net/ice/base: introduce some new macros
[dpdk.git] / drivers / net / ice / base / ice_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2019
3  */
4
5 #include "ice_common.h"
6 #include "ice_flow.h"
7
8 /* Size of known protocol header fields */
9 #define ICE_FLOW_FLD_SZ_ETH_TYPE        2
10 #define ICE_FLOW_FLD_SZ_VLAN            2
11 #define ICE_FLOW_FLD_SZ_IPV4_ADDR       4
12 #define ICE_FLOW_FLD_SZ_IPV6_ADDR       16
13 #define ICE_FLOW_FLD_SZ_IP_DSCP         1
14 #define ICE_FLOW_FLD_SZ_IP_TTL          1
15 #define ICE_FLOW_FLD_SZ_IP_PROT         1
16 #define ICE_FLOW_FLD_SZ_PORT            2
17 #define ICE_FLOW_FLD_SZ_TCP_FLAGS       1
18 #define ICE_FLOW_FLD_SZ_ICMP_TYPE       1
19 #define ICE_FLOW_FLD_SZ_ICMP_CODE       1
20 #define ICE_FLOW_FLD_SZ_ARP_OPER        2
21 #define ICE_FLOW_FLD_SZ_GRE_KEYID       4
22
23 /* Protocol header fields are extracted at the word boundaries as word-sized
24  * values. Specify the displacement value of some non-word-aligned fields needed
25  * to compute the offset of words containing the fields in the corresponding
26  * protocol headers. Displacement values are expressed in number of bits.
27  */
28 #define ICE_FLOW_FLD_IPV6_TTL_DSCP_DISP (-4)
29 #define ICE_FLOW_FLD_IPV6_TTL_PROT_DISP ((-2) * BITS_PER_BYTE)
30 #define ICE_FLOW_FLD_IPV6_TTL_TTL_DISP  ((-1) * BITS_PER_BYTE)
31
32 /* Describe properties of a protocol header field */
33 struct ice_flow_field_info {
34         enum ice_flow_seg_hdr hdr;
35         s16 off;        /* Offset from start of a protocol header, in bits */
36         u16 size;       /* Size of fields in bits */
37 };
38
39 #define ICE_FLOW_FLD_INFO(_hdr, _offset_bytes, _size_bytes) { \
40         .hdr = _hdr, \
41         .off = _offset_bytes * BITS_PER_BYTE, \
42         .size = _size_bytes * BITS_PER_BYTE, \
43 }
44
45 /* Table containing properties of supported protocol header fields */
46 static const
47 struct ice_flow_field_info ice_flds_info[ICE_FLOW_FIELD_IDX_MAX] = {
48         /* Ether */
49         /* ICE_FLOW_FIELD_IDX_ETH_DA */
50         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 0, ETH_ALEN),
51         /* ICE_FLOW_FIELD_IDX_ETH_SA */
52         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, ETH_ALEN, ETH_ALEN),
53         /* ICE_FLOW_FIELD_IDX_S_VLAN */
54         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 12, ICE_FLOW_FLD_SZ_VLAN),
55         /* ICE_FLOW_FIELD_IDX_C_VLAN */
56         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_VLAN, 14, ICE_FLOW_FLD_SZ_VLAN),
57         /* ICE_FLOW_FIELD_IDX_ETH_TYPE */
58         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ETH, 12, ICE_FLOW_FLD_SZ_ETH_TYPE),
59         /* IPv4 */
60         /* ICE_FLOW_FIELD_IDX_IP_DSCP */
61         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 1, 1),
62         /* ICE_FLOW_FIELD_IDX_IP_TTL */
63         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NONE, 8, 1),
64         /* ICE_FLOW_FIELD_IDX_IP_PROT */
65         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_NONE, 9, ICE_FLOW_FLD_SZ_IP_PROT),
66         /* ICE_FLOW_FIELD_IDX_IPV4_SA */
67         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 12, ICE_FLOW_FLD_SZ_IPV4_ADDR),
68         /* ICE_FLOW_FIELD_IDX_IPV4_DA */
69         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV4, 16, ICE_FLOW_FLD_SZ_IPV4_ADDR),
70         /* IPv6 */
71         /* ICE_FLOW_FIELD_IDX_IPV6_SA */
72         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 8, ICE_FLOW_FLD_SZ_IPV6_ADDR),
73         /* ICE_FLOW_FIELD_IDX_IPV6_DA */
74         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_IPV6, 24, ICE_FLOW_FLD_SZ_IPV6_ADDR),
75         /* Transport */
76         /* ICE_FLOW_FIELD_IDX_TCP_SRC_PORT */
77         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 0, ICE_FLOW_FLD_SZ_PORT),
78         /* ICE_FLOW_FIELD_IDX_TCP_DST_PORT */
79         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 2, ICE_FLOW_FLD_SZ_PORT),
80         /* ICE_FLOW_FIELD_IDX_UDP_SRC_PORT */
81         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 0, ICE_FLOW_FLD_SZ_PORT),
82         /* ICE_FLOW_FIELD_IDX_UDP_DST_PORT */
83         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_UDP, 2, ICE_FLOW_FLD_SZ_PORT),
84         /* ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT */
85         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 0, ICE_FLOW_FLD_SZ_PORT),
86         /* ICE_FLOW_FIELD_IDX_SCTP_DST_PORT */
87         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_SCTP, 2, ICE_FLOW_FLD_SZ_PORT),
88         /* ICE_FLOW_FIELD_IDX_TCP_FLAGS */
89         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_TCP, 13, ICE_FLOW_FLD_SZ_TCP_FLAGS),
90         /* ARP */
91         /* ICE_FLOW_FIELD_IDX_ARP_SIP */
92         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 14, ICE_FLOW_FLD_SZ_IPV4_ADDR),
93         /* ICE_FLOW_FIELD_IDX_ARP_DIP */
94         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 24, ICE_FLOW_FLD_SZ_IPV4_ADDR),
95         /* ICE_FLOW_FIELD_IDX_ARP_SHA */
96         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 8, ETH_ALEN),
97         /* ICE_FLOW_FIELD_IDX_ARP_DHA */
98         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 18, ETH_ALEN),
99         /* ICE_FLOW_FIELD_IDX_ARP_OP */
100         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ARP, 6, ICE_FLOW_FLD_SZ_ARP_OPER),
101         /* ICMP */
102         /* ICE_FLOW_FIELD_IDX_ICMP_TYPE */
103         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 0, ICE_FLOW_FLD_SZ_ICMP_TYPE),
104         /* ICE_FLOW_FIELD_IDX_ICMP_CODE */
105         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_ICMP, 1, ICE_FLOW_FLD_SZ_ICMP_CODE),
106         /* GRE */
107         /* ICE_FLOW_FIELD_IDX_GRE_KEYID */
108         ICE_FLOW_FLD_INFO(ICE_FLOW_SEG_HDR_GRE, 12, ICE_FLOW_FLD_SZ_GRE_KEYID),
109 };
110
111 /* Bitmaps indicating relevant packet types for a particular protocol header
112  *
113  * Packet types for packets with an Outer/First/Single MAC header
114  */
115 static const u32 ice_ptypes_mac_ofos[] = {
116         0xFDC00CC6, 0xBFBF7F7E, 0xF7EFDFDF, 0xFEFDFDFB,
117         0x03BF7F7E, 0x00000000, 0x00000000, 0x00000000,
118         0x000B0F0F, 0x00000000, 0x00000000, 0x00000000,
119         0x00000000, 0x00000000, 0x00000000, 0x00000000,
120         0x00000000, 0x00000000, 0x00000000, 0x00000000,
121         0x00000000, 0x00000000, 0x00000000, 0x00000000,
122         0x00000000, 0x00000000, 0x00000000, 0x00000000,
123         0x00000000, 0x00000000, 0x00000000, 0x00000000,
124 };
125
126 /* Packet types for packets with an Innermost/Last MAC VLAN header */
127 static const u32 ice_ptypes_macvlan_il[] = {
128         0x00000000, 0xBC000000, 0x000001DF, 0xF0000000,
129         0x0000077E, 0x00000000, 0x00000000, 0x00000000,
130         0x00000000, 0x00000000, 0x00000000, 0x00000000,
131         0x00000000, 0x00000000, 0x00000000, 0x00000000,
132         0x00000000, 0x00000000, 0x00000000, 0x00000000,
133         0x00000000, 0x00000000, 0x00000000, 0x00000000,
134         0x00000000, 0x00000000, 0x00000000, 0x00000000,
135         0x00000000, 0x00000000, 0x00000000, 0x00000000,
136 };
137
138 /* Packet types for packets with an Outer/First/Single IPv4 header */
139 static const u32 ice_ptypes_ipv4_ofos[] = {
140         0xFDC00000, 0xBFBF7F7E, 0x00EFDFDF, 0x00000000,
141         0x00000000, 0x00000000, 0x00000000, 0x00000000,
142         0x0003000F, 0x00000000, 0x00000000, 0x00000000,
143         0x00000000, 0x00000000, 0x00000000, 0x00000000,
144         0x00000000, 0x00000000, 0x00000000, 0x00000000,
145         0x00000000, 0x00000000, 0x00000000, 0x00000000,
146         0x00000000, 0x00000000, 0x00000000, 0x00000000,
147         0x00000000, 0x00000000, 0x00000000, 0x00000000,
148 };
149
150 /* Packet types for packets with an Innermost/Last IPv4 header */
151 static const u32 ice_ptypes_ipv4_il[] = {
152         0xE0000000, 0xB807700E, 0x8001DC03, 0xE01DC03B,
153         0x0007700E, 0x00000000, 0x00000000, 0x00000000,
154         0x00000000, 0x00000000, 0x00000000, 0x00000000,
155         0x00000000, 0x00000000, 0x00000000, 0x00000000,
156         0x00000000, 0x00000000, 0x00000000, 0x00000000,
157         0x00000000, 0x00000000, 0x00000000, 0x00000000,
158         0x00000000, 0x00000000, 0x00000000, 0x00000000,
159         0x00000000, 0x00000000, 0x00000000, 0x00000000,
160 };
161
162 /* Packet types for packets with an Outer/First/Single IPv6 header */
163 static const u32 ice_ptypes_ipv6_ofos[] = {
164         0x00000000, 0x00000000, 0xF7000000, 0xFEFDFDFB,
165         0x03BF7F7E, 0x00000000, 0x00000000, 0x00000000,
166         0x00080F00, 0x00000000, 0x00000000, 0x00000000,
167         0x00000000, 0x00000000, 0x00000000, 0x00000000,
168         0x00000000, 0x00000000, 0x00000000, 0x00000000,
169         0x00000000, 0x00000000, 0x00000000, 0x00000000,
170         0x00000000, 0x00000000, 0x00000000, 0x00000000,
171         0x00000000, 0x00000000, 0x00000000, 0x00000000,
172 };
173
174 /* Packet types for packets with an Innermost/Last IPv6 header */
175 static const u32 ice_ptypes_ipv6_il[] = {
176         0x00000000, 0x03B80770, 0x00EE01DC, 0x0EE00000,
177         0x03B80770, 0x00000000, 0x00000000, 0x00000000,
178         0x00000000, 0x00000000, 0x00000000, 0x00000000,
179         0x00000000, 0x00000000, 0x00000000, 0x00000000,
180         0x00000000, 0x00000000, 0x00000000, 0x00000000,
181         0x00000000, 0x00000000, 0x00000000, 0x00000000,
182         0x00000000, 0x00000000, 0x00000000, 0x00000000,
183         0x00000000, 0x00000000, 0x00000000, 0x00000000,
184 };
185
186 /* Packet types for packets with an Outermost/First ARP header */
187 static const u32 ice_ptypes_arp_of[] = {
188         0x00000800, 0x00000000, 0x00000000, 0x00000000,
189         0x00000000, 0x00000000, 0x00000000, 0x00000000,
190         0x00000000, 0x00000000, 0x00000000, 0x00000000,
191         0x00000000, 0x00000000, 0x00000000, 0x00000000,
192         0x00000000, 0x00000000, 0x00000000, 0x00000000,
193         0x00000000, 0x00000000, 0x00000000, 0x00000000,
194         0x00000000, 0x00000000, 0x00000000, 0x00000000,
195         0x00000000, 0x00000000, 0x00000000, 0x00000000,
196 };
197
198 /* UDP Packet types for non-tunneled packets or tunneled
199  * packets with inner UDP.
200  */
201 static const u32 ice_ptypes_udp_il[] = {
202         0x81000000, 0x20204040, 0x04081010, 0x80810102,
203         0x00204040, 0x00000000, 0x00000000, 0x00000000,
204         0x00000000, 0x00000000, 0x00000000, 0x00000000,
205         0x00000000, 0x00000000, 0x00000000, 0x00000000,
206         0x00000000, 0x00000000, 0x00000000, 0x00000000,
207         0x00000000, 0x00000000, 0x00000000, 0x00000000,
208         0x00000000, 0x00000000, 0x00000000, 0x00000000,
209         0x00000000, 0x00000000, 0x00000000, 0x00000000,
210 };
211
212 /* Packet types for packets with an Innermost/Last TCP header */
213 static const u32 ice_ptypes_tcp_il[] = {
214         0x04000000, 0x80810102, 0x10204040, 0x42040408,
215         0x00810102, 0x00000000, 0x00000000, 0x00000000,
216         0x00000000, 0x00000000, 0x00000000, 0x00000000,
217         0x00000000, 0x00000000, 0x00000000, 0x00000000,
218         0x00000000, 0x00000000, 0x00000000, 0x00000000,
219         0x00000000, 0x00000000, 0x00000000, 0x00000000,
220         0x00000000, 0x00000000, 0x00000000, 0x00000000,
221         0x00000000, 0x00000000, 0x00000000, 0x00000000,
222 };
223
224 /* Packet types for packets with an Innermost/Last SCTP header */
225 static const u32 ice_ptypes_sctp_il[] = {
226         0x08000000, 0x01020204, 0x20408081, 0x04080810,
227         0x01020204, 0x00000000, 0x00000000, 0x00000000,
228         0x00000000, 0x00000000, 0x00000000, 0x00000000,
229         0x00000000, 0x00000000, 0x00000000, 0x00000000,
230         0x00000000, 0x00000000, 0x00000000, 0x00000000,
231         0x00000000, 0x00000000, 0x00000000, 0x00000000,
232         0x00000000, 0x00000000, 0x00000000, 0x00000000,
233         0x00000000, 0x00000000, 0x00000000, 0x00000000,
234 };
235
236 /* Packet types for packets with an Outermost/First ICMP header */
237 static const u32 ice_ptypes_icmp_of[] = {
238         0x10000000, 0x00000000, 0x00000000, 0x00000000,
239         0x00000000, 0x00000000, 0x00000000, 0x00000000,
240         0x00000000, 0x00000000, 0x00000000, 0x00000000,
241         0x00000000, 0x00000000, 0x00000000, 0x00000000,
242         0x00000000, 0x00000000, 0x00000000, 0x00000000,
243         0x00000000, 0x00000000, 0x00000000, 0x00000000,
244         0x00000000, 0x00000000, 0x00000000, 0x00000000,
245         0x00000000, 0x00000000, 0x00000000, 0x00000000,
246 };
247
248 /* Packet types for packets with an Innermost/Last ICMP header */
249 static const u32 ice_ptypes_icmp_il[] = {
250         0x00000000, 0x02040408, 0x40810102, 0x08101020,
251         0x02040408, 0x00000000, 0x00000000, 0x00000000,
252         0x00000000, 0x00000000, 0x00000000, 0x00000000,
253         0x00000000, 0x00000000, 0x00000000, 0x00000000,
254         0x00000000, 0x00000000, 0x00000000, 0x00000000,
255         0x00000000, 0x00000000, 0x00000000, 0x00000000,
256         0x00000000, 0x00000000, 0x00000000, 0x00000000,
257         0x00000000, 0x00000000, 0x00000000, 0x00000000,
258 };
259
260 /* Packet types for packets with an Outermost/First GRE header */
261 static const u32 ice_ptypes_gre_of[] = {
262         0x00000000, 0xBFBF7800, 0x00EFDFDF, 0xFEFDE000,
263         0x03BF7F7E, 0x00000000, 0x00000000, 0x00000000,
264         0x00000000, 0x00000000, 0x00000000, 0x00000000,
265         0x00000000, 0x00000000, 0x00000000, 0x00000000,
266         0x00000000, 0x00000000, 0x00000000, 0x00000000,
267         0x00000000, 0x00000000, 0x00000000, 0x00000000,
268         0x00000000, 0x00000000, 0x00000000, 0x00000000,
269         0x00000000, 0x00000000, 0x00000000, 0x00000000,
270 };
271
272 /* Packet types for packets with an Innermost/Last MAC header */
273 static const u32 ice_ptypes_mac_il[] = {
274         0x00000000, 0x00000000, 0x00EFDE00, 0x00000000,
275         0x03BF7800, 0x00000000, 0x00000000, 0x00000000,
276         0x00000000, 0x00000000, 0x00000000, 0x00000000,
277         0x00000000, 0x00000000, 0x00000000, 0x00000000,
278         0x00000000, 0x00000000, 0x00000000, 0x00000000,
279         0x00000000, 0x00000000, 0x00000000, 0x00000000,
280         0x00000000, 0x00000000, 0x00000000, 0x00000000,
281         0x00000000, 0x00000000, 0x00000000, 0x00000000,
282 };
283
284 /* Manage parameters and info. used during the creation of a flow profile */
285 struct ice_flow_prof_params {
286         enum ice_block blk;
287         u16 entry_length; /* # of bytes formatted entry will require */
288         u8 es_cnt;
289         struct ice_flow_prof *prof;
290
291         /* For ACL, the es[0] will have the data of ICE_RX_MDID_PKT_FLAGS_15_0
292          * This will give us the direction flags.
293          */
294         struct ice_fv_word es[ICE_MAX_FV_WORDS];
295
296         ice_declare_bitmap(ptypes, ICE_FLOW_PTYPE_MAX);
297 };
298
299 /**
300  * ice_is_pow2 - check if integer value is a power of 2
301  * @val: unsigned integer to be validated
302  */
303 static bool ice_is_pow2(u64 val)
304 {
305         return (val && !(val & (val - 1)));
306 }
307
308 #define ICE_FLOW_SEG_HDRS_L2_MASK       \
309         (ICE_FLOW_SEG_HDR_ETH | ICE_FLOW_SEG_HDR_VLAN)
310 #define ICE_FLOW_SEG_HDRS_L3_MASK       \
311         (ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_ARP)
312 #define ICE_FLOW_SEG_HDRS_L4_MASK       \
313         (ICE_FLOW_SEG_HDR_ICMP | ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \
314          ICE_FLOW_SEG_HDR_SCTP)
315
316 /**
317  * ice_flow_val_hdrs - validates packet segments for valid protocol headers
318  * @segs: array of one or more packet segments that describe the flow
319  * @segs_cnt: number of packet segments provided
320  */
321 static enum ice_status
322 ice_flow_val_hdrs(struct ice_flow_seg_info *segs, u8 segs_cnt)
323 {
324         const u32 masks = (ICE_FLOW_SEG_HDRS_L2_MASK |
325                            ICE_FLOW_SEG_HDRS_L3_MASK |
326                            ICE_FLOW_SEG_HDRS_L4_MASK);
327         u8 i;
328
329         for (i = 0; i < segs_cnt; i++) {
330                 /* No header specified */
331                 if (!(segs[i].hdrs & masks) || (segs[i].hdrs & ~masks))
332                         return ICE_ERR_PARAM;
333
334                 /* Multiple L3 headers */
335                 if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK &&
336                     !ice_is_pow2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L3_MASK))
337                         return ICE_ERR_PARAM;
338
339                 /* Multiple L4 headers */
340                 if (segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK &&
341                     !ice_is_pow2(segs[i].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK))
342                         return ICE_ERR_PARAM;
343         }
344
345         return ICE_SUCCESS;
346 }
347
348 /* Sizes of fixed known protocol headers without header options */
349 #define ICE_FLOW_PROT_HDR_SZ_MAC        14
350 #define ICE_FLOW_PROT_HDR_SZ_MAC_VLAN   (ICE_FLOW_PROT_HDR_SZ_MAC + 2)
351 #define ICE_FLOW_PROT_HDR_SZ_IPV4       20
352 #define ICE_FLOW_PROT_HDR_SZ_IPV6       40
353 #define ICE_FLOW_PROT_HDR_SZ_ARP        28
354 #define ICE_FLOW_PROT_HDR_SZ_ICMP       8
355 #define ICE_FLOW_PROT_HDR_SZ_TCP        20
356 #define ICE_FLOW_PROT_HDR_SZ_UDP        8
357 #define ICE_FLOW_PROT_HDR_SZ_SCTP       12
358
359 /**
360  * ice_flow_calc_seg_sz - calculates size of a packet segment based on headers
361  * @params: information about the flow to be processed
362  * @seg: index of packet segment whose header size is to be determined
363  */
364 static u16 ice_flow_calc_seg_sz(struct ice_flow_prof_params *params, u8 seg)
365 {
366         u16 sz;
367
368         /* L2 headers */
369         sz = (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_VLAN) ?
370                 ICE_FLOW_PROT_HDR_SZ_MAC_VLAN : ICE_FLOW_PROT_HDR_SZ_MAC;
371
372         /* L3 headers */
373         if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4)
374                 sz += ICE_FLOW_PROT_HDR_SZ_IPV4;
375         else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
376                 sz += ICE_FLOW_PROT_HDR_SZ_IPV6;
377         else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ARP)
378                 sz += ICE_FLOW_PROT_HDR_SZ_ARP;
379         else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDRS_L4_MASK)
380                 /* A L3 header is required if L4 is specified */
381                 return 0;
382
383         /* L4 headers */
384         if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_ICMP)
385                 sz += ICE_FLOW_PROT_HDR_SZ_ICMP;
386         else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_TCP)
387                 sz += ICE_FLOW_PROT_HDR_SZ_TCP;
388         else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_UDP)
389                 sz += ICE_FLOW_PROT_HDR_SZ_UDP;
390         else if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_SCTP)
391                 sz += ICE_FLOW_PROT_HDR_SZ_SCTP;
392
393         return sz;
394 }
395
396 /**
397  * ice_flow_proc_seg_hdrs - process protocol headers present in pkt segments
398  * @params: information about the flow to be processed
399  *
400  * This function identifies the packet types associated with the protocol
401  * headers being present in packet segments of the specified flow profile.
402  */
403 static enum ice_status
404 ice_flow_proc_seg_hdrs(struct ice_flow_prof_params *params)
405 {
406         struct ice_flow_prof *prof;
407         u8 i;
408
409         ice_memset(params->ptypes, 0xff, sizeof(params->ptypes),
410                    ICE_NONDMA_MEM);
411
412         prof = params->prof;
413
414         for (i = 0; i < params->prof->segs_cnt; i++) {
415                 const ice_bitmap_t *src;
416                 u32 hdrs;
417
418                 hdrs = prof->segs[i].hdrs;
419
420                 if (hdrs & ICE_FLOW_SEG_HDR_ETH) {
421                         src = !i ? (const ice_bitmap_t *)ice_ptypes_mac_ofos :
422                                 (const ice_bitmap_t *)ice_ptypes_mac_il;
423                         ice_and_bitmap(params->ptypes, params->ptypes, src,
424                                        ICE_FLOW_PTYPE_MAX);
425                         hdrs &= ~ICE_FLOW_SEG_HDR_ETH;
426                 }
427
428                 if (i && hdrs & ICE_FLOW_SEG_HDR_VLAN) {
429                         src = (const ice_bitmap_t *)ice_ptypes_macvlan_il;
430                         ice_and_bitmap(params->ptypes, params->ptypes, src,
431                                        ICE_FLOW_PTYPE_MAX);
432                         hdrs &= ~ICE_FLOW_SEG_HDR_VLAN;
433                 }
434
435                 if (!i && hdrs & ICE_FLOW_SEG_HDR_ARP) {
436                         ice_and_bitmap(params->ptypes, params->ptypes,
437                                        (const ice_bitmap_t *)ice_ptypes_arp_of,
438                                        ICE_FLOW_PTYPE_MAX);
439                         hdrs &= ~ICE_FLOW_SEG_HDR_ARP;
440                 }
441
442                 if (hdrs & ICE_FLOW_SEG_HDR_IPV4) {
443                         src = !i ? (const ice_bitmap_t *)ice_ptypes_ipv4_ofos :
444                                 (const ice_bitmap_t *)ice_ptypes_ipv4_il;
445                         ice_and_bitmap(params->ptypes, params->ptypes, src,
446                                        ICE_FLOW_PTYPE_MAX);
447                         hdrs &= ~ICE_FLOW_SEG_HDR_IPV4;
448                 } else if (hdrs & ICE_FLOW_SEG_HDR_IPV6) {
449                         src = !i ? (const ice_bitmap_t *)ice_ptypes_ipv6_ofos :
450                                 (const ice_bitmap_t *)ice_ptypes_ipv6_il;
451                         ice_and_bitmap(params->ptypes, params->ptypes, src,
452                                        ICE_FLOW_PTYPE_MAX);
453                         hdrs &= ~ICE_FLOW_SEG_HDR_IPV6;
454                 }
455
456                 if (hdrs & ICE_FLOW_SEG_HDR_ICMP) {
457                         src = !i ? (const ice_bitmap_t *)ice_ptypes_icmp_of :
458                                 (const ice_bitmap_t *)ice_ptypes_icmp_il;
459                         ice_and_bitmap(params->ptypes, params->ptypes, src,
460                                        ICE_FLOW_PTYPE_MAX);
461                         hdrs &= ~ICE_FLOW_SEG_HDR_ICMP;
462                 } else if (hdrs & ICE_FLOW_SEG_HDR_UDP) {
463                         src = (const ice_bitmap_t *)ice_ptypes_udp_il;
464                         ice_and_bitmap(params->ptypes, params->ptypes, src,
465                                        ICE_FLOW_PTYPE_MAX);
466                         hdrs &= ~ICE_FLOW_SEG_HDR_UDP;
467                 } else if (hdrs & ICE_FLOW_SEG_HDR_TCP) {
468                         ice_and_bitmap(params->ptypes, params->ptypes,
469                                        (const ice_bitmap_t *)ice_ptypes_tcp_il,
470                                        ICE_FLOW_PTYPE_MAX);
471                         hdrs &= ~ICE_FLOW_SEG_HDR_TCP;
472                 } else if (hdrs & ICE_FLOW_SEG_HDR_SCTP) {
473                         src = (const ice_bitmap_t *)ice_ptypes_sctp_il;
474                         ice_and_bitmap(params->ptypes, params->ptypes, src,
475                                        ICE_FLOW_PTYPE_MAX);
476                         hdrs &= ~ICE_FLOW_SEG_HDR_SCTP;
477                 } else if (hdrs & ICE_FLOW_SEG_HDR_GRE) {
478                         if (!i) {
479                                 src = (const ice_bitmap_t *)ice_ptypes_gre_of;
480                                 ice_and_bitmap(params->ptypes, params->ptypes,
481                                                src, ICE_FLOW_PTYPE_MAX);
482                         }
483                         hdrs &= ~ICE_FLOW_SEG_HDR_GRE;
484                 }
485         }
486
487         return ICE_SUCCESS;
488 }
489
490 /**
491  * ice_flow_xtract_pkt_flags - Create an extr sequence entry for packet flags
492  * @hw: pointer to the HW struct
493  * @params: information about the flow to be processed
494  * @flags: The value of pkt_flags[x:x] in RX/TX MDID metadata.
495  *
496  * This function will allocate an extraction sequence entries for a DWORD size
497  * chunk of the packet flags.
498  */
499 static enum ice_status
500 ice_flow_xtract_pkt_flags(struct ice_hw *hw,
501                           struct ice_flow_prof_params *params,
502                           enum ice_flex_mdid_pkt_flags flags)
503 {
504         u8 fv_words = hw->blk[params->blk].es.fvw;
505         u8 idx;
506
507         /* Make sure the number of extraction sequence entries required does not
508          * exceed the block's capacity.
509          */
510         if (params->es_cnt >= fv_words)
511                 return ICE_ERR_MAX_LIMIT;
512
513         /* some blocks require a reversed field vector layout */
514         if (hw->blk[params->blk].es.reverse)
515                 idx = fv_words - params->es_cnt - 1;
516         else
517                 idx = params->es_cnt;
518
519         params->es[idx].prot_id = ICE_PROT_META_ID;
520         params->es[idx].off = flags;
521         params->es_cnt++;
522
523         return ICE_SUCCESS;
524 }
525
526 /**
527  * ice_flow_xtract_fld - Create an extraction sequence entry for the given field
528  * @hw: pointer to the HW struct
529  * @params: information about the flow to be processed
530  * @seg: packet segment index of the field to be extracted
531  * @fld: ID of field to be extracted
532  *
533  * This function determines the protocol ID, offset, and size of the given
534  * field. It then allocates one or more extraction sequence entries for the
535  * given field, and fill the entries with protocol ID and offset information.
536  */
537 static enum ice_status
538 ice_flow_xtract_fld(struct ice_hw *hw, struct ice_flow_prof_params *params,
539                     u8 seg, enum ice_flow_field fld)
540 {
541         enum ice_flow_field sib = ICE_FLOW_FIELD_IDX_MAX;
542         enum ice_prot_id prot_id = ICE_PROT_ID_INVAL;
543         u8 fv_words = hw->blk[params->blk].es.fvw;
544         struct ice_flow_fld_info *flds;
545         u16 cnt, ese_bits, i;
546         s16 adj = 0;
547         u16 off;
548
549         flds = params->prof->segs[seg].fields;
550
551         switch (fld) {
552         case ICE_FLOW_FIELD_IDX_ETH_DA:
553         case ICE_FLOW_FIELD_IDX_ETH_SA:
554         case ICE_FLOW_FIELD_IDX_S_VLAN:
555         case ICE_FLOW_FIELD_IDX_C_VLAN:
556                 prot_id = seg == 0 ? ICE_PROT_MAC_OF_OR_S : ICE_PROT_MAC_IL;
557                 break;
558         case ICE_FLOW_FIELD_IDX_ETH_TYPE:
559                 prot_id = seg == 0 ? ICE_PROT_ETYPE_OL : ICE_PROT_ETYPE_IL;
560                 break;
561         case ICE_FLOW_FIELD_IDX_IP_DSCP:
562                 if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV6)
563                         adj = ICE_FLOW_FLD_IPV6_TTL_DSCP_DISP;
564                 /* Fall through */
565         case ICE_FLOW_FIELD_IDX_IP_TTL:
566         case ICE_FLOW_FIELD_IDX_IP_PROT:
567                 /* Some fields are located at different offsets in IPv4 and
568                  * IPv6
569                  */
570                 if (params->prof->segs[seg].hdrs & ICE_FLOW_SEG_HDR_IPV4) {
571                         prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S :
572                                 ICE_PROT_IPV4_IL;
573                         /* TTL and PROT share the same extraction seq. entry.
574                          * Each is considered a sibling to the other in term
575                          * sharing the same extraction sequence entry.
576                          */
577                         if (fld == ICE_FLOW_FIELD_IDX_IP_TTL)
578                                 sib = ICE_FLOW_FIELD_IDX_IP_PROT;
579                         else if (fld == ICE_FLOW_FIELD_IDX_IP_PROT)
580                                 sib = ICE_FLOW_FIELD_IDX_IP_TTL;
581                 } else if (params->prof->segs[seg].hdrs &
582                            ICE_FLOW_SEG_HDR_IPV6) {
583                         prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S :
584                                 ICE_PROT_IPV6_IL;
585                         if (fld == ICE_FLOW_FIELD_IDX_IP_TTL)
586                                 adj = ICE_FLOW_FLD_IPV6_TTL_TTL_DISP;
587                         else if (fld == ICE_FLOW_FIELD_IDX_IP_PROT)
588                                 adj = ICE_FLOW_FLD_IPV6_TTL_PROT_DISP;
589                 }
590                 break;
591         case ICE_FLOW_FIELD_IDX_IPV4_SA:
592         case ICE_FLOW_FIELD_IDX_IPV4_DA:
593                 prot_id = seg == 0 ? ICE_PROT_IPV4_OF_OR_S : ICE_PROT_IPV4_IL;
594                 break;
595         case ICE_FLOW_FIELD_IDX_IPV6_SA:
596         case ICE_FLOW_FIELD_IDX_IPV6_DA:
597                 prot_id = seg == 0 ? ICE_PROT_IPV6_OF_OR_S : ICE_PROT_IPV6_IL;
598                 break;
599         case ICE_FLOW_FIELD_IDX_TCP_SRC_PORT:
600         case ICE_FLOW_FIELD_IDX_TCP_DST_PORT:
601         case ICE_FLOW_FIELD_IDX_TCP_FLAGS:
602                 prot_id = ICE_PROT_TCP_IL;
603                 break;
604         case ICE_FLOW_FIELD_IDX_UDP_SRC_PORT:
605         case ICE_FLOW_FIELD_IDX_UDP_DST_PORT:
606                 prot_id = seg == 0 ? ICE_PROT_UDP_IL_OR_S : ICE_PROT_UDP_OF;
607                 break;
608         case ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT:
609         case ICE_FLOW_FIELD_IDX_SCTP_DST_PORT:
610                 prot_id = ICE_PROT_SCTP_IL;
611                 break;
612         case ICE_FLOW_FIELD_IDX_ARP_SIP:
613         case ICE_FLOW_FIELD_IDX_ARP_DIP:
614         case ICE_FLOW_FIELD_IDX_ARP_SHA:
615         case ICE_FLOW_FIELD_IDX_ARP_DHA:
616         case ICE_FLOW_FIELD_IDX_ARP_OP:
617                 prot_id = ICE_PROT_ARP_OF;
618                 break;
619         case ICE_FLOW_FIELD_IDX_ICMP_TYPE:
620         case ICE_FLOW_FIELD_IDX_ICMP_CODE:
621                 /* ICMP type and code share the same extraction seq. entry */
622                 prot_id = (params->prof->segs[seg].hdrs &
623                            ICE_FLOW_SEG_HDR_IPV4) ?
624                         ICE_PROT_ICMP_IL : ICE_PROT_ICMPV6_IL;
625                 sib = fld == ICE_FLOW_FIELD_IDX_ICMP_TYPE ?
626                         ICE_FLOW_FIELD_IDX_ICMP_CODE :
627                         ICE_FLOW_FIELD_IDX_ICMP_TYPE;
628                 break;
629         case ICE_FLOW_FIELD_IDX_GRE_KEYID:
630                 prot_id = ICE_PROT_GRE_OF;
631                 break;
632         default:
633                 return ICE_ERR_NOT_IMPL;
634         }
635
636         /* Each extraction sequence entry is a word in size, and extracts a
637          * word-aligned offset from a protocol header.
638          */
639         ese_bits = ICE_FLOW_FV_EXTRACT_SZ * BITS_PER_BYTE;
640
641         flds[fld].xtrct.prot_id = prot_id;
642         flds[fld].xtrct.off = (ice_flds_info[fld].off / ese_bits) *
643                 ICE_FLOW_FV_EXTRACT_SZ;
644         flds[fld].xtrct.disp = (u8)((ice_flds_info[fld].off + adj) % ese_bits);
645         flds[fld].xtrct.idx = params->es_cnt;
646
647         /* Adjust the next field-entry index after accommodating the number of
648          * entries this field consumes
649          */
650         cnt = DIVIDE_AND_ROUND_UP(flds[fld].xtrct.disp +
651                                   ice_flds_info[fld].size, ese_bits);
652
653         /* Fill in the extraction sequence entries needed for this field */
654         off = flds[fld].xtrct.off;
655         for (i = 0; i < cnt; i++) {
656                 /* Only consume an extraction sequence entry if there is no
657                  * sibling field associated with this field or the sibling entry
658                  * already extracts the word shared with this field.
659                  */
660                 if (sib == ICE_FLOW_FIELD_IDX_MAX ||
661                     flds[sib].xtrct.prot_id == ICE_PROT_ID_INVAL ||
662                     flds[sib].xtrct.off != off) {
663                         u8 idx;
664
665                         /* Make sure the number of extraction sequence required
666                          * does not exceed the block's capability
667                          */
668                         if (params->es_cnt >= fv_words)
669                                 return ICE_ERR_MAX_LIMIT;
670
671                         /* some blocks require a reversed field vector layout */
672                         if (hw->blk[params->blk].es.reverse)
673                                 idx = fv_words - params->es_cnt - 1;
674                         else
675                                 idx = params->es_cnt;
676
677                         params->es[idx].prot_id = prot_id;
678                         params->es[idx].off = off;
679                         params->es_cnt++;
680                 }
681
682                 off += ICE_FLOW_FV_EXTRACT_SZ;
683         }
684
685         return ICE_SUCCESS;
686 }
687
688 /**
689  * ice_flow_xtract_raws - Create extract sequence entries for raw bytes
690  * @hw: pointer to the HW struct
691  * @params: information about the flow to be processed
692  * @seg: index of packet segment whose raw fields are to be be extracted
693  */
694 static enum ice_status
695 ice_flow_xtract_raws(struct ice_hw *hw, struct ice_flow_prof_params *params,
696                      u8 seg)
697 {
698         u16 hdrs_sz;
699         u8 i;
700
701         if (!params->prof->segs[seg].raws_cnt)
702                 return ICE_SUCCESS;
703
704         if (params->prof->segs[seg].raws_cnt >
705             ARRAY_SIZE(params->prof->segs[seg].raws))
706                 return ICE_ERR_MAX_LIMIT;
707
708         /* Offsets within the segment headers are not supported */
709         hdrs_sz = ice_flow_calc_seg_sz(params, seg);
710         if (!hdrs_sz)
711                 return ICE_ERR_PARAM;
712
713         for (i = 0; i < params->prof->segs[seg].raws_cnt; i++) {
714                 struct ice_flow_seg_fld_raw *raw;
715                 u16 off, cnt, j;
716
717                 raw = &params->prof->segs[seg].raws[i];
718
719                 /* Only support matching raw fields in the payload */
720                 if (raw->off < hdrs_sz)
721                         return ICE_ERR_PARAM;
722
723                 /* Convert the segment-relative offset into payload-relative
724                  * offset.
725                  */
726                 off = raw->off - hdrs_sz;
727
728                 /* Storing extraction information */
729                 raw->info.xtrct.prot_id = ICE_PROT_PAY;
730                 raw->info.xtrct.off = (off / ICE_FLOW_FV_EXTRACT_SZ) *
731                         ICE_FLOW_FV_EXTRACT_SZ;
732                 raw->info.xtrct.disp = (off % ICE_FLOW_FV_EXTRACT_SZ) *
733                         BITS_PER_BYTE;
734                 raw->info.xtrct.idx = params->es_cnt;
735
736                 /* Determine the number of field vector entries this raw field
737                  * consumes.
738                  */
739                 cnt = DIVIDE_AND_ROUND_UP(raw->info.xtrct.disp +
740                                           (raw->info.src.last * BITS_PER_BYTE),
741                                           (ICE_FLOW_FV_EXTRACT_SZ *
742                                            BITS_PER_BYTE));
743                 off = raw->info.xtrct.off;
744                 for (j = 0; j < cnt; j++) {
745                         /* Make sure the number of extraction sequence required
746                          * does not exceed the block's capability
747                          */
748                         if (params->es_cnt >= hw->blk[params->blk].es.count ||
749                             params->es_cnt >= ICE_MAX_FV_WORDS)
750                                 return ICE_ERR_MAX_LIMIT;
751
752                         params->es[params->es_cnt].prot_id = ICE_PROT_PAY;
753                         params->es[params->es_cnt].off = off;
754                         params->es_cnt++;
755                         off += ICE_FLOW_FV_EXTRACT_SZ;
756                 }
757         }
758
759         return ICE_SUCCESS;
760 }
761
762 /**
763  * ice_flow_create_xtrct_seq - Create an extraction sequence for given segments
764  * @hw: pointer to the HW struct
765  * @params: information about the flow to be processed
766  *
767  * This function iterates through all matched fields in the given segments, and
768  * creates an extraction sequence for the fields.
769  */
770 static enum ice_status
771 ice_flow_create_xtrct_seq(struct ice_hw *hw,
772                           struct ice_flow_prof_params *params)
773 {
774         enum ice_status status = ICE_SUCCESS;
775         u8 i;
776
777         /* For ACL, we also need to extract the direction bit (Rx,Tx) data from
778          * packet flags
779          */
780         if (params->blk == ICE_BLK_ACL)
781                 ice_flow_xtract_pkt_flags(hw, params,
782                                           ICE_RX_MDID_PKT_FLAGS_15_0);
783
784         for (i = 0; i < params->prof->segs_cnt; i++) {
785                 u64 match = params->prof->segs[i].match;
786                 u16 j;
787
788                 for (j = 0; j < ICE_FLOW_FIELD_IDX_MAX && match; j++) {
789                         const u64 bit = BIT_ULL(j);
790
791                         if (match & bit) {
792                                 status = ice_flow_xtract_fld
793                                         (hw, params, i, (enum ice_flow_field)j);
794                                 if (status)
795                                         return status;
796                                 match &= ~bit;
797                         }
798                 }
799
800                 /* Process raw matching bytes */
801                 status = ice_flow_xtract_raws(hw, params, i);
802                 if (status)
803                         return status;
804         }
805
806         return status;
807 }
808
809 /**
810  * ice_flow_proc_segs - process all packet segments associated with a profile
811  * @hw: pointer to the HW struct
812  * @params: information about the flow to be processed
813  */
814 static enum ice_status
815 ice_flow_proc_segs(struct ice_hw *hw, struct ice_flow_prof_params *params)
816 {
817         enum ice_status status;
818
819         status = ice_flow_proc_seg_hdrs(params);
820         if (status)
821                 return status;
822
823         status = ice_flow_create_xtrct_seq(hw, params);
824         if (status)
825                 return status;
826
827         switch (params->blk) {
828         case ICE_BLK_RSS:
829                 /* Only header information is provided for RSS configuration.
830                  * No further processing is needed.
831                  */
832                 status = ICE_SUCCESS;
833                 break;
834         case ICE_BLK_FD:
835                 status = ICE_SUCCESS;
836                 break;
837         case ICE_BLK_SW:
838         default:
839                 return ICE_ERR_NOT_IMPL;
840         }
841
842         return status;
843 }
844
845 #define ICE_FLOW_FIND_PROF_CHK_FLDS     0x00000001
846 #define ICE_FLOW_FIND_PROF_CHK_VSI      0x00000002
847 #define ICE_FLOW_FIND_PROF_NOT_CHK_DIR  0x00000004
848
849 /**
850  * ice_flow_find_prof_conds - Find a profile matching headers and conditions
851  * @hw: pointer to the HW struct
852  * @blk: classification stage
853  * @dir: flow direction
854  * @segs: array of one or more packet segments that describe the flow
855  * @segs_cnt: number of packet segments provided
856  * @vsi_handle: software VSI handle to check VSI (ICE_FLOW_FIND_PROF_CHK_VSI)
857  * @conds: additional conditions to be checked (ICE_FLOW_FIND_PROF_CHK_*)
858  */
859 static struct ice_flow_prof *
860 ice_flow_find_prof_conds(struct ice_hw *hw, enum ice_block blk,
861                          enum ice_flow_dir dir, struct ice_flow_seg_info *segs,
862                          u8 segs_cnt, u16 vsi_handle, u32 conds)
863 {
864         struct ice_flow_prof *p;
865
866         LIST_FOR_EACH_ENTRY(p, &hw->fl_profs[blk], ice_flow_prof, l_entry) {
867                 if ((p->dir == dir || conds & ICE_FLOW_FIND_PROF_NOT_CHK_DIR) &&
868                     segs_cnt && segs_cnt == p->segs_cnt) {
869                         u8 i;
870
871                         /* Check for profile-VSI association if specified */
872                         if ((conds & ICE_FLOW_FIND_PROF_CHK_VSI) &&
873                             ice_is_vsi_valid(hw, vsi_handle) &&
874                             !ice_is_bit_set(p->vsis, vsi_handle))
875                                 continue;
876
877                         /* Protocol headers must be checked. Matched fields are
878                          * checked if specified.
879                          */
880                         for (i = 0; i < segs_cnt; i++)
881                                 if (segs[i].hdrs != p->segs[i].hdrs ||
882                                     ((conds & ICE_FLOW_FIND_PROF_CHK_FLDS) &&
883                                      segs[i].match != p->segs[i].match))
884                                         break;
885
886                         /* A match is found if all segments are matched */
887                         if (i == segs_cnt)
888                                 return p;
889                 }
890         }
891
892         return NULL;
893 }
894
895 /**
896  * ice_flow_find_prof - Look up a profile matching headers and matched fields
897  * @hw: pointer to the HW struct
898  * @blk: classification stage
899  * @dir: flow direction
900  * @segs: array of one or more packet segments that describe the flow
901  * @segs_cnt: number of packet segments provided
902  */
903 u64
904 ice_flow_find_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
905                    struct ice_flow_seg_info *segs, u8 segs_cnt)
906 {
907         struct ice_flow_prof *p;
908
909         ice_acquire_lock(&hw->fl_profs_locks[blk]);
910         p = ice_flow_find_prof_conds(hw, blk, dir, segs, segs_cnt,
911                                      ICE_MAX_VSI, ICE_FLOW_FIND_PROF_CHK_FLDS);
912         ice_release_lock(&hw->fl_profs_locks[blk]);
913
914         return p ? p->id : ICE_FLOW_PROF_ID_INVAL;
915 }
916
917 /**
918  * ice_flow_find_prof_id - Look up a profile with given profile ID
919  * @hw: pointer to the HW struct
920  * @blk: classification stage
921  * @prof_id: unique ID to identify this flow profile
922  */
923 static struct ice_flow_prof *
924 ice_flow_find_prof_id(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
925 {
926         struct ice_flow_prof *p;
927
928         LIST_FOR_EACH_ENTRY(p, &hw->fl_profs[blk], ice_flow_prof, l_entry) {
929                 if (p->id == prof_id)
930                         return p;
931         }
932
933         return NULL;
934 }
935
936 /**
937  * ice_dealloc_flow_entry - Deallocate flow entry memory
938  * @hw: pointer to the HW struct
939  * @entry: flow entry to be removed
940  */
941 static void
942 ice_dealloc_flow_entry(struct ice_hw *hw, struct ice_flow_entry *entry)
943 {
944         if (!entry)
945                 return;
946
947         if (entry->entry)
948                 ice_free(hw, entry->entry);
949
950         if (entry->acts) {
951                 ice_free(hw, entry->acts);
952                 entry->acts = NULL;
953                 entry->acts_cnt = 0;
954         }
955
956         ice_free(hw, entry);
957 }
958
959 /**
960  * ice_flow_rem_entry_sync - Remove a flow entry
961  * @hw: pointer to the HW struct
962  * @entry: flow entry to be removed
963  */
964 static enum ice_status
965 ice_flow_rem_entry_sync(struct ice_hw *hw, struct ice_flow_entry *entry)
966 {
967         if (!entry)
968                 return ICE_ERR_BAD_PTR;
969
970         LIST_DEL(&entry->l_entry);
971
972         ice_dealloc_flow_entry(hw, entry);
973
974         return ICE_SUCCESS;
975 }
976
977 /**
978  * ice_flow_add_prof_sync - Add a flow profile for packet segments and fields
979  * @hw: pointer to the HW struct
980  * @blk: classification stage
981  * @dir: flow direction
982  * @prof_id: unique ID to identify this flow profile
983  * @segs: array of one or more packet segments that describe the flow
984  * @segs_cnt: number of packet segments provided
985  * @acts: array of default actions
986  * @acts_cnt: number of default actions
987  * @prof: stores the returned flow profile added
988  *
989  * Assumption: the caller has acquired the lock to the profile list
990  */
991 static enum ice_status
992 ice_flow_add_prof_sync(struct ice_hw *hw, enum ice_block blk,
993                        enum ice_flow_dir dir, u64 prof_id,
994                        struct ice_flow_seg_info *segs, u8 segs_cnt,
995                        struct ice_flow_action *acts, u8 acts_cnt,
996                        struct ice_flow_prof **prof)
997 {
998         struct ice_flow_prof_params params;
999         enum ice_status status = ICE_SUCCESS;
1000         u8 i;
1001
1002         if (!prof || (acts_cnt && !acts))
1003                 return ICE_ERR_BAD_PTR;
1004
1005         ice_memset(&params, 0, sizeof(params), ICE_NONDMA_MEM);
1006         params.prof = (struct ice_flow_prof *)
1007                 ice_malloc(hw, sizeof(*params.prof));
1008         if (!params.prof)
1009                 return ICE_ERR_NO_MEMORY;
1010
1011         /* initialize extraction sequence to all invalid (0xff) */
1012         for (i = 0; i < ICE_MAX_FV_WORDS; i++) {
1013                 params.es[i].prot_id = ICE_PROT_INVALID;
1014                 params.es[i].off = ICE_FV_OFFSET_INVAL;
1015         }
1016
1017         params.blk = blk;
1018         params.prof->id = prof_id;
1019         params.prof->dir = dir;
1020         params.prof->segs_cnt = segs_cnt;
1021
1022         /* Make a copy of the segments that need to be persistent in the flow
1023          * profile instance
1024          */
1025         for (i = 0; i < segs_cnt; i++)
1026                 ice_memcpy(&params.prof->segs[i], &segs[i], sizeof(*segs),
1027                            ICE_NONDMA_TO_NONDMA);
1028
1029         /* Make a copy of the actions that need to be persistent in the flow
1030          * profile instance.
1031          */
1032         if (acts_cnt) {
1033                 params.prof->acts = (struct ice_flow_action *)
1034                         ice_memdup(hw, acts, acts_cnt * sizeof(*acts),
1035                                    ICE_NONDMA_TO_NONDMA);
1036
1037                 if (!params.prof->acts) {
1038                         status = ICE_ERR_NO_MEMORY;
1039                         goto out;
1040                 }
1041         }
1042
1043         status = ice_flow_proc_segs(hw, &params);
1044         if (status) {
1045                 ice_debug(hw, ICE_DBG_FLOW,
1046                           "Error processing a flow's packet segments\n");
1047                 goto out;
1048         }
1049
1050         /* Add a HW profile for this flow profile */
1051         status = ice_add_prof(hw, blk, prof_id, (u8 *)params.ptypes, params.es);
1052         if (status) {
1053                 ice_debug(hw, ICE_DBG_FLOW, "Error adding a HW flow profile\n");
1054                 goto out;
1055         }
1056
1057         INIT_LIST_HEAD(&params.prof->entries);
1058         ice_init_lock(&params.prof->entries_lock);
1059         *prof = params.prof;
1060
1061 out:
1062         if (status) {
1063                 if (params.prof->acts)
1064                         ice_free(hw, params.prof->acts);
1065                 ice_free(hw, params.prof);
1066         }
1067
1068         return status;
1069 }
1070
1071 /**
1072  * ice_flow_rem_prof_sync - remove a flow profile
1073  * @hw: pointer to the hardware structure
1074  * @blk: classification stage
1075  * @prof: pointer to flow profile to remove
1076  *
1077  * Assumption: the caller has acquired the lock to the profile list
1078  */
1079 static enum ice_status
1080 ice_flow_rem_prof_sync(struct ice_hw *hw, enum ice_block blk,
1081                        struct ice_flow_prof *prof)
1082 {
1083         enum ice_status status = ICE_SUCCESS;
1084
1085         /* Remove all remaining flow entries before removing the flow profile */
1086         if (!LIST_EMPTY(&prof->entries)) {
1087                 struct ice_flow_entry *e, *t;
1088
1089                 ice_acquire_lock(&prof->entries_lock);
1090
1091                 LIST_FOR_EACH_ENTRY_SAFE(e, t, &prof->entries, ice_flow_entry,
1092                                          l_entry) {
1093                         status = ice_flow_rem_entry_sync(hw, e);
1094                         if (status)
1095                                 break;
1096                 }
1097
1098                 ice_release_lock(&prof->entries_lock);
1099         }
1100
1101         /* Remove all hardware profiles associated with this flow profile */
1102         status = ice_rem_prof(hw, blk, prof->id);
1103         if (!status) {
1104                 LIST_DEL(&prof->l_entry);
1105                 ice_destroy_lock(&prof->entries_lock);
1106                 if (prof->acts)
1107                         ice_free(hw, prof->acts);
1108                 ice_free(hw, prof);
1109         }
1110
1111         return status;
1112 }
1113
1114 /**
1115  * ice_flow_assoc_prof - associate a VSI with a flow profile
1116  * @hw: pointer to the hardware structure
1117  * @blk: classification stage
1118  * @prof: pointer to flow profile
1119  * @vsi_handle: software VSI handle
1120  *
1121  * Assumption: the caller has acquired the lock to the profile list
1122  * and the software VSI handle has been validated
1123  */
1124 static enum ice_status
1125 ice_flow_assoc_prof(struct ice_hw *hw, enum ice_block blk,
1126                     struct ice_flow_prof *prof, u16 vsi_handle)
1127 {
1128         enum ice_status status = ICE_SUCCESS;
1129
1130         if (!ice_is_bit_set(prof->vsis, vsi_handle)) {
1131                 status = ice_add_prof_id_flow(hw, blk,
1132                                               ice_get_hw_vsi_num(hw,
1133                                                                  vsi_handle),
1134                                               prof->id);
1135                 if (!status)
1136                         ice_set_bit(vsi_handle, prof->vsis);
1137                 else
1138                         ice_debug(hw, ICE_DBG_FLOW,
1139                                   "HW profile add failed, %d\n",
1140                                   status);
1141         }
1142
1143         return status;
1144 }
1145
1146 /**
1147  * ice_flow_disassoc_prof - disassociate a VSI from a flow profile
1148  * @hw: pointer to the hardware structure
1149  * @blk: classification stage
1150  * @prof: pointer to flow profile
1151  * @vsi_handle: software VSI handle
1152  *
1153  * Assumption: the caller has acquired the lock to the profile list
1154  * and the software VSI handle has been validated
1155  */
1156 static enum ice_status
1157 ice_flow_disassoc_prof(struct ice_hw *hw, enum ice_block blk,
1158                        struct ice_flow_prof *prof, u16 vsi_handle)
1159 {
1160         enum ice_status status = ICE_SUCCESS;
1161
1162         if (ice_is_bit_set(prof->vsis, vsi_handle)) {
1163                 status = ice_rem_prof_id_flow(hw, blk,
1164                                               ice_get_hw_vsi_num(hw,
1165                                                                  vsi_handle),
1166                                               prof->id);
1167                 if (!status)
1168                         ice_clear_bit(vsi_handle, prof->vsis);
1169                 else
1170                         ice_debug(hw, ICE_DBG_FLOW,
1171                                   "HW profile remove failed, %d\n",
1172                                   status);
1173         }
1174
1175         return status;
1176 }
1177
1178 /**
1179  * ice_flow_add_prof - Add a flow profile for packet segments and matched fields
1180  * @hw: pointer to the HW struct
1181  * @blk: classification stage
1182  * @dir: flow direction
1183  * @prof_id: unique ID to identify this flow profile
1184  * @segs: array of one or more packet segments that describe the flow
1185  * @segs_cnt: number of packet segments provided
1186  * @acts: array of default actions
1187  * @acts_cnt: number of default actions
1188  * @prof: stores the returned flow profile added
1189  */
1190 enum ice_status
1191 ice_flow_add_prof(struct ice_hw *hw, enum ice_block blk, enum ice_flow_dir dir,
1192                   u64 prof_id, struct ice_flow_seg_info *segs, u8 segs_cnt,
1193                   struct ice_flow_action *acts, u8 acts_cnt,
1194                   struct ice_flow_prof **prof)
1195 {
1196         enum ice_status status;
1197
1198         if (segs_cnt > ICE_FLOW_SEG_MAX)
1199                 return ICE_ERR_MAX_LIMIT;
1200
1201         if (!segs_cnt)
1202                 return ICE_ERR_PARAM;
1203
1204         if (!segs)
1205                 return ICE_ERR_BAD_PTR;
1206
1207         status = ice_flow_val_hdrs(segs, segs_cnt);
1208         if (status)
1209                 return status;
1210
1211         ice_acquire_lock(&hw->fl_profs_locks[blk]);
1212
1213         status = ice_flow_add_prof_sync(hw, blk, dir, prof_id, segs, segs_cnt,
1214                                         acts, acts_cnt, prof);
1215         if (!status)
1216                 LIST_ADD(&(*prof)->l_entry, &hw->fl_profs[blk]);
1217
1218         ice_release_lock(&hw->fl_profs_locks[blk]);
1219
1220         return status;
1221 }
1222
1223 /**
1224  * ice_flow_rem_prof - Remove a flow profile and all entries associated with it
1225  * @hw: pointer to the HW struct
1226  * @blk: the block for which the flow profile is to be removed
1227  * @prof_id: unique ID of the flow profile to be removed
1228  */
1229 enum ice_status
1230 ice_flow_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id)
1231 {
1232         struct ice_flow_prof *prof;
1233         enum ice_status status;
1234
1235         ice_acquire_lock(&hw->fl_profs_locks[blk]);
1236
1237         prof = ice_flow_find_prof_id(hw, blk, prof_id);
1238         if (!prof) {
1239                 status = ICE_ERR_DOES_NOT_EXIST;
1240                 goto out;
1241         }
1242
1243         /* prof becomes invalid after the call */
1244         status = ice_flow_rem_prof_sync(hw, blk, prof);
1245
1246 out:
1247         ice_release_lock(&hw->fl_profs_locks[blk]);
1248
1249         return status;
1250 }
1251
1252 /**
1253  * ice_flow_get_hw_prof - return the HW profile for a specific profile ID handle
1254  * @hw: pointer to the HW struct
1255  * @blk: classification stage
1256  * @prof_id: the profile ID handle
1257  * @hw_prof_id: pointer to variable to receive the HW profile ID
1258  */
1259 enum ice_status
1260 ice_flow_get_hw_prof(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
1261                      u8 *hw_prof_id)
1262 {
1263         struct ice_prof_map *map;
1264
1265         map = ice_search_prof_id(hw, blk, prof_id);
1266         if (map) {
1267                 *hw_prof_id = map->prof_id;
1268                 return ICE_SUCCESS;
1269         }
1270
1271         return ICE_ERR_DOES_NOT_EXIST;
1272 }
1273
1274 /**
1275  * ice_flow_find_entry - look for a flow entry using its unique ID
1276  * @hw: pointer to the HW struct
1277  * @blk: classification stage
1278  * @entry_id: unique ID to identify this flow entry
1279  *
1280  * This function looks for the flow entry with the specified unique ID in all
1281  * flow profiles of the specified classification stage. If the entry is found,
1282  * and it returns the handle to the flow entry. Otherwise, it returns
1283  * ICE_FLOW_ENTRY_ID_INVAL.
1284  */
1285 u64 ice_flow_find_entry(struct ice_hw *hw, enum ice_block blk, u64 entry_id)
1286 {
1287         struct ice_flow_entry *found = NULL;
1288         struct ice_flow_prof *p;
1289
1290         ice_acquire_lock(&hw->fl_profs_locks[blk]);
1291
1292         LIST_FOR_EACH_ENTRY(p, &hw->fl_profs[blk], ice_flow_prof, l_entry) {
1293                 struct ice_flow_entry *e;
1294
1295                 ice_acquire_lock(&p->entries_lock);
1296                 LIST_FOR_EACH_ENTRY(e, &p->entries, ice_flow_entry, l_entry)
1297                         if (e->id == entry_id) {
1298                                 found = e;
1299                                 break;
1300                         }
1301                 ice_release_lock(&p->entries_lock);
1302
1303                 if (found)
1304                         break;
1305         }
1306
1307         ice_release_lock(&hw->fl_profs_locks[blk]);
1308
1309         return found ? ICE_FLOW_ENTRY_HNDL(found) : ICE_FLOW_ENTRY_HANDLE_INVAL;
1310 }
1311
1312 /**
1313  * ice_flow_add_entry - Add a flow entry
1314  * @hw: pointer to the HW struct
1315  * @blk: classification stage
1316  * @prof_id: ID of the profile to add a new flow entry to
1317  * @entry_id: unique ID to identify this flow entry
1318  * @vsi_handle: software VSI handle for the flow entry
1319  * @prio: priority of the flow entry
1320  * @data: pointer to a data buffer containing flow entry's match values/masks
1321  * @acts: arrays of actions to be performed on a match
1322  * @acts_cnt: number of actions
1323  * @entry_h: pointer to buffer that receives the new flow entry's handle
1324  */
1325 enum ice_status
1326 ice_flow_add_entry(struct ice_hw *hw, enum ice_block blk, u64 prof_id,
1327                    u64 entry_id, u16 vsi_handle, enum ice_flow_priority prio,
1328                    void *data, struct ice_flow_action *acts, u8 acts_cnt,
1329                    u64 *entry_h)
1330 {
1331         struct ice_flow_prof *prof = NULL;
1332         struct ice_flow_entry *e = NULL;
1333         enum ice_status status = ICE_SUCCESS;
1334
1335         if (acts_cnt && !acts)
1336                 return ICE_ERR_PARAM;
1337
1338         /* No flow entry data is expected for RSS */
1339         if (!entry_h || (!data && blk != ICE_BLK_RSS))
1340                 return ICE_ERR_BAD_PTR;
1341
1342         if (!ice_is_vsi_valid(hw, vsi_handle))
1343                 return ICE_ERR_PARAM;
1344
1345         ice_acquire_lock(&hw->fl_profs_locks[blk]);
1346
1347         prof = ice_flow_find_prof_id(hw, blk, prof_id);
1348         if (!prof) {
1349                 status = ICE_ERR_DOES_NOT_EXIST;
1350         } else {
1351                 /* Allocate memory for the entry being added and associate
1352                  * the VSI to the found flow profile
1353                  */
1354                 e = (struct ice_flow_entry *)ice_malloc(hw, sizeof(*e));
1355                 if (!e)
1356                         status = ICE_ERR_NO_MEMORY;
1357                 else
1358                         status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1359         }
1360
1361         ice_release_lock(&hw->fl_profs_locks[blk]);
1362         if (status)
1363                 goto out;
1364
1365         e->id = entry_id;
1366         e->vsi_handle = vsi_handle;
1367         e->prof = prof;
1368         e->priority = prio;
1369
1370         switch (blk) {
1371         case ICE_BLK_RSS:
1372                 /* RSS will add only one entry per VSI per profile */
1373                 break;
1374         case ICE_BLK_FD:
1375                 break;
1376         case ICE_BLK_SW:
1377         case ICE_BLK_PE:
1378         default:
1379                 status = ICE_ERR_NOT_IMPL;
1380                 goto out;
1381         }
1382
1383         ice_acquire_lock(&prof->entries_lock);
1384         LIST_ADD(&e->l_entry, &prof->entries);
1385         ice_release_lock(&prof->entries_lock);
1386
1387         *entry_h = ICE_FLOW_ENTRY_HNDL(e);
1388
1389 out:
1390         if (status && e) {
1391                 if (e->entry)
1392                         ice_free(hw, e->entry);
1393                 ice_free(hw, e);
1394         }
1395
1396         return status;
1397 }
1398
1399 /**
1400  * ice_flow_rem_entry - Remove a flow entry
1401  * @hw: pointer to the HW struct
1402  * @entry_h: handle to the flow entry to be removed
1403  */
1404 enum ice_status ice_flow_rem_entry(struct ice_hw *hw, u64 entry_h)
1405 {
1406         struct ice_flow_entry *entry;
1407         struct ice_flow_prof *prof;
1408         enum ice_status status;
1409
1410         if (entry_h == ICE_FLOW_ENTRY_HANDLE_INVAL)
1411                 return ICE_ERR_PARAM;
1412
1413         entry = ICE_FLOW_ENTRY_PTR((unsigned long)entry_h);
1414
1415         /* Retain the pointer to the flow profile as the entry will be freed */
1416         prof = entry->prof;
1417
1418         ice_acquire_lock(&prof->entries_lock);
1419         status = ice_flow_rem_entry_sync(hw, entry);
1420         ice_release_lock(&prof->entries_lock);
1421
1422         return status;
1423 }
1424
1425 /**
1426  * ice_flow_set_fld_ext - specifies locations of field from entry's input buffer
1427  * @seg: packet segment the field being set belongs to
1428  * @fld: field to be set
1429  * @type: type of the field
1430  * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1431  *           entry's input buffer
1432  * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1433  *            input buffer
1434  * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1435  *            entry's input buffer
1436  *
1437  * This helper function stores information of a field being matched, including
1438  * the type of the field and the locations of the value to match, the mask, and
1439  * and the upper-bound value in the start of the input buffer for a flow entry.
1440  * This function should only be used for fixed-size data structures.
1441  *
1442  * This function also opportunistically determines the protocol headers to be
1443  * present based on the fields being set. Some fields cannot be used alone to
1444  * determine the protocol headers present. Sometimes, fields for particular
1445  * protocol headers are not matched. In those cases, the protocol headers
1446  * must be explicitly set.
1447  */
1448 static void
1449 ice_flow_set_fld_ext(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1450                      enum ice_flow_fld_match_type type, u16 val_loc,
1451                      u16 mask_loc, u16 last_loc)
1452 {
1453         u64 bit = BIT_ULL(fld);
1454
1455         seg->match |= bit;
1456         if (type == ICE_FLOW_FLD_TYPE_RANGE)
1457                 seg->range |= bit;
1458
1459         seg->fields[fld].type = type;
1460         seg->fields[fld].src.val = val_loc;
1461         seg->fields[fld].src.mask = mask_loc;
1462         seg->fields[fld].src.last = last_loc;
1463
1464         ICE_FLOW_SET_HDRS(seg, ice_flds_info[fld].hdr);
1465 }
1466
1467 /**
1468  * ice_flow_set_fld - specifies locations of field from entry's input buffer
1469  * @seg: packet segment the field being set belongs to
1470  * @fld: field to be set
1471  * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1472  *           entry's input buffer
1473  * @mask_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of mask value from entry's
1474  *            input buffer
1475  * @last_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of last/upper value from
1476  *            entry's input buffer
1477  * @range: indicate if field being matched is to be in a range
1478  *
1479  * This function specifies the locations, in the form of byte offsets from the
1480  * start of the input buffer for a flow entry, from where the value to match,
1481  * the mask value, and upper value can be extracted. These locations are then
1482  * stored in the flow profile. When adding a flow entry associated with the
1483  * flow profile, these locations will be used to quickly extract the values and
1484  * create the content of a match entry. This function should only be used for
1485  * fixed-size data structures.
1486  */
1487 void
1488 ice_flow_set_fld(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1489                  u16 val_loc, u16 mask_loc, u16 last_loc, bool range)
1490 {
1491         enum ice_flow_fld_match_type t = range ?
1492                 ICE_FLOW_FLD_TYPE_RANGE : ICE_FLOW_FLD_TYPE_REG;
1493
1494         ice_flow_set_fld_ext(seg, fld, t, val_loc, mask_loc, last_loc);
1495 }
1496
1497 /**
1498  * ice_flow_set_fld_prefix - sets locations of prefix field from entry's buf
1499  * @seg: packet segment the field being set belongs to
1500  * @fld: field to be set
1501  * @val_loc: if not ICE_FLOW_FLD_OFF_INVAL, location of the value to match from
1502  *           entry's input buffer
1503  * @pref_loc: location of prefix value from entry's input buffer
1504  * @pref_sz: size of the location holding the prefix value
1505  *
1506  * This function specifies the locations, in the form of byte offsets from the
1507  * start of the input buffer for a flow entry, from where the value to match
1508  * and the IPv4 prefix value can be extracted. These locations are then stored
1509  * in the flow profile. When adding flow entries to the associated flow profile,
1510  * these locations can be used to quickly extract the values to create the
1511  * content of a match entry. This function should only be used for fixed-size
1512  * data structures.
1513  */
1514 void
1515 ice_flow_set_fld_prefix(struct ice_flow_seg_info *seg, enum ice_flow_field fld,
1516                         u16 val_loc, u16 pref_loc, u8 pref_sz)
1517 {
1518         /* For this type of field, the "mask" location is for the prefix value's
1519          * location and the "last" location is for the size of the location of
1520          * the prefix value.
1521          */
1522         ice_flow_set_fld_ext(seg, fld, ICE_FLOW_FLD_TYPE_PREFIX, val_loc,
1523                              pref_loc, (u16)pref_sz);
1524 }
1525
1526 /**
1527  * ice_flow_add_fld_raw - sets locations of a raw field from entry's input buf
1528  * @seg: packet segment the field being set belongs to
1529  * @off: offset of the raw field from the beginning of the segment in bytes
1530  * @len: length of the raw pattern to be matched
1531  * @val_loc: location of the value to match from entry's input buffer
1532  * @mask_loc: location of mask value from entry's input buffer
1533  *
1534  * This function specifies the offset of the raw field to be match from the
1535  * beginning of the specified packet segment, and the locations, in the form of
1536  * byte offsets from the start of the input buffer for a flow entry, from where
1537  * the value to match and the mask value to be extracted. These locations are
1538  * then stored in the flow profile. When adding flow entries to the associated
1539  * flow profile, these locations can be used to quickly extract the values to
1540  * create the content of a match entry. This function should only be used for
1541  * fixed-size data structures.
1542  */
1543 void
1544 ice_flow_add_fld_raw(struct ice_flow_seg_info *seg, u16 off, u8 len,
1545                      u16 val_loc, u16 mask_loc)
1546 {
1547         if (seg->raws_cnt < ICE_FLOW_SEG_RAW_FLD_MAX) {
1548                 seg->raws[seg->raws_cnt].off = off;
1549                 seg->raws[seg->raws_cnt].info.type = ICE_FLOW_FLD_TYPE_SIZE;
1550                 seg->raws[seg->raws_cnt].info.src.val = val_loc;
1551                 seg->raws[seg->raws_cnt].info.src.mask = mask_loc;
1552                 /* The "last" field is used to store the length of the field */
1553                 seg->raws[seg->raws_cnt].info.src.last = len;
1554         }
1555
1556         /* Overflows of "raws" will be handled as an error condition later in
1557          * the flow when this information is processed.
1558          */
1559         seg->raws_cnt++;
1560 }
1561
1562 #define ICE_FLOW_RSS_SEG_HDR_L3_MASKS \
1563         (ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6)
1564
1565 #define ICE_FLOW_RSS_SEG_HDR_L4_MASKS \
1566         (ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_UDP | \
1567          ICE_FLOW_SEG_HDR_SCTP)
1568
1569 #define ICE_FLOW_RSS_SEG_HDR_VAL_MASKS \
1570         (ICE_FLOW_RSS_SEG_HDR_L3_MASKS | \
1571          ICE_FLOW_RSS_SEG_HDR_L4_MASKS)
1572
1573 /**
1574  * ice_flow_set_rss_seg_info - setup packet segments for RSS
1575  * @segs: pointer to the flow field segment(s)
1576  * @hash_fields: fields to be hashed on for the segment(s)
1577  * @flow_hdr: protocol header fields within a packet segment
1578  *
1579  * Helper function to extract fields from hash bitmap and use flow
1580  * header value to set flow field segment for further use in flow
1581  * profile entry or removal.
1582  */
1583 static enum ice_status
1584 ice_flow_set_rss_seg_info(struct ice_flow_seg_info *segs, u64 hash_fields,
1585                           u32 flow_hdr)
1586 {
1587         u64 val = hash_fields;
1588         u8 i;
1589
1590         for (i = 0; val && i < ICE_FLOW_FIELD_IDX_MAX; i++) {
1591                 u64 bit = BIT_ULL(i);
1592
1593                 if (val & bit) {
1594                         ice_flow_set_fld(segs, (enum ice_flow_field)i,
1595                                          ICE_FLOW_FLD_OFF_INVAL,
1596                                          ICE_FLOW_FLD_OFF_INVAL,
1597                                          ICE_FLOW_FLD_OFF_INVAL, false);
1598                         val &= ~bit;
1599                 }
1600         }
1601         ICE_FLOW_SET_HDRS(segs, flow_hdr);
1602
1603         if (segs->hdrs & ~ICE_FLOW_RSS_SEG_HDR_VAL_MASKS)
1604                 return ICE_ERR_PARAM;
1605
1606         val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L3_MASKS);
1607         if (!ice_is_pow2(val))
1608                 return ICE_ERR_CFG;
1609
1610         val = (u64)(segs->hdrs & ICE_FLOW_RSS_SEG_HDR_L4_MASKS);
1611         if (val && !ice_is_pow2(val))
1612                 return ICE_ERR_CFG;
1613
1614         return ICE_SUCCESS;
1615 }
1616
1617 /**
1618  * ice_rem_vsi_rss_list - remove VSI from RSS list
1619  * @hw: pointer to the hardware structure
1620  * @vsi_handle: software VSI handle
1621  *
1622  * Remove the VSI from all RSS configurations in the list.
1623  */
1624 void ice_rem_vsi_rss_list(struct ice_hw *hw, u16 vsi_handle)
1625 {
1626         struct ice_rss_cfg *r, *tmp;
1627
1628         if (LIST_EMPTY(&hw->rss_list_head))
1629                 return;
1630
1631         ice_acquire_lock(&hw->rss_locks);
1632         LIST_FOR_EACH_ENTRY_SAFE(r, tmp, &hw->rss_list_head,
1633                                  ice_rss_cfg, l_entry) {
1634                 if (ice_is_bit_set(r->vsis, vsi_handle)) {
1635                         ice_clear_bit(vsi_handle, r->vsis);
1636
1637                         if (!ice_is_any_bit_set(r->vsis, ICE_MAX_VSI)) {
1638                                 LIST_DEL(&r->l_entry);
1639                                 ice_free(hw, r);
1640                         }
1641                 }
1642         }
1643         ice_release_lock(&hw->rss_locks);
1644 }
1645
1646 /**
1647  * ice_rem_vsi_rss_cfg - remove RSS configurations associated with VSI
1648  * @hw: pointer to the hardware structure
1649  * @vsi_handle: software VSI handle
1650  *
1651  * This function will iterate through all flow profiles and disassociate
1652  * the VSI from that profile. If the flow profile has no VSIs it will
1653  * be removed.
1654  */
1655 enum ice_status ice_rem_vsi_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
1656 {
1657         const enum ice_block blk = ICE_BLK_RSS;
1658         struct ice_flow_prof *p, *t;
1659         enum ice_status status = ICE_SUCCESS;
1660
1661         if (!ice_is_vsi_valid(hw, vsi_handle))
1662                 return ICE_ERR_PARAM;
1663
1664         if (LIST_EMPTY(&hw->fl_profs[blk]))
1665                 return ICE_SUCCESS;
1666
1667         ice_acquire_lock(&hw->fl_profs_locks[blk]);
1668         LIST_FOR_EACH_ENTRY_SAFE(p, t, &hw->fl_profs[blk], ice_flow_prof,
1669                                  l_entry) {
1670                 if (ice_is_bit_set(p->vsis, vsi_handle)) {
1671                         status = ice_flow_disassoc_prof(hw, blk, p, vsi_handle);
1672                         if (status)
1673                                 break;
1674
1675                         if (!ice_is_any_bit_set(p->vsis, ICE_MAX_VSI)) {
1676                                 status = ice_flow_rem_prof_sync(hw, blk, p);
1677                                 if (status)
1678                                         break;
1679                         }
1680                 }
1681         }
1682         ice_release_lock(&hw->fl_profs_locks[blk]);
1683
1684         return status;
1685 }
1686
1687 /**
1688  * ice_rem_rss_list - remove RSS configuration from list
1689  * @hw: pointer to the hardware structure
1690  * @vsi_handle: software VSI handle
1691  * @prof: pointer to flow profile
1692  *
1693  * Assumption: lock has already been acquired for RSS list
1694  */
1695 static void
1696 ice_rem_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1697 {
1698         struct ice_rss_cfg *r, *tmp;
1699
1700         /* Search for RSS hash fields associated to the VSI that match the
1701          * hash configurations associated to the flow profile. If found
1702          * remove from the RSS entry list of the VSI context and delete entry.
1703          */
1704         LIST_FOR_EACH_ENTRY_SAFE(r, tmp, &hw->rss_list_head,
1705                                  ice_rss_cfg, l_entry) {
1706                 if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
1707                     r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
1708                         ice_clear_bit(vsi_handle, r->vsis);
1709                         if (!ice_is_any_bit_set(r->vsis, ICE_MAX_VSI)) {
1710                                 LIST_DEL(&r->l_entry);
1711                                 ice_free(hw, r);
1712                         }
1713                         return;
1714                 }
1715         }
1716 }
1717
1718 /**
1719  * ice_add_rss_list - add RSS configuration to list
1720  * @hw: pointer to the hardware structure
1721  * @vsi_handle: software VSI handle
1722  * @prof: pointer to flow profile
1723  *
1724  * Assumption: lock has already been acquired for RSS list
1725  */
1726 static enum ice_status
1727 ice_add_rss_list(struct ice_hw *hw, u16 vsi_handle, struct ice_flow_prof *prof)
1728 {
1729         struct ice_rss_cfg *r, *rss_cfg;
1730
1731         LIST_FOR_EACH_ENTRY(r, &hw->rss_list_head,
1732                             ice_rss_cfg, l_entry)
1733                 if (r->hashed_flds == prof->segs[prof->segs_cnt - 1].match &&
1734                     r->packet_hdr == prof->segs[prof->segs_cnt - 1].hdrs) {
1735                         ice_set_bit(vsi_handle, r->vsis);
1736                         return ICE_SUCCESS;
1737                 }
1738
1739         rss_cfg = (struct ice_rss_cfg *)ice_malloc(hw, sizeof(*rss_cfg));
1740         if (!rss_cfg)
1741                 return ICE_ERR_NO_MEMORY;
1742
1743         rss_cfg->hashed_flds = prof->segs[prof->segs_cnt - 1].match;
1744         rss_cfg->packet_hdr = prof->segs[prof->segs_cnt - 1].hdrs;
1745         ice_set_bit(vsi_handle, rss_cfg->vsis);
1746
1747         LIST_ADD_TAIL(&rss_cfg->l_entry, &hw->rss_list_head);
1748
1749         return ICE_SUCCESS;
1750 }
1751
1752 #define ICE_FLOW_PROF_HASH_S    0
1753 #define ICE_FLOW_PROF_HASH_M    (0xFFFFFFFFULL << ICE_FLOW_PROF_HASH_S)
1754 #define ICE_FLOW_PROF_HDR_S     32
1755 #define ICE_FLOW_PROF_HDR_M     (0xFFFFFFFFULL << ICE_FLOW_PROF_HDR_S)
1756
1757 #define ICE_FLOW_GEN_PROFID(hash, hdr) \
1758         (u64)(((u64)(hash) & ICE_FLOW_PROF_HASH_M) | \
1759               (((u64)(hdr) << ICE_FLOW_PROF_HDR_S) & ICE_FLOW_PROF_HDR_M))
1760
1761 /**
1762  * ice_add_rss_cfg_sync - add an RSS configuration
1763  * @hw: pointer to the hardware structure
1764  * @vsi_handle: software VSI handle
1765  * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
1766  * @addl_hdrs: protocol header fields
1767  *
1768  * Assumption: lock has already been acquired for RSS list
1769  */
1770 static enum ice_status
1771 ice_add_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
1772                      u32 addl_hdrs)
1773 {
1774         const enum ice_block blk = ICE_BLK_RSS;
1775         struct ice_flow_prof *prof = NULL;
1776         struct ice_flow_seg_info *segs;
1777         enum ice_status status = ICE_SUCCESS;
1778
1779         segs = (struct ice_flow_seg_info *)ice_malloc(hw, sizeof(*segs));
1780         if (!segs)
1781                 return ICE_ERR_NO_MEMORY;
1782
1783         /* Construct the packet segment info from the hashed fields */
1784         status = ice_flow_set_rss_seg_info(segs, hashed_flds, addl_hdrs);
1785         if (status)
1786                 goto exit;
1787
1788         /* Search for a flow profile that has matching headers, hash fields
1789          * and has the input VSI associated to it. If found, no further
1790          * operations required and exit.
1791          */
1792         prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, 1,
1793                                         vsi_handle,
1794                                         ICE_FLOW_FIND_PROF_CHK_FLDS |
1795                                         ICE_FLOW_FIND_PROF_CHK_VSI);
1796         if (prof)
1797                 goto exit;
1798
1799         /* Check if a flow profile exists with the same protocol headers and
1800          * associated with the input VSI. If so disasscociate the VSI from
1801          * this profile. The VSI will be added to a new profile created with
1802          * the protocol header and new hash field configuration.
1803          */
1804         prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, 1,
1805                                         vsi_handle, ICE_FLOW_FIND_PROF_CHK_VSI);
1806         if (prof) {
1807                 status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
1808                 if (!status)
1809                         ice_rem_rss_list(hw, vsi_handle, prof);
1810                 else
1811                         goto exit;
1812
1813                 /* Remove profile if it has no VSIs associated */
1814                 if (!ice_is_any_bit_set(prof->vsis, ICE_MAX_VSI)) {
1815                         status = ice_flow_rem_prof_sync(hw, blk, prof);
1816                         if (status)
1817                                 goto exit;
1818                 }
1819         }
1820
1821         /* Search for a profile that has same match fields only. If this
1822          * exists then associate the VSI to this profile.
1823          */
1824         prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, 1,
1825                                         vsi_handle,
1826                                         ICE_FLOW_FIND_PROF_CHK_FLDS);
1827         if (prof) {
1828                 status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1829                 if (!status)
1830                         status = ice_add_rss_list(hw, vsi_handle, prof);
1831                 goto exit;
1832         }
1833
1834         /* Create a new flow profile with generated profile and packet
1835          * segment information.
1836          */
1837         status = ice_flow_add_prof(hw, blk, ICE_FLOW_RX,
1838                                    ICE_FLOW_GEN_PROFID(hashed_flds, segs->hdrs),
1839                                    segs, 1, NULL, 0, &prof);
1840         if (status)
1841                 goto exit;
1842
1843         status = ice_flow_assoc_prof(hw, blk, prof, vsi_handle);
1844         /* If association to a new flow profile failed then this profile can
1845          * be removed.
1846          */
1847         if (status) {
1848                 ice_flow_rem_prof_sync(hw, blk, prof);
1849                 goto exit;
1850         }
1851
1852         status = ice_add_rss_list(hw, vsi_handle, prof);
1853
1854 exit:
1855         ice_free(hw, segs);
1856         return status;
1857 }
1858
1859 /**
1860  * ice_add_rss_cfg - add an RSS configuration with specified hashed fields
1861  * @hw: pointer to the hardware structure
1862  * @vsi_handle: software VSI handle
1863  * @hashed_flds: hash bit fields (ICE_FLOW_HASH_*) to configure
1864  * @addl_hdrs: protocol header fields
1865  *
1866  * This function will generate a flow profile based on fields associated with
1867  * the input fields to hash on, the flow type and use the VSI number to add
1868  * a flow entry to the profile.
1869  */
1870 enum ice_status
1871 ice_add_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
1872                 u32 addl_hdrs)
1873 {
1874         enum ice_status status;
1875
1876         if (hashed_flds == ICE_HASH_INVALID ||
1877             !ice_is_vsi_valid(hw, vsi_handle))
1878                 return ICE_ERR_PARAM;
1879
1880         ice_acquire_lock(&hw->rss_locks);
1881         status = ice_add_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs);
1882         ice_release_lock(&hw->rss_locks);
1883
1884         return status;
1885 }
1886
1887 /**
1888  * ice_rem_rss_cfg_sync - remove an existing RSS configuration
1889  * @hw: pointer to the hardware structure
1890  * @vsi_handle: software VSI handle
1891  * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
1892  * @addl_hdrs: Protocol header fields within a packet segment
1893  *
1894  * Assumption: lock has already been acquired for RSS list
1895  */
1896 static enum ice_status
1897 ice_rem_rss_cfg_sync(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
1898                      u32 addl_hdrs)
1899 {
1900         const enum ice_block blk = ICE_BLK_RSS;
1901         struct ice_flow_seg_info *segs;
1902         struct ice_flow_prof *prof;
1903         enum ice_status status;
1904
1905         segs = (struct ice_flow_seg_info *)ice_malloc(hw, sizeof(*segs));
1906         if (!segs)
1907                 return ICE_ERR_NO_MEMORY;
1908
1909         /* Construct the packet segment info from the hashed fields */
1910         status = ice_flow_set_rss_seg_info(segs, hashed_flds, addl_hdrs);
1911         if (status)
1912                 goto out;
1913
1914         prof = ice_flow_find_prof_conds(hw, blk, ICE_FLOW_RX, segs, 1,
1915                                         vsi_handle,
1916                                         ICE_FLOW_FIND_PROF_CHK_FLDS);
1917         if (!prof) {
1918                 status = ICE_ERR_DOES_NOT_EXIST;
1919                 goto out;
1920         }
1921
1922         status = ice_flow_disassoc_prof(hw, blk, prof, vsi_handle);
1923         if (status)
1924                 goto out;
1925
1926         /* Remove RSS configuration from VSI context before deleting
1927          * the flow profile.
1928          */
1929         ice_rem_rss_list(hw, vsi_handle, prof);
1930
1931         if (!ice_is_any_bit_set(prof->vsis, ICE_MAX_VSI))
1932                 status = ice_flow_rem_prof_sync(hw, blk, prof);
1933
1934 out:
1935         ice_free(hw, segs);
1936         return status;
1937 }
1938
1939 /* Mapping of AVF hash bit fields to an L3-L4 hash combination.
1940  * As the ice_flow_avf_hdr_field represent individual bit shifts in a hash,
1941  * convert its values to their appropriate flow L3, L4 values.
1942  */
1943 #define ICE_FLOW_AVF_RSS_IPV4_MASKS \
1944         (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_OTHER) | \
1945          BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV4))
1946 #define ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS \
1947         (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP_SYN_NO_ACK) | \
1948          BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_TCP))
1949 #define ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS \
1950         (BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV4_UDP) | \
1951          BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV4_UDP) | \
1952          BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_UDP))
1953 #define ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS \
1954         (ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS | \
1955          ICE_FLOW_AVF_RSS_IPV4_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP))
1956
1957 #define ICE_FLOW_AVF_RSS_IPV6_MASKS \
1958         (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_OTHER) | \
1959          BIT_ULL(ICE_AVF_FLOW_FIELD_FRAG_IPV6))
1960 #define ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS \
1961         (BIT_ULL(ICE_AVF_FLOW_FIELD_UNICAST_IPV6_UDP) | \
1962          BIT_ULL(ICE_AVF_FLOW_FIELD_MULTICAST_IPV6_UDP) | \
1963          BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_UDP))
1964 #define ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS \
1965         (BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP_SYN_NO_ACK) | \
1966          BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_TCP))
1967 #define ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS \
1968         (ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS | ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS | \
1969          ICE_FLOW_AVF_RSS_IPV6_MASKS | BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP))
1970
1971 #define ICE_FLOW_MAX_CFG        10
1972
1973 /**
1974  * ice_add_avf_rss_cfg - add an RSS configuration for AVF driver
1975  * @hw: pointer to the hardware structure
1976  * @vsi_handle: software VSI handle
1977  * @avf_hash: hash bit fields (ICE_AVF_FLOW_FIELD_*) to configure
1978  *
1979  * This function will take the hash bitmap provided by the AVF driver via a
1980  * message, convert it to ICE-compatible values, and configure RSS flow
1981  * profiles.
1982  */
1983 enum ice_status
1984 ice_add_avf_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 avf_hash)
1985 {
1986         enum ice_status status = ICE_SUCCESS;
1987         u64 hash_flds;
1988
1989         if (avf_hash == ICE_AVF_FLOW_FIELD_INVALID ||
1990             !ice_is_vsi_valid(hw, vsi_handle))
1991                 return ICE_ERR_PARAM;
1992
1993         /* Make sure no unsupported bits are specified */
1994         if (avf_hash & ~(ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS |
1995                          ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS))
1996                 return ICE_ERR_CFG;
1997
1998         hash_flds = avf_hash;
1999
2000         /* Always create an L3 RSS configuration for any L4 RSS configuration */
2001         if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS)
2002                 hash_flds |= ICE_FLOW_AVF_RSS_IPV4_MASKS;
2003
2004         if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS)
2005                 hash_flds |= ICE_FLOW_AVF_RSS_IPV6_MASKS;
2006
2007         /* Create the corresponding RSS configuration for each valid hash bit */
2008         while (hash_flds) {
2009                 u64 rss_hash = ICE_HASH_INVALID;
2010
2011                 if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV4_MASKS) {
2012                         if (hash_flds & ICE_FLOW_AVF_RSS_IPV4_MASKS) {
2013                                 rss_hash = ICE_FLOW_HASH_IPV4;
2014                                 hash_flds &= ~ICE_FLOW_AVF_RSS_IPV4_MASKS;
2015                         } else if (hash_flds &
2016                                    ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS) {
2017                                 rss_hash = ICE_FLOW_HASH_IPV4 |
2018                                         ICE_FLOW_HASH_TCP_PORT;
2019                                 hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV4_MASKS;
2020                         } else if (hash_flds &
2021                                    ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS) {
2022                                 rss_hash = ICE_FLOW_HASH_IPV4 |
2023                                         ICE_FLOW_HASH_UDP_PORT;
2024                                 hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV4_MASKS;
2025                         } else if (hash_flds &
2026                                    BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP)) {
2027                                 rss_hash = ICE_FLOW_HASH_IPV4 |
2028                                         ICE_FLOW_HASH_SCTP_PORT;
2029                                 hash_flds &=
2030                                         ~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV4_SCTP);
2031                         }
2032                 } else if (hash_flds & ICE_FLOW_AVF_RSS_ALL_IPV6_MASKS) {
2033                         if (hash_flds & ICE_FLOW_AVF_RSS_IPV6_MASKS) {
2034                                 rss_hash = ICE_FLOW_HASH_IPV6;
2035                                 hash_flds &= ~ICE_FLOW_AVF_RSS_IPV6_MASKS;
2036                         } else if (hash_flds &
2037                                    ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS) {
2038                                 rss_hash = ICE_FLOW_HASH_IPV6 |
2039                                         ICE_FLOW_HASH_TCP_PORT;
2040                                 hash_flds &= ~ICE_FLOW_AVF_RSS_TCP_IPV6_MASKS;
2041                         } else if (hash_flds &
2042                                    ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS) {
2043                                 rss_hash = ICE_FLOW_HASH_IPV6 |
2044                                         ICE_FLOW_HASH_UDP_PORT;
2045                                 hash_flds &= ~ICE_FLOW_AVF_RSS_UDP_IPV6_MASKS;
2046                         } else if (hash_flds &
2047                                    BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP)) {
2048                                 rss_hash = ICE_FLOW_HASH_IPV6 |
2049                                         ICE_FLOW_HASH_SCTP_PORT;
2050                                 hash_flds &=
2051                                         ~BIT_ULL(ICE_AVF_FLOW_FIELD_IPV6_SCTP);
2052                         }
2053                 }
2054
2055                 if (rss_hash == ICE_HASH_INVALID)
2056                         return ICE_ERR_OUT_OF_RANGE;
2057
2058                 status = ice_add_rss_cfg(hw, vsi_handle, rss_hash,
2059                                          ICE_FLOW_SEG_HDR_NONE);
2060                 if (status)
2061                         break;
2062         }
2063
2064         return status;
2065 }
2066
2067 /**
2068  * ice_rem_rss_cfg - remove an existing RSS config with matching hashed fields
2069  * @hw: pointer to the hardware structure
2070  * @vsi_handle: software VSI handle
2071  * @hashed_flds: Packet hash types (ICE_FLOW_HASH_*) to remove
2072  * @addl_hdrs: Protocol header fields within a packet segment
2073  *
2074  * This function will lookup the flow profile based on the input
2075  * hash field bitmap, iterate through the profile entry list of
2076  * that profile and find entry associated with input VSI to be
2077  * removed. Calls are made to underlying flow apis which will in
2078  * turn build or update buffers for RSS XLT1 section.
2079  */
2080 enum ice_status
2081 ice_rem_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u64 hashed_flds,
2082                 u32 addl_hdrs)
2083 {
2084         enum ice_status status;
2085
2086         if (hashed_flds == ICE_HASH_INVALID ||
2087             !ice_is_vsi_valid(hw, vsi_handle))
2088                 return ICE_ERR_PARAM;
2089
2090         ice_acquire_lock(&hw->rss_locks);
2091         status = ice_rem_rss_cfg_sync(hw, vsi_handle, hashed_flds, addl_hdrs);
2092         ice_release_lock(&hw->rss_locks);
2093
2094         return status;
2095 }
2096
2097 /**
2098  * ice_replay_rss_cfg - replay RSS configurations associated with VSI
2099  * @hw: pointer to the hardware structure
2100  * @vsi_handle: software VSI handle
2101  */
2102 enum ice_status ice_replay_rss_cfg(struct ice_hw *hw, u16 vsi_handle)
2103 {
2104         enum ice_status status = ICE_SUCCESS;
2105         struct ice_rss_cfg *r;
2106
2107         if (!ice_is_vsi_valid(hw, vsi_handle))
2108                 return ICE_ERR_PARAM;
2109
2110         ice_acquire_lock(&hw->rss_locks);
2111         LIST_FOR_EACH_ENTRY(r, &hw->rss_list_head,
2112                             ice_rss_cfg, l_entry) {
2113                 if (ice_is_bit_set(r->vsis, vsi_handle)) {
2114                         status = ice_add_rss_cfg_sync(hw, vsi_handle,
2115                                                       r->hashed_flds,
2116                                                       r->packet_hdr);
2117                         if (status)
2118                                 break;
2119                 }
2120         }
2121         ice_release_lock(&hw->rss_locks);
2122
2123         return status;
2124 }
2125
2126 /**
2127  * ice_get_rss_cfg - returns hashed fields for the given header types
2128  * @hw: pointer to the hardware structure
2129  * @vsi_handle: software VSI handle
2130  * @hdrs: protocol header type
2131  *
2132  * This function will return the match fields of the first instance of flow
2133  * profile having the given header types and containing input VSI
2134  */
2135 u64 ice_get_rss_cfg(struct ice_hw *hw, u16 vsi_handle, u32 hdrs)
2136 {
2137         struct ice_rss_cfg *r, *rss_cfg = NULL;
2138
2139         /* verify if the protocol header is non zero and VSI is valid */
2140         if (hdrs == ICE_FLOW_SEG_HDR_NONE || !ice_is_vsi_valid(hw, vsi_handle))
2141                 return ICE_HASH_INVALID;
2142
2143         ice_acquire_lock(&hw->rss_locks);
2144         LIST_FOR_EACH_ENTRY(r, &hw->rss_list_head,
2145                             ice_rss_cfg, l_entry)
2146                 if (ice_is_bit_set(r->vsis, vsi_handle) &&
2147                     r->packet_hdr == hdrs) {
2148                         rss_cfg = r;
2149                         break;
2150                 }
2151         ice_release_lock(&hw->rss_locks);
2152
2153         return rss_cfg ? rss_cfg->hashed_flds : ICE_HASH_INVALID;
2154 }