net/ice: fix overflow in maximum packet length config
[dpdk.git] / drivers / net / ice / ice_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Intel Corporation
3  */
4
5 #include <ethdev_driver.h>
6 #include <rte_net.h>
7 #include <rte_vect.h>
8
9 #include "rte_pmd_ice.h"
10 #include "ice_rxtx.h"
11 #include "ice_rxtx_vec_common.h"
12
13 #define ICE_TX_CKSUM_OFFLOAD_MASK (              \
14                 PKT_TX_IP_CKSUM |                \
15                 PKT_TX_L4_MASK |                 \
16                 PKT_TX_TCP_SEG |                 \
17                 PKT_TX_OUTER_IP_CKSUM)
18
19 /* Offset of mbuf dynamic field for protocol extraction data */
20 int rte_net_ice_dynfield_proto_xtr_metadata_offs = -1;
21
22 /* Mask of mbuf dynamic flags for protocol extraction type */
23 uint64_t rte_net_ice_dynflag_proto_xtr_vlan_mask;
24 uint64_t rte_net_ice_dynflag_proto_xtr_ipv4_mask;
25 uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_mask;
26 uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
27 uint64_t rte_net_ice_dynflag_proto_xtr_tcp_mask;
28 uint64_t rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
29
30 int
31 ice_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
32 {
33         volatile union ice_rx_flex_desc *rxdp;
34         struct ice_rx_queue *rxq = rx_queue;
35         uint16_t desc;
36
37         desc = rxq->rx_tail;
38         rxdp = &rxq->rx_ring[desc];
39         /* watch for changes in status bit */
40         pmc->addr = &rxdp->wb.status_error0;
41
42         /*
43          * we expect the DD bit to be set to 1 if this descriptor was already
44          * written to.
45          */
46         pmc->val = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
47         pmc->mask = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
48
49         /* register is 16-bit */
50         pmc->size = sizeof(uint16_t);
51
52         return 0;
53 }
54
55
56 static inline uint8_t
57 ice_proto_xtr_type_to_rxdid(uint8_t xtr_type)
58 {
59         static uint8_t rxdid_map[] = {
60                 [PROTO_XTR_NONE]      = ICE_RXDID_COMMS_OVS,
61                 [PROTO_XTR_VLAN]      = ICE_RXDID_COMMS_AUX_VLAN,
62                 [PROTO_XTR_IPV4]      = ICE_RXDID_COMMS_AUX_IPV4,
63                 [PROTO_XTR_IPV6]      = ICE_RXDID_COMMS_AUX_IPV6,
64                 [PROTO_XTR_IPV6_FLOW] = ICE_RXDID_COMMS_AUX_IPV6_FLOW,
65                 [PROTO_XTR_TCP]       = ICE_RXDID_COMMS_AUX_TCP,
66                 [PROTO_XTR_IP_OFFSET] = ICE_RXDID_COMMS_AUX_IP_OFFSET,
67         };
68
69         return xtr_type < RTE_DIM(rxdid_map) ?
70                                 rxdid_map[xtr_type] : ICE_RXDID_COMMS_OVS;
71 }
72
73 static inline void
74 ice_rxd_to_pkt_fields_by_comms_generic(__rte_unused struct ice_rx_queue *rxq,
75                                        struct rte_mbuf *mb,
76                                        volatile union ice_rx_flex_desc *rxdp)
77 {
78         volatile struct ice_32b_rx_flex_desc_comms *desc =
79                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
80         uint16_t stat_err = rte_le_to_cpu_16(desc->status_error0);
81
82         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
83                 mb->ol_flags |= PKT_RX_RSS_HASH;
84                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
85         }
86
87 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
88         if (desc->flow_id != 0xFFFFFFFF) {
89                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
90                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
91         }
92 #endif
93 }
94
95 static inline void
96 ice_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct ice_rx_queue *rxq,
97                                    struct rte_mbuf *mb,
98                                    volatile union ice_rx_flex_desc *rxdp)
99 {
100         volatile struct ice_32b_rx_flex_desc_comms_ovs *desc =
101                         (volatile struct ice_32b_rx_flex_desc_comms_ovs *)rxdp;
102 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
103         uint16_t stat_err;
104 #endif
105
106         if (desc->flow_id != 0xFFFFFFFF) {
107                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
108                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
109         }
110
111 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
112         stat_err = rte_le_to_cpu_16(desc->status_error0);
113         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
114                 mb->ol_flags |= PKT_RX_RSS_HASH;
115                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
116         }
117 #endif
118 }
119
120 static inline void
121 ice_rxd_to_pkt_fields_by_comms_aux_v1(struct ice_rx_queue *rxq,
122                                       struct rte_mbuf *mb,
123                                       volatile union ice_rx_flex_desc *rxdp)
124 {
125         volatile struct ice_32b_rx_flex_desc_comms *desc =
126                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
127         uint16_t stat_err;
128
129         stat_err = rte_le_to_cpu_16(desc->status_error0);
130         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
131                 mb->ol_flags |= PKT_RX_RSS_HASH;
132                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
133         }
134
135 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
136         if (desc->flow_id != 0xFFFFFFFF) {
137                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
138                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
139         }
140
141         if (rxq->xtr_ol_flag) {
142                 uint32_t metadata = 0;
143
144                 stat_err = rte_le_to_cpu_16(desc->status_error1);
145
146                 if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
147                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
148
149                 if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
150                         metadata |=
151                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
152
153                 if (metadata) {
154                         mb->ol_flags |= rxq->xtr_ol_flag;
155
156                         *RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
157                 }
158         }
159 #endif
160 }
161
162 static inline void
163 ice_rxd_to_pkt_fields_by_comms_aux_v2(struct ice_rx_queue *rxq,
164                                       struct rte_mbuf *mb,
165                                       volatile union ice_rx_flex_desc *rxdp)
166 {
167         volatile struct ice_32b_rx_flex_desc_comms *desc =
168                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
169         uint16_t stat_err;
170
171         stat_err = rte_le_to_cpu_16(desc->status_error0);
172         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
173                 mb->ol_flags |= PKT_RX_RSS_HASH;
174                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
175         }
176
177 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
178         if (desc->flow_id != 0xFFFFFFFF) {
179                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
180                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
181         }
182
183         if (rxq->xtr_ol_flag) {
184                 uint32_t metadata = 0;
185
186                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
187                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
188                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
189                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
190
191                 if (metadata) {
192                         mb->ol_flags |= rxq->xtr_ol_flag;
193
194                         *RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
195                 }
196         }
197 #endif
198 }
199
200 void
201 ice_select_rxd_to_pkt_fields_handler(struct ice_rx_queue *rxq, uint32_t rxdid)
202 {
203         switch (rxdid) {
204         case ICE_RXDID_COMMS_AUX_VLAN:
205                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_vlan_mask;
206                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
207                 break;
208
209         case ICE_RXDID_COMMS_AUX_IPV4:
210                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv4_mask;
211                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
212                 break;
213
214         case ICE_RXDID_COMMS_AUX_IPV6:
215                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_mask;
216                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
217                 break;
218
219         case ICE_RXDID_COMMS_AUX_IPV6_FLOW:
220                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
221                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
222                 break;
223
224         case ICE_RXDID_COMMS_AUX_TCP:
225                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_tcp_mask;
226                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
227                 break;
228
229         case ICE_RXDID_COMMS_AUX_IP_OFFSET:
230                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
231                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v2;
232                 break;
233
234         case ICE_RXDID_COMMS_GENERIC:
235                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_generic;
236                 break;
237
238         case ICE_RXDID_COMMS_OVS:
239                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_ovs;
240                 break;
241
242         default:
243                 /* update this according to the RXDID for PROTO_XTR_NONE */
244                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_ovs;
245                 break;
246         }
247
248         if (!rte_net_ice_dynf_proto_xtr_metadata_avail())
249                 rxq->xtr_ol_flag = 0;
250 }
251
252 static enum ice_status
253 ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
254 {
255         struct ice_vsi *vsi = rxq->vsi;
256         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
257         struct ice_pf *pf = ICE_VSI_TO_PF(vsi);
258         struct rte_eth_dev_data *dev_data = rxq->vsi->adapter->pf.dev_data;
259         struct ice_rlan_ctx rx_ctx;
260         enum ice_status err;
261         uint16_t buf_size;
262         struct rte_eth_rxmode *rxmode = &dev_data->dev_conf.rxmode;
263         uint32_t rxdid = ICE_RXDID_COMMS_OVS;
264         uint32_t regval;
265
266         /* Set buffer size as the head split is disabled. */
267         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
268                               RTE_PKTMBUF_HEADROOM);
269         rxq->rx_hdr_len = 0;
270         rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
271         rxq->max_pkt_len = RTE_MIN((uint32_t)
272                                    ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len,
273                                    dev_data->dev_conf.rxmode.max_rx_pkt_len);
274
275         if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
276                 if (rxq->max_pkt_len <= ICE_ETH_MAX_LEN ||
277                     rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
278                         PMD_DRV_LOG(ERR, "maximum packet length must "
279                                     "be larger than %u and smaller than %u,"
280                                     "as jumbo frame is enabled",
281                                     (uint32_t)ICE_ETH_MAX_LEN,
282                                     (uint32_t)ICE_FRAME_SIZE_MAX);
283                         return -EINVAL;
284                 }
285         } else {
286                 if (rxq->max_pkt_len < RTE_ETHER_MIN_LEN ||
287                     rxq->max_pkt_len > ICE_ETH_MAX_LEN) {
288                         PMD_DRV_LOG(ERR, "maximum packet length must be "
289                                     "larger than %u and smaller than %u, "
290                                     "as jumbo frame is disabled",
291                                     (uint32_t)RTE_ETHER_MIN_LEN,
292                                     (uint32_t)ICE_ETH_MAX_LEN);
293                         return -EINVAL;
294                 }
295         }
296
297         memset(&rx_ctx, 0, sizeof(rx_ctx));
298
299         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
300         rx_ctx.qlen = rxq->nb_rx_desc;
301         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
302         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
303         rx_ctx.dtype = 0; /* No Header Split mode */
304 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
305         rx_ctx.dsize = 1; /* 32B descriptors */
306 #endif
307         rx_ctx.rxmax = rxq->max_pkt_len;
308         /* TPH: Transaction Layer Packet (TLP) processing hints */
309         rx_ctx.tphrdesc_ena = 1;
310         rx_ctx.tphwdesc_ena = 1;
311         rx_ctx.tphdata_ena = 1;
312         rx_ctx.tphhead_ena = 1;
313         /* Low Receive Queue Threshold defined in 64 descriptors units.
314          * When the number of free descriptors goes below the lrxqthresh,
315          * an immediate interrupt is triggered.
316          */
317         rx_ctx.lrxqthresh = 2;
318         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
319         rx_ctx.l2tsel = 1;
320         rx_ctx.showiv = 0;
321         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
322
323         rxdid = ice_proto_xtr_type_to_rxdid(rxq->proto_xtr);
324
325         PMD_DRV_LOG(DEBUG, "Port (%u) - Rx queue (%u) is set with RXDID : %u",
326                     rxq->port_id, rxq->queue_id, rxdid);
327
328         if (!(pf->supported_rxdid & BIT(rxdid))) {
329                 PMD_DRV_LOG(ERR, "currently package doesn't support RXDID (%u)",
330                             rxdid);
331                 return -EINVAL;
332         }
333
334         ice_select_rxd_to_pkt_fields_handler(rxq, rxdid);
335
336         /* Enable Flexible Descriptors in the queue context which
337          * allows this driver to select a specific receive descriptor format
338          */
339         regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
340                 QRXFLXP_CNTXT_RXDID_IDX_M;
341
342         /* increasing context priority to pick up profile ID;
343          * default is 0x01; setting to 0x03 to ensure profile
344          * is programming if prev context is of same priority
345          */
346         regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
347                 QRXFLXP_CNTXT_RXDID_PRIO_M;
348
349         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
350
351         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
352         if (err) {
353                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
354                             rxq->queue_id);
355                 return -EINVAL;
356         }
357         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
358         if (err) {
359                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
360                             rxq->queue_id);
361                 return -EINVAL;
362         }
363
364         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
365                               RTE_PKTMBUF_HEADROOM);
366
367         /* Check if scattered RX needs to be used. */
368         if (rxq->max_pkt_len > buf_size)
369                 dev_data->scattered_rx = 1;
370
371         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
372
373         /* Init the Rx tail register*/
374         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
375
376         return 0;
377 }
378
379 /* Allocate mbufs for all descriptors in rx queue */
380 static int
381 ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
382 {
383         struct ice_rx_entry *rxe = rxq->sw_ring;
384         uint64_t dma_addr;
385         uint16_t i;
386
387         for (i = 0; i < rxq->nb_rx_desc; i++) {
388                 volatile union ice_rx_flex_desc *rxd;
389                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
390
391                 if (unlikely(!mbuf)) {
392                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
393                         return -ENOMEM;
394                 }
395
396                 rte_mbuf_refcnt_set(mbuf, 1);
397                 mbuf->next = NULL;
398                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
399                 mbuf->nb_segs = 1;
400                 mbuf->port = rxq->port_id;
401
402                 dma_addr =
403                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
404
405                 rxd = &rxq->rx_ring[i];
406                 rxd->read.pkt_addr = dma_addr;
407                 rxd->read.hdr_addr = 0;
408 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
409                 rxd->read.rsvd1 = 0;
410                 rxd->read.rsvd2 = 0;
411 #endif
412                 rxe[i].mbuf = mbuf;
413         }
414
415         return 0;
416 }
417
418 /* Free all mbufs for descriptors in rx queue */
419 static void
420 _ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
421 {
422         uint16_t i;
423
424         if (!rxq || !rxq->sw_ring) {
425                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
426                 return;
427         }
428
429         for (i = 0; i < rxq->nb_rx_desc; i++) {
430                 if (rxq->sw_ring[i].mbuf) {
431                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
432                         rxq->sw_ring[i].mbuf = NULL;
433                 }
434         }
435         if (rxq->rx_nb_avail == 0)
436                 return;
437         for (i = 0; i < rxq->rx_nb_avail; i++)
438                 rte_pktmbuf_free_seg(rxq->rx_stage[rxq->rx_next_avail + i]);
439
440         rxq->rx_nb_avail = 0;
441 }
442
443 /* turn on or off rx queue
444  * @q_idx: queue index in pf scope
445  * @on: turn on or off the queue
446  */
447 static int
448 ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
449 {
450         uint32_t reg;
451         uint16_t j;
452
453         /* QRX_CTRL = QRX_ENA */
454         reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
455
456         if (on) {
457                 if (reg & QRX_CTRL_QENA_STAT_M)
458                         return 0; /* Already on, skip */
459                 reg |= QRX_CTRL_QENA_REQ_M;
460         } else {
461                 if (!(reg & QRX_CTRL_QENA_STAT_M))
462                         return 0; /* Already off, skip */
463                 reg &= ~QRX_CTRL_QENA_REQ_M;
464         }
465
466         /* Write the register */
467         ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
468         /* Check the result. It is said that QENA_STAT
469          * follows the QENA_REQ not more than 10 use.
470          * TODO: need to change the wait counter later
471          */
472         for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
473                 rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
474                 reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
475                 if (on) {
476                         if ((reg & QRX_CTRL_QENA_REQ_M) &&
477                             (reg & QRX_CTRL_QENA_STAT_M))
478                                 break;
479                 } else {
480                         if (!(reg & QRX_CTRL_QENA_REQ_M) &&
481                             !(reg & QRX_CTRL_QENA_STAT_M))
482                                 break;
483                 }
484         }
485
486         /* Check if it is timeout */
487         if (j >= ICE_CHK_Q_ENA_COUNT) {
488                 PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
489                             (on ? "enable" : "disable"), q_idx);
490                 return -ETIMEDOUT;
491         }
492
493         return 0;
494 }
495
496 static inline int
497 ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
498 {
499         int ret = 0;
500
501         if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
502                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
503                              "rxq->rx_free_thresh=%d, "
504                              "ICE_RX_MAX_BURST=%d",
505                              rxq->rx_free_thresh, ICE_RX_MAX_BURST);
506                 ret = -EINVAL;
507         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
508                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
509                              "rxq->rx_free_thresh=%d, "
510                              "rxq->nb_rx_desc=%d",
511                              rxq->rx_free_thresh, rxq->nb_rx_desc);
512                 ret = -EINVAL;
513         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
514                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
515                              "rxq->nb_rx_desc=%d, "
516                              "rxq->rx_free_thresh=%d",
517                              rxq->nb_rx_desc, rxq->rx_free_thresh);
518                 ret = -EINVAL;
519         }
520
521         return ret;
522 }
523
524 /* reset fields in ice_rx_queue back to default */
525 static void
526 ice_reset_rx_queue(struct ice_rx_queue *rxq)
527 {
528         unsigned int i;
529         uint16_t len;
530
531         if (!rxq) {
532                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
533                 return;
534         }
535
536         len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
537
538         for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
539                 ((volatile char *)rxq->rx_ring)[i] = 0;
540
541         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
542         for (i = 0; i < ICE_RX_MAX_BURST; ++i)
543                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
544
545         rxq->rx_nb_avail = 0;
546         rxq->rx_next_avail = 0;
547         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
548
549         rxq->rx_tail = 0;
550         rxq->nb_rx_hold = 0;
551         rxq->pkt_first_seg = NULL;
552         rxq->pkt_last_seg = NULL;
553
554         rxq->rxrearm_start = 0;
555         rxq->rxrearm_nb = 0;
556 }
557
558 int
559 ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
560 {
561         struct ice_rx_queue *rxq;
562         int err;
563         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
564
565         PMD_INIT_FUNC_TRACE();
566
567         if (rx_queue_id >= dev->data->nb_rx_queues) {
568                 PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
569                             rx_queue_id, dev->data->nb_rx_queues);
570                 return -EINVAL;
571         }
572
573         rxq = dev->data->rx_queues[rx_queue_id];
574         if (!rxq || !rxq->q_set) {
575                 PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
576                             rx_queue_id);
577                 return -EINVAL;
578         }
579
580         err = ice_program_hw_rx_queue(rxq);
581         if (err) {
582                 PMD_DRV_LOG(ERR, "fail to program RX queue %u",
583                             rx_queue_id);
584                 return -EIO;
585         }
586
587         err = ice_alloc_rx_queue_mbufs(rxq);
588         if (err) {
589                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
590                 return -ENOMEM;
591         }
592
593         /* Init the RX tail register. */
594         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
595
596         err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
597         if (err) {
598                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
599                             rx_queue_id);
600
601                 rxq->rx_rel_mbufs(rxq);
602                 ice_reset_rx_queue(rxq);
603                 return -EINVAL;
604         }
605
606         dev->data->rx_queue_state[rx_queue_id] =
607                 RTE_ETH_QUEUE_STATE_STARTED;
608
609         return 0;
610 }
611
612 int
613 ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
614 {
615         struct ice_rx_queue *rxq;
616         int err;
617         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
618
619         if (rx_queue_id < dev->data->nb_rx_queues) {
620                 rxq = dev->data->rx_queues[rx_queue_id];
621
622                 err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
623                 if (err) {
624                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
625                                     rx_queue_id);
626                         return -EINVAL;
627                 }
628                 rxq->rx_rel_mbufs(rxq);
629                 ice_reset_rx_queue(rxq);
630                 dev->data->rx_queue_state[rx_queue_id] =
631                         RTE_ETH_QUEUE_STATE_STOPPED;
632         }
633
634         return 0;
635 }
636
637 int
638 ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
639 {
640         struct ice_tx_queue *txq;
641         int err;
642         struct ice_vsi *vsi;
643         struct ice_hw *hw;
644         struct ice_aqc_add_tx_qgrp *txq_elem;
645         struct ice_tlan_ctx tx_ctx;
646         int buf_len;
647
648         PMD_INIT_FUNC_TRACE();
649
650         if (tx_queue_id >= dev->data->nb_tx_queues) {
651                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
652                             tx_queue_id, dev->data->nb_tx_queues);
653                 return -EINVAL;
654         }
655
656         txq = dev->data->tx_queues[tx_queue_id];
657         if (!txq || !txq->q_set) {
658                 PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
659                             tx_queue_id);
660                 return -EINVAL;
661         }
662
663         buf_len = ice_struct_size(txq_elem, txqs, 1);
664         txq_elem = ice_malloc(hw, buf_len);
665         if (!txq_elem)
666                 return -ENOMEM;
667
668         vsi = txq->vsi;
669         hw = ICE_VSI_TO_HW(vsi);
670
671         memset(&tx_ctx, 0, sizeof(tx_ctx));
672         txq_elem->num_txqs = 1;
673         txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
674
675         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
676         tx_ctx.qlen = txq->nb_tx_desc;
677         tx_ctx.pf_num = hw->pf_id;
678         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
679         tx_ctx.src_vsi = vsi->vsi_id;
680         tx_ctx.port_num = hw->port_info->lport;
681         tx_ctx.tso_ena = 1; /* tso enable */
682         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
683         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
684
685         ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
686                     ice_tlan_ctx_info);
687
688         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
689
690         /* Init the Tx tail register*/
691         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
692
693         /* Fix me, we assume TC always 0 here */
694         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
695                         txq_elem, buf_len, NULL);
696         if (err) {
697                 PMD_DRV_LOG(ERR, "Failed to add lan txq");
698                 rte_free(txq_elem);
699                 return -EIO;
700         }
701         /* store the schedule node id */
702         txq->q_teid = txq_elem->txqs[0].q_teid;
703
704         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
705
706         rte_free(txq_elem);
707         return 0;
708 }
709
710 static enum ice_status
711 ice_fdir_program_hw_rx_queue(struct ice_rx_queue *rxq)
712 {
713         struct ice_vsi *vsi = rxq->vsi;
714         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
715         uint32_t rxdid = ICE_RXDID_LEGACY_1;
716         struct ice_rlan_ctx rx_ctx;
717         enum ice_status err;
718         uint32_t regval;
719
720         rxq->rx_hdr_len = 0;
721         rxq->rx_buf_len = 1024;
722
723         memset(&rx_ctx, 0, sizeof(rx_ctx));
724
725         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
726         rx_ctx.qlen = rxq->nb_rx_desc;
727         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
728         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
729         rx_ctx.dtype = 0; /* No Header Split mode */
730         rx_ctx.dsize = 1; /* 32B descriptors */
731         rx_ctx.rxmax = ICE_ETH_MAX_LEN;
732         /* TPH: Transaction Layer Packet (TLP) processing hints */
733         rx_ctx.tphrdesc_ena = 1;
734         rx_ctx.tphwdesc_ena = 1;
735         rx_ctx.tphdata_ena = 1;
736         rx_ctx.tphhead_ena = 1;
737         /* Low Receive Queue Threshold defined in 64 descriptors units.
738          * When the number of free descriptors goes below the lrxqthresh,
739          * an immediate interrupt is triggered.
740          */
741         rx_ctx.lrxqthresh = 2;
742         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
743         rx_ctx.l2tsel = 1;
744         rx_ctx.showiv = 0;
745         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
746
747         /* Enable Flexible Descriptors in the queue context which
748          * allows this driver to select a specific receive descriptor format
749          */
750         regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
751                 QRXFLXP_CNTXT_RXDID_IDX_M;
752
753         /* increasing context priority to pick up profile ID;
754          * default is 0x01; setting to 0x03 to ensure profile
755          * is programming if prev context is of same priority
756          */
757         regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
758                 QRXFLXP_CNTXT_RXDID_PRIO_M;
759
760         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
761
762         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
763         if (err) {
764                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
765                             rxq->queue_id);
766                 return -EINVAL;
767         }
768         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
769         if (err) {
770                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
771                             rxq->queue_id);
772                 return -EINVAL;
773         }
774
775         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
776
777         /* Init the Rx tail register*/
778         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
779
780         return 0;
781 }
782
783 int
784 ice_fdir_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
785 {
786         struct ice_rx_queue *rxq;
787         int err;
788         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
789         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
790
791         PMD_INIT_FUNC_TRACE();
792
793         rxq = pf->fdir.rxq;
794         if (!rxq || !rxq->q_set) {
795                 PMD_DRV_LOG(ERR, "FDIR RX queue %u not available or setup",
796                             rx_queue_id);
797                 return -EINVAL;
798         }
799
800         err = ice_fdir_program_hw_rx_queue(rxq);
801         if (err) {
802                 PMD_DRV_LOG(ERR, "fail to program FDIR RX queue %u",
803                             rx_queue_id);
804                 return -EIO;
805         }
806
807         /* Init the RX tail register. */
808         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
809
810         err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
811         if (err) {
812                 PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u on",
813                             rx_queue_id);
814
815                 ice_reset_rx_queue(rxq);
816                 return -EINVAL;
817         }
818
819         return 0;
820 }
821
822 int
823 ice_fdir_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
824 {
825         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
826         struct ice_tx_queue *txq;
827         int err;
828         struct ice_vsi *vsi;
829         struct ice_hw *hw;
830         struct ice_aqc_add_tx_qgrp *txq_elem;
831         struct ice_tlan_ctx tx_ctx;
832         int buf_len;
833
834         PMD_INIT_FUNC_TRACE();
835
836         txq = pf->fdir.txq;
837         if (!txq || !txq->q_set) {
838                 PMD_DRV_LOG(ERR, "FDIR TX queue %u is not available or setup",
839                             tx_queue_id);
840                 return -EINVAL;
841         }
842
843         buf_len = ice_struct_size(txq_elem, txqs, 1);
844         txq_elem = ice_malloc(hw, buf_len);
845         if (!txq_elem)
846                 return -ENOMEM;
847
848         vsi = txq->vsi;
849         hw = ICE_VSI_TO_HW(vsi);
850
851         memset(&tx_ctx, 0, sizeof(tx_ctx));
852         txq_elem->num_txqs = 1;
853         txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
854
855         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
856         tx_ctx.qlen = txq->nb_tx_desc;
857         tx_ctx.pf_num = hw->pf_id;
858         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
859         tx_ctx.src_vsi = vsi->vsi_id;
860         tx_ctx.port_num = hw->port_info->lport;
861         tx_ctx.tso_ena = 1; /* tso enable */
862         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
863         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
864
865         ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
866                     ice_tlan_ctx_info);
867
868         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
869
870         /* Init the Tx tail register*/
871         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
872
873         /* Fix me, we assume TC always 0 here */
874         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
875                               txq_elem, buf_len, NULL);
876         if (err) {
877                 PMD_DRV_LOG(ERR, "Failed to add FDIR txq");
878                 rte_free(txq_elem);
879                 return -EIO;
880         }
881         /* store the schedule node id */
882         txq->q_teid = txq_elem->txqs[0].q_teid;
883
884         rte_free(txq_elem);
885         return 0;
886 }
887
888 /* Free all mbufs for descriptors in tx queue */
889 static void
890 _ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
891 {
892         uint16_t i;
893
894         if (!txq || !txq->sw_ring) {
895                 PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
896                 return;
897         }
898
899         for (i = 0; i < txq->nb_tx_desc; i++) {
900                 if (txq->sw_ring[i].mbuf) {
901                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
902                         txq->sw_ring[i].mbuf = NULL;
903                 }
904         }
905 }
906
907 static void
908 ice_reset_tx_queue(struct ice_tx_queue *txq)
909 {
910         struct ice_tx_entry *txe;
911         uint16_t i, prev, size;
912
913         if (!txq) {
914                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
915                 return;
916         }
917
918         txe = txq->sw_ring;
919         size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
920         for (i = 0; i < size; i++)
921                 ((volatile char *)txq->tx_ring)[i] = 0;
922
923         prev = (uint16_t)(txq->nb_tx_desc - 1);
924         for (i = 0; i < txq->nb_tx_desc; i++) {
925                 volatile struct ice_tx_desc *txd = &txq->tx_ring[i];
926
927                 txd->cmd_type_offset_bsz =
928                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
929                 txe[i].mbuf =  NULL;
930                 txe[i].last_id = i;
931                 txe[prev].next_id = i;
932                 prev = i;
933         }
934
935         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
936         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
937
938         txq->tx_tail = 0;
939         txq->nb_tx_used = 0;
940
941         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
942         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
943 }
944
945 int
946 ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
947 {
948         struct ice_tx_queue *txq;
949         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
950         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
951         struct ice_vsi *vsi = pf->main_vsi;
952         enum ice_status status;
953         uint16_t q_ids[1];
954         uint32_t q_teids[1];
955         uint16_t q_handle = tx_queue_id;
956
957         if (tx_queue_id >= dev->data->nb_tx_queues) {
958                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
959                             tx_queue_id, dev->data->nb_tx_queues);
960                 return -EINVAL;
961         }
962
963         txq = dev->data->tx_queues[tx_queue_id];
964         if (!txq) {
965                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
966                             tx_queue_id);
967                 return -EINVAL;
968         }
969
970         q_ids[0] = txq->reg_idx;
971         q_teids[0] = txq->q_teid;
972
973         /* Fix me, we assume TC always 0 here */
974         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
975                                 q_ids, q_teids, ICE_NO_RESET, 0, NULL);
976         if (status != ICE_SUCCESS) {
977                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
978                 return -EINVAL;
979         }
980
981         txq->tx_rel_mbufs(txq);
982         ice_reset_tx_queue(txq);
983         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
984
985         return 0;
986 }
987
988 int
989 ice_fdir_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
990 {
991         struct ice_rx_queue *rxq;
992         int err;
993         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
994         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
995
996         rxq = pf->fdir.rxq;
997
998         err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
999         if (err) {
1000                 PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u off",
1001                             rx_queue_id);
1002                 return -EINVAL;
1003         }
1004         rxq->rx_rel_mbufs(rxq);
1005
1006         return 0;
1007 }
1008
1009 int
1010 ice_fdir_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1011 {
1012         struct ice_tx_queue *txq;
1013         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1014         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1015         struct ice_vsi *vsi = pf->main_vsi;
1016         enum ice_status status;
1017         uint16_t q_ids[1];
1018         uint32_t q_teids[1];
1019         uint16_t q_handle = tx_queue_id;
1020
1021         txq = pf->fdir.txq;
1022         if (!txq) {
1023                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
1024                             tx_queue_id);
1025                 return -EINVAL;
1026         }
1027         vsi = txq->vsi;
1028
1029         q_ids[0] = txq->reg_idx;
1030         q_teids[0] = txq->q_teid;
1031
1032         /* Fix me, we assume TC always 0 here */
1033         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
1034                                  q_ids, q_teids, ICE_NO_RESET, 0, NULL);
1035         if (status != ICE_SUCCESS) {
1036                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
1037                 return -EINVAL;
1038         }
1039
1040         txq->tx_rel_mbufs(txq);
1041
1042         return 0;
1043 }
1044
1045 int
1046 ice_rx_queue_setup(struct rte_eth_dev *dev,
1047                    uint16_t queue_idx,
1048                    uint16_t nb_desc,
1049                    unsigned int socket_id,
1050                    const struct rte_eth_rxconf *rx_conf,
1051                    struct rte_mempool *mp)
1052 {
1053         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1054         struct ice_adapter *ad =
1055                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1056         struct ice_vsi *vsi = pf->main_vsi;
1057         struct ice_rx_queue *rxq;
1058         const struct rte_memzone *rz;
1059         uint32_t ring_size;
1060         uint16_t len;
1061         int use_def_burst_func = 1;
1062         uint64_t offloads;
1063
1064         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1065             nb_desc > ICE_MAX_RING_DESC ||
1066             nb_desc < ICE_MIN_RING_DESC) {
1067                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
1068                              "invalid", nb_desc);
1069                 return -EINVAL;
1070         }
1071
1072         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1073
1074         /* Free memory if needed */
1075         if (dev->data->rx_queues[queue_idx]) {
1076                 ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
1077                 dev->data->rx_queues[queue_idx] = NULL;
1078         }
1079
1080         /* Allocate the rx queue data structure */
1081         rxq = rte_zmalloc_socket(NULL,
1082                                  sizeof(struct ice_rx_queue),
1083                                  RTE_CACHE_LINE_SIZE,
1084                                  socket_id);
1085         if (!rxq) {
1086                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1087                              "rx queue data structure");
1088                 return -ENOMEM;
1089         }
1090         rxq->mp = mp;
1091         rxq->nb_rx_desc = nb_desc;
1092         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1093         rxq->queue_id = queue_idx;
1094         rxq->offloads = offloads;
1095
1096         rxq->reg_idx = vsi->base_queue + queue_idx;
1097         rxq->port_id = dev->data->port_id;
1098         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1099                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1100         else
1101                 rxq->crc_len = 0;
1102
1103         rxq->drop_en = rx_conf->rx_drop_en;
1104         rxq->vsi = vsi;
1105         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1106         rxq->proto_xtr = pf->proto_xtr != NULL ?
1107                          pf->proto_xtr[queue_idx] : PROTO_XTR_NONE;
1108
1109         /* Allocate the maximun number of RX ring hardware descriptor. */
1110         len = ICE_MAX_RING_DESC;
1111
1112         /**
1113          * Allocating a little more memory because vectorized/bulk_alloc Rx
1114          * functions doesn't check boundaries each time.
1115          */
1116         len += ICE_RX_MAX_BURST;
1117
1118         /* Allocate the maximum number of RX ring hardware descriptor. */
1119         ring_size = sizeof(union ice_rx_flex_desc) * len;
1120         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1121         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1122                                       ring_size, ICE_RING_BASE_ALIGN,
1123                                       socket_id);
1124         if (!rz) {
1125                 ice_rx_queue_release(rxq);
1126                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
1127                 return -ENOMEM;
1128         }
1129
1130         /* Zero all the descriptors in the ring. */
1131         memset(rz->addr, 0, ring_size);
1132
1133         rxq->rx_ring_dma = rz->iova;
1134         rxq->rx_ring = rz->addr;
1135
1136         /* always reserve more for bulk alloc */
1137         len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
1138
1139         /* Allocate the software ring. */
1140         rxq->sw_ring = rte_zmalloc_socket(NULL,
1141                                           sizeof(struct ice_rx_entry) * len,
1142                                           RTE_CACHE_LINE_SIZE,
1143                                           socket_id);
1144         if (!rxq->sw_ring) {
1145                 ice_rx_queue_release(rxq);
1146                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
1147                 return -ENOMEM;
1148         }
1149
1150         ice_reset_rx_queue(rxq);
1151         rxq->q_set = true;
1152         dev->data->rx_queues[queue_idx] = rxq;
1153         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
1154
1155         use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
1156
1157         if (!use_def_burst_func) {
1158                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1159                              "satisfied. Rx Burst Bulk Alloc function will be "
1160                              "used on port=%d, queue=%d.",
1161                              rxq->port_id, rxq->queue_id);
1162         } else {
1163                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1164                              "not satisfied, Scattered Rx is requested. "
1165                              "on port=%d, queue=%d.",
1166                              rxq->port_id, rxq->queue_id);
1167                 ad->rx_bulk_alloc_allowed = false;
1168         }
1169
1170         return 0;
1171 }
1172
1173 void
1174 ice_rx_queue_release(void *rxq)
1175 {
1176         struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
1177
1178         if (!q) {
1179                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1180                 return;
1181         }
1182
1183         q->rx_rel_mbufs(q);
1184         rte_free(q->sw_ring);
1185         rte_free(q);
1186 }
1187
1188 int
1189 ice_tx_queue_setup(struct rte_eth_dev *dev,
1190                    uint16_t queue_idx,
1191                    uint16_t nb_desc,
1192                    unsigned int socket_id,
1193                    const struct rte_eth_txconf *tx_conf)
1194 {
1195         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1196         struct ice_vsi *vsi = pf->main_vsi;
1197         struct ice_tx_queue *txq;
1198         const struct rte_memzone *tz;
1199         uint32_t ring_size;
1200         uint16_t tx_rs_thresh, tx_free_thresh;
1201         uint64_t offloads;
1202
1203         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1204
1205         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1206             nb_desc > ICE_MAX_RING_DESC ||
1207             nb_desc < ICE_MIN_RING_DESC) {
1208                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
1209                              "invalid", nb_desc);
1210                 return -EINVAL;
1211         }
1212
1213         /**
1214          * The following two parameters control the setting of the RS bit on
1215          * transmit descriptors. TX descriptors will have their RS bit set
1216          * after txq->tx_rs_thresh descriptors have been used. The TX
1217          * descriptor ring will be cleaned after txq->tx_free_thresh
1218          * descriptors are used or if the number of descriptors required to
1219          * transmit a packet is greater than the number of free TX descriptors.
1220          *
1221          * The following constraints must be satisfied:
1222          *  - tx_rs_thresh must be greater than 0.
1223          *  - tx_rs_thresh must be less than the size of the ring minus 2.
1224          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
1225          *  - tx_rs_thresh must be a divisor of the ring size.
1226          *  - tx_free_thresh must be greater than 0.
1227          *  - tx_free_thresh must be less than the size of the ring minus 3.
1228          *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
1229          *
1230          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
1231          * race condition, hence the maximum threshold constraints. When set
1232          * to zero use default values.
1233          */
1234         tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
1235                                     tx_conf->tx_free_thresh :
1236                                     ICE_DEFAULT_TX_FREE_THRESH);
1237         /* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
1238         tx_rs_thresh =
1239                 (ICE_DEFAULT_TX_RSBIT_THRESH + tx_free_thresh > nb_desc) ?
1240                         nb_desc - tx_free_thresh : ICE_DEFAULT_TX_RSBIT_THRESH;
1241         if (tx_conf->tx_rs_thresh)
1242                 tx_rs_thresh = tx_conf->tx_rs_thresh;
1243         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
1244                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
1245                                 "exceed nb_desc. (tx_rs_thresh=%u "
1246                                 "tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
1247                                 (unsigned int)tx_rs_thresh,
1248                                 (unsigned int)tx_free_thresh,
1249                                 (unsigned int)nb_desc,
1250                                 (int)dev->data->port_id,
1251                                 (int)queue_idx);
1252                 return -EINVAL;
1253         }
1254         if (tx_rs_thresh >= (nb_desc - 2)) {
1255                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1256                              "number of TX descriptors minus 2. "
1257                              "(tx_rs_thresh=%u port=%d queue=%d)",
1258                              (unsigned int)tx_rs_thresh,
1259                              (int)dev->data->port_id,
1260                              (int)queue_idx);
1261                 return -EINVAL;
1262         }
1263         if (tx_free_thresh >= (nb_desc - 3)) {
1264                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1265                              "tx_free_thresh must be less than the "
1266                              "number of TX descriptors minus 3. "
1267                              "(tx_free_thresh=%u port=%d queue=%d)",
1268                              (unsigned int)tx_free_thresh,
1269                              (int)dev->data->port_id,
1270                              (int)queue_idx);
1271                 return -EINVAL;
1272         }
1273         if (tx_rs_thresh > tx_free_thresh) {
1274                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
1275                              "equal to tx_free_thresh. (tx_free_thresh=%u"
1276                              " tx_rs_thresh=%u port=%d queue=%d)",
1277                              (unsigned int)tx_free_thresh,
1278                              (unsigned int)tx_rs_thresh,
1279                              (int)dev->data->port_id,
1280                              (int)queue_idx);
1281                 return -EINVAL;
1282         }
1283         if ((nb_desc % tx_rs_thresh) != 0) {
1284                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
1285                              "number of TX descriptors. (tx_rs_thresh=%u"
1286                              " port=%d queue=%d)",
1287                              (unsigned int)tx_rs_thresh,
1288                              (int)dev->data->port_id,
1289                              (int)queue_idx);
1290                 return -EINVAL;
1291         }
1292         if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
1293                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1294                              "tx_rs_thresh is greater than 1. "
1295                              "(tx_rs_thresh=%u port=%d queue=%d)",
1296                              (unsigned int)tx_rs_thresh,
1297                              (int)dev->data->port_id,
1298                              (int)queue_idx);
1299                 return -EINVAL;
1300         }
1301
1302         /* Free memory if needed. */
1303         if (dev->data->tx_queues[queue_idx]) {
1304                 ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
1305                 dev->data->tx_queues[queue_idx] = NULL;
1306         }
1307
1308         /* Allocate the TX queue data structure. */
1309         txq = rte_zmalloc_socket(NULL,
1310                                  sizeof(struct ice_tx_queue),
1311                                  RTE_CACHE_LINE_SIZE,
1312                                  socket_id);
1313         if (!txq) {
1314                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1315                              "tx queue structure");
1316                 return -ENOMEM;
1317         }
1318
1319         /* Allocate TX hardware ring descriptors. */
1320         ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
1321         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1322         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
1323                                       ring_size, ICE_RING_BASE_ALIGN,
1324                                       socket_id);
1325         if (!tz) {
1326                 ice_tx_queue_release(txq);
1327                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
1328                 return -ENOMEM;
1329         }
1330
1331         txq->nb_tx_desc = nb_desc;
1332         txq->tx_rs_thresh = tx_rs_thresh;
1333         txq->tx_free_thresh = tx_free_thresh;
1334         txq->pthresh = tx_conf->tx_thresh.pthresh;
1335         txq->hthresh = tx_conf->tx_thresh.hthresh;
1336         txq->wthresh = tx_conf->tx_thresh.wthresh;
1337         txq->queue_id = queue_idx;
1338
1339         txq->reg_idx = vsi->base_queue + queue_idx;
1340         txq->port_id = dev->data->port_id;
1341         txq->offloads = offloads;
1342         txq->vsi = vsi;
1343         txq->tx_deferred_start = tx_conf->tx_deferred_start;
1344
1345         txq->tx_ring_dma = tz->iova;
1346         txq->tx_ring = tz->addr;
1347
1348         /* Allocate software ring */
1349         txq->sw_ring =
1350                 rte_zmalloc_socket(NULL,
1351                                    sizeof(struct ice_tx_entry) * nb_desc,
1352                                    RTE_CACHE_LINE_SIZE,
1353                                    socket_id);
1354         if (!txq->sw_ring) {
1355                 ice_tx_queue_release(txq);
1356                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
1357                 return -ENOMEM;
1358         }
1359
1360         ice_reset_tx_queue(txq);
1361         txq->q_set = true;
1362         dev->data->tx_queues[queue_idx] = txq;
1363         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
1364         ice_set_tx_function_flag(dev, txq);
1365
1366         return 0;
1367 }
1368
1369 void
1370 ice_tx_queue_release(void *txq)
1371 {
1372         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
1373
1374         if (!q) {
1375                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
1376                 return;
1377         }
1378
1379         q->tx_rel_mbufs(q);
1380         rte_free(q->sw_ring);
1381         rte_free(q);
1382 }
1383
1384 void
1385 ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1386                  struct rte_eth_rxq_info *qinfo)
1387 {
1388         struct ice_rx_queue *rxq;
1389
1390         rxq = dev->data->rx_queues[queue_id];
1391
1392         qinfo->mp = rxq->mp;
1393         qinfo->scattered_rx = dev->data->scattered_rx;
1394         qinfo->nb_desc = rxq->nb_rx_desc;
1395
1396         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1397         qinfo->conf.rx_drop_en = rxq->drop_en;
1398         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
1399 }
1400
1401 void
1402 ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1403                  struct rte_eth_txq_info *qinfo)
1404 {
1405         struct ice_tx_queue *txq;
1406
1407         txq = dev->data->tx_queues[queue_id];
1408
1409         qinfo->nb_desc = txq->nb_tx_desc;
1410
1411         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1412         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1413         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1414
1415         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1416         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
1417         qinfo->conf.offloads = txq->offloads;
1418         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1419 }
1420
1421 uint32_t
1422 ice_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1423 {
1424 #define ICE_RXQ_SCAN_INTERVAL 4
1425         volatile union ice_rx_flex_desc *rxdp;
1426         struct ice_rx_queue *rxq;
1427         uint16_t desc = 0;
1428
1429         rxq = dev->data->rx_queues[rx_queue_id];
1430         rxdp = &rxq->rx_ring[rxq->rx_tail];
1431         while ((desc < rxq->nb_rx_desc) &&
1432                rte_le_to_cpu_16(rxdp->wb.status_error0) &
1433                (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)) {
1434                 /**
1435                  * Check the DD bit of a rx descriptor of each 4 in a group,
1436                  * to avoid checking too frequently and downgrading performance
1437                  * too much.
1438                  */
1439                 desc += ICE_RXQ_SCAN_INTERVAL;
1440                 rxdp += ICE_RXQ_SCAN_INTERVAL;
1441                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1442                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1443                                  desc - rxq->nb_rx_desc]);
1444         }
1445
1446         return desc;
1447 }
1448
1449 #define ICE_RX_FLEX_ERR0_BITS   \
1450         ((1 << ICE_RX_FLEX_DESC_STATUS0_HBO_S) |        \
1451          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |   \
1452          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |   \
1453          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) |  \
1454          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
1455          (1 << ICE_RX_FLEX_DESC_STATUS0_RXE_S))
1456
1457 /* Rx L3/L4 checksum */
1458 static inline uint64_t
1459 ice_rxd_error_to_pkt_flags(uint16_t stat_err0)
1460 {
1461         uint64_t flags = 0;
1462
1463         /* check if HW has decoded the packet and checksum */
1464         if (unlikely(!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1465                 return 0;
1466
1467         if (likely(!(stat_err0 & ICE_RX_FLEX_ERR0_BITS))) {
1468                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
1469                 return flags;
1470         }
1471
1472         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1473                 flags |= PKT_RX_IP_CKSUM_BAD;
1474         else
1475                 flags |= PKT_RX_IP_CKSUM_GOOD;
1476
1477         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1478                 flags |= PKT_RX_L4_CKSUM_BAD;
1479         else
1480                 flags |= PKT_RX_L4_CKSUM_GOOD;
1481
1482         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1483                 flags |= PKT_RX_OUTER_IP_CKSUM_BAD;
1484
1485         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
1486                 flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
1487         else
1488                 flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
1489
1490         return flags;
1491 }
1492
1493 static inline void
1494 ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_flex_desc *rxdp)
1495 {
1496         if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
1497             (1 << ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
1498                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1499                 mb->vlan_tci =
1500                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
1501                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
1502                            rte_le_to_cpu_16(rxdp->wb.l2tag1));
1503         } else {
1504                 mb->vlan_tci = 0;
1505         }
1506
1507 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1508         if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
1509             (1 << ICE_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
1510                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
1511                                 PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
1512                 mb->vlan_tci_outer = mb->vlan_tci;
1513                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1514                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1515                            rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
1516                            rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
1517         } else {
1518                 mb->vlan_tci_outer = 0;
1519         }
1520 #endif
1521         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
1522                    mb->vlan_tci, mb->vlan_tci_outer);
1523 }
1524
1525 #define ICE_LOOK_AHEAD 8
1526 #if (ICE_LOOK_AHEAD != 8)
1527 #error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
1528 #endif
1529 static inline int
1530 ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
1531 {
1532         volatile union ice_rx_flex_desc *rxdp;
1533         struct ice_rx_entry *rxep;
1534         struct rte_mbuf *mb;
1535         uint16_t stat_err0;
1536         uint16_t pkt_len;
1537         int32_t s[ICE_LOOK_AHEAD], nb_dd;
1538         int32_t i, j, nb_rx = 0;
1539         uint64_t pkt_flags = 0;
1540         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1541
1542         rxdp = &rxq->rx_ring[rxq->rx_tail];
1543         rxep = &rxq->sw_ring[rxq->rx_tail];
1544
1545         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1546
1547         /* Make sure there is at least 1 packet to receive */
1548         if (!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1549                 return 0;
1550
1551         /**
1552          * Scan LOOK_AHEAD descriptors at a time to determine which
1553          * descriptors reference packets that are ready to be received.
1554          */
1555         for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
1556              rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
1557                 /* Read desc statuses backwards to avoid race condition */
1558                 for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--)
1559                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1560
1561                 rte_smp_rmb();
1562
1563                 /* Compute how many status bits were set */
1564                 for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
1565                         nb_dd += s[j] & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
1566
1567                 nb_rx += nb_dd;
1568
1569                 /* Translate descriptor info to mbuf parameters */
1570                 for (j = 0; j < nb_dd; j++) {
1571                         mb = rxep[j].mbuf;
1572                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1573                                    ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1574                         mb->data_len = pkt_len;
1575                         mb->pkt_len = pkt_len;
1576                         mb->ol_flags = 0;
1577                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1578                         pkt_flags = ice_rxd_error_to_pkt_flags(stat_err0);
1579                         mb->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1580                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1581                         ice_rxd_to_vlan_tci(mb, &rxdp[j]);
1582                         rxq->rxd_to_pkt_fields(rxq, mb, &rxdp[j]);
1583
1584                         mb->ol_flags |= pkt_flags;
1585                 }
1586
1587                 for (j = 0; j < ICE_LOOK_AHEAD; j++)
1588                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1589
1590                 if (nb_dd != ICE_LOOK_AHEAD)
1591                         break;
1592         }
1593
1594         /* Clear software ring entries */
1595         for (i = 0; i < nb_rx; i++)
1596                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1597
1598         PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
1599                    "port_id=%u, queue_id=%u, nb_rx=%d",
1600                    rxq->port_id, rxq->queue_id, nb_rx);
1601
1602         return nb_rx;
1603 }
1604
1605 static inline uint16_t
1606 ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
1607                        struct rte_mbuf **rx_pkts,
1608                        uint16_t nb_pkts)
1609 {
1610         uint16_t i;
1611         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1612
1613         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1614
1615         for (i = 0; i < nb_pkts; i++)
1616                 rx_pkts[i] = stage[i];
1617
1618         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1619         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1620
1621         return nb_pkts;
1622 }
1623
1624 static inline int
1625 ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
1626 {
1627         volatile union ice_rx_flex_desc *rxdp;
1628         struct ice_rx_entry *rxep;
1629         struct rte_mbuf *mb;
1630         uint16_t alloc_idx, i;
1631         uint64_t dma_addr;
1632         int diag;
1633
1634         /* Allocate buffers in bulk */
1635         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1636                                (rxq->rx_free_thresh - 1));
1637         rxep = &rxq->sw_ring[alloc_idx];
1638         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1639                                     rxq->rx_free_thresh);
1640         if (unlikely(diag != 0)) {
1641                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1642                 return -ENOMEM;
1643         }
1644
1645         rxdp = &rxq->rx_ring[alloc_idx];
1646         for (i = 0; i < rxq->rx_free_thresh; i++) {
1647                 if (likely(i < (rxq->rx_free_thresh - 1)))
1648                         /* Prefetch next mbuf */
1649                         rte_prefetch0(rxep[i + 1].mbuf);
1650
1651                 mb = rxep[i].mbuf;
1652                 rte_mbuf_refcnt_set(mb, 1);
1653                 mb->next = NULL;
1654                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1655                 mb->nb_segs = 1;
1656                 mb->port = rxq->port_id;
1657                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1658                 rxdp[i].read.hdr_addr = 0;
1659                 rxdp[i].read.pkt_addr = dma_addr;
1660         }
1661
1662         /* Update rx tail regsiter */
1663         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1664
1665         rxq->rx_free_trigger =
1666                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1667         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1668                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1669
1670         return 0;
1671 }
1672
1673 static inline uint16_t
1674 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1675 {
1676         struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
1677         uint16_t nb_rx = 0;
1678
1679         if (!nb_pkts)
1680                 return 0;
1681
1682         if (rxq->rx_nb_avail)
1683                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1684
1685         nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
1686         rxq->rx_next_avail = 0;
1687         rxq->rx_nb_avail = nb_rx;
1688         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1689
1690         if (rxq->rx_tail > rxq->rx_free_trigger) {
1691                 if (ice_rx_alloc_bufs(rxq) != 0) {
1692                         uint16_t i, j;
1693
1694                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed +=
1695                                 rxq->rx_free_thresh;
1696                         PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1697                                    "port_id=%u, queue_id=%u",
1698                                    rxq->port_id, rxq->queue_id);
1699                         rxq->rx_nb_avail = 0;
1700                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1701                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1702                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1703
1704                         return 0;
1705                 }
1706         }
1707
1708         if (rxq->rx_tail >= rxq->nb_rx_desc)
1709                 rxq->rx_tail = 0;
1710
1711         if (rxq->rx_nb_avail)
1712                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1713
1714         return 0;
1715 }
1716
1717 static uint16_t
1718 ice_recv_pkts_bulk_alloc(void *rx_queue,
1719                          struct rte_mbuf **rx_pkts,
1720                          uint16_t nb_pkts)
1721 {
1722         uint16_t nb_rx = 0;
1723         uint16_t n;
1724         uint16_t count;
1725
1726         if (unlikely(nb_pkts == 0))
1727                 return nb_rx;
1728
1729         if (likely(nb_pkts <= ICE_RX_MAX_BURST))
1730                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1731
1732         while (nb_pkts) {
1733                 n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
1734                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1735                 nb_rx = (uint16_t)(nb_rx + count);
1736                 nb_pkts = (uint16_t)(nb_pkts - count);
1737                 if (count < n)
1738                         break;
1739         }
1740
1741         return nb_rx;
1742 }
1743
1744 static uint16_t
1745 ice_recv_scattered_pkts(void *rx_queue,
1746                         struct rte_mbuf **rx_pkts,
1747                         uint16_t nb_pkts)
1748 {
1749         struct ice_rx_queue *rxq = rx_queue;
1750         volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
1751         volatile union ice_rx_flex_desc *rxdp;
1752         union ice_rx_flex_desc rxd;
1753         struct ice_rx_entry *sw_ring = rxq->sw_ring;
1754         struct ice_rx_entry *rxe;
1755         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1756         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1757         struct rte_mbuf *nmb; /* new allocated mbuf */
1758         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
1759         uint16_t rx_id = rxq->rx_tail;
1760         uint16_t nb_rx = 0;
1761         uint16_t nb_hold = 0;
1762         uint16_t rx_packet_len;
1763         uint16_t rx_stat_err0;
1764         uint64_t dma_addr;
1765         uint64_t pkt_flags;
1766         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1767
1768         while (nb_rx < nb_pkts) {
1769                 rxdp = &rx_ring[rx_id];
1770                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1771
1772                 /* Check the DD bit first */
1773                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1774                         break;
1775
1776                 /* allocate mbuf */
1777                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1778                 if (unlikely(!nmb)) {
1779                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
1780                         break;
1781                 }
1782                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
1783
1784                 nb_hold++;
1785                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
1786                 rx_id++;
1787                 if (unlikely(rx_id == rxq->nb_rx_desc))
1788                         rx_id = 0;
1789
1790                 /* Prefetch next mbuf */
1791                 rte_prefetch0(sw_ring[rx_id].mbuf);
1792
1793                 /**
1794                  * When next RX descriptor is on a cache line boundary,
1795                  * prefetch the next 4 RX descriptors and next 8 pointers
1796                  * to mbufs.
1797                  */
1798                 if ((rx_id & 0x3) == 0) {
1799                         rte_prefetch0(&rx_ring[rx_id]);
1800                         rte_prefetch0(&sw_ring[rx_id]);
1801                 }
1802
1803                 rxm = rxe->mbuf;
1804                 rxe->mbuf = nmb;
1805                 dma_addr =
1806                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1807
1808                 /* Set data buffer address and data length of the mbuf */
1809                 rxdp->read.hdr_addr = 0;
1810                 rxdp->read.pkt_addr = dma_addr;
1811                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1812                                 ICE_RX_FLX_DESC_PKT_LEN_M;
1813                 rxm->data_len = rx_packet_len;
1814                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1815
1816                 /**
1817                  * If this is the first buffer of the received packet, set the
1818                  * pointer to the first mbuf of the packet and initialize its
1819                  * context. Otherwise, update the total length and the number
1820                  * of segments of the current scattered packet, and update the
1821                  * pointer to the last mbuf of the current packet.
1822                  */
1823                 if (!first_seg) {
1824                         first_seg = rxm;
1825                         first_seg->nb_segs = 1;
1826                         first_seg->pkt_len = rx_packet_len;
1827                 } else {
1828                         first_seg->pkt_len =
1829                                 (uint16_t)(first_seg->pkt_len +
1830                                            rx_packet_len);
1831                         first_seg->nb_segs++;
1832                         last_seg->next = rxm;
1833                 }
1834
1835                 /**
1836                  * If this is not the last buffer of the received packet,
1837                  * update the pointer to the last mbuf of the current scattered
1838                  * packet and continue to parse the RX ring.
1839                  */
1840                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_EOF_S))) {
1841                         last_seg = rxm;
1842                         continue;
1843                 }
1844
1845                 /**
1846                  * This is the last buffer of the received packet. If the CRC
1847                  * is not stripped by the hardware:
1848                  *  - Subtract the CRC length from the total packet length.
1849                  *  - If the last buffer only contains the whole CRC or a part
1850                  *  of it, free the mbuf associated to the last buffer. If part
1851                  *  of the CRC is also contained in the previous mbuf, subtract
1852                  *  the length of that CRC part from the data length of the
1853                  *  previous mbuf.
1854                  */
1855                 rxm->next = NULL;
1856                 if (unlikely(rxq->crc_len > 0)) {
1857                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1858                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1859                                 rte_pktmbuf_free_seg(rxm);
1860                                 first_seg->nb_segs--;
1861                                 last_seg->data_len =
1862                                         (uint16_t)(last_seg->data_len -
1863                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1864                                 last_seg->next = NULL;
1865                         } else
1866                                 rxm->data_len = (uint16_t)(rx_packet_len -
1867                                                            RTE_ETHER_CRC_LEN);
1868                 }
1869
1870                 first_seg->port = rxq->port_id;
1871                 first_seg->ol_flags = 0;
1872                 first_seg->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1873                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1874                 ice_rxd_to_vlan_tci(first_seg, &rxd);
1875                 rxq->rxd_to_pkt_fields(rxq, first_seg, &rxd);
1876                 pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
1877                 first_seg->ol_flags |= pkt_flags;
1878                 /* Prefetch data of first segment, if configured to do so. */
1879                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1880                                           first_seg->data_off));
1881                 rx_pkts[nb_rx++] = first_seg;
1882                 first_seg = NULL;
1883         }
1884
1885         /* Record index of the next RX descriptor to probe. */
1886         rxq->rx_tail = rx_id;
1887         rxq->pkt_first_seg = first_seg;
1888         rxq->pkt_last_seg = last_seg;
1889
1890         /**
1891          * If the number of free RX descriptors is greater than the RX free
1892          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1893          * register. Update the RDT with the value of the last processed RX
1894          * descriptor minus 1, to guarantee that the RDT register is never
1895          * equal to the RDH register, which creates a "full" ring situtation
1896          * from the hardware point of view.
1897          */
1898         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1899         if (nb_hold > rxq->rx_free_thresh) {
1900                 rx_id = (uint16_t)(rx_id == 0 ?
1901                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
1902                 /* write TAIL register */
1903                 ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1904                 nb_hold = 0;
1905         }
1906         rxq->nb_rx_hold = nb_hold;
1907
1908         /* return received packet in the burst */
1909         return nb_rx;
1910 }
1911
1912 const uint32_t *
1913 ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1914 {
1915         struct ice_adapter *ad =
1916                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1917         const uint32_t *ptypes;
1918
1919         static const uint32_t ptypes_os[] = {
1920                 /* refers to ice_get_default_pkt_type() */
1921                 RTE_PTYPE_L2_ETHER,
1922                 RTE_PTYPE_L2_ETHER_TIMESYNC,
1923                 RTE_PTYPE_L2_ETHER_LLDP,
1924                 RTE_PTYPE_L2_ETHER_ARP,
1925                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1926                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1927                 RTE_PTYPE_L4_FRAG,
1928                 RTE_PTYPE_L4_ICMP,
1929                 RTE_PTYPE_L4_NONFRAG,
1930                 RTE_PTYPE_L4_SCTP,
1931                 RTE_PTYPE_L4_TCP,
1932                 RTE_PTYPE_L4_UDP,
1933                 RTE_PTYPE_TUNNEL_GRENAT,
1934                 RTE_PTYPE_TUNNEL_IP,
1935                 RTE_PTYPE_INNER_L2_ETHER,
1936                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1937                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1938                 RTE_PTYPE_INNER_L4_FRAG,
1939                 RTE_PTYPE_INNER_L4_ICMP,
1940                 RTE_PTYPE_INNER_L4_NONFRAG,
1941                 RTE_PTYPE_INNER_L4_SCTP,
1942                 RTE_PTYPE_INNER_L4_TCP,
1943                 RTE_PTYPE_INNER_L4_UDP,
1944                 RTE_PTYPE_UNKNOWN
1945         };
1946
1947         static const uint32_t ptypes_comms[] = {
1948                 /* refers to ice_get_default_pkt_type() */
1949                 RTE_PTYPE_L2_ETHER,
1950                 RTE_PTYPE_L2_ETHER_TIMESYNC,
1951                 RTE_PTYPE_L2_ETHER_LLDP,
1952                 RTE_PTYPE_L2_ETHER_ARP,
1953                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1954                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1955                 RTE_PTYPE_L4_FRAG,
1956                 RTE_PTYPE_L4_ICMP,
1957                 RTE_PTYPE_L4_NONFRAG,
1958                 RTE_PTYPE_L4_SCTP,
1959                 RTE_PTYPE_L4_TCP,
1960                 RTE_PTYPE_L4_UDP,
1961                 RTE_PTYPE_TUNNEL_GRENAT,
1962                 RTE_PTYPE_TUNNEL_IP,
1963                 RTE_PTYPE_INNER_L2_ETHER,
1964                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1965                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1966                 RTE_PTYPE_INNER_L4_FRAG,
1967                 RTE_PTYPE_INNER_L4_ICMP,
1968                 RTE_PTYPE_INNER_L4_NONFRAG,
1969                 RTE_PTYPE_INNER_L4_SCTP,
1970                 RTE_PTYPE_INNER_L4_TCP,
1971                 RTE_PTYPE_INNER_L4_UDP,
1972                 RTE_PTYPE_TUNNEL_GTPC,
1973                 RTE_PTYPE_TUNNEL_GTPU,
1974                 RTE_PTYPE_L2_ETHER_PPPOE,
1975                 RTE_PTYPE_UNKNOWN
1976         };
1977
1978         if (ad->active_pkg_type == ICE_PKG_TYPE_COMMS)
1979                 ptypes = ptypes_comms;
1980         else
1981                 ptypes = ptypes_os;
1982
1983         if (dev->rx_pkt_burst == ice_recv_pkts ||
1984             dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
1985             dev->rx_pkt_burst == ice_recv_scattered_pkts)
1986                 return ptypes;
1987
1988 #ifdef RTE_ARCH_X86
1989         if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
1990             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
1991 #ifdef CC_AVX512_SUPPORT
1992             dev->rx_pkt_burst == ice_recv_pkts_vec_avx512 ||
1993             dev->rx_pkt_burst == ice_recv_pkts_vec_avx512_offload ||
1994             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512 ||
1995             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512_offload ||
1996 #endif
1997             dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
1998             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2)
1999                 return ptypes;
2000 #endif
2001
2002         return NULL;
2003 }
2004
2005 int
2006 ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
2007 {
2008         volatile union ice_rx_flex_desc *rxdp;
2009         struct ice_rx_queue *rxq = rx_queue;
2010         uint32_t desc;
2011
2012         if (unlikely(offset >= rxq->nb_rx_desc))
2013                 return -EINVAL;
2014
2015         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2016                 return RTE_ETH_RX_DESC_UNAVAIL;
2017
2018         desc = rxq->rx_tail + offset;
2019         if (desc >= rxq->nb_rx_desc)
2020                 desc -= rxq->nb_rx_desc;
2021
2022         rxdp = &rxq->rx_ring[desc];
2023         if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
2024             (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))
2025                 return RTE_ETH_RX_DESC_DONE;
2026
2027         return RTE_ETH_RX_DESC_AVAIL;
2028 }
2029
2030 int
2031 ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
2032 {
2033         struct ice_tx_queue *txq = tx_queue;
2034         volatile uint64_t *status;
2035         uint64_t mask, expect;
2036         uint32_t desc;
2037
2038         if (unlikely(offset >= txq->nb_tx_desc))
2039                 return -EINVAL;
2040
2041         desc = txq->tx_tail + offset;
2042         /* go to next desc that has the RS bit */
2043         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2044                 txq->tx_rs_thresh;
2045         if (desc >= txq->nb_tx_desc) {
2046                 desc -= txq->nb_tx_desc;
2047                 if (desc >= txq->nb_tx_desc)
2048                         desc -= txq->nb_tx_desc;
2049         }
2050
2051         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2052         mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
2053         expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
2054                                   ICE_TXD_QW1_DTYPE_S);
2055         if ((*status & mask) == expect)
2056                 return RTE_ETH_TX_DESC_DONE;
2057
2058         return RTE_ETH_TX_DESC_FULL;
2059 }
2060
2061 void
2062 ice_free_queues(struct rte_eth_dev *dev)
2063 {
2064         uint16_t i;
2065
2066         PMD_INIT_FUNC_TRACE();
2067
2068         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2069                 if (!dev->data->rx_queues[i])
2070                         continue;
2071                 ice_rx_queue_release(dev->data->rx_queues[i]);
2072                 dev->data->rx_queues[i] = NULL;
2073                 rte_eth_dma_zone_free(dev, "rx_ring", i);
2074         }
2075         dev->data->nb_rx_queues = 0;
2076
2077         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2078                 if (!dev->data->tx_queues[i])
2079                         continue;
2080                 ice_tx_queue_release(dev->data->tx_queues[i]);
2081                 dev->data->tx_queues[i] = NULL;
2082                 rte_eth_dma_zone_free(dev, "tx_ring", i);
2083         }
2084         dev->data->nb_tx_queues = 0;
2085 }
2086
2087 #define ICE_FDIR_NUM_TX_DESC  ICE_MIN_RING_DESC
2088 #define ICE_FDIR_NUM_RX_DESC  ICE_MIN_RING_DESC
2089
2090 int
2091 ice_fdir_setup_tx_resources(struct ice_pf *pf)
2092 {
2093         struct ice_tx_queue *txq;
2094         const struct rte_memzone *tz = NULL;
2095         uint32_t ring_size;
2096         struct rte_eth_dev *dev;
2097
2098         if (!pf) {
2099                 PMD_DRV_LOG(ERR, "PF is not available");
2100                 return -EINVAL;
2101         }
2102
2103         dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2104
2105         /* Allocate the TX queue data structure. */
2106         txq = rte_zmalloc_socket("ice fdir tx queue",
2107                                  sizeof(struct ice_tx_queue),
2108                                  RTE_CACHE_LINE_SIZE,
2109                                  SOCKET_ID_ANY);
2110         if (!txq) {
2111                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2112                             "tx queue structure.");
2113                 return -ENOMEM;
2114         }
2115
2116         /* Allocate TX hardware ring descriptors. */
2117         ring_size = sizeof(struct ice_tx_desc) * ICE_FDIR_NUM_TX_DESC;
2118         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2119
2120         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2121                                       ICE_FDIR_QUEUE_ID, ring_size,
2122                                       ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2123         if (!tz) {
2124                 ice_tx_queue_release(txq);
2125                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2126                 return -ENOMEM;
2127         }
2128
2129         txq->nb_tx_desc = ICE_FDIR_NUM_TX_DESC;
2130         txq->queue_id = ICE_FDIR_QUEUE_ID;
2131         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2132         txq->vsi = pf->fdir.fdir_vsi;
2133
2134         txq->tx_ring_dma = tz->iova;
2135         txq->tx_ring = (struct ice_tx_desc *)tz->addr;
2136         /*
2137          * don't need to allocate software ring and reset for the fdir
2138          * program queue just set the queue has been configured.
2139          */
2140         txq->q_set = true;
2141         pf->fdir.txq = txq;
2142
2143         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
2144
2145         return ICE_SUCCESS;
2146 }
2147
2148 int
2149 ice_fdir_setup_rx_resources(struct ice_pf *pf)
2150 {
2151         struct ice_rx_queue *rxq;
2152         const struct rte_memzone *rz = NULL;
2153         uint32_t ring_size;
2154         struct rte_eth_dev *dev;
2155
2156         if (!pf) {
2157                 PMD_DRV_LOG(ERR, "PF is not available");
2158                 return -EINVAL;
2159         }
2160
2161         dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
2162
2163         /* Allocate the RX queue data structure. */
2164         rxq = rte_zmalloc_socket("ice fdir rx queue",
2165                                  sizeof(struct ice_rx_queue),
2166                                  RTE_CACHE_LINE_SIZE,
2167                                  SOCKET_ID_ANY);
2168         if (!rxq) {
2169                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2170                             "rx queue structure.");
2171                 return -ENOMEM;
2172         }
2173
2174         /* Allocate RX hardware ring descriptors. */
2175         ring_size = sizeof(union ice_32byte_rx_desc) * ICE_FDIR_NUM_RX_DESC;
2176         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2177
2178         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2179                                       ICE_FDIR_QUEUE_ID, ring_size,
2180                                       ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2181         if (!rz) {
2182                 ice_rx_queue_release(rxq);
2183                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2184                 return -ENOMEM;
2185         }
2186
2187         rxq->nb_rx_desc = ICE_FDIR_NUM_RX_DESC;
2188         rxq->queue_id = ICE_FDIR_QUEUE_ID;
2189         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2190         rxq->vsi = pf->fdir.fdir_vsi;
2191
2192         rxq->rx_ring_dma = rz->iova;
2193         memset(rz->addr, 0, ICE_FDIR_NUM_RX_DESC *
2194                sizeof(union ice_32byte_rx_desc));
2195         rxq->rx_ring = (union ice_rx_flex_desc *)rz->addr;
2196
2197         /*
2198          * Don't need to allocate software ring and reset for the fdir
2199          * rx queue, just set the queue has been configured.
2200          */
2201         rxq->q_set = true;
2202         pf->fdir.rxq = rxq;
2203
2204         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
2205
2206         return ICE_SUCCESS;
2207 }
2208
2209 uint16_t
2210 ice_recv_pkts(void *rx_queue,
2211               struct rte_mbuf **rx_pkts,
2212               uint16_t nb_pkts)
2213 {
2214         struct ice_rx_queue *rxq = rx_queue;
2215         volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
2216         volatile union ice_rx_flex_desc *rxdp;
2217         union ice_rx_flex_desc rxd;
2218         struct ice_rx_entry *sw_ring = rxq->sw_ring;
2219         struct ice_rx_entry *rxe;
2220         struct rte_mbuf *nmb; /* new allocated mbuf */
2221         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
2222         uint16_t rx_id = rxq->rx_tail;
2223         uint16_t nb_rx = 0;
2224         uint16_t nb_hold = 0;
2225         uint16_t rx_packet_len;
2226         uint16_t rx_stat_err0;
2227         uint64_t dma_addr;
2228         uint64_t pkt_flags;
2229         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
2230
2231         while (nb_rx < nb_pkts) {
2232                 rxdp = &rx_ring[rx_id];
2233                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
2234
2235                 /* Check the DD bit first */
2236                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
2237                         break;
2238
2239                 /* allocate mbuf */
2240                 nmb = rte_mbuf_raw_alloc(rxq->mp);
2241                 if (unlikely(!nmb)) {
2242                         rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
2243                         break;
2244                 }
2245                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
2246
2247                 nb_hold++;
2248                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
2249                 rx_id++;
2250                 if (unlikely(rx_id == rxq->nb_rx_desc))
2251                         rx_id = 0;
2252                 rxm = rxe->mbuf;
2253                 rxe->mbuf = nmb;
2254                 dma_addr =
2255                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2256
2257                 /**
2258                  * fill the read format of descriptor with physic address in
2259                  * new allocated mbuf: nmb
2260                  */
2261                 rxdp->read.hdr_addr = 0;
2262                 rxdp->read.pkt_addr = dma_addr;
2263
2264                 /* calculate rx_packet_len of the received pkt */
2265                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
2266                                  ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
2267
2268                 /* fill old mbuf with received descriptor: rxd */
2269                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
2270                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
2271                 rxm->nb_segs = 1;
2272                 rxm->next = NULL;
2273                 rxm->pkt_len = rx_packet_len;
2274                 rxm->data_len = rx_packet_len;
2275                 rxm->port = rxq->port_id;
2276                 rxm->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
2277                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
2278                 ice_rxd_to_vlan_tci(rxm, &rxd);
2279                 rxq->rxd_to_pkt_fields(rxq, rxm, &rxd);
2280                 pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
2281                 rxm->ol_flags |= pkt_flags;
2282                 /* copy old mbuf to rx_pkts */
2283                 rx_pkts[nb_rx++] = rxm;
2284         }
2285         rxq->rx_tail = rx_id;
2286         /**
2287          * If the number of free RX descriptors is greater than the RX free
2288          * threshold of the queue, advance the receive tail register of queue.
2289          * Update that register with the value of the last processed RX
2290          * descriptor minus 1.
2291          */
2292         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
2293         if (nb_hold > rxq->rx_free_thresh) {
2294                 rx_id = (uint16_t)(rx_id == 0 ?
2295                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
2296                 /* write TAIL register */
2297                 ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
2298                 nb_hold = 0;
2299         }
2300         rxq->nb_rx_hold = nb_hold;
2301
2302         /* return received packet in the burst */
2303         return nb_rx;
2304 }
2305
2306 static inline void
2307 ice_parse_tunneling_params(uint64_t ol_flags,
2308                             union ice_tx_offload tx_offload,
2309                             uint32_t *cd_tunneling)
2310 {
2311         /* EIPT: External (outer) IP header type */
2312         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
2313                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4;
2314         else if (ol_flags & PKT_TX_OUTER_IPV4)
2315                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
2316         else if (ol_flags & PKT_TX_OUTER_IPV6)
2317                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV6;
2318
2319         /* EIPLEN: External (outer) IP header length, in DWords */
2320         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
2321                 ICE_TXD_CTX_QW0_EIPLEN_S;
2322
2323         /* L4TUNT: L4 Tunneling Type */
2324         switch (ol_flags & PKT_TX_TUNNEL_MASK) {
2325         case PKT_TX_TUNNEL_IPIP:
2326                 /* for non UDP / GRE tunneling, set to 00b */
2327                 break;
2328         case PKT_TX_TUNNEL_VXLAN:
2329         case PKT_TX_TUNNEL_GTP:
2330         case PKT_TX_TUNNEL_GENEVE:
2331                 *cd_tunneling |= ICE_TXD_CTX_UDP_TUNNELING;
2332                 break;
2333         case PKT_TX_TUNNEL_GRE:
2334                 *cd_tunneling |= ICE_TXD_CTX_GRE_TUNNELING;
2335                 break;
2336         default:
2337                 PMD_TX_LOG(ERR, "Tunnel type not supported");
2338                 return;
2339         }
2340
2341         /* L4TUNLEN: L4 Tunneling Length, in Words
2342          *
2343          * We depend on app to set rte_mbuf.l2_len correctly.
2344          * For IP in GRE it should be set to the length of the GRE
2345          * header;
2346          * For MAC in GRE or MAC in UDP it should be set to the length
2347          * of the GRE or UDP headers plus the inner MAC up to including
2348          * its last Ethertype.
2349          * If MPLS labels exists, it should include them as well.
2350          */
2351         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
2352                 ICE_TXD_CTX_QW0_NATLEN_S;
2353
2354         /**
2355          * Calculate the tunneling UDP checksum.
2356          * Shall be set only if L4TUNT = 01b and EIPT is not zero
2357          */
2358         if (!(*cd_tunneling & ICE_TX_CTX_EIPT_NONE) &&
2359             (*cd_tunneling & ICE_TXD_CTX_UDP_TUNNELING))
2360                 *cd_tunneling |= ICE_TXD_CTX_QW0_L4T_CS_M;
2361 }
2362
2363 static inline void
2364 ice_txd_enable_checksum(uint64_t ol_flags,
2365                         uint32_t *td_cmd,
2366                         uint32_t *td_offset,
2367                         union ice_tx_offload tx_offload)
2368 {
2369         /* Set MACLEN */
2370         if (ol_flags & PKT_TX_TUNNEL_MASK)
2371                 *td_offset |= (tx_offload.outer_l2_len >> 1)
2372                         << ICE_TX_DESC_LEN_MACLEN_S;
2373         else
2374                 *td_offset |= (tx_offload.l2_len >> 1)
2375                         << ICE_TX_DESC_LEN_MACLEN_S;
2376
2377         /* Enable L3 checksum offloads */
2378         if (ol_flags & PKT_TX_IP_CKSUM) {
2379                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
2380                 *td_offset |= (tx_offload.l3_len >> 2) <<
2381                               ICE_TX_DESC_LEN_IPLEN_S;
2382         } else if (ol_flags & PKT_TX_IPV4) {
2383                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
2384                 *td_offset |= (tx_offload.l3_len >> 2) <<
2385                               ICE_TX_DESC_LEN_IPLEN_S;
2386         } else if (ol_flags & PKT_TX_IPV6) {
2387                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2388                 *td_offset |= (tx_offload.l3_len >> 2) <<
2389                               ICE_TX_DESC_LEN_IPLEN_S;
2390         }
2391
2392         if (ol_flags & PKT_TX_TCP_SEG) {
2393                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2394                 *td_offset |= (tx_offload.l4_len >> 2) <<
2395                               ICE_TX_DESC_LEN_L4_LEN_S;
2396                 return;
2397         }
2398
2399         /* Enable L4 checksum offloads */
2400         switch (ol_flags & PKT_TX_L4_MASK) {
2401         case PKT_TX_TCP_CKSUM:
2402                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2403                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2404                               ICE_TX_DESC_LEN_L4_LEN_S;
2405                 break;
2406         case PKT_TX_SCTP_CKSUM:
2407                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2408                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2409                               ICE_TX_DESC_LEN_L4_LEN_S;
2410                 break;
2411         case PKT_TX_UDP_CKSUM:
2412                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2413                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2414                               ICE_TX_DESC_LEN_L4_LEN_S;
2415                 break;
2416         default:
2417                 break;
2418         }
2419 }
2420
2421 static inline int
2422 ice_xmit_cleanup(struct ice_tx_queue *txq)
2423 {
2424         struct ice_tx_entry *sw_ring = txq->sw_ring;
2425         volatile struct ice_tx_desc *txd = txq->tx_ring;
2426         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2427         uint16_t nb_tx_desc = txq->nb_tx_desc;
2428         uint16_t desc_to_clean_to;
2429         uint16_t nb_tx_to_clean;
2430
2431         /* Determine the last descriptor needing to be cleaned */
2432         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
2433         if (desc_to_clean_to >= nb_tx_desc)
2434                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2435
2436         /* Check to make sure the last descriptor to clean is done */
2437         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2438         if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
2439             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
2440                 PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2441                            "(port=%d queue=%d) value=0x%"PRIx64"\n",
2442                            desc_to_clean_to,
2443                            txq->port_id, txq->queue_id,
2444                            txd[desc_to_clean_to].cmd_type_offset_bsz);
2445                 /* Failed to clean any descriptors */
2446                 return -1;
2447         }
2448
2449         /* Figure out how many descriptors will be cleaned */
2450         if (last_desc_cleaned > desc_to_clean_to)
2451                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2452                                             desc_to_clean_to);
2453         else
2454                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2455                                             last_desc_cleaned);
2456
2457         /* The last descriptor to clean is done, so that means all the
2458          * descriptors from the last descriptor that was cleaned
2459          * up to the last descriptor with the RS bit set
2460          * are done. Only reset the threshold descriptor.
2461          */
2462         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2463
2464         /* Update the txq to reflect the last descriptor that was cleaned */
2465         txq->last_desc_cleaned = desc_to_clean_to;
2466         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
2467
2468         return 0;
2469 }
2470
2471 /* Construct the tx flags */
2472 static inline uint64_t
2473 ice_build_ctob(uint32_t td_cmd,
2474                uint32_t td_offset,
2475                uint16_t size,
2476                uint32_t td_tag)
2477 {
2478         return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2479                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2480                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2481                                 ((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
2482                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2483 }
2484
2485 /* Check if the context descriptor is needed for TX offloading */
2486 static inline uint16_t
2487 ice_calc_context_desc(uint64_t flags)
2488 {
2489         static uint64_t mask = PKT_TX_TCP_SEG |
2490                 PKT_TX_QINQ |
2491                 PKT_TX_OUTER_IP_CKSUM |
2492                 PKT_TX_TUNNEL_MASK;
2493
2494         return (flags & mask) ? 1 : 0;
2495 }
2496
2497 /* set ice TSO context descriptor */
2498 static inline uint64_t
2499 ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
2500 {
2501         uint64_t ctx_desc = 0;
2502         uint32_t cd_cmd, hdr_len, cd_tso_len;
2503
2504         if (!tx_offload.l4_len) {
2505                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
2506                 return ctx_desc;
2507         }
2508
2509         hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
2510         hdr_len += (mbuf->ol_flags & PKT_TX_TUNNEL_MASK) ?
2511                    tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
2512
2513         cd_cmd = ICE_TX_CTX_DESC_TSO;
2514         cd_tso_len = mbuf->pkt_len - hdr_len;
2515         ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
2516                     ((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2517                     ((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
2518
2519         return ctx_desc;
2520 }
2521
2522 /* HW requires that TX buffer size ranges from 1B up to (16K-1)B. */
2523 #define ICE_MAX_DATA_PER_TXD \
2524         (ICE_TXD_QW1_TX_BUF_SZ_M >> ICE_TXD_QW1_TX_BUF_SZ_S)
2525 /* Calculate the number of TX descriptors needed for each pkt */
2526 static inline uint16_t
2527 ice_calc_pkt_desc(struct rte_mbuf *tx_pkt)
2528 {
2529         struct rte_mbuf *txd = tx_pkt;
2530         uint16_t count = 0;
2531
2532         while (txd != NULL) {
2533                 count += DIV_ROUND_UP(txd->data_len, ICE_MAX_DATA_PER_TXD);
2534                 txd = txd->next;
2535         }
2536
2537         return count;
2538 }
2539
2540 uint16_t
2541 ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2542 {
2543         struct ice_tx_queue *txq;
2544         volatile struct ice_tx_desc *tx_ring;
2545         volatile struct ice_tx_desc *txd;
2546         struct ice_tx_entry *sw_ring;
2547         struct ice_tx_entry *txe, *txn;
2548         struct rte_mbuf *tx_pkt;
2549         struct rte_mbuf *m_seg;
2550         uint32_t cd_tunneling_params;
2551         uint16_t tx_id;
2552         uint16_t nb_tx;
2553         uint16_t nb_used;
2554         uint16_t nb_ctx;
2555         uint32_t td_cmd = 0;
2556         uint32_t td_offset = 0;
2557         uint32_t td_tag = 0;
2558         uint16_t tx_last;
2559         uint16_t slen;
2560         uint64_t buf_dma_addr;
2561         uint64_t ol_flags;
2562         union ice_tx_offload tx_offload = {0};
2563
2564         txq = tx_queue;
2565         sw_ring = txq->sw_ring;
2566         tx_ring = txq->tx_ring;
2567         tx_id = txq->tx_tail;
2568         txe = &sw_ring[tx_id];
2569
2570         /* Check if the descriptor ring needs to be cleaned. */
2571         if (txq->nb_tx_free < txq->tx_free_thresh)
2572                 (void)ice_xmit_cleanup(txq);
2573
2574         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
2575                 tx_pkt = *tx_pkts++;
2576
2577                 td_cmd = 0;
2578                 td_tag = 0;
2579                 td_offset = 0;
2580                 ol_flags = tx_pkt->ol_flags;
2581                 tx_offload.l2_len = tx_pkt->l2_len;
2582                 tx_offload.l3_len = tx_pkt->l3_len;
2583                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
2584                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
2585                 tx_offload.l4_len = tx_pkt->l4_len;
2586                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
2587                 /* Calculate the number of context descriptors needed. */
2588                 nb_ctx = ice_calc_context_desc(ol_flags);
2589
2590                 /* The number of descriptors that must be allocated for
2591                  * a packet equals to the number of the segments of that
2592                  * packet plus the number of context descriptor if needed.
2593                  * Recalculate the needed tx descs when TSO enabled in case
2594                  * the mbuf data size exceeds max data size that hw allows
2595                  * per tx desc.
2596                  */
2597                 if (ol_flags & PKT_TX_TCP_SEG)
2598                         nb_used = (uint16_t)(ice_calc_pkt_desc(tx_pkt) +
2599                                              nb_ctx);
2600                 else
2601                         nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
2602                 tx_last = (uint16_t)(tx_id + nb_used - 1);
2603
2604                 /* Circular ring */
2605                 if (tx_last >= txq->nb_tx_desc)
2606                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
2607
2608                 if (nb_used > txq->nb_tx_free) {
2609                         if (ice_xmit_cleanup(txq) != 0) {
2610                                 if (nb_tx == 0)
2611                                         return 0;
2612                                 goto end_of_tx;
2613                         }
2614                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
2615                                 while (nb_used > txq->nb_tx_free) {
2616                                         if (ice_xmit_cleanup(txq) != 0) {
2617                                                 if (nb_tx == 0)
2618                                                         return 0;
2619                                                 goto end_of_tx;
2620                                         }
2621                                 }
2622                         }
2623                 }
2624
2625                 /* Descriptor based VLAN insertion */
2626                 if (ol_flags & (PKT_TX_VLAN | PKT_TX_QINQ)) {
2627                         td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
2628                         td_tag = tx_pkt->vlan_tci;
2629                 }
2630
2631                 /* Fill in tunneling parameters if necessary */
2632                 cd_tunneling_params = 0;
2633                 if (ol_flags & PKT_TX_TUNNEL_MASK)
2634                         ice_parse_tunneling_params(ol_flags, tx_offload,
2635                                                    &cd_tunneling_params);
2636
2637                 /* Enable checksum offloading */
2638                 if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK)
2639                         ice_txd_enable_checksum(ol_flags, &td_cmd,
2640                                                 &td_offset, tx_offload);
2641
2642                 if (nb_ctx) {
2643                         /* Setup TX context descriptor if required */
2644                         volatile struct ice_tx_ctx_desc *ctx_txd =
2645                                 (volatile struct ice_tx_ctx_desc *)
2646                                         &tx_ring[tx_id];
2647                         uint16_t cd_l2tag2 = 0;
2648                         uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
2649
2650                         txn = &sw_ring[txe->next_id];
2651                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2652                         if (txe->mbuf) {
2653                                 rte_pktmbuf_free_seg(txe->mbuf);
2654                                 txe->mbuf = NULL;
2655                         }
2656
2657                         if (ol_flags & PKT_TX_TCP_SEG)
2658                                 cd_type_cmd_tso_mss |=
2659                                         ice_set_tso_ctx(tx_pkt, tx_offload);
2660
2661                         ctx_txd->tunneling_params =
2662                                 rte_cpu_to_le_32(cd_tunneling_params);
2663
2664                         /* TX context descriptor based double VLAN insert */
2665                         if (ol_flags & PKT_TX_QINQ) {
2666                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
2667                                 cd_type_cmd_tso_mss |=
2668                                         ((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
2669                                          ICE_TXD_CTX_QW1_CMD_S);
2670                         }
2671                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
2672                         ctx_txd->qw1 =
2673                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2674
2675                         txe->last_id = tx_last;
2676                         tx_id = txe->next_id;
2677                         txe = txn;
2678                 }
2679                 m_seg = tx_pkt;
2680
2681                 do {
2682                         txd = &tx_ring[tx_id];
2683                         txn = &sw_ring[txe->next_id];
2684
2685                         if (txe->mbuf)
2686                                 rte_pktmbuf_free_seg(txe->mbuf);
2687                         txe->mbuf = m_seg;
2688
2689                         /* Setup TX Descriptor */
2690                         slen = m_seg->data_len;
2691                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2692
2693                         while ((ol_flags & PKT_TX_TCP_SEG) &&
2694                                 unlikely(slen > ICE_MAX_DATA_PER_TXD)) {
2695                                 txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2696                                 txd->cmd_type_offset_bsz =
2697                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2698                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2699                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2700                                 ((uint64_t)ICE_MAX_DATA_PER_TXD <<
2701                                  ICE_TXD_QW1_TX_BUF_SZ_S) |
2702                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2703
2704                                 buf_dma_addr += ICE_MAX_DATA_PER_TXD;
2705                                 slen -= ICE_MAX_DATA_PER_TXD;
2706
2707                                 txe->last_id = tx_last;
2708                                 tx_id = txe->next_id;
2709                                 txe = txn;
2710                                 txd = &tx_ring[tx_id];
2711                                 txn = &sw_ring[txe->next_id];
2712                         }
2713
2714                         txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2715                         txd->cmd_type_offset_bsz =
2716                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2717                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2718                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2719                                 ((uint64_t)slen << ICE_TXD_QW1_TX_BUF_SZ_S) |
2720                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2721
2722                         txe->last_id = tx_last;
2723                         tx_id = txe->next_id;
2724                         txe = txn;
2725                         m_seg = m_seg->next;
2726                 } while (m_seg);
2727
2728                 /* fill the last descriptor with End of Packet (EOP) bit */
2729                 td_cmd |= ICE_TX_DESC_CMD_EOP;
2730                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
2731                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
2732
2733                 /* set RS bit on the last descriptor of one packet */
2734                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
2735                         PMD_TX_LOG(DEBUG,
2736                                    "Setting RS bit on TXD id="
2737                                    "%4u (port=%d queue=%d)",
2738                                    tx_last, txq->port_id, txq->queue_id);
2739
2740                         td_cmd |= ICE_TX_DESC_CMD_RS;
2741
2742                         /* Update txq RS bit counters */
2743                         txq->nb_tx_used = 0;
2744                 }
2745                 txd->cmd_type_offset_bsz |=
2746                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2747                                          ICE_TXD_QW1_CMD_S);
2748         }
2749 end_of_tx:
2750         /* update Tail register */
2751         ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
2752         txq->tx_tail = tx_id;
2753
2754         return nb_tx;
2755 }
2756
2757 static __rte_always_inline int
2758 ice_tx_free_bufs(struct ice_tx_queue *txq)
2759 {
2760         struct ice_tx_entry *txep;
2761         uint16_t i;
2762
2763         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
2764              rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
2765             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
2766                 return 0;
2767
2768         txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
2769
2770         for (i = 0; i < txq->tx_rs_thresh; i++)
2771                 rte_prefetch0((txep + i)->mbuf);
2772
2773         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
2774                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2775                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
2776                         txep->mbuf = NULL;
2777                 }
2778         } else {
2779                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2780                         rte_pktmbuf_free_seg(txep->mbuf);
2781                         txep->mbuf = NULL;
2782                 }
2783         }
2784
2785         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
2786         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
2787         if (txq->tx_next_dd >= txq->nb_tx_desc)
2788                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2789
2790         return txq->tx_rs_thresh;
2791 }
2792
2793 static int
2794 ice_tx_done_cleanup_full(struct ice_tx_queue *txq,
2795                         uint32_t free_cnt)
2796 {
2797         struct ice_tx_entry *swr_ring = txq->sw_ring;
2798         uint16_t i, tx_last, tx_id;
2799         uint16_t nb_tx_free_last;
2800         uint16_t nb_tx_to_clean;
2801         uint32_t pkt_cnt;
2802
2803         /* Start free mbuf from the next of tx_tail */
2804         tx_last = txq->tx_tail;
2805         tx_id  = swr_ring[tx_last].next_id;
2806
2807         if (txq->nb_tx_free == 0 && ice_xmit_cleanup(txq))
2808                 return 0;
2809
2810         nb_tx_to_clean = txq->nb_tx_free;
2811         nb_tx_free_last = txq->nb_tx_free;
2812         if (!free_cnt)
2813                 free_cnt = txq->nb_tx_desc;
2814
2815         /* Loop through swr_ring to count the amount of
2816          * freeable mubfs and packets.
2817          */
2818         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2819                 for (i = 0; i < nb_tx_to_clean &&
2820                         pkt_cnt < free_cnt &&
2821                         tx_id != tx_last; i++) {
2822                         if (swr_ring[tx_id].mbuf != NULL) {
2823                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2824                                 swr_ring[tx_id].mbuf = NULL;
2825
2826                                 /*
2827                                  * last segment in the packet,
2828                                  * increment packet count
2829                                  */
2830                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2831                         }
2832
2833                         tx_id = swr_ring[tx_id].next_id;
2834                 }
2835
2836                 if (txq->tx_rs_thresh > txq->nb_tx_desc -
2837                         txq->nb_tx_free || tx_id == tx_last)
2838                         break;
2839
2840                 if (pkt_cnt < free_cnt) {
2841                         if (ice_xmit_cleanup(txq))
2842                                 break;
2843
2844                         nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
2845                         nb_tx_free_last = txq->nb_tx_free;
2846                 }
2847         }
2848
2849         return (int)pkt_cnt;
2850 }
2851
2852 #ifdef RTE_ARCH_X86
2853 static int
2854 ice_tx_done_cleanup_vec(struct ice_tx_queue *txq __rte_unused,
2855                         uint32_t free_cnt __rte_unused)
2856 {
2857         return -ENOTSUP;
2858 }
2859 #endif
2860
2861 static int
2862 ice_tx_done_cleanup_simple(struct ice_tx_queue *txq,
2863                         uint32_t free_cnt)
2864 {
2865         int i, n, cnt;
2866
2867         if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
2868                 free_cnt = txq->nb_tx_desc;
2869
2870         cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
2871
2872         for (i = 0; i < cnt; i += n) {
2873                 if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
2874                         break;
2875
2876                 n = ice_tx_free_bufs(txq);
2877
2878                 if (n == 0)
2879                         break;
2880         }
2881
2882         return i;
2883 }
2884
2885 int
2886 ice_tx_done_cleanup(void *txq, uint32_t free_cnt)
2887 {
2888         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
2889         struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
2890         struct ice_adapter *ad =
2891                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2892
2893 #ifdef RTE_ARCH_X86
2894         if (ad->tx_vec_allowed)
2895                 return ice_tx_done_cleanup_vec(q, free_cnt);
2896 #endif
2897         if (ad->tx_simple_allowed)
2898                 return ice_tx_done_cleanup_simple(q, free_cnt);
2899         else
2900                 return ice_tx_done_cleanup_full(q, free_cnt);
2901 }
2902
2903 /* Populate 4 descriptors with data from 4 mbufs */
2904 static inline void
2905 tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
2906 {
2907         uint64_t dma_addr;
2908         uint32_t i;
2909
2910         for (i = 0; i < 4; i++, txdp++, pkts++) {
2911                 dma_addr = rte_mbuf_data_iova(*pkts);
2912                 txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
2913                 txdp->cmd_type_offset_bsz =
2914                         ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
2915                                        (*pkts)->data_len, 0);
2916         }
2917 }
2918
2919 /* Populate 1 descriptor with data from 1 mbuf */
2920 static inline void
2921 tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
2922 {
2923         uint64_t dma_addr;
2924
2925         dma_addr = rte_mbuf_data_iova(*pkts);
2926         txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
2927         txdp->cmd_type_offset_bsz =
2928                 ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
2929                                (*pkts)->data_len, 0);
2930 }
2931
2932 static inline void
2933 ice_tx_fill_hw_ring(struct ice_tx_queue *txq, struct rte_mbuf **pkts,
2934                     uint16_t nb_pkts)
2935 {
2936         volatile struct ice_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
2937         struct ice_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
2938         const int N_PER_LOOP = 4;
2939         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
2940         int mainpart, leftover;
2941         int i, j;
2942
2943         /**
2944          * Process most of the packets in chunks of N pkts.  Any
2945          * leftover packets will get processed one at a time.
2946          */
2947         mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
2948         leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
2949         for (i = 0; i < mainpart; i += N_PER_LOOP) {
2950                 /* Copy N mbuf pointers to the S/W ring */
2951                 for (j = 0; j < N_PER_LOOP; ++j)
2952                         (txep + i + j)->mbuf = *(pkts + i + j);
2953                 tx4(txdp + i, pkts + i);
2954         }
2955
2956         if (unlikely(leftover > 0)) {
2957                 for (i = 0; i < leftover; ++i) {
2958                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
2959                         tx1(txdp + mainpart + i, pkts + mainpart + i);
2960                 }
2961         }
2962 }
2963
2964 static inline uint16_t
2965 tx_xmit_pkts(struct ice_tx_queue *txq,
2966              struct rte_mbuf **tx_pkts,
2967              uint16_t nb_pkts)
2968 {
2969         volatile struct ice_tx_desc *txr = txq->tx_ring;
2970         uint16_t n = 0;
2971
2972         /**
2973          * Begin scanning the H/W ring for done descriptors when the number
2974          * of available descriptors drops below tx_free_thresh. For each done
2975          * descriptor, free the associated buffer.
2976          */
2977         if (txq->nb_tx_free < txq->tx_free_thresh)
2978                 ice_tx_free_bufs(txq);
2979
2980         /* Use available descriptor only */
2981         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
2982         if (unlikely(!nb_pkts))
2983                 return 0;
2984
2985         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
2986         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
2987                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
2988                 ice_tx_fill_hw_ring(txq, tx_pkts, n);
2989                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
2990                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
2991                                          ICE_TXD_QW1_CMD_S);
2992                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2993                 txq->tx_tail = 0;
2994         }
2995
2996         /* Fill hardware descriptor ring with mbuf data */
2997         ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
2998         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
2999
3000         /* Determin if RS bit needs to be set */
3001         if (txq->tx_tail > txq->tx_next_rs) {
3002                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3003                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3004                                          ICE_TXD_QW1_CMD_S);
3005                 txq->tx_next_rs =
3006                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
3007                 if (txq->tx_next_rs >= txq->nb_tx_desc)
3008                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3009         }
3010
3011         if (txq->tx_tail >= txq->nb_tx_desc)
3012                 txq->tx_tail = 0;
3013
3014         /* Update the tx tail register */
3015         ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
3016
3017         return nb_pkts;
3018 }
3019
3020 static uint16_t
3021 ice_xmit_pkts_simple(void *tx_queue,
3022                      struct rte_mbuf **tx_pkts,
3023                      uint16_t nb_pkts)
3024 {
3025         uint16_t nb_tx = 0;
3026
3027         if (likely(nb_pkts <= ICE_TX_MAX_BURST))
3028                 return tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
3029                                     tx_pkts, nb_pkts);
3030
3031         while (nb_pkts) {
3032                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
3033                                                       ICE_TX_MAX_BURST);
3034
3035                 ret = tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
3036                                    &tx_pkts[nb_tx], num);
3037                 nb_tx = (uint16_t)(nb_tx + ret);
3038                 nb_pkts = (uint16_t)(nb_pkts - ret);
3039                 if (ret < num)
3040                         break;
3041         }
3042
3043         return nb_tx;
3044 }
3045
3046 void __rte_cold
3047 ice_set_rx_function(struct rte_eth_dev *dev)
3048 {
3049         PMD_INIT_FUNC_TRACE();
3050         struct ice_adapter *ad =
3051                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3052 #ifdef RTE_ARCH_X86
3053         struct ice_rx_queue *rxq;
3054         int i;
3055         int rx_check_ret = 0;
3056
3057         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3058                 ad->rx_use_avx512 = false;
3059                 ad->rx_use_avx2 = false;
3060                 rx_check_ret = ice_rx_vec_dev_check(dev);
3061                 if (rx_check_ret >= 0 && ad->rx_bulk_alloc_allowed &&
3062                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3063                         ad->rx_vec_allowed = true;
3064                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3065                                 rxq = dev->data->rx_queues[i];
3066                                 if (rxq && ice_rxq_vec_setup(rxq)) {
3067                                         ad->rx_vec_allowed = false;
3068                                         break;
3069                                 }
3070                         }
3071
3072                         if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3073                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3074                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3075 #ifdef CC_AVX512_SUPPORT
3076                                 ad->rx_use_avx512 = true;
3077 #else
3078                         PMD_DRV_LOG(NOTICE,
3079                                 "AVX512 is not supported in build env");
3080 #endif
3081                         if (!ad->rx_use_avx512 &&
3082                         (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3083                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3084                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3085                                 ad->rx_use_avx2 = true;
3086
3087                 } else {
3088                         ad->rx_vec_allowed = false;
3089                 }
3090         }
3091
3092         if (ad->rx_vec_allowed) {
3093                 if (dev->data->scattered_rx) {
3094                         if (ad->rx_use_avx512) {
3095 #ifdef CC_AVX512_SUPPORT
3096                                 if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3097                                         PMD_DRV_LOG(NOTICE,
3098                                                 "Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
3099                                                 dev->data->port_id);
3100                                         dev->rx_pkt_burst =
3101                                                 ice_recv_scattered_pkts_vec_avx512_offload;
3102                                 } else {
3103                                         PMD_DRV_LOG(NOTICE,
3104                                                 "Using AVX512 Vector Scattered Rx (port %d).",
3105                                                 dev->data->port_id);
3106                                         dev->rx_pkt_burst =
3107                                                 ice_recv_scattered_pkts_vec_avx512;
3108                                 }
3109 #endif
3110                         } else {
3111                                 PMD_DRV_LOG(DEBUG,
3112                                         "Using %sVector Scattered Rx (port %d).",
3113                                         ad->rx_use_avx2 ? "avx2 " : "",
3114                                         dev->data->port_id);
3115                                 dev->rx_pkt_burst = ad->rx_use_avx2 ?
3116                                         ice_recv_scattered_pkts_vec_avx2 :
3117                                         ice_recv_scattered_pkts_vec;
3118                         }
3119                 } else {
3120                         if (ad->rx_use_avx512) {
3121 #ifdef CC_AVX512_SUPPORT
3122                                 if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3123                                         PMD_DRV_LOG(NOTICE,
3124                                                 "Using AVX512 OFFLOAD Vector Rx (port %d).",
3125                                                 dev->data->port_id);
3126                                         dev->rx_pkt_burst =
3127                                                 ice_recv_pkts_vec_avx512_offload;
3128                                 } else {
3129                                         PMD_DRV_LOG(NOTICE,
3130                                                 "Using AVX512 Vector Rx (port %d).",
3131                                                 dev->data->port_id);
3132                                         dev->rx_pkt_burst =
3133                                                 ice_recv_pkts_vec_avx512;
3134                                 }
3135 #endif
3136                         } else {
3137                                 PMD_DRV_LOG(DEBUG,
3138                                         "Using %sVector Rx (port %d).",
3139                                         ad->rx_use_avx2 ? "avx2 " : "",
3140                                         dev->data->port_id);
3141                                 dev->rx_pkt_burst = ad->rx_use_avx2 ?
3142                                         ice_recv_pkts_vec_avx2 :
3143                                         ice_recv_pkts_vec;
3144                         }
3145                 }
3146                 return;
3147         }
3148
3149 #endif
3150
3151         if (dev->data->scattered_rx) {
3152                 /* Set the non-LRO scattered function */
3153                 PMD_INIT_LOG(DEBUG,
3154                              "Using a Scattered function on port %d.",
3155                              dev->data->port_id);
3156                 dev->rx_pkt_burst = ice_recv_scattered_pkts;
3157         } else if (ad->rx_bulk_alloc_allowed) {
3158                 PMD_INIT_LOG(DEBUG,
3159                              "Rx Burst Bulk Alloc Preconditions are "
3160                              "satisfied. Rx Burst Bulk Alloc function "
3161                              "will be used on port %d.",
3162                              dev->data->port_id);
3163                 dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
3164         } else {
3165                 PMD_INIT_LOG(DEBUG,
3166                              "Rx Burst Bulk Alloc Preconditions are not "
3167                              "satisfied, Normal Rx will be used on port %d.",
3168                              dev->data->port_id);
3169                 dev->rx_pkt_burst = ice_recv_pkts;
3170         }
3171 }
3172
3173 static const struct {
3174         eth_rx_burst_t pkt_burst;
3175         const char *info;
3176 } ice_rx_burst_infos[] = {
3177         { ice_recv_scattered_pkts,          "Scalar Scattered" },
3178         { ice_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
3179         { ice_recv_pkts,                    "Scalar" },
3180 #ifdef RTE_ARCH_X86
3181 #ifdef CC_AVX512_SUPPORT
3182         { ice_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
3183         { ice_recv_scattered_pkts_vec_avx512_offload, "Offload Vector AVX512 Scattered" },
3184         { ice_recv_pkts_vec_avx512,           "Vector AVX512" },
3185         { ice_recv_pkts_vec_avx512_offload,   "Offload Vector AVX512" },
3186 #endif
3187         { ice_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
3188         { ice_recv_pkts_vec_avx2,           "Vector AVX2" },
3189         { ice_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
3190         { ice_recv_pkts_vec,                "Vector SSE" },
3191 #endif
3192 };
3193
3194 int
3195 ice_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3196                       struct rte_eth_burst_mode *mode)
3197 {
3198         eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
3199         int ret = -EINVAL;
3200         unsigned int i;
3201
3202         for (i = 0; i < RTE_DIM(ice_rx_burst_infos); ++i) {
3203                 if (pkt_burst == ice_rx_burst_infos[i].pkt_burst) {
3204                         snprintf(mode->info, sizeof(mode->info), "%s",
3205                                  ice_rx_burst_infos[i].info);
3206                         ret = 0;
3207                         break;
3208                 }
3209         }
3210
3211         return ret;
3212 }
3213
3214 void __rte_cold
3215 ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ice_tx_queue *txq)
3216 {
3217         struct ice_adapter *ad =
3218                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3219
3220         /* Use a simple Tx queue if possible (only fast free is allowed) */
3221         ad->tx_simple_allowed =
3222                 (txq->offloads ==
3223                 (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
3224                 txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
3225
3226         if (ad->tx_simple_allowed)
3227                 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3228                              txq->queue_id);
3229         else
3230                 PMD_INIT_LOG(DEBUG,
3231                              "Simple Tx can NOT be enabled on Tx queue %u.",
3232                              txq->queue_id);
3233 }
3234
3235 /*********************************************************************
3236  *
3237  *  TX prep functions
3238  *
3239  **********************************************************************/
3240 /* The default values of TSO MSS */
3241 #define ICE_MIN_TSO_MSS            64
3242 #define ICE_MAX_TSO_MSS            9728
3243 #define ICE_MAX_TSO_FRAME_SIZE     262144
3244 uint16_t
3245 ice_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
3246               uint16_t nb_pkts)
3247 {
3248         int i, ret;
3249         uint64_t ol_flags;
3250         struct rte_mbuf *m;
3251
3252         for (i = 0; i < nb_pkts; i++) {
3253                 m = tx_pkts[i];
3254                 ol_flags = m->ol_flags;
3255
3256                 if (ol_flags & PKT_TX_TCP_SEG &&
3257                     (m->tso_segsz < ICE_MIN_TSO_MSS ||
3258                      m->tso_segsz > ICE_MAX_TSO_MSS ||
3259                      m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
3260                         /**
3261                          * MSS outside the range are considered malicious
3262                          */
3263                         rte_errno = EINVAL;
3264                         return i;
3265                 }
3266
3267 #ifdef RTE_ETHDEV_DEBUG_TX
3268                 ret = rte_validate_tx_offload(m);
3269                 if (ret != 0) {
3270                         rte_errno = -ret;
3271                         return i;
3272                 }
3273 #endif
3274                 ret = rte_net_intel_cksum_prepare(m);
3275                 if (ret != 0) {
3276                         rte_errno = -ret;
3277                         return i;
3278                 }
3279         }
3280         return i;
3281 }
3282
3283 void __rte_cold
3284 ice_set_tx_function(struct rte_eth_dev *dev)
3285 {
3286         struct ice_adapter *ad =
3287                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3288 #ifdef RTE_ARCH_X86
3289         struct ice_tx_queue *txq;
3290         int i;
3291         int tx_check_ret = 0;
3292
3293         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3294                 ad->tx_use_avx2 = false;
3295                 ad->tx_use_avx512 = false;
3296                 tx_check_ret = ice_tx_vec_dev_check(dev);
3297                 if (tx_check_ret >= 0 &&
3298                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3299                         ad->tx_vec_allowed = true;
3300
3301                         if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3302                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3303                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3304 #ifdef CC_AVX512_SUPPORT
3305                                 ad->tx_use_avx512 = true;
3306 #else
3307                         PMD_DRV_LOG(NOTICE,
3308                                 "AVX512 is not supported in build env");
3309 #endif
3310                         if (!ad->tx_use_avx512 && tx_check_ret == ICE_VECTOR_PATH &&
3311                         (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3312                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3313                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3314                                 ad->tx_use_avx2 = true;
3315
3316                         if (!ad->tx_use_avx512 && tx_check_ret == ICE_VECTOR_OFFLOAD_PATH)
3317                                 ad->tx_vec_allowed = false;
3318
3319                         if (ad->tx_vec_allowed) {
3320                                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
3321                                         txq = dev->data->tx_queues[i];
3322                                         if (txq && ice_txq_vec_setup(txq)) {
3323                                                 ad->tx_vec_allowed = false;
3324                                                 break;
3325                                         }
3326                                 }
3327                         }
3328                 } else {
3329                         ad->tx_vec_allowed = false;
3330                 }
3331         }
3332
3333         if (ad->tx_vec_allowed) {
3334                 if (ad->tx_use_avx512) {
3335 #ifdef CC_AVX512_SUPPORT
3336                         if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3337                                 PMD_DRV_LOG(NOTICE,
3338                                             "Using AVX512 OFFLOAD Vector Tx (port %d).",
3339                                             dev->data->port_id);
3340                                 dev->tx_pkt_burst =
3341                                         ice_xmit_pkts_vec_avx512_offload;
3342                         } else {
3343                                 PMD_DRV_LOG(NOTICE,
3344                                             "Using AVX512 Vector Tx (port %d).",
3345                                             dev->data->port_id);
3346                                 dev->tx_pkt_burst = ice_xmit_pkts_vec_avx512;
3347                         }
3348 #endif
3349                 } else {
3350                         PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
3351                                     ad->tx_use_avx2 ? "avx2 " : "",
3352                                     dev->data->port_id);
3353                         dev->tx_pkt_burst = ad->tx_use_avx2 ?
3354                                             ice_xmit_pkts_vec_avx2 :
3355                                             ice_xmit_pkts_vec;
3356                 }
3357                 dev->tx_pkt_prepare = NULL;
3358
3359                 return;
3360         }
3361 #endif
3362
3363         if (ad->tx_simple_allowed) {
3364                 PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3365                 dev->tx_pkt_burst = ice_xmit_pkts_simple;
3366                 dev->tx_pkt_prepare = NULL;
3367         } else {
3368                 PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
3369                 dev->tx_pkt_burst = ice_xmit_pkts;
3370                 dev->tx_pkt_prepare = ice_prep_pkts;
3371         }
3372 }
3373
3374 static const struct {
3375         eth_tx_burst_t pkt_burst;
3376         const char *info;
3377 } ice_tx_burst_infos[] = {
3378         { ice_xmit_pkts_simple,   "Scalar Simple" },
3379         { ice_xmit_pkts,          "Scalar" },
3380 #ifdef RTE_ARCH_X86
3381 #ifdef CC_AVX512_SUPPORT
3382         { ice_xmit_pkts_vec_avx512, "Vector AVX512" },
3383         { ice_xmit_pkts_vec_avx512_offload, "Offload Vector AVX512" },
3384 #endif
3385         { ice_xmit_pkts_vec_avx2, "Vector AVX2" },
3386         { ice_xmit_pkts_vec,      "Vector SSE" },
3387 #endif
3388 };
3389
3390 int
3391 ice_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3392                       struct rte_eth_burst_mode *mode)
3393 {
3394         eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
3395         int ret = -EINVAL;
3396         unsigned int i;
3397
3398         for (i = 0; i < RTE_DIM(ice_tx_burst_infos); ++i) {
3399                 if (pkt_burst == ice_tx_burst_infos[i].pkt_burst) {
3400                         snprintf(mode->info, sizeof(mode->info), "%s",
3401                                  ice_tx_burst_infos[i].info);
3402                         ret = 0;
3403                         break;
3404                 }
3405         }
3406
3407         return ret;
3408 }
3409
3410 /* For each value it means, datasheet of hardware can tell more details
3411  *
3412  * @note: fix ice_dev_supported_ptypes_get() if any change here.
3413  */
3414 static inline uint32_t
3415 ice_get_default_pkt_type(uint16_t ptype)
3416 {
3417         static const uint32_t type_table[ICE_MAX_PKT_TYPE]
3418                 __rte_cache_aligned = {
3419                 /* L2 types */
3420                 /* [0] reserved */
3421                 [1] = RTE_PTYPE_L2_ETHER,
3422                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
3423                 /* [3] - [5] reserved */
3424                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
3425                 /* [7] - [10] reserved */
3426                 [11] = RTE_PTYPE_L2_ETHER_ARP,
3427                 /* [12] - [21] reserved */
3428
3429                 /* Non tunneled IPv4 */
3430                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3431                        RTE_PTYPE_L4_FRAG,
3432                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3433                        RTE_PTYPE_L4_NONFRAG,
3434                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3435                        RTE_PTYPE_L4_UDP,
3436                 /* [25] reserved */
3437                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3438                        RTE_PTYPE_L4_TCP,
3439                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3440                        RTE_PTYPE_L4_SCTP,
3441                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3442                        RTE_PTYPE_L4_ICMP,
3443
3444                 /* IPv4 --> IPv4 */
3445                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3446                        RTE_PTYPE_TUNNEL_IP |
3447                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3448                        RTE_PTYPE_INNER_L4_FRAG,
3449                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3450                        RTE_PTYPE_TUNNEL_IP |
3451                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3452                        RTE_PTYPE_INNER_L4_NONFRAG,
3453                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3454                        RTE_PTYPE_TUNNEL_IP |
3455                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3456                        RTE_PTYPE_INNER_L4_UDP,
3457                 /* [32] reserved */
3458                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3459                        RTE_PTYPE_TUNNEL_IP |
3460                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3461                        RTE_PTYPE_INNER_L4_TCP,
3462                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3463                        RTE_PTYPE_TUNNEL_IP |
3464                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3465                        RTE_PTYPE_INNER_L4_SCTP,
3466                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3467                        RTE_PTYPE_TUNNEL_IP |
3468                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3469                        RTE_PTYPE_INNER_L4_ICMP,
3470
3471                 /* IPv4 --> IPv6 */
3472                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3473                        RTE_PTYPE_TUNNEL_IP |
3474                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3475                        RTE_PTYPE_INNER_L4_FRAG,
3476                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3477                        RTE_PTYPE_TUNNEL_IP |
3478                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3479                        RTE_PTYPE_INNER_L4_NONFRAG,
3480                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3481                        RTE_PTYPE_TUNNEL_IP |
3482                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3483                        RTE_PTYPE_INNER_L4_UDP,
3484                 /* [39] reserved */
3485                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3486                        RTE_PTYPE_TUNNEL_IP |
3487                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3488                        RTE_PTYPE_INNER_L4_TCP,
3489                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3490                        RTE_PTYPE_TUNNEL_IP |
3491                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3492                        RTE_PTYPE_INNER_L4_SCTP,
3493                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3494                        RTE_PTYPE_TUNNEL_IP |
3495                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3496                        RTE_PTYPE_INNER_L4_ICMP,
3497
3498                 /* IPv4 --> GRE/Teredo/VXLAN */
3499                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3500                        RTE_PTYPE_TUNNEL_GRENAT,
3501
3502                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
3503                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3504                        RTE_PTYPE_TUNNEL_GRENAT |
3505                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3506                        RTE_PTYPE_INNER_L4_FRAG,
3507                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3508                        RTE_PTYPE_TUNNEL_GRENAT |
3509                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3510                        RTE_PTYPE_INNER_L4_NONFRAG,
3511                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3512                        RTE_PTYPE_TUNNEL_GRENAT |
3513                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3514                        RTE_PTYPE_INNER_L4_UDP,
3515                 /* [47] reserved */
3516                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3517                        RTE_PTYPE_TUNNEL_GRENAT |
3518                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3519                        RTE_PTYPE_INNER_L4_TCP,
3520                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3521                        RTE_PTYPE_TUNNEL_GRENAT |
3522                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3523                        RTE_PTYPE_INNER_L4_SCTP,
3524                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3525                        RTE_PTYPE_TUNNEL_GRENAT |
3526                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3527                        RTE_PTYPE_INNER_L4_ICMP,
3528
3529                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
3530                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3531                        RTE_PTYPE_TUNNEL_GRENAT |
3532                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3533                        RTE_PTYPE_INNER_L4_FRAG,
3534                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3535                        RTE_PTYPE_TUNNEL_GRENAT |
3536                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3537                        RTE_PTYPE_INNER_L4_NONFRAG,
3538                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3539                        RTE_PTYPE_TUNNEL_GRENAT |
3540                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3541                        RTE_PTYPE_INNER_L4_UDP,
3542                 /* [54] reserved */
3543                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3544                        RTE_PTYPE_TUNNEL_GRENAT |
3545                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3546                        RTE_PTYPE_INNER_L4_TCP,
3547                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3548                        RTE_PTYPE_TUNNEL_GRENAT |
3549                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3550                        RTE_PTYPE_INNER_L4_SCTP,
3551                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3552                        RTE_PTYPE_TUNNEL_GRENAT |
3553                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3554                        RTE_PTYPE_INNER_L4_ICMP,
3555
3556                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
3557                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3558                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3559
3560                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3561                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3562                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3563                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3564                        RTE_PTYPE_INNER_L4_FRAG,
3565                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3566                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3567                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3568                        RTE_PTYPE_INNER_L4_NONFRAG,
3569                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3570                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3571                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3572                        RTE_PTYPE_INNER_L4_UDP,
3573                 /* [62] reserved */
3574                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3575                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3576                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3577                        RTE_PTYPE_INNER_L4_TCP,
3578                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3579                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3580                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3581                        RTE_PTYPE_INNER_L4_SCTP,
3582                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3583                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3584                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3585                        RTE_PTYPE_INNER_L4_ICMP,
3586
3587                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3588                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3589                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3590                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3591                        RTE_PTYPE_INNER_L4_FRAG,
3592                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3593                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3594                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3595                        RTE_PTYPE_INNER_L4_NONFRAG,
3596                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3597                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3598                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3599                        RTE_PTYPE_INNER_L4_UDP,
3600                 /* [69] reserved */
3601                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3602                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3603                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3604                        RTE_PTYPE_INNER_L4_TCP,
3605                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3606                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3607                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3608                        RTE_PTYPE_INNER_L4_SCTP,
3609                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3610                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3611                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3612                        RTE_PTYPE_INNER_L4_ICMP,
3613                 /* [73] - [87] reserved */
3614
3615                 /* Non tunneled IPv6 */
3616                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3617                        RTE_PTYPE_L4_FRAG,
3618                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3619                        RTE_PTYPE_L4_NONFRAG,
3620                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3621                        RTE_PTYPE_L4_UDP,
3622                 /* [91] reserved */
3623                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3624                        RTE_PTYPE_L4_TCP,
3625                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3626                        RTE_PTYPE_L4_SCTP,
3627                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3628                        RTE_PTYPE_L4_ICMP,
3629
3630                 /* IPv6 --> IPv4 */
3631                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3632                        RTE_PTYPE_TUNNEL_IP |
3633                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3634                        RTE_PTYPE_INNER_L4_FRAG,
3635                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3636                        RTE_PTYPE_TUNNEL_IP |
3637                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3638                        RTE_PTYPE_INNER_L4_NONFRAG,
3639                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3640                        RTE_PTYPE_TUNNEL_IP |
3641                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3642                        RTE_PTYPE_INNER_L4_UDP,
3643                 /* [98] reserved */
3644                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3645                        RTE_PTYPE_TUNNEL_IP |
3646                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3647                        RTE_PTYPE_INNER_L4_TCP,
3648                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3649                         RTE_PTYPE_TUNNEL_IP |
3650                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3651                         RTE_PTYPE_INNER_L4_SCTP,
3652                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3653                         RTE_PTYPE_TUNNEL_IP |
3654                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3655                         RTE_PTYPE_INNER_L4_ICMP,
3656
3657                 /* IPv6 --> IPv6 */
3658                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3659                         RTE_PTYPE_TUNNEL_IP |
3660                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3661                         RTE_PTYPE_INNER_L4_FRAG,
3662                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3663                         RTE_PTYPE_TUNNEL_IP |
3664                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3665                         RTE_PTYPE_INNER_L4_NONFRAG,
3666                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3667                         RTE_PTYPE_TUNNEL_IP |
3668                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3669                         RTE_PTYPE_INNER_L4_UDP,
3670                 /* [105] reserved */
3671                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3672                         RTE_PTYPE_TUNNEL_IP |
3673                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3674                         RTE_PTYPE_INNER_L4_TCP,
3675                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3676                         RTE_PTYPE_TUNNEL_IP |
3677                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3678                         RTE_PTYPE_INNER_L4_SCTP,
3679                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3680                         RTE_PTYPE_TUNNEL_IP |
3681                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3682                         RTE_PTYPE_INNER_L4_ICMP,
3683
3684                 /* IPv6 --> GRE/Teredo/VXLAN */
3685                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3686                         RTE_PTYPE_TUNNEL_GRENAT,
3687
3688                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3689                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3690                         RTE_PTYPE_TUNNEL_GRENAT |
3691                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3692                         RTE_PTYPE_INNER_L4_FRAG,
3693                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3694                         RTE_PTYPE_TUNNEL_GRENAT |
3695                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3696                         RTE_PTYPE_INNER_L4_NONFRAG,
3697                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3698                         RTE_PTYPE_TUNNEL_GRENAT |
3699                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3700                         RTE_PTYPE_INNER_L4_UDP,
3701                 /* [113] reserved */
3702                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3703                         RTE_PTYPE_TUNNEL_GRENAT |
3704                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3705                         RTE_PTYPE_INNER_L4_TCP,
3706                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3707                         RTE_PTYPE_TUNNEL_GRENAT |
3708                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3709                         RTE_PTYPE_INNER_L4_SCTP,
3710                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3711                         RTE_PTYPE_TUNNEL_GRENAT |
3712                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3713                         RTE_PTYPE_INNER_L4_ICMP,
3714
3715                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3716                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3717                         RTE_PTYPE_TUNNEL_GRENAT |
3718                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3719                         RTE_PTYPE_INNER_L4_FRAG,
3720                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3721                         RTE_PTYPE_TUNNEL_GRENAT |
3722                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3723                         RTE_PTYPE_INNER_L4_NONFRAG,
3724                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3725                         RTE_PTYPE_TUNNEL_GRENAT |
3726                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3727                         RTE_PTYPE_INNER_L4_UDP,
3728                 /* [120] reserved */
3729                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3730                         RTE_PTYPE_TUNNEL_GRENAT |
3731                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3732                         RTE_PTYPE_INNER_L4_TCP,
3733                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3734                         RTE_PTYPE_TUNNEL_GRENAT |
3735                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3736                         RTE_PTYPE_INNER_L4_SCTP,
3737                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3738                         RTE_PTYPE_TUNNEL_GRENAT |
3739                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3740                         RTE_PTYPE_INNER_L4_ICMP,
3741
3742                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3743                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3744                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3745
3746                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3747                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3748                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3749                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3750                         RTE_PTYPE_INNER_L4_FRAG,
3751                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3752                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3753                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3754                         RTE_PTYPE_INNER_L4_NONFRAG,
3755                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3756                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3757                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3758                         RTE_PTYPE_INNER_L4_UDP,
3759                 /* [128] reserved */
3760                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3761                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3762                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3763                         RTE_PTYPE_INNER_L4_TCP,
3764                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3765                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3766                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3767                         RTE_PTYPE_INNER_L4_SCTP,
3768                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3769                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3770                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3771                         RTE_PTYPE_INNER_L4_ICMP,
3772
3773                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3774                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3775                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3776                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3777                         RTE_PTYPE_INNER_L4_FRAG,
3778                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3779                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3780                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3781                         RTE_PTYPE_INNER_L4_NONFRAG,
3782                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3783                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3784                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3785                         RTE_PTYPE_INNER_L4_UDP,
3786                 /* [135] reserved */
3787                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3788                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3789                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3790                         RTE_PTYPE_INNER_L4_TCP,
3791                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3792                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3793                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3794                         RTE_PTYPE_INNER_L4_SCTP,
3795                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3796                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3797                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3798                         RTE_PTYPE_INNER_L4_ICMP,
3799                 /* [139] - [299] reserved */
3800
3801                 /* PPPoE */
3802                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
3803                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
3804
3805                 /* PPPoE --> IPv4 */
3806                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
3807                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3808                         RTE_PTYPE_L4_FRAG,
3809                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
3810                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3811                         RTE_PTYPE_L4_NONFRAG,
3812                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
3813                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3814                         RTE_PTYPE_L4_UDP,
3815                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
3816                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3817                         RTE_PTYPE_L4_TCP,
3818                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
3819                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3820                         RTE_PTYPE_L4_SCTP,
3821                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
3822                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3823                         RTE_PTYPE_L4_ICMP,
3824
3825                 /* PPPoE --> IPv6 */
3826                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
3827                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3828                         RTE_PTYPE_L4_FRAG,
3829                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
3830                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3831                         RTE_PTYPE_L4_NONFRAG,
3832                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
3833                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3834                         RTE_PTYPE_L4_UDP,
3835                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
3836                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3837                         RTE_PTYPE_L4_TCP,
3838                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
3839                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3840                         RTE_PTYPE_L4_SCTP,
3841                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
3842                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3843                         RTE_PTYPE_L4_ICMP,
3844                 /* [314] - [324] reserved */
3845
3846                 /* IPv4/IPv6 --> GTPC/GTPU */
3847                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3848                         RTE_PTYPE_TUNNEL_GTPC,
3849                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3850                         RTE_PTYPE_TUNNEL_GTPC,
3851                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3852                         RTE_PTYPE_TUNNEL_GTPC,
3853                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3854                         RTE_PTYPE_TUNNEL_GTPC,
3855                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3856                         RTE_PTYPE_TUNNEL_GTPU,
3857                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3858                         RTE_PTYPE_TUNNEL_GTPU,
3859
3860                 /* IPv4 --> GTPU --> IPv4 */
3861                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3862                         RTE_PTYPE_TUNNEL_GTPU |
3863                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3864                         RTE_PTYPE_INNER_L4_FRAG,
3865                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3866                         RTE_PTYPE_TUNNEL_GTPU |
3867                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3868                         RTE_PTYPE_INNER_L4_NONFRAG,
3869                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3870                         RTE_PTYPE_TUNNEL_GTPU |
3871                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3872                         RTE_PTYPE_INNER_L4_UDP,
3873                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3874                         RTE_PTYPE_TUNNEL_GTPU |
3875                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3876                         RTE_PTYPE_INNER_L4_TCP,
3877                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3878                         RTE_PTYPE_TUNNEL_GTPU |
3879                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3880                         RTE_PTYPE_INNER_L4_ICMP,
3881
3882                 /* IPv6 --> GTPU --> IPv4 */
3883                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3884                         RTE_PTYPE_TUNNEL_GTPU |
3885                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3886                         RTE_PTYPE_INNER_L4_FRAG,
3887                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3888                         RTE_PTYPE_TUNNEL_GTPU |
3889                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3890                         RTE_PTYPE_INNER_L4_NONFRAG,
3891                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3892                         RTE_PTYPE_TUNNEL_GTPU |
3893                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3894                         RTE_PTYPE_INNER_L4_UDP,
3895                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3896                         RTE_PTYPE_TUNNEL_GTPU |
3897                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3898                         RTE_PTYPE_INNER_L4_TCP,
3899                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3900                         RTE_PTYPE_TUNNEL_GTPU |
3901                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3902                         RTE_PTYPE_INNER_L4_ICMP,
3903
3904                 /* IPv4 --> GTPU --> IPv6 */
3905                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3906                         RTE_PTYPE_TUNNEL_GTPU |
3907                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3908                         RTE_PTYPE_INNER_L4_FRAG,
3909                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3910                         RTE_PTYPE_TUNNEL_GTPU |
3911                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3912                         RTE_PTYPE_INNER_L4_NONFRAG,
3913                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3914                         RTE_PTYPE_TUNNEL_GTPU |
3915                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3916                         RTE_PTYPE_INNER_L4_UDP,
3917                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3918                         RTE_PTYPE_TUNNEL_GTPU |
3919                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3920                         RTE_PTYPE_INNER_L4_TCP,
3921                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3922                         RTE_PTYPE_TUNNEL_GTPU |
3923                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3924                         RTE_PTYPE_INNER_L4_ICMP,
3925
3926                 /* IPv6 --> GTPU --> IPv6 */
3927                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3928                         RTE_PTYPE_TUNNEL_GTPU |
3929                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3930                         RTE_PTYPE_INNER_L4_FRAG,
3931                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3932                         RTE_PTYPE_TUNNEL_GTPU |
3933                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3934                         RTE_PTYPE_INNER_L4_NONFRAG,
3935                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3936                         RTE_PTYPE_TUNNEL_GTPU |
3937                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3938                         RTE_PTYPE_INNER_L4_UDP,
3939                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3940                         RTE_PTYPE_TUNNEL_GTPU |
3941                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3942                         RTE_PTYPE_INNER_L4_TCP,
3943                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3944                         RTE_PTYPE_TUNNEL_GTPU |
3945                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3946                         RTE_PTYPE_INNER_L4_ICMP,
3947
3948                 /* IPv4 --> UDP ECPRI */
3949                 [372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3950                         RTE_PTYPE_L4_UDP,
3951                 [373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3952                         RTE_PTYPE_L4_UDP,
3953                 [374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3954                         RTE_PTYPE_L4_UDP,
3955                 [375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3956                         RTE_PTYPE_L4_UDP,
3957                 [376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3958                         RTE_PTYPE_L4_UDP,
3959                 [377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3960                         RTE_PTYPE_L4_UDP,
3961                 [378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3962                         RTE_PTYPE_L4_UDP,
3963                 [379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3964                         RTE_PTYPE_L4_UDP,
3965                 [380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3966                         RTE_PTYPE_L4_UDP,
3967                 [381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3968                         RTE_PTYPE_L4_UDP,
3969
3970                 /* IPV6 --> UDP ECPRI */
3971                 [382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3972                         RTE_PTYPE_L4_UDP,
3973                 [383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3974                         RTE_PTYPE_L4_UDP,
3975                 [384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3976                         RTE_PTYPE_L4_UDP,
3977                 [385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3978                         RTE_PTYPE_L4_UDP,
3979                 [386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3980                         RTE_PTYPE_L4_UDP,
3981                 [387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3982                         RTE_PTYPE_L4_UDP,
3983                 [388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3984                         RTE_PTYPE_L4_UDP,
3985                 [389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3986                         RTE_PTYPE_L4_UDP,
3987                 [390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3988                         RTE_PTYPE_L4_UDP,
3989                 [391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3990                         RTE_PTYPE_L4_UDP,
3991                 /* All others reserved */
3992         };
3993
3994         return type_table[ptype];
3995 }
3996
3997 void __rte_cold
3998 ice_set_default_ptype_table(struct rte_eth_dev *dev)
3999 {
4000         struct ice_adapter *ad =
4001                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
4002         int i;
4003
4004         for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
4005                 ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
4006 }
4007
4008 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S 1
4009 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M \
4010                         (0x3UL << ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S)
4011 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD 0
4012 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL 0x1
4013
4014 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S   4
4015 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M   \
4016         (1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S)
4017 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S      5
4018 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M      \
4019         (1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S)
4020
4021 /*
4022  * check the programming status descriptor in rx queue.
4023  * done after Programming Flow Director is programmed on
4024  * tx queue
4025  */
4026 static inline int
4027 ice_check_fdir_programming_status(struct ice_rx_queue *rxq)
4028 {
4029         volatile union ice_32byte_rx_desc *rxdp;
4030         uint64_t qword1;
4031         uint32_t rx_status;
4032         uint32_t error;
4033         uint32_t id;
4034         int ret = -EAGAIN;
4035
4036         rxdp = (volatile union ice_32byte_rx_desc *)
4037                 (&rxq->rx_ring[rxq->rx_tail]);
4038         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
4039         rx_status = (qword1 & ICE_RXD_QW1_STATUS_M)
4040                         >> ICE_RXD_QW1_STATUS_S;
4041
4042         if (rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)) {
4043                 ret = 0;
4044                 error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M) >>
4045                         ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S;
4046                 id = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M) >>
4047                         ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S;
4048                 if (error) {
4049                         if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD)
4050                                 PMD_DRV_LOG(ERR, "Failed to add FDIR rule.");
4051                         else if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL)
4052                                 PMD_DRV_LOG(ERR, "Failed to remove FDIR rule.");
4053                         ret = -EINVAL;
4054                         goto err;
4055                 }
4056                 error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M) >>
4057                         ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S;
4058                 if (error) {
4059                         PMD_DRV_LOG(ERR, "Failed to create FDIR profile.");
4060                         ret = -EINVAL;
4061                 }
4062 err:
4063                 rxdp->wb.qword1.status_error_len = 0;
4064                 rxq->rx_tail++;
4065                 if (unlikely(rxq->rx_tail == rxq->nb_rx_desc))
4066                         rxq->rx_tail = 0;
4067                 if (rxq->rx_tail == 0)
4068                         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
4069                 else
4070                         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_tail - 1);
4071         }
4072
4073         return ret;
4074 }
4075
4076 #define ICE_FDIR_MAX_WAIT_US 10000
4077
4078 int
4079 ice_fdir_programming(struct ice_pf *pf, struct ice_fltr_desc *fdir_desc)
4080 {
4081         struct ice_tx_queue *txq = pf->fdir.txq;
4082         struct ice_rx_queue *rxq = pf->fdir.rxq;
4083         volatile struct ice_fltr_desc *fdirdp;
4084         volatile struct ice_tx_desc *txdp;
4085         uint32_t td_cmd;
4086         uint16_t i;
4087
4088         fdirdp = (volatile struct ice_fltr_desc *)
4089                 (&txq->tx_ring[txq->tx_tail]);
4090         fdirdp->qidx_compq_space_stat = fdir_desc->qidx_compq_space_stat;
4091         fdirdp->dtype_cmd_vsi_fdid = fdir_desc->dtype_cmd_vsi_fdid;
4092
4093         txdp = &txq->tx_ring[txq->tx_tail + 1];
4094         txdp->buf_addr = rte_cpu_to_le_64(pf->fdir.dma_addr);
4095         td_cmd = ICE_TX_DESC_CMD_EOP |
4096                 ICE_TX_DESC_CMD_RS  |
4097                 ICE_TX_DESC_CMD_DUMMY;
4098
4099         txdp->cmd_type_offset_bsz =
4100                 ice_build_ctob(td_cmd, 0, ICE_FDIR_PKT_LEN, 0);
4101
4102         txq->tx_tail += 2;
4103         if (txq->tx_tail >= txq->nb_tx_desc)
4104                 txq->tx_tail = 0;
4105         /* Update the tx tail register */
4106         ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
4107         for (i = 0; i < ICE_FDIR_MAX_WAIT_US; i++) {
4108                 if ((txdp->cmd_type_offset_bsz &
4109                      rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) ==
4110                     rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
4111                         break;
4112                 rte_delay_us(1);
4113         }
4114         if (i >= ICE_FDIR_MAX_WAIT_US) {
4115                 PMD_DRV_LOG(ERR,
4116                             "Failed to program FDIR filter: time out to get DD on tx queue.");
4117                 return -ETIMEDOUT;
4118         }
4119
4120         for (; i < ICE_FDIR_MAX_WAIT_US; i++) {
4121                 int ret;
4122
4123                 ret = ice_check_fdir_programming_status(rxq);
4124                 if (ret == -EAGAIN)
4125                         rte_delay_us(1);
4126                 else
4127                         return ret;
4128         }
4129
4130         PMD_DRV_LOG(ERR,
4131                     "Failed to program FDIR filter: programming status reported.");
4132         return -ETIMEDOUT;
4133
4134
4135 }