ethdev: change queue release callback
[dpdk.git] / drivers / net / ice / ice_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Intel Corporation
3  */
4
5 #include <ethdev_driver.h>
6 #include <rte_net.h>
7 #include <rte_vect.h>
8
9 #include "rte_pmd_ice.h"
10 #include "ice_rxtx.h"
11 #include "ice_rxtx_vec_common.h"
12
13 #define ICE_TX_CKSUM_OFFLOAD_MASK (              \
14                 PKT_TX_IP_CKSUM |                \
15                 PKT_TX_L4_MASK |                 \
16                 PKT_TX_TCP_SEG |                 \
17                 PKT_TX_OUTER_IP_CKSUM)
18
19 /* Offset of mbuf dynamic field for protocol extraction data */
20 int rte_net_ice_dynfield_proto_xtr_metadata_offs = -1;
21
22 /* Mask of mbuf dynamic flags for protocol extraction type */
23 uint64_t rte_net_ice_dynflag_proto_xtr_vlan_mask;
24 uint64_t rte_net_ice_dynflag_proto_xtr_ipv4_mask;
25 uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_mask;
26 uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
27 uint64_t rte_net_ice_dynflag_proto_xtr_tcp_mask;
28 uint64_t rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
29
30 static int
31 ice_monitor_callback(const uint64_t value,
32                 const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
33 {
34         const uint64_t m = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
35         /*
36          * we expect the DD bit to be set to 1 if this descriptor was already
37          * written to.
38          */
39         return (value & m) == m ? -1 : 0;
40 }
41
42 int
43 ice_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
44 {
45         volatile union ice_rx_flex_desc *rxdp;
46         struct ice_rx_queue *rxq = rx_queue;
47         uint16_t desc;
48
49         desc = rxq->rx_tail;
50         rxdp = &rxq->rx_ring[desc];
51         /* watch for changes in status bit */
52         pmc->addr = &rxdp->wb.status_error0;
53
54         /* comparison callback */
55         pmc->fn = ice_monitor_callback;
56
57         /* register is 16-bit */
58         pmc->size = sizeof(uint16_t);
59
60         return 0;
61 }
62
63
64 static inline uint8_t
65 ice_proto_xtr_type_to_rxdid(uint8_t xtr_type)
66 {
67         static uint8_t rxdid_map[] = {
68                 [PROTO_XTR_NONE]      = ICE_RXDID_COMMS_OVS,
69                 [PROTO_XTR_VLAN]      = ICE_RXDID_COMMS_AUX_VLAN,
70                 [PROTO_XTR_IPV4]      = ICE_RXDID_COMMS_AUX_IPV4,
71                 [PROTO_XTR_IPV6]      = ICE_RXDID_COMMS_AUX_IPV6,
72                 [PROTO_XTR_IPV6_FLOW] = ICE_RXDID_COMMS_AUX_IPV6_FLOW,
73                 [PROTO_XTR_TCP]       = ICE_RXDID_COMMS_AUX_TCP,
74                 [PROTO_XTR_IP_OFFSET] = ICE_RXDID_COMMS_AUX_IP_OFFSET,
75         };
76
77         return xtr_type < RTE_DIM(rxdid_map) ?
78                                 rxdid_map[xtr_type] : ICE_RXDID_COMMS_OVS;
79 }
80
81 static inline void
82 ice_rxd_to_pkt_fields_by_comms_generic(__rte_unused struct ice_rx_queue *rxq,
83                                        struct rte_mbuf *mb,
84                                        volatile union ice_rx_flex_desc *rxdp)
85 {
86         volatile struct ice_32b_rx_flex_desc_comms *desc =
87                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
88         uint16_t stat_err = rte_le_to_cpu_16(desc->status_error0);
89
90         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
91                 mb->ol_flags |= PKT_RX_RSS_HASH;
92                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
93         }
94
95 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
96         if (desc->flow_id != 0xFFFFFFFF) {
97                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
98                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
99         }
100 #endif
101 }
102
103 static inline void
104 ice_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct ice_rx_queue *rxq,
105                                    struct rte_mbuf *mb,
106                                    volatile union ice_rx_flex_desc *rxdp)
107 {
108         volatile struct ice_32b_rx_flex_desc_comms_ovs *desc =
109                         (volatile struct ice_32b_rx_flex_desc_comms_ovs *)rxdp;
110 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
111         uint16_t stat_err;
112 #endif
113
114         if (desc->flow_id != 0xFFFFFFFF) {
115                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
116                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
117         }
118
119 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
120         stat_err = rte_le_to_cpu_16(desc->status_error0);
121         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
122                 mb->ol_flags |= PKT_RX_RSS_HASH;
123                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
124         }
125 #endif
126 }
127
128 static inline void
129 ice_rxd_to_pkt_fields_by_comms_aux_v1(struct ice_rx_queue *rxq,
130                                       struct rte_mbuf *mb,
131                                       volatile union ice_rx_flex_desc *rxdp)
132 {
133         volatile struct ice_32b_rx_flex_desc_comms *desc =
134                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
135         uint16_t stat_err;
136
137         stat_err = rte_le_to_cpu_16(desc->status_error0);
138         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
139                 mb->ol_flags |= PKT_RX_RSS_HASH;
140                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
141         }
142
143 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
144         if (desc->flow_id != 0xFFFFFFFF) {
145                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
146                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
147         }
148
149         if (rxq->xtr_ol_flag) {
150                 uint32_t metadata = 0;
151
152                 stat_err = rte_le_to_cpu_16(desc->status_error1);
153
154                 if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
155                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
156
157                 if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
158                         metadata |=
159                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
160
161                 if (metadata) {
162                         mb->ol_flags |= rxq->xtr_ol_flag;
163
164                         *RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
165                 }
166         }
167 #endif
168 }
169
170 static inline void
171 ice_rxd_to_pkt_fields_by_comms_aux_v2(struct ice_rx_queue *rxq,
172                                       struct rte_mbuf *mb,
173                                       volatile union ice_rx_flex_desc *rxdp)
174 {
175         volatile struct ice_32b_rx_flex_desc_comms *desc =
176                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
177         uint16_t stat_err;
178
179         stat_err = rte_le_to_cpu_16(desc->status_error0);
180         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
181                 mb->ol_flags |= PKT_RX_RSS_HASH;
182                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
183         }
184
185 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
186         if (desc->flow_id != 0xFFFFFFFF) {
187                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
188                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
189         }
190
191         if (rxq->xtr_ol_flag) {
192                 uint32_t metadata = 0;
193
194                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
195                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
196                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
197                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
198
199                 if (metadata) {
200                         mb->ol_flags |= rxq->xtr_ol_flag;
201
202                         *RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
203                 }
204         }
205 #endif
206 }
207
208 void
209 ice_select_rxd_to_pkt_fields_handler(struct ice_rx_queue *rxq, uint32_t rxdid)
210 {
211         switch (rxdid) {
212         case ICE_RXDID_COMMS_AUX_VLAN:
213                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_vlan_mask;
214                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
215                 break;
216
217         case ICE_RXDID_COMMS_AUX_IPV4:
218                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv4_mask;
219                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
220                 break;
221
222         case ICE_RXDID_COMMS_AUX_IPV6:
223                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_mask;
224                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
225                 break;
226
227         case ICE_RXDID_COMMS_AUX_IPV6_FLOW:
228                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
229                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
230                 break;
231
232         case ICE_RXDID_COMMS_AUX_TCP:
233                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_tcp_mask;
234                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
235                 break;
236
237         case ICE_RXDID_COMMS_AUX_IP_OFFSET:
238                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
239                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v2;
240                 break;
241
242         case ICE_RXDID_COMMS_GENERIC:
243                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_generic;
244                 break;
245
246         case ICE_RXDID_COMMS_OVS:
247                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_ovs;
248                 break;
249
250         default:
251                 /* update this according to the RXDID for PROTO_XTR_NONE */
252                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_ovs;
253                 break;
254         }
255
256         if (!rte_net_ice_dynf_proto_xtr_metadata_avail())
257                 rxq->xtr_ol_flag = 0;
258 }
259
260 static enum ice_status
261 ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
262 {
263         struct ice_vsi *vsi = rxq->vsi;
264         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
265         struct ice_pf *pf = ICE_VSI_TO_PF(vsi);
266         struct rte_eth_dev_data *dev_data = rxq->vsi->adapter->pf.dev_data;
267         struct ice_rlan_ctx rx_ctx;
268         enum ice_status err;
269         uint16_t buf_size;
270         struct rte_eth_rxmode *rxmode = &dev_data->dev_conf.rxmode;
271         uint32_t rxdid = ICE_RXDID_COMMS_OVS;
272         uint32_t regval;
273         struct ice_adapter *ad = rxq->vsi->adapter;
274
275         /* Set buffer size as the head split is disabled. */
276         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
277                               RTE_PKTMBUF_HEADROOM);
278         rxq->rx_hdr_len = 0;
279         rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
280         rxq->max_pkt_len = RTE_MIN((uint32_t)
281                                    ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len,
282                                    dev_data->dev_conf.rxmode.max_rx_pkt_len);
283
284         if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
285                 if (rxq->max_pkt_len <= ICE_ETH_MAX_LEN ||
286                     rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
287                         PMD_DRV_LOG(ERR, "maximum packet length must "
288                                     "be larger than %u and smaller than %u,"
289                                     "as jumbo frame is enabled",
290                                     (uint32_t)ICE_ETH_MAX_LEN,
291                                     (uint32_t)ICE_FRAME_SIZE_MAX);
292                         return -EINVAL;
293                 }
294         } else {
295                 if (rxq->max_pkt_len < RTE_ETHER_MIN_LEN ||
296                     rxq->max_pkt_len > ICE_ETH_MAX_LEN) {
297                         PMD_DRV_LOG(ERR, "maximum packet length must be "
298                                     "larger than %u and smaller than %u, "
299                                     "as jumbo frame is disabled",
300                                     (uint32_t)RTE_ETHER_MIN_LEN,
301                                     (uint32_t)ICE_ETH_MAX_LEN);
302                         return -EINVAL;
303                 }
304         }
305
306         if (rxq->offloads & DEV_RX_OFFLOAD_TIMESTAMP) {
307                 /* Register mbuf field and flag for Rx timestamp */
308                 err = rte_mbuf_dyn_rx_timestamp_register(
309                                 &ice_timestamp_dynfield_offset,
310                                 &ice_timestamp_dynflag);
311                 if (err) {
312                         PMD_DRV_LOG(ERR,
313                                 "Cannot register mbuf field/flag for timestamp");
314                         return -EINVAL;
315                 }
316         }
317
318         memset(&rx_ctx, 0, sizeof(rx_ctx));
319
320         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
321         rx_ctx.qlen = rxq->nb_rx_desc;
322         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
323         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
324         rx_ctx.dtype = 0; /* No Header Split mode */
325 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
326         rx_ctx.dsize = 1; /* 32B descriptors */
327 #endif
328         rx_ctx.rxmax = rxq->max_pkt_len;
329         /* TPH: Transaction Layer Packet (TLP) processing hints */
330         rx_ctx.tphrdesc_ena = 1;
331         rx_ctx.tphwdesc_ena = 1;
332         rx_ctx.tphdata_ena = 1;
333         rx_ctx.tphhead_ena = 1;
334         /* Low Receive Queue Threshold defined in 64 descriptors units.
335          * When the number of free descriptors goes below the lrxqthresh,
336          * an immediate interrupt is triggered.
337          */
338         rx_ctx.lrxqthresh = 2;
339         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
340         rx_ctx.l2tsel = 1;
341         rx_ctx.showiv = 0;
342         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
343
344         rxdid = ice_proto_xtr_type_to_rxdid(rxq->proto_xtr);
345
346         PMD_DRV_LOG(DEBUG, "Port (%u) - Rx queue (%u) is set with RXDID : %u",
347                     rxq->port_id, rxq->queue_id, rxdid);
348
349         if (!(pf->supported_rxdid & BIT(rxdid))) {
350                 PMD_DRV_LOG(ERR, "currently package doesn't support RXDID (%u)",
351                             rxdid);
352                 return -EINVAL;
353         }
354
355         ice_select_rxd_to_pkt_fields_handler(rxq, rxdid);
356
357         /* Enable Flexible Descriptors in the queue context which
358          * allows this driver to select a specific receive descriptor format
359          */
360         regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
361                 QRXFLXP_CNTXT_RXDID_IDX_M;
362
363         /* increasing context priority to pick up profile ID;
364          * default is 0x01; setting to 0x03 to ensure profile
365          * is programming if prev context is of same priority
366          */
367         regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
368                 QRXFLXP_CNTXT_RXDID_PRIO_M;
369
370         if (ad->ptp_ena || rxq->offloads & DEV_RX_OFFLOAD_TIMESTAMP)
371                 regval |= QRXFLXP_CNTXT_TS_M;
372
373         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
374
375         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
376         if (err) {
377                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
378                             rxq->queue_id);
379                 return -EINVAL;
380         }
381         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
382         if (err) {
383                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
384                             rxq->queue_id);
385                 return -EINVAL;
386         }
387
388         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
389                               RTE_PKTMBUF_HEADROOM);
390
391         /* Check if scattered RX needs to be used. */
392         if (rxq->max_pkt_len > buf_size)
393                 dev_data->scattered_rx = 1;
394
395         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
396
397         /* Init the Rx tail register*/
398         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
399
400         return 0;
401 }
402
403 /* Allocate mbufs for all descriptors in rx queue */
404 static int
405 ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
406 {
407         struct ice_rx_entry *rxe = rxq->sw_ring;
408         uint64_t dma_addr;
409         uint16_t i;
410
411         for (i = 0; i < rxq->nb_rx_desc; i++) {
412                 volatile union ice_rx_flex_desc *rxd;
413                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
414
415                 if (unlikely(!mbuf)) {
416                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
417                         return -ENOMEM;
418                 }
419
420                 rte_mbuf_refcnt_set(mbuf, 1);
421                 mbuf->next = NULL;
422                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
423                 mbuf->nb_segs = 1;
424                 mbuf->port = rxq->port_id;
425
426                 dma_addr =
427                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
428
429                 rxd = &rxq->rx_ring[i];
430                 rxd->read.pkt_addr = dma_addr;
431                 rxd->read.hdr_addr = 0;
432 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
433                 rxd->read.rsvd1 = 0;
434                 rxd->read.rsvd2 = 0;
435 #endif
436                 rxe[i].mbuf = mbuf;
437         }
438
439         return 0;
440 }
441
442 /* Free all mbufs for descriptors in rx queue */
443 static void
444 _ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
445 {
446         uint16_t i;
447
448         if (!rxq || !rxq->sw_ring) {
449                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
450                 return;
451         }
452
453         for (i = 0; i < rxq->nb_rx_desc; i++) {
454                 if (rxq->sw_ring[i].mbuf) {
455                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
456                         rxq->sw_ring[i].mbuf = NULL;
457                 }
458         }
459         if (rxq->rx_nb_avail == 0)
460                 return;
461         for (i = 0; i < rxq->rx_nb_avail; i++)
462                 rte_pktmbuf_free_seg(rxq->rx_stage[rxq->rx_next_avail + i]);
463
464         rxq->rx_nb_avail = 0;
465 }
466
467 /* turn on or off rx queue
468  * @q_idx: queue index in pf scope
469  * @on: turn on or off the queue
470  */
471 static int
472 ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
473 {
474         uint32_t reg;
475         uint16_t j;
476
477         /* QRX_CTRL = QRX_ENA */
478         reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
479
480         if (on) {
481                 if (reg & QRX_CTRL_QENA_STAT_M)
482                         return 0; /* Already on, skip */
483                 reg |= QRX_CTRL_QENA_REQ_M;
484         } else {
485                 if (!(reg & QRX_CTRL_QENA_STAT_M))
486                         return 0; /* Already off, skip */
487                 reg &= ~QRX_CTRL_QENA_REQ_M;
488         }
489
490         /* Write the register */
491         ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
492         /* Check the result. It is said that QENA_STAT
493          * follows the QENA_REQ not more than 10 use.
494          * TODO: need to change the wait counter later
495          */
496         for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
497                 rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
498                 reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
499                 if (on) {
500                         if ((reg & QRX_CTRL_QENA_REQ_M) &&
501                             (reg & QRX_CTRL_QENA_STAT_M))
502                                 break;
503                 } else {
504                         if (!(reg & QRX_CTRL_QENA_REQ_M) &&
505                             !(reg & QRX_CTRL_QENA_STAT_M))
506                                 break;
507                 }
508         }
509
510         /* Check if it is timeout */
511         if (j >= ICE_CHK_Q_ENA_COUNT) {
512                 PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
513                             (on ? "enable" : "disable"), q_idx);
514                 return -ETIMEDOUT;
515         }
516
517         return 0;
518 }
519
520 static inline int
521 ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
522 {
523         int ret = 0;
524
525         if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
526                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
527                              "rxq->rx_free_thresh=%d, "
528                              "ICE_RX_MAX_BURST=%d",
529                              rxq->rx_free_thresh, ICE_RX_MAX_BURST);
530                 ret = -EINVAL;
531         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
532                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
533                              "rxq->rx_free_thresh=%d, "
534                              "rxq->nb_rx_desc=%d",
535                              rxq->rx_free_thresh, rxq->nb_rx_desc);
536                 ret = -EINVAL;
537         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
538                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
539                              "rxq->nb_rx_desc=%d, "
540                              "rxq->rx_free_thresh=%d",
541                              rxq->nb_rx_desc, rxq->rx_free_thresh);
542                 ret = -EINVAL;
543         }
544
545         return ret;
546 }
547
548 /* reset fields in ice_rx_queue back to default */
549 static void
550 ice_reset_rx_queue(struct ice_rx_queue *rxq)
551 {
552         unsigned int i;
553         uint16_t len;
554
555         if (!rxq) {
556                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
557                 return;
558         }
559
560         len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
561
562         for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
563                 ((volatile char *)rxq->rx_ring)[i] = 0;
564
565         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
566         for (i = 0; i < ICE_RX_MAX_BURST; ++i)
567                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
568
569         rxq->rx_nb_avail = 0;
570         rxq->rx_next_avail = 0;
571         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
572
573         rxq->rx_tail = 0;
574         rxq->nb_rx_hold = 0;
575         rxq->pkt_first_seg = NULL;
576         rxq->pkt_last_seg = NULL;
577
578         rxq->rxrearm_start = 0;
579         rxq->rxrearm_nb = 0;
580 }
581
582 int
583 ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
584 {
585         struct ice_rx_queue *rxq;
586         int err;
587         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
588
589         PMD_INIT_FUNC_TRACE();
590
591         if (rx_queue_id >= dev->data->nb_rx_queues) {
592                 PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
593                             rx_queue_id, dev->data->nb_rx_queues);
594                 return -EINVAL;
595         }
596
597         rxq = dev->data->rx_queues[rx_queue_id];
598         if (!rxq || !rxq->q_set) {
599                 PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
600                             rx_queue_id);
601                 return -EINVAL;
602         }
603
604         err = ice_program_hw_rx_queue(rxq);
605         if (err) {
606                 PMD_DRV_LOG(ERR, "fail to program RX queue %u",
607                             rx_queue_id);
608                 return -EIO;
609         }
610
611         err = ice_alloc_rx_queue_mbufs(rxq);
612         if (err) {
613                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
614                 return -ENOMEM;
615         }
616
617         /* Init the RX tail register. */
618         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
619
620         err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
621         if (err) {
622                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
623                             rx_queue_id);
624
625                 rxq->rx_rel_mbufs(rxq);
626                 ice_reset_rx_queue(rxq);
627                 return -EINVAL;
628         }
629
630         dev->data->rx_queue_state[rx_queue_id] =
631                 RTE_ETH_QUEUE_STATE_STARTED;
632
633         return 0;
634 }
635
636 int
637 ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
638 {
639         struct ice_rx_queue *rxq;
640         int err;
641         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
642
643         if (rx_queue_id < dev->data->nb_rx_queues) {
644                 rxq = dev->data->rx_queues[rx_queue_id];
645
646                 err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
647                 if (err) {
648                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
649                                     rx_queue_id);
650                         return -EINVAL;
651                 }
652                 rxq->rx_rel_mbufs(rxq);
653                 ice_reset_rx_queue(rxq);
654                 dev->data->rx_queue_state[rx_queue_id] =
655                         RTE_ETH_QUEUE_STATE_STOPPED;
656         }
657
658         return 0;
659 }
660
661 int
662 ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
663 {
664         struct ice_tx_queue *txq;
665         int err;
666         struct ice_vsi *vsi;
667         struct ice_hw *hw;
668         struct ice_aqc_add_tx_qgrp *txq_elem;
669         struct ice_tlan_ctx tx_ctx;
670         int buf_len;
671
672         PMD_INIT_FUNC_TRACE();
673
674         if (tx_queue_id >= dev->data->nb_tx_queues) {
675                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
676                             tx_queue_id, dev->data->nb_tx_queues);
677                 return -EINVAL;
678         }
679
680         txq = dev->data->tx_queues[tx_queue_id];
681         if (!txq || !txq->q_set) {
682                 PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
683                             tx_queue_id);
684                 return -EINVAL;
685         }
686
687         buf_len = ice_struct_size(txq_elem, txqs, 1);
688         txq_elem = ice_malloc(hw, buf_len);
689         if (!txq_elem)
690                 return -ENOMEM;
691
692         vsi = txq->vsi;
693         hw = ICE_VSI_TO_HW(vsi);
694
695         memset(&tx_ctx, 0, sizeof(tx_ctx));
696         txq_elem->num_txqs = 1;
697         txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
698
699         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
700         tx_ctx.qlen = txq->nb_tx_desc;
701         tx_ctx.pf_num = hw->pf_id;
702         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
703         tx_ctx.src_vsi = vsi->vsi_id;
704         tx_ctx.port_num = hw->port_info->lport;
705         tx_ctx.tso_ena = 1; /* tso enable */
706         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
707         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
708         tx_ctx.tsyn_ena = 1;
709
710         ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
711                     ice_tlan_ctx_info);
712
713         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
714
715         /* Init the Tx tail register*/
716         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
717
718         /* Fix me, we assume TC always 0 here */
719         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
720                         txq_elem, buf_len, NULL);
721         if (err) {
722                 PMD_DRV_LOG(ERR, "Failed to add lan txq");
723                 rte_free(txq_elem);
724                 return -EIO;
725         }
726         /* store the schedule node id */
727         txq->q_teid = txq_elem->txqs[0].q_teid;
728
729         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
730
731         rte_free(txq_elem);
732         return 0;
733 }
734
735 static enum ice_status
736 ice_fdir_program_hw_rx_queue(struct ice_rx_queue *rxq)
737 {
738         struct ice_vsi *vsi = rxq->vsi;
739         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
740         uint32_t rxdid = ICE_RXDID_LEGACY_1;
741         struct ice_rlan_ctx rx_ctx;
742         enum ice_status err;
743         uint32_t regval;
744
745         rxq->rx_hdr_len = 0;
746         rxq->rx_buf_len = 1024;
747
748         memset(&rx_ctx, 0, sizeof(rx_ctx));
749
750         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
751         rx_ctx.qlen = rxq->nb_rx_desc;
752         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
753         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
754         rx_ctx.dtype = 0; /* No Header Split mode */
755         rx_ctx.dsize = 1; /* 32B descriptors */
756         rx_ctx.rxmax = ICE_ETH_MAX_LEN;
757         /* TPH: Transaction Layer Packet (TLP) processing hints */
758         rx_ctx.tphrdesc_ena = 1;
759         rx_ctx.tphwdesc_ena = 1;
760         rx_ctx.tphdata_ena = 1;
761         rx_ctx.tphhead_ena = 1;
762         /* Low Receive Queue Threshold defined in 64 descriptors units.
763          * When the number of free descriptors goes below the lrxqthresh,
764          * an immediate interrupt is triggered.
765          */
766         rx_ctx.lrxqthresh = 2;
767         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
768         rx_ctx.l2tsel = 1;
769         rx_ctx.showiv = 0;
770         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
771
772         /* Enable Flexible Descriptors in the queue context which
773          * allows this driver to select a specific receive descriptor format
774          */
775         regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
776                 QRXFLXP_CNTXT_RXDID_IDX_M;
777
778         /* increasing context priority to pick up profile ID;
779          * default is 0x01; setting to 0x03 to ensure profile
780          * is programming if prev context is of same priority
781          */
782         regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
783                 QRXFLXP_CNTXT_RXDID_PRIO_M;
784
785         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
786
787         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
788         if (err) {
789                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
790                             rxq->queue_id);
791                 return -EINVAL;
792         }
793         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
794         if (err) {
795                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
796                             rxq->queue_id);
797                 return -EINVAL;
798         }
799
800         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
801
802         /* Init the Rx tail register*/
803         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
804
805         return 0;
806 }
807
808 int
809 ice_fdir_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
810 {
811         struct ice_rx_queue *rxq;
812         int err;
813         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
814         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
815
816         PMD_INIT_FUNC_TRACE();
817
818         rxq = pf->fdir.rxq;
819         if (!rxq || !rxq->q_set) {
820                 PMD_DRV_LOG(ERR, "FDIR RX queue %u not available or setup",
821                             rx_queue_id);
822                 return -EINVAL;
823         }
824
825         err = ice_fdir_program_hw_rx_queue(rxq);
826         if (err) {
827                 PMD_DRV_LOG(ERR, "fail to program FDIR RX queue %u",
828                             rx_queue_id);
829                 return -EIO;
830         }
831
832         /* Init the RX tail register. */
833         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
834
835         err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
836         if (err) {
837                 PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u on",
838                             rx_queue_id);
839
840                 ice_reset_rx_queue(rxq);
841                 return -EINVAL;
842         }
843
844         return 0;
845 }
846
847 int
848 ice_fdir_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
849 {
850         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
851         struct ice_tx_queue *txq;
852         int err;
853         struct ice_vsi *vsi;
854         struct ice_hw *hw;
855         struct ice_aqc_add_tx_qgrp *txq_elem;
856         struct ice_tlan_ctx tx_ctx;
857         int buf_len;
858
859         PMD_INIT_FUNC_TRACE();
860
861         txq = pf->fdir.txq;
862         if (!txq || !txq->q_set) {
863                 PMD_DRV_LOG(ERR, "FDIR TX queue %u is not available or setup",
864                             tx_queue_id);
865                 return -EINVAL;
866         }
867
868         buf_len = ice_struct_size(txq_elem, txqs, 1);
869         txq_elem = ice_malloc(hw, buf_len);
870         if (!txq_elem)
871                 return -ENOMEM;
872
873         vsi = txq->vsi;
874         hw = ICE_VSI_TO_HW(vsi);
875
876         memset(&tx_ctx, 0, sizeof(tx_ctx));
877         txq_elem->num_txqs = 1;
878         txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
879
880         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
881         tx_ctx.qlen = txq->nb_tx_desc;
882         tx_ctx.pf_num = hw->pf_id;
883         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
884         tx_ctx.src_vsi = vsi->vsi_id;
885         tx_ctx.port_num = hw->port_info->lport;
886         tx_ctx.tso_ena = 1; /* tso enable */
887         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
888         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
889
890         ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
891                     ice_tlan_ctx_info);
892
893         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
894
895         /* Init the Tx tail register*/
896         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
897
898         /* Fix me, we assume TC always 0 here */
899         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
900                               txq_elem, buf_len, NULL);
901         if (err) {
902                 PMD_DRV_LOG(ERR, "Failed to add FDIR txq");
903                 rte_free(txq_elem);
904                 return -EIO;
905         }
906         /* store the schedule node id */
907         txq->q_teid = txq_elem->txqs[0].q_teid;
908
909         rte_free(txq_elem);
910         return 0;
911 }
912
913 /* Free all mbufs for descriptors in tx queue */
914 static void
915 _ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
916 {
917         uint16_t i;
918
919         if (!txq || !txq->sw_ring) {
920                 PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
921                 return;
922         }
923
924         for (i = 0; i < txq->nb_tx_desc; i++) {
925                 if (txq->sw_ring[i].mbuf) {
926                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
927                         txq->sw_ring[i].mbuf = NULL;
928                 }
929         }
930 }
931
932 static void
933 ice_reset_tx_queue(struct ice_tx_queue *txq)
934 {
935         struct ice_tx_entry *txe;
936         uint16_t i, prev, size;
937
938         if (!txq) {
939                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
940                 return;
941         }
942
943         txe = txq->sw_ring;
944         size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
945         for (i = 0; i < size; i++)
946                 ((volatile char *)txq->tx_ring)[i] = 0;
947
948         prev = (uint16_t)(txq->nb_tx_desc - 1);
949         for (i = 0; i < txq->nb_tx_desc; i++) {
950                 volatile struct ice_tx_desc *txd = &txq->tx_ring[i];
951
952                 txd->cmd_type_offset_bsz =
953                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
954                 txe[i].mbuf =  NULL;
955                 txe[i].last_id = i;
956                 txe[prev].next_id = i;
957                 prev = i;
958         }
959
960         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
961         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
962
963         txq->tx_tail = 0;
964         txq->nb_tx_used = 0;
965
966         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
967         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
968 }
969
970 int
971 ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
972 {
973         struct ice_tx_queue *txq;
974         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
975         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
976         struct ice_vsi *vsi = pf->main_vsi;
977         enum ice_status status;
978         uint16_t q_ids[1];
979         uint32_t q_teids[1];
980         uint16_t q_handle = tx_queue_id;
981
982         if (tx_queue_id >= dev->data->nb_tx_queues) {
983                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
984                             tx_queue_id, dev->data->nb_tx_queues);
985                 return -EINVAL;
986         }
987
988         txq = dev->data->tx_queues[tx_queue_id];
989         if (!txq) {
990                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
991                             tx_queue_id);
992                 return -EINVAL;
993         }
994
995         q_ids[0] = txq->reg_idx;
996         q_teids[0] = txq->q_teid;
997
998         /* Fix me, we assume TC always 0 here */
999         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
1000                                 q_ids, q_teids, ICE_NO_RESET, 0, NULL);
1001         if (status != ICE_SUCCESS) {
1002                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
1003                 return -EINVAL;
1004         }
1005
1006         txq->tx_rel_mbufs(txq);
1007         ice_reset_tx_queue(txq);
1008         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1009
1010         return 0;
1011 }
1012
1013 int
1014 ice_fdir_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1015 {
1016         struct ice_rx_queue *rxq;
1017         int err;
1018         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1019         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1020
1021         rxq = pf->fdir.rxq;
1022
1023         err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
1024         if (err) {
1025                 PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u off",
1026                             rx_queue_id);
1027                 return -EINVAL;
1028         }
1029         rxq->rx_rel_mbufs(rxq);
1030
1031         return 0;
1032 }
1033
1034 int
1035 ice_fdir_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1036 {
1037         struct ice_tx_queue *txq;
1038         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1039         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1040         struct ice_vsi *vsi = pf->main_vsi;
1041         enum ice_status status;
1042         uint16_t q_ids[1];
1043         uint32_t q_teids[1];
1044         uint16_t q_handle = tx_queue_id;
1045
1046         txq = pf->fdir.txq;
1047         if (!txq) {
1048                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
1049                             tx_queue_id);
1050                 return -EINVAL;
1051         }
1052         vsi = txq->vsi;
1053
1054         q_ids[0] = txq->reg_idx;
1055         q_teids[0] = txq->q_teid;
1056
1057         /* Fix me, we assume TC always 0 here */
1058         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
1059                                  q_ids, q_teids, ICE_NO_RESET, 0, NULL);
1060         if (status != ICE_SUCCESS) {
1061                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
1062                 return -EINVAL;
1063         }
1064
1065         txq->tx_rel_mbufs(txq);
1066
1067         return 0;
1068 }
1069
1070 int
1071 ice_rx_queue_setup(struct rte_eth_dev *dev,
1072                    uint16_t queue_idx,
1073                    uint16_t nb_desc,
1074                    unsigned int socket_id,
1075                    const struct rte_eth_rxconf *rx_conf,
1076                    struct rte_mempool *mp)
1077 {
1078         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1079         struct ice_adapter *ad =
1080                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1081         struct ice_vsi *vsi = pf->main_vsi;
1082         struct ice_rx_queue *rxq;
1083         const struct rte_memzone *rz;
1084         uint32_t ring_size;
1085         uint16_t len;
1086         int use_def_burst_func = 1;
1087         uint64_t offloads;
1088
1089         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1090             nb_desc > ICE_MAX_RING_DESC ||
1091             nb_desc < ICE_MIN_RING_DESC) {
1092                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
1093                              "invalid", nb_desc);
1094                 return -EINVAL;
1095         }
1096
1097         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1098
1099         /* Free memory if needed */
1100         if (dev->data->rx_queues[queue_idx]) {
1101                 ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
1102                 dev->data->rx_queues[queue_idx] = NULL;
1103         }
1104
1105         /* Allocate the rx queue data structure */
1106         rxq = rte_zmalloc_socket(NULL,
1107                                  sizeof(struct ice_rx_queue),
1108                                  RTE_CACHE_LINE_SIZE,
1109                                  socket_id);
1110         if (!rxq) {
1111                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1112                              "rx queue data structure");
1113                 return -ENOMEM;
1114         }
1115         rxq->mp = mp;
1116         rxq->nb_rx_desc = nb_desc;
1117         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1118         rxq->queue_id = queue_idx;
1119         rxq->offloads = offloads;
1120
1121         rxq->reg_idx = vsi->base_queue + queue_idx;
1122         rxq->port_id = dev->data->port_id;
1123         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1124                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1125         else
1126                 rxq->crc_len = 0;
1127
1128         rxq->drop_en = rx_conf->rx_drop_en;
1129         rxq->vsi = vsi;
1130         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1131         rxq->proto_xtr = pf->proto_xtr != NULL ?
1132                          pf->proto_xtr[queue_idx] : PROTO_XTR_NONE;
1133
1134         /* Allocate the maximun number of RX ring hardware descriptor. */
1135         len = ICE_MAX_RING_DESC;
1136
1137         /**
1138          * Allocating a little more memory because vectorized/bulk_alloc Rx
1139          * functions doesn't check boundaries each time.
1140          */
1141         len += ICE_RX_MAX_BURST;
1142
1143         /* Allocate the maximum number of RX ring hardware descriptor. */
1144         ring_size = sizeof(union ice_rx_flex_desc) * len;
1145         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1146         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1147                                       ring_size, ICE_RING_BASE_ALIGN,
1148                                       socket_id);
1149         if (!rz) {
1150                 ice_rx_queue_release(rxq);
1151                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
1152                 return -ENOMEM;
1153         }
1154
1155         /* Zero all the descriptors in the ring. */
1156         memset(rz->addr, 0, ring_size);
1157
1158         rxq->rx_ring_dma = rz->iova;
1159         rxq->rx_ring = rz->addr;
1160
1161         /* always reserve more for bulk alloc */
1162         len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
1163
1164         /* Allocate the software ring. */
1165         rxq->sw_ring = rte_zmalloc_socket(NULL,
1166                                           sizeof(struct ice_rx_entry) * len,
1167                                           RTE_CACHE_LINE_SIZE,
1168                                           socket_id);
1169         if (!rxq->sw_ring) {
1170                 ice_rx_queue_release(rxq);
1171                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
1172                 return -ENOMEM;
1173         }
1174
1175         ice_reset_rx_queue(rxq);
1176         rxq->q_set = true;
1177         dev->data->rx_queues[queue_idx] = rxq;
1178         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
1179
1180         use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
1181
1182         if (!use_def_burst_func) {
1183                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1184                              "satisfied. Rx Burst Bulk Alloc function will be "
1185                              "used on port=%d, queue=%d.",
1186                              rxq->port_id, rxq->queue_id);
1187         } else {
1188                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1189                              "not satisfied, Scattered Rx is requested. "
1190                              "on port=%d, queue=%d.",
1191                              rxq->port_id, rxq->queue_id);
1192                 ad->rx_bulk_alloc_allowed = false;
1193         }
1194
1195         return 0;
1196 }
1197
1198 void
1199 ice_rx_queue_release(void *rxq)
1200 {
1201         struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
1202
1203         if (!q) {
1204                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1205                 return;
1206         }
1207
1208         q->rx_rel_mbufs(q);
1209         rte_free(q->sw_ring);
1210         rte_free(q);
1211 }
1212
1213 int
1214 ice_tx_queue_setup(struct rte_eth_dev *dev,
1215                    uint16_t queue_idx,
1216                    uint16_t nb_desc,
1217                    unsigned int socket_id,
1218                    const struct rte_eth_txconf *tx_conf)
1219 {
1220         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1221         struct ice_vsi *vsi = pf->main_vsi;
1222         struct ice_tx_queue *txq;
1223         const struct rte_memzone *tz;
1224         uint32_t ring_size;
1225         uint16_t tx_rs_thresh, tx_free_thresh;
1226         uint64_t offloads;
1227
1228         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1229
1230         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1231             nb_desc > ICE_MAX_RING_DESC ||
1232             nb_desc < ICE_MIN_RING_DESC) {
1233                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
1234                              "invalid", nb_desc);
1235                 return -EINVAL;
1236         }
1237
1238         /**
1239          * The following two parameters control the setting of the RS bit on
1240          * transmit descriptors. TX descriptors will have their RS bit set
1241          * after txq->tx_rs_thresh descriptors have been used. The TX
1242          * descriptor ring will be cleaned after txq->tx_free_thresh
1243          * descriptors are used or if the number of descriptors required to
1244          * transmit a packet is greater than the number of free TX descriptors.
1245          *
1246          * The following constraints must be satisfied:
1247          *  - tx_rs_thresh must be greater than 0.
1248          *  - tx_rs_thresh must be less than the size of the ring minus 2.
1249          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
1250          *  - tx_rs_thresh must be a divisor of the ring size.
1251          *  - tx_free_thresh must be greater than 0.
1252          *  - tx_free_thresh must be less than the size of the ring minus 3.
1253          *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
1254          *
1255          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
1256          * race condition, hence the maximum threshold constraints. When set
1257          * to zero use default values.
1258          */
1259         tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
1260                                     tx_conf->tx_free_thresh :
1261                                     ICE_DEFAULT_TX_FREE_THRESH);
1262         /* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
1263         tx_rs_thresh =
1264                 (ICE_DEFAULT_TX_RSBIT_THRESH + tx_free_thresh > nb_desc) ?
1265                         nb_desc - tx_free_thresh : ICE_DEFAULT_TX_RSBIT_THRESH;
1266         if (tx_conf->tx_rs_thresh)
1267                 tx_rs_thresh = tx_conf->tx_rs_thresh;
1268         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
1269                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
1270                                 "exceed nb_desc. (tx_rs_thresh=%u "
1271                                 "tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
1272                                 (unsigned int)tx_rs_thresh,
1273                                 (unsigned int)tx_free_thresh,
1274                                 (unsigned int)nb_desc,
1275                                 (int)dev->data->port_id,
1276                                 (int)queue_idx);
1277                 return -EINVAL;
1278         }
1279         if (tx_rs_thresh >= (nb_desc - 2)) {
1280                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1281                              "number of TX descriptors minus 2. "
1282                              "(tx_rs_thresh=%u port=%d queue=%d)",
1283                              (unsigned int)tx_rs_thresh,
1284                              (int)dev->data->port_id,
1285                              (int)queue_idx);
1286                 return -EINVAL;
1287         }
1288         if (tx_free_thresh >= (nb_desc - 3)) {
1289                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1290                              "tx_free_thresh must be less than the "
1291                              "number of TX descriptors minus 3. "
1292                              "(tx_free_thresh=%u port=%d queue=%d)",
1293                              (unsigned int)tx_free_thresh,
1294                              (int)dev->data->port_id,
1295                              (int)queue_idx);
1296                 return -EINVAL;
1297         }
1298         if (tx_rs_thresh > tx_free_thresh) {
1299                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
1300                              "equal to tx_free_thresh. (tx_free_thresh=%u"
1301                              " tx_rs_thresh=%u port=%d queue=%d)",
1302                              (unsigned int)tx_free_thresh,
1303                              (unsigned int)tx_rs_thresh,
1304                              (int)dev->data->port_id,
1305                              (int)queue_idx);
1306                 return -EINVAL;
1307         }
1308         if ((nb_desc % tx_rs_thresh) != 0) {
1309                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
1310                              "number of TX descriptors. (tx_rs_thresh=%u"
1311                              " port=%d queue=%d)",
1312                              (unsigned int)tx_rs_thresh,
1313                              (int)dev->data->port_id,
1314                              (int)queue_idx);
1315                 return -EINVAL;
1316         }
1317         if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
1318                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1319                              "tx_rs_thresh is greater than 1. "
1320                              "(tx_rs_thresh=%u port=%d queue=%d)",
1321                              (unsigned int)tx_rs_thresh,
1322                              (int)dev->data->port_id,
1323                              (int)queue_idx);
1324                 return -EINVAL;
1325         }
1326
1327         /* Free memory if needed. */
1328         if (dev->data->tx_queues[queue_idx]) {
1329                 ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
1330                 dev->data->tx_queues[queue_idx] = NULL;
1331         }
1332
1333         /* Allocate the TX queue data structure. */
1334         txq = rte_zmalloc_socket(NULL,
1335                                  sizeof(struct ice_tx_queue),
1336                                  RTE_CACHE_LINE_SIZE,
1337                                  socket_id);
1338         if (!txq) {
1339                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1340                              "tx queue structure");
1341                 return -ENOMEM;
1342         }
1343
1344         /* Allocate TX hardware ring descriptors. */
1345         ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
1346         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1347         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
1348                                       ring_size, ICE_RING_BASE_ALIGN,
1349                                       socket_id);
1350         if (!tz) {
1351                 ice_tx_queue_release(txq);
1352                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
1353                 return -ENOMEM;
1354         }
1355
1356         txq->nb_tx_desc = nb_desc;
1357         txq->tx_rs_thresh = tx_rs_thresh;
1358         txq->tx_free_thresh = tx_free_thresh;
1359         txq->pthresh = tx_conf->tx_thresh.pthresh;
1360         txq->hthresh = tx_conf->tx_thresh.hthresh;
1361         txq->wthresh = tx_conf->tx_thresh.wthresh;
1362         txq->queue_id = queue_idx;
1363
1364         txq->reg_idx = vsi->base_queue + queue_idx;
1365         txq->port_id = dev->data->port_id;
1366         txq->offloads = offloads;
1367         txq->vsi = vsi;
1368         txq->tx_deferred_start = tx_conf->tx_deferred_start;
1369
1370         txq->tx_ring_dma = tz->iova;
1371         txq->tx_ring = tz->addr;
1372
1373         /* Allocate software ring */
1374         txq->sw_ring =
1375                 rte_zmalloc_socket(NULL,
1376                                    sizeof(struct ice_tx_entry) * nb_desc,
1377                                    RTE_CACHE_LINE_SIZE,
1378                                    socket_id);
1379         if (!txq->sw_ring) {
1380                 ice_tx_queue_release(txq);
1381                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
1382                 return -ENOMEM;
1383         }
1384
1385         ice_reset_tx_queue(txq);
1386         txq->q_set = true;
1387         dev->data->tx_queues[queue_idx] = txq;
1388         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
1389         ice_set_tx_function_flag(dev, txq);
1390
1391         return 0;
1392 }
1393
1394 void
1395 ice_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1396 {
1397         ice_rx_queue_release(dev->data->rx_queues[qid]);
1398 }
1399
1400 void
1401 ice_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1402 {
1403         ice_tx_queue_release(dev->data->tx_queues[qid]);
1404 }
1405
1406 void
1407 ice_tx_queue_release(void *txq)
1408 {
1409         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
1410
1411         if (!q) {
1412                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
1413                 return;
1414         }
1415
1416         q->tx_rel_mbufs(q);
1417         rte_free(q->sw_ring);
1418         rte_free(q);
1419 }
1420
1421 void
1422 ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1423                  struct rte_eth_rxq_info *qinfo)
1424 {
1425         struct ice_rx_queue *rxq;
1426
1427         rxq = dev->data->rx_queues[queue_id];
1428
1429         qinfo->mp = rxq->mp;
1430         qinfo->scattered_rx = dev->data->scattered_rx;
1431         qinfo->nb_desc = rxq->nb_rx_desc;
1432
1433         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1434         qinfo->conf.rx_drop_en = rxq->drop_en;
1435         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
1436 }
1437
1438 void
1439 ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1440                  struct rte_eth_txq_info *qinfo)
1441 {
1442         struct ice_tx_queue *txq;
1443
1444         txq = dev->data->tx_queues[queue_id];
1445
1446         qinfo->nb_desc = txq->nb_tx_desc;
1447
1448         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1449         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1450         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1451
1452         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1453         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
1454         qinfo->conf.offloads = txq->offloads;
1455         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1456 }
1457
1458 uint32_t
1459 ice_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1460 {
1461 #define ICE_RXQ_SCAN_INTERVAL 4
1462         volatile union ice_rx_flex_desc *rxdp;
1463         struct ice_rx_queue *rxq;
1464         uint16_t desc = 0;
1465
1466         rxq = dev->data->rx_queues[rx_queue_id];
1467         rxdp = &rxq->rx_ring[rxq->rx_tail];
1468         while ((desc < rxq->nb_rx_desc) &&
1469                rte_le_to_cpu_16(rxdp->wb.status_error0) &
1470                (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)) {
1471                 /**
1472                  * Check the DD bit of a rx descriptor of each 4 in a group,
1473                  * to avoid checking too frequently and downgrading performance
1474                  * too much.
1475                  */
1476                 desc += ICE_RXQ_SCAN_INTERVAL;
1477                 rxdp += ICE_RXQ_SCAN_INTERVAL;
1478                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1479                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1480                                  desc - rxq->nb_rx_desc]);
1481         }
1482
1483         return desc;
1484 }
1485
1486 #define ICE_RX_FLEX_ERR0_BITS   \
1487         ((1 << ICE_RX_FLEX_DESC_STATUS0_HBO_S) |        \
1488          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |   \
1489          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |   \
1490          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) |  \
1491          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
1492          (1 << ICE_RX_FLEX_DESC_STATUS0_RXE_S))
1493
1494 /* Rx L3/L4 checksum */
1495 static inline uint64_t
1496 ice_rxd_error_to_pkt_flags(uint16_t stat_err0)
1497 {
1498         uint64_t flags = 0;
1499
1500         /* check if HW has decoded the packet and checksum */
1501         if (unlikely(!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1502                 return 0;
1503
1504         if (likely(!(stat_err0 & ICE_RX_FLEX_ERR0_BITS))) {
1505                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
1506                 return flags;
1507         }
1508
1509         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1510                 flags |= PKT_RX_IP_CKSUM_BAD;
1511         else
1512                 flags |= PKT_RX_IP_CKSUM_GOOD;
1513
1514         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1515                 flags |= PKT_RX_L4_CKSUM_BAD;
1516         else
1517                 flags |= PKT_RX_L4_CKSUM_GOOD;
1518
1519         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1520                 flags |= PKT_RX_OUTER_IP_CKSUM_BAD;
1521
1522         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
1523                 flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
1524         else
1525                 flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
1526
1527         return flags;
1528 }
1529
1530 static inline void
1531 ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_flex_desc *rxdp)
1532 {
1533         if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
1534             (1 << ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
1535                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1536                 mb->vlan_tci =
1537                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
1538                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
1539                            rte_le_to_cpu_16(rxdp->wb.l2tag1));
1540         } else {
1541                 mb->vlan_tci = 0;
1542         }
1543
1544 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1545         if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
1546             (1 << ICE_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
1547                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
1548                                 PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
1549                 mb->vlan_tci_outer = mb->vlan_tci;
1550                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1551                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1552                            rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
1553                            rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
1554         } else {
1555                 mb->vlan_tci_outer = 0;
1556         }
1557 #endif
1558         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
1559                    mb->vlan_tci, mb->vlan_tci_outer);
1560 }
1561
1562 #define ICE_LOOK_AHEAD 8
1563 #if (ICE_LOOK_AHEAD != 8)
1564 #error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
1565 #endif
1566 static inline int
1567 ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
1568 {
1569         volatile union ice_rx_flex_desc *rxdp;
1570         struct ice_rx_entry *rxep;
1571         struct rte_mbuf *mb;
1572         uint16_t stat_err0;
1573         uint16_t pkt_len;
1574         int32_t s[ICE_LOOK_AHEAD], nb_dd;
1575         int32_t i, j, nb_rx = 0;
1576         uint64_t pkt_flags = 0;
1577         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1578         struct ice_vsi *vsi = rxq->vsi;
1579         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
1580         uint64_t ts_ns;
1581         struct ice_adapter *ad = rxq->vsi->adapter;
1582
1583         rxdp = &rxq->rx_ring[rxq->rx_tail];
1584         rxep = &rxq->sw_ring[rxq->rx_tail];
1585
1586         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1587
1588         /* Make sure there is at least 1 packet to receive */
1589         if (!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1590                 return 0;
1591
1592         /**
1593          * Scan LOOK_AHEAD descriptors at a time to determine which
1594          * descriptors reference packets that are ready to be received.
1595          */
1596         for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
1597              rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
1598                 /* Read desc statuses backwards to avoid race condition */
1599                 for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--)
1600                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1601
1602                 rte_smp_rmb();
1603
1604                 /* Compute how many status bits were set */
1605                 for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
1606                         nb_dd += s[j] & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
1607
1608                 nb_rx += nb_dd;
1609
1610                 /* Translate descriptor info to mbuf parameters */
1611                 for (j = 0; j < nb_dd; j++) {
1612                         mb = rxep[j].mbuf;
1613                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1614                                    ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1615                         mb->data_len = pkt_len;
1616                         mb->pkt_len = pkt_len;
1617                         mb->ol_flags = 0;
1618                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1619                         pkt_flags = ice_rxd_error_to_pkt_flags(stat_err0);
1620                         mb->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1621                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1622                         ice_rxd_to_vlan_tci(mb, &rxdp[j]);
1623                         rxq->rxd_to_pkt_fields(rxq, mb, &rxdp[j]);
1624
1625                         if (rxq->offloads & DEV_RX_OFFLOAD_TIMESTAMP) {
1626                                 ts_ns = ice_tstamp_convert_32b_64b(hw,
1627                                         rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high));
1628                                 if (ice_timestamp_dynflag > 0) {
1629                                         *RTE_MBUF_DYNFIELD(mb,
1630                                                 ice_timestamp_dynfield_offset,
1631                                                 rte_mbuf_timestamp_t *) = ts_ns;
1632                                         mb->ol_flags |= ice_timestamp_dynflag;
1633                                 }
1634                         }
1635
1636                         if (ad->ptp_ena && ((mb->packet_type &
1637                             RTE_PTYPE_L2_MASK) == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
1638                                 rxq->time_high =
1639                                    rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high);
1640                                 mb->timesync = rxq->queue_id;
1641                                 pkt_flags |= PKT_RX_IEEE1588_PTP;
1642                         }
1643
1644                         mb->ol_flags |= pkt_flags;
1645                 }
1646
1647                 for (j = 0; j < ICE_LOOK_AHEAD; j++)
1648                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1649
1650                 if (nb_dd != ICE_LOOK_AHEAD)
1651                         break;
1652         }
1653
1654         /* Clear software ring entries */
1655         for (i = 0; i < nb_rx; i++)
1656                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1657
1658         PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
1659                    "port_id=%u, queue_id=%u, nb_rx=%d",
1660                    rxq->port_id, rxq->queue_id, nb_rx);
1661
1662         return nb_rx;
1663 }
1664
1665 static inline uint16_t
1666 ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
1667                        struct rte_mbuf **rx_pkts,
1668                        uint16_t nb_pkts)
1669 {
1670         uint16_t i;
1671         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1672
1673         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1674
1675         for (i = 0; i < nb_pkts; i++)
1676                 rx_pkts[i] = stage[i];
1677
1678         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1679         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1680
1681         return nb_pkts;
1682 }
1683
1684 static inline int
1685 ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
1686 {
1687         volatile union ice_rx_flex_desc *rxdp;
1688         struct ice_rx_entry *rxep;
1689         struct rte_mbuf *mb;
1690         uint16_t alloc_idx, i;
1691         uint64_t dma_addr;
1692         int diag;
1693
1694         /* Allocate buffers in bulk */
1695         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1696                                (rxq->rx_free_thresh - 1));
1697         rxep = &rxq->sw_ring[alloc_idx];
1698         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1699                                     rxq->rx_free_thresh);
1700         if (unlikely(diag != 0)) {
1701                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1702                 return -ENOMEM;
1703         }
1704
1705         rxdp = &rxq->rx_ring[alloc_idx];
1706         for (i = 0; i < rxq->rx_free_thresh; i++) {
1707                 if (likely(i < (rxq->rx_free_thresh - 1)))
1708                         /* Prefetch next mbuf */
1709                         rte_prefetch0(rxep[i + 1].mbuf);
1710
1711                 mb = rxep[i].mbuf;
1712                 rte_mbuf_refcnt_set(mb, 1);
1713                 mb->next = NULL;
1714                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1715                 mb->nb_segs = 1;
1716                 mb->port = rxq->port_id;
1717                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1718                 rxdp[i].read.hdr_addr = 0;
1719                 rxdp[i].read.pkt_addr = dma_addr;
1720         }
1721
1722         /* Update rx tail regsiter */
1723         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1724
1725         rxq->rx_free_trigger =
1726                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1727         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1728                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1729
1730         return 0;
1731 }
1732
1733 static inline uint16_t
1734 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1735 {
1736         struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
1737         uint16_t nb_rx = 0;
1738
1739         if (!nb_pkts)
1740                 return 0;
1741
1742         if (rxq->rx_nb_avail)
1743                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1744
1745         nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
1746         rxq->rx_next_avail = 0;
1747         rxq->rx_nb_avail = nb_rx;
1748         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1749
1750         if (rxq->rx_tail > rxq->rx_free_trigger) {
1751                 if (ice_rx_alloc_bufs(rxq) != 0) {
1752                         uint16_t i, j;
1753
1754                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed +=
1755                                 rxq->rx_free_thresh;
1756                         PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1757                                    "port_id=%u, queue_id=%u",
1758                                    rxq->port_id, rxq->queue_id);
1759                         rxq->rx_nb_avail = 0;
1760                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1761                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1762                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1763
1764                         return 0;
1765                 }
1766         }
1767
1768         if (rxq->rx_tail >= rxq->nb_rx_desc)
1769                 rxq->rx_tail = 0;
1770
1771         if (rxq->rx_nb_avail)
1772                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1773
1774         return 0;
1775 }
1776
1777 static uint16_t
1778 ice_recv_pkts_bulk_alloc(void *rx_queue,
1779                          struct rte_mbuf **rx_pkts,
1780                          uint16_t nb_pkts)
1781 {
1782         uint16_t nb_rx = 0;
1783         uint16_t n;
1784         uint16_t count;
1785
1786         if (unlikely(nb_pkts == 0))
1787                 return nb_rx;
1788
1789         if (likely(nb_pkts <= ICE_RX_MAX_BURST))
1790                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1791
1792         while (nb_pkts) {
1793                 n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
1794                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1795                 nb_rx = (uint16_t)(nb_rx + count);
1796                 nb_pkts = (uint16_t)(nb_pkts - count);
1797                 if (count < n)
1798                         break;
1799         }
1800
1801         return nb_rx;
1802 }
1803
1804 static uint16_t
1805 ice_recv_scattered_pkts(void *rx_queue,
1806                         struct rte_mbuf **rx_pkts,
1807                         uint16_t nb_pkts)
1808 {
1809         struct ice_rx_queue *rxq = rx_queue;
1810         volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
1811         volatile union ice_rx_flex_desc *rxdp;
1812         union ice_rx_flex_desc rxd;
1813         struct ice_rx_entry *sw_ring = rxq->sw_ring;
1814         struct ice_rx_entry *rxe;
1815         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1816         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1817         struct rte_mbuf *nmb; /* new allocated mbuf */
1818         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
1819         uint16_t rx_id = rxq->rx_tail;
1820         uint16_t nb_rx = 0;
1821         uint16_t nb_hold = 0;
1822         uint16_t rx_packet_len;
1823         uint16_t rx_stat_err0;
1824         uint64_t dma_addr;
1825         uint64_t pkt_flags;
1826         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1827         struct ice_vsi *vsi = rxq->vsi;
1828         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
1829         uint64_t ts_ns;
1830         struct ice_adapter *ad = rxq->vsi->adapter;
1831
1832         while (nb_rx < nb_pkts) {
1833                 rxdp = &rx_ring[rx_id];
1834                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1835
1836                 /* Check the DD bit first */
1837                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1838                         break;
1839
1840                 /* allocate mbuf */
1841                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1842                 if (unlikely(!nmb)) {
1843                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
1844                         break;
1845                 }
1846                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
1847
1848                 nb_hold++;
1849                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
1850                 rx_id++;
1851                 if (unlikely(rx_id == rxq->nb_rx_desc))
1852                         rx_id = 0;
1853
1854                 /* Prefetch next mbuf */
1855                 rte_prefetch0(sw_ring[rx_id].mbuf);
1856
1857                 /**
1858                  * When next RX descriptor is on a cache line boundary,
1859                  * prefetch the next 4 RX descriptors and next 8 pointers
1860                  * to mbufs.
1861                  */
1862                 if ((rx_id & 0x3) == 0) {
1863                         rte_prefetch0(&rx_ring[rx_id]);
1864                         rte_prefetch0(&sw_ring[rx_id]);
1865                 }
1866
1867                 rxm = rxe->mbuf;
1868                 rxe->mbuf = nmb;
1869                 dma_addr =
1870                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1871
1872                 /* Set data buffer address and data length of the mbuf */
1873                 rxdp->read.hdr_addr = 0;
1874                 rxdp->read.pkt_addr = dma_addr;
1875                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1876                                 ICE_RX_FLX_DESC_PKT_LEN_M;
1877                 rxm->data_len = rx_packet_len;
1878                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1879
1880                 /**
1881                  * If this is the first buffer of the received packet, set the
1882                  * pointer to the first mbuf of the packet and initialize its
1883                  * context. Otherwise, update the total length and the number
1884                  * of segments of the current scattered packet, and update the
1885                  * pointer to the last mbuf of the current packet.
1886                  */
1887                 if (!first_seg) {
1888                         first_seg = rxm;
1889                         first_seg->nb_segs = 1;
1890                         first_seg->pkt_len = rx_packet_len;
1891                 } else {
1892                         first_seg->pkt_len =
1893                                 (uint16_t)(first_seg->pkt_len +
1894                                            rx_packet_len);
1895                         first_seg->nb_segs++;
1896                         last_seg->next = rxm;
1897                 }
1898
1899                 /**
1900                  * If this is not the last buffer of the received packet,
1901                  * update the pointer to the last mbuf of the current scattered
1902                  * packet and continue to parse the RX ring.
1903                  */
1904                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_EOF_S))) {
1905                         last_seg = rxm;
1906                         continue;
1907                 }
1908
1909                 /**
1910                  * This is the last buffer of the received packet. If the CRC
1911                  * is not stripped by the hardware:
1912                  *  - Subtract the CRC length from the total packet length.
1913                  *  - If the last buffer only contains the whole CRC or a part
1914                  *  of it, free the mbuf associated to the last buffer. If part
1915                  *  of the CRC is also contained in the previous mbuf, subtract
1916                  *  the length of that CRC part from the data length of the
1917                  *  previous mbuf.
1918                  */
1919                 rxm->next = NULL;
1920                 if (unlikely(rxq->crc_len > 0)) {
1921                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1922                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1923                                 rte_pktmbuf_free_seg(rxm);
1924                                 first_seg->nb_segs--;
1925                                 last_seg->data_len =
1926                                         (uint16_t)(last_seg->data_len -
1927                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1928                                 last_seg->next = NULL;
1929                         } else
1930                                 rxm->data_len = (uint16_t)(rx_packet_len -
1931                                                            RTE_ETHER_CRC_LEN);
1932                 }
1933
1934                 first_seg->port = rxq->port_id;
1935                 first_seg->ol_flags = 0;
1936                 first_seg->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1937                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1938                 ice_rxd_to_vlan_tci(first_seg, &rxd);
1939                 rxq->rxd_to_pkt_fields(rxq, first_seg, &rxd);
1940                 pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
1941
1942                 if (rxq->offloads & DEV_RX_OFFLOAD_TIMESTAMP) {
1943                         ts_ns = ice_tstamp_convert_32b_64b(hw,
1944                                 rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high));
1945                         if (ice_timestamp_dynflag > 0) {
1946                                 *RTE_MBUF_DYNFIELD(first_seg,
1947                                         ice_timestamp_dynfield_offset,
1948                                         rte_mbuf_timestamp_t *) = ts_ns;
1949                                 first_seg->ol_flags |= ice_timestamp_dynflag;
1950                         }
1951                 }
1952
1953                 if (ad->ptp_ena && ((first_seg->packet_type & RTE_PTYPE_L2_MASK)
1954                     == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
1955                         rxq->time_high =
1956                            rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
1957                         first_seg->timesync = rxq->queue_id;
1958                         pkt_flags |= PKT_RX_IEEE1588_PTP;
1959                 }
1960
1961                 first_seg->ol_flags |= pkt_flags;
1962                 /* Prefetch data of first segment, if configured to do so. */
1963                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1964                                           first_seg->data_off));
1965                 rx_pkts[nb_rx++] = first_seg;
1966                 first_seg = NULL;
1967         }
1968
1969         /* Record index of the next RX descriptor to probe. */
1970         rxq->rx_tail = rx_id;
1971         rxq->pkt_first_seg = first_seg;
1972         rxq->pkt_last_seg = last_seg;
1973
1974         /**
1975          * If the number of free RX descriptors is greater than the RX free
1976          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1977          * register. Update the RDT with the value of the last processed RX
1978          * descriptor minus 1, to guarantee that the RDT register is never
1979          * equal to the RDH register, which creates a "full" ring situtation
1980          * from the hardware point of view.
1981          */
1982         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1983         if (nb_hold > rxq->rx_free_thresh) {
1984                 rx_id = (uint16_t)(rx_id == 0 ?
1985                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
1986                 /* write TAIL register */
1987                 ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1988                 nb_hold = 0;
1989         }
1990         rxq->nb_rx_hold = nb_hold;
1991
1992         /* return received packet in the burst */
1993         return nb_rx;
1994 }
1995
1996 const uint32_t *
1997 ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1998 {
1999         struct ice_adapter *ad =
2000                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2001         const uint32_t *ptypes;
2002
2003         static const uint32_t ptypes_os[] = {
2004                 /* refers to ice_get_default_pkt_type() */
2005                 RTE_PTYPE_L2_ETHER,
2006                 RTE_PTYPE_L2_ETHER_TIMESYNC,
2007                 RTE_PTYPE_L2_ETHER_LLDP,
2008                 RTE_PTYPE_L2_ETHER_ARP,
2009                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2010                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2011                 RTE_PTYPE_L4_FRAG,
2012                 RTE_PTYPE_L4_ICMP,
2013                 RTE_PTYPE_L4_NONFRAG,
2014                 RTE_PTYPE_L4_SCTP,
2015                 RTE_PTYPE_L4_TCP,
2016                 RTE_PTYPE_L4_UDP,
2017                 RTE_PTYPE_TUNNEL_GRENAT,
2018                 RTE_PTYPE_TUNNEL_IP,
2019                 RTE_PTYPE_INNER_L2_ETHER,
2020                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2021                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2022                 RTE_PTYPE_INNER_L4_FRAG,
2023                 RTE_PTYPE_INNER_L4_ICMP,
2024                 RTE_PTYPE_INNER_L4_NONFRAG,
2025                 RTE_PTYPE_INNER_L4_SCTP,
2026                 RTE_PTYPE_INNER_L4_TCP,
2027                 RTE_PTYPE_INNER_L4_UDP,
2028                 RTE_PTYPE_UNKNOWN
2029         };
2030
2031         static const uint32_t ptypes_comms[] = {
2032                 /* refers to ice_get_default_pkt_type() */
2033                 RTE_PTYPE_L2_ETHER,
2034                 RTE_PTYPE_L2_ETHER_TIMESYNC,
2035                 RTE_PTYPE_L2_ETHER_LLDP,
2036                 RTE_PTYPE_L2_ETHER_ARP,
2037                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2038                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2039                 RTE_PTYPE_L4_FRAG,
2040                 RTE_PTYPE_L4_ICMP,
2041                 RTE_PTYPE_L4_NONFRAG,
2042                 RTE_PTYPE_L4_SCTP,
2043                 RTE_PTYPE_L4_TCP,
2044                 RTE_PTYPE_L4_UDP,
2045                 RTE_PTYPE_TUNNEL_GRENAT,
2046                 RTE_PTYPE_TUNNEL_IP,
2047                 RTE_PTYPE_INNER_L2_ETHER,
2048                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2049                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2050                 RTE_PTYPE_INNER_L4_FRAG,
2051                 RTE_PTYPE_INNER_L4_ICMP,
2052                 RTE_PTYPE_INNER_L4_NONFRAG,
2053                 RTE_PTYPE_INNER_L4_SCTP,
2054                 RTE_PTYPE_INNER_L4_TCP,
2055                 RTE_PTYPE_INNER_L4_UDP,
2056                 RTE_PTYPE_TUNNEL_GTPC,
2057                 RTE_PTYPE_TUNNEL_GTPU,
2058                 RTE_PTYPE_L2_ETHER_PPPOE,
2059                 RTE_PTYPE_UNKNOWN
2060         };
2061
2062         if (ad->active_pkg_type == ICE_PKG_TYPE_COMMS)
2063                 ptypes = ptypes_comms;
2064         else
2065                 ptypes = ptypes_os;
2066
2067         if (dev->rx_pkt_burst == ice_recv_pkts ||
2068             dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
2069             dev->rx_pkt_burst == ice_recv_scattered_pkts)
2070                 return ptypes;
2071
2072 #ifdef RTE_ARCH_X86
2073         if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
2074             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
2075 #ifdef CC_AVX512_SUPPORT
2076             dev->rx_pkt_burst == ice_recv_pkts_vec_avx512 ||
2077             dev->rx_pkt_burst == ice_recv_pkts_vec_avx512_offload ||
2078             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512 ||
2079             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512_offload ||
2080 #endif
2081             dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
2082             dev->rx_pkt_burst == ice_recv_pkts_vec_avx2_offload ||
2083             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2 ||
2084             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2_offload)
2085                 return ptypes;
2086 #endif
2087
2088         return NULL;
2089 }
2090
2091 int
2092 ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
2093 {
2094         volatile union ice_rx_flex_desc *rxdp;
2095         struct ice_rx_queue *rxq = rx_queue;
2096         uint32_t desc;
2097
2098         if (unlikely(offset >= rxq->nb_rx_desc))
2099                 return -EINVAL;
2100
2101         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2102                 return RTE_ETH_RX_DESC_UNAVAIL;
2103
2104         desc = rxq->rx_tail + offset;
2105         if (desc >= rxq->nb_rx_desc)
2106                 desc -= rxq->nb_rx_desc;
2107
2108         rxdp = &rxq->rx_ring[desc];
2109         if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
2110             (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))
2111                 return RTE_ETH_RX_DESC_DONE;
2112
2113         return RTE_ETH_RX_DESC_AVAIL;
2114 }
2115
2116 int
2117 ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
2118 {
2119         struct ice_tx_queue *txq = tx_queue;
2120         volatile uint64_t *status;
2121         uint64_t mask, expect;
2122         uint32_t desc;
2123
2124         if (unlikely(offset >= txq->nb_tx_desc))
2125                 return -EINVAL;
2126
2127         desc = txq->tx_tail + offset;
2128         /* go to next desc that has the RS bit */
2129         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2130                 txq->tx_rs_thresh;
2131         if (desc >= txq->nb_tx_desc) {
2132                 desc -= txq->nb_tx_desc;
2133                 if (desc >= txq->nb_tx_desc)
2134                         desc -= txq->nb_tx_desc;
2135         }
2136
2137         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2138         mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
2139         expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
2140                                   ICE_TXD_QW1_DTYPE_S);
2141         if ((*status & mask) == expect)
2142                 return RTE_ETH_TX_DESC_DONE;
2143
2144         return RTE_ETH_TX_DESC_FULL;
2145 }
2146
2147 void
2148 ice_free_queues(struct rte_eth_dev *dev)
2149 {
2150         uint16_t i;
2151
2152         PMD_INIT_FUNC_TRACE();
2153
2154         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2155                 if (!dev->data->rx_queues[i])
2156                         continue;
2157                 ice_rx_queue_release(dev->data->rx_queues[i]);
2158                 dev->data->rx_queues[i] = NULL;
2159                 rte_eth_dma_zone_free(dev, "rx_ring", i);
2160         }
2161         dev->data->nb_rx_queues = 0;
2162
2163         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2164                 if (!dev->data->tx_queues[i])
2165                         continue;
2166                 ice_tx_queue_release(dev->data->tx_queues[i]);
2167                 dev->data->tx_queues[i] = NULL;
2168                 rte_eth_dma_zone_free(dev, "tx_ring", i);
2169         }
2170         dev->data->nb_tx_queues = 0;
2171 }
2172
2173 #define ICE_FDIR_NUM_TX_DESC  ICE_MIN_RING_DESC
2174 #define ICE_FDIR_NUM_RX_DESC  ICE_MIN_RING_DESC
2175
2176 int
2177 ice_fdir_setup_tx_resources(struct ice_pf *pf)
2178 {
2179         struct ice_tx_queue *txq;
2180         const struct rte_memzone *tz = NULL;
2181         uint32_t ring_size;
2182         struct rte_eth_dev *dev;
2183
2184         if (!pf) {
2185                 PMD_DRV_LOG(ERR, "PF is not available");
2186                 return -EINVAL;
2187         }
2188
2189         dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2190
2191         /* Allocate the TX queue data structure. */
2192         txq = rte_zmalloc_socket("ice fdir tx queue",
2193                                  sizeof(struct ice_tx_queue),
2194                                  RTE_CACHE_LINE_SIZE,
2195                                  SOCKET_ID_ANY);
2196         if (!txq) {
2197                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2198                             "tx queue structure.");
2199                 return -ENOMEM;
2200         }
2201
2202         /* Allocate TX hardware ring descriptors. */
2203         ring_size = sizeof(struct ice_tx_desc) * ICE_FDIR_NUM_TX_DESC;
2204         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2205
2206         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2207                                       ICE_FDIR_QUEUE_ID, ring_size,
2208                                       ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2209         if (!tz) {
2210                 ice_tx_queue_release(txq);
2211                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2212                 return -ENOMEM;
2213         }
2214
2215         txq->nb_tx_desc = ICE_FDIR_NUM_TX_DESC;
2216         txq->queue_id = ICE_FDIR_QUEUE_ID;
2217         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2218         txq->vsi = pf->fdir.fdir_vsi;
2219
2220         txq->tx_ring_dma = tz->iova;
2221         txq->tx_ring = (struct ice_tx_desc *)tz->addr;
2222         /*
2223          * don't need to allocate software ring and reset for the fdir
2224          * program queue just set the queue has been configured.
2225          */
2226         txq->q_set = true;
2227         pf->fdir.txq = txq;
2228
2229         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
2230
2231         return ICE_SUCCESS;
2232 }
2233
2234 int
2235 ice_fdir_setup_rx_resources(struct ice_pf *pf)
2236 {
2237         struct ice_rx_queue *rxq;
2238         const struct rte_memzone *rz = NULL;
2239         uint32_t ring_size;
2240         struct rte_eth_dev *dev;
2241
2242         if (!pf) {
2243                 PMD_DRV_LOG(ERR, "PF is not available");
2244                 return -EINVAL;
2245         }
2246
2247         dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2248
2249         /* Allocate the RX queue data structure. */
2250         rxq = rte_zmalloc_socket("ice fdir rx queue",
2251                                  sizeof(struct ice_rx_queue),
2252                                  RTE_CACHE_LINE_SIZE,
2253                                  SOCKET_ID_ANY);
2254         if (!rxq) {
2255                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2256                             "rx queue structure.");
2257                 return -ENOMEM;
2258         }
2259
2260         /* Allocate RX hardware ring descriptors. */
2261         ring_size = sizeof(union ice_32byte_rx_desc) * ICE_FDIR_NUM_RX_DESC;
2262         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2263
2264         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2265                                       ICE_FDIR_QUEUE_ID, ring_size,
2266                                       ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2267         if (!rz) {
2268                 ice_rx_queue_release(rxq);
2269                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2270                 return -ENOMEM;
2271         }
2272
2273         rxq->nb_rx_desc = ICE_FDIR_NUM_RX_DESC;
2274         rxq->queue_id = ICE_FDIR_QUEUE_ID;
2275         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2276         rxq->vsi = pf->fdir.fdir_vsi;
2277
2278         rxq->rx_ring_dma = rz->iova;
2279         memset(rz->addr, 0, ICE_FDIR_NUM_RX_DESC *
2280                sizeof(union ice_32byte_rx_desc));
2281         rxq->rx_ring = (union ice_rx_flex_desc *)rz->addr;
2282
2283         /*
2284          * Don't need to allocate software ring and reset for the fdir
2285          * rx queue, just set the queue has been configured.
2286          */
2287         rxq->q_set = true;
2288         pf->fdir.rxq = rxq;
2289
2290         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
2291
2292         return ICE_SUCCESS;
2293 }
2294
2295 uint16_t
2296 ice_recv_pkts(void *rx_queue,
2297               struct rte_mbuf **rx_pkts,
2298               uint16_t nb_pkts)
2299 {
2300         struct ice_rx_queue *rxq = rx_queue;
2301         volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
2302         volatile union ice_rx_flex_desc *rxdp;
2303         union ice_rx_flex_desc rxd;
2304         struct ice_rx_entry *sw_ring = rxq->sw_ring;
2305         struct ice_rx_entry *rxe;
2306         struct rte_mbuf *nmb; /* new allocated mbuf */
2307         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
2308         uint16_t rx_id = rxq->rx_tail;
2309         uint16_t nb_rx = 0;
2310         uint16_t nb_hold = 0;
2311         uint16_t rx_packet_len;
2312         uint16_t rx_stat_err0;
2313         uint64_t dma_addr;
2314         uint64_t pkt_flags;
2315         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
2316         struct ice_vsi *vsi = rxq->vsi;
2317         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
2318         uint64_t ts_ns;
2319         struct ice_adapter *ad = rxq->vsi->adapter;
2320
2321         while (nb_rx < nb_pkts) {
2322                 rxdp = &rx_ring[rx_id];
2323                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
2324
2325                 /* Check the DD bit first */
2326                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
2327                         break;
2328
2329                 /* allocate mbuf */
2330                 nmb = rte_mbuf_raw_alloc(rxq->mp);
2331                 if (unlikely(!nmb)) {
2332                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
2333                         break;
2334                 }
2335                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
2336
2337                 nb_hold++;
2338                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
2339                 rx_id++;
2340                 if (unlikely(rx_id == rxq->nb_rx_desc))
2341                         rx_id = 0;
2342                 rxm = rxe->mbuf;
2343                 rxe->mbuf = nmb;
2344                 dma_addr =
2345                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2346
2347                 /**
2348                  * fill the read format of descriptor with physic address in
2349                  * new allocated mbuf: nmb
2350                  */
2351                 rxdp->read.hdr_addr = 0;
2352                 rxdp->read.pkt_addr = dma_addr;
2353
2354                 /* calculate rx_packet_len of the received pkt */
2355                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
2356                                  ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
2357
2358                 /* fill old mbuf with received descriptor: rxd */
2359                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
2360                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
2361                 rxm->nb_segs = 1;
2362                 rxm->next = NULL;
2363                 rxm->pkt_len = rx_packet_len;
2364                 rxm->data_len = rx_packet_len;
2365                 rxm->port = rxq->port_id;
2366                 rxm->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
2367                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
2368                 ice_rxd_to_vlan_tci(rxm, &rxd);
2369                 rxq->rxd_to_pkt_fields(rxq, rxm, &rxd);
2370                 pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
2371
2372                 if (rxq->offloads & DEV_RX_OFFLOAD_TIMESTAMP) {
2373                         ts_ns = ice_tstamp_convert_32b_64b(hw,
2374                                 rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high));
2375                         if (ice_timestamp_dynflag > 0) {
2376                                 *RTE_MBUF_DYNFIELD(rxm,
2377                                         ice_timestamp_dynfield_offset,
2378                                         rte_mbuf_timestamp_t *) = ts_ns;
2379                                 rxm->ol_flags |= ice_timestamp_dynflag;
2380                         }
2381                 }
2382
2383                 if (ad->ptp_ena && ((rxm->packet_type & RTE_PTYPE_L2_MASK) ==
2384                     RTE_PTYPE_L2_ETHER_TIMESYNC)) {
2385                         rxq->time_high =
2386                            rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
2387                         rxm->timesync = rxq->queue_id;
2388                         pkt_flags |= PKT_RX_IEEE1588_PTP;
2389                 }
2390
2391                 rxm->ol_flags |= pkt_flags;
2392                 /* copy old mbuf to rx_pkts */
2393                 rx_pkts[nb_rx++] = rxm;
2394         }
2395         rxq->rx_tail = rx_id;
2396         /**
2397          * If the number of free RX descriptors is greater than the RX free
2398          * threshold of the queue, advance the receive tail register of queue.
2399          * Update that register with the value of the last processed RX
2400          * descriptor minus 1.
2401          */
2402         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
2403         if (nb_hold > rxq->rx_free_thresh) {
2404                 rx_id = (uint16_t)(rx_id == 0 ?
2405                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
2406                 /* write TAIL register */
2407                 ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
2408                 nb_hold = 0;
2409         }
2410         rxq->nb_rx_hold = nb_hold;
2411
2412         /* return received packet in the burst */
2413         return nb_rx;
2414 }
2415
2416 static inline void
2417 ice_parse_tunneling_params(uint64_t ol_flags,
2418                             union ice_tx_offload tx_offload,
2419                             uint32_t *cd_tunneling)
2420 {
2421         /* EIPT: External (outer) IP header type */
2422         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
2423                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4;
2424         else if (ol_flags & PKT_TX_OUTER_IPV4)
2425                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
2426         else if (ol_flags & PKT_TX_OUTER_IPV6)
2427                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV6;
2428
2429         /* EIPLEN: External (outer) IP header length, in DWords */
2430         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
2431                 ICE_TXD_CTX_QW0_EIPLEN_S;
2432
2433         /* L4TUNT: L4 Tunneling Type */
2434         switch (ol_flags & PKT_TX_TUNNEL_MASK) {
2435         case PKT_TX_TUNNEL_IPIP:
2436                 /* for non UDP / GRE tunneling, set to 00b */
2437                 break;
2438         case PKT_TX_TUNNEL_VXLAN:
2439         case PKT_TX_TUNNEL_GTP:
2440         case PKT_TX_TUNNEL_GENEVE:
2441                 *cd_tunneling |= ICE_TXD_CTX_UDP_TUNNELING;
2442                 break;
2443         case PKT_TX_TUNNEL_GRE:
2444                 *cd_tunneling |= ICE_TXD_CTX_GRE_TUNNELING;
2445                 break;
2446         default:
2447                 PMD_TX_LOG(ERR, "Tunnel type not supported");
2448                 return;
2449         }
2450
2451         /* L4TUNLEN: L4 Tunneling Length, in Words
2452          *
2453          * We depend on app to set rte_mbuf.l2_len correctly.
2454          * For IP in GRE it should be set to the length of the GRE
2455          * header;
2456          * For MAC in GRE or MAC in UDP it should be set to the length
2457          * of the GRE or UDP headers plus the inner MAC up to including
2458          * its last Ethertype.
2459          * If MPLS labels exists, it should include them as well.
2460          */
2461         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
2462                 ICE_TXD_CTX_QW0_NATLEN_S;
2463
2464         /**
2465          * Calculate the tunneling UDP checksum.
2466          * Shall be set only if L4TUNT = 01b and EIPT is not zero
2467          */
2468         if (!(*cd_tunneling & ICE_TX_CTX_EIPT_NONE) &&
2469             (*cd_tunneling & ICE_TXD_CTX_UDP_TUNNELING))
2470                 *cd_tunneling |= ICE_TXD_CTX_QW0_L4T_CS_M;
2471 }
2472
2473 static inline void
2474 ice_txd_enable_checksum(uint64_t ol_flags,
2475                         uint32_t *td_cmd,
2476                         uint32_t *td_offset,
2477                         union ice_tx_offload tx_offload)
2478 {
2479         /* Set MACLEN */
2480         if (ol_flags & PKT_TX_TUNNEL_MASK)
2481                 *td_offset |= (tx_offload.outer_l2_len >> 1)
2482                         << ICE_TX_DESC_LEN_MACLEN_S;
2483         else
2484                 *td_offset |= (tx_offload.l2_len >> 1)
2485                         << ICE_TX_DESC_LEN_MACLEN_S;
2486
2487         /* Enable L3 checksum offloads */
2488         if (ol_flags & PKT_TX_IP_CKSUM) {
2489                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
2490                 *td_offset |= (tx_offload.l3_len >> 2) <<
2491                               ICE_TX_DESC_LEN_IPLEN_S;
2492         } else if (ol_flags & PKT_TX_IPV4) {
2493                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
2494                 *td_offset |= (tx_offload.l3_len >> 2) <<
2495                               ICE_TX_DESC_LEN_IPLEN_S;
2496         } else if (ol_flags & PKT_TX_IPV6) {
2497                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2498                 *td_offset |= (tx_offload.l3_len >> 2) <<
2499                               ICE_TX_DESC_LEN_IPLEN_S;
2500         }
2501
2502         if (ol_flags & PKT_TX_TCP_SEG) {
2503                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2504                 *td_offset |= (tx_offload.l4_len >> 2) <<
2505                               ICE_TX_DESC_LEN_L4_LEN_S;
2506                 return;
2507         }
2508
2509         /* Enable L4 checksum offloads */
2510         switch (ol_flags & PKT_TX_L4_MASK) {
2511         case PKT_TX_TCP_CKSUM:
2512                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2513                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2514                               ICE_TX_DESC_LEN_L4_LEN_S;
2515                 break;
2516         case PKT_TX_SCTP_CKSUM:
2517                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2518                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2519                               ICE_TX_DESC_LEN_L4_LEN_S;
2520                 break;
2521         case PKT_TX_UDP_CKSUM:
2522                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2523                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2524                               ICE_TX_DESC_LEN_L4_LEN_S;
2525                 break;
2526         default:
2527                 break;
2528         }
2529 }
2530
2531 static inline int
2532 ice_xmit_cleanup(struct ice_tx_queue *txq)
2533 {
2534         struct ice_tx_entry *sw_ring = txq->sw_ring;
2535         volatile struct ice_tx_desc *txd = txq->tx_ring;
2536         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2537         uint16_t nb_tx_desc = txq->nb_tx_desc;
2538         uint16_t desc_to_clean_to;
2539         uint16_t nb_tx_to_clean;
2540
2541         /* Determine the last descriptor needing to be cleaned */
2542         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
2543         if (desc_to_clean_to >= nb_tx_desc)
2544                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2545
2546         /* Check to make sure the last descriptor to clean is done */
2547         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2548         if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
2549             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
2550                 PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2551                            "(port=%d queue=%d) value=0x%"PRIx64"\n",
2552                            desc_to_clean_to,
2553                            txq->port_id, txq->queue_id,
2554                            txd[desc_to_clean_to].cmd_type_offset_bsz);
2555                 /* Failed to clean any descriptors */
2556                 return -1;
2557         }
2558
2559         /* Figure out how many descriptors will be cleaned */
2560         if (last_desc_cleaned > desc_to_clean_to)
2561                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2562                                             desc_to_clean_to);
2563         else
2564                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2565                                             last_desc_cleaned);
2566
2567         /* The last descriptor to clean is done, so that means all the
2568          * descriptors from the last descriptor that was cleaned
2569          * up to the last descriptor with the RS bit set
2570          * are done. Only reset the threshold descriptor.
2571          */
2572         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2573
2574         /* Update the txq to reflect the last descriptor that was cleaned */
2575         txq->last_desc_cleaned = desc_to_clean_to;
2576         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
2577
2578         return 0;
2579 }
2580
2581 /* Construct the tx flags */
2582 static inline uint64_t
2583 ice_build_ctob(uint32_t td_cmd,
2584                uint32_t td_offset,
2585                uint16_t size,
2586                uint32_t td_tag)
2587 {
2588         return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2589                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2590                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2591                                 ((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
2592                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2593 }
2594
2595 /* Check if the context descriptor is needed for TX offloading */
2596 static inline uint16_t
2597 ice_calc_context_desc(uint64_t flags)
2598 {
2599         static uint64_t mask = PKT_TX_TCP_SEG |
2600                 PKT_TX_QINQ |
2601                 PKT_TX_OUTER_IP_CKSUM |
2602                 PKT_TX_TUNNEL_MASK |
2603                 PKT_TX_IEEE1588_TMST;
2604
2605         return (flags & mask) ? 1 : 0;
2606 }
2607
2608 /* set ice TSO context descriptor */
2609 static inline uint64_t
2610 ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
2611 {
2612         uint64_t ctx_desc = 0;
2613         uint32_t cd_cmd, hdr_len, cd_tso_len;
2614
2615         if (!tx_offload.l4_len) {
2616                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
2617                 return ctx_desc;
2618         }
2619
2620         hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
2621         hdr_len += (mbuf->ol_flags & PKT_TX_TUNNEL_MASK) ?
2622                    tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
2623
2624         cd_cmd = ICE_TX_CTX_DESC_TSO;
2625         cd_tso_len = mbuf->pkt_len - hdr_len;
2626         ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
2627                     ((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2628                     ((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
2629
2630         return ctx_desc;
2631 }
2632
2633 /* HW requires that TX buffer size ranges from 1B up to (16K-1)B. */
2634 #define ICE_MAX_DATA_PER_TXD \
2635         (ICE_TXD_QW1_TX_BUF_SZ_M >> ICE_TXD_QW1_TX_BUF_SZ_S)
2636 /* Calculate the number of TX descriptors needed for each pkt */
2637 static inline uint16_t
2638 ice_calc_pkt_desc(struct rte_mbuf *tx_pkt)
2639 {
2640         struct rte_mbuf *txd = tx_pkt;
2641         uint16_t count = 0;
2642
2643         while (txd != NULL) {
2644                 count += DIV_ROUND_UP(txd->data_len, ICE_MAX_DATA_PER_TXD);
2645                 txd = txd->next;
2646         }
2647
2648         return count;
2649 }
2650
2651 uint16_t
2652 ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2653 {
2654         struct ice_tx_queue *txq;
2655         volatile struct ice_tx_desc *tx_ring;
2656         volatile struct ice_tx_desc *txd;
2657         struct ice_tx_entry *sw_ring;
2658         struct ice_tx_entry *txe, *txn;
2659         struct rte_mbuf *tx_pkt;
2660         struct rte_mbuf *m_seg;
2661         uint32_t cd_tunneling_params;
2662         uint16_t tx_id;
2663         uint16_t nb_tx;
2664         uint16_t nb_used;
2665         uint16_t nb_ctx;
2666         uint32_t td_cmd = 0;
2667         uint32_t td_offset = 0;
2668         uint32_t td_tag = 0;
2669         uint16_t tx_last;
2670         uint16_t slen;
2671         uint64_t buf_dma_addr;
2672         uint64_t ol_flags;
2673         union ice_tx_offload tx_offload = {0};
2674
2675         txq = tx_queue;
2676         sw_ring = txq->sw_ring;
2677         tx_ring = txq->tx_ring;
2678         tx_id = txq->tx_tail;
2679         txe = &sw_ring[tx_id];
2680
2681         /* Check if the descriptor ring needs to be cleaned. */
2682         if (txq->nb_tx_free < txq->tx_free_thresh)
2683                 (void)ice_xmit_cleanup(txq);
2684
2685         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
2686                 tx_pkt = *tx_pkts++;
2687
2688                 td_cmd = 0;
2689                 td_tag = 0;
2690                 td_offset = 0;
2691                 ol_flags = tx_pkt->ol_flags;
2692                 tx_offload.l2_len = tx_pkt->l2_len;
2693                 tx_offload.l3_len = tx_pkt->l3_len;
2694                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
2695                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
2696                 tx_offload.l4_len = tx_pkt->l4_len;
2697                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
2698                 /* Calculate the number of context descriptors needed. */
2699                 nb_ctx = ice_calc_context_desc(ol_flags);
2700
2701                 /* The number of descriptors that must be allocated for
2702                  * a packet equals to the number of the segments of that
2703                  * packet plus the number of context descriptor if needed.
2704                  * Recalculate the needed tx descs when TSO enabled in case
2705                  * the mbuf data size exceeds max data size that hw allows
2706                  * per tx desc.
2707                  */
2708                 if (ol_flags & PKT_TX_TCP_SEG)
2709                         nb_used = (uint16_t)(ice_calc_pkt_desc(tx_pkt) +
2710                                              nb_ctx);
2711                 else
2712                         nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
2713                 tx_last = (uint16_t)(tx_id + nb_used - 1);
2714
2715                 /* Circular ring */
2716                 if (tx_last >= txq->nb_tx_desc)
2717                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
2718
2719                 if (nb_used > txq->nb_tx_free) {
2720                         if (ice_xmit_cleanup(txq) != 0) {
2721                                 if (nb_tx == 0)
2722                                         return 0;
2723                                 goto end_of_tx;
2724                         }
2725                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
2726                                 while (nb_used > txq->nb_tx_free) {
2727                                         if (ice_xmit_cleanup(txq) != 0) {
2728                                                 if (nb_tx == 0)
2729                                                         return 0;
2730                                                 goto end_of_tx;
2731                                         }
2732                                 }
2733                         }
2734                 }
2735
2736                 /* Descriptor based VLAN insertion */
2737                 if (ol_flags & (PKT_TX_VLAN | PKT_TX_QINQ)) {
2738                         td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
2739                         td_tag = tx_pkt->vlan_tci;
2740                 }
2741
2742                 /* Fill in tunneling parameters if necessary */
2743                 cd_tunneling_params = 0;
2744                 if (ol_flags & PKT_TX_TUNNEL_MASK)
2745                         ice_parse_tunneling_params(ol_flags, tx_offload,
2746                                                    &cd_tunneling_params);
2747
2748                 /* Enable checksum offloading */
2749                 if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK)
2750                         ice_txd_enable_checksum(ol_flags, &td_cmd,
2751                                                 &td_offset, tx_offload);
2752
2753                 if (nb_ctx) {
2754                         /* Setup TX context descriptor if required */
2755                         volatile struct ice_tx_ctx_desc *ctx_txd =
2756                                 (volatile struct ice_tx_ctx_desc *)
2757                                         &tx_ring[tx_id];
2758                         uint16_t cd_l2tag2 = 0;
2759                         uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
2760
2761                         txn = &sw_ring[txe->next_id];
2762                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2763                         if (txe->mbuf) {
2764                                 rte_pktmbuf_free_seg(txe->mbuf);
2765                                 txe->mbuf = NULL;
2766                         }
2767
2768                         if (ol_flags & PKT_TX_TCP_SEG)
2769                                 cd_type_cmd_tso_mss |=
2770                                         ice_set_tso_ctx(tx_pkt, tx_offload);
2771                         else if (ol_flags & PKT_TX_IEEE1588_TMST)
2772                                 cd_type_cmd_tso_mss |=
2773                                         ((uint64_t)ICE_TX_CTX_DESC_TSYN <<
2774                                         ICE_TXD_CTX_QW1_CMD_S);
2775
2776                         ctx_txd->tunneling_params =
2777                                 rte_cpu_to_le_32(cd_tunneling_params);
2778
2779                         /* TX context descriptor based double VLAN insert */
2780                         if (ol_flags & PKT_TX_QINQ) {
2781                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
2782                                 cd_type_cmd_tso_mss |=
2783                                         ((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
2784                                          ICE_TXD_CTX_QW1_CMD_S);
2785                         }
2786                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
2787                         ctx_txd->qw1 =
2788                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2789
2790                         txe->last_id = tx_last;
2791                         tx_id = txe->next_id;
2792                         txe = txn;
2793                 }
2794                 m_seg = tx_pkt;
2795
2796                 do {
2797                         txd = &tx_ring[tx_id];
2798                         txn = &sw_ring[txe->next_id];
2799
2800                         if (txe->mbuf)
2801                                 rte_pktmbuf_free_seg(txe->mbuf);
2802                         txe->mbuf = m_seg;
2803
2804                         /* Setup TX Descriptor */
2805                         slen = m_seg->data_len;
2806                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2807
2808                         while ((ol_flags & PKT_TX_TCP_SEG) &&
2809                                 unlikely(slen > ICE_MAX_DATA_PER_TXD)) {
2810                                 txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2811                                 txd->cmd_type_offset_bsz =
2812                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2813                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2814                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2815                                 ((uint64_t)ICE_MAX_DATA_PER_TXD <<
2816                                  ICE_TXD_QW1_TX_BUF_SZ_S) |
2817                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2818
2819                                 buf_dma_addr += ICE_MAX_DATA_PER_TXD;
2820                                 slen -= ICE_MAX_DATA_PER_TXD;
2821
2822                                 txe->last_id = tx_last;
2823                                 tx_id = txe->next_id;
2824                                 txe = txn;
2825                                 txd = &tx_ring[tx_id];
2826                                 txn = &sw_ring[txe->next_id];
2827                         }
2828
2829                         txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2830                         txd->cmd_type_offset_bsz =
2831                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2832                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2833                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2834                                 ((uint64_t)slen << ICE_TXD_QW1_TX_BUF_SZ_S) |
2835                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2836
2837                         txe->last_id = tx_last;
2838                         tx_id = txe->next_id;
2839                         txe = txn;
2840                         m_seg = m_seg->next;
2841                 } while (m_seg);
2842
2843                 /* fill the last descriptor with End of Packet (EOP) bit */
2844                 td_cmd |= ICE_TX_DESC_CMD_EOP;
2845                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
2846                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
2847
2848                 /* set RS bit on the last descriptor of one packet */
2849                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
2850                         PMD_TX_LOG(DEBUG,
2851                                    "Setting RS bit on TXD id="
2852                                    "%4u (port=%d queue=%d)",
2853                                    tx_last, txq->port_id, txq->queue_id);
2854
2855                         td_cmd |= ICE_TX_DESC_CMD_RS;
2856
2857                         /* Update txq RS bit counters */
2858                         txq->nb_tx_used = 0;
2859                 }
2860                 txd->cmd_type_offset_bsz |=
2861                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2862                                          ICE_TXD_QW1_CMD_S);
2863         }
2864 end_of_tx:
2865         /* update Tail register */
2866         ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
2867         txq->tx_tail = tx_id;
2868
2869         return nb_tx;
2870 }
2871
2872 static __rte_always_inline int
2873 ice_tx_free_bufs(struct ice_tx_queue *txq)
2874 {
2875         struct ice_tx_entry *txep;
2876         uint16_t i;
2877
2878         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
2879              rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
2880             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
2881                 return 0;
2882
2883         txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
2884
2885         for (i = 0; i < txq->tx_rs_thresh; i++)
2886                 rte_prefetch0((txep + i)->mbuf);
2887
2888         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
2889                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2890                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
2891                         txep->mbuf = NULL;
2892                 }
2893         } else {
2894                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2895                         rte_pktmbuf_free_seg(txep->mbuf);
2896                         txep->mbuf = NULL;
2897                 }
2898         }
2899
2900         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
2901         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
2902         if (txq->tx_next_dd >= txq->nb_tx_desc)
2903                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2904
2905         return txq->tx_rs_thresh;
2906 }
2907
2908 static int
2909 ice_tx_done_cleanup_full(struct ice_tx_queue *txq,
2910                         uint32_t free_cnt)
2911 {
2912         struct ice_tx_entry *swr_ring = txq->sw_ring;
2913         uint16_t i, tx_last, tx_id;
2914         uint16_t nb_tx_free_last;
2915         uint16_t nb_tx_to_clean;
2916         uint32_t pkt_cnt;
2917
2918         /* Start free mbuf from the next of tx_tail */
2919         tx_last = txq->tx_tail;
2920         tx_id  = swr_ring[tx_last].next_id;
2921
2922         if (txq->nb_tx_free == 0 && ice_xmit_cleanup(txq))
2923                 return 0;
2924
2925         nb_tx_to_clean = txq->nb_tx_free;
2926         nb_tx_free_last = txq->nb_tx_free;
2927         if (!free_cnt)
2928                 free_cnt = txq->nb_tx_desc;
2929
2930         /* Loop through swr_ring to count the amount of
2931          * freeable mubfs and packets.
2932          */
2933         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2934                 for (i = 0; i < nb_tx_to_clean &&
2935                         pkt_cnt < free_cnt &&
2936                         tx_id != tx_last; i++) {
2937                         if (swr_ring[tx_id].mbuf != NULL) {
2938                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2939                                 swr_ring[tx_id].mbuf = NULL;
2940
2941                                 /*
2942                                  * last segment in the packet,
2943                                  * increment packet count
2944                                  */
2945                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2946                         }
2947
2948                         tx_id = swr_ring[tx_id].next_id;
2949                 }
2950
2951                 if (txq->tx_rs_thresh > txq->nb_tx_desc -
2952                         txq->nb_tx_free || tx_id == tx_last)
2953                         break;
2954
2955                 if (pkt_cnt < free_cnt) {
2956                         if (ice_xmit_cleanup(txq))
2957                                 break;
2958
2959                         nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
2960                         nb_tx_free_last = txq->nb_tx_free;
2961                 }
2962         }
2963
2964         return (int)pkt_cnt;
2965 }
2966
2967 #ifdef RTE_ARCH_X86
2968 static int
2969 ice_tx_done_cleanup_vec(struct ice_tx_queue *txq __rte_unused,
2970                         uint32_t free_cnt __rte_unused)
2971 {
2972         return -ENOTSUP;
2973 }
2974 #endif
2975
2976 static int
2977 ice_tx_done_cleanup_simple(struct ice_tx_queue *txq,
2978                         uint32_t free_cnt)
2979 {
2980         int i, n, cnt;
2981
2982         if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
2983                 free_cnt = txq->nb_tx_desc;
2984
2985         cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
2986
2987         for (i = 0; i < cnt; i += n) {
2988                 if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
2989                         break;
2990
2991                 n = ice_tx_free_bufs(txq);
2992
2993                 if (n == 0)
2994                         break;
2995         }
2996
2997         return i;
2998 }
2999
3000 int
3001 ice_tx_done_cleanup(void *txq, uint32_t free_cnt)
3002 {
3003         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
3004         struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
3005         struct ice_adapter *ad =
3006                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3007
3008 #ifdef RTE_ARCH_X86
3009         if (ad->tx_vec_allowed)
3010                 return ice_tx_done_cleanup_vec(q, free_cnt);
3011 #endif
3012         if (ad->tx_simple_allowed)
3013                 return ice_tx_done_cleanup_simple(q, free_cnt);
3014         else
3015                 return ice_tx_done_cleanup_full(q, free_cnt);
3016 }
3017
3018 /* Populate 4 descriptors with data from 4 mbufs */
3019 static inline void
3020 tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
3021 {
3022         uint64_t dma_addr;
3023         uint32_t i;
3024
3025         for (i = 0; i < 4; i++, txdp++, pkts++) {
3026                 dma_addr = rte_mbuf_data_iova(*pkts);
3027                 txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
3028                 txdp->cmd_type_offset_bsz =
3029                         ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
3030                                        (*pkts)->data_len, 0);
3031         }
3032 }
3033
3034 /* Populate 1 descriptor with data from 1 mbuf */
3035 static inline void
3036 tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
3037 {
3038         uint64_t dma_addr;
3039
3040         dma_addr = rte_mbuf_data_iova(*pkts);
3041         txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
3042         txdp->cmd_type_offset_bsz =
3043                 ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
3044                                (*pkts)->data_len, 0);
3045 }
3046
3047 static inline void
3048 ice_tx_fill_hw_ring(struct ice_tx_queue *txq, struct rte_mbuf **pkts,
3049                     uint16_t nb_pkts)
3050 {
3051         volatile struct ice_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
3052         struct ice_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
3053         const int N_PER_LOOP = 4;
3054         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
3055         int mainpart, leftover;
3056         int i, j;
3057
3058         /**
3059          * Process most of the packets in chunks of N pkts.  Any
3060          * leftover packets will get processed one at a time.
3061          */
3062         mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
3063         leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
3064         for (i = 0; i < mainpart; i += N_PER_LOOP) {
3065                 /* Copy N mbuf pointers to the S/W ring */
3066                 for (j = 0; j < N_PER_LOOP; ++j)
3067                         (txep + i + j)->mbuf = *(pkts + i + j);
3068                 tx4(txdp + i, pkts + i);
3069         }
3070
3071         if (unlikely(leftover > 0)) {
3072                 for (i = 0; i < leftover; ++i) {
3073                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
3074                         tx1(txdp + mainpart + i, pkts + mainpart + i);
3075                 }
3076         }
3077 }
3078
3079 static inline uint16_t
3080 tx_xmit_pkts(struct ice_tx_queue *txq,
3081              struct rte_mbuf **tx_pkts,
3082              uint16_t nb_pkts)
3083 {
3084         volatile struct ice_tx_desc *txr = txq->tx_ring;
3085         uint16_t n = 0;
3086
3087         /**
3088          * Begin scanning the H/W ring for done descriptors when the number
3089          * of available descriptors drops below tx_free_thresh. For each done
3090          * descriptor, free the associated buffer.
3091          */
3092         if (txq->nb_tx_free < txq->tx_free_thresh)
3093                 ice_tx_free_bufs(txq);
3094
3095         /* Use available descriptor only */
3096         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
3097         if (unlikely(!nb_pkts))
3098                 return 0;
3099
3100         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
3101         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
3102                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
3103                 ice_tx_fill_hw_ring(txq, tx_pkts, n);
3104                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3105                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3106                                          ICE_TXD_QW1_CMD_S);
3107                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3108                 txq->tx_tail = 0;
3109         }
3110
3111         /* Fill hardware descriptor ring with mbuf data */
3112         ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
3113         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
3114
3115         /* Determin if RS bit needs to be set */
3116         if (txq->tx_tail > txq->tx_next_rs) {
3117                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3118                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3119                                          ICE_TXD_QW1_CMD_S);
3120                 txq->tx_next_rs =
3121                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
3122                 if (txq->tx_next_rs >= txq->nb_tx_desc)
3123                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3124         }
3125
3126         if (txq->tx_tail >= txq->nb_tx_desc)
3127                 txq->tx_tail = 0;
3128
3129         /* Update the tx tail register */
3130         ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
3131
3132         return nb_pkts;
3133 }
3134
3135 static uint16_t
3136 ice_xmit_pkts_simple(void *tx_queue,
3137                      struct rte_mbuf **tx_pkts,
3138                      uint16_t nb_pkts)
3139 {
3140         uint16_t nb_tx = 0;
3141
3142         if (likely(nb_pkts <= ICE_TX_MAX_BURST))
3143                 return tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
3144                                     tx_pkts, nb_pkts);
3145
3146         while (nb_pkts) {
3147                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
3148                                                       ICE_TX_MAX_BURST);
3149
3150                 ret = tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
3151                                    &tx_pkts[nb_tx], num);
3152                 nb_tx = (uint16_t)(nb_tx + ret);
3153                 nb_pkts = (uint16_t)(nb_pkts - ret);
3154                 if (ret < num)
3155                         break;
3156         }
3157
3158         return nb_tx;
3159 }
3160
3161 void __rte_cold
3162 ice_set_rx_function(struct rte_eth_dev *dev)
3163 {
3164         PMD_INIT_FUNC_TRACE();
3165         struct ice_adapter *ad =
3166                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3167 #ifdef RTE_ARCH_X86
3168         struct ice_rx_queue *rxq;
3169         int i;
3170         int rx_check_ret = -1;
3171
3172         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3173                 ad->rx_use_avx512 = false;
3174                 ad->rx_use_avx2 = false;
3175                 rx_check_ret = ice_rx_vec_dev_check(dev);
3176                 if (ad->ptp_ena)
3177                         rx_check_ret = -1;
3178                 if (rx_check_ret >= 0 && ad->rx_bulk_alloc_allowed &&
3179                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3180                         ad->rx_vec_allowed = true;
3181                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3182                                 rxq = dev->data->rx_queues[i];
3183                                 if (rxq && ice_rxq_vec_setup(rxq)) {
3184                                         ad->rx_vec_allowed = false;
3185                                         break;
3186                                 }
3187                         }
3188
3189                         if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3190                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3191                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3192 #ifdef CC_AVX512_SUPPORT
3193                                 ad->rx_use_avx512 = true;
3194 #else
3195                         PMD_DRV_LOG(NOTICE,
3196                                 "AVX512 is not supported in build env");
3197 #endif
3198                         if (!ad->rx_use_avx512 &&
3199                         (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3200                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3201                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3202                                 ad->rx_use_avx2 = true;
3203
3204                 } else {
3205                         ad->rx_vec_allowed = false;
3206                 }
3207         }
3208
3209         if (ad->rx_vec_allowed) {
3210                 if (dev->data->scattered_rx) {
3211                         if (ad->rx_use_avx512) {
3212 #ifdef CC_AVX512_SUPPORT
3213                                 if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3214                                         PMD_DRV_LOG(NOTICE,
3215                                                 "Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
3216                                                 dev->data->port_id);
3217                                         dev->rx_pkt_burst =
3218                                                 ice_recv_scattered_pkts_vec_avx512_offload;
3219                                 } else {
3220                                         PMD_DRV_LOG(NOTICE,
3221                                                 "Using AVX512 Vector Scattered Rx (port %d).",
3222                                                 dev->data->port_id);
3223                                         dev->rx_pkt_burst =
3224                                                 ice_recv_scattered_pkts_vec_avx512;
3225                                 }
3226 #endif
3227                         } else if (ad->rx_use_avx2) {
3228                                 if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3229                                         PMD_DRV_LOG(NOTICE,
3230                                                     "Using AVX2 OFFLOAD Vector Scattered Rx (port %d).",
3231                                                     dev->data->port_id);
3232                                         dev->rx_pkt_burst =
3233                                                 ice_recv_scattered_pkts_vec_avx2_offload;
3234                                 } else {
3235                                         PMD_DRV_LOG(NOTICE,
3236                                                     "Using AVX2 Vector Scattered Rx (port %d).",
3237                                                     dev->data->port_id);
3238                                         dev->rx_pkt_burst =
3239                                                 ice_recv_scattered_pkts_vec_avx2;
3240                                 }
3241                         } else {
3242                                 PMD_DRV_LOG(DEBUG,
3243                                         "Using Vector Scattered Rx (port %d).",
3244                                         dev->data->port_id);
3245                                 dev->rx_pkt_burst = ice_recv_scattered_pkts_vec;
3246                         }
3247                 } else {
3248                         if (ad->rx_use_avx512) {
3249 #ifdef CC_AVX512_SUPPORT
3250                                 if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3251                                         PMD_DRV_LOG(NOTICE,
3252                                                 "Using AVX512 OFFLOAD Vector Rx (port %d).",
3253                                                 dev->data->port_id);
3254                                         dev->rx_pkt_burst =
3255                                                 ice_recv_pkts_vec_avx512_offload;
3256                                 } else {
3257                                         PMD_DRV_LOG(NOTICE,
3258                                                 "Using AVX512 Vector Rx (port %d).",
3259                                                 dev->data->port_id);
3260                                         dev->rx_pkt_burst =
3261                                                 ice_recv_pkts_vec_avx512;
3262                                 }
3263 #endif
3264                         } else if (ad->rx_use_avx2) {
3265                                 if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3266                                         PMD_DRV_LOG(NOTICE,
3267                                                     "Using AVX2 OFFLOAD Vector Rx (port %d).",
3268                                                     dev->data->port_id);
3269                                         dev->rx_pkt_burst =
3270                                                 ice_recv_pkts_vec_avx2_offload;
3271                                 } else {
3272                                         PMD_DRV_LOG(NOTICE,
3273                                                     "Using AVX2 Vector Rx (port %d).",
3274                                                     dev->data->port_id);
3275                                         dev->rx_pkt_burst =
3276                                                 ice_recv_pkts_vec_avx2;
3277                                 }
3278                         } else {
3279                                 PMD_DRV_LOG(DEBUG,
3280                                         "Using Vector Rx (port %d).",
3281                                         dev->data->port_id);
3282                                 dev->rx_pkt_burst = ice_recv_pkts_vec;
3283                         }
3284                 }
3285                 return;
3286         }
3287
3288 #endif
3289
3290         if (dev->data->scattered_rx) {
3291                 /* Set the non-LRO scattered function */
3292                 PMD_INIT_LOG(DEBUG,
3293                              "Using a Scattered function on port %d.",
3294                              dev->data->port_id);
3295                 dev->rx_pkt_burst = ice_recv_scattered_pkts;
3296         } else if (ad->rx_bulk_alloc_allowed) {
3297                 PMD_INIT_LOG(DEBUG,
3298                              "Rx Burst Bulk Alloc Preconditions are "
3299                              "satisfied. Rx Burst Bulk Alloc function "
3300                              "will be used on port %d.",
3301                              dev->data->port_id);
3302                 dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
3303         } else {
3304                 PMD_INIT_LOG(DEBUG,
3305                              "Rx Burst Bulk Alloc Preconditions are not "
3306                              "satisfied, Normal Rx will be used on port %d.",
3307                              dev->data->port_id);
3308                 dev->rx_pkt_burst = ice_recv_pkts;
3309         }
3310 }
3311
3312 static const struct {
3313         eth_rx_burst_t pkt_burst;
3314         const char *info;
3315 } ice_rx_burst_infos[] = {
3316         { ice_recv_scattered_pkts,          "Scalar Scattered" },
3317         { ice_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
3318         { ice_recv_pkts,                    "Scalar" },
3319 #ifdef RTE_ARCH_X86
3320 #ifdef CC_AVX512_SUPPORT
3321         { ice_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
3322         { ice_recv_scattered_pkts_vec_avx512_offload, "Offload Vector AVX512 Scattered" },
3323         { ice_recv_pkts_vec_avx512,           "Vector AVX512" },
3324         { ice_recv_pkts_vec_avx512_offload,   "Offload Vector AVX512" },
3325 #endif
3326         { ice_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
3327         { ice_recv_scattered_pkts_vec_avx2_offload, "Offload Vector AVX2 Scattered" },
3328         { ice_recv_pkts_vec_avx2,           "Vector AVX2" },
3329         { ice_recv_pkts_vec_avx2_offload,   "Offload Vector AVX2" },
3330         { ice_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
3331         { ice_recv_pkts_vec,                "Vector SSE" },
3332 #endif
3333 };
3334
3335 int
3336 ice_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3337                       struct rte_eth_burst_mode *mode)
3338 {
3339         eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
3340         int ret = -EINVAL;
3341         unsigned int i;
3342
3343         for (i = 0; i < RTE_DIM(ice_rx_burst_infos); ++i) {
3344                 if (pkt_burst == ice_rx_burst_infos[i].pkt_burst) {
3345                         snprintf(mode->info, sizeof(mode->info), "%s",
3346                                  ice_rx_burst_infos[i].info);
3347                         ret = 0;
3348                         break;
3349                 }
3350         }
3351
3352         return ret;
3353 }
3354
3355 void __rte_cold
3356 ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ice_tx_queue *txq)
3357 {
3358         struct ice_adapter *ad =
3359                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3360
3361         /* Use a simple Tx queue if possible (only fast free is allowed) */
3362         ad->tx_simple_allowed =
3363                 (txq->offloads ==
3364                 (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
3365                 txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
3366
3367         if (ad->tx_simple_allowed)
3368                 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3369                              txq->queue_id);
3370         else
3371                 PMD_INIT_LOG(DEBUG,
3372                              "Simple Tx can NOT be enabled on Tx queue %u.",
3373                              txq->queue_id);
3374 }
3375
3376 /*********************************************************************
3377  *
3378  *  TX prep functions
3379  *
3380  **********************************************************************/
3381 /* The default values of TSO MSS */
3382 #define ICE_MIN_TSO_MSS            64
3383 #define ICE_MAX_TSO_MSS            9728
3384 #define ICE_MAX_TSO_FRAME_SIZE     262144
3385 uint16_t
3386 ice_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
3387               uint16_t nb_pkts)
3388 {
3389         int i, ret;
3390         uint64_t ol_flags;
3391         struct rte_mbuf *m;
3392
3393         for (i = 0; i < nb_pkts; i++) {
3394                 m = tx_pkts[i];
3395                 ol_flags = m->ol_flags;
3396
3397                 if (ol_flags & PKT_TX_TCP_SEG &&
3398                     (m->tso_segsz < ICE_MIN_TSO_MSS ||
3399                      m->tso_segsz > ICE_MAX_TSO_MSS ||
3400                      m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
3401                         /**
3402                          * MSS outside the range are considered malicious
3403                          */
3404                         rte_errno = EINVAL;
3405                         return i;
3406                 }
3407
3408 #ifdef RTE_ETHDEV_DEBUG_TX
3409                 ret = rte_validate_tx_offload(m);
3410                 if (ret != 0) {
3411                         rte_errno = -ret;
3412                         return i;
3413                 }
3414 #endif
3415                 ret = rte_net_intel_cksum_prepare(m);
3416                 if (ret != 0) {
3417                         rte_errno = -ret;
3418                         return i;
3419                 }
3420         }
3421         return i;
3422 }
3423
3424 void __rte_cold
3425 ice_set_tx_function(struct rte_eth_dev *dev)
3426 {
3427         struct ice_adapter *ad =
3428                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3429 #ifdef RTE_ARCH_X86
3430         struct ice_tx_queue *txq;
3431         int i;
3432         int tx_check_ret = -1;
3433
3434         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3435                 ad->tx_use_avx2 = false;
3436                 ad->tx_use_avx512 = false;
3437                 tx_check_ret = ice_tx_vec_dev_check(dev);
3438                 if (tx_check_ret >= 0 &&
3439                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3440                         ad->tx_vec_allowed = true;
3441
3442                         if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3443                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3444                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3445 #ifdef CC_AVX512_SUPPORT
3446                                 ad->tx_use_avx512 = true;
3447 #else
3448                         PMD_DRV_LOG(NOTICE,
3449                                 "AVX512 is not supported in build env");
3450 #endif
3451                         if (!ad->tx_use_avx512 &&
3452                                 (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3453                                 rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3454                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3455                                 ad->tx_use_avx2 = true;
3456
3457                         if (!ad->tx_use_avx2 && !ad->tx_use_avx512 &&
3458                                 tx_check_ret == ICE_VECTOR_OFFLOAD_PATH)
3459                                 ad->tx_vec_allowed = false;
3460
3461                         if (ad->tx_vec_allowed) {
3462                                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
3463                                         txq = dev->data->tx_queues[i];
3464                                         if (txq && ice_txq_vec_setup(txq)) {
3465                                                 ad->tx_vec_allowed = false;
3466                                                 break;
3467                                         }
3468                                 }
3469                         }
3470                 } else {
3471                         ad->tx_vec_allowed = false;
3472                 }
3473         }
3474
3475         if (ad->tx_vec_allowed) {
3476                 dev->tx_pkt_prepare = NULL;
3477                 if (ad->tx_use_avx512) {
3478 #ifdef CC_AVX512_SUPPORT
3479                         if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3480                                 PMD_DRV_LOG(NOTICE,
3481                                             "Using AVX512 OFFLOAD Vector Tx (port %d).",
3482                                             dev->data->port_id);
3483                                 dev->tx_pkt_burst =
3484                                         ice_xmit_pkts_vec_avx512_offload;
3485                                 dev->tx_pkt_prepare = ice_prep_pkts;
3486                         } else {
3487                                 PMD_DRV_LOG(NOTICE,
3488                                             "Using AVX512 Vector Tx (port %d).",
3489                                             dev->data->port_id);
3490                                 dev->tx_pkt_burst = ice_xmit_pkts_vec_avx512;
3491                         }
3492 #endif
3493                 } else {
3494                         if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3495                                 PMD_DRV_LOG(NOTICE,
3496                                             "Using AVX2 OFFLOAD Vector Tx (port %d).",
3497                                             dev->data->port_id);
3498                                 dev->tx_pkt_burst =
3499                                         ice_xmit_pkts_vec_avx2_offload;
3500                                 dev->tx_pkt_prepare = ice_prep_pkts;
3501                         } else {
3502                                 PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
3503                                             ad->tx_use_avx2 ? "avx2 " : "",
3504                                             dev->data->port_id);
3505                                 dev->tx_pkt_burst = ad->tx_use_avx2 ?
3506                                                     ice_xmit_pkts_vec_avx2 :
3507                                                     ice_xmit_pkts_vec;
3508                         }
3509                 }
3510
3511                 return;
3512         }
3513 #endif
3514
3515         if (ad->tx_simple_allowed) {
3516                 PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3517                 dev->tx_pkt_burst = ice_xmit_pkts_simple;
3518                 dev->tx_pkt_prepare = NULL;
3519         } else {
3520                 PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
3521                 dev->tx_pkt_burst = ice_xmit_pkts;
3522                 dev->tx_pkt_prepare = ice_prep_pkts;
3523         }
3524 }
3525
3526 static const struct {
3527         eth_tx_burst_t pkt_burst;
3528         const char *info;
3529 } ice_tx_burst_infos[] = {
3530         { ice_xmit_pkts_simple,   "Scalar Simple" },
3531         { ice_xmit_pkts,          "Scalar" },
3532 #ifdef RTE_ARCH_X86
3533 #ifdef CC_AVX512_SUPPORT
3534         { ice_xmit_pkts_vec_avx512, "Vector AVX512" },
3535         { ice_xmit_pkts_vec_avx512_offload, "Offload Vector AVX512" },
3536 #endif
3537         { ice_xmit_pkts_vec_avx2, "Vector AVX2" },
3538         { ice_xmit_pkts_vec,      "Vector SSE" },
3539 #endif
3540 };
3541
3542 int
3543 ice_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3544                       struct rte_eth_burst_mode *mode)
3545 {
3546         eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
3547         int ret = -EINVAL;
3548         unsigned int i;
3549
3550         for (i = 0; i < RTE_DIM(ice_tx_burst_infos); ++i) {
3551                 if (pkt_burst == ice_tx_burst_infos[i].pkt_burst) {
3552                         snprintf(mode->info, sizeof(mode->info), "%s",
3553                                  ice_tx_burst_infos[i].info);
3554                         ret = 0;
3555                         break;
3556                 }
3557         }
3558
3559         return ret;
3560 }
3561
3562 /* For each value it means, datasheet of hardware can tell more details
3563  *
3564  * @note: fix ice_dev_supported_ptypes_get() if any change here.
3565  */
3566 static inline uint32_t
3567 ice_get_default_pkt_type(uint16_t ptype)
3568 {
3569         static const uint32_t type_table[ICE_MAX_PKT_TYPE]
3570                 __rte_cache_aligned = {
3571                 /* L2 types */
3572                 /* [0] reserved */
3573                 [1] = RTE_PTYPE_L2_ETHER,
3574                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
3575                 /* [3] - [5] reserved */
3576                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
3577                 /* [7] - [10] reserved */
3578                 [11] = RTE_PTYPE_L2_ETHER_ARP,
3579                 /* [12] - [21] reserved */
3580
3581                 /* Non tunneled IPv4 */
3582                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3583                        RTE_PTYPE_L4_FRAG,
3584                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3585                        RTE_PTYPE_L4_NONFRAG,
3586                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3587                        RTE_PTYPE_L4_UDP,
3588                 /* [25] reserved */
3589                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3590                        RTE_PTYPE_L4_TCP,
3591                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3592                        RTE_PTYPE_L4_SCTP,
3593                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3594                        RTE_PTYPE_L4_ICMP,
3595
3596                 /* IPv4 --> IPv4 */
3597                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3598                        RTE_PTYPE_TUNNEL_IP |
3599                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3600                        RTE_PTYPE_INNER_L4_FRAG,
3601                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3602                        RTE_PTYPE_TUNNEL_IP |
3603                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3604                        RTE_PTYPE_INNER_L4_NONFRAG,
3605                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3606                        RTE_PTYPE_TUNNEL_IP |
3607                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3608                        RTE_PTYPE_INNER_L4_UDP,
3609                 /* [32] reserved */
3610                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3611                        RTE_PTYPE_TUNNEL_IP |
3612                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3613                        RTE_PTYPE_INNER_L4_TCP,
3614                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3615                        RTE_PTYPE_TUNNEL_IP |
3616                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3617                        RTE_PTYPE_INNER_L4_SCTP,
3618                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3619                        RTE_PTYPE_TUNNEL_IP |
3620                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3621                        RTE_PTYPE_INNER_L4_ICMP,
3622
3623                 /* IPv4 --> IPv6 */
3624                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3625                        RTE_PTYPE_TUNNEL_IP |
3626                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3627                        RTE_PTYPE_INNER_L4_FRAG,
3628                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3629                        RTE_PTYPE_TUNNEL_IP |
3630                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3631                        RTE_PTYPE_INNER_L4_NONFRAG,
3632                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3633                        RTE_PTYPE_TUNNEL_IP |
3634                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3635                        RTE_PTYPE_INNER_L4_UDP,
3636                 /* [39] reserved */
3637                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3638                        RTE_PTYPE_TUNNEL_IP |
3639                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3640                        RTE_PTYPE_INNER_L4_TCP,
3641                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3642                        RTE_PTYPE_TUNNEL_IP |
3643                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3644                        RTE_PTYPE_INNER_L4_SCTP,
3645                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3646                        RTE_PTYPE_TUNNEL_IP |
3647                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3648                        RTE_PTYPE_INNER_L4_ICMP,
3649
3650                 /* IPv4 --> GRE/Teredo/VXLAN */
3651                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3652                        RTE_PTYPE_TUNNEL_GRENAT,
3653
3654                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
3655                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3656                        RTE_PTYPE_TUNNEL_GRENAT |
3657                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3658                        RTE_PTYPE_INNER_L4_FRAG,
3659                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3660                        RTE_PTYPE_TUNNEL_GRENAT |
3661                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3662                        RTE_PTYPE_INNER_L4_NONFRAG,
3663                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3664                        RTE_PTYPE_TUNNEL_GRENAT |
3665                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3666                        RTE_PTYPE_INNER_L4_UDP,
3667                 /* [47] reserved */
3668                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3669                        RTE_PTYPE_TUNNEL_GRENAT |
3670                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3671                        RTE_PTYPE_INNER_L4_TCP,
3672                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3673                        RTE_PTYPE_TUNNEL_GRENAT |
3674                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3675                        RTE_PTYPE_INNER_L4_SCTP,
3676                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3677                        RTE_PTYPE_TUNNEL_GRENAT |
3678                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3679                        RTE_PTYPE_INNER_L4_ICMP,
3680
3681                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
3682                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3683                        RTE_PTYPE_TUNNEL_GRENAT |
3684                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3685                        RTE_PTYPE_INNER_L4_FRAG,
3686                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3687                        RTE_PTYPE_TUNNEL_GRENAT |
3688                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3689                        RTE_PTYPE_INNER_L4_NONFRAG,
3690                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3691                        RTE_PTYPE_TUNNEL_GRENAT |
3692                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3693                        RTE_PTYPE_INNER_L4_UDP,
3694                 /* [54] reserved */
3695                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3696                        RTE_PTYPE_TUNNEL_GRENAT |
3697                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3698                        RTE_PTYPE_INNER_L4_TCP,
3699                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3700                        RTE_PTYPE_TUNNEL_GRENAT |
3701                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3702                        RTE_PTYPE_INNER_L4_SCTP,
3703                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3704                        RTE_PTYPE_TUNNEL_GRENAT |
3705                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3706                        RTE_PTYPE_INNER_L4_ICMP,
3707
3708                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
3709                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3710                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3711
3712                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3713                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3714                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3715                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3716                        RTE_PTYPE_INNER_L4_FRAG,
3717                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3718                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3719                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3720                        RTE_PTYPE_INNER_L4_NONFRAG,
3721                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3722                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3723                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3724                        RTE_PTYPE_INNER_L4_UDP,
3725                 /* [62] reserved */
3726                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3727                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3728                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3729                        RTE_PTYPE_INNER_L4_TCP,
3730                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3731                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3732                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3733                        RTE_PTYPE_INNER_L4_SCTP,
3734                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3735                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3736                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3737                        RTE_PTYPE_INNER_L4_ICMP,
3738
3739                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3740                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3741                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3742                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3743                        RTE_PTYPE_INNER_L4_FRAG,
3744                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3745                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3746                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3747                        RTE_PTYPE_INNER_L4_NONFRAG,
3748                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3749                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3750                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3751                        RTE_PTYPE_INNER_L4_UDP,
3752                 /* [69] reserved */
3753                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3754                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3755                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3756                        RTE_PTYPE_INNER_L4_TCP,
3757                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3758                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3759                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3760                        RTE_PTYPE_INNER_L4_SCTP,
3761                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3762                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3763                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3764                        RTE_PTYPE_INNER_L4_ICMP,
3765                 /* [73] - [87] reserved */
3766
3767                 /* Non tunneled IPv6 */
3768                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3769                        RTE_PTYPE_L4_FRAG,
3770                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3771                        RTE_PTYPE_L4_NONFRAG,
3772                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3773                        RTE_PTYPE_L4_UDP,
3774                 /* [91] reserved */
3775                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3776                        RTE_PTYPE_L4_TCP,
3777                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3778                        RTE_PTYPE_L4_SCTP,
3779                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3780                        RTE_PTYPE_L4_ICMP,
3781
3782                 /* IPv6 --> IPv4 */
3783                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3784                        RTE_PTYPE_TUNNEL_IP |
3785                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3786                        RTE_PTYPE_INNER_L4_FRAG,
3787                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3788                        RTE_PTYPE_TUNNEL_IP |
3789                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3790                        RTE_PTYPE_INNER_L4_NONFRAG,
3791                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3792                        RTE_PTYPE_TUNNEL_IP |
3793                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3794                        RTE_PTYPE_INNER_L4_UDP,
3795                 /* [98] reserved */
3796                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3797                        RTE_PTYPE_TUNNEL_IP |
3798                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3799                        RTE_PTYPE_INNER_L4_TCP,
3800                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3801                         RTE_PTYPE_TUNNEL_IP |
3802                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3803                         RTE_PTYPE_INNER_L4_SCTP,
3804                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3805                         RTE_PTYPE_TUNNEL_IP |
3806                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3807                         RTE_PTYPE_INNER_L4_ICMP,
3808
3809                 /* IPv6 --> IPv6 */
3810                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3811                         RTE_PTYPE_TUNNEL_IP |
3812                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3813                         RTE_PTYPE_INNER_L4_FRAG,
3814                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3815                         RTE_PTYPE_TUNNEL_IP |
3816                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3817                         RTE_PTYPE_INNER_L4_NONFRAG,
3818                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3819                         RTE_PTYPE_TUNNEL_IP |
3820                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3821                         RTE_PTYPE_INNER_L4_UDP,
3822                 /* [105] reserved */
3823                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3824                         RTE_PTYPE_TUNNEL_IP |
3825                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3826                         RTE_PTYPE_INNER_L4_TCP,
3827                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3828                         RTE_PTYPE_TUNNEL_IP |
3829                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3830                         RTE_PTYPE_INNER_L4_SCTP,
3831                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3832                         RTE_PTYPE_TUNNEL_IP |
3833                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3834                         RTE_PTYPE_INNER_L4_ICMP,
3835
3836                 /* IPv6 --> GRE/Teredo/VXLAN */
3837                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3838                         RTE_PTYPE_TUNNEL_GRENAT,
3839
3840                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3841                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3842                         RTE_PTYPE_TUNNEL_GRENAT |
3843                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3844                         RTE_PTYPE_INNER_L4_FRAG,
3845                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3846                         RTE_PTYPE_TUNNEL_GRENAT |
3847                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3848                         RTE_PTYPE_INNER_L4_NONFRAG,
3849                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3850                         RTE_PTYPE_TUNNEL_GRENAT |
3851                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3852                         RTE_PTYPE_INNER_L4_UDP,
3853                 /* [113] reserved */
3854                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3855                         RTE_PTYPE_TUNNEL_GRENAT |
3856                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3857                         RTE_PTYPE_INNER_L4_TCP,
3858                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3859                         RTE_PTYPE_TUNNEL_GRENAT |
3860                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3861                         RTE_PTYPE_INNER_L4_SCTP,
3862                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3863                         RTE_PTYPE_TUNNEL_GRENAT |
3864                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3865                         RTE_PTYPE_INNER_L4_ICMP,
3866
3867                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3868                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3869                         RTE_PTYPE_TUNNEL_GRENAT |
3870                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3871                         RTE_PTYPE_INNER_L4_FRAG,
3872                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3873                         RTE_PTYPE_TUNNEL_GRENAT |
3874                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3875                         RTE_PTYPE_INNER_L4_NONFRAG,
3876                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3877                         RTE_PTYPE_TUNNEL_GRENAT |
3878                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3879                         RTE_PTYPE_INNER_L4_UDP,
3880                 /* [120] reserved */
3881                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3882                         RTE_PTYPE_TUNNEL_GRENAT |
3883                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3884                         RTE_PTYPE_INNER_L4_TCP,
3885                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3886                         RTE_PTYPE_TUNNEL_GRENAT |
3887                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3888                         RTE_PTYPE_INNER_L4_SCTP,
3889                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3890                         RTE_PTYPE_TUNNEL_GRENAT |
3891                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3892                         RTE_PTYPE_INNER_L4_ICMP,
3893
3894                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3895                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3896                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3897
3898                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3899                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3900                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3901                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3902                         RTE_PTYPE_INNER_L4_FRAG,
3903                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3904                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3905                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3906                         RTE_PTYPE_INNER_L4_NONFRAG,
3907                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3908                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3909                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3910                         RTE_PTYPE_INNER_L4_UDP,
3911                 /* [128] reserved */
3912                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3913                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3914                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3915                         RTE_PTYPE_INNER_L4_TCP,
3916                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3917                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3918                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3919                         RTE_PTYPE_INNER_L4_SCTP,
3920                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3921                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3922                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3923                         RTE_PTYPE_INNER_L4_ICMP,
3924
3925                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3926                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3927                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3928                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3929                         RTE_PTYPE_INNER_L4_FRAG,
3930                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3931                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3932                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3933                         RTE_PTYPE_INNER_L4_NONFRAG,
3934                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3935                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3936                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3937                         RTE_PTYPE_INNER_L4_UDP,
3938                 /* [135] reserved */
3939                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3940                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3941                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3942                         RTE_PTYPE_INNER_L4_TCP,
3943                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3944                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3945                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3946                         RTE_PTYPE_INNER_L4_SCTP,
3947                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3948                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3949                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3950                         RTE_PTYPE_INNER_L4_ICMP,
3951                 /* [139] - [299] reserved */
3952
3953                 /* PPPoE */
3954                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
3955                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
3956
3957                 /* PPPoE --> IPv4 */
3958                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
3959                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3960                         RTE_PTYPE_L4_FRAG,
3961                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
3962                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3963                         RTE_PTYPE_L4_NONFRAG,
3964                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
3965                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3966                         RTE_PTYPE_L4_UDP,
3967                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
3968                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3969                         RTE_PTYPE_L4_TCP,
3970                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
3971                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3972                         RTE_PTYPE_L4_SCTP,
3973                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
3974                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3975                         RTE_PTYPE_L4_ICMP,
3976
3977                 /* PPPoE --> IPv6 */
3978                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
3979                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3980                         RTE_PTYPE_L4_FRAG,
3981                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
3982                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3983                         RTE_PTYPE_L4_NONFRAG,
3984                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
3985                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3986                         RTE_PTYPE_L4_UDP,
3987                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
3988                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3989                         RTE_PTYPE_L4_TCP,
3990                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
3991                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3992                         RTE_PTYPE_L4_SCTP,
3993                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
3994                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3995                         RTE_PTYPE_L4_ICMP,
3996                 /* [314] - [324] reserved */
3997
3998                 /* IPv4/IPv6 --> GTPC/GTPU */
3999                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4000                         RTE_PTYPE_TUNNEL_GTPC,
4001                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4002                         RTE_PTYPE_TUNNEL_GTPC,
4003                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4004                         RTE_PTYPE_TUNNEL_GTPC,
4005                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4006                         RTE_PTYPE_TUNNEL_GTPC,
4007                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4008                         RTE_PTYPE_TUNNEL_GTPU,
4009                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4010                         RTE_PTYPE_TUNNEL_GTPU,
4011
4012                 /* IPv4 --> GTPU --> IPv4 */
4013                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4014                         RTE_PTYPE_TUNNEL_GTPU |
4015                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4016                         RTE_PTYPE_INNER_L4_FRAG,
4017                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4018                         RTE_PTYPE_TUNNEL_GTPU |
4019                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4020                         RTE_PTYPE_INNER_L4_NONFRAG,
4021                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4022                         RTE_PTYPE_TUNNEL_GTPU |
4023                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4024                         RTE_PTYPE_INNER_L4_UDP,
4025                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4026                         RTE_PTYPE_TUNNEL_GTPU |
4027                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4028                         RTE_PTYPE_INNER_L4_TCP,
4029                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4030                         RTE_PTYPE_TUNNEL_GTPU |
4031                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4032                         RTE_PTYPE_INNER_L4_ICMP,
4033
4034                 /* IPv6 --> GTPU --> IPv4 */
4035                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4036                         RTE_PTYPE_TUNNEL_GTPU |
4037                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4038                         RTE_PTYPE_INNER_L4_FRAG,
4039                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4040                         RTE_PTYPE_TUNNEL_GTPU |
4041                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4042                         RTE_PTYPE_INNER_L4_NONFRAG,
4043                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4044                         RTE_PTYPE_TUNNEL_GTPU |
4045                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4046                         RTE_PTYPE_INNER_L4_UDP,
4047                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4048                         RTE_PTYPE_TUNNEL_GTPU |
4049                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4050                         RTE_PTYPE_INNER_L4_TCP,
4051                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4052                         RTE_PTYPE_TUNNEL_GTPU |
4053                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
4054                         RTE_PTYPE_INNER_L4_ICMP,
4055
4056                 /* IPv4 --> GTPU --> IPv6 */
4057                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4058                         RTE_PTYPE_TUNNEL_GTPU |
4059                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4060                         RTE_PTYPE_INNER_L4_FRAG,
4061                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4062                         RTE_PTYPE_TUNNEL_GTPU |
4063                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4064                         RTE_PTYPE_INNER_L4_NONFRAG,
4065                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4066                         RTE_PTYPE_TUNNEL_GTPU |
4067                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4068                         RTE_PTYPE_INNER_L4_UDP,
4069                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4070                         RTE_PTYPE_TUNNEL_GTPU |
4071                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4072                         RTE_PTYPE_INNER_L4_TCP,
4073                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4074                         RTE_PTYPE_TUNNEL_GTPU |
4075                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4076                         RTE_PTYPE_INNER_L4_ICMP,
4077
4078                 /* IPv6 --> GTPU --> IPv6 */
4079                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4080                         RTE_PTYPE_TUNNEL_GTPU |
4081                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4082                         RTE_PTYPE_INNER_L4_FRAG,
4083                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4084                         RTE_PTYPE_TUNNEL_GTPU |
4085                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4086                         RTE_PTYPE_INNER_L4_NONFRAG,
4087                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4088                         RTE_PTYPE_TUNNEL_GTPU |
4089                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4090                         RTE_PTYPE_INNER_L4_UDP,
4091                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4092                         RTE_PTYPE_TUNNEL_GTPU |
4093                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4094                         RTE_PTYPE_INNER_L4_TCP,
4095                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4096                         RTE_PTYPE_TUNNEL_GTPU |
4097                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
4098                         RTE_PTYPE_INNER_L4_ICMP,
4099
4100                 /* IPv4 --> UDP ECPRI */
4101                 [372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4102                         RTE_PTYPE_L4_UDP,
4103                 [373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4104                         RTE_PTYPE_L4_UDP,
4105                 [374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4106                         RTE_PTYPE_L4_UDP,
4107                 [375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4108                         RTE_PTYPE_L4_UDP,
4109                 [376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4110                         RTE_PTYPE_L4_UDP,
4111                 [377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4112                         RTE_PTYPE_L4_UDP,
4113                 [378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4114                         RTE_PTYPE_L4_UDP,
4115                 [379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4116                         RTE_PTYPE_L4_UDP,
4117                 [380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4118                         RTE_PTYPE_L4_UDP,
4119                 [381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
4120                         RTE_PTYPE_L4_UDP,
4121
4122                 /* IPV6 --> UDP ECPRI */
4123                 [382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4124                         RTE_PTYPE_L4_UDP,
4125                 [383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4126                         RTE_PTYPE_L4_UDP,
4127                 [384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4128                         RTE_PTYPE_L4_UDP,
4129                 [385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4130                         RTE_PTYPE_L4_UDP,
4131                 [386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4132                         RTE_PTYPE_L4_UDP,
4133                 [387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4134                         RTE_PTYPE_L4_UDP,
4135                 [388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4136                         RTE_PTYPE_L4_UDP,
4137                 [389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4138                         RTE_PTYPE_L4_UDP,
4139                 [390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4140                         RTE_PTYPE_L4_UDP,
4141                 [391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
4142                         RTE_PTYPE_L4_UDP,
4143                 /* All others reserved */
4144         };
4145
4146         return type_table[ptype];
4147 }
4148
4149 void __rte_cold
4150 ice_set_default_ptype_table(struct rte_eth_dev *dev)
4151 {
4152         struct ice_adapter *ad =
4153                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
4154         int i;
4155
4156         for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
4157                 ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
4158 }
4159
4160 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S 1
4161 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M \
4162                         (0x3UL << ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S)
4163 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD 0
4164 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL 0x1
4165
4166 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S   4
4167 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M   \
4168         (1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S)
4169 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S      5
4170 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M      \
4171         (1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S)
4172
4173 /*
4174  * check the programming status descriptor in rx queue.
4175  * done after Programming Flow Director is programmed on
4176  * tx queue
4177  */
4178 static inline int
4179 ice_check_fdir_programming_status(struct ice_rx_queue *rxq)
4180 {
4181         volatile union ice_32byte_rx_desc *rxdp;
4182         uint64_t qword1;
4183         uint32_t rx_status;
4184         uint32_t error;
4185         uint32_t id;
4186         int ret = -EAGAIN;
4187
4188         rxdp = (volatile union ice_32byte_rx_desc *)
4189                 (&rxq->rx_ring[rxq->rx_tail]);
4190         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
4191         rx_status = (qword1 & ICE_RXD_QW1_STATUS_M)
4192                         >> ICE_RXD_QW1_STATUS_S;
4193
4194         if (rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)) {
4195                 ret = 0;
4196                 error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M) >>
4197                         ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S;
4198                 id = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M) >>
4199                         ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S;
4200                 if (error) {
4201                         if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD)
4202                                 PMD_DRV_LOG(ERR, "Failed to add FDIR rule.");
4203                         else if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL)
4204                                 PMD_DRV_LOG(ERR, "Failed to remove FDIR rule.");
4205                         ret = -EINVAL;
4206                         goto err;
4207                 }
4208                 error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M) >>
4209                         ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S;
4210                 if (error) {
4211                         PMD_DRV_LOG(ERR, "Failed to create FDIR profile.");
4212                         ret = -EINVAL;
4213                 }
4214 err:
4215                 rxdp->wb.qword1.status_error_len = 0;
4216                 rxq->rx_tail++;
4217                 if (unlikely(rxq->rx_tail == rxq->nb_rx_desc))
4218                         rxq->rx_tail = 0;
4219                 if (rxq->rx_tail == 0)
4220                         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
4221                 else
4222                         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_tail - 1);
4223         }
4224
4225         return ret;
4226 }
4227
4228 #define ICE_FDIR_MAX_WAIT_US 10000
4229
4230 int
4231 ice_fdir_programming(struct ice_pf *pf, struct ice_fltr_desc *fdir_desc)
4232 {
4233         struct ice_tx_queue *txq = pf->fdir.txq;
4234         struct ice_rx_queue *rxq = pf->fdir.rxq;
4235         volatile struct ice_fltr_desc *fdirdp;
4236         volatile struct ice_tx_desc *txdp;
4237         uint32_t td_cmd;
4238         uint16_t i;
4239
4240         fdirdp = (volatile struct ice_fltr_desc *)
4241                 (&txq->tx_ring[txq->tx_tail]);
4242         fdirdp->qidx_compq_space_stat = fdir_desc->qidx_compq_space_stat;
4243         fdirdp->dtype_cmd_vsi_fdid = fdir_desc->dtype_cmd_vsi_fdid;
4244
4245         txdp = &txq->tx_ring[txq->tx_tail + 1];
4246         txdp->buf_addr = rte_cpu_to_le_64(pf->fdir.dma_addr);
4247         td_cmd = ICE_TX_DESC_CMD_EOP |
4248                 ICE_TX_DESC_CMD_RS  |
4249                 ICE_TX_DESC_CMD_DUMMY;
4250
4251         txdp->cmd_type_offset_bsz =
4252                 ice_build_ctob(td_cmd, 0, ICE_FDIR_PKT_LEN, 0);
4253
4254         txq->tx_tail += 2;
4255         if (txq->tx_tail >= txq->nb_tx_desc)
4256                 txq->tx_tail = 0;
4257         /* Update the tx tail register */
4258         ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
4259         for (i = 0; i < ICE_FDIR_MAX_WAIT_US; i++) {
4260                 if ((txdp->cmd_type_offset_bsz &
4261                      rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) ==
4262                     rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
4263                         break;
4264                 rte_delay_us(1);
4265         }
4266         if (i >= ICE_FDIR_MAX_WAIT_US) {
4267                 PMD_DRV_LOG(ERR,
4268                             "Failed to program FDIR filter: time out to get DD on tx queue.");
4269                 return -ETIMEDOUT;
4270         }
4271
4272         for (; i < ICE_FDIR_MAX_WAIT_US; i++) {
4273                 int ret;
4274
4275                 ret = ice_check_fdir_programming_status(rxq);
4276                 if (ret == -EAGAIN)
4277                         rte_delay_us(1);
4278                 else
4279                         return ret;
4280         }
4281
4282         PMD_DRV_LOG(ERR,
4283                     "Failed to program FDIR filter: programming status reported.");
4284         return -ETIMEDOUT;
4285
4286
4287 }