net/ice/base: protect list add with lock
[dpdk.git] / drivers / net / ice / base / ice_switch.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2019
3  */
4
5 #include "ice_switch.h"
6 #include "ice_flex_type.h"
7 #include "ice_flow.h"
8
9
10 #define ICE_ETH_DA_OFFSET               0
11 #define ICE_ETH_ETHTYPE_OFFSET          12
12 #define ICE_ETH_VLAN_TCI_OFFSET         14
13 #define ICE_MAX_VLAN_ID                 0xFFF
14
15 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem
16  * struct to configure any switch filter rules.
17  * {DA (6 bytes), SA(6 bytes),
18  * Ether type (2 bytes for header without VLAN tag) OR
19  * VLAN tag (4 bytes for header with VLAN tag) }
20  *
21  * Word on Hardcoded values
22  * byte 0 = 0x2: to identify it as locally administered DA MAC
23  * byte 6 = 0x2: to identify it as locally administered SA MAC
24  * byte 12 = 0x81 & byte 13 = 0x00:
25  *      In case of VLAN filter first two bytes defines ether type (0x8100)
26  *      and remaining two bytes are placeholder for programming a given VLAN ID
27  *      In case of Ether type filter it is treated as header without VLAN tag
28  *      and byte 12 and 13 is used to program a given Ether type instead
29  */
30 #define DUMMY_ETH_HDR_LEN               16
31 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0,
32                                                         0x2, 0, 0, 0, 0, 0,
33                                                         0x81, 0, 0, 0};
34
35 #define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE \
36         (sizeof(struct ice_aqc_sw_rules_elem) - \
37          sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
38          sizeof(struct ice_sw_rule_lkup_rx_tx) + DUMMY_ETH_HDR_LEN - 1)
39 #define ICE_SW_RULE_RX_TX_NO_HDR_SIZE \
40         (sizeof(struct ice_aqc_sw_rules_elem) - \
41          sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
42          sizeof(struct ice_sw_rule_lkup_rx_tx) - 1)
43 #define ICE_SW_RULE_LG_ACT_SIZE(n) \
44         (sizeof(struct ice_aqc_sw_rules_elem) - \
45          sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
46          sizeof(struct ice_sw_rule_lg_act) - \
47          sizeof(((struct ice_sw_rule_lg_act *)0)->act) + \
48          ((n) * sizeof(((struct ice_sw_rule_lg_act *)0)->act)))
49 #define ICE_SW_RULE_VSI_LIST_SIZE(n) \
50         (sizeof(struct ice_aqc_sw_rules_elem) - \
51          sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \
52          sizeof(struct ice_sw_rule_vsi_list) - \
53          sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi) + \
54          ((n) * sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi)))
55
56 static const
57 u8 dummy_gre_packet[] = { 0, 0, 0, 0,           /* Ether starts */
58                           0, 0, 0, 0,
59                           0, 0, 0, 0,
60                           0x08, 0,              /* Ether ends */
61                           0x45, 0, 0, 0x3E,     /* IP starts */
62                           0, 0, 0, 0,
63                           0, 0x2F, 0, 0,
64                           0, 0, 0, 0,
65                           0, 0, 0, 0,           /* IP ends */
66                           0x80, 0, 0x65, 0x58,  /* GRE starts */
67                           0, 0, 0, 0,           /* GRE ends */
68                           0, 0, 0, 0,           /* Ether starts */
69                           0, 0, 0, 0,
70                           0, 0, 0, 0,
71                           0x08, 0,              /* Ether ends */
72                           0x45, 0, 0, 0x14,     /* IP starts */
73                           0, 0, 0, 0,
74                           0, 0, 0, 0,
75                           0, 0, 0, 0,
76                           0, 0, 0, 0            /* IP ends */
77                         };
78
79 static const u8
80 dummy_udp_tun_packet[] = {0, 0, 0, 0,           /* Ether starts */
81                           0, 0, 0, 0,
82                           0, 0, 0, 0,
83                           0x08, 0,              /* Ether ends */
84                           0x45, 0, 0, 0x32,     /* IP starts */
85                           0, 0, 0, 0,
86                           0, 0x11, 0, 0,
87                           0, 0, 0, 0,
88                           0, 0, 0, 0,           /* IP ends */
89                           0, 0, 0x12, 0xB5,     /* UDP start*/
90                           0, 0x1E, 0, 0,        /* UDP end*/
91                           0, 0, 0, 0,           /* VXLAN start */
92                           0, 0, 0, 0,           /* VXLAN end*/
93                           0, 0, 0, 0,           /* Ether starts */
94                           0, 0, 0, 0,
95                           0, 0, 0, 0,
96                           0, 0                  /* Ether ends */
97                         };
98
99 static const u8
100 dummy_tcp_tun_packet[] = {0, 0, 0, 0,           /* Ether starts */
101                           0, 0, 0, 0,
102                           0, 0, 0, 0,
103                           0x08, 0,              /* Ether ends */
104                           0x45, 0, 0, 0x28,     /* IP starts */
105                           0, 0x01, 0, 0,
106                           0x40, 0x06, 0xF5, 0x69,
107                           0, 0, 0, 0,
108                           0, 0, 0, 0,   /* IP ends */
109                           0, 0, 0, 0,
110                           0, 0, 0, 0,
111                           0, 0, 0, 0,
112                           0x50, 0x02, 0x20,
113                           0, 0x9, 0x79, 0, 0,
114                           0, 0 /* 2 bytes padding for 4 byte alignment*/
115                         };
116
117 /* this is a recipe to profile bitmap association */
118 static ice_declare_bitmap(recipe_to_profile[ICE_MAX_NUM_RECIPES],
119                           ICE_MAX_NUM_PROFILES);
120 static ice_declare_bitmap(available_result_ids, ICE_CHAIN_FV_INDEX_START + 1);
121
122 /**
123  * ice_get_recp_frm_fw - update SW bookkeeping from FW recipe entries
124  * @hw: pointer to hardware structure
125  * @recps: struct that we need to populate
126  * @rid: recipe ID that we are populating
127  *
128  * This function is used to populate all the necessary entries into our
129  * bookkeeping so that we have a current list of all the recipes that are
130  * programmed in the firmware.
131  */
132 static enum ice_status
133 ice_get_recp_frm_fw(struct ice_hw *hw, struct ice_sw_recipe *recps, u8 rid)
134 {
135         u16 i, sub_recps, fv_word_idx = 0, result_idx = 0;
136         ice_declare_bitmap(r_bitmap, ICE_MAX_NUM_PROFILES);
137         u16 result_idxs[ICE_MAX_CHAIN_RECIPE] = { 0 };
138         struct ice_aqc_recipe_data_elem *tmp;
139         u16 num_recps = ICE_MAX_NUM_RECIPES;
140         struct ice_prot_lkup_ext *lkup_exts;
141         enum ice_status status;
142
143         /* we need a buffer big enough to accommodate all the recipes */
144         tmp = (struct ice_aqc_recipe_data_elem *)ice_calloc(hw,
145                 ICE_MAX_NUM_RECIPES, sizeof(*tmp));
146         if (!tmp)
147                 return ICE_ERR_NO_MEMORY;
148
149         tmp[0].recipe_indx = rid;
150         status = ice_aq_get_recipe(hw, tmp, &num_recps, rid, NULL);
151         /* non-zero status meaning recipe doesn't exist */
152         if (status)
153                 goto err_unroll;
154         lkup_exts = &recps[rid].lkup_exts;
155         /* start populating all the entries for recps[rid] based on lkups from
156          * firmware
157          */
158         for (sub_recps = 0; sub_recps < num_recps; sub_recps++) {
159                 struct ice_aqc_recipe_data_elem root_bufs = tmp[sub_recps];
160                 struct ice_recp_grp_entry *rg_entry;
161                 u8 prof_id, prot = 0;
162                 u16 off = 0;
163
164                 rg_entry = (struct ice_recp_grp_entry *)
165                         ice_malloc(hw, sizeof(*rg_entry));
166                 if (!rg_entry) {
167                         status = ICE_ERR_NO_MEMORY;
168                         goto err_unroll;
169                 }
170                 /* Avoid 8th bit since its result enable bit */
171                 result_idxs[result_idx] = root_bufs.content.result_indx &
172                         ~ICE_AQ_RECIPE_RESULT_EN;
173                 /* Check if result enable bit is set */
174                 if (root_bufs.content.result_indx & ICE_AQ_RECIPE_RESULT_EN)
175                         ice_clear_bit(ICE_CHAIN_FV_INDEX_START -
176                                       result_idxs[result_idx++],
177                                       available_result_ids);
178                 ice_memcpy(r_bitmap,
179                            recipe_to_profile[tmp[sub_recps].recipe_indx],
180                            sizeof(r_bitmap), ICE_NONDMA_TO_NONDMA);
181                 /* get the first profile that is associated with rid */
182                 prof_id = ice_find_first_bit(r_bitmap, ICE_MAX_NUM_PROFILES);
183                 for (i = 0; i < ICE_NUM_WORDS_RECIPE; i++) {
184                         u8 lkup_indx = root_bufs.content.lkup_indx[i + 1];
185
186                         rg_entry->fv_idx[i] = lkup_indx;
187                         /* If the recipe is a chained recipe then all its
188                          * child recipe's result will have a result index.
189                          * To fill fv_words we should not use those result
190                          * index, we only need the protocol ids and offsets.
191                          * We will skip all the fv_idx which stores result
192                          * index in them. We also need to skip any fv_idx which
193                          * has ICE_AQ_RECIPE_LKUP_IGNORE or 0 since it isn't a
194                          * valid offset value.
195                          */
196                         if (result_idxs[0] == rg_entry->fv_idx[i] ||
197                             result_idxs[1] == rg_entry->fv_idx[i] ||
198                             result_idxs[2] == rg_entry->fv_idx[i] ||
199                             result_idxs[3] == rg_entry->fv_idx[i] ||
200                             result_idxs[4] == rg_entry->fv_idx[i] ||
201                             rg_entry->fv_idx[i] == ICE_AQ_RECIPE_LKUP_IGNORE ||
202                             rg_entry->fv_idx[i] == 0)
203                                 continue;
204
205                         ice_find_prot_off(hw, ICE_BLK_SW, prof_id,
206                                           rg_entry->fv_idx[i], &prot, &off);
207                         lkup_exts->fv_words[fv_word_idx].prot_id = prot;
208                         lkup_exts->fv_words[fv_word_idx].off = off;
209                         fv_word_idx++;
210                 }
211                 /* populate rg_list with the data from the child entry of this
212                  * recipe
213                  */
214                 LIST_ADD(&rg_entry->l_entry, &recps[rid].rg_list);
215         }
216         lkup_exts->n_val_words = fv_word_idx;
217         recps[rid].n_grp_count = num_recps;
218         recps[rid].root_buf = (struct ice_aqc_recipe_data_elem *)
219                 ice_calloc(hw, recps[rid].n_grp_count,
220                            sizeof(struct ice_aqc_recipe_data_elem));
221         if (!recps[rid].root_buf)
222                 goto err_unroll;
223
224         ice_memcpy(recps[rid].root_buf, tmp, recps[rid].n_grp_count *
225                    sizeof(*recps[rid].root_buf), ICE_NONDMA_TO_NONDMA);
226         recps[rid].recp_created = true;
227         if (tmp[sub_recps].content.rid & ICE_AQ_RECIPE_ID_IS_ROOT)
228                 recps[rid].root_rid = rid;
229 err_unroll:
230         ice_free(hw, tmp);
231         return status;
232 }
233
234 /**
235  * ice_get_recp_to_prof_map - updates recipe to profile mapping
236  * @hw: pointer to hardware structure
237  *
238  * This function is used to populate recipe_to_profile matrix where index to
239  * this array is the recipe ID and the element is the mapping of which profiles
240  * is this recipe mapped to.
241  */
242 static void
243 ice_get_recp_to_prof_map(struct ice_hw *hw)
244 {
245         ice_declare_bitmap(r_bitmap, ICE_MAX_NUM_RECIPES);
246         u16 i;
247
248         for (i = 0; i < ICE_MAX_NUM_PROFILES; i++) {
249                 u16 j;
250
251                 ice_zero_bitmap(r_bitmap, ICE_MAX_NUM_RECIPES);
252                 if (ice_aq_get_recipe_to_profile(hw, i, (u8 *)r_bitmap, NULL))
253                         continue;
254
255                 for (j = 0; j < ICE_MAX_NUM_RECIPES; j++)
256                         if (ice_is_bit_set(r_bitmap, j))
257                                 ice_set_bit(i, recipe_to_profile[j]);
258         }
259 }
260
261 /**
262  * ice_init_def_sw_recp - initialize the recipe book keeping tables
263  * @hw: pointer to the HW struct
264  *
265  * Allocate memory for the entire recipe table and initialize the structures/
266  * entries corresponding to basic recipes.
267  */
268 enum ice_status ice_init_def_sw_recp(struct ice_hw *hw)
269 {
270         struct ice_sw_recipe *recps;
271         u8 i;
272
273         recps = (struct ice_sw_recipe *)
274                 ice_calloc(hw, ICE_MAX_NUM_RECIPES, sizeof(*recps));
275         if (!recps)
276                 return ICE_ERR_NO_MEMORY;
277
278         for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
279                 recps[i].root_rid = i;
280                 INIT_LIST_HEAD(&recps[i].filt_rules);
281                 INIT_LIST_HEAD(&recps[i].filt_replay_rules);
282                 INIT_LIST_HEAD(&recps[i].rg_list);
283                 ice_init_lock(&recps[i].filt_rule_lock);
284         }
285
286         hw->switch_info->recp_list = recps;
287
288         return ICE_SUCCESS;
289 }
290
291 /**
292  * ice_aq_get_sw_cfg - get switch configuration
293  * @hw: pointer to the hardware structure
294  * @buf: pointer to the result buffer
295  * @buf_size: length of the buffer available for response
296  * @req_desc: pointer to requested descriptor
297  * @num_elems: pointer to number of elements
298  * @cd: pointer to command details structure or NULL
299  *
300  * Get switch configuration (0x0200) to be placed in 'buff'.
301  * This admin command returns information such as initial VSI/port number
302  * and switch ID it belongs to.
303  *
304  * NOTE: *req_desc is both an input/output parameter.
305  * The caller of this function first calls this function with *request_desc set
306  * to 0. If the response from f/w has *req_desc set to 0, all the switch
307  * configuration information has been returned; if non-zero (meaning not all
308  * the information was returned), the caller should call this function again
309  * with *req_desc set to the previous value returned by f/w to get the
310  * next block of switch configuration information.
311  *
312  * *num_elems is output only parameter. This reflects the number of elements
313  * in response buffer. The caller of this function to use *num_elems while
314  * parsing the response buffer.
315  */
316 static enum ice_status
317 ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp *buf,
318                   u16 buf_size, u16 *req_desc, u16 *num_elems,
319                   struct ice_sq_cd *cd)
320 {
321         struct ice_aqc_get_sw_cfg *cmd;
322         enum ice_status status;
323         struct ice_aq_desc desc;
324
325         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg);
326         cmd = &desc.params.get_sw_conf;
327         cmd->element = CPU_TO_LE16(*req_desc);
328
329         status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
330         if (!status) {
331                 *req_desc = LE16_TO_CPU(cmd->element);
332                 *num_elems = LE16_TO_CPU(cmd->num_elems);
333         }
334
335         return status;
336 }
337
338
339 /**
340  * ice_alloc_sw - allocate resources specific to switch
341  * @hw: pointer to the HW struct
342  * @ena_stats: true to turn on VEB stats
343  * @shared_res: true for shared resource, false for dedicated resource
344  * @sw_id: switch ID returned
345  * @counter_id: VEB counter ID returned
346  *
347  * allocates switch resources (SWID and VEB counter) (0x0208)
348  */
349 enum ice_status
350 ice_alloc_sw(struct ice_hw *hw, bool ena_stats, bool shared_res, u16 *sw_id,
351              u16 *counter_id)
352 {
353         struct ice_aqc_alloc_free_res_elem *sw_buf;
354         struct ice_aqc_res_elem *sw_ele;
355         enum ice_status status;
356         u16 buf_len;
357
358         buf_len = sizeof(*sw_buf);
359         sw_buf = (struct ice_aqc_alloc_free_res_elem *)
360                    ice_malloc(hw, buf_len);
361         if (!sw_buf)
362                 return ICE_ERR_NO_MEMORY;
363
364         /* Prepare buffer for switch ID.
365          * The number of resource entries in buffer is passed as 1 since only a
366          * single switch/VEB instance is allocated, and hence a single sw_id
367          * is requested.
368          */
369         sw_buf->num_elems = CPU_TO_LE16(1);
370         sw_buf->res_type =
371                 CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID |
372                             (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED :
373                             ICE_AQC_RES_TYPE_FLAG_DEDICATED));
374
375         status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
376                                        ice_aqc_opc_alloc_res, NULL);
377
378         if (status)
379                 goto ice_alloc_sw_exit;
380
381         sw_ele = &sw_buf->elem[0];
382         *sw_id = LE16_TO_CPU(sw_ele->e.sw_resp);
383
384         if (ena_stats) {
385                 /* Prepare buffer for VEB Counter */
386                 enum ice_adminq_opc opc = ice_aqc_opc_alloc_res;
387                 struct ice_aqc_alloc_free_res_elem *counter_buf;
388                 struct ice_aqc_res_elem *counter_ele;
389
390                 counter_buf = (struct ice_aqc_alloc_free_res_elem *)
391                                 ice_malloc(hw, buf_len);
392                 if (!counter_buf) {
393                         status = ICE_ERR_NO_MEMORY;
394                         goto ice_alloc_sw_exit;
395                 }
396
397                 /* The number of resource entries in buffer is passed as 1 since
398                  * only a single switch/VEB instance is allocated, and hence a
399                  * single VEB counter is requested.
400                  */
401                 counter_buf->num_elems = CPU_TO_LE16(1);
402                 counter_buf->res_type =
403                         CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER |
404                                     ICE_AQC_RES_TYPE_FLAG_DEDICATED);
405                 status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
406                                                opc, NULL);
407
408                 if (status) {
409                         ice_free(hw, counter_buf);
410                         goto ice_alloc_sw_exit;
411                 }
412                 counter_ele = &counter_buf->elem[0];
413                 *counter_id = LE16_TO_CPU(counter_ele->e.sw_resp);
414                 ice_free(hw, counter_buf);
415         }
416
417 ice_alloc_sw_exit:
418         ice_free(hw, sw_buf);
419         return status;
420 }
421
422 /**
423  * ice_free_sw - free resources specific to switch
424  * @hw: pointer to the HW struct
425  * @sw_id: switch ID returned
426  * @counter_id: VEB counter ID returned
427  *
428  * free switch resources (SWID and VEB counter) (0x0209)
429  *
430  * NOTE: This function frees multiple resources. It continues
431  * releasing other resources even after it encounters error.
432  * The error code returned is the last error it encountered.
433  */
434 enum ice_status ice_free_sw(struct ice_hw *hw, u16 sw_id, u16 counter_id)
435 {
436         struct ice_aqc_alloc_free_res_elem *sw_buf, *counter_buf;
437         enum ice_status status, ret_status;
438         u16 buf_len;
439
440         buf_len = sizeof(*sw_buf);
441         sw_buf = (struct ice_aqc_alloc_free_res_elem *)
442                    ice_malloc(hw, buf_len);
443         if (!sw_buf)
444                 return ICE_ERR_NO_MEMORY;
445
446         /* Prepare buffer to free for switch ID res.
447          * The number of resource entries in buffer is passed as 1 since only a
448          * single switch/VEB instance is freed, and hence a single sw_id
449          * is released.
450          */
451         sw_buf->num_elems = CPU_TO_LE16(1);
452         sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID);
453         sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(sw_id);
454
455         ret_status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
456                                            ice_aqc_opc_free_res, NULL);
457
458         if (ret_status)
459                 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
460
461         /* Prepare buffer to free for VEB Counter resource */
462         counter_buf = (struct ice_aqc_alloc_free_res_elem *)
463                         ice_malloc(hw, buf_len);
464         if (!counter_buf) {
465                 ice_free(hw, sw_buf);
466                 return ICE_ERR_NO_MEMORY;
467         }
468
469         /* The number of resource entries in buffer is passed as 1 since only a
470          * single switch/VEB instance is freed, and hence a single VEB counter
471          * is released
472          */
473         counter_buf->num_elems = CPU_TO_LE16(1);
474         counter_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER);
475         counter_buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
476
477         status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len,
478                                        ice_aqc_opc_free_res, NULL);
479         if (status) {
480                 ice_debug(hw, ICE_DBG_SW,
481                           "VEB counter resource could not be freed\n");
482                 ret_status = status;
483         }
484
485         ice_free(hw, counter_buf);
486         ice_free(hw, sw_buf);
487         return ret_status;
488 }
489
490 /**
491  * ice_aq_add_vsi
492  * @hw: pointer to the HW struct
493  * @vsi_ctx: pointer to a VSI context struct
494  * @cd: pointer to command details structure or NULL
495  *
496  * Add a VSI context to the hardware (0x0210)
497  */
498 enum ice_status
499 ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
500                struct ice_sq_cd *cd)
501 {
502         struct ice_aqc_add_update_free_vsi_resp *res;
503         struct ice_aqc_add_get_update_free_vsi *cmd;
504         struct ice_aq_desc desc;
505         enum ice_status status;
506
507         cmd = &desc.params.vsi_cmd;
508         res = &desc.params.add_update_free_vsi_res;
509
510         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi);
511
512         if (!vsi_ctx->alloc_from_pool)
513                 cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num |
514                                            ICE_AQ_VSI_IS_VALID);
515
516         cmd->vsi_flags = CPU_TO_LE16(vsi_ctx->flags);
517
518         desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
519
520         status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
521                                  sizeof(vsi_ctx->info), cd);
522
523         if (!status) {
524                 vsi_ctx->vsi_num = LE16_TO_CPU(res->vsi_num) & ICE_AQ_VSI_NUM_M;
525                 vsi_ctx->vsis_allocd = LE16_TO_CPU(res->vsi_used);
526                 vsi_ctx->vsis_unallocated = LE16_TO_CPU(res->vsi_free);
527         }
528
529         return status;
530 }
531
532 /**
533  * ice_aq_free_vsi
534  * @hw: pointer to the HW struct
535  * @vsi_ctx: pointer to a VSI context struct
536  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
537  * @cd: pointer to command details structure or NULL
538  *
539  * Free VSI context info from hardware (0x0213)
540  */
541 enum ice_status
542 ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
543                 bool keep_vsi_alloc, struct ice_sq_cd *cd)
544 {
545         struct ice_aqc_add_update_free_vsi_resp *resp;
546         struct ice_aqc_add_get_update_free_vsi *cmd;
547         struct ice_aq_desc desc;
548         enum ice_status status;
549
550         cmd = &desc.params.vsi_cmd;
551         resp = &desc.params.add_update_free_vsi_res;
552
553         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi);
554
555         cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
556         if (keep_vsi_alloc)
557                 cmd->cmd_flags = CPU_TO_LE16(ICE_AQ_VSI_KEEP_ALLOC);
558
559         status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
560         if (!status) {
561                 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
562                 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
563         }
564
565         return status;
566 }
567
568 /**
569  * ice_aq_update_vsi
570  * @hw: pointer to the HW struct
571  * @vsi_ctx: pointer to a VSI context struct
572  * @cd: pointer to command details structure or NULL
573  *
574  * Update VSI context in the hardware (0x0211)
575  */
576 enum ice_status
577 ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
578                   struct ice_sq_cd *cd)
579 {
580         struct ice_aqc_add_update_free_vsi_resp *resp;
581         struct ice_aqc_add_get_update_free_vsi *cmd;
582         struct ice_aq_desc desc;
583         enum ice_status status;
584
585         cmd = &desc.params.vsi_cmd;
586         resp = &desc.params.add_update_free_vsi_res;
587
588         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi);
589
590         cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
591
592         desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
593
594         status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
595                                  sizeof(vsi_ctx->info), cd);
596
597         if (!status) {
598                 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
599                 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
600         }
601
602         return status;
603 }
604
605 /**
606  * ice_is_vsi_valid - check whether the VSI is valid or not
607  * @hw: pointer to the HW struct
608  * @vsi_handle: VSI handle
609  *
610  * check whether the VSI is valid or not
611  */
612 bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle)
613 {
614         return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle];
615 }
616
617 /**
618  * ice_get_hw_vsi_num - return the HW VSI number
619  * @hw: pointer to the HW struct
620  * @vsi_handle: VSI handle
621  *
622  * return the HW VSI number
623  * Caution: call this function only if VSI is valid (ice_is_vsi_valid)
624  */
625 u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle)
626 {
627         return hw->vsi_ctx[vsi_handle]->vsi_num;
628 }
629
630 /**
631  * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle
632  * @hw: pointer to the HW struct
633  * @vsi_handle: VSI handle
634  *
635  * return the VSI context entry for a given VSI handle
636  */
637 struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
638 {
639         return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle];
640 }
641
642 /**
643  * ice_save_vsi_ctx - save the VSI context for a given VSI handle
644  * @hw: pointer to the HW struct
645  * @vsi_handle: VSI handle
646  * @vsi: VSI context pointer
647  *
648  * save the VSI context entry for a given VSI handle
649  */
650 static void
651 ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi)
652 {
653         hw->vsi_ctx[vsi_handle] = vsi;
654 }
655
656 /**
657  * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs
658  * @hw: pointer to the HW struct
659  * @vsi_handle: VSI handle
660  */
661 static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle)
662 {
663         struct ice_vsi_ctx *vsi;
664         u8 i;
665
666         vsi = ice_get_vsi_ctx(hw, vsi_handle);
667         if (!vsi)
668                 return;
669         ice_for_each_traffic_class(i) {
670                 if (vsi->lan_q_ctx[i]) {
671                         ice_free(hw, vsi->lan_q_ctx[i]);
672                         vsi->lan_q_ctx[i] = NULL;
673                 }
674         }
675 }
676
677 /**
678  * ice_clear_vsi_ctx - clear the VSI context entry
679  * @hw: pointer to the HW struct
680  * @vsi_handle: VSI handle
681  *
682  * clear the VSI context entry
683  */
684 static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle)
685 {
686         struct ice_vsi_ctx *vsi;
687
688         vsi = ice_get_vsi_ctx(hw, vsi_handle);
689         if (vsi) {
690                 ice_clear_vsi_q_ctx(hw, vsi_handle);
691                 ice_free(hw, vsi);
692                 hw->vsi_ctx[vsi_handle] = NULL;
693         }
694 }
695
696 /**
697  * ice_clear_all_vsi_ctx - clear all the VSI context entries
698  * @hw: pointer to the HW struct
699  */
700 void ice_clear_all_vsi_ctx(struct ice_hw *hw)
701 {
702         u16 i;
703
704         for (i = 0; i < ICE_MAX_VSI; i++)
705                 ice_clear_vsi_ctx(hw, i);
706 }
707
708 /**
709  * ice_add_vsi - add VSI context to the hardware and VSI handle list
710  * @hw: pointer to the HW struct
711  * @vsi_handle: unique VSI handle provided by drivers
712  * @vsi_ctx: pointer to a VSI context struct
713  * @cd: pointer to command details structure or NULL
714  *
715  * Add a VSI context to the hardware also add it into the VSI handle list.
716  * If this function gets called after reset for existing VSIs then update
717  * with the new HW VSI number in the corresponding VSI handle list entry.
718  */
719 enum ice_status
720 ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
721             struct ice_sq_cd *cd)
722 {
723         struct ice_vsi_ctx *tmp_vsi_ctx;
724         enum ice_status status;
725
726         if (vsi_handle >= ICE_MAX_VSI)
727                 return ICE_ERR_PARAM;
728         status = ice_aq_add_vsi(hw, vsi_ctx, cd);
729         if (status)
730                 return status;
731         tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
732         if (!tmp_vsi_ctx) {
733                 /* Create a new VSI context */
734                 tmp_vsi_ctx = (struct ice_vsi_ctx *)
735                         ice_malloc(hw, sizeof(*tmp_vsi_ctx));
736                 if (!tmp_vsi_ctx) {
737                         ice_aq_free_vsi(hw, vsi_ctx, false, cd);
738                         return ICE_ERR_NO_MEMORY;
739                 }
740                 *tmp_vsi_ctx = *vsi_ctx;
741
742                 ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx);
743         } else {
744                 /* update with new HW VSI num */
745                 if (tmp_vsi_ctx->vsi_num != vsi_ctx->vsi_num)
746                         tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num;
747         }
748
749         return ICE_SUCCESS;
750 }
751
752 /**
753  * ice_free_vsi- free VSI context from hardware and VSI handle list
754  * @hw: pointer to the HW struct
755  * @vsi_handle: unique VSI handle
756  * @vsi_ctx: pointer to a VSI context struct
757  * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources
758  * @cd: pointer to command details structure or NULL
759  *
760  * Free VSI context info from hardware as well as from VSI handle list
761  */
762 enum ice_status
763 ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
764              bool keep_vsi_alloc, struct ice_sq_cd *cd)
765 {
766         enum ice_status status;
767
768         if (!ice_is_vsi_valid(hw, vsi_handle))
769                 return ICE_ERR_PARAM;
770         vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
771         status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd);
772         if (!status)
773                 ice_clear_vsi_ctx(hw, vsi_handle);
774         return status;
775 }
776
777 /**
778  * ice_update_vsi
779  * @hw: pointer to the HW struct
780  * @vsi_handle: unique VSI handle
781  * @vsi_ctx: pointer to a VSI context struct
782  * @cd: pointer to command details structure or NULL
783  *
784  * Update VSI context in the hardware
785  */
786 enum ice_status
787 ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx,
788                struct ice_sq_cd *cd)
789 {
790         if (!ice_is_vsi_valid(hw, vsi_handle))
791                 return ICE_ERR_PARAM;
792         vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
793         return ice_aq_update_vsi(hw, vsi_ctx, cd);
794 }
795
796 /**
797  * ice_aq_get_vsi_params
798  * @hw: pointer to the HW struct
799  * @vsi_ctx: pointer to a VSI context struct
800  * @cd: pointer to command details structure or NULL
801  *
802  * Get VSI context info from hardware (0x0212)
803  */
804 enum ice_status
805 ice_aq_get_vsi_params(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx,
806                       struct ice_sq_cd *cd)
807 {
808         struct ice_aqc_add_get_update_free_vsi *cmd;
809         struct ice_aqc_get_vsi_resp *resp;
810         struct ice_aq_desc desc;
811         enum ice_status status;
812
813         cmd = &desc.params.vsi_cmd;
814         resp = &desc.params.get_vsi_resp;
815
816         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_vsi_params);
817
818         cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID);
819
820         status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info,
821                                  sizeof(vsi_ctx->info), cd);
822         if (!status) {
823                 vsi_ctx->vsi_num = LE16_TO_CPU(resp->vsi_num) &
824                                         ICE_AQ_VSI_NUM_M;
825                 vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used);
826                 vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free);
827         }
828
829         return status;
830 }
831
832 /**
833  * ice_aq_add_update_mir_rule - add/update a mirror rule
834  * @hw: pointer to the HW struct
835  * @rule_type: Rule Type
836  * @dest_vsi: VSI number to which packets will be mirrored
837  * @count: length of the list
838  * @mr_buf: buffer for list of mirrored VSI numbers
839  * @cd: pointer to command details structure or NULL
840  * @rule_id: Rule ID
841  *
842  * Add/Update Mirror Rule (0x260).
843  */
844 enum ice_status
845 ice_aq_add_update_mir_rule(struct ice_hw *hw, u16 rule_type, u16 dest_vsi,
846                            u16 count, struct ice_mir_rule_buf *mr_buf,
847                            struct ice_sq_cd *cd, u16 *rule_id)
848 {
849         struct ice_aqc_add_update_mir_rule *cmd;
850         struct ice_aq_desc desc;
851         enum ice_status status;
852         __le16 *mr_list = NULL;
853         u16 buf_size = 0;
854
855         switch (rule_type) {
856         case ICE_AQC_RULE_TYPE_VPORT_INGRESS:
857         case ICE_AQC_RULE_TYPE_VPORT_EGRESS:
858                 /* Make sure count and mr_buf are set for these rule_types */
859                 if (!(count && mr_buf))
860                         return ICE_ERR_PARAM;
861
862                 buf_size = count * sizeof(__le16);
863                 mr_list = (_FORCE_ __le16 *)ice_malloc(hw, buf_size);
864                 if (!mr_list)
865                         return ICE_ERR_NO_MEMORY;
866                 break;
867         case ICE_AQC_RULE_TYPE_PPORT_INGRESS:
868         case ICE_AQC_RULE_TYPE_PPORT_EGRESS:
869                 /* Make sure count and mr_buf are not set for these
870                  * rule_types
871                  */
872                 if (count || mr_buf)
873                         return ICE_ERR_PARAM;
874                 break;
875         default:
876                 ice_debug(hw, ICE_DBG_SW,
877                           "Error due to unsupported rule_type %u\n", rule_type);
878                 return ICE_ERR_OUT_OF_RANGE;
879         }
880
881         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_update_mir_rule);
882
883         /* Pre-process 'mr_buf' items for add/update of virtual port
884          * ingress/egress mirroring (but not physical port ingress/egress
885          * mirroring)
886          */
887         if (mr_buf) {
888                 int i;
889
890                 for (i = 0; i < count; i++) {
891                         u16 id;
892
893                         id = mr_buf[i].vsi_idx & ICE_AQC_RULE_MIRRORED_VSI_M;
894
895                         /* Validate specified VSI number, make sure it is less
896                          * than ICE_MAX_VSI, if not return with error.
897                          */
898                         if (id >= ICE_MAX_VSI) {
899                                 ice_debug(hw, ICE_DBG_SW,
900                                           "Error VSI index (%u) out-of-range\n",
901                                           id);
902                                 ice_free(hw, mr_list);
903                                 return ICE_ERR_OUT_OF_RANGE;
904                         }
905
906                         /* add VSI to mirror rule */
907                         if (mr_buf[i].add)
908                                 mr_list[i] =
909                                         CPU_TO_LE16(id | ICE_AQC_RULE_ACT_M);
910                         else /* remove VSI from mirror rule */
911                                 mr_list[i] = CPU_TO_LE16(id);
912                 }
913         }
914
915         cmd = &desc.params.add_update_rule;
916         if ((*rule_id) != ICE_INVAL_MIRROR_RULE_ID)
917                 cmd->rule_id = CPU_TO_LE16(((*rule_id) & ICE_AQC_RULE_ID_M) |
918                                            ICE_AQC_RULE_ID_VALID_M);
919         cmd->rule_type = CPU_TO_LE16(rule_type & ICE_AQC_RULE_TYPE_M);
920         cmd->num_entries = CPU_TO_LE16(count);
921         cmd->dest = CPU_TO_LE16(dest_vsi);
922
923         status = ice_aq_send_cmd(hw, &desc, mr_list, buf_size, cd);
924         if (!status)
925                 *rule_id = LE16_TO_CPU(cmd->rule_id) & ICE_AQC_RULE_ID_M;
926
927         ice_free(hw, mr_list);
928
929         return status;
930 }
931
932 /**
933  * ice_aq_delete_mir_rule - delete a mirror rule
934  * @hw: pointer to the HW struct
935  * @rule_id: Mirror rule ID (to be deleted)
936  * @keep_allocd: if set, the VSI stays part of the PF allocated res,
937  *               otherwise it is returned to the shared pool
938  * @cd: pointer to command details structure or NULL
939  *
940  * Delete Mirror Rule (0x261).
941  */
942 enum ice_status
943 ice_aq_delete_mir_rule(struct ice_hw *hw, u16 rule_id, bool keep_allocd,
944                        struct ice_sq_cd *cd)
945 {
946         struct ice_aqc_delete_mir_rule *cmd;
947         struct ice_aq_desc desc;
948
949         /* rule_id should be in the range 0...63 */
950         if (rule_id >= ICE_MAX_NUM_MIRROR_RULES)
951                 return ICE_ERR_OUT_OF_RANGE;
952
953         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_del_mir_rule);
954
955         cmd = &desc.params.del_rule;
956         rule_id |= ICE_AQC_RULE_ID_VALID_M;
957         cmd->rule_id = CPU_TO_LE16(rule_id);
958
959         if (keep_allocd)
960                 cmd->flags = CPU_TO_LE16(ICE_AQC_FLAG_KEEP_ALLOCD_M);
961
962         return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
963 }
964
965 /**
966  * ice_aq_alloc_free_vsi_list
967  * @hw: pointer to the HW struct
968  * @vsi_list_id: VSI list ID returned or used for lookup
969  * @lkup_type: switch rule filter lookup type
970  * @opc: switch rules population command type - pass in the command opcode
971  *
972  * allocates or free a VSI list resource
973  */
974 static enum ice_status
975 ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id,
976                            enum ice_sw_lkup_type lkup_type,
977                            enum ice_adminq_opc opc)
978 {
979         struct ice_aqc_alloc_free_res_elem *sw_buf;
980         struct ice_aqc_res_elem *vsi_ele;
981         enum ice_status status;
982         u16 buf_len;
983
984         buf_len = sizeof(*sw_buf);
985         sw_buf = (struct ice_aqc_alloc_free_res_elem *)
986                 ice_malloc(hw, buf_len);
987         if (!sw_buf)
988                 return ICE_ERR_NO_MEMORY;
989         sw_buf->num_elems = CPU_TO_LE16(1);
990
991         if (lkup_type == ICE_SW_LKUP_MAC ||
992             lkup_type == ICE_SW_LKUP_MAC_VLAN ||
993             lkup_type == ICE_SW_LKUP_ETHERTYPE ||
994             lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
995             lkup_type == ICE_SW_LKUP_PROMISC ||
996             lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
997             lkup_type == ICE_SW_LKUP_LAST) {
998                 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_REP);
999         } else if (lkup_type == ICE_SW_LKUP_VLAN) {
1000                 sw_buf->res_type =
1001                         CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE);
1002         } else {
1003                 status = ICE_ERR_PARAM;
1004                 goto ice_aq_alloc_free_vsi_list_exit;
1005         }
1006
1007         if (opc == ice_aqc_opc_free_res)
1008                 sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(*vsi_list_id);
1009
1010         status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL);
1011         if (status)
1012                 goto ice_aq_alloc_free_vsi_list_exit;
1013
1014         if (opc == ice_aqc_opc_alloc_res) {
1015                 vsi_ele = &sw_buf->elem[0];
1016                 *vsi_list_id = LE16_TO_CPU(vsi_ele->e.sw_resp);
1017         }
1018
1019 ice_aq_alloc_free_vsi_list_exit:
1020         ice_free(hw, sw_buf);
1021         return status;
1022 }
1023
1024 /**
1025  * ice_aq_set_storm_ctrl - Sets storm control configuration
1026  * @hw: pointer to the HW struct
1027  * @bcast_thresh: represents the upper threshold for broadcast storm control
1028  * @mcast_thresh: represents the upper threshold for multicast storm control
1029  * @ctl_bitmask: storm control control knobs
1030  *
1031  * Sets the storm control configuration (0x0280)
1032  */
1033 enum ice_status
1034 ice_aq_set_storm_ctrl(struct ice_hw *hw, u32 bcast_thresh, u32 mcast_thresh,
1035                       u32 ctl_bitmask)
1036 {
1037         struct ice_aqc_storm_cfg *cmd;
1038         struct ice_aq_desc desc;
1039
1040         cmd = &desc.params.storm_conf;
1041
1042         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_storm_cfg);
1043
1044         cmd->bcast_thresh_size = CPU_TO_LE32(bcast_thresh & ICE_AQ_THRESHOLD_M);
1045         cmd->mcast_thresh_size = CPU_TO_LE32(mcast_thresh & ICE_AQ_THRESHOLD_M);
1046         cmd->storm_ctrl_ctrl = CPU_TO_LE32(ctl_bitmask);
1047
1048         return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1049 }
1050
1051 /**
1052  * ice_aq_get_storm_ctrl - gets storm control configuration
1053  * @hw: pointer to the HW struct
1054  * @bcast_thresh: represents the upper threshold for broadcast storm control
1055  * @mcast_thresh: represents the upper threshold for multicast storm control
1056  * @ctl_bitmask: storm control control knobs
1057  *
1058  * Gets the storm control configuration (0x0281)
1059  */
1060 enum ice_status
1061 ice_aq_get_storm_ctrl(struct ice_hw *hw, u32 *bcast_thresh, u32 *mcast_thresh,
1062                       u32 *ctl_bitmask)
1063 {
1064         enum ice_status status;
1065         struct ice_aq_desc desc;
1066
1067         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_storm_cfg);
1068
1069         status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1070         if (!status) {
1071                 struct ice_aqc_storm_cfg *resp = &desc.params.storm_conf;
1072
1073                 if (bcast_thresh)
1074                         *bcast_thresh = LE32_TO_CPU(resp->bcast_thresh_size) &
1075                                 ICE_AQ_THRESHOLD_M;
1076                 if (mcast_thresh)
1077                         *mcast_thresh = LE32_TO_CPU(resp->mcast_thresh_size) &
1078                                 ICE_AQ_THRESHOLD_M;
1079                 if (ctl_bitmask)
1080                         *ctl_bitmask = LE32_TO_CPU(resp->storm_ctrl_ctrl);
1081         }
1082
1083         return status;
1084 }
1085
1086 /**
1087  * ice_aq_sw_rules - add/update/remove switch rules
1088  * @hw: pointer to the HW struct
1089  * @rule_list: pointer to switch rule population list
1090  * @rule_list_sz: total size of the rule list in bytes
1091  * @num_rules: number of switch rules in the rule_list
1092  * @opc: switch rules population command type - pass in the command opcode
1093  * @cd: pointer to command details structure or NULL
1094  *
1095  * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware
1096  */
1097 static enum ice_status
1098 ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz,
1099                 u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1100 {
1101         struct ice_aq_desc desc;
1102
1103         ice_debug(hw, ICE_DBG_TRACE, "ice_aq_sw_rules");
1104
1105         if (opc != ice_aqc_opc_add_sw_rules &&
1106             opc != ice_aqc_opc_update_sw_rules &&
1107             opc != ice_aqc_opc_remove_sw_rules)
1108                 return ICE_ERR_PARAM;
1109
1110         ice_fill_dflt_direct_cmd_desc(&desc, opc);
1111
1112         desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1113         desc.params.sw_rules.num_rules_fltr_entry_index =
1114                 CPU_TO_LE16(num_rules);
1115         return ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd);
1116 }
1117
1118 /**
1119  * ice_aq_add_recipe - add switch recipe
1120  * @hw: pointer to the HW struct
1121  * @s_recipe_list: pointer to switch rule population list
1122  * @num_recipes: number of switch recipes in the list
1123  * @cd: pointer to command details structure or NULL
1124  *
1125  * Add(0x0290)
1126  */
1127 enum ice_status
1128 ice_aq_add_recipe(struct ice_hw *hw,
1129                   struct ice_aqc_recipe_data_elem *s_recipe_list,
1130                   u16 num_recipes, struct ice_sq_cd *cd)
1131 {
1132         struct ice_aqc_add_get_recipe *cmd;
1133         struct ice_aq_desc desc;
1134         u16 buf_size;
1135
1136         ice_debug(hw, ICE_DBG_TRACE, "ice_aq_add_recipe");
1137         cmd = &desc.params.add_get_recipe;
1138         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_recipe);
1139
1140         cmd->num_sub_recipes = CPU_TO_LE16(num_recipes);
1141         desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
1142
1143         buf_size = num_recipes * sizeof(*s_recipe_list);
1144
1145         return ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1146 }
1147
1148 /**
1149  * ice_aq_get_recipe - get switch recipe
1150  * @hw: pointer to the HW struct
1151  * @s_recipe_list: pointer to switch rule population list
1152  * @num_recipes: pointer to the number of recipes (input and output)
1153  * @recipe_root: root recipe number of recipe(s) to retrieve
1154  * @cd: pointer to command details structure or NULL
1155  *
1156  * Get(0x0292)
1157  *
1158  * On input, *num_recipes should equal the number of entries in s_recipe_list.
1159  * On output, *num_recipes will equal the number of entries returned in
1160  * s_recipe_list.
1161  *
1162  * The caller must supply enough space in s_recipe_list to hold all possible
1163  * recipes and *num_recipes must equal ICE_MAX_NUM_RECIPES.
1164  */
1165 enum ice_status
1166 ice_aq_get_recipe(struct ice_hw *hw,
1167                   struct ice_aqc_recipe_data_elem *s_recipe_list,
1168                   u16 *num_recipes, u16 recipe_root, struct ice_sq_cd *cd)
1169 {
1170         struct ice_aqc_add_get_recipe *cmd;
1171         struct ice_aq_desc desc;
1172         enum ice_status status;
1173         u16 buf_size;
1174
1175         if (*num_recipes != ICE_MAX_NUM_RECIPES)
1176                 return ICE_ERR_PARAM;
1177
1178         ice_debug(hw, ICE_DBG_TRACE, "ice_aq_get_recipe");
1179         cmd = &desc.params.add_get_recipe;
1180         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe);
1181
1182         cmd->return_index = CPU_TO_LE16(recipe_root);
1183         cmd->num_sub_recipes = 0;
1184
1185         buf_size = *num_recipes * sizeof(*s_recipe_list);
1186
1187         status = ice_aq_send_cmd(hw, &desc, s_recipe_list, buf_size, cd);
1188         /* cppcheck-suppress constArgument */
1189         *num_recipes = LE16_TO_CPU(cmd->num_sub_recipes);
1190
1191         return status;
1192 }
1193
1194 /**
1195  * ice_aq_map_recipe_to_profile - Map recipe to packet profile
1196  * @hw: pointer to the HW struct
1197  * @profile_id: package profile ID to associate the recipe with
1198  * @r_bitmap: Recipe bitmap filled in and need to be returned as response
1199  * @cd: pointer to command details structure or NULL
1200  * Recipe to profile association (0x0291)
1201  */
1202 enum ice_status
1203 ice_aq_map_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
1204                              struct ice_sq_cd *cd)
1205 {
1206         struct ice_aqc_recipe_to_profile *cmd;
1207         struct ice_aq_desc desc;
1208
1209         ice_debug(hw, ICE_DBG_TRACE, "ice_aq_assoc_recipe_to_prof");
1210         cmd = &desc.params.recipe_to_profile;
1211         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_recipe_to_profile);
1212         cmd->profile_id = CPU_TO_LE16(profile_id);
1213         /* Set the recipe ID bit in the bitmask to let the device know which
1214          * profile we are associating the recipe to
1215          */
1216         ice_memcpy(cmd->recipe_assoc, r_bitmap, sizeof(cmd->recipe_assoc),
1217                    ICE_NONDMA_TO_NONDMA);
1218
1219         return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1220 }
1221
1222 /**
1223  * ice_aq_get_recipe_to_profile - Map recipe to packet profile
1224  * @hw: pointer to the HW struct
1225  * @profile_id: package profile ID to associate the recipe with
1226  * @r_bitmap: Recipe bitmap filled in and need to be returned as response
1227  * @cd: pointer to command details structure or NULL
1228  * Associate profile ID with given recipe (0x0293)
1229  */
1230 enum ice_status
1231 ice_aq_get_recipe_to_profile(struct ice_hw *hw, u32 profile_id, u8 *r_bitmap,
1232                              struct ice_sq_cd *cd)
1233 {
1234         struct ice_aqc_recipe_to_profile *cmd;
1235         struct ice_aq_desc desc;
1236         enum ice_status status;
1237
1238         ice_debug(hw, ICE_DBG_TRACE, "ice_aq_get_recipe_to_prof");
1239         cmd = &desc.params.recipe_to_profile;
1240         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_recipe_to_profile);
1241         cmd->profile_id = CPU_TO_LE16(profile_id);
1242
1243         status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1244         if (!status)
1245                 ice_memcpy(r_bitmap, cmd->recipe_assoc,
1246                            sizeof(cmd->recipe_assoc), ICE_NONDMA_TO_NONDMA);
1247
1248         return status;
1249 }
1250
1251 /**
1252  * ice_alloc_recipe - add recipe resource
1253  * @hw: pointer to the hardware structure
1254  * @rid: recipe ID returned as response to AQ call
1255  */
1256 enum ice_status ice_alloc_recipe(struct ice_hw *hw, u16 *rid)
1257 {
1258         struct ice_aqc_alloc_free_res_elem *sw_buf;
1259         enum ice_status status;
1260         u16 buf_len;
1261
1262         buf_len = sizeof(*sw_buf);
1263         sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
1264         if (!sw_buf)
1265                 return ICE_ERR_NO_MEMORY;
1266
1267         sw_buf->num_elems = CPU_TO_LE16(1);
1268         sw_buf->res_type = CPU_TO_LE16((ICE_AQC_RES_TYPE_RECIPE <<
1269                                         ICE_AQC_RES_TYPE_S) |
1270                                         ICE_AQC_RES_TYPE_FLAG_SHARED);
1271         status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
1272                                        ice_aqc_opc_alloc_res, NULL);
1273         if (!status)
1274                 *rid = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
1275         ice_free(hw, sw_buf);
1276
1277         return status;
1278 }
1279
1280 /* ice_init_port_info - Initialize port_info with switch configuration data
1281  * @pi: pointer to port_info
1282  * @vsi_port_num: VSI number or port number
1283  * @type: Type of switch element (port or VSI)
1284  * @swid: switch ID of the switch the element is attached to
1285  * @pf_vf_num: PF or VF number
1286  * @is_vf: true if the element is a VF, false otherwise
1287  */
1288 static void
1289 ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type,
1290                    u16 swid, u16 pf_vf_num, bool is_vf)
1291 {
1292         switch (type) {
1293         case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
1294                 pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK);
1295                 pi->sw_id = swid;
1296                 pi->pf_vf_num = pf_vf_num;
1297                 pi->is_vf = is_vf;
1298                 pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL;
1299                 pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL;
1300                 break;
1301         default:
1302                 ice_debug(pi->hw, ICE_DBG_SW,
1303                           "incorrect VSI/port type received\n");
1304                 break;
1305         }
1306 }
1307
1308 /* ice_get_initial_sw_cfg - Get initial port and default VSI data
1309  * @hw: pointer to the hardware structure
1310  */
1311 enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw)
1312 {
1313         struct ice_aqc_get_sw_cfg_resp *rbuf;
1314         enum ice_status status;
1315         u16 num_total_ports;
1316         u16 req_desc = 0;
1317         u16 num_elems;
1318         u16 j = 0;
1319         u16 i;
1320
1321         num_total_ports = 1;
1322
1323         rbuf = (struct ice_aqc_get_sw_cfg_resp *)
1324                 ice_malloc(hw, ICE_SW_CFG_MAX_BUF_LEN);
1325
1326         if (!rbuf)
1327                 return ICE_ERR_NO_MEMORY;
1328
1329         /* Multiple calls to ice_aq_get_sw_cfg may be required
1330          * to get all the switch configuration information. The need
1331          * for additional calls is indicated by ice_aq_get_sw_cfg
1332          * writing a non-zero value in req_desc
1333          */
1334         do {
1335                 status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN,
1336                                            &req_desc, &num_elems, NULL);
1337
1338                 if (status)
1339                         break;
1340
1341                 for (i = 0; i < num_elems; i++) {
1342                         struct ice_aqc_get_sw_cfg_resp_elem *ele;
1343                         u16 pf_vf_num, swid, vsi_port_num;
1344                         bool is_vf = false;
1345                         u8 type;
1346
1347                         ele = rbuf[i].elements;
1348                         vsi_port_num = LE16_TO_CPU(ele->vsi_port_num) &
1349                                 ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M;
1350
1351                         pf_vf_num = LE16_TO_CPU(ele->pf_vf_num) &
1352                                 ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M;
1353
1354                         swid = LE16_TO_CPU(ele->swid);
1355
1356                         if (LE16_TO_CPU(ele->pf_vf_num) &
1357                             ICE_AQC_GET_SW_CONF_RESP_IS_VF)
1358                                 is_vf = true;
1359
1360                         type = LE16_TO_CPU(ele->vsi_port_num) >>
1361                                 ICE_AQC_GET_SW_CONF_RESP_TYPE_S;
1362
1363                         switch (type) {
1364                         case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT:
1365                         case ICE_AQC_GET_SW_CONF_RESP_VIRT_PORT:
1366                                 if (j == num_total_ports) {
1367                                         ice_debug(hw, ICE_DBG_SW,
1368                                                   "more ports than expected\n");
1369                                         status = ICE_ERR_CFG;
1370                                         goto out;
1371                                 }
1372                                 ice_init_port_info(hw->port_info,
1373                                                    vsi_port_num, type, swid,
1374                                                    pf_vf_num, is_vf);
1375                                 j++;
1376                                 break;
1377                         default:
1378                                 break;
1379                         }
1380                 }
1381         } while (req_desc && !status);
1382
1383
1384 out:
1385         ice_free(hw, (void *)rbuf);
1386         return status;
1387 }
1388
1389
1390 /**
1391  * ice_fill_sw_info - Helper function to populate lb_en and lan_en
1392  * @hw: pointer to the hardware structure
1393  * @fi: filter info structure to fill/update
1394  *
1395  * This helper function populates the lb_en and lan_en elements of the provided
1396  * ice_fltr_info struct using the switch's type and characteristics of the
1397  * switch rule being configured.
1398  */
1399 static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi)
1400 {
1401         fi->lb_en = false;
1402         fi->lan_en = false;
1403         if ((fi->flag & ICE_FLTR_TX) &&
1404             (fi->fltr_act == ICE_FWD_TO_VSI ||
1405              fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
1406              fi->fltr_act == ICE_FWD_TO_Q ||
1407              fi->fltr_act == ICE_FWD_TO_QGRP)) {
1408                 /* Setting LB for prune actions will result in replicated
1409                  * packets to the internal switch that will be dropped.
1410                  */
1411                 if (fi->lkup_type != ICE_SW_LKUP_VLAN)
1412                         fi->lb_en = true;
1413
1414                 /* Set lan_en to TRUE if
1415                  * 1. The switch is a VEB AND
1416                  * 2
1417                  * 2.1 The lookup is a directional lookup like ethertype,
1418                  * promiscuous, ethertype-MAC, promiscuous-VLAN
1419                  * and default-port OR
1420                  * 2.2 The lookup is VLAN, OR
1421                  * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR
1422                  * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC.
1423                  *
1424                  * OR
1425                  *
1426                  * The switch is a VEPA.
1427                  *
1428                  * In all other cases, the LAN enable has to be set to false.
1429                  */
1430                 if (hw->evb_veb) {
1431                         if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1432                             fi->lkup_type == ICE_SW_LKUP_PROMISC ||
1433                             fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1434                             fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1435                             fi->lkup_type == ICE_SW_LKUP_DFLT ||
1436                             fi->lkup_type == ICE_SW_LKUP_VLAN ||
1437                             (fi->lkup_type == ICE_SW_LKUP_MAC &&
1438                              !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)) ||
1439                             (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN &&
1440                              !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)))
1441                                 fi->lan_en = true;
1442                 } else {
1443                         fi->lan_en = true;
1444                 }
1445         }
1446 }
1447
1448 /**
1449  * ice_ilog2 - Calculates integer log base 2 of a number
1450  * @n: number on which to perform operation
1451  */
1452 static int ice_ilog2(u64 n)
1453 {
1454         int i;
1455
1456         for (i = 63; i >= 0; i--)
1457                 if (((u64)1 << i) & n)
1458                         return i;
1459
1460         return -1;
1461 }
1462
1463 /**
1464  * ice_fill_sw_rule - Helper function to fill switch rule structure
1465  * @hw: pointer to the hardware structure
1466  * @f_info: entry containing packet forwarding information
1467  * @s_rule: switch rule structure to be filled in based on mac_entry
1468  * @opc: switch rules population command type - pass in the command opcode
1469  */
1470 static void
1471 ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info,
1472                  struct ice_aqc_sw_rules_elem *s_rule, enum ice_adminq_opc opc)
1473 {
1474         u16 vlan_id = ICE_MAX_VLAN_ID + 1;
1475         void *daddr = NULL;
1476         u16 eth_hdr_sz;
1477         u8 *eth_hdr;
1478         u32 act = 0;
1479         __be16 *off;
1480         u8 q_rgn;
1481
1482         if (opc == ice_aqc_opc_remove_sw_rules) {
1483                 s_rule->pdata.lkup_tx_rx.act = 0;
1484                 s_rule->pdata.lkup_tx_rx.index =
1485                         CPU_TO_LE16(f_info->fltr_rule_id);
1486                 s_rule->pdata.lkup_tx_rx.hdr_len = 0;
1487                 return;
1488         }
1489
1490         eth_hdr_sz = sizeof(dummy_eth_header);
1491         eth_hdr = s_rule->pdata.lkup_tx_rx.hdr;
1492
1493         /* initialize the ether header with a dummy header */
1494         ice_memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz, ICE_NONDMA_TO_NONDMA);
1495         ice_fill_sw_info(hw, f_info);
1496
1497         switch (f_info->fltr_act) {
1498         case ICE_FWD_TO_VSI:
1499                 act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) &
1500                         ICE_SINGLE_ACT_VSI_ID_M;
1501                 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
1502                         act |= ICE_SINGLE_ACT_VSI_FORWARDING |
1503                                 ICE_SINGLE_ACT_VALID_BIT;
1504                 break;
1505         case ICE_FWD_TO_VSI_LIST:
1506                 act |= ICE_SINGLE_ACT_VSI_LIST;
1507                 act |= (f_info->fwd_id.vsi_list_id <<
1508                         ICE_SINGLE_ACT_VSI_LIST_ID_S) &
1509                         ICE_SINGLE_ACT_VSI_LIST_ID_M;
1510                 if (f_info->lkup_type != ICE_SW_LKUP_VLAN)
1511                         act |= ICE_SINGLE_ACT_VSI_FORWARDING |
1512                                 ICE_SINGLE_ACT_VALID_BIT;
1513                 break;
1514         case ICE_FWD_TO_Q:
1515                 act |= ICE_SINGLE_ACT_TO_Q;
1516                 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
1517                         ICE_SINGLE_ACT_Q_INDEX_M;
1518                 break;
1519         case ICE_DROP_PACKET:
1520                 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
1521                         ICE_SINGLE_ACT_VALID_BIT;
1522                 break;
1523         case ICE_FWD_TO_QGRP:
1524                 q_rgn = f_info->qgrp_size > 0 ?
1525                         (u8)ice_ilog2(f_info->qgrp_size) : 0;
1526                 act |= ICE_SINGLE_ACT_TO_Q;
1527                 act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
1528                         ICE_SINGLE_ACT_Q_INDEX_M;
1529                 act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) &
1530                         ICE_SINGLE_ACT_Q_REGION_M;
1531                 break;
1532         default:
1533                 return;
1534         }
1535
1536         if (f_info->lb_en)
1537                 act |= ICE_SINGLE_ACT_LB_ENABLE;
1538         if (f_info->lan_en)
1539                 act |= ICE_SINGLE_ACT_LAN_ENABLE;
1540
1541         switch (f_info->lkup_type) {
1542         case ICE_SW_LKUP_MAC:
1543                 daddr = f_info->l_data.mac.mac_addr;
1544                 break;
1545         case ICE_SW_LKUP_VLAN:
1546                 vlan_id = f_info->l_data.vlan.vlan_id;
1547                 if (f_info->fltr_act == ICE_FWD_TO_VSI ||
1548                     f_info->fltr_act == ICE_FWD_TO_VSI_LIST) {
1549                         act |= ICE_SINGLE_ACT_PRUNE;
1550                         act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS;
1551                 }
1552                 break;
1553         case ICE_SW_LKUP_ETHERTYPE_MAC:
1554                 daddr = f_info->l_data.ethertype_mac.mac_addr;
1555                 /* fall-through */
1556         case ICE_SW_LKUP_ETHERTYPE:
1557                 off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET);
1558                 *off = CPU_TO_BE16(f_info->l_data.ethertype_mac.ethertype);
1559                 break;
1560         case ICE_SW_LKUP_MAC_VLAN:
1561                 daddr = f_info->l_data.mac_vlan.mac_addr;
1562                 vlan_id = f_info->l_data.mac_vlan.vlan_id;
1563                 break;
1564         case ICE_SW_LKUP_PROMISC_VLAN:
1565                 vlan_id = f_info->l_data.mac_vlan.vlan_id;
1566                 /* fall-through */
1567         case ICE_SW_LKUP_PROMISC:
1568                 daddr = f_info->l_data.mac_vlan.mac_addr;
1569                 break;
1570         default:
1571                 break;
1572         }
1573
1574         s_rule->type = (f_info->flag & ICE_FLTR_RX) ?
1575                 CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX) :
1576                 CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX);
1577
1578         /* Recipe set depending on lookup type */
1579         s_rule->pdata.lkup_tx_rx.recipe_id = CPU_TO_LE16(f_info->lkup_type);
1580         s_rule->pdata.lkup_tx_rx.src = CPU_TO_LE16(f_info->src);
1581         s_rule->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
1582
1583         if (daddr)
1584                 ice_memcpy(eth_hdr + ICE_ETH_DA_OFFSET, daddr, ETH_ALEN,
1585                            ICE_NONDMA_TO_NONDMA);
1586
1587         if (!(vlan_id > ICE_MAX_VLAN_ID)) {
1588                 off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET);
1589                 *off = CPU_TO_BE16(vlan_id);
1590         }
1591
1592         /* Create the switch rule with the final dummy Ethernet header */
1593         if (opc != ice_aqc_opc_update_sw_rules)
1594                 s_rule->pdata.lkup_tx_rx.hdr_len = CPU_TO_LE16(eth_hdr_sz);
1595 }
1596
1597 /**
1598  * ice_add_marker_act
1599  * @hw: pointer to the hardware structure
1600  * @m_ent: the management entry for which sw marker needs to be added
1601  * @sw_marker: sw marker to tag the Rx descriptor with
1602  * @l_id: large action resource ID
1603  *
1604  * Create a large action to hold software marker and update the switch rule
1605  * entry pointed by m_ent with newly created large action
1606  */
1607 static enum ice_status
1608 ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
1609                    u16 sw_marker, u16 l_id)
1610 {
1611         struct ice_aqc_sw_rules_elem *lg_act, *rx_tx;
1612         /* For software marker we need 3 large actions
1613          * 1. FWD action: FWD TO VSI or VSI LIST
1614          * 2. GENERIC VALUE action to hold the profile ID
1615          * 3. GENERIC VALUE action to hold the software marker ID
1616          */
1617         const u16 num_lg_acts = 3;
1618         enum ice_status status;
1619         u16 lg_act_size;
1620         u16 rules_size;
1621         u32 act;
1622         u16 id;
1623
1624         if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
1625                 return ICE_ERR_PARAM;
1626
1627         /* Create two back-to-back switch rules and submit them to the HW using
1628          * one memory buffer:
1629          *    1. Large Action
1630          *    2. Look up Tx Rx
1631          */
1632         lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_lg_acts);
1633         rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
1634         lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rules_size);
1635         if (!lg_act)
1636                 return ICE_ERR_NO_MEMORY;
1637
1638         rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size);
1639
1640         /* Fill in the first switch rule i.e. large action */
1641         lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
1642         lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id);
1643         lg_act->pdata.lg_act.size = CPU_TO_LE16(num_lg_acts);
1644
1645         /* First action VSI forwarding or VSI list forwarding depending on how
1646          * many VSIs
1647          */
1648         id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id :
1649                 m_ent->fltr_info.fwd_id.hw_vsi_id;
1650
1651         act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
1652         act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) &
1653                 ICE_LG_ACT_VSI_LIST_ID_M;
1654         if (m_ent->vsi_count > 1)
1655                 act |= ICE_LG_ACT_VSI_LIST;
1656         lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act);
1657
1658         /* Second action descriptor type */
1659         act = ICE_LG_ACT_GENERIC;
1660
1661         act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M;
1662         lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act);
1663
1664         act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX <<
1665                ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M;
1666
1667         /* Third action Marker value */
1668         act |= ICE_LG_ACT_GENERIC;
1669         act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) &
1670                 ICE_LG_ACT_GENERIC_VALUE_M;
1671
1672         lg_act->pdata.lg_act.act[2] = CPU_TO_LE32(act);
1673
1674         /* call the fill switch rule to fill the lookup Tx Rx structure */
1675         ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
1676                          ice_aqc_opc_update_sw_rules);
1677
1678         /* Update the action to point to the large action ID */
1679         rx_tx->pdata.lkup_tx_rx.act =
1680                 CPU_TO_LE32(ICE_SINGLE_ACT_PTR |
1681                             ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) &
1682                              ICE_SINGLE_ACT_PTR_VAL_M));
1683
1684         /* Use the filter rule ID of the previously created rule with single
1685          * act. Once the update happens, hardware will treat this as large
1686          * action
1687          */
1688         rx_tx->pdata.lkup_tx_rx.index =
1689                 CPU_TO_LE16(m_ent->fltr_info.fltr_rule_id);
1690
1691         status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
1692                                  ice_aqc_opc_update_sw_rules, NULL);
1693         if (!status) {
1694                 m_ent->lg_act_idx = l_id;
1695                 m_ent->sw_marker_id = sw_marker;
1696         }
1697
1698         ice_free(hw, lg_act);
1699         return status;
1700 }
1701
1702 /**
1703  * ice_add_counter_act - add/update filter rule with counter action
1704  * @hw: pointer to the hardware structure
1705  * @m_ent: the management entry for which counter needs to be added
1706  * @counter_id: VLAN counter ID returned as part of allocate resource
1707  * @l_id: large action resource ID
1708  */
1709 static enum ice_status
1710 ice_add_counter_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent,
1711                     u16 counter_id, u16 l_id)
1712 {
1713         struct ice_aqc_sw_rules_elem *lg_act;
1714         struct ice_aqc_sw_rules_elem *rx_tx;
1715         enum ice_status status;
1716         /* 2 actions will be added while adding a large action counter */
1717         const int num_acts = 2;
1718         u16 lg_act_size;
1719         u16 rules_size;
1720         u16 f_rule_id;
1721         u32 act;
1722         u16 id;
1723
1724         if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC)
1725                 return ICE_ERR_PARAM;
1726
1727         /* Create two back-to-back switch rules and submit them to the HW using
1728          * one memory buffer:
1729          * 1. Large Action
1730          * 2. Look up Tx Rx
1731          */
1732         lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_acts);
1733         rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
1734         lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw,
1735                                                                  rules_size);
1736         if (!lg_act)
1737                 return ICE_ERR_NO_MEMORY;
1738
1739         rx_tx = (struct ice_aqc_sw_rules_elem *)
1740                 ((u8 *)lg_act + lg_act_size);
1741
1742         /* Fill in the first switch rule i.e. large action */
1743         lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT);
1744         lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id);
1745         lg_act->pdata.lg_act.size = CPU_TO_LE16(num_acts);
1746
1747         /* First action VSI forwarding or VSI list forwarding depending on how
1748          * many VSIs
1749          */
1750         id = (m_ent->vsi_count > 1) ?  m_ent->fltr_info.fwd_id.vsi_list_id :
1751                 m_ent->fltr_info.fwd_id.hw_vsi_id;
1752
1753         act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT;
1754         act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) &
1755                 ICE_LG_ACT_VSI_LIST_ID_M;
1756         if (m_ent->vsi_count > 1)
1757                 act |= ICE_LG_ACT_VSI_LIST;
1758         lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act);
1759
1760         /* Second action counter ID */
1761         act = ICE_LG_ACT_STAT_COUNT;
1762         act |= (counter_id << ICE_LG_ACT_STAT_COUNT_S) &
1763                 ICE_LG_ACT_STAT_COUNT_M;
1764         lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act);
1765
1766         /* call the fill switch rule to fill the lookup Tx Rx structure */
1767         ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx,
1768                          ice_aqc_opc_update_sw_rules);
1769
1770         act = ICE_SINGLE_ACT_PTR;
1771         act |= (l_id << ICE_SINGLE_ACT_PTR_VAL_S) & ICE_SINGLE_ACT_PTR_VAL_M;
1772         rx_tx->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
1773
1774         /* Use the filter rule ID of the previously created rule with single
1775          * act. Once the update happens, hardware will treat this as large
1776          * action
1777          */
1778         f_rule_id = m_ent->fltr_info.fltr_rule_id;
1779         rx_tx->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_rule_id);
1780
1781         status = ice_aq_sw_rules(hw, lg_act, rules_size, 2,
1782                                  ice_aqc_opc_update_sw_rules, NULL);
1783         if (!status) {
1784                 m_ent->lg_act_idx = l_id;
1785                 m_ent->counter_index = counter_id;
1786         }
1787
1788         ice_free(hw, lg_act);
1789         return status;
1790 }
1791
1792 /**
1793  * ice_create_vsi_list_map
1794  * @hw: pointer to the hardware structure
1795  * @vsi_handle_arr: array of VSI handles to set in the VSI mapping
1796  * @num_vsi: number of VSI handles in the array
1797  * @vsi_list_id: VSI list ID generated as part of allocate resource
1798  *
1799  * Helper function to create a new entry of VSI list ID to VSI mapping
1800  * using the given VSI list ID
1801  */
1802 static struct ice_vsi_list_map_info *
1803 ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1804                         u16 vsi_list_id)
1805 {
1806         struct ice_switch_info *sw = hw->switch_info;
1807         struct ice_vsi_list_map_info *v_map;
1808         int i;
1809
1810         v_map = (struct ice_vsi_list_map_info *)ice_calloc(hw, 1,
1811                 sizeof(*v_map));
1812         if (!v_map)
1813                 return NULL;
1814
1815         v_map->vsi_list_id = vsi_list_id;
1816         v_map->ref_cnt = 1;
1817         for (i = 0; i < num_vsi; i++)
1818                 ice_set_bit(vsi_handle_arr[i], v_map->vsi_map);
1819
1820         LIST_ADD(&v_map->list_entry, &sw->vsi_list_map_head);
1821         return v_map;
1822 }
1823
1824 /**
1825  * ice_update_vsi_list_rule
1826  * @hw: pointer to the hardware structure
1827  * @vsi_handle_arr: array of VSI handles to form a VSI list
1828  * @num_vsi: number of VSI handles in the array
1829  * @vsi_list_id: VSI list ID generated as part of allocate resource
1830  * @remove: Boolean value to indicate if this is a remove action
1831  * @opc: switch rules population command type - pass in the command opcode
1832  * @lkup_type: lookup type of the filter
1833  *
1834  * Call AQ command to add a new switch rule or update existing switch rule
1835  * using the given VSI list ID
1836  */
1837 static enum ice_status
1838 ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1839                          u16 vsi_list_id, bool remove, enum ice_adminq_opc opc,
1840                          enum ice_sw_lkup_type lkup_type)
1841 {
1842         struct ice_aqc_sw_rules_elem *s_rule;
1843         enum ice_status status;
1844         u16 s_rule_size;
1845         u16 type;
1846         int i;
1847
1848         if (!num_vsi)
1849                 return ICE_ERR_PARAM;
1850
1851         if (lkup_type == ICE_SW_LKUP_MAC ||
1852             lkup_type == ICE_SW_LKUP_MAC_VLAN ||
1853             lkup_type == ICE_SW_LKUP_ETHERTYPE ||
1854             lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC ||
1855             lkup_type == ICE_SW_LKUP_PROMISC ||
1856             lkup_type == ICE_SW_LKUP_PROMISC_VLAN ||
1857             lkup_type == ICE_SW_LKUP_LAST)
1858                 type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR :
1859                                 ICE_AQC_SW_RULES_T_VSI_LIST_SET;
1860         else if (lkup_type == ICE_SW_LKUP_VLAN)
1861                 type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR :
1862                                 ICE_AQC_SW_RULES_T_PRUNE_LIST_SET;
1863         else
1864                 return ICE_ERR_PARAM;
1865
1866         s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(num_vsi);
1867         s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
1868         if (!s_rule)
1869                 return ICE_ERR_NO_MEMORY;
1870         for (i = 0; i < num_vsi; i++) {
1871                 if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) {
1872                         status = ICE_ERR_PARAM;
1873                         goto exit;
1874                 }
1875                 /* AQ call requires hw_vsi_id(s) */
1876                 s_rule->pdata.vsi_list.vsi[i] =
1877                         CPU_TO_LE16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i]));
1878         }
1879
1880         s_rule->type = CPU_TO_LE16(type);
1881         s_rule->pdata.vsi_list.number_vsi = CPU_TO_LE16(num_vsi);
1882         s_rule->pdata.vsi_list.index = CPU_TO_LE16(vsi_list_id);
1883
1884         status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL);
1885
1886 exit:
1887         ice_free(hw, s_rule);
1888         return status;
1889 }
1890
1891 /**
1892  * ice_create_vsi_list_rule - Creates and populates a VSI list rule
1893  * @hw: pointer to the HW struct
1894  * @vsi_handle_arr: array of VSI handles to form a VSI list
1895  * @num_vsi: number of VSI handles in the array
1896  * @vsi_list_id: stores the ID of the VSI list to be created
1897  * @lkup_type: switch rule filter's lookup type
1898  */
1899 static enum ice_status
1900 ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi,
1901                          u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type)
1902 {
1903         enum ice_status status;
1904
1905         status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type,
1906                                             ice_aqc_opc_alloc_res);
1907         if (status)
1908                 return status;
1909
1910         /* Update the newly created VSI list to include the specified VSIs */
1911         return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi,
1912                                         *vsi_list_id, false,
1913                                         ice_aqc_opc_add_sw_rules, lkup_type);
1914 }
1915
1916 /**
1917  * ice_create_pkt_fwd_rule
1918  * @hw: pointer to the hardware structure
1919  * @f_entry: entry containing packet forwarding information
1920  *
1921  * Create switch rule with given filter information and add an entry
1922  * to the corresponding filter management list to track this switch rule
1923  * and VSI mapping
1924  */
1925 static enum ice_status
1926 ice_create_pkt_fwd_rule(struct ice_hw *hw,
1927                         struct ice_fltr_list_entry *f_entry)
1928 {
1929         struct ice_fltr_mgmt_list_entry *fm_entry;
1930         struct ice_aqc_sw_rules_elem *s_rule;
1931         enum ice_sw_lkup_type l_type;
1932         struct ice_sw_recipe *recp;
1933         enum ice_status status;
1934
1935         s_rule = (struct ice_aqc_sw_rules_elem *)
1936                 ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE);
1937         if (!s_rule)
1938                 return ICE_ERR_NO_MEMORY;
1939         fm_entry = (struct ice_fltr_mgmt_list_entry *)
1940                    ice_malloc(hw, sizeof(*fm_entry));
1941         if (!fm_entry) {
1942                 status = ICE_ERR_NO_MEMORY;
1943                 goto ice_create_pkt_fwd_rule_exit;
1944         }
1945
1946         fm_entry->fltr_info = f_entry->fltr_info;
1947
1948         /* Initialize all the fields for the management entry */
1949         fm_entry->vsi_count = 1;
1950         fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX;
1951         fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID;
1952         fm_entry->counter_index = ICE_INVAL_COUNTER_ID;
1953
1954         ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule,
1955                          ice_aqc_opc_add_sw_rules);
1956
1957         status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
1958                                  ice_aqc_opc_add_sw_rules, NULL);
1959         if (status) {
1960                 ice_free(hw, fm_entry);
1961                 goto ice_create_pkt_fwd_rule_exit;
1962         }
1963
1964         f_entry->fltr_info.fltr_rule_id =
1965                 LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
1966         fm_entry->fltr_info.fltr_rule_id =
1967                 LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
1968
1969         /* The book keeping entries will get removed when base driver
1970          * calls remove filter AQ command
1971          */
1972         l_type = fm_entry->fltr_info.lkup_type;
1973         recp = &hw->switch_info->recp_list[l_type];
1974         LIST_ADD(&fm_entry->list_entry, &recp->filt_rules);
1975
1976 ice_create_pkt_fwd_rule_exit:
1977         ice_free(hw, s_rule);
1978         return status;
1979 }
1980
1981 /**
1982  * ice_update_pkt_fwd_rule
1983  * @hw: pointer to the hardware structure
1984  * @f_info: filter information for switch rule
1985  *
1986  * Call AQ command to update a previously created switch rule with a
1987  * VSI list ID
1988  */
1989 static enum ice_status
1990 ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info)
1991 {
1992         struct ice_aqc_sw_rules_elem *s_rule;
1993         enum ice_status status;
1994
1995         s_rule = (struct ice_aqc_sw_rules_elem *)
1996                 ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE);
1997         if (!s_rule)
1998                 return ICE_ERR_NO_MEMORY;
1999
2000         ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules);
2001
2002         s_rule->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_info->fltr_rule_id);
2003
2004         /* Update switch rule with new rule set to forward VSI list */
2005         status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1,
2006                                  ice_aqc_opc_update_sw_rules, NULL);
2007
2008         ice_free(hw, s_rule);
2009         return status;
2010 }
2011
2012 /**
2013  * ice_update_sw_rule_bridge_mode
2014  * @hw: pointer to the HW struct
2015  *
2016  * Updates unicast switch filter rules based on VEB/VEPA mode
2017  */
2018 enum ice_status ice_update_sw_rule_bridge_mode(struct ice_hw *hw)
2019 {
2020         struct ice_switch_info *sw = hw->switch_info;
2021         struct ice_fltr_mgmt_list_entry *fm_entry;
2022         enum ice_status status = ICE_SUCCESS;
2023         struct LIST_HEAD_TYPE *rule_head;
2024         struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2025
2026         rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2027         rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2028
2029         ice_acquire_lock(rule_lock);
2030         LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry,
2031                             list_entry) {
2032                 struct ice_fltr_info *fi = &fm_entry->fltr_info;
2033                 u8 *addr = fi->l_data.mac.mac_addr;
2034
2035                 /* Update unicast Tx rules to reflect the selected
2036                  * VEB/VEPA mode
2037                  */
2038                 if ((fi->flag & ICE_FLTR_TX) && IS_UNICAST_ETHER_ADDR(addr) &&
2039                     (fi->fltr_act == ICE_FWD_TO_VSI ||
2040                      fi->fltr_act == ICE_FWD_TO_VSI_LIST ||
2041                      fi->fltr_act == ICE_FWD_TO_Q ||
2042                      fi->fltr_act == ICE_FWD_TO_QGRP)) {
2043                         status = ice_update_pkt_fwd_rule(hw, fi);
2044                         if (status)
2045                                 break;
2046                 }
2047         }
2048
2049         ice_release_lock(rule_lock);
2050
2051         return status;
2052 }
2053
2054 /**
2055  * ice_add_update_vsi_list
2056  * @hw: pointer to the hardware structure
2057  * @m_entry: pointer to current filter management list entry
2058  * @cur_fltr: filter information from the book keeping entry
2059  * @new_fltr: filter information with the new VSI to be added
2060  *
2061  * Call AQ command to add or update previously created VSI list with new VSI.
2062  *
2063  * Helper function to do book keeping associated with adding filter information
2064  * The algorithm to do the book keeping is described below :
2065  * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.)
2066  *      if only one VSI has been added till now
2067  *              Allocate a new VSI list and add two VSIs
2068  *              to this list using switch rule command
2069  *              Update the previously created switch rule with the
2070  *              newly created VSI list ID
2071  *      if a VSI list was previously created
2072  *              Add the new VSI to the previously created VSI list set
2073  *              using the update switch rule command
2074  */
2075 static enum ice_status
2076 ice_add_update_vsi_list(struct ice_hw *hw,
2077                         struct ice_fltr_mgmt_list_entry *m_entry,
2078                         struct ice_fltr_info *cur_fltr,
2079                         struct ice_fltr_info *new_fltr)
2080 {
2081         enum ice_status status = ICE_SUCCESS;
2082         u16 vsi_list_id = 0;
2083
2084         if ((cur_fltr->fltr_act == ICE_FWD_TO_Q ||
2085              cur_fltr->fltr_act == ICE_FWD_TO_QGRP))
2086                 return ICE_ERR_NOT_IMPL;
2087
2088         if ((new_fltr->fltr_act == ICE_FWD_TO_Q ||
2089              new_fltr->fltr_act == ICE_FWD_TO_QGRP) &&
2090             (cur_fltr->fltr_act == ICE_FWD_TO_VSI ||
2091              cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST))
2092                 return ICE_ERR_NOT_IMPL;
2093
2094         if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
2095                 /* Only one entry existed in the mapping and it was not already
2096                  * a part of a VSI list. So, create a VSI list with the old and
2097                  * new VSIs.
2098                  */
2099                 struct ice_fltr_info tmp_fltr;
2100                 u16 vsi_handle_arr[2];
2101
2102                 /* A rule already exists with the new VSI being added */
2103                 if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id)
2104                         return ICE_ERR_ALREADY_EXISTS;
2105
2106                 vsi_handle_arr[0] = cur_fltr->vsi_handle;
2107                 vsi_handle_arr[1] = new_fltr->vsi_handle;
2108                 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
2109                                                   &vsi_list_id,
2110                                                   new_fltr->lkup_type);
2111                 if (status)
2112                         return status;
2113
2114                 tmp_fltr = *new_fltr;
2115                 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
2116                 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
2117                 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
2118                 /* Update the previous switch rule of "MAC forward to VSI" to
2119                  * "MAC fwd to VSI list"
2120                  */
2121                 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
2122                 if (status)
2123                         return status;
2124
2125                 cur_fltr->fwd_id.vsi_list_id = vsi_list_id;
2126                 cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
2127                 m_entry->vsi_list_info =
2128                         ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
2129                                                 vsi_list_id);
2130
2131                 /* If this entry was large action then the large action needs
2132                  * to be updated to point to FWD to VSI list
2133                  */
2134                 if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID)
2135                         status =
2136                             ice_add_marker_act(hw, m_entry,
2137                                                m_entry->sw_marker_id,
2138                                                m_entry->lg_act_idx);
2139         } else {
2140                 u16 vsi_handle = new_fltr->vsi_handle;
2141                 enum ice_adminq_opc opcode;
2142
2143                 if (!m_entry->vsi_list_info)
2144                         return ICE_ERR_CFG;
2145
2146                 /* A rule already exists with the new VSI being added */
2147                 if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle))
2148                         return ICE_SUCCESS;
2149
2150                 /* Update the previously created VSI list set with
2151                  * the new VSI ID passed in
2152                  */
2153                 vsi_list_id = cur_fltr->fwd_id.vsi_list_id;
2154                 opcode = ice_aqc_opc_update_sw_rules;
2155
2156                 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
2157                                                   vsi_list_id, false, opcode,
2158                                                   new_fltr->lkup_type);
2159                 /* update VSI list mapping info with new VSI ID */
2160                 if (!status)
2161                         ice_set_bit(vsi_handle,
2162                                     m_entry->vsi_list_info->vsi_map);
2163         }
2164         if (!status)
2165                 m_entry->vsi_count++;
2166         return status;
2167 }
2168
2169 /**
2170  * ice_find_rule_entry - Search a rule entry
2171  * @hw: pointer to the hardware structure
2172  * @recp_id: lookup type for which the specified rule needs to be searched
2173  * @f_info: rule information
2174  *
2175  * Helper function to search for a given rule entry
2176  * Returns pointer to entry storing the rule if found
2177  */
2178 static struct ice_fltr_mgmt_list_entry *
2179 ice_find_rule_entry(struct ice_hw *hw, u8 recp_id, struct ice_fltr_info *f_info)
2180 {
2181         struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL;
2182         struct ice_switch_info *sw = hw->switch_info;
2183         struct LIST_HEAD_TYPE *list_head;
2184
2185         list_head = &sw->recp_list[recp_id].filt_rules;
2186         LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
2187                             list_entry) {
2188                 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
2189                             sizeof(f_info->l_data)) &&
2190                     f_info->flag == list_itr->fltr_info.flag) {
2191                         ret = list_itr;
2192                         break;
2193                 }
2194         }
2195         return ret;
2196 }
2197
2198 /**
2199  * ice_find_vsi_list_entry - Search VSI list map with VSI count 1
2200  * @hw: pointer to the hardware structure
2201  * @recp_id: lookup type for which VSI lists needs to be searched
2202  * @vsi_handle: VSI handle to be found in VSI list
2203  * @vsi_list_id: VSI list ID found containing vsi_handle
2204  *
2205  * Helper function to search a VSI list with single entry containing given VSI
2206  * handle element. This can be extended further to search VSI list with more
2207  * than 1 vsi_count. Returns pointer to VSI list entry if found.
2208  */
2209 static struct ice_vsi_list_map_info *
2210 ice_find_vsi_list_entry(struct ice_hw *hw, u8 recp_id, u16 vsi_handle,
2211                         u16 *vsi_list_id)
2212 {
2213         struct ice_vsi_list_map_info *map_info = NULL;
2214         struct ice_switch_info *sw = hw->switch_info;
2215         struct LIST_HEAD_TYPE *list_head;
2216
2217         list_head = &sw->recp_list[recp_id].filt_rules;
2218         if (sw->recp_list[recp_id].adv_rule) {
2219                 struct ice_adv_fltr_mgmt_list_entry *list_itr;
2220
2221                 LIST_FOR_EACH_ENTRY(list_itr, list_head,
2222                                     ice_adv_fltr_mgmt_list_entry,
2223                                     list_entry) {
2224                         if (list_itr->vsi_list_info) {
2225                                 map_info = list_itr->vsi_list_info;
2226                                 if (ice_is_bit_set(map_info->vsi_map,
2227                                                    vsi_handle)) {
2228                                         *vsi_list_id = map_info->vsi_list_id;
2229                                         return map_info;
2230                                 }
2231                         }
2232                 }
2233         } else {
2234                 struct ice_fltr_mgmt_list_entry *list_itr;
2235
2236                 LIST_FOR_EACH_ENTRY(list_itr, list_head,
2237                                     ice_fltr_mgmt_list_entry,
2238                                     list_entry) {
2239                         if (list_itr->vsi_count == 1 &&
2240                             list_itr->vsi_list_info) {
2241                                 map_info = list_itr->vsi_list_info;
2242                                 if (ice_is_bit_set(map_info->vsi_map,
2243                                                    vsi_handle)) {
2244                                         *vsi_list_id = map_info->vsi_list_id;
2245                                         return map_info;
2246                                 }
2247                         }
2248                 }
2249         }
2250         return NULL;
2251 }
2252
2253 /**
2254  * ice_add_rule_internal - add rule for a given lookup type
2255  * @hw: pointer to the hardware structure
2256  * @recp_id: lookup type (recipe ID) for which rule has to be added
2257  * @f_entry: structure containing MAC forwarding information
2258  *
2259  * Adds or updates the rule lists for a given recipe
2260  */
2261 static enum ice_status
2262 ice_add_rule_internal(struct ice_hw *hw, u8 recp_id,
2263                       struct ice_fltr_list_entry *f_entry)
2264 {
2265         struct ice_switch_info *sw = hw->switch_info;
2266         struct ice_fltr_info *new_fltr, *cur_fltr;
2267         struct ice_fltr_mgmt_list_entry *m_entry;
2268         struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2269         enum ice_status status = ICE_SUCCESS;
2270
2271         if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2272                 return ICE_ERR_PARAM;
2273
2274         /* Load the hw_vsi_id only if the fwd action is fwd to VSI */
2275         if (f_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI)
2276                 f_entry->fltr_info.fwd_id.hw_vsi_id =
2277                         ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2278
2279         rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
2280
2281         ice_acquire_lock(rule_lock);
2282         new_fltr = &f_entry->fltr_info;
2283         if (new_fltr->flag & ICE_FLTR_RX)
2284                 new_fltr->src = hw->port_info->lport;
2285         else if (new_fltr->flag & ICE_FLTR_TX)
2286                 new_fltr->src =
2287                         ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2288
2289         m_entry = ice_find_rule_entry(hw, recp_id, new_fltr);
2290         if (!m_entry) {
2291                 status = ice_create_pkt_fwd_rule(hw, f_entry);
2292                 goto exit_add_rule_internal;
2293         }
2294
2295         cur_fltr = &m_entry->fltr_info;
2296         status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr);
2297
2298 exit_add_rule_internal:
2299         ice_release_lock(rule_lock);
2300         return status;
2301 }
2302
2303 /**
2304  * ice_remove_vsi_list_rule
2305  * @hw: pointer to the hardware structure
2306  * @vsi_list_id: VSI list ID generated as part of allocate resource
2307  * @lkup_type: switch rule filter lookup type
2308  *
2309  * The VSI list should be emptied before this function is called to remove the
2310  * VSI list.
2311  */
2312 static enum ice_status
2313 ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id,
2314                          enum ice_sw_lkup_type lkup_type)
2315 {
2316         struct ice_aqc_sw_rules_elem *s_rule;
2317         enum ice_status status;
2318         u16 s_rule_size;
2319
2320         s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(0);
2321         s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
2322         if (!s_rule)
2323                 return ICE_ERR_NO_MEMORY;
2324
2325         s_rule->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR);
2326         s_rule->pdata.vsi_list.index = CPU_TO_LE16(vsi_list_id);
2327
2328         /* Free the vsi_list resource that we allocated. It is assumed that the
2329          * list is empty at this point.
2330          */
2331         status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type,
2332                                             ice_aqc_opc_free_res);
2333
2334         ice_free(hw, s_rule);
2335         return status;
2336 }
2337
2338 /**
2339  * ice_rem_update_vsi_list
2340  * @hw: pointer to the hardware structure
2341  * @vsi_handle: VSI handle of the VSI to remove
2342  * @fm_list: filter management entry for which the VSI list management needs to
2343  *           be done
2344  */
2345 static enum ice_status
2346 ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
2347                         struct ice_fltr_mgmt_list_entry *fm_list)
2348 {
2349         enum ice_sw_lkup_type lkup_type;
2350         enum ice_status status = ICE_SUCCESS;
2351         u16 vsi_list_id;
2352
2353         if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST ||
2354             fm_list->vsi_count == 0)
2355                 return ICE_ERR_PARAM;
2356
2357         /* A rule with the VSI being removed does not exist */
2358         if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle))
2359                 return ICE_ERR_DOES_NOT_EXIST;
2360
2361         lkup_type = fm_list->fltr_info.lkup_type;
2362         vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id;
2363         status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
2364                                           ice_aqc_opc_update_sw_rules,
2365                                           lkup_type);
2366         if (status)
2367                 return status;
2368
2369         fm_list->vsi_count--;
2370         ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
2371
2372         if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) {
2373                 struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info;
2374                 struct ice_vsi_list_map_info *vsi_list_info =
2375                         fm_list->vsi_list_info;
2376                 u16 rem_vsi_handle;
2377
2378                 rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map,
2379                                                     ICE_MAX_VSI);
2380                 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
2381                         return ICE_ERR_OUT_OF_RANGE;
2382
2383                 /* Make sure VSI list is empty before removing it below */
2384                 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
2385                                                   vsi_list_id, true,
2386                                                   ice_aqc_opc_update_sw_rules,
2387                                                   lkup_type);
2388                 if (status)
2389                         return status;
2390
2391                 tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI;
2392                 tmp_fltr_info.fwd_id.hw_vsi_id =
2393                         ice_get_hw_vsi_num(hw, rem_vsi_handle);
2394                 tmp_fltr_info.vsi_handle = rem_vsi_handle;
2395                 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info);
2396                 if (status) {
2397                         ice_debug(hw, ICE_DBG_SW,
2398                                   "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
2399                                   tmp_fltr_info.fwd_id.hw_vsi_id, status);
2400                         return status;
2401                 }
2402
2403                 fm_list->fltr_info = tmp_fltr_info;
2404         }
2405
2406         if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) ||
2407             (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) {
2408                 struct ice_vsi_list_map_info *vsi_list_info =
2409                         fm_list->vsi_list_info;
2410
2411                 /* Remove the VSI list since it is no longer used */
2412                 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
2413                 if (status) {
2414                         ice_debug(hw, ICE_DBG_SW,
2415                                   "Failed to remove VSI list %d, error %d\n",
2416                                   vsi_list_id, status);
2417                         return status;
2418                 }
2419
2420                 LIST_DEL(&vsi_list_info->list_entry);
2421                 ice_free(hw, vsi_list_info);
2422                 fm_list->vsi_list_info = NULL;
2423         }
2424
2425         return status;
2426 }
2427
2428 /**
2429  * ice_remove_rule_internal - Remove a filter rule of a given type
2430  *
2431  * @hw: pointer to the hardware structure
2432  * @recp_id: recipe ID for which the rule needs to removed
2433  * @f_entry: rule entry containing filter information
2434  */
2435 static enum ice_status
2436 ice_remove_rule_internal(struct ice_hw *hw, u8 recp_id,
2437                          struct ice_fltr_list_entry *f_entry)
2438 {
2439         struct ice_switch_info *sw = hw->switch_info;
2440         struct ice_fltr_mgmt_list_entry *list_elem;
2441         struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2442         enum ice_status status = ICE_SUCCESS;
2443         bool remove_rule = false;
2444         u16 vsi_handle;
2445
2446         if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2447                 return ICE_ERR_PARAM;
2448         f_entry->fltr_info.fwd_id.hw_vsi_id =
2449                 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2450
2451         rule_lock = &sw->recp_list[recp_id].filt_rule_lock;
2452         ice_acquire_lock(rule_lock);
2453         list_elem = ice_find_rule_entry(hw, recp_id, &f_entry->fltr_info);
2454         if (!list_elem) {
2455                 status = ICE_ERR_DOES_NOT_EXIST;
2456                 goto exit;
2457         }
2458
2459         if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) {
2460                 remove_rule = true;
2461         } else if (!list_elem->vsi_list_info) {
2462                 status = ICE_ERR_DOES_NOT_EXIST;
2463                 goto exit;
2464         } else if (list_elem->vsi_list_info->ref_cnt > 1) {
2465                 /* a ref_cnt > 1 indicates that the vsi_list is being
2466                  * shared by multiple rules. Decrement the ref_cnt and
2467                  * remove this rule, but do not modify the list, as it
2468                  * is in-use by other rules.
2469                  */
2470                 list_elem->vsi_list_info->ref_cnt--;
2471                 remove_rule = true;
2472         } else {
2473                 /* a ref_cnt of 1 indicates the vsi_list is only used
2474                  * by one rule. However, the original removal request is only
2475                  * for a single VSI. Update the vsi_list first, and only
2476                  * remove the rule if there are no further VSIs in this list.
2477                  */
2478                 vsi_handle = f_entry->fltr_info.vsi_handle;
2479                 status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem);
2480                 if (status)
2481                         goto exit;
2482                 /* if VSI count goes to zero after updating the VSI list */
2483                 if (list_elem->vsi_count == 0)
2484                         remove_rule = true;
2485         }
2486
2487         if (remove_rule) {
2488                 /* Remove the lookup rule */
2489                 struct ice_aqc_sw_rules_elem *s_rule;
2490
2491                 s_rule = (struct ice_aqc_sw_rules_elem *)
2492                         ice_malloc(hw, ICE_SW_RULE_RX_TX_NO_HDR_SIZE);
2493                 if (!s_rule) {
2494                         status = ICE_ERR_NO_MEMORY;
2495                         goto exit;
2496                 }
2497
2498                 ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule,
2499                                  ice_aqc_opc_remove_sw_rules);
2500
2501                 status = ice_aq_sw_rules(hw, s_rule,
2502                                          ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1,
2503                                          ice_aqc_opc_remove_sw_rules, NULL);
2504                 if (status)
2505                         goto exit;
2506
2507                 /* Remove a book keeping from the list */
2508                 ice_free(hw, s_rule);
2509
2510                 LIST_DEL(&list_elem->list_entry);
2511                 ice_free(hw, list_elem);
2512         }
2513 exit:
2514         ice_release_lock(rule_lock);
2515         return status;
2516 }
2517
2518 /**
2519  * ice_aq_get_res_alloc - get allocated resources
2520  * @hw: pointer to the HW struct
2521  * @num_entries: pointer to u16 to store the number of resource entries returned
2522  * @buf: pointer to user-supplied buffer
2523  * @buf_size: size of buff
2524  * @cd: pointer to command details structure or NULL
2525  *
2526  * The user-supplied buffer must be large enough to store the resource
2527  * information for all resource types. Each resource type is an
2528  * ice_aqc_get_res_resp_data_elem structure.
2529  */
2530 enum ice_status
2531 ice_aq_get_res_alloc(struct ice_hw *hw, u16 *num_entries, void *buf,
2532                      u16 buf_size, struct ice_sq_cd *cd)
2533 {
2534         struct ice_aqc_get_res_alloc *resp;
2535         enum ice_status status;
2536         struct ice_aq_desc desc;
2537
2538         if (!buf)
2539                 return ICE_ERR_BAD_PTR;
2540
2541         if (buf_size < ICE_AQ_GET_RES_ALLOC_BUF_LEN)
2542                 return ICE_ERR_INVAL_SIZE;
2543
2544         resp = &desc.params.get_res;
2545
2546         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_res_alloc);
2547         status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2548
2549         if (!status && num_entries)
2550                 *num_entries = LE16_TO_CPU(resp->resp_elem_num);
2551
2552         return status;
2553 }
2554
2555 /**
2556  * ice_aq_get_res_descs - get allocated resource descriptors
2557  * @hw: pointer to the hardware structure
2558  * @num_entries: number of resource entries in buffer
2559  * @buf: Indirect buffer to hold data parameters and response
2560  * @buf_size: size of buffer for indirect commands
2561  * @res_type: resource type
2562  * @res_shared: is resource shared
2563  * @desc_id: input - first desc ID to start; output - next desc ID
2564  * @cd: pointer to command details structure or NULL
2565  */
2566 enum ice_status
2567 ice_aq_get_res_descs(struct ice_hw *hw, u16 num_entries,
2568                      struct ice_aqc_get_allocd_res_desc_resp *buf,
2569                      u16 buf_size, u16 res_type, bool res_shared, u16 *desc_id,
2570                      struct ice_sq_cd *cd)
2571 {
2572         struct ice_aqc_get_allocd_res_desc *cmd;
2573         struct ice_aq_desc desc;
2574         enum ice_status status;
2575
2576         ice_debug(hw, ICE_DBG_TRACE, "ice_aq_get_res_descs");
2577
2578         cmd = &desc.params.get_res_desc;
2579
2580         if (!buf)
2581                 return ICE_ERR_PARAM;
2582
2583         if (buf_size != (num_entries * sizeof(*buf)))
2584                 return ICE_ERR_PARAM;
2585
2586         ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_allocd_res_desc);
2587
2588         cmd->ops.cmd.res = CPU_TO_LE16(((res_type << ICE_AQC_RES_TYPE_S) &
2589                                          ICE_AQC_RES_TYPE_M) | (res_shared ?
2590                                         ICE_AQC_RES_TYPE_FLAG_SHARED : 0));
2591         cmd->ops.cmd.first_desc = CPU_TO_LE16(*desc_id);
2592
2593         desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
2594
2595         status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2596         if (!status)
2597                 *desc_id = LE16_TO_CPU(cmd->ops.resp.next_desc);
2598
2599         return status;
2600 }
2601
2602 /**
2603  * ice_add_mac - Add a MAC address based filter rule
2604  * @hw: pointer to the hardware structure
2605  * @m_list: list of MAC addresses and forwarding information
2606  *
2607  * IMPORTANT: When the ucast_shared flag is set to false and m_list has
2608  * multiple unicast addresses, the function assumes that all the
2609  * addresses are unique in a given add_mac call. It doesn't
2610  * check for duplicates in this case, removing duplicates from a given
2611  * list should be taken care of in the caller of this function.
2612  */
2613 enum ice_status
2614 ice_add_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
2615 {
2616         struct ice_aqc_sw_rules_elem *s_rule, *r_iter;
2617         struct ice_fltr_list_entry *m_list_itr;
2618         struct LIST_HEAD_TYPE *rule_head;
2619         u16 elem_sent, total_elem_left;
2620         struct ice_switch_info *sw;
2621         struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2622         enum ice_status status = ICE_SUCCESS;
2623         u16 num_unicast = 0;
2624         u16 s_rule_size;
2625
2626         if (!m_list || !hw)
2627                 return ICE_ERR_PARAM;
2628         s_rule = NULL;
2629         sw = hw->switch_info;
2630         rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
2631         LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2632                             list_entry) {
2633                 u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0];
2634                 u16 vsi_handle;
2635                 u16 hw_vsi_id;
2636
2637                 m_list_itr->fltr_info.flag = ICE_FLTR_TX;
2638                 vsi_handle = m_list_itr->fltr_info.vsi_handle;
2639                 if (!ice_is_vsi_valid(hw, vsi_handle))
2640                         return ICE_ERR_PARAM;
2641                 hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
2642                 m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id;
2643                 /* update the src in case it is VSI num */
2644                 if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI)
2645                         return ICE_ERR_PARAM;
2646                 m_list_itr->fltr_info.src = hw_vsi_id;
2647                 if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC ||
2648                     IS_ZERO_ETHER_ADDR(add))
2649                         return ICE_ERR_PARAM;
2650                 if (IS_UNICAST_ETHER_ADDR(add) && !hw->ucast_shared) {
2651                         /* Don't overwrite the unicast address */
2652                         ice_acquire_lock(rule_lock);
2653                         if (ice_find_rule_entry(hw, ICE_SW_LKUP_MAC,
2654                                                 &m_list_itr->fltr_info)) {
2655                                 ice_release_lock(rule_lock);
2656                                 return ICE_ERR_ALREADY_EXISTS;
2657                         }
2658                         ice_release_lock(rule_lock);
2659                         num_unicast++;
2660                 } else if (IS_MULTICAST_ETHER_ADDR(add) ||
2661                            (IS_UNICAST_ETHER_ADDR(add) && hw->ucast_shared)) {
2662                         m_list_itr->status =
2663                                 ice_add_rule_internal(hw, ICE_SW_LKUP_MAC,
2664                                                       m_list_itr);
2665                         if (m_list_itr->status)
2666                                 return m_list_itr->status;
2667                 }
2668         }
2669
2670         ice_acquire_lock(rule_lock);
2671         /* Exit if no suitable entries were found for adding bulk switch rule */
2672         if (!num_unicast) {
2673                 status = ICE_SUCCESS;
2674                 goto ice_add_mac_exit;
2675         }
2676
2677         rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules;
2678
2679         /* Allocate switch rule buffer for the bulk update for unicast */
2680         s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE;
2681         s_rule = (struct ice_aqc_sw_rules_elem *)
2682                 ice_calloc(hw, num_unicast, s_rule_size);
2683         if (!s_rule) {
2684                 status = ICE_ERR_NO_MEMORY;
2685                 goto ice_add_mac_exit;
2686         }
2687
2688         r_iter = s_rule;
2689         LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2690                             list_entry) {
2691                 struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
2692                 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
2693
2694                 if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
2695                         ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter,
2696                                          ice_aqc_opc_add_sw_rules);
2697                         r_iter = (struct ice_aqc_sw_rules_elem *)
2698                                 ((u8 *)r_iter + s_rule_size);
2699                 }
2700         }
2701
2702         /* Call AQ bulk switch rule update for all unicast addresses */
2703         r_iter = s_rule;
2704         /* Call AQ switch rule in AQ_MAX chunk */
2705         for (total_elem_left = num_unicast; total_elem_left > 0;
2706              total_elem_left -= elem_sent) {
2707                 struct ice_aqc_sw_rules_elem *entry = r_iter;
2708
2709                 elem_sent = min(total_elem_left,
2710                                 (u16)(ICE_AQ_MAX_BUF_LEN / s_rule_size));
2711                 status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size,
2712                                          elem_sent, ice_aqc_opc_add_sw_rules,
2713                                          NULL);
2714                 if (status)
2715                         goto ice_add_mac_exit;
2716                 r_iter = (struct ice_aqc_sw_rules_elem *)
2717                         ((u8 *)r_iter + (elem_sent * s_rule_size));
2718         }
2719
2720         /* Fill up rule ID based on the value returned from FW */
2721         r_iter = s_rule;
2722         LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry,
2723                             list_entry) {
2724                 struct ice_fltr_info *f_info = &m_list_itr->fltr_info;
2725                 u8 *mac_addr = &f_info->l_data.mac.mac_addr[0];
2726                 struct ice_fltr_mgmt_list_entry *fm_entry;
2727
2728                 if (IS_UNICAST_ETHER_ADDR(mac_addr)) {
2729                         f_info->fltr_rule_id =
2730                                 LE16_TO_CPU(r_iter->pdata.lkup_tx_rx.index);
2731                         f_info->fltr_act = ICE_FWD_TO_VSI;
2732                         /* Create an entry to track this MAC address */
2733                         fm_entry = (struct ice_fltr_mgmt_list_entry *)
2734                                 ice_malloc(hw, sizeof(*fm_entry));
2735                         if (!fm_entry) {
2736                                 status = ICE_ERR_NO_MEMORY;
2737                                 goto ice_add_mac_exit;
2738                         }
2739                         fm_entry->fltr_info = *f_info;
2740                         fm_entry->vsi_count = 1;
2741                         /* The book keeping entries will get removed when
2742                          * base driver calls remove filter AQ command
2743                          */
2744
2745                         LIST_ADD(&fm_entry->list_entry, rule_head);
2746                         r_iter = (struct ice_aqc_sw_rules_elem *)
2747                                 ((u8 *)r_iter + s_rule_size);
2748                 }
2749         }
2750
2751 ice_add_mac_exit:
2752         ice_release_lock(rule_lock);
2753         if (s_rule)
2754                 ice_free(hw, s_rule);
2755         return status;
2756 }
2757
2758 /**
2759  * ice_add_vlan_internal - Add one VLAN based filter rule
2760  * @hw: pointer to the hardware structure
2761  * @f_entry: filter entry containing one VLAN information
2762  */
2763 static enum ice_status
2764 ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry)
2765 {
2766         struct ice_switch_info *sw = hw->switch_info;
2767         struct ice_fltr_mgmt_list_entry *v_list_itr;
2768         struct ice_fltr_info *new_fltr, *cur_fltr;
2769         enum ice_sw_lkup_type lkup_type;
2770         u16 vsi_list_id = 0, vsi_handle;
2771         struct ice_lock *rule_lock; /* Lock to protect filter rule list */
2772         enum ice_status status = ICE_SUCCESS;
2773
2774         if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle))
2775                 return ICE_ERR_PARAM;
2776
2777         f_entry->fltr_info.fwd_id.hw_vsi_id =
2778                 ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle);
2779         new_fltr = &f_entry->fltr_info;
2780
2781         /* VLAN ID should only be 12 bits */
2782         if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID)
2783                 return ICE_ERR_PARAM;
2784
2785         if (new_fltr->src_id != ICE_SRC_ID_VSI)
2786                 return ICE_ERR_PARAM;
2787
2788         new_fltr->src = new_fltr->fwd_id.hw_vsi_id;
2789         lkup_type = new_fltr->lkup_type;
2790         vsi_handle = new_fltr->vsi_handle;
2791         rule_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
2792         ice_acquire_lock(rule_lock);
2793         v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN, new_fltr);
2794         if (!v_list_itr) {
2795                 struct ice_vsi_list_map_info *map_info = NULL;
2796
2797                 if (new_fltr->fltr_act == ICE_FWD_TO_VSI) {
2798                         /* All VLAN pruning rules use a VSI list. Check if
2799                          * there is already a VSI list containing VSI that we
2800                          * want to add. If found, use the same vsi_list_id for
2801                          * this new VLAN rule or else create a new list.
2802                          */
2803                         map_info = ice_find_vsi_list_entry(hw, ICE_SW_LKUP_VLAN,
2804                                                            vsi_handle,
2805                                                            &vsi_list_id);
2806                         if (!map_info) {
2807                                 status = ice_create_vsi_list_rule(hw,
2808                                                                   &vsi_handle,
2809                                                                   1,
2810                                                                   &vsi_list_id,
2811                                                                   lkup_type);
2812                                 if (status)
2813                                         goto exit;
2814                         }
2815                         /* Convert the action to forwarding to a VSI list. */
2816                         new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST;
2817                         new_fltr->fwd_id.vsi_list_id = vsi_list_id;
2818                 }
2819
2820                 status = ice_create_pkt_fwd_rule(hw, f_entry);
2821                 if (!status) {
2822                         v_list_itr = ice_find_rule_entry(hw, ICE_SW_LKUP_VLAN,
2823                                                          new_fltr);
2824                         if (!v_list_itr) {
2825                                 status = ICE_ERR_DOES_NOT_EXIST;
2826                                 goto exit;
2827                         }
2828                         /* reuse VSI list for new rule and increment ref_cnt */
2829                         if (map_info) {
2830                                 v_list_itr->vsi_list_info = map_info;
2831                                 map_info->ref_cnt++;
2832                         } else {
2833                                 v_list_itr->vsi_list_info =
2834                                         ice_create_vsi_list_map(hw, &vsi_handle,
2835                                                                 1, vsi_list_id);
2836                         }
2837                 }
2838         } else if (v_list_itr->vsi_list_info->ref_cnt == 1) {
2839                 /* Update existing VSI list to add new VSI ID only if it used
2840                  * by one VLAN rule.
2841                  */
2842                 cur_fltr = &v_list_itr->fltr_info;
2843                 status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr,
2844                                                  new_fltr);
2845         } else {
2846                 /* If VLAN rule exists and VSI list being used by this rule is
2847                  * referenced by more than 1 VLAN rule. Then create a new VSI
2848                  * list appending previous VSI with new VSI and update existing
2849                  * VLAN rule to point to new VSI list ID
2850                  */
2851                 struct ice_fltr_info tmp_fltr;
2852                 u16 vsi_handle_arr[2];
2853                 u16 cur_handle;
2854
2855                 /* Current implementation only supports reusing VSI list with
2856                  * one VSI count. We should never hit below condition
2857                  */
2858                 if (v_list_itr->vsi_count > 1 &&
2859                     v_list_itr->vsi_list_info->ref_cnt > 1) {
2860                         ice_debug(hw, ICE_DBG_SW,
2861                                   "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n");
2862                         status = ICE_ERR_CFG;
2863                         goto exit;
2864                 }
2865
2866                 cur_handle =
2867                         ice_find_first_bit(v_list_itr->vsi_list_info->vsi_map,
2868                                            ICE_MAX_VSI);
2869
2870                 /* A rule already exists with the new VSI being added */
2871                 if (cur_handle == vsi_handle) {
2872                         status = ICE_ERR_ALREADY_EXISTS;
2873                         goto exit;
2874                 }
2875
2876                 vsi_handle_arr[0] = cur_handle;
2877                 vsi_handle_arr[1] = vsi_handle;
2878                 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
2879                                                   &vsi_list_id, lkup_type);
2880                 if (status)
2881                         goto exit;
2882
2883                 tmp_fltr = v_list_itr->fltr_info;
2884                 tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id;
2885                 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
2886                 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
2887                 /* Update the previous switch rule to a new VSI list which
2888                  * includes current VSI that is requested
2889                  */
2890                 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
2891                 if (status)
2892                         goto exit;
2893
2894                 /* before overriding VSI list map info. decrement ref_cnt of
2895                  * previous VSI list
2896                  */
2897                 v_list_itr->vsi_list_info->ref_cnt--;
2898
2899                 /* now update to newly created list */
2900                 v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id;
2901                 v_list_itr->vsi_list_info =
2902                         ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
2903                                                 vsi_list_id);
2904                 v_list_itr->vsi_count++;
2905         }
2906
2907 exit:
2908         ice_release_lock(rule_lock);
2909         return status;
2910 }
2911
2912 /**
2913  * ice_add_vlan - Add VLAN based filter rule
2914  * @hw: pointer to the hardware structure
2915  * @v_list: list of VLAN entries and forwarding information
2916  */
2917 enum ice_status
2918 ice_add_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
2919 {
2920         struct ice_fltr_list_entry *v_list_itr;
2921
2922         if (!v_list || !hw)
2923                 return ICE_ERR_PARAM;
2924
2925         LIST_FOR_EACH_ENTRY(v_list_itr, v_list, ice_fltr_list_entry,
2926                             list_entry) {
2927                 if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN)
2928                         return ICE_ERR_PARAM;
2929                 v_list_itr->fltr_info.flag = ICE_FLTR_TX;
2930                 v_list_itr->status = ice_add_vlan_internal(hw, v_list_itr);
2931                 if (v_list_itr->status)
2932                         return v_list_itr->status;
2933         }
2934         return ICE_SUCCESS;
2935 }
2936
2937 #ifndef NO_MACVLAN_SUPPORT
2938 /**
2939  * ice_add_mac_vlan - Add MAC and VLAN pair based filter rule
2940  * @hw: pointer to the hardware structure
2941  * @mv_list: list of MAC and VLAN filters
2942  *
2943  * If the VSI on which the MAC-VLAN pair has to be added has Rx and Tx VLAN
2944  * pruning bits enabled, then it is the responsibility of the caller to make
2945  * sure to add a VLAN only filter on the same VSI. Packets belonging to that
2946  * VLAN won't be received on that VSI otherwise.
2947  */
2948 enum ice_status
2949 ice_add_mac_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *mv_list)
2950 {
2951         struct ice_fltr_list_entry *mv_list_itr;
2952
2953         if (!mv_list || !hw)
2954                 return ICE_ERR_PARAM;
2955
2956         LIST_FOR_EACH_ENTRY(mv_list_itr, mv_list, ice_fltr_list_entry,
2957                             list_entry) {
2958                 enum ice_sw_lkup_type l_type =
2959                         mv_list_itr->fltr_info.lkup_type;
2960
2961                 if (l_type != ICE_SW_LKUP_MAC_VLAN)
2962                         return ICE_ERR_PARAM;
2963                 mv_list_itr->fltr_info.flag = ICE_FLTR_TX;
2964                 mv_list_itr->status =
2965                         ice_add_rule_internal(hw, ICE_SW_LKUP_MAC_VLAN,
2966                                               mv_list_itr);
2967                 if (mv_list_itr->status)
2968                         return mv_list_itr->status;
2969         }
2970         return ICE_SUCCESS;
2971 }
2972 #endif
2973
2974 /**
2975  * ice_add_eth_mac - Add ethertype and MAC based filter rule
2976  * @hw: pointer to the hardware structure
2977  * @em_list: list of ether type MAC filter, MAC is optional
2978  */
2979 enum ice_status
2980 ice_add_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
2981 {
2982         struct ice_fltr_list_entry *em_list_itr;
2983
2984         LIST_FOR_EACH_ENTRY(em_list_itr, em_list, ice_fltr_list_entry,
2985                             list_entry) {
2986                 enum ice_sw_lkup_type l_type =
2987                         em_list_itr->fltr_info.lkup_type;
2988
2989                 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
2990                     l_type != ICE_SW_LKUP_ETHERTYPE)
2991                         return ICE_ERR_PARAM;
2992
2993                 em_list_itr->fltr_info.flag = ICE_FLTR_TX;
2994                 em_list_itr->status = ice_add_rule_internal(hw, l_type,
2995                                                             em_list_itr);
2996                 if (em_list_itr->status)
2997                         return em_list_itr->status;
2998         }
2999         return ICE_SUCCESS;
3000 }
3001
3002 /**
3003  * ice_remove_eth_mac - Remove an ethertype (or MAC) based filter rule
3004  * @hw: pointer to the hardware structure
3005  * @em_list: list of ethertype or ethertype MAC entries
3006  */
3007 enum ice_status
3008 ice_remove_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list)
3009 {
3010         struct ice_fltr_list_entry *em_list_itr, *tmp;
3011
3012         if (!em_list || !hw)
3013                 return ICE_ERR_PARAM;
3014
3015         LIST_FOR_EACH_ENTRY_SAFE(em_list_itr, tmp, em_list, ice_fltr_list_entry,
3016                                  list_entry) {
3017                 enum ice_sw_lkup_type l_type =
3018                         em_list_itr->fltr_info.lkup_type;
3019
3020                 if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC &&
3021                     l_type != ICE_SW_LKUP_ETHERTYPE)
3022                         return ICE_ERR_PARAM;
3023
3024                 em_list_itr->status = ice_remove_rule_internal(hw, l_type,
3025                                                                em_list_itr);
3026                 if (em_list_itr->status)
3027                         return em_list_itr->status;
3028         }
3029         return ICE_SUCCESS;
3030 }
3031
3032
3033 /**
3034  * ice_rem_sw_rule_info
3035  * @hw: pointer to the hardware structure
3036  * @rule_head: pointer to the switch list structure that we want to delete
3037  */
3038 static void
3039 ice_rem_sw_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head)
3040 {
3041         if (!LIST_EMPTY(rule_head)) {
3042                 struct ice_fltr_mgmt_list_entry *entry;
3043                 struct ice_fltr_mgmt_list_entry *tmp;
3044
3045                 LIST_FOR_EACH_ENTRY_SAFE(entry, tmp, rule_head,
3046                                          ice_fltr_mgmt_list_entry, list_entry) {
3047                         LIST_DEL(&entry->list_entry);
3048                         ice_free(hw, entry);
3049                 }
3050         }
3051 }
3052
3053 /**
3054  * ice_rem_adv_rule_info
3055  * @hw: pointer to the hardware structure
3056  * @rule_head: pointer to the switch list structure that we want to delete
3057  */
3058 static void
3059 ice_rem_adv_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head)
3060 {
3061         struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
3062         struct ice_adv_fltr_mgmt_list_entry *lst_itr;
3063
3064         if (LIST_EMPTY(rule_head))
3065                 return;
3066
3067         LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry, rule_head,
3068                                  ice_adv_fltr_mgmt_list_entry, list_entry) {
3069                 LIST_DEL(&lst_itr->list_entry);
3070                 ice_free(hw, lst_itr->lkups);
3071                 ice_free(hw, lst_itr);
3072         }
3073 }
3074
3075 /**
3076  * ice_rem_all_sw_rules_info
3077  * @hw: pointer to the hardware structure
3078  */
3079 void ice_rem_all_sw_rules_info(struct ice_hw *hw)
3080 {
3081         struct ice_switch_info *sw = hw->switch_info;
3082         u8 i;
3083
3084         for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
3085                 struct LIST_HEAD_TYPE *rule_head;
3086
3087                 rule_head = &sw->recp_list[i].filt_rules;
3088                 if (!sw->recp_list[i].adv_rule)
3089                         ice_rem_sw_rule_info(hw, rule_head);
3090                 else
3091                         ice_rem_adv_rule_info(hw, rule_head);
3092         }
3093 }
3094
3095 /**
3096  * ice_cfg_dflt_vsi - change state of VSI to set/clear default
3097  * @pi: pointer to the port_info structure
3098  * @vsi_handle: VSI handle to set as default
3099  * @set: true to add the above mentioned switch rule, false to remove it
3100  * @direction: ICE_FLTR_RX or ICE_FLTR_TX
3101  *
3102  * add filter rule to set/unset given VSI as default VSI for the switch
3103  * (represented by swid)
3104  */
3105 enum ice_status
3106 ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set,
3107                  u8 direction)
3108 {
3109         struct ice_aqc_sw_rules_elem *s_rule;
3110         struct ice_fltr_info f_info;
3111         struct ice_hw *hw = pi->hw;
3112         enum ice_adminq_opc opcode;
3113         enum ice_status status;
3114         u16 s_rule_size;
3115         u16 hw_vsi_id;
3116
3117         if (!ice_is_vsi_valid(hw, vsi_handle))
3118                 return ICE_ERR_PARAM;
3119         hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3120
3121         s_rule_size = set ? ICE_SW_RULE_RX_TX_ETH_HDR_SIZE :
3122                             ICE_SW_RULE_RX_TX_NO_HDR_SIZE;
3123         s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size);
3124         if (!s_rule)
3125                 return ICE_ERR_NO_MEMORY;
3126
3127         ice_memset(&f_info, 0, sizeof(f_info), ICE_NONDMA_MEM);
3128
3129         f_info.lkup_type = ICE_SW_LKUP_DFLT;
3130         f_info.flag = direction;
3131         f_info.fltr_act = ICE_FWD_TO_VSI;
3132         f_info.fwd_id.hw_vsi_id = hw_vsi_id;
3133
3134         if (f_info.flag & ICE_FLTR_RX) {
3135                 f_info.src = pi->lport;
3136                 f_info.src_id = ICE_SRC_ID_LPORT;
3137                 if (!set)
3138                         f_info.fltr_rule_id =
3139                                 pi->dflt_rx_vsi_rule_id;
3140         } else if (f_info.flag & ICE_FLTR_TX) {
3141                 f_info.src_id = ICE_SRC_ID_VSI;
3142                 f_info.src = hw_vsi_id;
3143                 if (!set)
3144                         f_info.fltr_rule_id =
3145                                 pi->dflt_tx_vsi_rule_id;
3146         }
3147
3148         if (set)
3149                 opcode = ice_aqc_opc_add_sw_rules;
3150         else
3151                 opcode = ice_aqc_opc_remove_sw_rules;
3152
3153         ice_fill_sw_rule(hw, &f_info, s_rule, opcode);
3154
3155         status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opcode, NULL);
3156         if (status || !(f_info.flag & ICE_FLTR_TX_RX))
3157                 goto out;
3158         if (set) {
3159                 u16 index = LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
3160
3161                 if (f_info.flag & ICE_FLTR_TX) {
3162                         pi->dflt_tx_vsi_num = hw_vsi_id;
3163                         pi->dflt_tx_vsi_rule_id = index;
3164                 } else if (f_info.flag & ICE_FLTR_RX) {
3165                         pi->dflt_rx_vsi_num = hw_vsi_id;
3166                         pi->dflt_rx_vsi_rule_id = index;
3167                 }
3168         } else {
3169                 if (f_info.flag & ICE_FLTR_TX) {
3170                         pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL;
3171                         pi->dflt_tx_vsi_rule_id = ICE_INVAL_ACT;
3172                 } else if (f_info.flag & ICE_FLTR_RX) {
3173                         pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL;
3174                         pi->dflt_rx_vsi_rule_id = ICE_INVAL_ACT;
3175                 }
3176         }
3177
3178 out:
3179         ice_free(hw, s_rule);
3180         return status;
3181 }
3182
3183 /**
3184  * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry
3185  * @hw: pointer to the hardware structure
3186  * @recp_id: lookup type for which the specified rule needs to be searched
3187  * @f_info: rule information
3188  *
3189  * Helper function to search for a unicast rule entry - this is to be used
3190  * to remove unicast MAC filter that is not shared with other VSIs on the
3191  * PF switch.
3192  *
3193  * Returns pointer to entry storing the rule if found
3194  */
3195 static struct ice_fltr_mgmt_list_entry *
3196 ice_find_ucast_rule_entry(struct ice_hw *hw, u8 recp_id,
3197                           struct ice_fltr_info *f_info)
3198 {
3199         struct ice_switch_info *sw = hw->switch_info;
3200         struct ice_fltr_mgmt_list_entry *list_itr;
3201         struct LIST_HEAD_TYPE *list_head;
3202
3203         list_head = &sw->recp_list[recp_id].filt_rules;
3204         LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry,
3205                             list_entry) {
3206                 if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data,
3207                             sizeof(f_info->l_data)) &&
3208                     f_info->fwd_id.hw_vsi_id ==
3209                     list_itr->fltr_info.fwd_id.hw_vsi_id &&
3210                     f_info->flag == list_itr->fltr_info.flag)
3211                         return list_itr;
3212         }
3213         return NULL;
3214 }
3215
3216 /**
3217  * ice_remove_mac - remove a MAC address based filter rule
3218  * @hw: pointer to the hardware structure
3219  * @m_list: list of MAC addresses and forwarding information
3220  *
3221  * This function removes either a MAC filter rule or a specific VSI from a
3222  * VSI list for a multicast MAC address.
3223  *
3224  * Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by
3225  * ice_add_mac. Caller should be aware that this call will only work if all
3226  * the entries passed into m_list were added previously. It will not attempt to
3227  * do a partial remove of entries that were found.
3228  */
3229 enum ice_status
3230 ice_remove_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list)
3231 {
3232         struct ice_fltr_list_entry *list_itr, *tmp;
3233         struct ice_lock *rule_lock; /* Lock to protect filter rule list */
3234
3235         if (!m_list)
3236                 return ICE_ERR_PARAM;
3237
3238         rule_lock = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
3239         LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, m_list, ice_fltr_list_entry,
3240                                  list_entry) {
3241                 enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type;
3242                 u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0];
3243                 u16 vsi_handle;
3244
3245                 if (l_type != ICE_SW_LKUP_MAC)
3246                         return ICE_ERR_PARAM;
3247
3248                 vsi_handle = list_itr->fltr_info.vsi_handle;
3249                 if (!ice_is_vsi_valid(hw, vsi_handle))
3250                         return ICE_ERR_PARAM;
3251
3252                 list_itr->fltr_info.fwd_id.hw_vsi_id =
3253                                         ice_get_hw_vsi_num(hw, vsi_handle);
3254                 if (IS_UNICAST_ETHER_ADDR(add) && !hw->ucast_shared) {
3255                         /* Don't remove the unicast address that belongs to
3256                          * another VSI on the switch, since it is not being
3257                          * shared...
3258                          */
3259                         ice_acquire_lock(rule_lock);
3260                         if (!ice_find_ucast_rule_entry(hw, ICE_SW_LKUP_MAC,
3261                                                        &list_itr->fltr_info)) {
3262                                 ice_release_lock(rule_lock);
3263                                 return ICE_ERR_DOES_NOT_EXIST;
3264                         }
3265                         ice_release_lock(rule_lock);
3266                 }
3267                 list_itr->status = ice_remove_rule_internal(hw,
3268                                                             ICE_SW_LKUP_MAC,
3269                                                             list_itr);
3270                 if (list_itr->status)
3271                         return list_itr->status;
3272         }
3273         return ICE_SUCCESS;
3274 }
3275
3276 /**
3277  * ice_remove_vlan - Remove VLAN based filter rule
3278  * @hw: pointer to the hardware structure
3279  * @v_list: list of VLAN entries and forwarding information
3280  */
3281 enum ice_status
3282 ice_remove_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
3283 {
3284         struct ice_fltr_list_entry *v_list_itr, *tmp;
3285
3286         if (!v_list || !hw)
3287                 return ICE_ERR_PARAM;
3288
3289         LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
3290                                  list_entry) {
3291                 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3292
3293                 if (l_type != ICE_SW_LKUP_VLAN)
3294                         return ICE_ERR_PARAM;
3295                 v_list_itr->status = ice_remove_rule_internal(hw,
3296                                                               ICE_SW_LKUP_VLAN,
3297                                                               v_list_itr);
3298                 if (v_list_itr->status)
3299                         return v_list_itr->status;
3300         }
3301         return ICE_SUCCESS;
3302 }
3303
3304 #ifndef NO_MACVLAN_SUPPORT
3305 /**
3306  * ice_remove_mac_vlan - Remove MAC VLAN based filter rule
3307  * @hw: pointer to the hardware structure
3308  * @v_list: list of MAC VLAN entries and forwarding information
3309  */
3310 enum ice_status
3311 ice_remove_mac_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list)
3312 {
3313         struct ice_fltr_list_entry *v_list_itr, *tmp;
3314
3315         if (!v_list || !hw)
3316                 return ICE_ERR_PARAM;
3317
3318         LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
3319                                  list_entry) {
3320                 enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type;
3321
3322                 if (l_type != ICE_SW_LKUP_MAC_VLAN)
3323                         return ICE_ERR_PARAM;
3324                 v_list_itr->status =
3325                         ice_remove_rule_internal(hw, ICE_SW_LKUP_MAC_VLAN,
3326                                                  v_list_itr);
3327                 if (v_list_itr->status)
3328                         return v_list_itr->status;
3329         }
3330         return ICE_SUCCESS;
3331 }
3332 #endif /* !NO_MACVLAN_SUPPORT */
3333
3334 /**
3335  * ice_vsi_uses_fltr - Determine if given VSI uses specified filter
3336  * @fm_entry: filter entry to inspect
3337  * @vsi_handle: VSI handle to compare with filter info
3338  */
3339 static bool
3340 ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle)
3341 {
3342         return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI &&
3343                  fm_entry->fltr_info.vsi_handle == vsi_handle) ||
3344                 (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST &&
3345                  (ice_is_bit_set(fm_entry->vsi_list_info->vsi_map,
3346                                  vsi_handle))));
3347 }
3348
3349 /**
3350  * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list
3351  * @hw: pointer to the hardware structure
3352  * @vsi_handle: VSI handle to remove filters from
3353  * @vsi_list_head: pointer to the list to add entry to
3354  * @fi: pointer to fltr_info of filter entry to copy & add
3355  *
3356  * Helper function, used when creating a list of filters to remove from
3357  * a specific VSI. The entry added to vsi_list_head is a COPY of the
3358  * original filter entry, with the exception of fltr_info.fltr_act and
3359  * fltr_info.fwd_id fields. These are set such that later logic can
3360  * extract which VSI to remove the fltr from, and pass on that information.
3361  */
3362 static enum ice_status
3363 ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3364                                struct LIST_HEAD_TYPE *vsi_list_head,
3365                                struct ice_fltr_info *fi)
3366 {
3367         struct ice_fltr_list_entry *tmp;
3368
3369         /* this memory is freed up in the caller function
3370          * once filters for this VSI are removed
3371          */
3372         tmp = (struct ice_fltr_list_entry *)ice_malloc(hw, sizeof(*tmp));
3373         if (!tmp)
3374                 return ICE_ERR_NO_MEMORY;
3375
3376         tmp->fltr_info = *fi;
3377
3378         /* Overwrite these fields to indicate which VSI to remove filter from,
3379          * so find and remove logic can extract the information from the
3380          * list entries. Note that original entries will still have proper
3381          * values.
3382          */
3383         tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
3384         tmp->fltr_info.vsi_handle = vsi_handle;
3385         tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3386
3387         LIST_ADD(&tmp->list_entry, vsi_list_head);
3388
3389         return ICE_SUCCESS;
3390 }
3391
3392 /**
3393  * ice_add_to_vsi_fltr_list - Add VSI filters to the list
3394  * @hw: pointer to the hardware structure
3395  * @vsi_handle: VSI handle to remove filters from
3396  * @lkup_list_head: pointer to the list that has certain lookup type filters
3397  * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle
3398  *
3399  * Locates all filters in lkup_list_head that are used by the given VSI,
3400  * and adds COPIES of those entries to vsi_list_head (intended to be used
3401  * to remove the listed filters).
3402  * Note that this means all entries in vsi_list_head must be explicitly
3403  * deallocated by the caller when done with list.
3404  */
3405 static enum ice_status
3406 ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle,
3407                          struct LIST_HEAD_TYPE *lkup_list_head,
3408                          struct LIST_HEAD_TYPE *vsi_list_head)
3409 {
3410         struct ice_fltr_mgmt_list_entry *fm_entry;
3411         enum ice_status status = ICE_SUCCESS;
3412
3413         /* check to make sure VSI ID is valid and within boundary */
3414         if (!ice_is_vsi_valid(hw, vsi_handle))
3415                 return ICE_ERR_PARAM;
3416
3417         LIST_FOR_EACH_ENTRY(fm_entry, lkup_list_head,
3418                             ice_fltr_mgmt_list_entry, list_entry) {
3419                 struct ice_fltr_info *fi;
3420
3421                 fi = &fm_entry->fltr_info;
3422                 if (!fi || !ice_vsi_uses_fltr(fm_entry, vsi_handle))
3423                         continue;
3424
3425                 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
3426                                                         vsi_list_head, fi);
3427                 if (status)
3428                         return status;
3429         }
3430         return status;
3431 }
3432
3433
3434 /**
3435  * ice_determine_promisc_mask
3436  * @fi: filter info to parse
3437  *
3438  * Helper function to determine which ICE_PROMISC_ mask corresponds
3439  * to given filter into.
3440  */
3441 static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi)
3442 {
3443         u16 vid = fi->l_data.mac_vlan.vlan_id;
3444         u8 *macaddr = fi->l_data.mac.mac_addr;
3445         bool is_tx_fltr = false;
3446         u8 promisc_mask = 0;
3447
3448         if (fi->flag == ICE_FLTR_TX)
3449                 is_tx_fltr = true;
3450
3451         if (IS_BROADCAST_ETHER_ADDR(macaddr))
3452                 promisc_mask |= is_tx_fltr ?
3453                         ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX;
3454         else if (IS_MULTICAST_ETHER_ADDR(macaddr))
3455                 promisc_mask |= is_tx_fltr ?
3456                         ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX;
3457         else if (IS_UNICAST_ETHER_ADDR(macaddr))
3458                 promisc_mask |= is_tx_fltr ?
3459                         ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX;
3460         if (vid)
3461                 promisc_mask |= is_tx_fltr ?
3462                         ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX;
3463
3464         return promisc_mask;
3465 }
3466
3467 /**
3468  * ice_get_vsi_promisc - get promiscuous mode of given VSI
3469  * @hw: pointer to the hardware structure
3470  * @vsi_handle: VSI handle to retrieve info from
3471  * @promisc_mask: pointer to mask to be filled in
3472  * @vid: VLAN ID of promisc VLAN VSI
3473  */
3474 enum ice_status
3475 ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
3476                     u16 *vid)
3477 {
3478         struct ice_switch_info *sw = hw->switch_info;
3479         struct ice_fltr_mgmt_list_entry *itr;
3480         struct LIST_HEAD_TYPE *rule_head;
3481         struct ice_lock *rule_lock;     /* Lock to protect filter rule list */
3482
3483         if (!ice_is_vsi_valid(hw, vsi_handle))
3484                 return ICE_ERR_PARAM;
3485
3486         *vid = 0;
3487         *promisc_mask = 0;
3488         rule_head = &sw->recp_list[ICE_SW_LKUP_PROMISC].filt_rules;
3489         rule_lock = &sw->recp_list[ICE_SW_LKUP_PROMISC].filt_rule_lock;
3490
3491         ice_acquire_lock(rule_lock);
3492         LIST_FOR_EACH_ENTRY(itr, rule_head,
3493                             ice_fltr_mgmt_list_entry, list_entry) {
3494                 /* Continue if this filter doesn't apply to this VSI or the
3495                  * VSI ID is not in the VSI map for this filter
3496                  */
3497                 if (!ice_vsi_uses_fltr(itr, vsi_handle))
3498                         continue;
3499
3500                 *promisc_mask |= ice_determine_promisc_mask(&itr->fltr_info);
3501         }
3502         ice_release_lock(rule_lock);
3503
3504         return ICE_SUCCESS;
3505 }
3506
3507 /**
3508  * ice_get_vsi_vlan_promisc - get VLAN promiscuous mode of given VSI
3509  * @hw: pointer to the hardware structure
3510  * @vsi_handle: VSI handle to retrieve info from
3511  * @promisc_mask: pointer to mask to be filled in
3512  * @vid: VLAN ID of promisc VLAN VSI
3513  */
3514 enum ice_status
3515 ice_get_vsi_vlan_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask,
3516                          u16 *vid)
3517 {
3518         struct ice_switch_info *sw = hw->switch_info;
3519         struct ice_fltr_mgmt_list_entry *itr;
3520         struct LIST_HEAD_TYPE *rule_head;
3521         struct ice_lock *rule_lock;     /* Lock to protect filter rule list */
3522
3523         if (!ice_is_vsi_valid(hw, vsi_handle))
3524                 return ICE_ERR_PARAM;
3525
3526         *vid = 0;
3527         *promisc_mask = 0;
3528         rule_head = &sw->recp_list[ICE_SW_LKUP_PROMISC_VLAN].filt_rules;
3529         rule_lock = &sw->recp_list[ICE_SW_LKUP_PROMISC_VLAN].filt_rule_lock;
3530
3531         ice_acquire_lock(rule_lock);
3532         LIST_FOR_EACH_ENTRY(itr, rule_head, ice_fltr_mgmt_list_entry,
3533                             list_entry) {
3534                 /* Continue if this filter doesn't apply to this VSI or the
3535                  * VSI ID is not in the VSI map for this filter
3536                  */
3537                 if (!ice_vsi_uses_fltr(itr, vsi_handle))
3538                         continue;
3539
3540                 *promisc_mask |= ice_determine_promisc_mask(&itr->fltr_info);
3541         }
3542         ice_release_lock(rule_lock);
3543
3544         return ICE_SUCCESS;
3545 }
3546
3547 /**
3548  * ice_remove_promisc - Remove promisc based filter rules
3549  * @hw: pointer to the hardware structure
3550  * @recp_id: recipe ID for which the rule needs to removed
3551  * @v_list: list of promisc entries
3552  */
3553 static enum ice_status
3554 ice_remove_promisc(struct ice_hw *hw, u8 recp_id,
3555                    struct LIST_HEAD_TYPE *v_list)
3556 {
3557         struct ice_fltr_list_entry *v_list_itr, *tmp;
3558
3559         LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry,
3560                                  list_entry) {
3561                 v_list_itr->status =
3562                         ice_remove_rule_internal(hw, recp_id, v_list_itr);
3563                 if (v_list_itr->status)
3564                         return v_list_itr->status;
3565         }
3566         return ICE_SUCCESS;
3567 }
3568
3569 /**
3570  * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI
3571  * @hw: pointer to the hardware structure
3572  * @vsi_handle: VSI handle to clear mode
3573  * @promisc_mask: mask of promiscuous config bits to clear
3574  * @vid: VLAN ID to clear VLAN promiscuous
3575  */
3576 enum ice_status
3577 ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
3578                       u16 vid)
3579 {
3580         struct ice_switch_info *sw = hw->switch_info;
3581         struct ice_fltr_list_entry *fm_entry, *tmp;
3582         struct LIST_HEAD_TYPE remove_list_head;
3583         struct ice_fltr_mgmt_list_entry *itr;
3584         struct LIST_HEAD_TYPE *rule_head;
3585         struct ice_lock *rule_lock;     /* Lock to protect filter rule list */
3586         enum ice_status status = ICE_SUCCESS;
3587         u8 recipe_id;
3588
3589         if (!ice_is_vsi_valid(hw, vsi_handle))
3590                 return ICE_ERR_PARAM;
3591
3592         if (vid)
3593                 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
3594         else
3595                 recipe_id = ICE_SW_LKUP_PROMISC;
3596
3597         rule_head = &sw->recp_list[recipe_id].filt_rules;
3598         rule_lock = &sw->recp_list[recipe_id].filt_rule_lock;
3599
3600         INIT_LIST_HEAD(&remove_list_head);
3601
3602         ice_acquire_lock(rule_lock);
3603         LIST_FOR_EACH_ENTRY(itr, rule_head,
3604                             ice_fltr_mgmt_list_entry, list_entry) {
3605                 u8 fltr_promisc_mask = 0;
3606
3607                 if (!ice_vsi_uses_fltr(itr, vsi_handle))
3608                         continue;
3609
3610                 fltr_promisc_mask |=
3611                         ice_determine_promisc_mask(&itr->fltr_info);
3612
3613                 /* Skip if filter is not completely specified by given mask */
3614                 if (fltr_promisc_mask & ~promisc_mask)
3615                         continue;
3616
3617                 status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle,
3618                                                         &remove_list_head,
3619                                                         &itr->fltr_info);
3620                 if (status) {
3621                         ice_release_lock(rule_lock);
3622                         goto free_fltr_list;
3623                 }
3624         }
3625         ice_release_lock(rule_lock);
3626
3627         status = ice_remove_promisc(hw, recipe_id, &remove_list_head);
3628
3629 free_fltr_list:
3630         LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
3631                                  ice_fltr_list_entry, list_entry) {
3632                 LIST_DEL(&fm_entry->list_entry);
3633                 ice_free(hw, fm_entry);
3634         }
3635
3636         return status;
3637 }
3638
3639 /**
3640  * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s)
3641  * @hw: pointer to the hardware structure
3642  * @vsi_handle: VSI handle to configure
3643  * @promisc_mask: mask of promiscuous config bits
3644  * @vid: VLAN ID to set VLAN promiscuous
3645  */
3646 enum ice_status
3647 ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid)
3648 {
3649         enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR };
3650         struct ice_fltr_list_entry f_list_entry;
3651         struct ice_fltr_info new_fltr;
3652         enum ice_status status = ICE_SUCCESS;
3653         bool is_tx_fltr;
3654         u16 hw_vsi_id;
3655         int pkt_type;
3656         u8 recipe_id;
3657
3658         ice_debug(hw, ICE_DBG_TRACE, "ice_set_vsi_promisc\n");
3659
3660         if (!ice_is_vsi_valid(hw, vsi_handle))
3661                 return ICE_ERR_PARAM;
3662         hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3663
3664         ice_memset(&new_fltr, 0, sizeof(new_fltr), ICE_NONDMA_MEM);
3665
3666         if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) {
3667                 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN;
3668                 new_fltr.l_data.mac_vlan.vlan_id = vid;
3669                 recipe_id = ICE_SW_LKUP_PROMISC_VLAN;
3670         } else {
3671                 new_fltr.lkup_type = ICE_SW_LKUP_PROMISC;
3672                 recipe_id = ICE_SW_LKUP_PROMISC;
3673         }
3674
3675         /* Separate filters must be set for each direction/packet type
3676          * combination, so we will loop over the mask value, store the
3677          * individual type, and clear it out in the input mask as it
3678          * is found.
3679          */
3680         while (promisc_mask) {
3681                 u8 *mac_addr;
3682
3683                 pkt_type = 0;
3684                 is_tx_fltr = false;
3685
3686                 if (promisc_mask & ICE_PROMISC_UCAST_RX) {
3687                         promisc_mask &= ~ICE_PROMISC_UCAST_RX;
3688                         pkt_type = UCAST_FLTR;
3689                 } else if (promisc_mask & ICE_PROMISC_UCAST_TX) {
3690                         promisc_mask &= ~ICE_PROMISC_UCAST_TX;
3691                         pkt_type = UCAST_FLTR;
3692                         is_tx_fltr = true;
3693                 } else if (promisc_mask & ICE_PROMISC_MCAST_RX) {
3694                         promisc_mask &= ~ICE_PROMISC_MCAST_RX;
3695                         pkt_type = MCAST_FLTR;
3696                 } else if (promisc_mask & ICE_PROMISC_MCAST_TX) {
3697                         promisc_mask &= ~ICE_PROMISC_MCAST_TX;
3698                         pkt_type = MCAST_FLTR;
3699                         is_tx_fltr = true;
3700                 } else if (promisc_mask & ICE_PROMISC_BCAST_RX) {
3701                         promisc_mask &= ~ICE_PROMISC_BCAST_RX;
3702                         pkt_type = BCAST_FLTR;
3703                 } else if (promisc_mask & ICE_PROMISC_BCAST_TX) {
3704                         promisc_mask &= ~ICE_PROMISC_BCAST_TX;
3705                         pkt_type = BCAST_FLTR;
3706                         is_tx_fltr = true;
3707                 }
3708
3709                 /* Check for VLAN promiscuous flag */
3710                 if (promisc_mask & ICE_PROMISC_VLAN_RX) {
3711                         promisc_mask &= ~ICE_PROMISC_VLAN_RX;
3712                 } else if (promisc_mask & ICE_PROMISC_VLAN_TX) {
3713                         promisc_mask &= ~ICE_PROMISC_VLAN_TX;
3714                         is_tx_fltr = true;
3715                 }
3716
3717                 /* Set filter DA based on packet type */
3718                 mac_addr = new_fltr.l_data.mac.mac_addr;
3719                 if (pkt_type == BCAST_FLTR) {
3720                         ice_memset(mac_addr, 0xff, ETH_ALEN, ICE_NONDMA_MEM);
3721                 } else if (pkt_type == MCAST_FLTR ||
3722                            pkt_type == UCAST_FLTR) {
3723                         /* Use the dummy ether header DA */
3724                         ice_memcpy(mac_addr, dummy_eth_header, ETH_ALEN,
3725                                    ICE_NONDMA_TO_NONDMA);
3726                         if (pkt_type == MCAST_FLTR)
3727                                 mac_addr[0] |= 0x1;     /* Set multicast bit */
3728                 }
3729
3730                 /* Need to reset this to zero for all iterations */
3731                 new_fltr.flag = 0;
3732                 if (is_tx_fltr) {
3733                         new_fltr.flag |= ICE_FLTR_TX;
3734                         new_fltr.src = hw_vsi_id;
3735                 } else {
3736                         new_fltr.flag |= ICE_FLTR_RX;
3737                         new_fltr.src = hw->port_info->lport;
3738                 }
3739
3740                 new_fltr.fltr_act = ICE_FWD_TO_VSI;
3741                 new_fltr.vsi_handle = vsi_handle;
3742                 new_fltr.fwd_id.hw_vsi_id = hw_vsi_id;
3743                 f_list_entry.fltr_info = new_fltr;
3744
3745                 status = ice_add_rule_internal(hw, recipe_id, &f_list_entry);
3746                 if (status != ICE_SUCCESS)
3747                         goto set_promisc_exit;
3748         }
3749
3750 set_promisc_exit:
3751         return status;
3752 }
3753
3754 /**
3755  * ice_set_vlan_vsi_promisc
3756  * @hw: pointer to the hardware structure
3757  * @vsi_handle: VSI handle to configure
3758  * @promisc_mask: mask of promiscuous config bits
3759  * @rm_vlan_promisc: Clear VLANs VSI promisc mode
3760  *
3761  * Configure VSI with all associated VLANs to given promiscuous mode(s)
3762  */
3763 enum ice_status
3764 ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask,
3765                          bool rm_vlan_promisc)
3766 {
3767         struct ice_switch_info *sw = hw->switch_info;
3768         struct ice_fltr_list_entry *list_itr, *tmp;
3769         struct LIST_HEAD_TYPE vsi_list_head;
3770         struct LIST_HEAD_TYPE *vlan_head;
3771         struct ice_lock *vlan_lock; /* Lock to protect filter rule list */
3772         enum ice_status status;
3773         u16 vlan_id;
3774
3775         INIT_LIST_HEAD(&vsi_list_head);
3776         vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock;
3777         vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules;
3778         ice_acquire_lock(vlan_lock);
3779         status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head,
3780                                           &vsi_list_head);
3781         ice_release_lock(vlan_lock);
3782         if (status)
3783                 goto free_fltr_list;
3784
3785         LIST_FOR_EACH_ENTRY(list_itr, &vsi_list_head, ice_fltr_list_entry,
3786                             list_entry) {
3787                 vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id;
3788                 if (rm_vlan_promisc)
3789                         status = ice_clear_vsi_promisc(hw, vsi_handle,
3790                                                        promisc_mask, vlan_id);
3791                 else
3792                         status = ice_set_vsi_promisc(hw, vsi_handle,
3793                                                      promisc_mask, vlan_id);
3794                 if (status)
3795                         break;
3796         }
3797
3798 free_fltr_list:
3799         LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, &vsi_list_head,
3800                                  ice_fltr_list_entry, list_entry) {
3801                 LIST_DEL(&list_itr->list_entry);
3802                 ice_free(hw, list_itr);
3803         }
3804         return status;
3805 }
3806
3807 /**
3808  * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI
3809  * @hw: pointer to the hardware structure
3810  * @vsi_handle: VSI handle to remove filters from
3811  * @lkup: switch rule filter lookup type
3812  */
3813 static void
3814 ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle,
3815                          enum ice_sw_lkup_type lkup)
3816 {
3817         struct ice_switch_info *sw = hw->switch_info;
3818         struct ice_fltr_list_entry *fm_entry;
3819         struct LIST_HEAD_TYPE remove_list_head;
3820         struct LIST_HEAD_TYPE *rule_head;
3821         struct ice_fltr_list_entry *tmp;
3822         struct ice_lock *rule_lock;     /* Lock to protect filter rule list */
3823         enum ice_status status;
3824
3825         INIT_LIST_HEAD(&remove_list_head);
3826         rule_lock = &sw->recp_list[lkup].filt_rule_lock;
3827         rule_head = &sw->recp_list[lkup].filt_rules;
3828         ice_acquire_lock(rule_lock);
3829         status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head,
3830                                           &remove_list_head);
3831         ice_release_lock(rule_lock);
3832         if (status)
3833                 return;
3834
3835         switch (lkup) {
3836         case ICE_SW_LKUP_MAC:
3837                 ice_remove_mac(hw, &remove_list_head);
3838                 break;
3839         case ICE_SW_LKUP_VLAN:
3840                 ice_remove_vlan(hw, &remove_list_head);
3841                 break;
3842         case ICE_SW_LKUP_PROMISC:
3843         case ICE_SW_LKUP_PROMISC_VLAN:
3844                 ice_remove_promisc(hw, lkup, &remove_list_head);
3845                 break;
3846         case ICE_SW_LKUP_MAC_VLAN:
3847 #ifndef NO_MACVLAN_SUPPORT
3848                 ice_remove_mac_vlan(hw, &remove_list_head);
3849 #else
3850                 ice_debug(hw, ICE_DBG_SW, "MAC VLAN look up is not supported yet\n");
3851 #endif /* !NO_MACVLAN_SUPPORT */
3852                 break;
3853         case ICE_SW_LKUP_ETHERTYPE:
3854         case ICE_SW_LKUP_ETHERTYPE_MAC:
3855                 ice_remove_eth_mac(hw, &remove_list_head);
3856                 break;
3857         case ICE_SW_LKUP_DFLT:
3858                 ice_debug(hw, ICE_DBG_SW,
3859                           "Remove filters for this lookup type hasn't been implemented yet\n");
3860                 break;
3861         case ICE_SW_LKUP_LAST:
3862                 ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type\n");
3863                 break;
3864         }
3865
3866         LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head,
3867                                  ice_fltr_list_entry, list_entry) {
3868                 LIST_DEL(&fm_entry->list_entry);
3869                 ice_free(hw, fm_entry);
3870         }
3871 }
3872
3873 /**
3874  * ice_remove_vsi_fltr - Remove all filters for a VSI
3875  * @hw: pointer to the hardware structure
3876  * @vsi_handle: VSI handle to remove filters from
3877  */
3878 void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle)
3879 {
3880         ice_debug(hw, ICE_DBG_TRACE, "ice_remove_vsi_fltr\n");
3881
3882         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC);
3883         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_MAC_VLAN);
3884         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC);
3885         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_VLAN);
3886         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_DFLT);
3887         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE);
3888         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_ETHERTYPE_MAC);
3889         ice_remove_vsi_lkup_fltr(hw, vsi_handle, ICE_SW_LKUP_PROMISC_VLAN);
3890 }
3891
3892 /**
3893  * ice_alloc_res_cntr - allocating resource counter
3894  * @hw: pointer to the hardware structure
3895  * @type: type of resource
3896  * @alloc_shared: if set it is shared else dedicated
3897  * @num_items: number of entries requested for FD resource type
3898  * @counter_id: counter index returned by AQ call
3899  */
3900 enum ice_status
3901 ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
3902                    u16 *counter_id)
3903 {
3904         struct ice_aqc_alloc_free_res_elem *buf;
3905         enum ice_status status;
3906         u16 buf_len;
3907
3908         /* Allocate resource */
3909         buf_len = sizeof(*buf);
3910         buf = (struct ice_aqc_alloc_free_res_elem *)
3911                 ice_malloc(hw, buf_len);
3912         if (!buf)
3913                 return ICE_ERR_NO_MEMORY;
3914
3915         buf->num_elems = CPU_TO_LE16(num_items);
3916         buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
3917                                       ICE_AQC_RES_TYPE_M) | alloc_shared);
3918
3919         status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
3920                                        ice_aqc_opc_alloc_res, NULL);
3921         if (status)
3922                 goto exit;
3923
3924         *counter_id = LE16_TO_CPU(buf->elem[0].e.sw_resp);
3925
3926 exit:
3927         ice_free(hw, buf);
3928         return status;
3929 }
3930
3931 /**
3932  * ice_free_res_cntr - free resource counter
3933  * @hw: pointer to the hardware structure
3934  * @type: type of resource
3935  * @alloc_shared: if set it is shared else dedicated
3936  * @num_items: number of entries to be freed for FD resource type
3937  * @counter_id: counter ID resource which needs to be freed
3938  */
3939 enum ice_status
3940 ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items,
3941                   u16 counter_id)
3942 {
3943         struct ice_aqc_alloc_free_res_elem *buf;
3944         enum ice_status status;
3945         u16 buf_len;
3946
3947         /* Free resource */
3948         buf_len = sizeof(*buf);
3949         buf = (struct ice_aqc_alloc_free_res_elem *)
3950                 ice_malloc(hw, buf_len);
3951         if (!buf)
3952                 return ICE_ERR_NO_MEMORY;
3953
3954         buf->num_elems = CPU_TO_LE16(num_items);
3955         buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) &
3956                                       ICE_AQC_RES_TYPE_M) | alloc_shared);
3957         buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id);
3958
3959         status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
3960                                        ice_aqc_opc_free_res, NULL);
3961         if (status)
3962                 ice_debug(hw, ICE_DBG_SW,
3963                           "counter resource could not be freed\n");
3964
3965         ice_free(hw, buf);
3966         return status;
3967 }
3968
3969 /**
3970  * ice_alloc_vlan_res_counter - obtain counter resource for VLAN type
3971  * @hw: pointer to the hardware structure
3972  * @counter_id: returns counter index
3973  */
3974 enum ice_status ice_alloc_vlan_res_counter(struct ice_hw *hw, u16 *counter_id)
3975 {
3976         return ice_alloc_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
3977                                   ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
3978                                   counter_id);
3979 }
3980
3981 /**
3982  * ice_free_vlan_res_counter - Free counter resource for VLAN type
3983  * @hw: pointer to the hardware structure
3984  * @counter_id: counter index to be freed
3985  */
3986 enum ice_status ice_free_vlan_res_counter(struct ice_hw *hw, u16 counter_id)
3987 {
3988         return ice_free_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER,
3989                                  ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1,
3990                                  counter_id);
3991 }
3992
3993 /**
3994  * ice_alloc_res_lg_act - add large action resource
3995  * @hw: pointer to the hardware structure
3996  * @l_id: large action ID to fill it in
3997  * @num_acts: number of actions to hold with a large action entry
3998  */
3999 static enum ice_status
4000 ice_alloc_res_lg_act(struct ice_hw *hw, u16 *l_id, u16 num_acts)
4001 {
4002         struct ice_aqc_alloc_free_res_elem *sw_buf;
4003         enum ice_status status;
4004         u16 buf_len;
4005
4006         if (num_acts > ICE_MAX_LG_ACT || num_acts == 0)
4007                 return ICE_ERR_PARAM;
4008
4009         /* Allocate resource for large action */
4010         buf_len = sizeof(*sw_buf);
4011         sw_buf = (struct ice_aqc_alloc_free_res_elem *)
4012                 ice_malloc(hw, buf_len);
4013         if (!sw_buf)
4014                 return ICE_ERR_NO_MEMORY;
4015
4016         sw_buf->num_elems = CPU_TO_LE16(1);
4017
4018         /* If num_acts is 1, use ICE_AQC_RES_TYPE_WIDE_TABLE_1.
4019          * If num_acts is 2, use ICE_AQC_RES_TYPE_WIDE_TABLE_3.
4020          * If num_acts is greater than 2, then use
4021          * ICE_AQC_RES_TYPE_WIDE_TABLE_4.
4022          * The num_acts cannot exceed 4. This was ensured at the
4023          * beginning of the function.
4024          */
4025         if (num_acts == 1)
4026                 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_1);
4027         else if (num_acts == 2)
4028                 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_2);
4029         else
4030                 sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_4);
4031
4032         status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len,
4033                                        ice_aqc_opc_alloc_res, NULL);
4034         if (!status)
4035                 *l_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp);
4036
4037         ice_free(hw, sw_buf);
4038         return status;
4039 }
4040
4041 /**
4042  * ice_add_mac_with_sw_marker - add filter with sw marker
4043  * @hw: pointer to the hardware structure
4044  * @f_info: filter info structure containing the MAC filter information
4045  * @sw_marker: sw marker to tag the Rx descriptor with
4046  */
4047 enum ice_status
4048 ice_add_mac_with_sw_marker(struct ice_hw *hw, struct ice_fltr_info *f_info,
4049                            u16 sw_marker)
4050 {
4051         struct ice_switch_info *sw = hw->switch_info;
4052         struct ice_fltr_mgmt_list_entry *m_entry;
4053         struct ice_fltr_list_entry fl_info;
4054         struct LIST_HEAD_TYPE l_head;
4055         struct ice_lock *rule_lock;     /* Lock to protect filter rule list */
4056         enum ice_status ret;
4057         bool entry_exists;
4058         u16 lg_act_id;
4059
4060         if (f_info->fltr_act != ICE_FWD_TO_VSI)
4061                 return ICE_ERR_PARAM;
4062
4063         if (f_info->lkup_type != ICE_SW_LKUP_MAC)
4064                 return ICE_ERR_PARAM;
4065
4066         if (sw_marker == ICE_INVAL_SW_MARKER_ID)
4067                 return ICE_ERR_PARAM;
4068
4069         if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
4070                 return ICE_ERR_PARAM;
4071         f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
4072
4073         /* Add filter if it doesn't exist so then the adding of large
4074          * action always results in update
4075          */
4076
4077         INIT_LIST_HEAD(&l_head);
4078         fl_info.fltr_info = *f_info;
4079         LIST_ADD(&fl_info.list_entry, &l_head);
4080
4081         entry_exists = false;
4082         ret = ice_add_mac(hw, &l_head);
4083         if (ret == ICE_ERR_ALREADY_EXISTS)
4084                 entry_exists = true;
4085         else if (ret)
4086                 return ret;
4087
4088         rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
4089         ice_acquire_lock(rule_lock);
4090         /* Get the book keeping entry for the filter */
4091         m_entry = ice_find_rule_entry(hw, ICE_SW_LKUP_MAC, f_info);
4092         if (!m_entry)
4093                 goto exit_error;
4094
4095         /* If counter action was enabled for this rule then don't enable
4096          * sw marker large action
4097          */
4098         if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
4099                 ret = ICE_ERR_PARAM;
4100                 goto exit_error;
4101         }
4102
4103         /* if same marker was added before */
4104         if (m_entry->sw_marker_id == sw_marker) {
4105                 ret = ICE_ERR_ALREADY_EXISTS;
4106                 goto exit_error;
4107         }
4108
4109         /* Allocate a hardware table entry to hold large act. Three actions
4110          * for marker based large action
4111          */
4112         ret = ice_alloc_res_lg_act(hw, &lg_act_id, 3);
4113         if (ret)
4114                 goto exit_error;
4115
4116         if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
4117                 goto exit_error;
4118
4119         /* Update the switch rule to add the marker action */
4120         ret = ice_add_marker_act(hw, m_entry, sw_marker, lg_act_id);
4121         if (!ret) {
4122                 ice_release_lock(rule_lock);
4123                 return ret;
4124         }
4125
4126 exit_error:
4127         ice_release_lock(rule_lock);
4128         /* only remove entry if it did not exist previously */
4129         if (!entry_exists)
4130                 ret = ice_remove_mac(hw, &l_head);
4131
4132         return ret;
4133 }
4134
4135 /**
4136  * ice_add_mac_with_counter - add filter with counter enabled
4137  * @hw: pointer to the hardware structure
4138  * @f_info: pointer to filter info structure containing the MAC filter
4139  *          information
4140  */
4141 enum ice_status
4142 ice_add_mac_with_counter(struct ice_hw *hw, struct ice_fltr_info *f_info)
4143 {
4144         struct ice_switch_info *sw = hw->switch_info;
4145         struct ice_fltr_mgmt_list_entry *m_entry;
4146         struct ice_fltr_list_entry fl_info;
4147         struct LIST_HEAD_TYPE l_head;
4148         struct ice_lock *rule_lock;     /* Lock to protect filter rule list */
4149         enum ice_status ret;
4150         bool entry_exist;
4151         u16 counter_id;
4152         u16 lg_act_id;
4153
4154         if (f_info->fltr_act != ICE_FWD_TO_VSI)
4155                 return ICE_ERR_PARAM;
4156
4157         if (f_info->lkup_type != ICE_SW_LKUP_MAC)
4158                 return ICE_ERR_PARAM;
4159
4160         if (!ice_is_vsi_valid(hw, f_info->vsi_handle))
4161                 return ICE_ERR_PARAM;
4162         f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle);
4163
4164         entry_exist = false;
4165
4166         rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock;
4167
4168         /* Add filter if it doesn't exist so then the adding of large
4169          * action always results in update
4170          */
4171         INIT_LIST_HEAD(&l_head);
4172
4173         fl_info.fltr_info = *f_info;
4174         LIST_ADD(&fl_info.list_entry, &l_head);
4175
4176         ret = ice_add_mac(hw, &l_head);
4177         if (ret == ICE_ERR_ALREADY_EXISTS)
4178                 entry_exist = true;
4179         else if (ret)
4180                 return ret;
4181
4182         ice_acquire_lock(rule_lock);
4183         m_entry = ice_find_rule_entry(hw, ICE_SW_LKUP_MAC, f_info);
4184         if (!m_entry) {
4185                 ret = ICE_ERR_BAD_PTR;
4186                 goto exit_error;
4187         }
4188
4189         /* Don't enable counter for a filter for which sw marker was enabled */
4190         if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) {
4191                 ret = ICE_ERR_PARAM;
4192                 goto exit_error;
4193         }
4194
4195         /* If a counter was already enabled then don't need to add again */
4196         if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) {
4197                 ret = ICE_ERR_ALREADY_EXISTS;
4198                 goto exit_error;
4199         }
4200
4201         /* Allocate a hardware table entry to VLAN counter */
4202         ret = ice_alloc_vlan_res_counter(hw, &counter_id);
4203         if (ret)
4204                 goto exit_error;
4205
4206         /* Allocate a hardware table entry to hold large act. Two actions for
4207          * counter based large action
4208          */
4209         ret = ice_alloc_res_lg_act(hw, &lg_act_id, 2);
4210         if (ret)
4211                 goto exit_error;
4212
4213         if (lg_act_id == ICE_INVAL_LG_ACT_INDEX)
4214                 goto exit_error;
4215
4216         /* Update the switch rule to add the counter action */
4217         ret = ice_add_counter_act(hw, m_entry, counter_id, lg_act_id);
4218         if (!ret) {
4219                 ice_release_lock(rule_lock);
4220                 return ret;
4221         }
4222
4223 exit_error:
4224         ice_release_lock(rule_lock);
4225         /* only remove entry if it did not exist previously */
4226         if (!entry_exist)
4227                 ret = ice_remove_mac(hw, &l_head);
4228
4229         return ret;
4230 }
4231
4232 /* This is mapping table entry that maps every word within a given protocol
4233  * structure to the real byte offset as per the specification of that
4234  * protocol header.
4235  * for example dst address is 3 words in ethertype header and corresponding
4236  * bytes are 0, 2, 3 in the actual packet header and src address is at 4, 6, 8
4237  * IMPORTANT: Every structure part of "ice_prot_hdr" union should have a
4238  * matching entry describing its field. This needs to be updated if new
4239  * structure is added to that union.
4240  */
4241 static const struct ice_prot_ext_tbl_entry ice_prot_ext[] = {
4242         { ICE_MAC_OFOS,         { 0, 2, 4, 6, 8, 10, 12 } },
4243         { ICE_MAC_IL,           { 0, 2, 4, 6, 8, 10, 12 } },
4244         { ICE_IPV4_OFOS,        { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4245         { ICE_IPV4_IL,          { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 } },
4246         { ICE_IPV6_IL,          { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4247                                  26, 28, 30, 32, 34, 36, 38 } },
4248         { ICE_IPV6_OFOS,        { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
4249                                  26, 28, 30, 32, 34, 36, 38 } },
4250         { ICE_TCP_IL,           { 0, 2 } },
4251         { ICE_UDP_ILOS,         { 0, 2 } },
4252         { ICE_SCTP_IL,          { 0, 2 } },
4253         { ICE_VXLAN,            { 8, 10, 12 } },
4254         { ICE_GENEVE,           { 8, 10, 12 } },
4255         { ICE_VXLAN_GPE,        { 0, 2, 4 } },
4256         { ICE_NVGRE,            { 0, 2 } },
4257         { ICE_PROTOCOL_LAST,    { 0 } }
4258 };
4259
4260 /* The following table describes preferred grouping of recipes.
4261  * If a recipe that needs to be programmed is a superset or matches one of the
4262  * following combinations, then the recipe needs to be chained as per the
4263  * following policy.
4264  */
4265 static const struct ice_pref_recipe_group ice_recipe_pack[] = {
4266         {3, { { ICE_MAC_OFOS_HW, 0, 0 }, { ICE_MAC_OFOS_HW, 2, 0 },
4267               { ICE_MAC_OFOS_HW, 4, 0 } } },
4268         {4, { { ICE_MAC_IL_HW, 0, 0 }, { ICE_MAC_IL_HW, 2, 0 },
4269               { ICE_MAC_IL_HW, 4, 0 }, { ICE_META_DATA_ID_HW, 44, 0 } } },
4270         {2, { { ICE_IPV4_IL_HW, 0, 0 }, { ICE_IPV4_IL_HW, 2, 0 } } },
4271         {2, { { ICE_IPV4_IL_HW, 12, 0 }, { ICE_IPV4_IL_HW, 14, 0 } } },
4272 };
4273
4274 static const struct ice_protocol_entry ice_prot_id_tbl[] = {
4275         { ICE_MAC_OFOS,         ICE_MAC_OFOS_HW },
4276         { ICE_MAC_IL,           ICE_MAC_IL_HW },
4277         { ICE_IPV4_OFOS,        ICE_IPV4_OFOS_HW },
4278         { ICE_IPV4_IL,          ICE_IPV4_IL_HW },
4279         { ICE_IPV6_OFOS,        ICE_IPV6_OFOS_HW },
4280         { ICE_IPV6_IL,          ICE_IPV6_IL_HW },
4281         { ICE_TCP_IL,           ICE_TCP_IL_HW },
4282         { ICE_UDP_ILOS,         ICE_UDP_ILOS_HW },
4283         { ICE_SCTP_IL,          ICE_SCTP_IL_HW },
4284         { ICE_VXLAN,            ICE_UDP_OF_HW },
4285         { ICE_GENEVE,           ICE_UDP_OF_HW },
4286         { ICE_VXLAN_GPE,        ICE_UDP_OF_HW },
4287         { ICE_NVGRE,            ICE_GRE_OF_HW },
4288         { ICE_PROTOCOL_LAST,    0 }
4289 };
4290
4291 /**
4292  * ice_find_recp - find a recipe
4293  * @hw: pointer to the hardware structure
4294  * @lkup_exts: extension sequence to match
4295  *
4296  * Returns index of matching recipe, or ICE_MAX_NUM_RECIPES if not found.
4297  */
4298 static u16 ice_find_recp(struct ice_hw *hw, struct ice_prot_lkup_ext *lkup_exts)
4299 {
4300         struct ice_sw_recipe *recp;
4301         u16 i;
4302
4303         ice_get_recp_to_prof_map(hw);
4304         /* Initialize available_result_ids which tracks available result idx */
4305         for (i = 0; i <= ICE_CHAIN_FV_INDEX_START; i++)
4306                 ice_set_bit(ICE_CHAIN_FV_INDEX_START - i,
4307                             available_result_ids);
4308
4309         /* Walk through existing recipes to find a match */
4310         recp = hw->switch_info->recp_list;
4311         for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
4312                 /* If recipe was not created for this ID, in SW bookkeeping,
4313                  * check if FW has an entry for this recipe. If the FW has an
4314                  * entry update it in our SW bookkeeping and continue with the
4315                  * matching.
4316                  */
4317                 if (!recp[i].recp_created)
4318                         if (ice_get_recp_frm_fw(hw,
4319                                                 hw->switch_info->recp_list, i))
4320                                 continue;
4321
4322                 /* if number of words we are looking for match */
4323                 if (lkup_exts->n_val_words == recp[i].lkup_exts.n_val_words) {
4324                         struct ice_fv_word *a = lkup_exts->fv_words;
4325                         struct ice_fv_word *b = recp[i].lkup_exts.fv_words;
4326                         bool found = true;
4327                         u8 p, q;
4328
4329                         for (p = 0; p < lkup_exts->n_val_words; p++) {
4330                                 for (q = 0; q < recp[i].lkup_exts.n_val_words;
4331                                      q++) {
4332                                         if (a[p].off == b[q].off &&
4333                                             a[p].prot_id == b[q].prot_id)
4334                                                 /* Found the "p"th word in the
4335                                                  * given recipe
4336                                                  */
4337                                                 break;
4338                                 }
4339                                 /* After walking through all the words in the
4340                                  * "i"th recipe if "p"th word was not found then
4341                                  * this recipe is not what we are looking for.
4342                                  * So break out from this loop and try the next
4343                                  * recipe
4344                                  */
4345                                 if (q >= recp[i].lkup_exts.n_val_words) {
4346                                         found = false;
4347                                         break;
4348                                 }
4349                         }
4350                         /* If for "i"th recipe the found was never set to false
4351                          * then it means we found our match
4352                          */
4353                         if (found)
4354                                 return i; /* Return the recipe ID */
4355                 }
4356         }
4357         return ICE_MAX_NUM_RECIPES;
4358 }
4359
4360 /**
4361  * ice_prot_type_to_id - get protocol ID from protocol type
4362  * @type: protocol type
4363  * @id: pointer to variable that will receive the ID
4364  *
4365  * Returns true if found, false otherwise
4366  */
4367 static bool ice_prot_type_to_id(enum ice_protocol_type type, u16 *id)
4368 {
4369         u16 i;
4370
4371         for (i = 0; ice_prot_id_tbl[i].type != ICE_PROTOCOL_LAST; i++)
4372                 if (ice_prot_id_tbl[i].type == type) {
4373                         *id = ice_prot_id_tbl[i].protocol_id;
4374                         return true;
4375                 }
4376         return false;
4377 }
4378
4379 /**
4380  * ice_find_valid_words - count valid words
4381  * @rule: advanced rule with lookup information
4382  * @lkup_exts: byte offset extractions of the words that are valid
4383  *
4384  * calculate valid words in a lookup rule using mask value
4385  */
4386 static u16
4387 ice_fill_valid_words(struct ice_adv_lkup_elem *rule,
4388                      struct ice_prot_lkup_ext *lkup_exts)
4389 {
4390         u16 j, word = 0;
4391         u16 prot_id;
4392         u16 ret_val;
4393
4394         if (!ice_prot_type_to_id(rule->type, &prot_id))
4395                 return 0;
4396
4397         word = lkup_exts->n_val_words;
4398
4399         for (j = 0; j < sizeof(rule->m_u) / sizeof(u16); j++)
4400                 if (((u16 *)&rule->m_u)[j] == 0xffff &&
4401                     rule->type < ARRAY_SIZE(ice_prot_ext)) {
4402                         /* No more space to accommodate */
4403                         if (word >= ICE_MAX_CHAIN_WORDS)
4404                                 return 0;
4405                         lkup_exts->fv_words[word].off =
4406                                 ice_prot_ext[rule->type].offs[j];
4407                         lkup_exts->fv_words[word].prot_id =
4408                                 ice_prot_id_tbl[rule->type].protocol_id;
4409                         word++;
4410                 }
4411
4412         ret_val = word - lkup_exts->n_val_words;
4413         lkup_exts->n_val_words = word;
4414
4415         return ret_val;
4416 }
4417
4418 /**
4419  * ice_find_prot_off_ind - check for specific ID and offset in rule
4420  * @lkup_exts: an array of protocol header extractions
4421  * @prot_type: protocol type to check
4422  * @off: expected offset of the extraction
4423  *
4424  * Check if the prot_ext has given protocol ID and offset
4425  */
4426 static u8
4427 ice_find_prot_off_ind(struct ice_prot_lkup_ext *lkup_exts, u8 prot_type,
4428                       u16 off)
4429 {
4430         u8 j;
4431
4432         for (j = 0; j < lkup_exts->n_val_words; j++)
4433                 if (lkup_exts->fv_words[j].off == off &&
4434                     lkup_exts->fv_words[j].prot_id == prot_type)
4435                         return j;
4436
4437         return ICE_MAX_CHAIN_WORDS;
4438 }
4439
4440 /**
4441  * ice_is_recipe_subset - check if recipe group policy is a subset of lookup
4442  * @lkup_exts: an array of protocol header extractions
4443  * @r_policy: preferred recipe grouping policy
4444  *
4445  * Helper function to check if given recipe group is subset we need to check if
4446  * all the words described by the given recipe group exist in the advanced rule
4447  * look up information
4448  */
4449 static bool
4450 ice_is_recipe_subset(struct ice_prot_lkup_ext *lkup_exts,
4451                      const struct ice_pref_recipe_group *r_policy)
4452 {
4453         u8 ind[ICE_NUM_WORDS_RECIPE];
4454         u8 count = 0;
4455         u8 i;
4456
4457         /* check if everything in the r_policy is part of the entire rule */
4458         for (i = 0; i < r_policy->n_val_pairs; i++) {
4459                 u8 j;
4460
4461                 j = ice_find_prot_off_ind(lkup_exts, r_policy->pairs[i].prot_id,
4462                                           r_policy->pairs[i].off);
4463                 if (j >= ICE_MAX_CHAIN_WORDS)
4464                         return false;
4465
4466                 /* store the indexes temporarily found by the find function
4467                  * this will be used to mark the words as 'done'
4468                  */
4469                 ind[count++] = j;
4470         }
4471
4472         /* If the entire policy recipe was a true match, then mark the fields
4473          * that are covered by the recipe as 'done' meaning that these words
4474          * will be clumped together in one recipe.
4475          * "Done" here means in our searching if certain recipe group
4476          * matches or is subset of the given rule, then we mark all
4477          * the corresponding offsets as found. So the remaining recipes should
4478          * be created with whatever words that were left.
4479          */
4480         for (i = 0; i < count; i++) {
4481                 u8 in = ind[i];
4482
4483                 ice_set_bit(in, lkup_exts->done);
4484         }
4485         return true;
4486 }
4487
4488 /**
4489  * ice_create_first_fit_recp_def - Create a recipe grouping
4490  * @hw: pointer to the hardware structure
4491  * @lkup_exts: an array of protocol header extractions
4492  * @rg_list: pointer to a list that stores new recipe groups
4493  * @recp_cnt: pointer to a variable that stores returned number of recipe groups
4494  *
4495  * Using first fit algorithm, take all the words that are still not done
4496  * and start grouping them in 4-word groups. Each group makes up one
4497  * recipe.
4498  */
4499 static enum ice_status
4500 ice_create_first_fit_recp_def(struct ice_hw *hw,
4501                               struct ice_prot_lkup_ext *lkup_exts,
4502                               struct LIST_HEAD_TYPE *rg_list,
4503                               u8 *recp_cnt)
4504 {
4505         struct ice_pref_recipe_group *grp = NULL;
4506         u8 j;
4507
4508         *recp_cnt = 0;
4509
4510         /* Walk through every word in the rule to check if it is not done. If so
4511          * then this word needs to be part of a new recipe.
4512          */
4513         for (j = 0; j < lkup_exts->n_val_words; j++)
4514                 if (!ice_is_bit_set(lkup_exts->done, j)) {
4515                         if (!grp ||
4516                             grp->n_val_pairs == ICE_NUM_WORDS_RECIPE) {
4517                                 struct ice_recp_grp_entry *entry;
4518
4519                                 entry = (struct ice_recp_grp_entry *)
4520                                         ice_malloc(hw, sizeof(*entry));
4521                                 if (!entry)
4522                                         return ICE_ERR_NO_MEMORY;
4523                                 LIST_ADD(&entry->l_entry, rg_list);
4524                                 grp = &entry->r_group;
4525                                 (*recp_cnt)++;
4526                         }
4527
4528                         grp->pairs[grp->n_val_pairs].prot_id =
4529                                 lkup_exts->fv_words[j].prot_id;
4530                         grp->pairs[grp->n_val_pairs].off =
4531                                 lkup_exts->fv_words[j].off;
4532                         grp->n_val_pairs++;
4533                 }
4534
4535         return ICE_SUCCESS;
4536 }
4537
4538 /**
4539  * ice_fill_fv_word_index - fill in the field vector indices for a recipe group
4540  * @hw: pointer to the hardware structure
4541  * @fv_list: field vector with the extraction sequence information
4542  * @rg_list: recipe groupings with protocol-offset pairs
4543  *
4544  * Helper function to fill in the field vector indices for protocol-offset
4545  * pairs. These indexes are then ultimately programmed into a recipe.
4546  */
4547 static void
4548 ice_fill_fv_word_index(struct ice_hw *hw, struct LIST_HEAD_TYPE *fv_list,
4549                        struct LIST_HEAD_TYPE *rg_list)
4550 {
4551         struct ice_sw_fv_list_entry *fv;
4552         struct ice_recp_grp_entry *rg;
4553         struct ice_fv_word *fv_ext;
4554
4555         if (LIST_EMPTY(fv_list))
4556                 return;
4557
4558         fv = LIST_FIRST_ENTRY(fv_list, struct ice_sw_fv_list_entry, list_entry);
4559         fv_ext = fv->fv_ptr->ew;
4560
4561         LIST_FOR_EACH_ENTRY(rg, rg_list, ice_recp_grp_entry, l_entry) {
4562                 u8 i;
4563
4564                 for (i = 0; i < rg->r_group.n_val_pairs; i++) {
4565                         struct ice_fv_word *pr;
4566                         u8 j;
4567
4568                         pr = &rg->r_group.pairs[i];
4569                         for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
4570                                 if (fv_ext[j].prot_id == pr->prot_id &&
4571                                     fv_ext[j].off == pr->off) {
4572                                         /* Store index of field vector */
4573                                         rg->fv_idx[i] = j;
4574                                         break;
4575                                 }
4576                 }
4577         }
4578 }
4579
4580 /**
4581  * ice_add_sw_recipe - function to call AQ calls to create switch recipe
4582  * @hw: pointer to hardware structure
4583  * @rm: recipe management list entry
4584  * @match_tun: if field vector index for tunnel needs to be programmed
4585  */
4586 static enum ice_status
4587 ice_add_sw_recipe(struct ice_hw *hw, struct ice_sw_recipe *rm,
4588                   bool match_tun)
4589 {
4590         struct ice_aqc_recipe_data_elem *tmp;
4591         struct ice_aqc_recipe_data_elem *buf;
4592         struct ice_recp_grp_entry *entry;
4593         enum ice_status status;
4594         u16 recipe_count;
4595         u8 chain_idx;
4596         u8 recps = 0;
4597
4598         /* When more than one recipe are required, another recipe is needed to
4599          * chain them together. Matching a tunnel metadata ID takes up one of
4600          * the match fields in the chaining recipe reducing the number of
4601          * chained recipes by one.
4602          */
4603         if (rm->n_grp_count > 1)
4604                 rm->n_grp_count++;
4605         if (rm->n_grp_count > ICE_MAX_CHAIN_RECIPE ||
4606             (match_tun && rm->n_grp_count > (ICE_MAX_CHAIN_RECIPE - 1)))
4607                 return ICE_ERR_MAX_LIMIT;
4608
4609         tmp = (struct ice_aqc_recipe_data_elem *)ice_calloc(hw,
4610                                                             ICE_MAX_NUM_RECIPES,
4611                                                             sizeof(*tmp));
4612         if (!tmp)
4613                 return ICE_ERR_NO_MEMORY;
4614
4615         buf = (struct ice_aqc_recipe_data_elem *)
4616                 ice_calloc(hw, rm->n_grp_count, sizeof(*buf));
4617         if (!buf) {
4618                 status = ICE_ERR_NO_MEMORY;
4619                 goto err_mem;
4620         }
4621
4622         ice_zero_bitmap(rm->r_bitmap, ICE_MAX_NUM_RECIPES);
4623         recipe_count = ICE_MAX_NUM_RECIPES;
4624         status = ice_aq_get_recipe(hw, tmp, &recipe_count, ICE_SW_LKUP_MAC,
4625                                    NULL);
4626         if (status || recipe_count == 0)
4627                 goto err_unroll;
4628
4629         /* Allocate the recipe resources, and configure them according to the
4630          * match fields from protocol headers and extracted field vectors.
4631          */
4632         chain_idx = ICE_CHAIN_FV_INDEX_START -
4633                 ice_find_first_bit(available_result_ids,
4634                                    ICE_CHAIN_FV_INDEX_START + 1);
4635         LIST_FOR_EACH_ENTRY(entry, &rm->rg_list, ice_recp_grp_entry, l_entry) {
4636                 u8 i;
4637
4638                 status = ice_alloc_recipe(hw, &entry->rid);
4639                 if (status)
4640                         goto err_unroll;
4641
4642                 /* Clear the result index of the located recipe, as this will be
4643                  * updated, if needed, later in the recipe creation process.
4644                  */
4645                 tmp[0].content.result_indx = 0;
4646
4647                 buf[recps] = tmp[0];
4648                 buf[recps].recipe_indx = (u8)entry->rid;
4649                 /* if the recipe is a non-root recipe RID should be programmed
4650                  * as 0 for the rules to be applied correctly.
4651                  */
4652                 buf[recps].content.rid = 0;
4653                 ice_memset(&buf[recps].content.lkup_indx, 0,
4654                            sizeof(buf[recps].content.lkup_indx),
4655                            ICE_NONDMA_MEM);
4656
4657                 /* All recipes use look-up index 0 to match switch ID. */
4658                 buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4659                 buf[recps].content.mask[0] =
4660                         CPU_TO_LE16(ICE_AQ_SW_ID_LKUP_MASK);
4661                 /* Setup lkup_indx 1..4 to INVALID/ignore and set the mask
4662                  * to be 0
4663                  */
4664                 for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
4665                         buf[recps].content.lkup_indx[i] = 0x80;
4666                         buf[recps].content.mask[i] = 0;
4667                 }
4668
4669                 for (i = 0; i < entry->r_group.n_val_pairs; i++) {
4670                         buf[recps].content.lkup_indx[i + 1] = entry->fv_idx[i];
4671                         buf[recps].content.mask[i + 1] = CPU_TO_LE16(0xFFFF);
4672                 }
4673
4674                 if (rm->n_grp_count > 1) {
4675                         entry->chain_idx = chain_idx;
4676                         buf[recps].content.result_indx =
4677                                 ICE_AQ_RECIPE_RESULT_EN |
4678                                 ((chain_idx << ICE_AQ_RECIPE_RESULT_DATA_S) &
4679                                  ICE_AQ_RECIPE_RESULT_DATA_M);
4680                         ice_clear_bit(ICE_CHAIN_FV_INDEX_START - chain_idx,
4681                                       available_result_ids);
4682                         chain_idx = ICE_CHAIN_FV_INDEX_START -
4683                                 ice_find_first_bit(available_result_ids,
4684                                                    ICE_CHAIN_FV_INDEX_START +
4685                                                    1);
4686                 }
4687
4688                 /* fill recipe dependencies */
4689                 ice_zero_bitmap((ice_bitmap_t *)buf[recps].recipe_bitmap,
4690                                 ICE_MAX_NUM_RECIPES);
4691                 ice_set_bit(buf[recps].recipe_indx,
4692                             (ice_bitmap_t *)buf[recps].recipe_bitmap);
4693                 buf[recps].content.act_ctrl_fwd_priority = rm->priority;
4694                 recps++;
4695         }
4696
4697         if (rm->n_grp_count == 1) {
4698                 rm->root_rid = buf[0].recipe_indx;
4699                 ice_set_bit(buf[0].recipe_indx, rm->r_bitmap);
4700                 buf[0].content.rid = rm->root_rid | ICE_AQ_RECIPE_ID_IS_ROOT;
4701                 if (sizeof(buf[0].recipe_bitmap) >= sizeof(rm->r_bitmap)) {
4702                         ice_memcpy(buf[0].recipe_bitmap, rm->r_bitmap,
4703                                    sizeof(buf[0].recipe_bitmap),
4704                                    ICE_NONDMA_TO_NONDMA);
4705                 } else {
4706                         status = ICE_ERR_BAD_PTR;
4707                         goto err_unroll;
4708                 }
4709                 /* Applicable only for ROOT_RECIPE, set the fwd_priority for
4710                  * the recipe which is getting created if specified
4711                  * by user. Usually any advanced switch filter, which results
4712                  * into new extraction sequence, ended up creating a new recipe
4713                  * of type ROOT and usually recipes are associated with profiles
4714                  * Switch rule referreing newly created recipe, needs to have
4715                  * either/or 'fwd' or 'join' priority, otherwise switch rule
4716                  * evaluation will not happen correctly. In other words, if
4717                  * switch rule to be evaluated on priority basis, then recipe
4718                  * needs to have priority, otherwise it will be evaluated last.
4719                  */
4720                 buf[0].content.act_ctrl_fwd_priority = rm->priority;
4721         } else {
4722                 struct ice_recp_grp_entry *last_chain_entry;
4723                 u16 rid, i;
4724
4725                 /* Allocate the last recipe that will chain the outcomes of the
4726                  * other recipes together
4727                  */
4728                 status = ice_alloc_recipe(hw, &rid);
4729                 if (status)
4730                         goto err_unroll;
4731
4732                 buf[recps].recipe_indx = (u8)rid;
4733                 buf[recps].content.rid = (u8)rid;
4734                 buf[recps].content.rid |= ICE_AQ_RECIPE_ID_IS_ROOT;
4735                 /* the new entry created should also be part of rg_list to
4736                  * make sure we have complete recipe
4737                  */
4738                 last_chain_entry = (struct ice_recp_grp_entry *)ice_malloc(hw,
4739                         sizeof(*last_chain_entry));
4740                 if (!last_chain_entry) {
4741                         status = ICE_ERR_NO_MEMORY;
4742                         goto err_unroll;
4743                 }
4744                 last_chain_entry->rid = rid;
4745                 ice_memset(&buf[recps].content.lkup_indx, 0,
4746                            sizeof(buf[recps].content.lkup_indx),
4747                            ICE_NONDMA_MEM);
4748                 /* All recipes use look-up index 0 to match switch ID. */
4749                 buf[recps].content.lkup_indx[0] = ICE_AQ_SW_ID_LKUP_IDX;
4750                 buf[recps].content.mask[0] =
4751                         CPU_TO_LE16(ICE_AQ_SW_ID_LKUP_MASK);
4752                 for (i = 1; i <= ICE_NUM_WORDS_RECIPE; i++) {
4753                         buf[recps].content.lkup_indx[i] =
4754                                 ICE_AQ_RECIPE_LKUP_IGNORE;
4755                         buf[recps].content.mask[i] = 0;
4756                 }
4757
4758                 i = 1;
4759                 /* update r_bitmap with the recp that is used for chaining */
4760                 ice_set_bit(rid, rm->r_bitmap);
4761                 /* this is the recipe that chains all the other recipes so it
4762                  * should not have a chaining ID to indicate the same
4763                  */
4764                 last_chain_entry->chain_idx = ICE_INVAL_CHAIN_IND;
4765                 LIST_FOR_EACH_ENTRY(entry, &rm->rg_list, ice_recp_grp_entry,
4766                                     l_entry) {
4767                         last_chain_entry->fv_idx[i] = entry->chain_idx;
4768                         buf[recps].content.lkup_indx[i] = entry->chain_idx;
4769                         buf[recps].content.mask[i++] = CPU_TO_LE16(0xFFFF);
4770                         ice_set_bit(entry->rid, rm->r_bitmap);
4771                 }
4772                 LIST_ADD(&last_chain_entry->l_entry, &rm->rg_list);
4773                 if (sizeof(buf[recps].recipe_bitmap) >=
4774                     sizeof(rm->r_bitmap)) {
4775                         ice_memcpy(buf[recps].recipe_bitmap, rm->r_bitmap,
4776                                    sizeof(buf[recps].recipe_bitmap),
4777                                    ICE_NONDMA_TO_NONDMA);
4778                 } else {
4779                         status = ICE_ERR_BAD_PTR;
4780                         goto err_unroll;
4781                 }
4782                 buf[recps].content.act_ctrl_fwd_priority = rm->priority;
4783
4784                 /* To differentiate among different UDP tunnels, a meta data ID
4785                  * flag is used.
4786                  */
4787                 if (match_tun) {
4788                         buf[recps].content.lkup_indx[i] = ICE_TUN_FLAG_FV_IND;
4789                         buf[recps].content.mask[i] =
4790                                 CPU_TO_LE16(ICE_TUN_FLAG_MASK);
4791                 }
4792
4793                 recps++;
4794                 rm->root_rid = (u8)rid;
4795         }
4796         status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
4797         if (status)
4798                 goto err_unroll;
4799
4800         status = ice_aq_add_recipe(hw, buf, rm->n_grp_count, NULL);
4801         ice_release_change_lock(hw);
4802         if (status)
4803                 goto err_unroll;
4804
4805         /* Every recipe that just got created add it to the recipe
4806          * book keeping list
4807          */
4808         LIST_FOR_EACH_ENTRY(entry, &rm->rg_list, ice_recp_grp_entry, l_entry) {
4809                 struct ice_switch_info *sw = hw->switch_info;
4810                 struct ice_sw_recipe *recp;
4811
4812                 recp = &sw->recp_list[entry->rid];
4813                 recp->root_rid = entry->rid;
4814                 ice_memcpy(&recp->ext_words, entry->r_group.pairs,
4815                            entry->r_group.n_val_pairs *
4816                            sizeof(struct ice_fv_word),
4817                            ICE_NONDMA_TO_NONDMA);
4818
4819                 recp->n_ext_words = entry->r_group.n_val_pairs;
4820                 recp->chain_idx = entry->chain_idx;
4821                 recp->recp_created = true;
4822                 recp->big_recp = false;
4823         }
4824         rm->root_buf = buf;
4825         ice_free(hw, tmp);
4826         return status;
4827
4828 err_unroll:
4829 err_mem:
4830         ice_free(hw, tmp);
4831         ice_free(hw, buf);
4832         return status;
4833 }
4834
4835 /**
4836  * ice_create_recipe_group - creates recipe group
4837  * @hw: pointer to hardware structure
4838  * @rm: recipe management list entry
4839  * @lkup_exts: lookup elements
4840  */
4841 static enum ice_status
4842 ice_create_recipe_group(struct ice_hw *hw, struct ice_sw_recipe *rm,
4843                         struct ice_prot_lkup_ext *lkup_exts)
4844 {
4845         struct ice_recp_grp_entry *entry;
4846         struct ice_recp_grp_entry *tmp;
4847         enum ice_status status;
4848         u8 recp_count = 0;
4849         u16 groups, i;
4850
4851         rm->n_grp_count = 0;
4852
4853         /* Each switch recipe can match up to 5 words or metadata. One word in
4854          * each recipe is used to match the switch ID. Four words are left for
4855          * matching other values. If the new advanced recipe requires more than
4856          * 4 words, it needs to be split into multiple recipes which are chained
4857          * together using the intermediate result that each produces as input to
4858          * the other recipes in the sequence.
4859          */
4860         groups = ARRAY_SIZE(ice_recipe_pack);
4861
4862         /* Check if any of the preferred recipes from the grouping policy
4863          * matches.
4864          */
4865         for (i = 0; i < groups; i++)
4866                 /* Check if the recipe from the preferred grouping matches
4867                  * or is a subset of the fields that needs to be looked up.
4868                  */
4869                 if (ice_is_recipe_subset(lkup_exts, &ice_recipe_pack[i])) {
4870                         /* This recipe can be used by itself or grouped with
4871                          * other recipes.
4872                          */
4873                         entry = (struct ice_recp_grp_entry *)
4874                                 ice_malloc(hw, sizeof(*entry));
4875                         if (!entry) {
4876                                 status = ICE_ERR_NO_MEMORY;
4877                                 goto err_unroll;
4878                         }
4879                         entry->r_group = ice_recipe_pack[i];
4880                         LIST_ADD(&entry->l_entry, &rm->rg_list);
4881                         rm->n_grp_count++;
4882                 }
4883
4884         /* Create recipes for words that are marked not done by packing them
4885          * as best fit.
4886          */
4887         status = ice_create_first_fit_recp_def(hw, lkup_exts,
4888                                                &rm->rg_list, &recp_count);
4889         if (!status) {
4890                 rm->n_grp_count += recp_count;
4891                 rm->n_ext_words = lkup_exts->n_val_words;
4892                 ice_memcpy(&rm->ext_words, lkup_exts->fv_words,
4893                            sizeof(rm->ext_words), ICE_NONDMA_TO_NONDMA);
4894                 goto out;
4895         }
4896
4897 err_unroll:
4898         LIST_FOR_EACH_ENTRY_SAFE(entry, tmp, &rm->rg_list, ice_recp_grp_entry,
4899                                  l_entry) {
4900                 LIST_DEL(&entry->l_entry);
4901                 ice_free(hw, entry);
4902         }
4903
4904 out:
4905         return status;
4906 }
4907
4908 /**
4909  * ice_get_fv - get field vectors/extraction sequences for spec. lookup types
4910  * @hw: pointer to hardware structure
4911  * @lkups: lookup elements or match criteria for the advanced recipe, one
4912  *         structure per protocol header
4913  * @lkups_cnt: number of protocols
4914  * @fv_list: pointer to a list that holds the returned field vectors
4915  */
4916 static enum ice_status
4917 ice_get_fv(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
4918            struct LIST_HEAD_TYPE *fv_list)
4919 {
4920         enum ice_status status;
4921         u16 *prot_ids;
4922         u16 i;
4923
4924         prot_ids = (u16 *)ice_calloc(hw, lkups_cnt, sizeof(*prot_ids));
4925         if (!prot_ids)
4926                 return ICE_ERR_NO_MEMORY;
4927
4928         for (i = 0; i < lkups_cnt; i++)
4929                 if (!ice_prot_type_to_id(lkups[i].type, &prot_ids[i])) {
4930                         status = ICE_ERR_CFG;
4931                         goto free_mem;
4932                 }
4933
4934         /* Find field vectors that include all specified protocol types */
4935         status = ice_get_sw_fv_list(hw, prot_ids, lkups_cnt, fv_list);
4936
4937 free_mem:
4938         ice_free(hw, prot_ids);
4939         return status;
4940 }
4941
4942 /**
4943  * ice_add_adv_recipe - Add an advanced recipe that is not part of the default
4944  * @hw: pointer to hardware structure
4945  * @lkups: lookup elements or match criteria for the advanced recipe, one
4946  *  structure per protocol header
4947  * @lkups_cnt: number of protocols
4948  * @rinfo: other information regarding the rule e.g. priority and action info
4949  * @rid: return the recipe ID of the recipe created
4950  */
4951 static enum ice_status
4952 ice_add_adv_recipe(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
4953                    u16 lkups_cnt, struct ice_adv_rule_info *rinfo, u16 *rid)
4954 {
4955         struct ice_prot_lkup_ext *lkup_exts;
4956         struct ice_recp_grp_entry *r_entry;
4957         struct ice_sw_fv_list_entry *fvit;
4958         struct ice_recp_grp_entry *r_tmp;
4959         struct ice_sw_fv_list_entry *tmp;
4960         enum ice_status status = ICE_SUCCESS;
4961         struct ice_sw_recipe *rm;
4962         bool match_tun = false;
4963         u8 i;
4964
4965         if (!lkups_cnt)
4966                 return ICE_ERR_PARAM;
4967
4968         lkup_exts = (struct ice_prot_lkup_ext *)
4969                 ice_malloc(hw, sizeof(*lkup_exts));
4970         if (!lkup_exts)
4971                 return ICE_ERR_NO_MEMORY;
4972
4973         /* Determine the number of words to be matched and if it exceeds a
4974          * recipe's restrictions
4975          */
4976         for (i = 0; i < lkups_cnt; i++) {
4977                 u16 count;
4978
4979                 if (lkups[i].type >= ICE_PROTOCOL_LAST) {
4980                         status = ICE_ERR_CFG;
4981                         goto err_free_lkup_exts;
4982                 }
4983
4984                 count = ice_fill_valid_words(&lkups[i], lkup_exts);
4985                 if (!count) {
4986                         status = ICE_ERR_CFG;
4987                         goto err_free_lkup_exts;
4988                 }
4989         }
4990
4991         *rid = ice_find_recp(hw, lkup_exts);
4992         if (*rid < ICE_MAX_NUM_RECIPES)
4993                 /* Success if found a recipe that match the existing criteria */
4994                 goto err_free_lkup_exts;
4995
4996         /* Recipe we need does not exist, add a recipe */
4997
4998         rm = (struct ice_sw_recipe *)ice_malloc(hw, sizeof(*rm));
4999         if (!rm) {
5000                 status = ICE_ERR_NO_MEMORY;
5001                 goto err_free_lkup_exts;
5002         }
5003
5004         /* Get field vectors that contain fields extracted from all the protocol
5005          * headers being programmed.
5006          */
5007         INIT_LIST_HEAD(&rm->fv_list);
5008         INIT_LIST_HEAD(&rm->rg_list);
5009
5010         status = ice_get_fv(hw, lkups, lkups_cnt, &rm->fv_list);
5011         if (status)
5012                 goto err_unroll;
5013
5014         /* Group match words into recipes using preferred recipe grouping
5015          * criteria.
5016          */
5017         status = ice_create_recipe_group(hw, rm, lkup_exts);
5018         if (status)
5019                 goto err_unroll;
5020
5021         /* There is only profile for UDP tunnels. So, it is necessary to use a
5022          * metadata ID flag to differentiate different tunnel types. A separate
5023          * recipe needs to be used for the metadata.
5024          */
5025         if ((rinfo->tun_type == ICE_SW_TUN_VXLAN_GPE ||
5026              rinfo->tun_type == ICE_SW_TUN_GENEVE ||
5027              rinfo->tun_type == ICE_SW_TUN_VXLAN) && rm->n_grp_count > 1)
5028                 match_tun = true;
5029
5030         /* set the recipe priority if specified */
5031         rm->priority = rinfo->priority ? rinfo->priority : 0;
5032
5033         /* Find offsets from the field vector. Pick the first one for all the
5034          * recipes.
5035          */
5036         ice_fill_fv_word_index(hw, &rm->fv_list, &rm->rg_list);
5037         status = ice_add_sw_recipe(hw, rm, match_tun);
5038         if (status)
5039                 goto err_unroll;
5040
5041         /* Associate all the recipes created with all the profiles in the
5042          * common field vector.
5043          */
5044         LIST_FOR_EACH_ENTRY(fvit, &rm->fv_list, ice_sw_fv_list_entry,
5045                             list_entry) {
5046                 ice_declare_bitmap(r_bitmap, ICE_MAX_NUM_RECIPES);
5047
5048                 status = ice_aq_get_recipe_to_profile(hw, fvit->profile_id,
5049                                                       (u8 *)r_bitmap, NULL);
5050                 if (status)
5051                         goto err_unroll;
5052
5053                 ice_or_bitmap(rm->r_bitmap, r_bitmap, rm->r_bitmap,
5054                               ICE_MAX_NUM_RECIPES);
5055                 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
5056                 if (status)
5057                         goto err_unroll;
5058
5059                 status = ice_aq_map_recipe_to_profile(hw, fvit->profile_id,
5060                                                       (u8 *)rm->r_bitmap,
5061                                                       NULL);
5062                 ice_release_change_lock(hw);
5063
5064                 if (status)
5065                         goto err_unroll;
5066         }
5067
5068         *rid = rm->root_rid;
5069         ice_memcpy(&hw->switch_info->recp_list[*rid].lkup_exts,
5070                    lkup_exts, sizeof(*lkup_exts), ICE_NONDMA_TO_NONDMA);
5071 err_unroll:
5072         LIST_FOR_EACH_ENTRY_SAFE(r_entry, r_tmp, &rm->rg_list,
5073                                  ice_recp_grp_entry, l_entry) {
5074                 LIST_DEL(&r_entry->l_entry);
5075                 ice_free(hw, r_entry);
5076         }
5077
5078         LIST_FOR_EACH_ENTRY_SAFE(fvit, tmp, &rm->fv_list, ice_sw_fv_list_entry,
5079                                  list_entry) {
5080                 LIST_DEL(&fvit->list_entry);
5081                 ice_free(hw, fvit);
5082         }
5083
5084         if (rm->root_buf)
5085                 ice_free(hw, rm->root_buf);
5086
5087         ice_free(hw, rm);
5088
5089 err_free_lkup_exts:
5090         ice_free(hw, lkup_exts);
5091
5092         return status;
5093 }
5094
5095 #define ICE_MAC_HDR_OFFSET      0
5096 #define ICE_IP_HDR_OFFSET       14
5097 #define ICE_GRE_HDR_OFFSET      34
5098 #define ICE_MAC_IL_HDR_OFFSET   42
5099 #define ICE_IP_IL_HDR_OFFSET    56
5100 #define ICE_L4_HDR_OFFSET       34
5101 #define ICE_UDP_TUN_HDR_OFFSET  42
5102
5103 /**
5104  * ice_find_dummy_packet - find dummy packet with given match criteria
5105  *
5106  * @lkups: lookup elements or match criteria for the advanced recipe, one
5107  *         structure per protocol header
5108  * @lkups_cnt: number of protocols
5109  * @tun_type: tunnel type from the match criteria
5110  * @pkt: dummy packet to fill according to filter match criteria
5111  * @pkt_len: packet length of dummy packet
5112  */
5113 static void
5114 ice_find_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5115                       enum ice_sw_tunnel_type tun_type, const u8 **pkt,
5116                       u16 *pkt_len)
5117 {
5118         u16 i;
5119
5120         if (tun_type == ICE_SW_TUN_NVGRE || tun_type == ICE_ALL_TUNNELS) {
5121                 *pkt = dummy_gre_packet;
5122                 *pkt_len = sizeof(dummy_gre_packet);
5123                 return;
5124         }
5125
5126         if (tun_type == ICE_SW_TUN_VXLAN || tun_type == ICE_SW_TUN_GENEVE ||
5127             tun_type == ICE_SW_TUN_VXLAN_GPE) {
5128                 *pkt = dummy_udp_tun_packet;
5129                 *pkt_len = sizeof(dummy_udp_tun_packet);
5130                 return;
5131         }
5132
5133         for (i = 0; i < lkups_cnt; i++) {
5134                 if (lkups[i].type == ICE_UDP_ILOS) {
5135                         *pkt = dummy_udp_tun_packet;
5136                         *pkt_len = sizeof(dummy_udp_tun_packet);
5137                         return;
5138                 }
5139         }
5140
5141         *pkt = dummy_tcp_tun_packet;
5142         *pkt_len = sizeof(dummy_tcp_tun_packet);
5143 }
5144
5145 /**
5146  * ice_fill_adv_dummy_packet - fill a dummy packet with given match criteria
5147  *
5148  * @lkups: lookup elements or match criteria for the advanced recipe, one
5149  *         structure per protocol header
5150  * @lkups_cnt: number of protocols
5151  * @tun_type: to know if the dummy packet is supposed to be tunnel packet
5152  * @s_rule: stores rule information from the match criteria
5153  * @dummy_pkt: dummy packet to fill according to filter match criteria
5154  * @pkt_len: packet length of dummy packet
5155  */
5156 static void
5157 ice_fill_adv_dummy_packet(struct ice_adv_lkup_elem *lkups, u16 lkups_cnt,
5158                           enum ice_sw_tunnel_type tun_type,
5159                           struct ice_aqc_sw_rules_elem *s_rule,
5160                           const u8 *dummy_pkt, u16 pkt_len)
5161 {
5162         u8 *pkt;
5163         u16 i;
5164
5165         /* Start with a packet with a pre-defined/dummy content. Then, fill
5166          * in the header values to be looked up or matched.
5167          */
5168         pkt = s_rule->pdata.lkup_tx_rx.hdr;
5169
5170         ice_memcpy(pkt, dummy_pkt, pkt_len, ICE_NONDMA_TO_NONDMA);
5171
5172         for (i = 0; i < lkups_cnt; i++) {
5173                 u32 len, pkt_off, hdr_size, field_off;
5174
5175                 switch (lkups[i].type) {
5176                 case ICE_MAC_OFOS:
5177                 case ICE_MAC_IL:
5178                         pkt_off = offsetof(struct ice_ether_hdr, dst_addr) +
5179                                 ((lkups[i].type == ICE_MAC_IL) ?
5180                                  ICE_MAC_IL_HDR_OFFSET : 0);
5181                         len = sizeof(lkups[i].h_u.eth_hdr.dst_addr);
5182                         if ((tun_type == ICE_SW_TUN_VXLAN ||
5183                              tun_type == ICE_SW_TUN_GENEVE ||
5184                              tun_type == ICE_SW_TUN_VXLAN_GPE) &&
5185                              lkups[i].type == ICE_MAC_IL) {
5186                                 pkt_off += sizeof(struct ice_udp_tnl_hdr);
5187                         }
5188
5189                         ice_memcpy(&pkt[pkt_off],
5190                                    &lkups[i].h_u.eth_hdr.dst_addr, len,
5191                                    ICE_NONDMA_TO_NONDMA);
5192                         pkt_off = offsetof(struct ice_ether_hdr, src_addr) +
5193                                 ((lkups[i].type == ICE_MAC_IL) ?
5194                                  ICE_MAC_IL_HDR_OFFSET : 0);
5195                         len = sizeof(lkups[i].h_u.eth_hdr.src_addr);
5196                         if ((tun_type == ICE_SW_TUN_VXLAN ||
5197                              tun_type == ICE_SW_TUN_GENEVE ||
5198                              tun_type == ICE_SW_TUN_VXLAN_GPE) &&
5199                              lkups[i].type == ICE_MAC_IL) {
5200                                 pkt_off += sizeof(struct ice_udp_tnl_hdr);
5201                         }
5202                         ice_memcpy(&pkt[pkt_off],
5203                                    &lkups[i].h_u.eth_hdr.src_addr, len,
5204                                    ICE_NONDMA_TO_NONDMA);
5205                         if (lkups[i].h_u.eth_hdr.ethtype_id) {
5206                                 pkt_off = offsetof(struct ice_ether_hdr,
5207                                                    ethtype_id) +
5208                                         ((lkups[i].type == ICE_MAC_IL) ?
5209                                          ICE_MAC_IL_HDR_OFFSET : 0);
5210                                 len = sizeof(lkups[i].h_u.eth_hdr.ethtype_id);
5211                                 if ((tun_type == ICE_SW_TUN_VXLAN ||
5212                                      tun_type == ICE_SW_TUN_GENEVE ||
5213                                      tun_type == ICE_SW_TUN_VXLAN_GPE) &&
5214                                      lkups[i].type == ICE_MAC_IL) {
5215                                         pkt_off +=
5216                                                 sizeof(struct ice_udp_tnl_hdr);
5217                                 }
5218                                 ice_memcpy(&pkt[pkt_off],
5219                                            &lkups[i].h_u.eth_hdr.ethtype_id,
5220                                            len, ICE_NONDMA_TO_NONDMA);
5221                         }
5222                         break;
5223                 case ICE_IPV4_OFOS:
5224                         hdr_size = sizeof(struct ice_ipv4_hdr);
5225                         if (lkups[i].h_u.ipv4_hdr.dst_addr) {
5226                                 pkt_off = ICE_IP_HDR_OFFSET +
5227                                            offsetof(struct ice_ipv4_hdr,
5228                                                     dst_addr);
5229                                 field_off = offsetof(struct ice_ipv4_hdr,
5230                                                      dst_addr);
5231                                 len = hdr_size - field_off;
5232                                 ice_memcpy(&pkt[pkt_off],
5233                                            &lkups[i].h_u.ipv4_hdr.dst_addr,
5234                                            len, ICE_NONDMA_TO_NONDMA);
5235                         }
5236                         if (lkups[i].h_u.ipv4_hdr.src_addr) {
5237                                 pkt_off = ICE_IP_HDR_OFFSET +
5238                                            offsetof(struct ice_ipv4_hdr,
5239                                                     src_addr);
5240                                 field_off = offsetof(struct ice_ipv4_hdr,
5241                                                      src_addr);
5242                                 len = hdr_size - field_off;
5243                                 ice_memcpy(&pkt[pkt_off],
5244                                            &lkups[i].h_u.ipv4_hdr.src_addr,
5245                                            len, ICE_NONDMA_TO_NONDMA);
5246                         }
5247                         break;
5248                 case ICE_IPV4_IL:
5249                         break;
5250                 case ICE_TCP_IL:
5251                 case ICE_UDP_ILOS:
5252                 case ICE_SCTP_IL:
5253                         hdr_size = sizeof(struct ice_udp_tnl_hdr);
5254                         if (lkups[i].h_u.l4_hdr.dst_port) {
5255                                 pkt_off = ICE_L4_HDR_OFFSET +
5256                                            offsetof(struct ice_l4_hdr,
5257                                                     dst_port);
5258                                 field_off = offsetof(struct ice_l4_hdr,
5259                                                      dst_port);
5260                                 len =  hdr_size - field_off;
5261                                 ice_memcpy(&pkt[pkt_off],
5262                                            &lkups[i].h_u.l4_hdr.dst_port,
5263                                            len, ICE_NONDMA_TO_NONDMA);
5264                         }
5265                         if (lkups[i].h_u.l4_hdr.src_port) {
5266                                 pkt_off = ICE_L4_HDR_OFFSET +
5267                                         offsetof(struct ice_l4_hdr, src_port);
5268                                 field_off = offsetof(struct ice_l4_hdr,
5269                                                      src_port);
5270                                 len =  hdr_size - field_off;
5271                                 ice_memcpy(&pkt[pkt_off],
5272                                            &lkups[i].h_u.l4_hdr.src_port,
5273                                            len, ICE_NONDMA_TO_NONDMA);
5274                         }
5275                         break;
5276                 case ICE_VXLAN:
5277                 case ICE_GENEVE:
5278                 case ICE_VXLAN_GPE:
5279                         pkt_off = ICE_UDP_TUN_HDR_OFFSET +
5280                                    offsetof(struct ice_udp_tnl_hdr, vni);
5281                         field_off = offsetof(struct ice_udp_tnl_hdr, vni);
5282                         len =  sizeof(struct ice_udp_tnl_hdr) - field_off;
5283                         ice_memcpy(&pkt[pkt_off], &lkups[i].h_u.tnl_hdr.vni,
5284                                    len, ICE_NONDMA_TO_NONDMA);
5285                         break;
5286                 default:
5287                         break;
5288                 }
5289         }
5290         s_rule->pdata.lkup_tx_rx.hdr_len = CPU_TO_LE16(pkt_len);
5291 }
5292
5293 /**
5294  * ice_find_adv_rule_entry - Search a rule entry
5295  * @hw: pointer to the hardware structure
5296  * @lkups: lookup elements or match criteria for the advanced recipe, one
5297  *         structure per protocol header
5298  * @lkups_cnt: number of protocols
5299  * @recp_id: recipe ID for which we are finding the rule
5300  * @rinfo: other information regarding the rule e.g. priority and action info
5301  *
5302  * Helper function to search for a given advance rule entry
5303  * Returns pointer to entry storing the rule if found
5304  */
5305 static struct ice_adv_fltr_mgmt_list_entry *
5306 ice_find_adv_rule_entry(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5307                         u16 lkups_cnt, u8 recp_id,
5308                         struct ice_adv_rule_info *rinfo)
5309 {
5310         struct ice_adv_fltr_mgmt_list_entry *list_itr;
5311         struct ice_switch_info *sw = hw->switch_info;
5312         int i;
5313
5314         LIST_FOR_EACH_ENTRY(list_itr, &sw->recp_list[recp_id].filt_rules,
5315                             ice_adv_fltr_mgmt_list_entry, list_entry) {
5316                 bool lkups_matched = true;
5317
5318                 if (lkups_cnt != list_itr->lkups_cnt)
5319                         continue;
5320                 for (i = 0; i < list_itr->lkups_cnt; i++)
5321                         if (memcmp(&list_itr->lkups[i], &lkups[i],
5322                                    sizeof(*lkups))) {
5323                                 lkups_matched = false;
5324                                 break;
5325                         }
5326                 if (rinfo->sw_act.flag == list_itr->rule_info.sw_act.flag &&
5327                     rinfo->tun_type == list_itr->rule_info.tun_type &&
5328                     lkups_matched)
5329                         return list_itr;
5330         }
5331         return NULL;
5332 }
5333
5334 /**
5335  * ice_adv_add_update_vsi_list
5336  * @hw: pointer to the hardware structure
5337  * @m_entry: pointer to current adv filter management list entry
5338  * @cur_fltr: filter information from the book keeping entry
5339  * @new_fltr: filter information with the new VSI to be added
5340  *
5341  * Call AQ command to add or update previously created VSI list with new VSI.
5342  *
5343  * Helper function to do book keeping associated with adding filter information
5344  * The algorithm to do the booking keeping is described below :
5345  * When a VSI needs to subscribe to a given advanced filter
5346  *      if only one VSI has been added till now
5347  *              Allocate a new VSI list and add two VSIs
5348  *              to this list using switch rule command
5349  *              Update the previously created switch rule with the
5350  *              newly created VSI list ID
5351  *      if a VSI list was previously created
5352  *              Add the new VSI to the previously created VSI list set
5353  *              using the update switch rule command
5354  */
5355 static enum ice_status
5356 ice_adv_add_update_vsi_list(struct ice_hw *hw,
5357                             struct ice_adv_fltr_mgmt_list_entry *m_entry,
5358                             struct ice_adv_rule_info *cur_fltr,
5359                             struct ice_adv_rule_info *new_fltr)
5360 {
5361         enum ice_status status;
5362         u16 vsi_list_id = 0;
5363
5364         if (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5365             cur_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP)
5366                 return ICE_ERR_NOT_IMPL;
5367
5368         if (cur_fltr->sw_act.fltr_act == ICE_DROP_PACKET &&
5369             new_fltr->sw_act.fltr_act == ICE_DROP_PACKET)
5370                 return ICE_ERR_ALREADY_EXISTS;
5371
5372         if ((new_fltr->sw_act.fltr_act == ICE_FWD_TO_Q ||
5373              new_fltr->sw_act.fltr_act == ICE_FWD_TO_QGRP) &&
5374             (cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5375              cur_fltr->sw_act.fltr_act == ICE_FWD_TO_VSI_LIST))
5376                 return ICE_ERR_NOT_IMPL;
5377
5378         if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) {
5379                  /* Only one entry existed in the mapping and it was not already
5380                   * a part of a VSI list. So, create a VSI list with the old and
5381                   * new VSIs.
5382                   */
5383                 struct ice_fltr_info tmp_fltr;
5384                 u16 vsi_handle_arr[2];
5385
5386                 /* A rule already exists with the new VSI being added */
5387                 if (cur_fltr->sw_act.fwd_id.hw_vsi_id ==
5388                     new_fltr->sw_act.fwd_id.hw_vsi_id)
5389                         return ICE_ERR_ALREADY_EXISTS;
5390
5391                 vsi_handle_arr[0] = cur_fltr->sw_act.vsi_handle;
5392                 vsi_handle_arr[1] = new_fltr->sw_act.vsi_handle;
5393                 status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2,
5394                                                   &vsi_list_id,
5395                                                   ICE_SW_LKUP_LAST);
5396                 if (status)
5397                         return status;
5398
5399                 tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id;
5400                 tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST;
5401                 tmp_fltr.fwd_id.vsi_list_id = vsi_list_id;
5402                 /* Update the previous switch rule of "forward to VSI" to
5403                  * "fwd to VSI list"
5404                  */
5405                 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5406                 if (status)
5407                         return status;
5408
5409                 cur_fltr->sw_act.fwd_id.vsi_list_id = vsi_list_id;
5410                 cur_fltr->sw_act.fltr_act = ICE_FWD_TO_VSI_LIST;
5411                 m_entry->vsi_list_info =
5412                         ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2,
5413                                                 vsi_list_id);
5414         } else {
5415                 u16 vsi_handle = new_fltr->sw_act.vsi_handle;
5416
5417                 if (!m_entry->vsi_list_info)
5418                         return ICE_ERR_CFG;
5419
5420                 /* A rule already exists with the new VSI being added */
5421                 if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle))
5422                         return ICE_SUCCESS;
5423
5424                 /* Update the previously created VSI list set with
5425                  * the new VSI ID passed in
5426                  */
5427                 vsi_list_id = cur_fltr->sw_act.fwd_id.vsi_list_id;
5428
5429                 status = ice_update_vsi_list_rule(hw, &vsi_handle, 1,
5430                                                   vsi_list_id, false,
5431                                                   ice_aqc_opc_update_sw_rules,
5432                                                   ICE_SW_LKUP_LAST);
5433                 /* update VSI list mapping info with new VSI ID */
5434                 if (!status)
5435                         ice_set_bit(vsi_handle,
5436                                     m_entry->vsi_list_info->vsi_map);
5437         }
5438         if (!status)
5439                 m_entry->vsi_count++;
5440         return status;
5441 }
5442
5443 /**
5444  * ice_add_adv_rule - create an advanced switch rule
5445  * @hw: pointer to the hardware structure
5446  * @lkups: information on the words that needs to be looked up. All words
5447  * together makes one recipe
5448  * @lkups_cnt: num of entries in the lkups array
5449  * @rinfo: other information related to the rule that needs to be programmed
5450  * @added_entry: this will return recipe_id, rule_id and vsi_handle. should be
5451  *               ignored is case of error.
5452  *
5453  * This function can program only 1 rule at a time. The lkups is used to
5454  * describe the all the words that forms the "lookup" portion of the recipe.
5455  * These words can span multiple protocols. Callers to this function need to
5456  * pass in a list of protocol headers with lookup information along and mask
5457  * that determines which words are valid from the given protocol header.
5458  * rinfo describes other information related to this rule such as forwarding
5459  * IDs, priority of this rule, etc.
5460  */
5461 enum ice_status
5462 ice_add_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5463                  u16 lkups_cnt, struct ice_adv_rule_info *rinfo,
5464                  struct ice_rule_query_data *added_entry)
5465 {
5466         struct ice_adv_fltr_mgmt_list_entry *m_entry, *adv_fltr = NULL;
5467         u16 rid = 0, i, pkt_len, rule_buf_sz, vsi_handle;
5468         struct ice_aqc_sw_rules_elem *s_rule;
5469         struct LIST_HEAD_TYPE *rule_head;
5470         struct ice_switch_info *sw;
5471         enum ice_status status;
5472         const u8 *pkt = NULL;
5473         u32 act = 0;
5474
5475         if (!lkups_cnt)
5476                 return ICE_ERR_PARAM;
5477
5478         for (i = 0; i < lkups_cnt; i++) {
5479                 u16 j, *ptr;
5480
5481                 /* Validate match masks to make sure they match complete 16-bit
5482                  * words.
5483                  */
5484                 ptr = (u16 *)&lkups->m_u;
5485                 for (j = 0; j < sizeof(lkups->m_u) / sizeof(u16); j++)
5486                         if (ptr[j] != 0 && ptr[j] != 0xffff)
5487                                 return ICE_ERR_PARAM;
5488         }
5489
5490         if (!(rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI ||
5491               rinfo->sw_act.fltr_act == ICE_FWD_TO_Q ||
5492               rinfo->sw_act.fltr_act == ICE_DROP_PACKET))
5493                 return ICE_ERR_CFG;
5494
5495         vsi_handle = rinfo->sw_act.vsi_handle;
5496         if (!ice_is_vsi_valid(hw, vsi_handle))
5497                 return ICE_ERR_PARAM;
5498
5499         if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI)
5500                 rinfo->sw_act.fwd_id.hw_vsi_id =
5501                         ice_get_hw_vsi_num(hw, vsi_handle);
5502         if (rinfo->sw_act.flag & ICE_FLTR_TX)
5503                 rinfo->sw_act.src = ice_get_hw_vsi_num(hw, vsi_handle);
5504
5505         status = ice_add_adv_recipe(hw, lkups, lkups_cnt, rinfo, &rid);
5506         if (status)
5507                 return status;
5508         m_entry = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
5509         if (m_entry) {
5510                 /* we have to add VSI to VSI_LIST and increment vsi_count.
5511                  * Also Update VSI list so that we can change forwarding rule
5512                  * if the rule already exists, we will check if it exists with
5513                  * same vsi_id, if not then add it to the VSI list if it already
5514                  * exists if not then create a VSI list and add the existing VSI
5515                  * ID and the new VSI ID to the list
5516                  * We will add that VSI to the list
5517                  */
5518                 status = ice_adv_add_update_vsi_list(hw, m_entry,
5519                                                      &m_entry->rule_info,
5520                                                      rinfo);
5521                 if (added_entry) {
5522                         added_entry->rid = rid;
5523                         added_entry->rule_id = m_entry->rule_info.fltr_rule_id;
5524                         added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
5525                 }
5526                 return status;
5527         }
5528         ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type, &pkt,
5529                               &pkt_len);
5530         rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE + pkt_len;
5531         s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rule_buf_sz);
5532         if (!s_rule)
5533                 return ICE_ERR_NO_MEMORY;
5534         act |= ICE_SINGLE_ACT_LB_ENABLE | ICE_SINGLE_ACT_LAN_ENABLE;
5535         switch (rinfo->sw_act.fltr_act) {
5536         case ICE_FWD_TO_VSI:
5537                 act |= (rinfo->sw_act.fwd_id.hw_vsi_id <<
5538                         ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M;
5539                 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT;
5540                 break;
5541         case ICE_FWD_TO_Q:
5542                 act |= ICE_SINGLE_ACT_TO_Q;
5543                 act |= (rinfo->sw_act.fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) &
5544                        ICE_SINGLE_ACT_Q_INDEX_M;
5545                 break;
5546         case ICE_DROP_PACKET:
5547                 act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP |
5548                        ICE_SINGLE_ACT_VALID_BIT;
5549                 break;
5550         default:
5551                 status = ICE_ERR_CFG;
5552                 goto err_ice_add_adv_rule;
5553         }
5554
5555         /* set the rule LOOKUP type based on caller specified 'RX'
5556          * instead of hardcoding it to be either LOOKUP_TX/RX
5557          *
5558          * for 'RX' set the source to be the port number
5559          * for 'TX' set the source to be the source HW VSI number (determined
5560          * by caller)
5561          */
5562         if (rinfo->rx) {
5563                 s_rule->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX);
5564                 s_rule->pdata.lkup_tx_rx.src =
5565                         CPU_TO_LE16(hw->port_info->lport);
5566         } else {
5567                 s_rule->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX);
5568                 s_rule->pdata.lkup_tx_rx.src = CPU_TO_LE16(rinfo->sw_act.src);
5569         }
5570
5571         s_rule->pdata.lkup_tx_rx.recipe_id = CPU_TO_LE16(rid);
5572         s_rule->pdata.lkup_tx_rx.act = CPU_TO_LE32(act);
5573
5574         ice_fill_adv_dummy_packet(lkups, lkups_cnt, rinfo->tun_type, s_rule,
5575                                   pkt, pkt_len);
5576
5577         status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
5578                                  rule_buf_sz, 1, ice_aqc_opc_add_sw_rules,
5579                                  NULL);
5580         if (status)
5581                 goto err_ice_add_adv_rule;
5582         adv_fltr = (struct ice_adv_fltr_mgmt_list_entry *)
5583                 ice_malloc(hw, sizeof(struct ice_adv_fltr_mgmt_list_entry));
5584         if (!adv_fltr) {
5585                 status = ICE_ERR_NO_MEMORY;
5586                 goto err_ice_add_adv_rule;
5587         }
5588
5589         adv_fltr->lkups = (struct ice_adv_lkup_elem *)
5590                 ice_memdup(hw, lkups, lkups_cnt * sizeof(*lkups),
5591                            ICE_NONDMA_TO_NONDMA);
5592         if (!adv_fltr->lkups) {
5593                 status = ICE_ERR_NO_MEMORY;
5594                 goto err_ice_add_adv_rule;
5595         }
5596
5597         adv_fltr->lkups_cnt = lkups_cnt;
5598         adv_fltr->rule_info = *rinfo;
5599         adv_fltr->rule_info.fltr_rule_id =
5600                 LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
5601         sw = hw->switch_info;
5602         sw->recp_list[rid].adv_rule = true;
5603         rule_head = &sw->recp_list[rid].filt_rules;
5604
5605         if (rinfo->sw_act.fltr_act == ICE_FWD_TO_VSI) {
5606                 struct ice_fltr_info tmp_fltr;
5607
5608                 tmp_fltr.fltr_rule_id =
5609                         LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index);
5610                 tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
5611                 tmp_fltr.fwd_id.hw_vsi_id =
5612                         ice_get_hw_vsi_num(hw, vsi_handle);
5613                 tmp_fltr.vsi_handle = vsi_handle;
5614                 /* Update the previous switch rule of "forward to VSI" to
5615                  * "fwd to VSI list"
5616                  */
5617                 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5618                 if (status)
5619                         goto err_ice_add_adv_rule;
5620                 adv_fltr->vsi_count = 1;
5621         }
5622
5623         /* Add rule entry to book keeping list */
5624         LIST_ADD(&adv_fltr->list_entry, rule_head);
5625         if (added_entry) {
5626                 added_entry->rid = rid;
5627                 added_entry->rule_id = adv_fltr->rule_info.fltr_rule_id;
5628                 added_entry->vsi_handle = rinfo->sw_act.vsi_handle;
5629         }
5630 err_ice_add_adv_rule:
5631         if (status && adv_fltr) {
5632                 ice_free(hw, adv_fltr->lkups);
5633                 ice_free(hw, adv_fltr);
5634         }
5635
5636         ice_free(hw, s_rule);
5637
5638         return status;
5639 }
5640
5641 /**
5642  * ice_adv_rem_update_vsi_list
5643  * @hw: pointer to the hardware structure
5644  * @vsi_handle: VSI handle of the VSI to remove
5645  * @fm_list: filter management entry for which the VSI list management needs to
5646  *           be done
5647  */
5648 static enum ice_status
5649 ice_adv_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle,
5650                             struct ice_adv_fltr_mgmt_list_entry *fm_list)
5651 {
5652         struct ice_vsi_list_map_info *vsi_list_info;
5653         enum ice_sw_lkup_type lkup_type;
5654         enum ice_status status;
5655         u16 vsi_list_id;
5656
5657         if (fm_list->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST ||
5658             fm_list->vsi_count == 0)
5659                 return ICE_ERR_PARAM;
5660
5661         /* A rule with the VSI being removed does not exist */
5662         if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle))
5663                 return ICE_ERR_DOES_NOT_EXIST;
5664
5665         lkup_type = ICE_SW_LKUP_LAST;
5666         vsi_list_id = fm_list->rule_info.sw_act.fwd_id.vsi_list_id;
5667         status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true,
5668                                           ice_aqc_opc_update_sw_rules,
5669                                           lkup_type);
5670         if (status)
5671                 return status;
5672
5673         fm_list->vsi_count--;
5674         ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map);
5675         vsi_list_info = fm_list->vsi_list_info;
5676         if (fm_list->vsi_count == 1) {
5677                 struct ice_fltr_info tmp_fltr;
5678                 u16 rem_vsi_handle;
5679
5680                 rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map,
5681                                                     ICE_MAX_VSI);
5682                 if (!ice_is_vsi_valid(hw, rem_vsi_handle))
5683                         return ICE_ERR_OUT_OF_RANGE;
5684
5685                 /* Make sure VSI list is empty before removing it below */
5686                 status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1,
5687                                                   vsi_list_id, true,
5688                                                   ice_aqc_opc_update_sw_rules,
5689                                                   lkup_type);
5690                 if (status)
5691                         return status;
5692                 tmp_fltr.fltr_rule_id = fm_list->rule_info.fltr_rule_id;
5693                 fm_list->rule_info.sw_act.fltr_act = ICE_FWD_TO_VSI;
5694                 tmp_fltr.fltr_act = ICE_FWD_TO_VSI;
5695                 tmp_fltr.fwd_id.hw_vsi_id =
5696                         ice_get_hw_vsi_num(hw, rem_vsi_handle);
5697                 fm_list->rule_info.sw_act.fwd_id.hw_vsi_id =
5698                         ice_get_hw_vsi_num(hw, rem_vsi_handle);
5699
5700                 /* Update the previous switch rule of "MAC forward to VSI" to
5701                  * "MAC fwd to VSI list"
5702                  */
5703                 status = ice_update_pkt_fwd_rule(hw, &tmp_fltr);
5704                 if (status) {
5705                         ice_debug(hw, ICE_DBG_SW,
5706                                   "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n",
5707                                   tmp_fltr.fwd_id.hw_vsi_id, status);
5708                         return status;
5709                 }
5710         }
5711
5712         if (fm_list->vsi_count == 1) {
5713                 /* Remove the VSI list since it is no longer used */
5714                 status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type);
5715                 if (status) {
5716                         ice_debug(hw, ICE_DBG_SW,
5717                                   "Failed to remove VSI list %d, error %d\n",
5718                                   vsi_list_id, status);
5719                         return status;
5720                 }
5721
5722                 LIST_DEL(&vsi_list_info->list_entry);
5723                 ice_free(hw, vsi_list_info);
5724                 fm_list->vsi_list_info = NULL;
5725         }
5726
5727         return status;
5728 }
5729
5730 /**
5731  * ice_rem_adv_rule - removes existing advanced switch rule
5732  * @hw: pointer to the hardware structure
5733  * @lkups: information on the words that needs to be looked up. All words
5734  *         together makes one recipe
5735  * @lkups_cnt: num of entries in the lkups array
5736  * @rinfo: Its the pointer to the rule information for the rule
5737  *
5738  * This function can be used to remove 1 rule at a time. The lkups is
5739  * used to describe all the words that forms the "lookup" portion of the
5740  * rule. These words can span multiple protocols. Callers to this function
5741  * need to pass in a list of protocol headers with lookup information along
5742  * and mask that determines which words are valid from the given protocol
5743  * header. rinfo describes other information related to this rule such as
5744  * forwarding IDs, priority of this rule, etc.
5745  */
5746 enum ice_status
5747 ice_rem_adv_rule(struct ice_hw *hw, struct ice_adv_lkup_elem *lkups,
5748                  u16 lkups_cnt, struct ice_adv_rule_info *rinfo)
5749 {
5750         struct ice_adv_fltr_mgmt_list_entry *list_elem;
5751         struct ice_prot_lkup_ext lkup_exts;
5752         u16 rule_buf_sz, pkt_len, i, rid;
5753         enum ice_status status = ICE_SUCCESS;
5754         bool remove_rule = false;
5755         struct ice_lock *rule_lock; /* Lock to protect filter rule list */
5756         const u8 *pkt = NULL;
5757         u16 vsi_handle;
5758
5759         ice_memset(&lkup_exts, 0, sizeof(lkup_exts), ICE_NONDMA_MEM);
5760         for (i = 0; i < lkups_cnt; i++) {
5761                 u16 count;
5762
5763                 if (lkups[i].type >= ICE_PROTOCOL_LAST)
5764                         return ICE_ERR_CFG;
5765
5766                 count = ice_fill_valid_words(&lkups[i], &lkup_exts);
5767                 if (!count)
5768                         return ICE_ERR_CFG;
5769         }
5770         rid = ice_find_recp(hw, &lkup_exts);
5771         /* If did not find a recipe that match the existing criteria */
5772         if (rid == ICE_MAX_NUM_RECIPES)
5773                 return ICE_ERR_PARAM;
5774
5775         rule_lock = &hw->switch_info->recp_list[rid].filt_rule_lock;
5776         list_elem = ice_find_adv_rule_entry(hw, lkups, lkups_cnt, rid, rinfo);
5777         /* the rule is already removed */
5778         if (!list_elem)
5779                 return ICE_SUCCESS;
5780         ice_acquire_lock(rule_lock);
5781         if (list_elem->rule_info.sw_act.fltr_act != ICE_FWD_TO_VSI_LIST) {
5782                 remove_rule = true;
5783         } else if (list_elem->vsi_count > 1) {
5784                 list_elem->vsi_list_info->ref_cnt--;
5785                 remove_rule = false;
5786                 vsi_handle = rinfo->sw_act.vsi_handle;
5787                 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
5788         } else {
5789                 vsi_handle = rinfo->sw_act.vsi_handle;
5790                 status = ice_adv_rem_update_vsi_list(hw, vsi_handle, list_elem);
5791                 if (status) {
5792                         ice_release_lock(rule_lock);
5793                         return status;
5794                 }
5795                 if (list_elem->vsi_count == 0)
5796                         remove_rule = true;
5797         }
5798         ice_release_lock(rule_lock);
5799         if (remove_rule) {
5800                 struct ice_aqc_sw_rules_elem *s_rule;
5801
5802                 ice_find_dummy_packet(lkups, lkups_cnt, rinfo->tun_type, &pkt,
5803                                       &pkt_len);
5804                 rule_buf_sz = ICE_SW_RULE_RX_TX_NO_HDR_SIZE + pkt_len;
5805                 s_rule =
5806                         (struct ice_aqc_sw_rules_elem *)ice_malloc(hw,
5807                                                                    rule_buf_sz);
5808                 if (!s_rule)
5809                         return ICE_ERR_NO_MEMORY;
5810                 s_rule->pdata.lkup_tx_rx.act = 0;
5811                 s_rule->pdata.lkup_tx_rx.index =
5812                         CPU_TO_LE16(list_elem->rule_info.fltr_rule_id);
5813                 s_rule->pdata.lkup_tx_rx.hdr_len = 0;
5814                 status = ice_aq_sw_rules(hw, (struct ice_aqc_sw_rules *)s_rule,
5815                                          rule_buf_sz, 1,
5816                                          ice_aqc_opc_remove_sw_rules, NULL);
5817                 if (status == ICE_SUCCESS) {
5818                         ice_acquire_lock(rule_lock);
5819                         LIST_DEL(&list_elem->list_entry);
5820                         ice_free(hw, list_elem->lkups);
5821                         ice_free(hw, list_elem);
5822                         ice_release_lock(rule_lock);
5823                 }
5824                 ice_free(hw, s_rule);
5825         }
5826         return status;
5827 }
5828
5829 /**
5830  * ice_rem_adv_rule_by_id - removes existing advanced switch rule by ID
5831  * @hw: pointer to the hardware structure
5832  * @remove_entry: data struct which holds rule_id, VSI handle and recipe ID
5833  *
5834  * This function is used to remove 1 rule at a time. The removal is based on
5835  * the remove_entry parameter. This function will remove rule for a given
5836  * vsi_handle with a given rule_id which is passed as parameter in remove_entry
5837  */
5838 enum ice_status
5839 ice_rem_adv_rule_by_id(struct ice_hw *hw,
5840                        struct ice_rule_query_data *remove_entry)
5841 {
5842         struct ice_adv_fltr_mgmt_list_entry *list_itr;
5843         struct LIST_HEAD_TYPE *list_head;
5844         struct ice_adv_rule_info rinfo;
5845         struct ice_switch_info *sw;
5846
5847         sw = hw->switch_info;
5848         if (!sw->recp_list[remove_entry->rid].recp_created)
5849                 return ICE_ERR_PARAM;
5850         list_head = &sw->recp_list[remove_entry->rid].filt_rules;
5851         LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_adv_fltr_mgmt_list_entry,
5852                             list_entry) {
5853                 if (list_itr->rule_info.fltr_rule_id ==
5854                     remove_entry->rule_id) {
5855                         rinfo = list_itr->rule_info;
5856                         rinfo.sw_act.vsi_handle = remove_entry->vsi_handle;
5857                         return ice_rem_adv_rule(hw, list_itr->lkups,
5858                                                 list_itr->lkups_cnt, &rinfo);
5859                 }
5860         }
5861         return ICE_ERR_PARAM;
5862 }
5863
5864 /**
5865  * ice_rem_adv_for_vsi - removes existing advanced switch rules for a
5866  *                       given VSI handle
5867  * @hw: pointer to the hardware structure
5868  * @vsi_handle: VSI handle for which we are supposed to remove all the rules.
5869  *
5870  * This function is used to remove all the rules for a given VSI and as soon
5871  * as removing a rule fails, it will return immediately with the error code,
5872  * else it will return ICE_SUCCESS
5873  */
5874 enum ice_status
5875 ice_rem_adv_rule_for_vsi(struct ice_hw *hw, u16 vsi_handle)
5876 {
5877         struct ice_adv_fltr_mgmt_list_entry *list_itr;
5878         struct ice_vsi_list_map_info *map_info;
5879         struct LIST_HEAD_TYPE *list_head;
5880         struct ice_adv_rule_info rinfo;
5881         struct ice_switch_info *sw;
5882         enum ice_status status;
5883         u16 vsi_list_id = 0;
5884         u8 rid;
5885
5886         sw = hw->switch_info;
5887         for (rid = 0; rid < ICE_MAX_NUM_RECIPES; rid++) {
5888                 if (!sw->recp_list[rid].recp_created)
5889                         continue;
5890                 if (!sw->recp_list[rid].adv_rule)
5891                         continue;
5892                 list_head = &sw->recp_list[rid].filt_rules;
5893                 map_info = NULL;
5894                 LIST_FOR_EACH_ENTRY(list_itr, list_head,
5895                                     ice_adv_fltr_mgmt_list_entry, list_entry) {
5896                         map_info = ice_find_vsi_list_entry(hw, rid, vsi_handle,
5897                                                            &vsi_list_id);
5898                         if (!map_info)
5899                                 continue;
5900                         rinfo = list_itr->rule_info;
5901                         rinfo.sw_act.vsi_handle = vsi_handle;
5902                         status = ice_rem_adv_rule(hw, list_itr->lkups,
5903                                                   list_itr->lkups_cnt, &rinfo);
5904                         if (status)
5905                                 return status;
5906                         map_info = NULL;
5907                 }
5908         }
5909         return ICE_SUCCESS;
5910 }
5911
5912 /**
5913  * ice_replay_fltr - Replay all the filters stored by a specific list head
5914  * @hw: pointer to the hardware structure
5915  * @list_head: list for which filters needs to be replayed
5916  * @recp_id: Recipe ID for which rules need to be replayed
5917  */
5918 static enum ice_status
5919 ice_replay_fltr(struct ice_hw *hw, u8 recp_id, struct LIST_HEAD_TYPE *list_head)
5920 {
5921         struct ice_fltr_mgmt_list_entry *itr;
5922         struct LIST_HEAD_TYPE l_head;
5923         enum ice_status status = ICE_SUCCESS;
5924
5925         if (LIST_EMPTY(list_head))
5926                 return status;
5927
5928         /* Move entries from the given list_head to a temporary l_head so that
5929          * they can be replayed. Otherwise when trying to re-add the same
5930          * filter, the function will return already exists
5931          */
5932         LIST_REPLACE_INIT(list_head, &l_head);
5933
5934         /* Mark the given list_head empty by reinitializing it so filters
5935          * could be added again by *handler
5936          */
5937         LIST_FOR_EACH_ENTRY(itr, &l_head, ice_fltr_mgmt_list_entry,
5938                             list_entry) {
5939                 struct ice_fltr_list_entry f_entry;
5940
5941                 f_entry.fltr_info = itr->fltr_info;
5942                 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN) {
5943                         status = ice_add_rule_internal(hw, recp_id, &f_entry);
5944                         if (status != ICE_SUCCESS)
5945                                 goto end;
5946                         continue;
5947                 }
5948
5949                 /* Add a filter per VSI separately */
5950                 while (1) {
5951                         u16 vsi_handle;
5952
5953                         vsi_handle =
5954                                 ice_find_first_bit(itr->vsi_list_info->vsi_map,
5955                                                    ICE_MAX_VSI);
5956                         if (!ice_is_vsi_valid(hw, vsi_handle))
5957                                 break;
5958
5959                         ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
5960                         f_entry.fltr_info.vsi_handle = vsi_handle;
5961                         f_entry.fltr_info.fwd_id.hw_vsi_id =
5962                                 ice_get_hw_vsi_num(hw, vsi_handle);
5963                         f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
5964                         if (recp_id == ICE_SW_LKUP_VLAN)
5965                                 status = ice_add_vlan_internal(hw, &f_entry);
5966                         else
5967                                 status = ice_add_rule_internal(hw, recp_id,
5968                                                                &f_entry);
5969                         if (status != ICE_SUCCESS)
5970                                 goto end;
5971                 }
5972         }
5973 end:
5974         /* Clear the filter management list */
5975         ice_rem_sw_rule_info(hw, &l_head);
5976         return status;
5977 }
5978
5979 /**
5980  * ice_replay_all_fltr - replay all filters stored in bookkeeping lists
5981  * @hw: pointer to the hardware structure
5982  *
5983  * NOTE: This function does not clean up partially added filters on error.
5984  * It is up to caller of the function to issue a reset or fail early.
5985  */
5986 enum ice_status ice_replay_all_fltr(struct ice_hw *hw)
5987 {
5988         struct ice_switch_info *sw = hw->switch_info;
5989         enum ice_status status = ICE_SUCCESS;
5990         u8 i;
5991
5992         for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
5993                 struct LIST_HEAD_TYPE *head = &sw->recp_list[i].filt_rules;
5994
5995                 status = ice_replay_fltr(hw, i, head);
5996                 if (status != ICE_SUCCESS)
5997                         return status;
5998         }
5999         return status;
6000 }
6001
6002 /**
6003  * ice_replay_vsi_fltr - Replay filters for requested VSI
6004  * @hw: pointer to the hardware structure
6005  * @vsi_handle: driver VSI handle
6006  * @recp_id: Recipe ID for which rules need to be replayed
6007  * @list_head: list for which filters need to be replayed
6008  *
6009  * Replays the filter of recipe recp_id for a VSI represented via vsi_handle.
6010  * It is required to pass valid VSI handle.
6011  */
6012 static enum ice_status
6013 ice_replay_vsi_fltr(struct ice_hw *hw, u16 vsi_handle, u8 recp_id,
6014                     struct LIST_HEAD_TYPE *list_head)
6015 {
6016         struct ice_fltr_mgmt_list_entry *itr;
6017         enum ice_status status = ICE_SUCCESS;
6018         u16 hw_vsi_id;
6019
6020         if (LIST_EMPTY(list_head))
6021                 return status;
6022         hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
6023
6024         LIST_FOR_EACH_ENTRY(itr, list_head, ice_fltr_mgmt_list_entry,
6025                             list_entry) {
6026                 struct ice_fltr_list_entry f_entry;
6027
6028                 f_entry.fltr_info = itr->fltr_info;
6029                 if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN &&
6030                     itr->fltr_info.vsi_handle == vsi_handle) {
6031                         /* update the src in case it is VSI num */
6032                         if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6033                                 f_entry.fltr_info.src = hw_vsi_id;
6034                         status = ice_add_rule_internal(hw, recp_id, &f_entry);
6035                         if (status != ICE_SUCCESS)
6036                                 goto end;
6037                         continue;
6038                 }
6039                 if (!itr->vsi_list_info ||
6040                     !ice_is_bit_set(itr->vsi_list_info->vsi_map, vsi_handle))
6041                         continue;
6042                 /* Clearing it so that the logic can add it back */
6043                 ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map);
6044                 f_entry.fltr_info.vsi_handle = vsi_handle;
6045                 f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI;
6046                 /* update the src in case it is VSI num */
6047                 if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI)
6048                         f_entry.fltr_info.src = hw_vsi_id;
6049                 if (recp_id == ICE_SW_LKUP_VLAN)
6050                         status = ice_add_vlan_internal(hw, &f_entry);
6051                 else
6052                         status = ice_add_rule_internal(hw, recp_id, &f_entry);
6053                 if (status != ICE_SUCCESS)
6054                         goto end;
6055         }
6056 end:
6057         return status;
6058 }
6059
6060 /**
6061  * ice_replay_vsi_adv_rule - Replay advanced rule for requested VSI
6062  * @hw: pointer to the hardware structure
6063  * @vsi_handle: driver VSI handle
6064  * @list_head: list for which filters need to be replayed
6065  *
6066  * Replay the advanced rule for the given VSI.
6067  */
6068 static enum ice_status
6069 ice_replay_vsi_adv_rule(struct ice_hw *hw, u16 vsi_handle,
6070                         struct LIST_HEAD_TYPE *list_head)
6071 {
6072         struct ice_rule_query_data added_entry = { 0 };
6073         struct ice_adv_fltr_mgmt_list_entry *adv_fltr;
6074         enum ice_status status = ICE_SUCCESS;
6075
6076         if (LIST_EMPTY(list_head))
6077                 return status;
6078         LIST_FOR_EACH_ENTRY(adv_fltr, list_head, ice_adv_fltr_mgmt_list_entry,
6079                             list_entry) {
6080                 struct ice_adv_rule_info *rinfo = &adv_fltr->rule_info;
6081                 u16 lk_cnt = adv_fltr->lkups_cnt;
6082
6083                 if (vsi_handle != rinfo->sw_act.vsi_handle)
6084                         continue;
6085                 status = ice_add_adv_rule(hw, adv_fltr->lkups, lk_cnt, rinfo,
6086                                           &added_entry);
6087                 if (status)
6088                         break;
6089         }
6090         return status;
6091 }
6092
6093 /**
6094  * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists
6095  * @hw: pointer to the hardware structure
6096  * @vsi_handle: driver VSI handle
6097  *
6098  * Replays filters for requested VSI via vsi_handle.
6099  */
6100 enum ice_status ice_replay_vsi_all_fltr(struct ice_hw *hw, u16 vsi_handle)
6101 {
6102         struct ice_switch_info *sw = hw->switch_info;
6103         enum ice_status status;
6104         u8 i;
6105
6106         /* Update the recipes that were created */
6107         for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6108                 struct LIST_HEAD_TYPE *head;
6109
6110                 head = &sw->recp_list[i].filt_replay_rules;
6111                 if (!sw->recp_list[i].adv_rule)
6112                         status = ice_replay_vsi_fltr(hw, vsi_handle, i, head);
6113                 else
6114                         status = ice_replay_vsi_adv_rule(hw, vsi_handle, head);
6115                 if (status != ICE_SUCCESS)
6116                         return status;
6117         }
6118
6119         return ICE_SUCCESS;
6120 }
6121
6122 /**
6123  * ice_rm_all_sw_replay_rule_info - deletes filter replay rules
6124  * @hw: pointer to the HW struct
6125  *
6126  * Deletes the filter replay rules.
6127  */
6128 void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw)
6129 {
6130         struct ice_switch_info *sw = hw->switch_info;
6131         u8 i;
6132
6133         if (!sw)
6134                 return;
6135
6136         for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
6137                 if (!LIST_EMPTY(&sw->recp_list[i].filt_replay_rules)) {
6138                         struct LIST_HEAD_TYPE *l_head;
6139
6140                         l_head = &sw->recp_list[i].filt_replay_rules;
6141                         if (!sw->recp_list[i].adv_rule)
6142                                 ice_rem_sw_rule_info(hw, l_head);
6143                         else
6144                                 ice_rem_adv_rule_info(hw, l_head);
6145                 }
6146         }
6147 }