_epi16(ptype_all, 7)];
380 }
381
382 /* Notice:
383  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
384  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
385  *   numbers of DD bits
386  */
387 static inline uint16_t
388 _recv_raw_pkts_vec(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_pkts,
389                    uint16_t nb_pkts, uint8_t *split_packet)
390 {
391         volatile union iavf_rx_desc *rxdp;
392         struct rte_mbuf **sw_ring;
393         uint16_t nb_pkts_recd;
394         int pos;
395         uint64_t var;
396         __m128i shuf_msk;
397         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
398
399         __m128i crc_adjust = _mm_set_epi16(
400                                 0, 0, 0,    /* ignore non-length fields */
401                                 -rxq->crc_len, /* sub crc on data_len */
402                                 0,          /* ignore high-16bits of pkt_len */
403                                 -rxq->crc_len, /* sub crc on pkt_len */
404                                 0, 0            /* ignore pkt_type field */
405                         );
406         /* compile-time check the above crc_adjust layout is correct.
407          * NOTE: the first field (lowest address) is given last in set_epi16
408          * call above.
409          */
410         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
411                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
412         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
413                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
414         __m128i dd_check, eop_check;
415
416         /* nb_pkts shall be less equal than IAVF_VPMD_RX_MAX_BURST */
417         nb_pkts = RTE_MIN(nb_pkts, IAVF_VPMD_RX_MAX_BURST);
418
419         /* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
420         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
421
422         /* Just the act of getting into the function from the application is
423          * going to cost about 7 cycles
424          */
425         rxdp = rxq->rx_ring + rxq->rx_tail;
426
427         rte_prefetch0(rxdp);
428
429         /* See if we need to rearm the RX queue - gives the prefetch a bit
430          * of time to act
431          */
432         if (rxq->rxrearm_nb > rxq->rx_free_thresh)
433                 iavf_rxq_rearm(rxq);
434
435         /* Before we start moving massive data around, check to see if
436          * there is actually a packet available
437          */
438         if (!(rxdp->wb.qword1.status_error_len &
439               rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
440                 return 0;
441
442         /* 4 packets DD mask */
443         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
444
445         /* 4 packets EOP mask */
446         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
447
448         /* mask to shuffle from desc. to mbuf */
449         shuf_msk = _mm_set_epi8(
450                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
451                 3, 2,        /* octet 2~3, low 16 bits vlan_macip */
452                 15, 14,      /* octet 15~14, 16 bits data_len */
453                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
454                 15, 14,      /* octet 15~14, low 16 bits pkt_len */
455                 0xFF, 0xFF, 0xFF, 0xFF /* pkt_type set as unknown */
456                 );
457         /* Compile-time verify the shuffle mask
458          * NOTE: some field positions already verified above, but duplicated
459          * here for completeness in case of future modifications.
460          */
461         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
462                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
463         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
464                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
465         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
466                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
467         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
468                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
469
470         /* Cache is empty -> need to scan the buffer rings, but first move
471          * the next 'n' mbufs into the cache
472          */
473         sw_ring = &rxq->sw_ring[rxq->rx_tail];
474
475         /* A. load 4 packet in one loop
476          * [A*. mask out 4 unused dirty field in desc]
477          * B. copy 4 mbuf point from swring to rx_pkts
478          * C. calc the number of DD bits among the 4 packets
479          * [C*. extract the end-of-packet bit, if requested]
480          * D. fill info. from desc to mbuf
481          */
482
483         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
484              pos += IAVF_VPMD_DESCS_PER_LOOP,
485              rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
486                 __m128i descs[IAVF_VPMD_DESCS_PER_LOOP];
487                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
488                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
489                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
490                 __m128i mbp1;
491 #if defined(RTE_ARCH_X86_64)
492                 __m128i mbp2;
493 #endif
494
495                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
496                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
497                 /* Read desc statuses backwards to avoid race condition */
498                 /* A.1 load 4 pkts desc */
499                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
500                 rte_compiler_barrier();
501
502                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
503                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
504
505 #if defined(RTE_ARCH_X86_64)
506                 /* B.1 load 2 64 bit mbuf points */
507                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
508 #endif
509
510                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
511                 rte_compiler_barrier();
512                 /* B.1 load 2 mbuf point */
513                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
514                 rte_compiler_barrier();
515                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
516
517 #if defined(RTE_ARCH_X86_64)
518                 /* B.2 copy 2 mbuf point into rx_pkts  */
519                 _mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
520 #endif
521
522                 if (split_packet) {
523                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
524                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
525                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
526                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
527                 }
528
529                 /* avoid compiler reorder optimization */
530                 rte_compiler_barrier();
531
532                 /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
533                 const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
534                 const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
535
536                 /* merge the now-aligned packet length fields back in */
537                 descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
538                 descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
539
540                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
541                 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
542                 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
543
544                 /* C.1 4=>2 status err info only */
545                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
546                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
547
548                 desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
549
550                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
551                 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
552                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
553
554                 /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
555                 const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
556                 const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
557
558                 /* merge the now-aligned packet length fields back in */
559                 descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
560                 descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
561
562                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
563                 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
564                 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
565
566                 /* C.2 get 4 pkts status err value  */
567                 zero = _mm_xor_si128(dd_check, dd_check);
568                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
569
570                 /* D.3 copy final 3,4 data to rx_pkts */
571                 _mm_storeu_si128(
572                         (void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
573                         pkt_mb4);
574                 _mm_storeu_si128(
575                         (void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
576                         pkt_mb3);
577
578                 /* D.2 pkt 1,2 remove crc */
579                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
580                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
581
582                 /* C* extract and record EOP bit */
583                 if (split_packet) {
584                         __m128i eop_shuf_mask = _mm_set_epi8(
585                                         0xFF, 0xFF, 0xFF, 0xFF,
586                                         0xFF, 0xFF, 0xFF, 0xFF,
587                                         0xFF, 0xFF, 0xFF, 0xFF,
588                                         0x04, 0x0C, 0x00, 0x08
589                                         );
590
591                         /* and with mask to extract bits, flipping 1-0 */
592                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
593                         /* the staterr values are not in order, as the count
594                          * count of dd bits doesn't care. However, for end of
595                          * packet tracking, we do care, so shuffle. This also
596                          * compresses the 32-bit values to 8-bit
597                          */
598                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
599                         /* store the resulting 32-bit value */
600                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
601                         split_packet += IAVF_VPMD_DESCS_PER_LOOP;
602                 }
603
604                 /* C.3 calc available number of desc */
605                 staterr = _mm_and_si128(staterr, dd_check);
606                 staterr = _mm_packs_epi32(staterr, zero);
607
608                 /* D.3 copy final 1,2 data to rx_pkts */
609                 _mm_storeu_si128(
610                         (void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
611                         pkt_mb2);
612                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
613                                  pkt_mb1);
614                 desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
615                 /* C.4 calc avaialbe number of desc */
616                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
617                 nb_pkts_recd += var;
618                 if (likely(var != IAVF_VPMD_DESCS_PER_LOOP))
619                         break;
620         }
621
622         /* Update our internal tail pointer */
623         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
624         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
625         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
626
627         return nb_pkts_recd;
628 }
629
630 /* Notice:
631  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
632  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
633  *   numbers of DD bits
634  */
635 static inline uint16_t
636 _recv_raw_pkts_vec_flex_rxd(struct iavf_rx_queue *rxq,
637                             struct rte_mbuf **rx_pkts,
638                             uint16_t nb_pkts, uint8_t *split_packet)
639 {
640         volatile union iavf_rx_flex_desc *rxdp;
641         struct rte_mbuf **sw_ring;
642         uint16_t nb_pkts_recd;
643         int pos;
644         uint64_t var;
645         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
646         __m128i crc_adjust = _mm_set_epi16
647                                 (0, 0, 0,       /* ignore non-length fields */
648                                  -rxq->crc_len, /* sub crc on data_len */
649                                  0,          /* ignore high-16bits of pkt_len */
650                                  -rxq->crc_len, /* sub crc on pkt_len */
651                                  0, 0           /* ignore pkt_type field */
652                                 );
653         const __m128i zero = _mm_setzero_si128();
654         /* mask to shuffle from desc. to mbuf */
655         const __m128i shuf_msk = _mm_set_epi8
656                         (0xFF, 0xFF,
657                          0xFF, 0xFF,  /* rss hash parsed separately */
658                          11, 10,      /* octet 10~11, 16 bits vlan_macip */
659                          5, 4,        /* octet 4~5, 16 bits data_len */
660                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
661                          5, 4,        /* octet 4~5, low 16 bits pkt_len */
662                          0xFF, 0xFF,  /* pkt_type set as unknown */
663                          0xFF, 0xFF   /* pkt_type set as unknown */
664                         );
665         const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
666                                                    0xFF, 0xFF,
667                                                    0xFF, 0xFF,
668                                                    0xFF, 0xFF,
669                                                    0xFF, 0xFF,
670                                                    0xFF, 0xFF,
671                                                    0x04, 0x0C,
672                                                    0x00, 0x08);
673
674         /**
675          * compile-time check the above crc_adjust layout is correct.
676          * NOTE: the first field (lowest address) is given last in set_epi16
677          * call above.
678          */
679         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
680                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
681         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
682                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
683
684         /* 4 packets DD mask */
685         const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL,
686                                                 0x0000000100000001LL);
687         /* 4 packets EOP mask */
688         const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL,
689                                                  0x0000000200000002LL);
690
691         /* nb_pkts shall be less equal than IAVF_VPMD_RX_MAX_BURST */
692         nb_pkts = RTE_MIN(nb_pkts, IAVF_VPMD_RX_MAX_BURST);
693
694         /* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
695         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
696
697         /* Just the act of getting into the function from the application is
698          * going to cost about 7 cycles
699          */
700         rxdp = (union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
701
702         rte_prefetch0(rxdp);
703
704         /* See if we need to rearm the RX queue - gives the prefetch a bit
705          * of time to act
706          */
707         if (rxq->rxrearm_nb > rxq->rx_free_thresh)
708                 iavf_rxq_rearm(rxq);
709
710         /* Before we start moving massive data around, check to see if
711          * there is actually a packet available
712          */
713         if (!(rxdp->wb.status_error0 &
714               rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
715                 return 0;
716
717         /**
718          * Compile-time verify the shuffle mask
719          * NOTE: some field positions already verified above, but duplicated
720          * here for completeness in case of future modifications.
721          */
722         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
723                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
724         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
725                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
726         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
727                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
728         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
729                          offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
730
731         /* Cache is empty -> need to scan the buffer rings, but first move
732          * the next 'n' mbufs into the cache
733          */
734         sw_ring = &rxq->sw_ring[rxq->rx_tail];
735
736         /* A. load 4 packet in one loop
737          * [A*. mask out 4 unused dirty field in desc]
738          * B. copy 4 mbuf point from swring to rx_pkts
739          * C. calc the number of DD bits among the 4 packets
740          * [C*. extract the end-of-packet bit, if requested]
741          * D. fill info. from desc to mbuf
742          */
743
744         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
745              pos += IAVF_VPMD_DESCS_PER_LOOP,
746              rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
747                 __m128i descs[IAVF_VPMD_DESCS_PER_LOOP];
748                 __m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
749                 __m128i staterr, sterr_tmp1, sterr_tmp2;
750                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
751                 __m128i mbp1;
752 #if defined(RTE_ARCH_X86_64)
753                 __m128i mbp2;
754 #endif
755
756                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
757                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
758                 /* Read desc statuses backwards to avoid race condition */
759                 /* A.1 load 4 pkts desc */
760                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
761                 rte_compiler_barrier();
762
763                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
764                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
765
766 #if defined(RTE_ARCH_X86_64)
767                 /* B.1 load 2 64 bit mbuf points */
768                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
769 #endif
770
771                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
772                 rte_compiler_barrier();
773                 /* B.1 load 2 mbuf point */
774                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
775                 rte_compiler_barrier();
776                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
777
778 #if defined(RTE_ARCH_X86_64)
779                 /* B.2 copy 2 mbuf point into rx_pkts  */
780                 _mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
781 #endif
782
783                 if (split_packet) {
784                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
785                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
786                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
787                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
788                 }
789
790                 /* avoid compiler reorder optimization */
791                 rte_compiler_barrier();
792
793                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
794                 pkt_mb3 = _mm_shuffle_epi8(descs[3], shuf_msk);
795                 pkt_mb2 = _mm_shuffle_epi8(descs[2], shuf_msk);
796
797                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
798                 pkt_mb1 = _mm_shuffle_epi8(descs[1], shuf_msk);
799                 pkt_mb0 = _mm_shuffle_epi8(descs[0], shuf_msk);
800
801                 /* C.1 4=>2 filter staterr info only */
802                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
803                 /* C.1 4=>2 filter staterr info only */
804                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
805
806                 flex_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);
807
808                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
809                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
810                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
811
812                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
813                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
814                 pkt_mb0 = _mm_add_epi16(pkt_mb0, crc_adjust);
815
816 #ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
817                 /**
818                  * needs to load 2nd 16B of each desc for RSS hash parsing,
819                  * will cause performance drop to get into this context.
820                  */
821                 if (rxq->vsi->adapter->eth_dev->data->dev_conf.rxmode.offloads &
822                                 DEV_RX_OFFLOAD_RSS_HASH) {
823                         /* load bottom half of every 32B desc */
824                         const __m128i raw_desc_bh3 =
825                                 _mm_load_si128
826                                         ((void *)(&rxdp[3].wb.status_error1));
827                         rte_compiler_barrier();
828                         const __m128i raw_desc_bh2 =
829                                 _mm_load_si128
830                                         ((void *)(&rxdp[2].wb.status_error1));
831                         rte_compiler_barrier();
832                         const __m128i raw_desc_bh1 =
833                                 _mm_load_si128
834                                         ((void *)(&rxdp[1].wb.status_error1));
835                         rte_compiler_barrier();
836                         const __m128i raw_desc_bh0 =
837                                 _mm_load_si128
838                                         ((void *)(&rxdp[0].wb.status_error1));
839
840                         /**
841                          * to shift the 32b RSS hash value to the
842                          * highest 32b of each 128b before mask
843                          */
844                         __m128i rss_hash3 =
845                                 _mm_slli_epi64(raw_desc_bh3, 32);
846                         __m128i rss_hash2 =
847                                 _mm_slli_epi64(raw_desc_bh2, 32);
848                         __m128i rss_hash1 =
849                                 _mm_slli_epi64(raw_desc_bh1, 32);
850                         __m128i rss_hash0 =
851                                 _mm_slli_epi64(raw_desc_bh0, 32);
852
853                         __m128i rss_hash_msk =
854                                 _mm_set_epi32(0xFFFFFFFF, 0, 0, 0);
855
856                         rss_hash3 = _mm_and_si128
857                                         (rss_hash3, rss_hash_msk);
858                         rss_hash2 = _mm_and_si128
859                                         (rss_hash2, rss_hash_msk);
860                         rss_hash1 = _mm_and_si128
861                                         (rss_hash1, rss_hash_msk);
862                         rss_hash0 = _mm_and_si128
863                                         (rss_hash0, rss_hash_msk);
864
865                         pkt_mb3 = _mm_or_si128(pkt_mb3, rss_hash3);
866                         pkt_mb2 = _mm_or_si128(pkt_mb2, rss_hash2);
867                         pkt_mb1 = _mm_or_si128(pkt_mb1, rss_hash1);
868                         pkt_mb0 = _mm_or_si128(pkt_mb0, rss_hash0);
869                 } /* if() on RSS hash parsing */
870 #endif
871
872                 /* C.2 get 4 pkts staterr value  */
873                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
874
875                 /* D.3 copy final 3,4 data to rx_pkts */
876                 _mm_storeu_si128
877                         ((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
878                          pkt_mb3);
879                 _mm_storeu_si128
880                         ((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
881                          pkt_mb2);
882
883                 /* C* extract and record EOP bit */
884                 if (split_packet) {
885                         /* and with mask to extract bits, flipping 1-0 */
886                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
887                         /* the staterr values are not in order, as the count
888                          * count of dd bits doesn't care. However, for end of
889                          * packet tracking, we do care, so shuffle. This also
890                          * compresses the 32-bit values to 8-bit
891                          */
892                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
893                         /* store the resulting 32-bit value */
894                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
895                         split_packet += IAVF_VPMD_DESCS_PER_LOOP;
896                 }
897
898                 /* C.3 calc available number of desc */
899                 staterr = _mm_and_si128(staterr, dd_check);
900                 staterr = _mm_packs_epi32(staterr, zero);
901
902                 /* D.3 copy final 1,2 data to rx_pkts */
903                 _mm_storeu_si128
904                         ((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
905                          pkt_mb1);
906                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
907                                  pkt_mb0);
908                 flex_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
909                 /* C.4 calc available number of desc */
910                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
911                 nb_pkts_recd += var;
912                 if (likely(var != IAVF_VPMD_DESCS_PER_LOOP))
913                         break;
914         }
915
916         /* Update our internal tail pointer */
917         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
918         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
919         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
920
921         return nb_pkts_recd;
922 }
923
924 /* Notice:
925  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
926  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
927  *   numbers of DD bits
928  */
929 uint16_t
930 iavf_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
931                   uint16_t nb_pkts)
932 {
933         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
934 }
935
936 /* Notice:
937  * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
938  * - nb_pkts > IAVF_VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
939  *   numbers of DD bits
940  */
941 uint16_t
942 iavf_recv_pkts_vec_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
943                             uint16_t nb_pkts)
944 {
945         return _recv_raw_pkts_vec_flex_rxd(rx_queue, rx_pkts, nb_pkts, NULL);
946 }
947
948 /* vPMD receive routine that reassembles scattered packets
949  * Notice:
950  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
951  * - nb_pkts > VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
952  *   numbers of DD bits
953  */
954 uint16_t
955 iavf_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
956                             uint16_t nb_pkts)
957 {
958         struct iavf_rx_queue *rxq = rx_queue;
959         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
960         unsigned int i = 0;
961
962         /* get some new buffers */
963         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
964                                               split_flags);
965         if (nb_bufs == 0)
966                 return 0;
967
968         /* happy day case, full burst + no packets to be joined */
969         const uint64_t *split_fl64 = (uint64_t *)split_flags;
970
971         if (!rxq->pkt_first_seg &&
972             split_fl64[0] == 0 && split_fl64[1] == 0 &&
973             split_fl64[2] == 0 && split_fl64[3] == 0)
974                 return nb_bufs;
975
976         /* reassemble any packets that need reassembly*/
977         if (!rxq->pkt_first_seg) {
978                 /* find the first split flag, and only reassemble then*/
979                 while (i < nb_bufs && !split_flags[i])
980                         i++;
981                 if (i == nb_bufs)
982                         return nb_bufs;
983                 rxq->pkt_first_seg = rx_pkts[i];
984         }
985         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
986                 &split_flags[i]);
987 }
988
989 /* vPMD receive routine that reassembles scattered packets for flex RxD
990  * Notice:
991  * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
992  * - nb_pkts > VPMD_RX_MAX_BURST, only scan IAVF_VPMD_RX_MAX_BURST
993  *   numbers of DD bits
994  */
995 uint16_t
996 iavf_recv_scattered_pkts_vec_flex_rxd(void *rx_queue,
997                                       struct rte_mbuf **rx_pkts,
998                                       uint16_t nb_pkts)
999 {
1000         struct iavf_rx_queue *rxq = rx_queue;
1001         uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
1002         unsigned int i = 0;
1003
1004         /* get some new buffers */
1005         uint16_t nb_bufs = _recv_raw_pkts_vec_flex_rxd(rxq, rx_pkts, nb_pkts,
1006                                               split_flags);
1007         if (nb_bufs == 0)
1008                 return 0;
1009
1010         /* happy day case, full burst + no packets to be joined */
1011         const uint64_t *split_fl64 = (uint64_t *)split_flags;
1012
1013         if (!rxq->pkt_first_seg &&
1014             split_fl64[0] == 0 && split_fl64[1] == 0 &&
1015             split_fl64[2] == 0 && split_fl64[3] == 0)
1016                 return nb_bufs;
1017
1018         /* reassemble any packets that need reassembly*/
1019         if (!rxq->pkt_first_seg) {
1020                 /* find the first split flag, and only reassemble then*/
1021                 while (i < nb_bufs && !split_flags[i])
1022                         i++;
1023                 if (i == nb_bufs)
1024                         return nb_bufs;
1025                 rxq->pkt_first_seg = rx_pkts[i];
1026         }
1027         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
1028                 &split_flags[i]);
1029 }
1030
1031 static inline void
1032 vtx1(volatile struct iavf_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags)
1033 {
1034         uint64_t high_qw =
1035                         (IAVF_TX_DESC_DTYPE_DATA |
1036                          ((uint64_t)flags  << IAVF_TXD_QW1_CMD_SHIFT) |
1037                          ((uint64_t)pkt->data_len <<
1038                           IAVF_TXD_QW1_TX_BUF_SZ_SHIFT));
1039
1040         __m128i descriptor = _mm_set_epi64x(high_qw,
1041                                             pkt->buf_iova + pkt->data_off);
1042         _mm_store_si128((__m128i *)txdp, descriptor);
1043 }
1044
1045 static inline void
1046 iavf_vtx(volatile struct iavf_tx_desc *txdp, struct rte_mbuf **pkt,
1047         uint16_t nb_pkts,  uint64_t flags)
1048 {
1049         int i;
1050
1051         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
1052                 vtx1(txdp, *pkt, flags);
1053 }
1054
1055 uint16_t
1056 iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1057                          uint16_t nb_pkts)
1058 {
1059         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1060         volatile struct iavf_tx_desc *txdp;
1061         struct iavf_tx_entry *txep;
1062         uint16_t n, nb_commit, tx_id;
1063         uint64_t flags = IAVF_TX_DESC_CMD_EOP | 0x04;  /* bit 2 must be set */
1064         uint64_t rs = IAVF_TX_DESC_CMD_RS | flags;
1065         int i;
1066
1067         /* cross rx_thresh boundary is not allowed */
1068         nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
1069
1070         if (txq->nb_free < txq->free_thresh)
1071                 iavf_tx_free_bufs(txq);
1072
1073         nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
1074         if (unlikely(nb_pkts == 0))
1075                 return 0;
1076         nb_commit = nb_pkts;
1077
1078         tx_id = txq->tx_tail;
1079         txdp = &txq->tx_ring[tx_id];
1080         txep = &txq->sw_ring[tx_id];
1081
1082         txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
1083
1084         n = (uint16_t)(txq->nb_tx_desc - tx_id);
1085         if (nb_commit >= n) {
1086                 tx_backlog_entry(txep, tx_pkts, n);
1087
1088                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
1089                         vtx1(txdp, *tx_pkts, flags);
1090
1091                 vtx1(txdp, *tx_pkts++, rs);
1092
1093                 nb_commit = (uint16_t)(nb_commit - n);
1094
1095                 tx_id = 0;
1096                 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
1097
1098                 /* avoid reach the end of ring */
1099                 txdp = &txq->tx_ring[tx_id];
1100                 txep = &txq->sw_ring[tx_id];
1101         }
1102
1103         tx_backlog_entry(txep, tx_pkts, nb_commit);
1104
1105         iavf_vtx(txdp, tx_pkts, nb_commit, flags);
1106
1107         tx_id = (uint16_t)(tx_id + nb_commit);
1108         if (tx_id > txq->next_rs) {
1109                 txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |=
1110                         rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) <<
1111                                          IAVF_TXD_QW1_CMD_SHIFT);
1112                 txq->next_rs =
1113                         (uint16_t)(txq->next_rs + txq->rs_thresh);
1114         }
1115
1116         txq->tx_tail = tx_id;
1117
1118         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_pkts=%u",
1119                    txq->port_id, txq->queue_id, tx_id, nb_pkts);
1120
1121         IAVF_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
1122
1123         return nb_pkts;
1124 }
1125
1126 uint16_t
1127 iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1128                    uint16_t nb_pkts)
1129 {
1130         uint16_t nb_tx = 0;
1131         struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue;
1132
1133         while (nb_pkts) {
1134                 uint16_t ret, num;
1135
1136                 num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh);
1137                 ret = iavf_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
1138                 nb_tx += ret;
1139                 nb_pkts -= ret;
1140                 if (ret < num)
1141                         break;
1142         }
1143
1144         return nb_tx;
1145 }
1146
1147 static void __rte_cold
1148 iavf_rx_queue_release_mbufs_sse(struct iavf_rx_queue *rxq)
1149 {
1150         _iavf_rx_queue_release_mbufs_vec(rxq);
1151 }
1152
1153 static void __rte_cold
1154 iavf_tx_queue_release_mbufs_sse(struct iavf_tx_queue *txq)
1155 {
1156         _iavf_tx_queue_release_mbufs_vec(txq);
1157 }
1158
1159 static const struct iavf_rxq_ops sse_vec_rxq_ops = {
1160         .release_mbufs = iavf_rx_queue_release_mbufs_sse,
1161 };
1162
1163 static const struct iavf_txq_ops sse_vec_txq_ops = {
1164         .release_mbufs = iavf_tx_queue_release_mbufs_sse,
1165 };
1166
1167 int __rte_cold
1168 iavf_txq_vec_setup(struct iavf_tx_queue *txq)
1169 {
1170         txq->ops = &sse_vec_txq_ops;
1171         return 0;
1172 }
1173
1174 int __rte_cold
1175 iavf_rxq_vec_setup(struct iavf_rx_queue *rxq)
1176 {
1177         rxq->ops = &sse_vec_rxq_ops;
1178         return iavf_rxq_vec_setup_default(rxq);
1179 }
1180
1181 int __rte_cold
1182 iavf_rx_vec_dev_check(struct rte_eth_dev *dev)
1183 {
1184         return iavf_rx_vec_dev_check_default(dev);
1185 }
1186
1187 int __rte_cold
1188 iavf_tx_vec_dev_check(struct rte_eth_dev *dev)
1189 {
1190         return iavf_tx_vec_dev_check_default(dev);
1191 }