net/ice: implement power management API
[dpdk.git] / drivers / net / ice / ice_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Intel Corporation
3  */
4
5 #include <rte_ethdev_driver.h>
6 #include <rte_net.h>
7 #include <rte_vect.h>
8
9 #include "rte_pmd_ice.h"
10 #include "ice_rxtx.h"
11
12 #define ICE_TX_CKSUM_OFFLOAD_MASK (              \
13                 PKT_TX_IP_CKSUM |                \
14                 PKT_TX_L4_MASK |                 \
15                 PKT_TX_TCP_SEG |                 \
16                 PKT_TX_OUTER_IP_CKSUM)
17
18 /* Offset of mbuf dynamic field for protocol extraction data */
19 int rte_net_ice_dynfield_proto_xtr_metadata_offs = -1;
20
21 /* Mask of mbuf dynamic flags for protocol extraction type */
22 uint64_t rte_net_ice_dynflag_proto_xtr_vlan_mask;
23 uint64_t rte_net_ice_dynflag_proto_xtr_ipv4_mask;
24 uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_mask;
25 uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
26 uint64_t rte_net_ice_dynflag_proto_xtr_tcp_mask;
27 uint64_t rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
28
29 int
30 ice_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
31 {
32         volatile union ice_rx_flex_desc *rxdp;
33         struct ice_rx_queue *rxq = rx_queue;
34         uint16_t desc;
35
36         desc = rxq->rx_tail;
37         rxdp = &rxq->rx_ring[desc];
38         /* watch for changes in status bit */
39         pmc->addr = &rxdp->wb.status_error0;
40
41         /*
42          * we expect the DD bit to be set to 1 if this descriptor was already
43          * written to.
44          */
45         pmc->val = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
46         pmc->mask = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
47
48         /* register is 16-bit */
49         pmc->data_sz = sizeof(uint16_t);
50
51         return 0;
52 }
53
54
55 static inline uint8_t
56 ice_proto_xtr_type_to_rxdid(uint8_t xtr_type)
57 {
58         static uint8_t rxdid_map[] = {
59                 [PROTO_XTR_NONE]      = ICE_RXDID_COMMS_OVS,
60                 [PROTO_XTR_VLAN]      = ICE_RXDID_COMMS_AUX_VLAN,
61                 [PROTO_XTR_IPV4]      = ICE_RXDID_COMMS_AUX_IPV4,
62                 [PROTO_XTR_IPV6]      = ICE_RXDID_COMMS_AUX_IPV6,
63                 [PROTO_XTR_IPV6_FLOW] = ICE_RXDID_COMMS_AUX_IPV6_FLOW,
64                 [PROTO_XTR_TCP]       = ICE_RXDID_COMMS_AUX_TCP,
65                 [PROTO_XTR_IP_OFFSET] = ICE_RXDID_COMMS_AUX_IP_OFFSET,
66         };
67
68         return xtr_type < RTE_DIM(rxdid_map) ?
69                                 rxdid_map[xtr_type] : ICE_RXDID_COMMS_OVS;
70 }
71
72 static inline void
73 ice_rxd_to_pkt_fields_by_comms_generic(__rte_unused struct ice_rx_queue *rxq,
74                                        struct rte_mbuf *mb,
75                                        volatile union ice_rx_flex_desc *rxdp)
76 {
77         volatile struct ice_32b_rx_flex_desc_comms *desc =
78                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
79         uint16_t stat_err = rte_le_to_cpu_16(desc->status_error0);
80
81         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
82                 mb->ol_flags |= PKT_RX_RSS_HASH;
83                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
84         }
85
86 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
87         if (desc->flow_id != 0xFFFFFFFF) {
88                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
89                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
90         }
91 #endif
92 }
93
94 static inline void
95 ice_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct ice_rx_queue *rxq,
96                                    struct rte_mbuf *mb,
97                                    volatile union ice_rx_flex_desc *rxdp)
98 {
99         volatile struct ice_32b_rx_flex_desc_comms_ovs *desc =
100                         (volatile struct ice_32b_rx_flex_desc_comms_ovs *)rxdp;
101 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
102         uint16_t stat_err;
103 #endif
104
105         if (desc->flow_id != 0xFFFFFFFF) {
106                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
107                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
108         }
109
110 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
111         stat_err = rte_le_to_cpu_16(desc->status_error0);
112         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
113                 mb->ol_flags |= PKT_RX_RSS_HASH;
114                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
115         }
116 #endif
117 }
118
119 static inline void
120 ice_rxd_to_pkt_fields_by_comms_aux_v1(struct ice_rx_queue *rxq,
121                                       struct rte_mbuf *mb,
122                                       volatile union ice_rx_flex_desc *rxdp)
123 {
124         volatile struct ice_32b_rx_flex_desc_comms *desc =
125                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
126         uint16_t stat_err;
127
128         stat_err = rte_le_to_cpu_16(desc->status_error0);
129         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
130                 mb->ol_flags |= PKT_RX_RSS_HASH;
131                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
132         }
133
134 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
135         if (desc->flow_id != 0xFFFFFFFF) {
136                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
137                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
138         }
139
140         if (rxq->xtr_ol_flag) {
141                 uint32_t metadata = 0;
142
143                 stat_err = rte_le_to_cpu_16(desc->status_error1);
144
145                 if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
146                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
147
148                 if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
149                         metadata |=
150                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
151
152                 if (metadata) {
153                         mb->ol_flags |= rxq->xtr_ol_flag;
154
155                         *RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
156                 }
157         }
158 #endif
159 }
160
161 static inline void
162 ice_rxd_to_pkt_fields_by_comms_aux_v2(struct ice_rx_queue *rxq,
163                                       struct rte_mbuf *mb,
164                                       volatile union ice_rx_flex_desc *rxdp)
165 {
166         volatile struct ice_32b_rx_flex_desc_comms *desc =
167                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
168         uint16_t stat_err;
169
170         stat_err = rte_le_to_cpu_16(desc->status_error0);
171         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
172                 mb->ol_flags |= PKT_RX_RSS_HASH;
173                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
174         }
175
176 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
177         if (desc->flow_id != 0xFFFFFFFF) {
178                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
179                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
180         }
181
182         if (rxq->xtr_ol_flag) {
183                 uint32_t metadata = 0;
184
185                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
186                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
187                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
188                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
189
190                 if (metadata) {
191                         mb->ol_flags |= rxq->xtr_ol_flag;
192
193                         *RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
194                 }
195         }
196 #endif
197 }
198
199 void
200 ice_select_rxd_to_pkt_fields_handler(struct ice_rx_queue *rxq, uint32_t rxdid)
201 {
202         switch (rxdid) {
203         case ICE_RXDID_COMMS_AUX_VLAN:
204                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_vlan_mask;
205                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
206                 break;
207
208         case ICE_RXDID_COMMS_AUX_IPV4:
209                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv4_mask;
210                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
211                 break;
212
213         case ICE_RXDID_COMMS_AUX_IPV6:
214                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_mask;
215                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
216                 break;
217
218         case ICE_RXDID_COMMS_AUX_IPV6_FLOW:
219                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
220                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
221                 break;
222
223         case ICE_RXDID_COMMS_AUX_TCP:
224                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_tcp_mask;
225                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
226                 break;
227
228         case ICE_RXDID_COMMS_AUX_IP_OFFSET:
229                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
230                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v2;
231                 break;
232
233         case ICE_RXDID_COMMS_GENERIC:
234                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_generic;
235                 break;
236
237         case ICE_RXDID_COMMS_OVS:
238                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_ovs;
239                 break;
240
241         default:
242                 /* update this according to the RXDID for PROTO_XTR_NONE */
243                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_ovs;
244                 break;
245         }
246
247         if (!rte_net_ice_dynf_proto_xtr_metadata_avail())
248                 rxq->xtr_ol_flag = 0;
249 }
250
251 static enum ice_status
252 ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
253 {
254         struct ice_vsi *vsi = rxq->vsi;
255         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
256         struct ice_pf *pf = ICE_VSI_TO_PF(vsi);
257         struct rte_eth_dev *dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
258         struct ice_rlan_ctx rx_ctx;
259         enum ice_status err;
260         uint16_t buf_size, len;
261         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
262         uint32_t rxdid = ICE_RXDID_COMMS_OVS;
263         uint32_t regval;
264
265         /* Set buffer size as the head split is disabled. */
266         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
267                               RTE_PKTMBUF_HEADROOM);
268         rxq->rx_hdr_len = 0;
269         rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
270         len = ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len;
271         rxq->max_pkt_len = RTE_MIN(len,
272                                    dev->data->dev_conf.rxmode.max_rx_pkt_len);
273
274         if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
275                 if (rxq->max_pkt_len <= RTE_ETHER_MAX_LEN ||
276                     rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
277                         PMD_DRV_LOG(ERR, "maximum packet length must "
278                                     "be larger than %u and smaller than %u,"
279                                     "as jumbo frame is enabled",
280                                     (uint32_t)RTE_ETHER_MAX_LEN,
281                                     (uint32_t)ICE_FRAME_SIZE_MAX);
282                         return -EINVAL;
283                 }
284         } else {
285                 if (rxq->max_pkt_len < RTE_ETHER_MIN_LEN ||
286                     rxq->max_pkt_len > RTE_ETHER_MAX_LEN) {
287                         PMD_DRV_LOG(ERR, "maximum packet length must be "
288                                     "larger than %u and smaller than %u, "
289                                     "as jumbo frame is disabled",
290                                     (uint32_t)RTE_ETHER_MIN_LEN,
291                                     (uint32_t)RTE_ETHER_MAX_LEN);
292                         return -EINVAL;
293                 }
294         }
295
296         memset(&rx_ctx, 0, sizeof(rx_ctx));
297
298         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
299         rx_ctx.qlen = rxq->nb_rx_desc;
300         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
301         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
302         rx_ctx.dtype = 0; /* No Header Split mode */
303 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
304         rx_ctx.dsize = 1; /* 32B descriptors */
305 #endif
306         rx_ctx.rxmax = rxq->max_pkt_len;
307         /* TPH: Transaction Layer Packet (TLP) processing hints */
308         rx_ctx.tphrdesc_ena = 1;
309         rx_ctx.tphwdesc_ena = 1;
310         rx_ctx.tphdata_ena = 1;
311         rx_ctx.tphhead_ena = 1;
312         /* Low Receive Queue Threshold defined in 64 descriptors units.
313          * When the number of free descriptors goes below the lrxqthresh,
314          * an immediate interrupt is triggered.
315          */
316         rx_ctx.lrxqthresh = 2;
317         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
318         rx_ctx.l2tsel = 1;
319         rx_ctx.showiv = 0;
320         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
321
322         rxdid = ice_proto_xtr_type_to_rxdid(rxq->proto_xtr);
323
324         PMD_DRV_LOG(DEBUG, "Port (%u) - Rx queue (%u) is set with RXDID : %u",
325                     rxq->port_id, rxq->queue_id, rxdid);
326
327         if (!(pf->supported_rxdid & BIT(rxdid))) {
328                 PMD_DRV_LOG(ERR, "currently package doesn't support RXDID (%u)",
329                             rxdid);
330                 return -EINVAL;
331         }
332
333         ice_select_rxd_to_pkt_fields_handler(rxq, rxdid);
334
335         /* Enable Flexible Descriptors in the queue context which
336          * allows this driver to select a specific receive descriptor format
337          */
338         regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
339                 QRXFLXP_CNTXT_RXDID_IDX_M;
340
341         /* increasing context priority to pick up profile ID;
342          * default is 0x01; setting to 0x03 to ensure profile
343          * is programming if prev context is of same priority
344          */
345         regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
346                 QRXFLXP_CNTXT_RXDID_PRIO_M;
347
348         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
349
350         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
351         if (err) {
352                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
353                             rxq->queue_id);
354                 return -EINVAL;
355         }
356         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
357         if (err) {
358                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
359                             rxq->queue_id);
360                 return -EINVAL;
361         }
362
363         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
364                               RTE_PKTMBUF_HEADROOM);
365
366         /* Check if scattered RX needs to be used. */
367         if (rxq->max_pkt_len > buf_size)
368                 dev->data->scattered_rx = 1;
369
370         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
371
372         /* Init the Rx tail register*/
373         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
374
375         return 0;
376 }
377
378 /* Allocate mbufs for all descriptors in rx queue */
379 static int
380 ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
381 {
382         struct ice_rx_entry *rxe = rxq->sw_ring;
383         uint64_t dma_addr;
384         uint16_t i;
385
386         for (i = 0; i < rxq->nb_rx_desc; i++) {
387                 volatile union ice_rx_flex_desc *rxd;
388                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
389
390                 if (unlikely(!mbuf)) {
391                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
392                         return -ENOMEM;
393                 }
394
395                 rte_mbuf_refcnt_set(mbuf, 1);
396                 mbuf->next = NULL;
397                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
398                 mbuf->nb_segs = 1;
399                 mbuf->port = rxq->port_id;
400
401                 dma_addr =
402                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
403
404                 rxd = &rxq->rx_ring[i];
405                 rxd->read.pkt_addr = dma_addr;
406                 rxd->read.hdr_addr = 0;
407 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
408                 rxd->read.rsvd1 = 0;
409                 rxd->read.rsvd2 = 0;
410 #endif
411                 rxe[i].mbuf = mbuf;
412         }
413
414         return 0;
415 }
416
417 /* Free all mbufs for descriptors in rx queue */
418 static void
419 _ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
420 {
421         uint16_t i;
422
423         if (!rxq || !rxq->sw_ring) {
424                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
425                 return;
426         }
427
428         for (i = 0; i < rxq->nb_rx_desc; i++) {
429                 if (rxq->sw_ring[i].mbuf) {
430                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
431                         rxq->sw_ring[i].mbuf = NULL;
432                 }
433         }
434         if (rxq->rx_nb_avail == 0)
435                 return;
436         for (i = 0; i < rxq->rx_nb_avail; i++)
437                 rte_pktmbuf_free_seg(rxq->rx_stage[rxq->rx_next_avail + i]);
438
439         rxq->rx_nb_avail = 0;
440 }
441
442 /* turn on or off rx queue
443  * @q_idx: queue index in pf scope
444  * @on: turn on or off the queue
445  */
446 static int
447 ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
448 {
449         uint32_t reg;
450         uint16_t j;
451
452         /* QRX_CTRL = QRX_ENA */
453         reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
454
455         if (on) {
456                 if (reg & QRX_CTRL_QENA_STAT_M)
457                         return 0; /* Already on, skip */
458                 reg |= QRX_CTRL_QENA_REQ_M;
459         } else {
460                 if (!(reg & QRX_CTRL_QENA_STAT_M))
461                         return 0; /* Already off, skip */
462                 reg &= ~QRX_CTRL_QENA_REQ_M;
463         }
464
465         /* Write the register */
466         ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
467         /* Check the result. It is said that QENA_STAT
468          * follows the QENA_REQ not more than 10 use.
469          * TODO: need to change the wait counter later
470          */
471         for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
472                 rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
473                 reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
474                 if (on) {
475                         if ((reg & QRX_CTRL_QENA_REQ_M) &&
476                             (reg & QRX_CTRL_QENA_STAT_M))
477                                 break;
478                 } else {
479                         if (!(reg & QRX_CTRL_QENA_REQ_M) &&
480                             !(reg & QRX_CTRL_QENA_STAT_M))
481                                 break;
482                 }
483         }
484
485         /* Check if it is timeout */
486         if (j >= ICE_CHK_Q_ENA_COUNT) {
487                 PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
488                             (on ? "enable" : "disable"), q_idx);
489                 return -ETIMEDOUT;
490         }
491
492         return 0;
493 }
494
495 static inline int
496 ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
497 {
498         int ret = 0;
499
500         if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
501                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
502                              "rxq->rx_free_thresh=%d, "
503                              "ICE_RX_MAX_BURST=%d",
504                              rxq->rx_free_thresh, ICE_RX_MAX_BURST);
505                 ret = -EINVAL;
506         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
507                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
508                              "rxq->rx_free_thresh=%d, "
509                              "rxq->nb_rx_desc=%d",
510                              rxq->rx_free_thresh, rxq->nb_rx_desc);
511                 ret = -EINVAL;
512         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
513                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
514                              "rxq->nb_rx_desc=%d, "
515                              "rxq->rx_free_thresh=%d",
516                              rxq->nb_rx_desc, rxq->rx_free_thresh);
517                 ret = -EINVAL;
518         }
519
520         return ret;
521 }
522
523 /* reset fields in ice_rx_queue back to default */
524 static void
525 ice_reset_rx_queue(struct ice_rx_queue *rxq)
526 {
527         unsigned int i;
528         uint16_t len;
529
530         if (!rxq) {
531                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
532                 return;
533         }
534
535         len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
536
537         for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
538                 ((volatile char *)rxq->rx_ring)[i] = 0;
539
540         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
541         for (i = 0; i < ICE_RX_MAX_BURST; ++i)
542                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
543
544         rxq->rx_nb_avail = 0;
545         rxq->rx_next_avail = 0;
546         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
547
548         rxq->rx_tail = 0;
549         rxq->nb_rx_hold = 0;
550         rxq->pkt_first_seg = NULL;
551         rxq->pkt_last_seg = NULL;
552
553         rxq->rxrearm_start = 0;
554         rxq->rxrearm_nb = 0;
555 }
556
557 int
558 ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
559 {
560         struct ice_rx_queue *rxq;
561         int err;
562         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
563
564         PMD_INIT_FUNC_TRACE();
565
566         if (rx_queue_id >= dev->data->nb_rx_queues) {
567                 PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
568                             rx_queue_id, dev->data->nb_rx_queues);
569                 return -EINVAL;
570         }
571
572         rxq = dev->data->rx_queues[rx_queue_id];
573         if (!rxq || !rxq->q_set) {
574                 PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
575                             rx_queue_id);
576                 return -EINVAL;
577         }
578
579         err = ice_program_hw_rx_queue(rxq);
580         if (err) {
581                 PMD_DRV_LOG(ERR, "fail to program RX queue %u",
582                             rx_queue_id);
583                 return -EIO;
584         }
585
586         err = ice_alloc_rx_queue_mbufs(rxq);
587         if (err) {
588                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
589                 return -ENOMEM;
590         }
591
592         /* Init the RX tail register. */
593         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
594
595         err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
596         if (err) {
597                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
598                             rx_queue_id);
599
600                 rxq->rx_rel_mbufs(rxq);
601                 ice_reset_rx_queue(rxq);
602                 return -EINVAL;
603         }
604
605         dev->data->rx_queue_state[rx_queue_id] =
606                 RTE_ETH_QUEUE_STATE_STARTED;
607
608         return 0;
609 }
610
611 int
612 ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
613 {
614         struct ice_rx_queue *rxq;
615         int err;
616         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
617
618         if (rx_queue_id < dev->data->nb_rx_queues) {
619                 rxq = dev->data->rx_queues[rx_queue_id];
620
621                 err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
622                 if (err) {
623                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
624                                     rx_queue_id);
625                         return -EINVAL;
626                 }
627                 rxq->rx_rel_mbufs(rxq);
628                 ice_reset_rx_queue(rxq);
629                 dev->data->rx_queue_state[rx_queue_id] =
630                         RTE_ETH_QUEUE_STATE_STOPPED;
631         }
632
633         return 0;
634 }
635
636 int
637 ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
638 {
639         struct ice_tx_queue *txq;
640         int err;
641         struct ice_vsi *vsi;
642         struct ice_hw *hw;
643         struct ice_aqc_add_tx_qgrp *txq_elem;
644         struct ice_tlan_ctx tx_ctx;
645         int buf_len;
646
647         PMD_INIT_FUNC_TRACE();
648
649         if (tx_queue_id >= dev->data->nb_tx_queues) {
650                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
651                             tx_queue_id, dev->data->nb_tx_queues);
652                 return -EINVAL;
653         }
654
655         txq = dev->data->tx_queues[tx_queue_id];
656         if (!txq || !txq->q_set) {
657                 PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
658                             tx_queue_id);
659                 return -EINVAL;
660         }
661
662         buf_len = ice_struct_size(txq_elem, txqs, 1);
663         txq_elem = ice_malloc(hw, buf_len);
664         if (!txq_elem)
665                 return -ENOMEM;
666
667         vsi = txq->vsi;
668         hw = ICE_VSI_TO_HW(vsi);
669
670         memset(&tx_ctx, 0, sizeof(tx_ctx));
671         txq_elem->num_txqs = 1;
672         txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
673
674         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
675         tx_ctx.qlen = txq->nb_tx_desc;
676         tx_ctx.pf_num = hw->pf_id;
677         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
678         tx_ctx.src_vsi = vsi->vsi_id;
679         tx_ctx.port_num = hw->port_info->lport;
680         tx_ctx.tso_ena = 1; /* tso enable */
681         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
682         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
683
684         ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
685                     ice_tlan_ctx_info);
686
687         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
688
689         /* Init the Tx tail register*/
690         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
691
692         /* Fix me, we assume TC always 0 here */
693         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
694                         txq_elem, buf_len, NULL);
695         if (err) {
696                 PMD_DRV_LOG(ERR, "Failed to add lan txq");
697                 rte_free(txq_elem);
698                 return -EIO;
699         }
700         /* store the schedule node id */
701         txq->q_teid = txq_elem->txqs[0].q_teid;
702
703         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
704
705         rte_free(txq_elem);
706         return 0;
707 }
708
709 static enum ice_status
710 ice_fdir_program_hw_rx_queue(struct ice_rx_queue *rxq)
711 {
712         struct ice_vsi *vsi = rxq->vsi;
713         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
714         uint32_t rxdid = ICE_RXDID_LEGACY_1;
715         struct ice_rlan_ctx rx_ctx;
716         enum ice_status err;
717         uint32_t regval;
718
719         rxq->rx_hdr_len = 0;
720         rxq->rx_buf_len = 1024;
721
722         memset(&rx_ctx, 0, sizeof(rx_ctx));
723
724         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
725         rx_ctx.qlen = rxq->nb_rx_desc;
726         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
727         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
728         rx_ctx.dtype = 0; /* No Header Split mode */
729         rx_ctx.dsize = 1; /* 32B descriptors */
730         rx_ctx.rxmax = RTE_ETHER_MAX_LEN;
731         /* TPH: Transaction Layer Packet (TLP) processing hints */
732         rx_ctx.tphrdesc_ena = 1;
733         rx_ctx.tphwdesc_ena = 1;
734         rx_ctx.tphdata_ena = 1;
735         rx_ctx.tphhead_ena = 1;
736         /* Low Receive Queue Threshold defined in 64 descriptors units.
737          * When the number of free descriptors goes below the lrxqthresh,
738          * an immediate interrupt is triggered.
739          */
740         rx_ctx.lrxqthresh = 2;
741         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
742         rx_ctx.l2tsel = 1;
743         rx_ctx.showiv = 0;
744         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
745
746         /* Enable Flexible Descriptors in the queue context which
747          * allows this driver to select a specific receive descriptor format
748          */
749         regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
750                 QRXFLXP_CNTXT_RXDID_IDX_M;
751
752         /* increasing context priority to pick up profile ID;
753          * default is 0x01; setting to 0x03 to ensure profile
754          * is programming if prev context is of same priority
755          */
756         regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
757                 QRXFLXP_CNTXT_RXDID_PRIO_M;
758
759         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
760
761         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
762         if (err) {
763                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
764                             rxq->queue_id);
765                 return -EINVAL;
766         }
767         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
768         if (err) {
769                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
770                             rxq->queue_id);
771                 return -EINVAL;
772         }
773
774         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
775
776         /* Init the Rx tail register*/
777         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
778
779         return 0;
780 }
781
782 int
783 ice_fdir_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
784 {
785         struct ice_rx_queue *rxq;
786         int err;
787         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
788         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
789
790         PMD_INIT_FUNC_TRACE();
791
792         rxq = pf->fdir.rxq;
793         if (!rxq || !rxq->q_set) {
794                 PMD_DRV_LOG(ERR, "FDIR RX queue %u not available or setup",
795                             rx_queue_id);
796                 return -EINVAL;
797         }
798
799         err = ice_fdir_program_hw_rx_queue(rxq);
800         if (err) {
801                 PMD_DRV_LOG(ERR, "fail to program FDIR RX queue %u",
802                             rx_queue_id);
803                 return -EIO;
804         }
805
806         /* Init the RX tail register. */
807         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
808
809         err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
810         if (err) {
811                 PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u on",
812                             rx_queue_id);
813
814                 ice_reset_rx_queue(rxq);
815                 return -EINVAL;
816         }
817
818         return 0;
819 }
820
821 int
822 ice_fdir_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
823 {
824         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
825         struct ice_tx_queue *txq;
826         int err;
827         struct ice_vsi *vsi;
828         struct ice_hw *hw;
829         struct ice_aqc_add_tx_qgrp *txq_elem;
830         struct ice_tlan_ctx tx_ctx;
831         int buf_len;
832
833         PMD_INIT_FUNC_TRACE();
834
835         txq = pf->fdir.txq;
836         if (!txq || !txq->q_set) {
837                 PMD_DRV_LOG(ERR, "FDIR TX queue %u is not available or setup",
838                             tx_queue_id);
839                 return -EINVAL;
840         }
841
842         buf_len = ice_struct_size(txq_elem, txqs, 1);
843         txq_elem = ice_malloc(hw, buf_len);
844         if (!txq_elem)
845                 return -ENOMEM;
846
847         vsi = txq->vsi;
848         hw = ICE_VSI_TO_HW(vsi);
849
850         memset(&tx_ctx, 0, sizeof(tx_ctx));
851         txq_elem->num_txqs = 1;
852         txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
853
854         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
855         tx_ctx.qlen = txq->nb_tx_desc;
856         tx_ctx.pf_num = hw->pf_id;
857         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
858         tx_ctx.src_vsi = vsi->vsi_id;
859         tx_ctx.port_num = hw->port_info->lport;
860         tx_ctx.tso_ena = 1; /* tso enable */
861         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
862         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
863
864         ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
865                     ice_tlan_ctx_info);
866
867         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
868
869         /* Init the Tx tail register*/
870         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
871
872         /* Fix me, we assume TC always 0 here */
873         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
874                               txq_elem, buf_len, NULL);
875         if (err) {
876                 PMD_DRV_LOG(ERR, "Failed to add FDIR txq");
877                 rte_free(txq_elem);
878                 return -EIO;
879         }
880         /* store the schedule node id */
881         txq->q_teid = txq_elem->txqs[0].q_teid;
882
883         rte_free(txq_elem);
884         return 0;
885 }
886
887 /* Free all mbufs for descriptors in tx queue */
888 static void
889 _ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
890 {
891         uint16_t i;
892
893         if (!txq || !txq->sw_ring) {
894                 PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
895                 return;
896         }
897
898         for (i = 0; i < txq->nb_tx_desc; i++) {
899                 if (txq->sw_ring[i].mbuf) {
900                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
901                         txq->sw_ring[i].mbuf = NULL;
902                 }
903         }
904 }
905
906 static void
907 ice_reset_tx_queue(struct ice_tx_queue *txq)
908 {
909         struct ice_tx_entry *txe;
910         uint16_t i, prev, size;
911
912         if (!txq) {
913                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
914                 return;
915         }
916
917         txe = txq->sw_ring;
918         size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
919         for (i = 0; i < size; i++)
920                 ((volatile char *)txq->tx_ring)[i] = 0;
921
922         prev = (uint16_t)(txq->nb_tx_desc - 1);
923         for (i = 0; i < txq->nb_tx_desc; i++) {
924                 volatile struct ice_tx_desc *txd = &txq->tx_ring[i];
925
926                 txd->cmd_type_offset_bsz =
927                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
928                 txe[i].mbuf =  NULL;
929                 txe[i].last_id = i;
930                 txe[prev].next_id = i;
931                 prev = i;
932         }
933
934         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
935         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
936
937         txq->tx_tail = 0;
938         txq->nb_tx_used = 0;
939
940         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
941         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
942 }
943
944 int
945 ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
946 {
947         struct ice_tx_queue *txq;
948         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
949         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
950         struct ice_vsi *vsi = pf->main_vsi;
951         enum ice_status status;
952         uint16_t q_ids[1];
953         uint32_t q_teids[1];
954         uint16_t q_handle = tx_queue_id;
955
956         if (tx_queue_id >= dev->data->nb_tx_queues) {
957                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
958                             tx_queue_id, dev->data->nb_tx_queues);
959                 return -EINVAL;
960         }
961
962         txq = dev->data->tx_queues[tx_queue_id];
963         if (!txq) {
964                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
965                             tx_queue_id);
966                 return -EINVAL;
967         }
968
969         q_ids[0] = txq->reg_idx;
970         q_teids[0] = txq->q_teid;
971
972         /* Fix me, we assume TC always 0 here */
973         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
974                                 q_ids, q_teids, ICE_NO_RESET, 0, NULL);
975         if (status != ICE_SUCCESS) {
976                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
977                 return -EINVAL;
978         }
979
980         txq->tx_rel_mbufs(txq);
981         ice_reset_tx_queue(txq);
982         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
983
984         return 0;
985 }
986
987 int
988 ice_fdir_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
989 {
990         struct ice_rx_queue *rxq;
991         int err;
992         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
993         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
994
995         rxq = pf->fdir.rxq;
996
997         err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
998         if (err) {
999                 PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u off",
1000                             rx_queue_id);
1001                 return -EINVAL;
1002         }
1003         rxq->rx_rel_mbufs(rxq);
1004
1005         return 0;
1006 }
1007
1008 int
1009 ice_fdir_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1010 {
1011         struct ice_tx_queue *txq;
1012         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1013         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1014         struct ice_vsi *vsi = pf->main_vsi;
1015         enum ice_status status;
1016         uint16_t q_ids[1];
1017         uint32_t q_teids[1];
1018         uint16_t q_handle = tx_queue_id;
1019
1020         txq = pf->fdir.txq;
1021         if (!txq) {
1022                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
1023                             tx_queue_id);
1024                 return -EINVAL;
1025         }
1026         vsi = txq->vsi;
1027
1028         q_ids[0] = txq->reg_idx;
1029         q_teids[0] = txq->q_teid;
1030
1031         /* Fix me, we assume TC always 0 here */
1032         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
1033                                  q_ids, q_teids, ICE_NO_RESET, 0, NULL);
1034         if (status != ICE_SUCCESS) {
1035                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
1036                 return -EINVAL;
1037         }
1038
1039         txq->tx_rel_mbufs(txq);
1040
1041         return 0;
1042 }
1043
1044 int
1045 ice_rx_queue_setup(struct rte_eth_dev *dev,
1046                    uint16_t queue_idx,
1047                    uint16_t nb_desc,
1048                    unsigned int socket_id,
1049                    const struct rte_eth_rxconf *rx_conf,
1050                    struct rte_mempool *mp)
1051 {
1052         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1053         struct ice_adapter *ad =
1054                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1055         struct ice_vsi *vsi = pf->main_vsi;
1056         struct ice_rx_queue *rxq;
1057         const struct rte_memzone *rz;
1058         uint32_t ring_size;
1059         uint16_t len;
1060         int use_def_burst_func = 1;
1061
1062         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1063             nb_desc > ICE_MAX_RING_DESC ||
1064             nb_desc < ICE_MIN_RING_DESC) {
1065                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
1066                              "invalid", nb_desc);
1067                 return -EINVAL;
1068         }
1069
1070         /* Free memory if needed */
1071         if (dev->data->rx_queues[queue_idx]) {
1072                 ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
1073                 dev->data->rx_queues[queue_idx] = NULL;
1074         }
1075
1076         /* Allocate the rx queue data structure */
1077         rxq = rte_zmalloc_socket(NULL,
1078                                  sizeof(struct ice_rx_queue),
1079                                  RTE_CACHE_LINE_SIZE,
1080                                  socket_id);
1081         if (!rxq) {
1082                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1083                              "rx queue data structure");
1084                 return -ENOMEM;
1085         }
1086         rxq->mp = mp;
1087         rxq->nb_rx_desc = nb_desc;
1088         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1089         rxq->queue_id = queue_idx;
1090
1091         rxq->reg_idx = vsi->base_queue + queue_idx;
1092         rxq->port_id = dev->data->port_id;
1093         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1094                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1095         else
1096                 rxq->crc_len = 0;
1097
1098         rxq->drop_en = rx_conf->rx_drop_en;
1099         rxq->vsi = vsi;
1100         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1101         rxq->proto_xtr = pf->proto_xtr != NULL ?
1102                          pf->proto_xtr[queue_idx] : PROTO_XTR_NONE;
1103
1104         /* Allocate the maximun number of RX ring hardware descriptor. */
1105         len = ICE_MAX_RING_DESC;
1106
1107         /**
1108          * Allocating a little more memory because vectorized/bulk_alloc Rx
1109          * functions doesn't check boundaries each time.
1110          */
1111         len += ICE_RX_MAX_BURST;
1112
1113         /* Allocate the maximum number of RX ring hardware descriptor. */
1114         ring_size = sizeof(union ice_rx_flex_desc) * len;
1115         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1116         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1117                                       ring_size, ICE_RING_BASE_ALIGN,
1118                                       socket_id);
1119         if (!rz) {
1120                 ice_rx_queue_release(rxq);
1121                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
1122                 return -ENOMEM;
1123         }
1124
1125         /* Zero all the descriptors in the ring. */
1126         memset(rz->addr, 0, ring_size);
1127
1128         rxq->rx_ring_dma = rz->iova;
1129         rxq->rx_ring = rz->addr;
1130
1131         /* always reserve more for bulk alloc */
1132         len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
1133
1134         /* Allocate the software ring. */
1135         rxq->sw_ring = rte_zmalloc_socket(NULL,
1136                                           sizeof(struct ice_rx_entry) * len,
1137                                           RTE_CACHE_LINE_SIZE,
1138                                           socket_id);
1139         if (!rxq->sw_ring) {
1140                 ice_rx_queue_release(rxq);
1141                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
1142                 return -ENOMEM;
1143         }
1144
1145         ice_reset_rx_queue(rxq);
1146         rxq->q_set = true;
1147         dev->data->rx_queues[queue_idx] = rxq;
1148         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
1149
1150         use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
1151
1152         if (!use_def_burst_func) {
1153                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1154                              "satisfied. Rx Burst Bulk Alloc function will be "
1155                              "used on port=%d, queue=%d.",
1156                              rxq->port_id, rxq->queue_id);
1157         } else {
1158                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1159                              "not satisfied, Scattered Rx is requested. "
1160                              "on port=%d, queue=%d.",
1161                              rxq->port_id, rxq->queue_id);
1162                 ad->rx_bulk_alloc_allowed = false;
1163         }
1164
1165         return 0;
1166 }
1167
1168 void
1169 ice_rx_queue_release(void *rxq)
1170 {
1171         struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
1172
1173         if (!q) {
1174                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1175                 return;
1176         }
1177
1178         q->rx_rel_mbufs(q);
1179         rte_free(q->sw_ring);
1180         rte_free(q);
1181 }
1182
1183 int
1184 ice_tx_queue_setup(struct rte_eth_dev *dev,
1185                    uint16_t queue_idx,
1186                    uint16_t nb_desc,
1187                    unsigned int socket_id,
1188                    const struct rte_eth_txconf *tx_conf)
1189 {
1190         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1191         struct ice_vsi *vsi = pf->main_vsi;
1192         struct ice_tx_queue *txq;
1193         const struct rte_memzone *tz;
1194         uint32_t ring_size;
1195         uint16_t tx_rs_thresh, tx_free_thresh;
1196         uint64_t offloads;
1197
1198         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1199
1200         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1201             nb_desc > ICE_MAX_RING_DESC ||
1202             nb_desc < ICE_MIN_RING_DESC) {
1203                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
1204                              "invalid", nb_desc);
1205                 return -EINVAL;
1206         }
1207
1208         /**
1209          * The following two parameters control the setting of the RS bit on
1210          * transmit descriptors. TX descriptors will have their RS bit set
1211          * after txq->tx_rs_thresh descriptors have been used. The TX
1212          * descriptor ring will be cleaned after txq->tx_free_thresh
1213          * descriptors are used or if the number of descriptors required to
1214          * transmit a packet is greater than the number of free TX descriptors.
1215          *
1216          * The following constraints must be satisfied:
1217          *  - tx_rs_thresh must be greater than 0.
1218          *  - tx_rs_thresh must be less than the size of the ring minus 2.
1219          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
1220          *  - tx_rs_thresh must be a divisor of the ring size.
1221          *  - tx_free_thresh must be greater than 0.
1222          *  - tx_free_thresh must be less than the size of the ring minus 3.
1223          *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
1224          *
1225          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
1226          * race condition, hence the maximum threshold constraints. When set
1227          * to zero use default values.
1228          */
1229         tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
1230                                     tx_conf->tx_free_thresh :
1231                                     ICE_DEFAULT_TX_FREE_THRESH);
1232         /* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
1233         tx_rs_thresh =
1234                 (ICE_DEFAULT_TX_RSBIT_THRESH + tx_free_thresh > nb_desc) ?
1235                         nb_desc - tx_free_thresh : ICE_DEFAULT_TX_RSBIT_THRESH;
1236         if (tx_conf->tx_rs_thresh)
1237                 tx_rs_thresh = tx_conf->tx_rs_thresh;
1238         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
1239                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
1240                                 "exceed nb_desc. (tx_rs_thresh=%u "
1241                                 "tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
1242                                 (unsigned int)tx_rs_thresh,
1243                                 (unsigned int)tx_free_thresh,
1244                                 (unsigned int)nb_desc,
1245                                 (int)dev->data->port_id,
1246                                 (int)queue_idx);
1247                 return -EINVAL;
1248         }
1249         if (tx_rs_thresh >= (nb_desc - 2)) {
1250                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1251                              "number of TX descriptors minus 2. "
1252                              "(tx_rs_thresh=%u port=%d queue=%d)",
1253                              (unsigned int)tx_rs_thresh,
1254                              (int)dev->data->port_id,
1255                              (int)queue_idx);
1256                 return -EINVAL;
1257         }
1258         if (tx_free_thresh >= (nb_desc - 3)) {
1259                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1260                              "tx_free_thresh must be less than the "
1261                              "number of TX descriptors minus 3. "
1262                              "(tx_free_thresh=%u port=%d queue=%d)",
1263                              (unsigned int)tx_free_thresh,
1264                              (int)dev->data->port_id,
1265                              (int)queue_idx);
1266                 return -EINVAL;
1267         }
1268         if (tx_rs_thresh > tx_free_thresh) {
1269                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
1270                              "equal to tx_free_thresh. (tx_free_thresh=%u"
1271                              " tx_rs_thresh=%u port=%d queue=%d)",
1272                              (unsigned int)tx_free_thresh,
1273                              (unsigned int)tx_rs_thresh,
1274                              (int)dev->data->port_id,
1275                              (int)queue_idx);
1276                 return -EINVAL;
1277         }
1278         if ((nb_desc % tx_rs_thresh) != 0) {
1279                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
1280                              "number of TX descriptors. (tx_rs_thresh=%u"
1281                              " port=%d queue=%d)",
1282                              (unsigned int)tx_rs_thresh,
1283                              (int)dev->data->port_id,
1284                              (int)queue_idx);
1285                 return -EINVAL;
1286         }
1287         if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
1288                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1289                              "tx_rs_thresh is greater than 1. "
1290                              "(tx_rs_thresh=%u port=%d queue=%d)",
1291                              (unsigned int)tx_rs_thresh,
1292                              (int)dev->data->port_id,
1293                              (int)queue_idx);
1294                 return -EINVAL;
1295         }
1296
1297         /* Free memory if needed. */
1298         if (dev->data->tx_queues[queue_idx]) {
1299                 ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
1300                 dev->data->tx_queues[queue_idx] = NULL;
1301         }
1302
1303         /* Allocate the TX queue data structure. */
1304         txq = rte_zmalloc_socket(NULL,
1305                                  sizeof(struct ice_tx_queue),
1306                                  RTE_CACHE_LINE_SIZE,
1307                                  socket_id);
1308         if (!txq) {
1309                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1310                              "tx queue structure");
1311                 return -ENOMEM;
1312         }
1313
1314         /* Allocate TX hardware ring descriptors. */
1315         ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
1316         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1317         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
1318                                       ring_size, ICE_RING_BASE_ALIGN,
1319                                       socket_id);
1320         if (!tz) {
1321                 ice_tx_queue_release(txq);
1322                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
1323                 return -ENOMEM;
1324         }
1325
1326         txq->nb_tx_desc = nb_desc;
1327         txq->tx_rs_thresh = tx_rs_thresh;
1328         txq->tx_free_thresh = tx_free_thresh;
1329         txq->pthresh = tx_conf->tx_thresh.pthresh;
1330         txq->hthresh = tx_conf->tx_thresh.hthresh;
1331         txq->wthresh = tx_conf->tx_thresh.wthresh;
1332         txq->queue_id = queue_idx;
1333
1334         txq->reg_idx = vsi->base_queue + queue_idx;
1335         txq->port_id = dev->data->port_id;
1336         txq->offloads = offloads;
1337         txq->vsi = vsi;
1338         txq->tx_deferred_start = tx_conf->tx_deferred_start;
1339
1340         txq->tx_ring_dma = tz->iova;
1341         txq->tx_ring = tz->addr;
1342
1343         /* Allocate software ring */
1344         txq->sw_ring =
1345                 rte_zmalloc_socket(NULL,
1346                                    sizeof(struct ice_tx_entry) * nb_desc,
1347                                    RTE_CACHE_LINE_SIZE,
1348                                    socket_id);
1349         if (!txq->sw_ring) {
1350                 ice_tx_queue_release(txq);
1351                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
1352                 return -ENOMEM;
1353         }
1354
1355         ice_reset_tx_queue(txq);
1356         txq->q_set = true;
1357         dev->data->tx_queues[queue_idx] = txq;
1358         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
1359         ice_set_tx_function_flag(dev, txq);
1360
1361         return 0;
1362 }
1363
1364 void
1365 ice_tx_queue_release(void *txq)
1366 {
1367         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
1368
1369         if (!q) {
1370                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
1371                 return;
1372         }
1373
1374         q->tx_rel_mbufs(q);
1375         rte_free(q->sw_ring);
1376         rte_free(q);
1377 }
1378
1379 void
1380 ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1381                  struct rte_eth_rxq_info *qinfo)
1382 {
1383         struct ice_rx_queue *rxq;
1384
1385         rxq = dev->data->rx_queues[queue_id];
1386
1387         qinfo->mp = rxq->mp;
1388         qinfo->scattered_rx = dev->data->scattered_rx;
1389         qinfo->nb_desc = rxq->nb_rx_desc;
1390
1391         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1392         qinfo->conf.rx_drop_en = rxq->drop_en;
1393         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
1394 }
1395
1396 void
1397 ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1398                  struct rte_eth_txq_info *qinfo)
1399 {
1400         struct ice_tx_queue *txq;
1401
1402         txq = dev->data->tx_queues[queue_id];
1403
1404         qinfo->nb_desc = txq->nb_tx_desc;
1405
1406         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1407         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1408         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1409
1410         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1411         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
1412         qinfo->conf.offloads = txq->offloads;
1413         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1414 }
1415
1416 uint32_t
1417 ice_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1418 {
1419 #define ICE_RXQ_SCAN_INTERVAL 4
1420         volatile union ice_rx_flex_desc *rxdp;
1421         struct ice_rx_queue *rxq;
1422         uint16_t desc = 0;
1423
1424         rxq = dev->data->rx_queues[rx_queue_id];
1425         rxdp = &rxq->rx_ring[rxq->rx_tail];
1426         while ((desc < rxq->nb_rx_desc) &&
1427                rte_le_to_cpu_16(rxdp->wb.status_error0) &
1428                (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)) {
1429                 /**
1430                  * Check the DD bit of a rx descriptor of each 4 in a group,
1431                  * to avoid checking too frequently and downgrading performance
1432                  * too much.
1433                  */
1434                 desc += ICE_RXQ_SCAN_INTERVAL;
1435                 rxdp += ICE_RXQ_SCAN_INTERVAL;
1436                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1437                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1438                                  desc - rxq->nb_rx_desc]);
1439         }
1440
1441         return desc;
1442 }
1443
1444 #define ICE_RX_FLEX_ERR0_BITS   \
1445         ((1 << ICE_RX_FLEX_DESC_STATUS0_HBO_S) |        \
1446          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |   \
1447          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |   \
1448          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) |  \
1449          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
1450          (1 << ICE_RX_FLEX_DESC_STATUS0_RXE_S))
1451
1452 /* Rx L3/L4 checksum */
1453 static inline uint64_t
1454 ice_rxd_error_to_pkt_flags(uint16_t stat_err0)
1455 {
1456         uint64_t flags = 0;
1457
1458         /* check if HW has decoded the packet and checksum */
1459         if (unlikely(!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1460                 return 0;
1461
1462         if (likely(!(stat_err0 & ICE_RX_FLEX_ERR0_BITS))) {
1463                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
1464                 return flags;
1465         }
1466
1467         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1468                 flags |= PKT_RX_IP_CKSUM_BAD;
1469         else
1470                 flags |= PKT_RX_IP_CKSUM_GOOD;
1471
1472         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1473                 flags |= PKT_RX_L4_CKSUM_BAD;
1474         else
1475                 flags |= PKT_RX_L4_CKSUM_GOOD;
1476
1477         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1478                 flags |= PKT_RX_EIP_CKSUM_BAD;
1479
1480         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
1481                 flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
1482         else
1483                 flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
1484
1485         return flags;
1486 }
1487
1488 static inline void
1489 ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_flex_desc *rxdp)
1490 {
1491         if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
1492             (1 << ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
1493                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1494                 mb->vlan_tci =
1495                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
1496                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
1497                            rte_le_to_cpu_16(rxdp->wb.l2tag1));
1498         } else {
1499                 mb->vlan_tci = 0;
1500         }
1501
1502 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1503         if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
1504             (1 << ICE_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
1505                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
1506                                 PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
1507                 mb->vlan_tci_outer = mb->vlan_tci;
1508                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1509                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1510                            rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
1511                            rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
1512         } else {
1513                 mb->vlan_tci_outer = 0;
1514         }
1515 #endif
1516         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
1517                    mb->vlan_tci, mb->vlan_tci_outer);
1518 }
1519
1520 #define ICE_LOOK_AHEAD 8
1521 #if (ICE_LOOK_AHEAD != 8)
1522 #error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
1523 #endif
1524 static inline int
1525 ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
1526 {
1527         volatile union ice_rx_flex_desc *rxdp;
1528         struct ice_rx_entry *rxep;
1529         struct rte_mbuf *mb;
1530         uint16_t stat_err0;
1531         uint16_t pkt_len;
1532         int32_t s[ICE_LOOK_AHEAD], nb_dd;
1533         int32_t i, j, nb_rx = 0;
1534         uint64_t pkt_flags = 0;
1535         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1536
1537         rxdp = &rxq->rx_ring[rxq->rx_tail];
1538         rxep = &rxq->sw_ring[rxq->rx_tail];
1539
1540         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1541
1542         /* Make sure there is at least 1 packet to receive */
1543         if (!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1544                 return 0;
1545
1546         /**
1547          * Scan LOOK_AHEAD descriptors at a time to determine which
1548          * descriptors reference packets that are ready to be received.
1549          */
1550         for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
1551              rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
1552                 /* Read desc statuses backwards to avoid race condition */
1553                 for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--)
1554                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1555
1556                 rte_smp_rmb();
1557
1558                 /* Compute how many status bits were set */
1559                 for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
1560                         nb_dd += s[j] & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
1561
1562                 nb_rx += nb_dd;
1563
1564                 /* Translate descriptor info to mbuf parameters */
1565                 for (j = 0; j < nb_dd; j++) {
1566                         mb = rxep[j].mbuf;
1567                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1568                                    ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1569                         mb->data_len = pkt_len;
1570                         mb->pkt_len = pkt_len;
1571                         mb->ol_flags = 0;
1572                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1573                         pkt_flags = ice_rxd_error_to_pkt_flags(stat_err0);
1574                         mb->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1575                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1576                         ice_rxd_to_vlan_tci(mb, &rxdp[j]);
1577                         rxq->rxd_to_pkt_fields(rxq, mb, &rxdp[j]);
1578
1579                         mb->ol_flags |= pkt_flags;
1580                 }
1581
1582                 for (j = 0; j < ICE_LOOK_AHEAD; j++)
1583                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1584
1585                 if (nb_dd != ICE_LOOK_AHEAD)
1586                         break;
1587         }
1588
1589         /* Clear software ring entries */
1590         for (i = 0; i < nb_rx; i++)
1591                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1592
1593         PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
1594                    "port_id=%u, queue_id=%u, nb_rx=%d",
1595                    rxq->port_id, rxq->queue_id, nb_rx);
1596
1597         return nb_rx;
1598 }
1599
1600 static inline uint16_t
1601 ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
1602                        struct rte_mbuf **rx_pkts,
1603                        uint16_t nb_pkts)
1604 {
1605         uint16_t i;
1606         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1607
1608         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1609
1610         for (i = 0; i < nb_pkts; i++)
1611                 rx_pkts[i] = stage[i];
1612
1613         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1614         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1615
1616         return nb_pkts;
1617 }
1618
1619 static inline int
1620 ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
1621 {
1622         volatile union ice_rx_flex_desc *rxdp;
1623         struct ice_rx_entry *rxep;
1624         struct rte_mbuf *mb;
1625         uint16_t alloc_idx, i;
1626         uint64_t dma_addr;
1627         int diag;
1628
1629         /* Allocate buffers in bulk */
1630         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1631                                (rxq->rx_free_thresh - 1));
1632         rxep = &rxq->sw_ring[alloc_idx];
1633         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1634                                     rxq->rx_free_thresh);
1635         if (unlikely(diag != 0)) {
1636                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1637                 return -ENOMEM;
1638         }
1639
1640         rxdp = &rxq->rx_ring[alloc_idx];
1641         for (i = 0; i < rxq->rx_free_thresh; i++) {
1642                 if (likely(i < (rxq->rx_free_thresh - 1)))
1643                         /* Prefetch next mbuf */
1644                         rte_prefetch0(rxep[i + 1].mbuf);
1645
1646                 mb = rxep[i].mbuf;
1647                 rte_mbuf_refcnt_set(mb, 1);
1648                 mb->next = NULL;
1649                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1650                 mb->nb_segs = 1;
1651                 mb->port = rxq->port_id;
1652                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1653                 rxdp[i].read.hdr_addr = 0;
1654                 rxdp[i].read.pkt_addr = dma_addr;
1655         }
1656
1657         /* Update rx tail regsiter */
1658         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1659
1660         rxq->rx_free_trigger =
1661                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1662         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1663                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1664
1665         return 0;
1666 }
1667
1668 static inline uint16_t
1669 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1670 {
1671         struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
1672         uint16_t nb_rx = 0;
1673         struct rte_eth_dev *dev;
1674
1675         if (!nb_pkts)
1676                 return 0;
1677
1678         if (rxq->rx_nb_avail)
1679                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1680
1681         nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
1682         rxq->rx_next_avail = 0;
1683         rxq->rx_nb_avail = nb_rx;
1684         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1685
1686         if (rxq->rx_tail > rxq->rx_free_trigger) {
1687                 if (ice_rx_alloc_bufs(rxq) != 0) {
1688                         uint16_t i, j;
1689
1690                         dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
1691                         dev->data->rx_mbuf_alloc_failed +=
1692                                 rxq->rx_free_thresh;
1693                         PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1694                                    "port_id=%u, queue_id=%u",
1695                                    rxq->port_id, rxq->queue_id);
1696                         rxq->rx_nb_avail = 0;
1697                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1698                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1699                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1700
1701                         return 0;
1702                 }
1703         }
1704
1705         if (rxq->rx_tail >= rxq->nb_rx_desc)
1706                 rxq->rx_tail = 0;
1707
1708         if (rxq->rx_nb_avail)
1709                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1710
1711         return 0;
1712 }
1713
1714 static uint16_t
1715 ice_recv_pkts_bulk_alloc(void *rx_queue,
1716                          struct rte_mbuf **rx_pkts,
1717                          uint16_t nb_pkts)
1718 {
1719         uint16_t nb_rx = 0;
1720         uint16_t n;
1721         uint16_t count;
1722
1723         if (unlikely(nb_pkts == 0))
1724                 return nb_rx;
1725
1726         if (likely(nb_pkts <= ICE_RX_MAX_BURST))
1727                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1728
1729         while (nb_pkts) {
1730                 n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
1731                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1732                 nb_rx = (uint16_t)(nb_rx + count);
1733                 nb_pkts = (uint16_t)(nb_pkts - count);
1734                 if (count < n)
1735                         break;
1736         }
1737
1738         return nb_rx;
1739 }
1740
1741 static uint16_t
1742 ice_recv_scattered_pkts(void *rx_queue,
1743                         struct rte_mbuf **rx_pkts,
1744                         uint16_t nb_pkts)
1745 {
1746         struct ice_rx_queue *rxq = rx_queue;
1747         volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
1748         volatile union ice_rx_flex_desc *rxdp;
1749         union ice_rx_flex_desc rxd;
1750         struct ice_rx_entry *sw_ring = rxq->sw_ring;
1751         struct ice_rx_entry *rxe;
1752         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1753         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1754         struct rte_mbuf *nmb; /* new allocated mbuf */
1755         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
1756         uint16_t rx_id = rxq->rx_tail;
1757         uint16_t nb_rx = 0;
1758         uint16_t nb_hold = 0;
1759         uint16_t rx_packet_len;
1760         uint16_t rx_stat_err0;
1761         uint64_t dma_addr;
1762         uint64_t pkt_flags;
1763         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1764         struct rte_eth_dev *dev;
1765
1766         while (nb_rx < nb_pkts) {
1767                 rxdp = &rx_ring[rx_id];
1768                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1769
1770                 /* Check the DD bit first */
1771                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1772                         break;
1773
1774                 /* allocate mbuf */
1775                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1776                 if (unlikely(!nmb)) {
1777                         dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
1778                         dev->data->rx_mbuf_alloc_failed++;
1779                         break;
1780                 }
1781                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
1782
1783                 nb_hold++;
1784                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
1785                 rx_id++;
1786                 if (unlikely(rx_id == rxq->nb_rx_desc))
1787                         rx_id = 0;
1788
1789                 /* Prefetch next mbuf */
1790                 rte_prefetch0(sw_ring[rx_id].mbuf);
1791
1792                 /**
1793                  * When next RX descriptor is on a cache line boundary,
1794                  * prefetch the next 4 RX descriptors and next 8 pointers
1795                  * to mbufs.
1796                  */
1797                 if ((rx_id & 0x3) == 0) {
1798                         rte_prefetch0(&rx_ring[rx_id]);
1799                         rte_prefetch0(&sw_ring[rx_id]);
1800                 }
1801
1802                 rxm = rxe->mbuf;
1803                 rxe->mbuf = nmb;
1804                 dma_addr =
1805                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1806
1807                 /* Set data buffer address and data length of the mbuf */
1808                 rxdp->read.hdr_addr = 0;
1809                 rxdp->read.pkt_addr = dma_addr;
1810                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1811                                 ICE_RX_FLX_DESC_PKT_LEN_M;
1812                 rxm->data_len = rx_packet_len;
1813                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1814
1815                 /**
1816                  * If this is the first buffer of the received packet, set the
1817                  * pointer to the first mbuf of the packet and initialize its
1818                  * context. Otherwise, update the total length and the number
1819                  * of segments of the current scattered packet, and update the
1820                  * pointer to the last mbuf of the current packet.
1821                  */
1822                 if (!first_seg) {
1823                         first_seg = rxm;
1824                         first_seg->nb_segs = 1;
1825                         first_seg->pkt_len = rx_packet_len;
1826                 } else {
1827                         first_seg->pkt_len =
1828                                 (uint16_t)(first_seg->pkt_len +
1829                                            rx_packet_len);
1830                         first_seg->nb_segs++;
1831                         last_seg->next = rxm;
1832                 }
1833
1834                 /**
1835                  * If this is not the last buffer of the received packet,
1836                  * update the pointer to the last mbuf of the current scattered
1837                  * packet and continue to parse the RX ring.
1838                  */
1839                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_EOF_S))) {
1840                         last_seg = rxm;
1841                         continue;
1842                 }
1843
1844                 /**
1845                  * This is the last buffer of the received packet. If the CRC
1846                  * is not stripped by the hardware:
1847                  *  - Subtract the CRC length from the total packet length.
1848                  *  - If the last buffer only contains the whole CRC or a part
1849                  *  of it, free the mbuf associated to the last buffer. If part
1850                  *  of the CRC is also contained in the previous mbuf, subtract
1851                  *  the length of that CRC part from the data length of the
1852                  *  previous mbuf.
1853                  */
1854                 rxm->next = NULL;
1855                 if (unlikely(rxq->crc_len > 0)) {
1856                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1857                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1858                                 rte_pktmbuf_free_seg(rxm);
1859                                 first_seg->nb_segs--;
1860                                 last_seg->data_len =
1861                                         (uint16_t)(last_seg->data_len -
1862                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1863                                 last_seg->next = NULL;
1864                         } else
1865                                 rxm->data_len = (uint16_t)(rx_packet_len -
1866                                                            RTE_ETHER_CRC_LEN);
1867                 }
1868
1869                 first_seg->port = rxq->port_id;
1870                 first_seg->ol_flags = 0;
1871                 first_seg->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1872                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1873                 ice_rxd_to_vlan_tci(first_seg, &rxd);
1874                 rxq->rxd_to_pkt_fields(rxq, first_seg, &rxd);
1875                 pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
1876                 first_seg->ol_flags |= pkt_flags;
1877                 /* Prefetch data of first segment, if configured to do so. */
1878                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1879                                           first_seg->data_off));
1880                 rx_pkts[nb_rx++] = first_seg;
1881                 first_seg = NULL;
1882         }
1883
1884         /* Record index of the next RX descriptor to probe. */
1885         rxq->rx_tail = rx_id;
1886         rxq->pkt_first_seg = first_seg;
1887         rxq->pkt_last_seg = last_seg;
1888
1889         /**
1890          * If the number of free RX descriptors is greater than the RX free
1891          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1892          * register. Update the RDT with the value of the last processed RX
1893          * descriptor minus 1, to guarantee that the RDT register is never
1894          * equal to the RDH register, which creates a "full" ring situtation
1895          * from the hardware point of view.
1896          */
1897         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1898         if (nb_hold > rxq->rx_free_thresh) {
1899                 rx_id = (uint16_t)(rx_id == 0 ?
1900                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
1901                 /* write TAIL register */
1902                 ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1903                 nb_hold = 0;
1904         }
1905         rxq->nb_rx_hold = nb_hold;
1906
1907         /* return received packet in the burst */
1908         return nb_rx;
1909 }
1910
1911 const uint32_t *
1912 ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1913 {
1914         struct ice_adapter *ad =
1915                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1916         const uint32_t *ptypes;
1917
1918         static const uint32_t ptypes_os[] = {
1919                 /* refers to ice_get_default_pkt_type() */
1920                 RTE_PTYPE_L2_ETHER,
1921                 RTE_PTYPE_L2_ETHER_TIMESYNC,
1922                 RTE_PTYPE_L2_ETHER_LLDP,
1923                 RTE_PTYPE_L2_ETHER_ARP,
1924                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1925                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1926                 RTE_PTYPE_L4_FRAG,
1927                 RTE_PTYPE_L4_ICMP,
1928                 RTE_PTYPE_L4_NONFRAG,
1929                 RTE_PTYPE_L4_SCTP,
1930                 RTE_PTYPE_L4_TCP,
1931                 RTE_PTYPE_L4_UDP,
1932                 RTE_PTYPE_TUNNEL_GRENAT,
1933                 RTE_PTYPE_TUNNEL_IP,
1934                 RTE_PTYPE_INNER_L2_ETHER,
1935                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1936                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1937                 RTE_PTYPE_INNER_L4_FRAG,
1938                 RTE_PTYPE_INNER_L4_ICMP,
1939                 RTE_PTYPE_INNER_L4_NONFRAG,
1940                 RTE_PTYPE_INNER_L4_SCTP,
1941                 RTE_PTYPE_INNER_L4_TCP,
1942                 RTE_PTYPE_INNER_L4_UDP,
1943                 RTE_PTYPE_UNKNOWN
1944         };
1945
1946         static const uint32_t ptypes_comms[] = {
1947                 /* refers to ice_get_default_pkt_type() */
1948                 RTE_PTYPE_L2_ETHER,
1949                 RTE_PTYPE_L2_ETHER_TIMESYNC,
1950                 RTE_PTYPE_L2_ETHER_LLDP,
1951                 RTE_PTYPE_L2_ETHER_ARP,
1952                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1953                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1954                 RTE_PTYPE_L4_FRAG,
1955                 RTE_PTYPE_L4_ICMP,
1956                 RTE_PTYPE_L4_NONFRAG,
1957                 RTE_PTYPE_L4_SCTP,
1958                 RTE_PTYPE_L4_TCP,
1959                 RTE_PTYPE_L4_UDP,
1960                 RTE_PTYPE_TUNNEL_GRENAT,
1961                 RTE_PTYPE_TUNNEL_IP,
1962                 RTE_PTYPE_INNER_L2_ETHER,
1963                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1964                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1965                 RTE_PTYPE_INNER_L4_FRAG,
1966                 RTE_PTYPE_INNER_L4_ICMP,
1967                 RTE_PTYPE_INNER_L4_NONFRAG,
1968                 RTE_PTYPE_INNER_L4_SCTP,
1969                 RTE_PTYPE_INNER_L4_TCP,
1970                 RTE_PTYPE_INNER_L4_UDP,
1971                 RTE_PTYPE_TUNNEL_GTPC,
1972                 RTE_PTYPE_TUNNEL_GTPU,
1973                 RTE_PTYPE_L2_ETHER_PPPOE,
1974                 RTE_PTYPE_UNKNOWN
1975         };
1976
1977         if (ad->active_pkg_type == ICE_PKG_TYPE_COMMS)
1978                 ptypes = ptypes_comms;
1979         else
1980                 ptypes = ptypes_os;
1981
1982         if (dev->rx_pkt_burst == ice_recv_pkts ||
1983             dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
1984             dev->rx_pkt_burst == ice_recv_scattered_pkts)
1985                 return ptypes;
1986
1987 #ifdef RTE_ARCH_X86
1988         if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
1989             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
1990 #ifdef CC_AVX512_SUPPORT
1991             dev->rx_pkt_burst == ice_recv_pkts_vec_avx512 ||
1992             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512 ||
1993 #endif
1994             dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
1995             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2)
1996                 return ptypes;
1997 #endif
1998
1999         return NULL;
2000 }
2001
2002 int
2003 ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
2004 {
2005         volatile union ice_rx_flex_desc *rxdp;
2006         struct ice_rx_queue *rxq = rx_queue;
2007         uint32_t desc;
2008
2009         if (unlikely(offset >= rxq->nb_rx_desc))
2010                 return -EINVAL;
2011
2012         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2013                 return RTE_ETH_RX_DESC_UNAVAIL;
2014
2015         desc = rxq->rx_tail + offset;
2016         if (desc >= rxq->nb_rx_desc)
2017                 desc -= rxq->nb_rx_desc;
2018
2019         rxdp = &rxq->rx_ring[desc];
2020         if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
2021             (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))
2022                 return RTE_ETH_RX_DESC_DONE;
2023
2024         return RTE_ETH_RX_DESC_AVAIL;
2025 }
2026
2027 int
2028 ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
2029 {
2030         struct ice_tx_queue *txq = tx_queue;
2031         volatile uint64_t *status;
2032         uint64_t mask, expect;
2033         uint32_t desc;
2034
2035         if (unlikely(offset >= txq->nb_tx_desc))
2036                 return -EINVAL;
2037
2038         desc = txq->tx_tail + offset;
2039         /* go to next desc that has the RS bit */
2040         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2041                 txq->tx_rs_thresh;
2042         if (desc >= txq->nb_tx_desc) {
2043                 desc -= txq->nb_tx_desc;
2044                 if (desc >= txq->nb_tx_desc)
2045                         desc -= txq->nb_tx_desc;
2046         }
2047
2048         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2049         mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
2050         expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
2051                                   ICE_TXD_QW1_DTYPE_S);
2052         if ((*status & mask) == expect)
2053                 return RTE_ETH_TX_DESC_DONE;
2054
2055         return RTE_ETH_TX_DESC_FULL;
2056 }
2057
2058 void
2059 ice_free_queues(struct rte_eth_dev *dev)
2060 {
2061         uint16_t i;
2062
2063         PMD_INIT_FUNC_TRACE();
2064
2065         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2066                 if (!dev->data->rx_queues[i])
2067                         continue;
2068                 ice_rx_queue_release(dev->data->rx_queues[i]);
2069                 dev->data->rx_queues[i] = NULL;
2070                 rte_eth_dma_zone_free(dev, "rx_ring", i);
2071         }
2072         dev->data->nb_rx_queues = 0;
2073
2074         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2075                 if (!dev->data->tx_queues[i])
2076                         continue;
2077                 ice_tx_queue_release(dev->data->tx_queues[i]);
2078                 dev->data->tx_queues[i] = NULL;
2079                 rte_eth_dma_zone_free(dev, "tx_ring", i);
2080         }
2081         dev->data->nb_tx_queues = 0;
2082 }
2083
2084 #define ICE_FDIR_NUM_TX_DESC  ICE_MIN_RING_DESC
2085 #define ICE_FDIR_NUM_RX_DESC  ICE_MIN_RING_DESC
2086
2087 int
2088 ice_fdir_setup_tx_resources(struct ice_pf *pf)
2089 {
2090         struct ice_tx_queue *txq;
2091         const struct rte_memzone *tz = NULL;
2092         uint32_t ring_size;
2093         struct rte_eth_dev *dev;
2094
2095         if (!pf) {
2096                 PMD_DRV_LOG(ERR, "PF is not available");
2097                 return -EINVAL;
2098         }
2099
2100         dev = pf->adapter->eth_dev;
2101
2102         /* Allocate the TX queue data structure. */
2103         txq = rte_zmalloc_socket("ice fdir tx queue",
2104                                  sizeof(struct ice_tx_queue),
2105                                  RTE_CACHE_LINE_SIZE,
2106                                  SOCKET_ID_ANY);
2107         if (!txq) {
2108                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2109                             "tx queue structure.");
2110                 return -ENOMEM;
2111         }
2112
2113         /* Allocate TX hardware ring descriptors. */
2114         ring_size = sizeof(struct ice_tx_desc) * ICE_FDIR_NUM_TX_DESC;
2115         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2116
2117         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2118                                       ICE_FDIR_QUEUE_ID, ring_size,
2119                                       ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2120         if (!tz) {
2121                 ice_tx_queue_release(txq);
2122                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2123                 return -ENOMEM;
2124         }
2125
2126         txq->nb_tx_desc = ICE_FDIR_NUM_TX_DESC;
2127         txq->queue_id = ICE_FDIR_QUEUE_ID;
2128         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2129         txq->vsi = pf->fdir.fdir_vsi;
2130
2131         txq->tx_ring_dma = tz->iova;
2132         txq->tx_ring = (struct ice_tx_desc *)tz->addr;
2133         /*
2134          * don't need to allocate software ring and reset for the fdir
2135          * program queue just set the queue has been configured.
2136          */
2137         txq->q_set = true;
2138         pf->fdir.txq = txq;
2139
2140         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
2141
2142         return ICE_SUCCESS;
2143 }
2144
2145 int
2146 ice_fdir_setup_rx_resources(struct ice_pf *pf)
2147 {
2148         struct ice_rx_queue *rxq;
2149         const struct rte_memzone *rz = NULL;
2150         uint32_t ring_size;
2151         struct rte_eth_dev *dev;
2152
2153         if (!pf) {
2154                 PMD_DRV_LOG(ERR, "PF is not available");
2155                 return -EINVAL;
2156         }
2157
2158         dev = pf->adapter->eth_dev;
2159
2160         /* Allocate the RX queue data structure. */
2161         rxq = rte_zmalloc_socket("ice fdir rx queue",
2162                                  sizeof(struct ice_rx_queue),
2163                                  RTE_CACHE_LINE_SIZE,
2164                                  SOCKET_ID_ANY);
2165         if (!rxq) {
2166                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2167                             "rx queue structure.");
2168                 return -ENOMEM;
2169         }
2170
2171         /* Allocate RX hardware ring descriptors. */
2172         ring_size = sizeof(union ice_32byte_rx_desc) * ICE_FDIR_NUM_RX_DESC;
2173         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2174
2175         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2176                                       ICE_FDIR_QUEUE_ID, ring_size,
2177                                       ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2178         if (!rz) {
2179                 ice_rx_queue_release(rxq);
2180                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2181                 return -ENOMEM;
2182         }
2183
2184         rxq->nb_rx_desc = ICE_FDIR_NUM_RX_DESC;
2185         rxq->queue_id = ICE_FDIR_QUEUE_ID;
2186         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2187         rxq->vsi = pf->fdir.fdir_vsi;
2188
2189         rxq->rx_ring_dma = rz->iova;
2190         memset(rz->addr, 0, ICE_FDIR_NUM_RX_DESC *
2191                sizeof(union ice_32byte_rx_desc));
2192         rxq->rx_ring = (union ice_rx_flex_desc *)rz->addr;
2193
2194         /*
2195          * Don't need to allocate software ring and reset for the fdir
2196          * rx queue, just set the queue has been configured.
2197          */
2198         rxq->q_set = true;
2199         pf->fdir.rxq = rxq;
2200
2201         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
2202
2203         return ICE_SUCCESS;
2204 }
2205
2206 uint16_t
2207 ice_recv_pkts(void *rx_queue,
2208               struct rte_mbuf **rx_pkts,
2209               uint16_t nb_pkts)
2210 {
2211         struct ice_rx_queue *rxq = rx_queue;
2212         volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
2213         volatile union ice_rx_flex_desc *rxdp;
2214         union ice_rx_flex_desc rxd;
2215         struct ice_rx_entry *sw_ring = rxq->sw_ring;
2216         struct ice_rx_entry *rxe;
2217         struct rte_mbuf *nmb; /* new allocated mbuf */
2218         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
2219         uint16_t rx_id = rxq->rx_tail;
2220         uint16_t nb_rx = 0;
2221         uint16_t nb_hold = 0;
2222         uint16_t rx_packet_len;
2223         uint16_t rx_stat_err0;
2224         uint64_t dma_addr;
2225         uint64_t pkt_flags;
2226         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
2227         struct rte_eth_dev *dev;
2228
2229         while (nb_rx < nb_pkts) {
2230                 rxdp = &rx_ring[rx_id];
2231                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
2232
2233                 /* Check the DD bit first */
2234                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
2235                         break;
2236
2237                 /* allocate mbuf */
2238                 nmb = rte_mbuf_raw_alloc(rxq->mp);
2239                 if (unlikely(!nmb)) {
2240                         dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
2241                         dev->data->rx_mbuf_alloc_failed++;
2242                         break;
2243                 }
2244                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
2245
2246                 nb_hold++;
2247                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
2248                 rx_id++;
2249                 if (unlikely(rx_id == rxq->nb_rx_desc))
2250                         rx_id = 0;
2251                 rxm = rxe->mbuf;
2252                 rxe->mbuf = nmb;
2253                 dma_addr =
2254                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2255
2256                 /**
2257                  * fill the read format of descriptor with physic address in
2258                  * new allocated mbuf: nmb
2259                  */
2260                 rxdp->read.hdr_addr = 0;
2261                 rxdp->read.pkt_addr = dma_addr;
2262
2263                 /* calculate rx_packet_len of the received pkt */
2264                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
2265                                  ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
2266
2267                 /* fill old mbuf with received descriptor: rxd */
2268                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
2269                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
2270                 rxm->nb_segs = 1;
2271                 rxm->next = NULL;
2272                 rxm->pkt_len = rx_packet_len;
2273                 rxm->data_len = rx_packet_len;
2274                 rxm->port = rxq->port_id;
2275                 rxm->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
2276                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
2277                 ice_rxd_to_vlan_tci(rxm, &rxd);
2278                 rxq->rxd_to_pkt_fields(rxq, rxm, &rxd);
2279                 pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
2280                 rxm->ol_flags |= pkt_flags;
2281                 /* copy old mbuf to rx_pkts */
2282                 rx_pkts[nb_rx++] = rxm;
2283         }
2284         rxq->rx_tail = rx_id;
2285         /**
2286          * If the number of free RX descriptors is greater than the RX free
2287          * threshold of the queue, advance the receive tail register of queue.
2288          * Update that register with the value of the last processed RX
2289          * descriptor minus 1.
2290          */
2291         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
2292         if (nb_hold > rxq->rx_free_thresh) {
2293                 rx_id = (uint16_t)(rx_id == 0 ?
2294                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
2295                 /* write TAIL register */
2296                 ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
2297                 nb_hold = 0;
2298         }
2299         rxq->nb_rx_hold = nb_hold;
2300
2301         /* return received packet in the burst */
2302         return nb_rx;
2303 }
2304
2305 static inline void
2306 ice_parse_tunneling_params(uint64_t ol_flags,
2307                             union ice_tx_offload tx_offload,
2308                             uint32_t *cd_tunneling)
2309 {
2310         /* EIPT: External (outer) IP header type */
2311         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
2312                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4;
2313         else if (ol_flags & PKT_TX_OUTER_IPV4)
2314                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
2315         else if (ol_flags & PKT_TX_OUTER_IPV6)
2316                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV6;
2317
2318         /* EIPLEN: External (outer) IP header length, in DWords */
2319         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
2320                 ICE_TXD_CTX_QW0_EIPLEN_S;
2321
2322         /* L4TUNT: L4 Tunneling Type */
2323         switch (ol_flags & PKT_TX_TUNNEL_MASK) {
2324         case PKT_TX_TUNNEL_IPIP:
2325                 /* for non UDP / GRE tunneling, set to 00b */
2326                 break;
2327         case PKT_TX_TUNNEL_VXLAN:
2328         case PKT_TX_TUNNEL_GTP:
2329         case PKT_TX_TUNNEL_GENEVE:
2330                 *cd_tunneling |= ICE_TXD_CTX_UDP_TUNNELING;
2331                 break;
2332         case PKT_TX_TUNNEL_GRE:
2333                 *cd_tunneling |= ICE_TXD_CTX_GRE_TUNNELING;
2334                 break;
2335         default:
2336                 PMD_TX_LOG(ERR, "Tunnel type not supported");
2337                 return;
2338         }
2339
2340         /* L4TUNLEN: L4 Tunneling Length, in Words
2341          *
2342          * We depend on app to set rte_mbuf.l2_len correctly.
2343          * For IP in GRE it should be set to the length of the GRE
2344          * header;
2345          * For MAC in GRE or MAC in UDP it should be set to the length
2346          * of the GRE or UDP headers plus the inner MAC up to including
2347          * its last Ethertype.
2348          * If MPLS labels exists, it should include them as well.
2349          */
2350         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
2351                 ICE_TXD_CTX_QW0_NATLEN_S;
2352
2353         /**
2354          * Calculate the tunneling UDP checksum.
2355          * Shall be set only if L4TUNT = 01b and EIPT is not zero
2356          */
2357         if (!(*cd_tunneling & ICE_TX_CTX_EIPT_NONE) &&
2358             (*cd_tunneling & ICE_TXD_CTX_UDP_TUNNELING))
2359                 *cd_tunneling |= ICE_TXD_CTX_QW0_L4T_CS_M;
2360 }
2361
2362 static inline void
2363 ice_txd_enable_checksum(uint64_t ol_flags,
2364                         uint32_t *td_cmd,
2365                         uint32_t *td_offset,
2366                         union ice_tx_offload tx_offload)
2367 {
2368         /* Set MACLEN */
2369         if (ol_flags & PKT_TX_TUNNEL_MASK)
2370                 *td_offset |= (tx_offload.outer_l2_len >> 1)
2371                         << ICE_TX_DESC_LEN_MACLEN_S;
2372         else
2373                 *td_offset |= (tx_offload.l2_len >> 1)
2374                         << ICE_TX_DESC_LEN_MACLEN_S;
2375
2376         /* Enable L3 checksum offloads */
2377         if (ol_flags & PKT_TX_IP_CKSUM) {
2378                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
2379                 *td_offset |= (tx_offload.l3_len >> 2) <<
2380                               ICE_TX_DESC_LEN_IPLEN_S;
2381         } else if (ol_flags & PKT_TX_IPV4) {
2382                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
2383                 *td_offset |= (tx_offload.l3_len >> 2) <<
2384                               ICE_TX_DESC_LEN_IPLEN_S;
2385         } else if (ol_flags & PKT_TX_IPV6) {
2386                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2387                 *td_offset |= (tx_offload.l3_len >> 2) <<
2388                               ICE_TX_DESC_LEN_IPLEN_S;
2389         }
2390
2391         if (ol_flags & PKT_TX_TCP_SEG) {
2392                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2393                 *td_offset |= (tx_offload.l4_len >> 2) <<
2394                               ICE_TX_DESC_LEN_L4_LEN_S;
2395                 return;
2396         }
2397
2398         /* Enable L4 checksum offloads */
2399         switch (ol_flags & PKT_TX_L4_MASK) {
2400         case PKT_TX_TCP_CKSUM:
2401                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2402                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2403                               ICE_TX_DESC_LEN_L4_LEN_S;
2404                 break;
2405         case PKT_TX_SCTP_CKSUM:
2406                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2407                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2408                               ICE_TX_DESC_LEN_L4_LEN_S;
2409                 break;
2410         case PKT_TX_UDP_CKSUM:
2411                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2412                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2413                               ICE_TX_DESC_LEN_L4_LEN_S;
2414                 break;
2415         default:
2416                 break;
2417         }
2418 }
2419
2420 static inline int
2421 ice_xmit_cleanup(struct ice_tx_queue *txq)
2422 {
2423         struct ice_tx_entry *sw_ring = txq->sw_ring;
2424         volatile struct ice_tx_desc *txd = txq->tx_ring;
2425         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2426         uint16_t nb_tx_desc = txq->nb_tx_desc;
2427         uint16_t desc_to_clean_to;
2428         uint16_t nb_tx_to_clean;
2429
2430         /* Determine the last descriptor needing to be cleaned */
2431         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
2432         if (desc_to_clean_to >= nb_tx_desc)
2433                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2434
2435         /* Check to make sure the last descriptor to clean is done */
2436         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2437         if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
2438             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
2439                 PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
2440                                 "(port=%d queue=%d) value=0x%"PRIx64"\n",
2441                                 desc_to_clean_to,
2442                                 txq->port_id, txq->queue_id,
2443                                 txd[desc_to_clean_to].cmd_type_offset_bsz);
2444                 /* Failed to clean any descriptors */
2445                 return -1;
2446         }
2447
2448         /* Figure out how many descriptors will be cleaned */
2449         if (last_desc_cleaned > desc_to_clean_to)
2450                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2451                                             desc_to_clean_to);
2452         else
2453                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2454                                             last_desc_cleaned);
2455
2456         /* The last descriptor to clean is done, so that means all the
2457          * descriptors from the last descriptor that was cleaned
2458          * up to the last descriptor with the RS bit set
2459          * are done. Only reset the threshold descriptor.
2460          */
2461         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2462
2463         /* Update the txq to reflect the last descriptor that was cleaned */
2464         txq->last_desc_cleaned = desc_to_clean_to;
2465         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
2466
2467         return 0;
2468 }
2469
2470 /* Construct the tx flags */
2471 static inline uint64_t
2472 ice_build_ctob(uint32_t td_cmd,
2473                uint32_t td_offset,
2474                uint16_t size,
2475                uint32_t td_tag)
2476 {
2477         return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2478                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2479                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2480                                 ((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
2481                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2482 }
2483
2484 /* Check if the context descriptor is needed for TX offloading */
2485 static inline uint16_t
2486 ice_calc_context_desc(uint64_t flags)
2487 {
2488         static uint64_t mask = PKT_TX_TCP_SEG |
2489                 PKT_TX_QINQ |
2490                 PKT_TX_OUTER_IP_CKSUM |
2491                 PKT_TX_TUNNEL_MASK;
2492
2493         return (flags & mask) ? 1 : 0;
2494 }
2495
2496 /* set ice TSO context descriptor */
2497 static inline uint64_t
2498 ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
2499 {
2500         uint64_t ctx_desc = 0;
2501         uint32_t cd_cmd, hdr_len, cd_tso_len;
2502
2503         if (!tx_offload.l4_len) {
2504                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
2505                 return ctx_desc;
2506         }
2507
2508         hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
2509         hdr_len += (mbuf->ol_flags & PKT_TX_TUNNEL_MASK) ?
2510                    tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
2511
2512         cd_cmd = ICE_TX_CTX_DESC_TSO;
2513         cd_tso_len = mbuf->pkt_len - hdr_len;
2514         ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
2515                     ((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2516                     ((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
2517
2518         return ctx_desc;
2519 }
2520
2521 /* HW requires that TX buffer size ranges from 1B up to (16K-1)B. */
2522 #define ICE_MAX_DATA_PER_TXD \
2523         (ICE_TXD_QW1_TX_BUF_SZ_M >> ICE_TXD_QW1_TX_BUF_SZ_S)
2524 /* Calculate the number of TX descriptors needed for each pkt */
2525 static inline uint16_t
2526 ice_calc_pkt_desc(struct rte_mbuf *tx_pkt)
2527 {
2528         struct rte_mbuf *txd = tx_pkt;
2529         uint16_t count = 0;
2530
2531         while (txd != NULL) {
2532                 count += DIV_ROUND_UP(txd->data_len, ICE_MAX_DATA_PER_TXD);
2533                 txd = txd->next;
2534         }
2535
2536         return count;
2537 }
2538
2539 uint16_t
2540 ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2541 {
2542         struct ice_tx_queue *txq;
2543         volatile struct ice_tx_desc *tx_ring;
2544         volatile struct ice_tx_desc *txd;
2545         struct ice_tx_entry *sw_ring;
2546         struct ice_tx_entry *txe, *txn;
2547         struct rte_mbuf *tx_pkt;
2548         struct rte_mbuf *m_seg;
2549         uint32_t cd_tunneling_params;
2550         uint16_t tx_id;
2551         uint16_t nb_tx;
2552         uint16_t nb_used;
2553         uint16_t nb_ctx;
2554         uint32_t td_cmd = 0;
2555         uint32_t td_offset = 0;
2556         uint32_t td_tag = 0;
2557         uint16_t tx_last;
2558         uint16_t slen;
2559         uint64_t buf_dma_addr;
2560         uint64_t ol_flags;
2561         union ice_tx_offload tx_offload = {0};
2562
2563         txq = tx_queue;
2564         sw_ring = txq->sw_ring;
2565         tx_ring = txq->tx_ring;
2566         tx_id = txq->tx_tail;
2567         txe = &sw_ring[tx_id];
2568
2569         /* Check if the descriptor ring needs to be cleaned. */
2570         if (txq->nb_tx_free < txq->tx_free_thresh)
2571                 (void)ice_xmit_cleanup(txq);
2572
2573         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
2574                 tx_pkt = *tx_pkts++;
2575
2576                 td_cmd = 0;
2577                 td_tag = 0;
2578                 td_offset = 0;
2579                 ol_flags = tx_pkt->ol_flags;
2580                 tx_offload.l2_len = tx_pkt->l2_len;
2581                 tx_offload.l3_len = tx_pkt->l3_len;
2582                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
2583                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
2584                 tx_offload.l4_len = tx_pkt->l4_len;
2585                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
2586                 /* Calculate the number of context descriptors needed. */
2587                 nb_ctx = ice_calc_context_desc(ol_flags);
2588
2589                 /* The number of descriptors that must be allocated for
2590                  * a packet equals to the number of the segments of that
2591                  * packet plus the number of context descriptor if needed.
2592                  * Recalculate the needed tx descs when TSO enabled in case
2593                  * the mbuf data size exceeds max data size that hw allows
2594                  * per tx desc.
2595                  */
2596                 if (ol_flags & PKT_TX_TCP_SEG)
2597                         nb_used = (uint16_t)(ice_calc_pkt_desc(tx_pkt) +
2598                                              nb_ctx);
2599                 else
2600                         nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
2601                 tx_last = (uint16_t)(tx_id + nb_used - 1);
2602
2603                 /* Circular ring */
2604                 if (tx_last >= txq->nb_tx_desc)
2605                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
2606
2607                 if (nb_used > txq->nb_tx_free) {
2608                         if (ice_xmit_cleanup(txq) != 0) {
2609                                 if (nb_tx == 0)
2610                                         return 0;
2611                                 goto end_of_tx;
2612                         }
2613                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
2614                                 while (nb_used > txq->nb_tx_free) {
2615                                         if (ice_xmit_cleanup(txq) != 0) {
2616                                                 if (nb_tx == 0)
2617                                                         return 0;
2618                                                 goto end_of_tx;
2619                                         }
2620                                 }
2621                         }
2622                 }
2623
2624                 /* Descriptor based VLAN insertion */
2625                 if (ol_flags & (PKT_TX_VLAN | PKT_TX_QINQ)) {
2626                         td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
2627                         td_tag = tx_pkt->vlan_tci;
2628                 }
2629
2630                 /* Fill in tunneling parameters if necessary */
2631                 cd_tunneling_params = 0;
2632                 if (ol_flags & PKT_TX_TUNNEL_MASK)
2633                         ice_parse_tunneling_params(ol_flags, tx_offload,
2634                                                    &cd_tunneling_params);
2635
2636                 /* Enable checksum offloading */
2637                 if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK)
2638                         ice_txd_enable_checksum(ol_flags, &td_cmd,
2639                                                 &td_offset, tx_offload);
2640
2641                 if (nb_ctx) {
2642                         /* Setup TX context descriptor if required */
2643                         volatile struct ice_tx_ctx_desc *ctx_txd =
2644                                 (volatile struct ice_tx_ctx_desc *)
2645                                         &tx_ring[tx_id];
2646                         uint16_t cd_l2tag2 = 0;
2647                         uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
2648
2649                         txn = &sw_ring[txe->next_id];
2650                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2651                         if (txe->mbuf) {
2652                                 rte_pktmbuf_free_seg(txe->mbuf);
2653                                 txe->mbuf = NULL;
2654                         }
2655
2656                         if (ol_flags & PKT_TX_TCP_SEG)
2657                                 cd_type_cmd_tso_mss |=
2658                                         ice_set_tso_ctx(tx_pkt, tx_offload);
2659
2660                         ctx_txd->tunneling_params =
2661                                 rte_cpu_to_le_32(cd_tunneling_params);
2662
2663                         /* TX context descriptor based double VLAN insert */
2664                         if (ol_flags & PKT_TX_QINQ) {
2665                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
2666                                 cd_type_cmd_tso_mss |=
2667                                         ((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
2668                                          ICE_TXD_CTX_QW1_CMD_S);
2669                         }
2670                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
2671                         ctx_txd->qw1 =
2672                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2673
2674                         txe->last_id = tx_last;
2675                         tx_id = txe->next_id;
2676                         txe = txn;
2677                 }
2678                 m_seg = tx_pkt;
2679
2680                 do {
2681                         txd = &tx_ring[tx_id];
2682                         txn = &sw_ring[txe->next_id];
2683
2684                         if (txe->mbuf)
2685                                 rte_pktmbuf_free_seg(txe->mbuf);
2686                         txe->mbuf = m_seg;
2687
2688                         /* Setup TX Descriptor */
2689                         slen = m_seg->data_len;
2690                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2691
2692                         while ((ol_flags & PKT_TX_TCP_SEG) &&
2693                                 unlikely(slen > ICE_MAX_DATA_PER_TXD)) {
2694                                 txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2695                                 txd->cmd_type_offset_bsz =
2696                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2697                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2698                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2699                                 ((uint64_t)ICE_MAX_DATA_PER_TXD <<
2700                                  ICE_TXD_QW1_TX_BUF_SZ_S) |
2701                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2702
2703                                 buf_dma_addr += ICE_MAX_DATA_PER_TXD;
2704                                 slen -= ICE_MAX_DATA_PER_TXD;
2705
2706                                 txe->last_id = tx_last;
2707                                 tx_id = txe->next_id;
2708                                 txe = txn;
2709                                 txd = &tx_ring[tx_id];
2710                                 txn = &sw_ring[txe->next_id];
2711                         }
2712
2713                         txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2714                         txd->cmd_type_offset_bsz =
2715                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2716                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2717                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2718                                 ((uint64_t)slen << ICE_TXD_QW1_TX_BUF_SZ_S) |
2719                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2720
2721                         txe->last_id = tx_last;
2722                         tx_id = txe->next_id;
2723                         txe = txn;
2724                         m_seg = m_seg->next;
2725                 } while (m_seg);
2726
2727                 /* fill the last descriptor with End of Packet (EOP) bit */
2728                 td_cmd |= ICE_TX_DESC_CMD_EOP;
2729                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
2730                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
2731
2732                 /* set RS bit on the last descriptor of one packet */
2733                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
2734                         PMD_TX_FREE_LOG(DEBUG,
2735                                         "Setting RS bit on TXD id="
2736                                         "%4u (port=%d queue=%d)",
2737                                         tx_last, txq->port_id, txq->queue_id);
2738
2739                         td_cmd |= ICE_TX_DESC_CMD_RS;
2740
2741                         /* Update txq RS bit counters */
2742                         txq->nb_tx_used = 0;
2743                 }
2744                 txd->cmd_type_offset_bsz |=
2745                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2746                                          ICE_TXD_QW1_CMD_S);
2747         }
2748 end_of_tx:
2749         /* update Tail register */
2750         ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
2751         txq->tx_tail = tx_id;
2752
2753         return nb_tx;
2754 }
2755
2756 static __rte_always_inline int
2757 ice_tx_free_bufs(struct ice_tx_queue *txq)
2758 {
2759         struct ice_tx_entry *txep;
2760         uint16_t i;
2761
2762         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
2763              rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
2764             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
2765                 return 0;
2766
2767         txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
2768
2769         for (i = 0; i < txq->tx_rs_thresh; i++)
2770                 rte_prefetch0((txep + i)->mbuf);
2771
2772         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
2773                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2774                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
2775                         txep->mbuf = NULL;
2776                 }
2777         } else {
2778                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2779                         rte_pktmbuf_free_seg(txep->mbuf);
2780                         txep->mbuf = NULL;
2781                 }
2782         }
2783
2784         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
2785         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
2786         if (txq->tx_next_dd >= txq->nb_tx_desc)
2787                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2788
2789         return txq->tx_rs_thresh;
2790 }
2791
2792 static int
2793 ice_tx_done_cleanup_full(struct ice_tx_queue *txq,
2794                         uint32_t free_cnt)
2795 {
2796         struct ice_tx_entry *swr_ring = txq->sw_ring;
2797         uint16_t i, tx_last, tx_id;
2798         uint16_t nb_tx_free_last;
2799         uint16_t nb_tx_to_clean;
2800         uint32_t pkt_cnt;
2801
2802         /* Start free mbuf from the next of tx_tail */
2803         tx_last = txq->tx_tail;
2804         tx_id  = swr_ring[tx_last].next_id;
2805
2806         if (txq->nb_tx_free == 0 && ice_xmit_cleanup(txq))
2807                 return 0;
2808
2809         nb_tx_to_clean = txq->nb_tx_free;
2810         nb_tx_free_last = txq->nb_tx_free;
2811         if (!free_cnt)
2812                 free_cnt = txq->nb_tx_desc;
2813
2814         /* Loop through swr_ring to count the amount of
2815          * freeable mubfs and packets.
2816          */
2817         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2818                 for (i = 0; i < nb_tx_to_clean &&
2819                         pkt_cnt < free_cnt &&
2820                         tx_id != tx_last; i++) {
2821                         if (swr_ring[tx_id].mbuf != NULL) {
2822                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2823                                 swr_ring[tx_id].mbuf = NULL;
2824
2825                                 /*
2826                                  * last segment in the packet,
2827                                  * increment packet count
2828                                  */
2829                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2830                         }
2831
2832                         tx_id = swr_ring[tx_id].next_id;
2833                 }
2834
2835                 if (txq->tx_rs_thresh > txq->nb_tx_desc -
2836                         txq->nb_tx_free || tx_id == tx_last)
2837                         break;
2838
2839                 if (pkt_cnt < free_cnt) {
2840                         if (ice_xmit_cleanup(txq))
2841                                 break;
2842
2843                         nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
2844                         nb_tx_free_last = txq->nb_tx_free;
2845                 }
2846         }
2847
2848         return (int)pkt_cnt;
2849 }
2850
2851 #ifdef RTE_ARCH_X86
2852 static int
2853 ice_tx_done_cleanup_vec(struct ice_tx_queue *txq __rte_unused,
2854                         uint32_t free_cnt __rte_unused)
2855 {
2856         return -ENOTSUP;
2857 }
2858 #endif
2859
2860 static int
2861 ice_tx_done_cleanup_simple(struct ice_tx_queue *txq,
2862                         uint32_t free_cnt)
2863 {
2864         int i, n, cnt;
2865
2866         if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
2867                 free_cnt = txq->nb_tx_desc;
2868
2869         cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
2870
2871         for (i = 0; i < cnt; i += n) {
2872                 if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
2873                         break;
2874
2875                 n = ice_tx_free_bufs(txq);
2876
2877                 if (n == 0)
2878                         break;
2879         }
2880
2881         return i;
2882 }
2883
2884 int
2885 ice_tx_done_cleanup(void *txq, uint32_t free_cnt)
2886 {
2887         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
2888         struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
2889         struct ice_adapter *ad =
2890                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2891
2892 #ifdef RTE_ARCH_X86
2893         if (ad->tx_vec_allowed)
2894                 return ice_tx_done_cleanup_vec(q, free_cnt);
2895 #endif
2896         if (ad->tx_simple_allowed)
2897                 return ice_tx_done_cleanup_simple(q, free_cnt);
2898         else
2899                 return ice_tx_done_cleanup_full(q, free_cnt);
2900 }
2901
2902 /* Populate 4 descriptors with data from 4 mbufs */
2903 static inline void
2904 tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
2905 {
2906         uint64_t dma_addr;
2907         uint32_t i;
2908
2909         for (i = 0; i < 4; i++, txdp++, pkts++) {
2910                 dma_addr = rte_mbuf_data_iova(*pkts);
2911                 txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
2912                 txdp->cmd_type_offset_bsz =
2913                         ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
2914                                        (*pkts)->data_len, 0);
2915         }
2916 }
2917
2918 /* Populate 1 descriptor with data from 1 mbuf */
2919 static inline void
2920 tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
2921 {
2922         uint64_t dma_addr;
2923
2924         dma_addr = rte_mbuf_data_iova(*pkts);
2925         txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
2926         txdp->cmd_type_offset_bsz =
2927                 ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
2928                                (*pkts)->data_len, 0);
2929 }
2930
2931 static inline void
2932 ice_tx_fill_hw_ring(struct ice_tx_queue *txq, struct rte_mbuf **pkts,
2933                     uint16_t nb_pkts)
2934 {
2935         volatile struct ice_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
2936         struct ice_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
2937         const int N_PER_LOOP = 4;
2938         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
2939         int mainpart, leftover;
2940         int i, j;
2941
2942         /**
2943          * Process most of the packets in chunks of N pkts.  Any
2944          * leftover packets will get processed one at a time.
2945          */
2946         mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
2947         leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
2948         for (i = 0; i < mainpart; i += N_PER_LOOP) {
2949                 /* Copy N mbuf pointers to the S/W ring */
2950                 for (j = 0; j < N_PER_LOOP; ++j)
2951                         (txep + i + j)->mbuf = *(pkts + i + j);
2952                 tx4(txdp + i, pkts + i);
2953         }
2954
2955         if (unlikely(leftover > 0)) {
2956                 for (i = 0; i < leftover; ++i) {
2957                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
2958                         tx1(txdp + mainpart + i, pkts + mainpart + i);
2959                 }
2960         }
2961 }
2962
2963 static inline uint16_t
2964 tx_xmit_pkts(struct ice_tx_queue *txq,
2965              struct rte_mbuf **tx_pkts,
2966              uint16_t nb_pkts)
2967 {
2968         volatile struct ice_tx_desc *txr = txq->tx_ring;
2969         uint16_t n = 0;
2970
2971         /**
2972          * Begin scanning the H/W ring for done descriptors when the number
2973          * of available descriptors drops below tx_free_thresh. For each done
2974          * descriptor, free the associated buffer.
2975          */
2976         if (txq->nb_tx_free < txq->tx_free_thresh)
2977                 ice_tx_free_bufs(txq);
2978
2979         /* Use available descriptor only */
2980         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
2981         if (unlikely(!nb_pkts))
2982                 return 0;
2983
2984         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
2985         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
2986                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
2987                 ice_tx_fill_hw_ring(txq, tx_pkts, n);
2988                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
2989                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
2990                                          ICE_TXD_QW1_CMD_S);
2991                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2992                 txq->tx_tail = 0;
2993         }
2994
2995         /* Fill hardware descriptor ring with mbuf data */
2996         ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
2997         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
2998
2999         /* Determin if RS bit needs to be set */
3000         if (txq->tx_tail > txq->tx_next_rs) {
3001                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3002                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3003                                          ICE_TXD_QW1_CMD_S);
3004                 txq->tx_next_rs =
3005                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
3006                 if (txq->tx_next_rs >= txq->nb_tx_desc)
3007                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3008         }
3009
3010         if (txq->tx_tail >= txq->nb_tx_desc)
3011                 txq->tx_tail = 0;
3012
3013         /* Update the tx tail register */
3014         ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
3015
3016         return nb_pkts;
3017 }
3018
3019 static uint16_t
3020 ice_xmit_pkts_simple(void *tx_queue,
3021                      struct rte_mbuf **tx_pkts,
3022                      uint16_t nb_pkts)
3023 {
3024         uint16_t nb_tx = 0;
3025
3026         if (likely(nb_pkts <= ICE_TX_MAX_BURST))
3027                 return tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
3028                                     tx_pkts, nb_pkts);
3029
3030         while (nb_pkts) {
3031                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
3032                                                       ICE_TX_MAX_BURST);
3033
3034                 ret = tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
3035                                    &tx_pkts[nb_tx], num);
3036                 nb_tx = (uint16_t)(nb_tx + ret);
3037                 nb_pkts = (uint16_t)(nb_pkts - ret);
3038                 if (ret < num)
3039                         break;
3040         }
3041
3042         return nb_tx;
3043 }
3044
3045 void __rte_cold
3046 ice_set_rx_function(struct rte_eth_dev *dev)
3047 {
3048         PMD_INIT_FUNC_TRACE();
3049         struct ice_adapter *ad =
3050                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3051 #ifdef RTE_ARCH_X86
3052         struct ice_rx_queue *rxq;
3053         int i;
3054         bool use_avx512 = false;
3055         bool use_avx2 = false;
3056
3057         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3058                 if (!ice_rx_vec_dev_check(dev) && ad->rx_bulk_alloc_allowed &&
3059                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3060                         ad->rx_vec_allowed = true;
3061                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3062                                 rxq = dev->data->rx_queues[i];
3063                                 if (rxq && ice_rxq_vec_setup(rxq)) {
3064                                         ad->rx_vec_allowed = false;
3065                                         break;
3066                                 }
3067                         }
3068
3069                         if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3070                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3071                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3072 #ifdef CC_AVX512_SUPPORT
3073                                 use_avx512 = true;
3074 #else
3075                         PMD_DRV_LOG(NOTICE,
3076                                 "AVX512 is not supported in build env");
3077 #endif
3078                         if (!use_avx512 &&
3079                         (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3080                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3081                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3082                                 use_avx2 = true;
3083
3084                 } else {
3085                         ad->rx_vec_allowed = false;
3086                 }
3087         }
3088
3089         if (ad->rx_vec_allowed) {
3090                 if (dev->data->scattered_rx) {
3091                         if (use_avx512) {
3092 #ifdef CC_AVX512_SUPPORT
3093                                 PMD_DRV_LOG(NOTICE,
3094                                         "Using AVX512 Vector Scattered Rx (port %d).",
3095                                         dev->data->port_id);
3096                                 dev->rx_pkt_burst =
3097                                         ice_recv_scattered_pkts_vec_avx512;
3098 #endif
3099                         } else {
3100                                 PMD_DRV_LOG(DEBUG,
3101                                         "Using %sVector Scattered Rx (port %d).",
3102                                         use_avx2 ? "avx2 " : "",
3103                                         dev->data->port_id);
3104                                 dev->rx_pkt_burst = use_avx2 ?
3105                                         ice_recv_scattered_pkts_vec_avx2 :
3106                                         ice_recv_scattered_pkts_vec;
3107                         }
3108                 } else {
3109                         if (use_avx512) {
3110 #ifdef CC_AVX512_SUPPORT
3111                                 PMD_DRV_LOG(NOTICE,
3112                                         "Using AVX512 Vector Rx (port %d).",
3113                                         dev->data->port_id);
3114                                 dev->rx_pkt_burst =
3115                                         ice_recv_pkts_vec_avx512;
3116 #endif
3117                         } else {
3118                                 PMD_DRV_LOG(DEBUG,
3119                                         "Using %sVector Rx (port %d).",
3120                                         use_avx2 ? "avx2 " : "",
3121                                         dev->data->port_id);
3122                                 dev->rx_pkt_burst = use_avx2 ?
3123                                         ice_recv_pkts_vec_avx2 :
3124                                         ice_recv_pkts_vec;
3125                         }
3126                 }
3127                 return;
3128         }
3129
3130 #endif
3131
3132         if (dev->data->scattered_rx) {
3133                 /* Set the non-LRO scattered function */
3134                 PMD_INIT_LOG(DEBUG,
3135                              "Using a Scattered function on port %d.",
3136                              dev->data->port_id);
3137                 dev->rx_pkt_burst = ice_recv_scattered_pkts;
3138         } else if (ad->rx_bulk_alloc_allowed) {
3139                 PMD_INIT_LOG(DEBUG,
3140                              "Rx Burst Bulk Alloc Preconditions are "
3141                              "satisfied. Rx Burst Bulk Alloc function "
3142                              "will be used on port %d.",
3143                              dev->data->port_id);
3144                 dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
3145         } else {
3146                 PMD_INIT_LOG(DEBUG,
3147                              "Rx Burst Bulk Alloc Preconditions are not "
3148                              "satisfied, Normal Rx will be used on port %d.",
3149                              dev->data->port_id);
3150                 dev->rx_pkt_burst = ice_recv_pkts;
3151         }
3152 }
3153
3154 static const struct {
3155         eth_rx_burst_t pkt_burst;
3156         const char *info;
3157 } ice_rx_burst_infos[] = {
3158         { ice_recv_scattered_pkts,          "Scalar Scattered" },
3159         { ice_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
3160         { ice_recv_pkts,                    "Scalar" },
3161 #ifdef RTE_ARCH_X86
3162 #ifdef CC_AVX512_SUPPORT
3163         { ice_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
3164         { ice_recv_pkts_vec_avx512,           "Vector AVX512" },
3165 #endif
3166         { ice_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
3167         { ice_recv_pkts_vec_avx2,           "Vector AVX2" },
3168         { ice_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
3169         { ice_recv_pkts_vec,                "Vector SSE" },
3170 #endif
3171 };
3172
3173 int
3174 ice_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3175                       struct rte_eth_burst_mode *mode)
3176 {
3177         eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
3178         int ret = -EINVAL;
3179         unsigned int i;
3180
3181         for (i = 0; i < RTE_DIM(ice_rx_burst_infos); ++i) {
3182                 if (pkt_burst == ice_rx_burst_infos[i].pkt_burst) {
3183                         snprintf(mode->info, sizeof(mode->info), "%s",
3184                                  ice_rx_burst_infos[i].info);
3185                         ret = 0;
3186                         break;
3187                 }
3188         }
3189
3190         return ret;
3191 }
3192
3193 void __rte_cold
3194 ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ice_tx_queue *txq)
3195 {
3196         struct ice_adapter *ad =
3197                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3198
3199         /* Use a simple Tx queue if possible (only fast free is allowed) */
3200         ad->tx_simple_allowed =
3201                 (txq->offloads ==
3202                 (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
3203                 txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
3204
3205         if (ad->tx_simple_allowed)
3206                 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3207                              txq->queue_id);
3208         else
3209                 PMD_INIT_LOG(DEBUG,
3210                              "Simple Tx can NOT be enabled on Tx queue %u.",
3211                              txq->queue_id);
3212 }
3213
3214 /*********************************************************************
3215  *
3216  *  TX prep functions
3217  *
3218  **********************************************************************/
3219 /* The default values of TSO MSS */
3220 #define ICE_MIN_TSO_MSS            64
3221 #define ICE_MAX_TSO_MSS            9728
3222 #define ICE_MAX_TSO_FRAME_SIZE     262144
3223 uint16_t
3224 ice_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
3225               uint16_t nb_pkts)
3226 {
3227         int i, ret;
3228         uint64_t ol_flags;
3229         struct rte_mbuf *m;
3230
3231         for (i = 0; i < nb_pkts; i++) {
3232                 m = tx_pkts[i];
3233                 ol_flags = m->ol_flags;
3234
3235                 if (ol_flags & PKT_TX_TCP_SEG &&
3236                     (m->tso_segsz < ICE_MIN_TSO_MSS ||
3237                      m->tso_segsz > ICE_MAX_TSO_MSS ||
3238                      m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
3239                         /**
3240                          * MSS outside the range are considered malicious
3241                          */
3242                         rte_errno = EINVAL;
3243                         return i;
3244                 }
3245
3246 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
3247                 ret = rte_validate_tx_offload(m);
3248                 if (ret != 0) {
3249                         rte_errno = -ret;
3250                         return i;
3251                 }
3252 #endif
3253                 ret = rte_net_intel_cksum_prepare(m);
3254                 if (ret != 0) {
3255                         rte_errno = -ret;
3256                         return i;
3257                 }
3258         }
3259         return i;
3260 }
3261
3262 void __rte_cold
3263 ice_set_tx_function(struct rte_eth_dev *dev)
3264 {
3265         struct ice_adapter *ad =
3266                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3267 #ifdef RTE_ARCH_X86
3268         struct ice_tx_queue *txq;
3269         int i;
3270         bool use_avx512 = false;
3271         bool use_avx2 = false;
3272
3273         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3274                 if (!ice_tx_vec_dev_check(dev) &&
3275                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3276                         ad->tx_vec_allowed = true;
3277                         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3278                                 txq = dev->data->tx_queues[i];
3279                                 if (txq && ice_txq_vec_setup(txq)) {
3280                                         ad->tx_vec_allowed = false;
3281                                         break;
3282                                 }
3283                         }
3284
3285                         if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3286                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3287                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3288 #ifdef CC_AVX512_SUPPORT
3289                                 use_avx512 = true;
3290 #else
3291                         PMD_DRV_LOG(NOTICE,
3292                                 "AVX512 is not supported in build env");
3293 #endif
3294                         if (!use_avx512 &&
3295                         (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3296                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3297                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3298                                 use_avx2 = true;
3299
3300                 } else {
3301                         ad->tx_vec_allowed = false;
3302                 }
3303         }
3304
3305         if (ad->tx_vec_allowed) {
3306                 if (use_avx512) {
3307 #ifdef CC_AVX512_SUPPORT
3308                         PMD_DRV_LOG(NOTICE, "Using AVX512 Vector Tx (port %d).",
3309                                     dev->data->port_id);
3310                         dev->tx_pkt_burst = ice_xmit_pkts_vec_avx512;
3311 #endif
3312                 } else {
3313                         PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
3314                                     use_avx2 ? "avx2 " : "",
3315                                     dev->data->port_id);
3316                         dev->tx_pkt_burst = use_avx2 ?
3317                                             ice_xmit_pkts_vec_avx2 :
3318                                             ice_xmit_pkts_vec;
3319                 }
3320                 dev->tx_pkt_prepare = NULL;
3321
3322                 return;
3323         }
3324 #endif
3325
3326         if (ad->tx_simple_allowed) {
3327                 PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3328                 dev->tx_pkt_burst = ice_xmit_pkts_simple;
3329                 dev->tx_pkt_prepare = NULL;
3330         } else {
3331                 PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
3332                 dev->tx_pkt_burst = ice_xmit_pkts;
3333                 dev->tx_pkt_prepare = ice_prep_pkts;
3334         }
3335 }
3336
3337 static const struct {
3338         eth_tx_burst_t pkt_burst;
3339         const char *info;
3340 } ice_tx_burst_infos[] = {
3341         { ice_xmit_pkts_simple,   "Scalar Simple" },
3342         { ice_xmit_pkts,          "Scalar" },
3343 #ifdef RTE_ARCH_X86
3344 #ifdef CC_AVX512_SUPPORT
3345         { ice_xmit_pkts_vec_avx512, "Vector AVX512" },
3346 #endif
3347         { ice_xmit_pkts_vec_avx2, "Vector AVX2" },
3348         { ice_xmit_pkts_vec,      "Vector SSE" },
3349 #endif
3350 };
3351
3352 int
3353 ice_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3354                       struct rte_eth_burst_mode *mode)
3355 {
3356         eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
3357         int ret = -EINVAL;
3358         unsigned int i;
3359
3360         for (i = 0; i < RTE_DIM(ice_tx_burst_infos); ++i) {
3361                 if (pkt_burst == ice_tx_burst_infos[i].pkt_burst) {
3362                         snprintf(mode->info, sizeof(mode->info), "%s",
3363                                  ice_tx_burst_infos[i].info);
3364                         ret = 0;
3365                         break;
3366                 }
3367         }
3368
3369         return ret;
3370 }
3371
3372 /* For each value it means, datasheet of hardware can tell more details
3373  *
3374  * @note: fix ice_dev_supported_ptypes_get() if any change here.
3375  */
3376 static inline uint32_t
3377 ice_get_default_pkt_type(uint16_t ptype)
3378 {
3379         static const uint32_t type_table[ICE_MAX_PKT_TYPE]
3380                 __rte_cache_aligned = {
3381                 /* L2 types */
3382                 /* [0] reserved */
3383                 [1] = RTE_PTYPE_L2_ETHER,
3384                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
3385                 /* [3] - [5] reserved */
3386                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
3387                 /* [7] - [10] reserved */
3388                 [11] = RTE_PTYPE_L2_ETHER_ARP,
3389                 /* [12] - [21] reserved */
3390
3391                 /* Non tunneled IPv4 */
3392                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3393                        RTE_PTYPE_L4_FRAG,
3394                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3395                        RTE_PTYPE_L4_NONFRAG,
3396                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3397                        RTE_PTYPE_L4_UDP,
3398                 /* [25] reserved */
3399                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3400                        RTE_PTYPE_L4_TCP,
3401                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3402                        RTE_PTYPE_L4_SCTP,
3403                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3404                        RTE_PTYPE_L4_ICMP,
3405
3406                 /* IPv4 --> IPv4 */
3407                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3408                        RTE_PTYPE_TUNNEL_IP |
3409                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3410                        RTE_PTYPE_INNER_L4_FRAG,
3411                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3412                        RTE_PTYPE_TUNNEL_IP |
3413                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3414                        RTE_PTYPE_INNER_L4_NONFRAG,
3415                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3416                        RTE_PTYPE_TUNNEL_IP |
3417                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3418                        RTE_PTYPE_INNER_L4_UDP,
3419                 /* [32] reserved */
3420                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3421                        RTE_PTYPE_TUNNEL_IP |
3422                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3423                        RTE_PTYPE_INNER_L4_TCP,
3424                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3425                        RTE_PTYPE_TUNNEL_IP |
3426                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3427                        RTE_PTYPE_INNER_L4_SCTP,
3428                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3429                        RTE_PTYPE_TUNNEL_IP |
3430                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3431                        RTE_PTYPE_INNER_L4_ICMP,
3432
3433                 /* IPv4 --> IPv6 */
3434                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3435                        RTE_PTYPE_TUNNEL_IP |
3436                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3437                        RTE_PTYPE_INNER_L4_FRAG,
3438                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3439                        RTE_PTYPE_TUNNEL_IP |
3440                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3441                        RTE_PTYPE_INNER_L4_NONFRAG,
3442                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3443                        RTE_PTYPE_TUNNEL_IP |
3444                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3445                        RTE_PTYPE_INNER_L4_UDP,
3446                 /* [39] reserved */
3447                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3448                        RTE_PTYPE_TUNNEL_IP |
3449                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3450                        RTE_PTYPE_INNER_L4_TCP,
3451                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3452                        RTE_PTYPE_TUNNEL_IP |
3453                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3454                        RTE_PTYPE_INNER_L4_SCTP,
3455                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3456                        RTE_PTYPE_TUNNEL_IP |
3457                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3458                        RTE_PTYPE_INNER_L4_ICMP,
3459
3460                 /* IPv4 --> GRE/Teredo/VXLAN */
3461                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3462                        RTE_PTYPE_TUNNEL_GRENAT,
3463
3464                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
3465                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3466                        RTE_PTYPE_TUNNEL_GRENAT |
3467                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3468                        RTE_PTYPE_INNER_L4_FRAG,
3469                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3470                        RTE_PTYPE_TUNNEL_GRENAT |
3471                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3472                        RTE_PTYPE_INNER_L4_NONFRAG,
3473                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3474                        RTE_PTYPE_TUNNEL_GRENAT |
3475                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3476                        RTE_PTYPE_INNER_L4_UDP,
3477                 /* [47] reserved */
3478                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3479                        RTE_PTYPE_TUNNEL_GRENAT |
3480                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3481                        RTE_PTYPE_INNER_L4_TCP,
3482                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3483                        RTE_PTYPE_TUNNEL_GRENAT |
3484                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3485                        RTE_PTYPE_INNER_L4_SCTP,
3486                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3487                        RTE_PTYPE_TUNNEL_GRENAT |
3488                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3489                        RTE_PTYPE_INNER_L4_ICMP,
3490
3491                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
3492                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3493                        RTE_PTYPE_TUNNEL_GRENAT |
3494                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3495                        RTE_PTYPE_INNER_L4_FRAG,
3496                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3497                        RTE_PTYPE_TUNNEL_GRENAT |
3498                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3499                        RTE_PTYPE_INNER_L4_NONFRAG,
3500                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3501                        RTE_PTYPE_TUNNEL_GRENAT |
3502                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3503                        RTE_PTYPE_INNER_L4_UDP,
3504                 /* [54] reserved */
3505                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3506                        RTE_PTYPE_TUNNEL_GRENAT |
3507                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3508                        RTE_PTYPE_INNER_L4_TCP,
3509                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3510                        RTE_PTYPE_TUNNEL_GRENAT |
3511                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3512                        RTE_PTYPE_INNER_L4_SCTP,
3513                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3514                        RTE_PTYPE_TUNNEL_GRENAT |
3515                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3516                        RTE_PTYPE_INNER_L4_ICMP,
3517
3518                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
3519                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3520                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3521
3522                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3523                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3524                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3525                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3526                        RTE_PTYPE_INNER_L4_FRAG,
3527                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3528                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3529                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3530                        RTE_PTYPE_INNER_L4_NONFRAG,
3531                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3532                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3533                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3534                        RTE_PTYPE_INNER_L4_UDP,
3535                 /* [62] reserved */
3536                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3537                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3538                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3539                        RTE_PTYPE_INNER_L4_TCP,
3540                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3541                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3542                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3543                        RTE_PTYPE_INNER_L4_SCTP,
3544                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3545                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3546                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3547                        RTE_PTYPE_INNER_L4_ICMP,
3548
3549                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3550                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3551                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3552                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3553                        RTE_PTYPE_INNER_L4_FRAG,
3554                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3555                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3556                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3557                        RTE_PTYPE_INNER_L4_NONFRAG,
3558                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3559                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3560                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3561                        RTE_PTYPE_INNER_L4_UDP,
3562                 /* [69] reserved */
3563                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3564                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3565                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3566                        RTE_PTYPE_INNER_L4_TCP,
3567                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3568                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3569                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3570                        RTE_PTYPE_INNER_L4_SCTP,
3571                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3572                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3573                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3574                        RTE_PTYPE_INNER_L4_ICMP,
3575                 /* [73] - [87] reserved */
3576
3577                 /* Non tunneled IPv6 */
3578                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3579                        RTE_PTYPE_L4_FRAG,
3580                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3581                        RTE_PTYPE_L4_NONFRAG,
3582                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3583                        RTE_PTYPE_L4_UDP,
3584                 /* [91] reserved */
3585                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3586                        RTE_PTYPE_L4_TCP,
3587                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3588                        RTE_PTYPE_L4_SCTP,
3589                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3590                        RTE_PTYPE_L4_ICMP,
3591
3592                 /* IPv6 --> IPv4 */
3593                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3594                        RTE_PTYPE_TUNNEL_IP |
3595                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3596                        RTE_PTYPE_INNER_L4_FRAG,
3597                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3598                        RTE_PTYPE_TUNNEL_IP |
3599                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3600                        RTE_PTYPE_INNER_L4_NONFRAG,
3601                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3602                        RTE_PTYPE_TUNNEL_IP |
3603                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3604                        RTE_PTYPE_INNER_L4_UDP,
3605                 /* [98] reserved */
3606                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3607                        RTE_PTYPE_TUNNEL_IP |
3608                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3609                        RTE_PTYPE_INNER_L4_TCP,
3610                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3611                         RTE_PTYPE_TUNNEL_IP |
3612                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3613                         RTE_PTYPE_INNER_L4_SCTP,
3614                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3615                         RTE_PTYPE_TUNNEL_IP |
3616                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3617                         RTE_PTYPE_INNER_L4_ICMP,
3618
3619                 /* IPv6 --> IPv6 */
3620                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3621                         RTE_PTYPE_TUNNEL_IP |
3622                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3623                         RTE_PTYPE_INNER_L4_FRAG,
3624                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3625                         RTE_PTYPE_TUNNEL_IP |
3626                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3627                         RTE_PTYPE_INNER_L4_NONFRAG,
3628                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3629                         RTE_PTYPE_TUNNEL_IP |
3630                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3631                         RTE_PTYPE_INNER_L4_UDP,
3632                 /* [105] reserved */
3633                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3634                         RTE_PTYPE_TUNNEL_IP |
3635                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3636                         RTE_PTYPE_INNER_L4_TCP,
3637                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3638                         RTE_PTYPE_TUNNEL_IP |
3639                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3640                         RTE_PTYPE_INNER_L4_SCTP,
3641                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3642                         RTE_PTYPE_TUNNEL_IP |
3643                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3644                         RTE_PTYPE_INNER_L4_ICMP,
3645
3646                 /* IPv6 --> GRE/Teredo/VXLAN */
3647                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3648                         RTE_PTYPE_TUNNEL_GRENAT,
3649
3650                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3651                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3652                         RTE_PTYPE_TUNNEL_GRENAT |
3653                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3654                         RTE_PTYPE_INNER_L4_FRAG,
3655                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3656                         RTE_PTYPE_TUNNEL_GRENAT |
3657                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3658                         RTE_PTYPE_INNER_L4_NONFRAG,
3659                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3660                         RTE_PTYPE_TUNNEL_GRENAT |
3661                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3662                         RTE_PTYPE_INNER_L4_UDP,
3663                 /* [113] reserved */
3664                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3665                         RTE_PTYPE_TUNNEL_GRENAT |
3666                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3667                         RTE_PTYPE_INNER_L4_TCP,
3668                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3669                         RTE_PTYPE_TUNNEL_GRENAT |
3670                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3671                         RTE_PTYPE_INNER_L4_SCTP,
3672                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3673                         RTE_PTYPE_TUNNEL_GRENAT |
3674                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3675                         RTE_PTYPE_INNER_L4_ICMP,
3676
3677                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3678                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3679                         RTE_PTYPE_TUNNEL_GRENAT |
3680                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3681                         RTE_PTYPE_INNER_L4_FRAG,
3682                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3683                         RTE_PTYPE_TUNNEL_GRENAT |
3684                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3685                         RTE_PTYPE_INNER_L4_NONFRAG,
3686                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3687                         RTE_PTYPE_TUNNEL_GRENAT |
3688                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3689                         RTE_PTYPE_INNER_L4_UDP,
3690                 /* [120] reserved */
3691                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3692                         RTE_PTYPE_TUNNEL_GRENAT |
3693                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3694                         RTE_PTYPE_INNER_L4_TCP,
3695                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3696                         RTE_PTYPE_TUNNEL_GRENAT |
3697                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3698                         RTE_PTYPE_INNER_L4_SCTP,
3699                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3700                         RTE_PTYPE_TUNNEL_GRENAT |
3701                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3702                         RTE_PTYPE_INNER_L4_ICMP,
3703
3704                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3705                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3706                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3707
3708                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3709                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3710                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3711                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3712                         RTE_PTYPE_INNER_L4_FRAG,
3713                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3714                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3715                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3716                         RTE_PTYPE_INNER_L4_NONFRAG,
3717                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3718                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3719                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3720                         RTE_PTYPE_INNER_L4_UDP,
3721                 /* [128] reserved */
3722                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3723                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3724                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3725                         RTE_PTYPE_INNER_L4_TCP,
3726                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3727                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3728                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3729                         RTE_PTYPE_INNER_L4_SCTP,
3730                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3731                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3732                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3733                         RTE_PTYPE_INNER_L4_ICMP,
3734
3735                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3736                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3737                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3738                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3739                         RTE_PTYPE_INNER_L4_FRAG,
3740                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3741                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3742                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3743                         RTE_PTYPE_INNER_L4_NONFRAG,
3744                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3745                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3746                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3747                         RTE_PTYPE_INNER_L4_UDP,
3748                 /* [135] reserved */
3749                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3750                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3751                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3752                         RTE_PTYPE_INNER_L4_TCP,
3753                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3754                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3755                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3756                         RTE_PTYPE_INNER_L4_SCTP,
3757                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3758                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3759                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3760                         RTE_PTYPE_INNER_L4_ICMP,
3761                 /* [139] - [299] reserved */
3762
3763                 /* PPPoE */
3764                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
3765                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
3766
3767                 /* PPPoE --> IPv4 */
3768                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
3769                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3770                         RTE_PTYPE_L4_FRAG,
3771                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
3772                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3773                         RTE_PTYPE_L4_NONFRAG,
3774                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
3775                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3776                         RTE_PTYPE_L4_UDP,
3777                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
3778                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3779                         RTE_PTYPE_L4_TCP,
3780                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
3781                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3782                         RTE_PTYPE_L4_SCTP,
3783                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
3784                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3785                         RTE_PTYPE_L4_ICMP,
3786
3787                 /* PPPoE --> IPv6 */
3788                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
3789                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3790                         RTE_PTYPE_L4_FRAG,
3791                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
3792                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3793                         RTE_PTYPE_L4_NONFRAG,
3794                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
3795                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3796                         RTE_PTYPE_L4_UDP,
3797                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
3798                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3799                         RTE_PTYPE_L4_TCP,
3800                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
3801                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3802                         RTE_PTYPE_L4_SCTP,
3803                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
3804                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3805                         RTE_PTYPE_L4_ICMP,
3806                 /* [314] - [324] reserved */
3807
3808                 /* IPv4/IPv6 --> GTPC/GTPU */
3809                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3810                         RTE_PTYPE_TUNNEL_GTPC,
3811                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3812                         RTE_PTYPE_TUNNEL_GTPC,
3813                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3814                         RTE_PTYPE_TUNNEL_GTPC,
3815                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3816                         RTE_PTYPE_TUNNEL_GTPC,
3817                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3818                         RTE_PTYPE_TUNNEL_GTPU,
3819                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3820                         RTE_PTYPE_TUNNEL_GTPU,
3821
3822                 /* IPv4 --> GTPU --> IPv4 */
3823                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3824                         RTE_PTYPE_TUNNEL_GTPU |
3825                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3826                         RTE_PTYPE_INNER_L4_FRAG,
3827                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3828                         RTE_PTYPE_TUNNEL_GTPU |
3829                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3830                         RTE_PTYPE_INNER_L4_NONFRAG,
3831                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3832                         RTE_PTYPE_TUNNEL_GTPU |
3833                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3834                         RTE_PTYPE_INNER_L4_UDP,
3835                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3836                         RTE_PTYPE_TUNNEL_GTPU |
3837                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3838                         RTE_PTYPE_INNER_L4_TCP,
3839                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3840                         RTE_PTYPE_TUNNEL_GTPU |
3841                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3842                         RTE_PTYPE_INNER_L4_ICMP,
3843
3844                 /* IPv6 --> GTPU --> IPv4 */
3845                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3846                         RTE_PTYPE_TUNNEL_GTPU |
3847                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3848                         RTE_PTYPE_INNER_L4_FRAG,
3849                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3850                         RTE_PTYPE_TUNNEL_GTPU |
3851                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3852                         RTE_PTYPE_INNER_L4_NONFRAG,
3853                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3854                         RTE_PTYPE_TUNNEL_GTPU |
3855                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3856                         RTE_PTYPE_INNER_L4_UDP,
3857                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3858                         RTE_PTYPE_TUNNEL_GTPU |
3859                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3860                         RTE_PTYPE_INNER_L4_TCP,
3861                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3862                         RTE_PTYPE_TUNNEL_GTPU |
3863                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3864                         RTE_PTYPE_INNER_L4_ICMP,
3865
3866                 /* IPv4 --> GTPU --> IPv6 */
3867                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3868                         RTE_PTYPE_TUNNEL_GTPU |
3869                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3870                         RTE_PTYPE_INNER_L4_FRAG,
3871                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3872                         RTE_PTYPE_TUNNEL_GTPU |
3873                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3874                         RTE_PTYPE_INNER_L4_NONFRAG,
3875                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3876                         RTE_PTYPE_TUNNEL_GTPU |
3877                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3878                         RTE_PTYPE_INNER_L4_UDP,
3879                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3880                         RTE_PTYPE_TUNNEL_GTPU |
3881                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3882                         RTE_PTYPE_INNER_L4_TCP,
3883                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3884                         RTE_PTYPE_TUNNEL_GTPU |
3885                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3886                         RTE_PTYPE_INNER_L4_ICMP,
3887
3888                 /* IPv6 --> GTPU --> IPv6 */
3889                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3890                         RTE_PTYPE_TUNNEL_GTPU |
3891                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3892                         RTE_PTYPE_INNER_L4_FRAG,
3893                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3894                         RTE_PTYPE_TUNNEL_GTPU |
3895                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3896                         RTE_PTYPE_INNER_L4_NONFRAG,
3897                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3898                         RTE_PTYPE_TUNNEL_GTPU |
3899                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3900                         RTE_PTYPE_INNER_L4_UDP,
3901                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3902                         RTE_PTYPE_TUNNEL_GTPU |
3903                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3904                         RTE_PTYPE_INNER_L4_TCP,
3905                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3906                         RTE_PTYPE_TUNNEL_GTPU |
3907                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3908                         RTE_PTYPE_INNER_L4_ICMP,
3909                 /* All others reserved */
3910         };
3911
3912         return type_table[ptype];
3913 }
3914
3915 void __rte_cold
3916 ice_set_default_ptype_table(struct rte_eth_dev *dev)
3917 {
3918         struct ice_adapter *ad =
3919                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3920         int i;
3921
3922         for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
3923                 ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
3924 }
3925
3926 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S 1
3927 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M \
3928                         (0x3UL << ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S)
3929 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD 0
3930 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL 0x1
3931
3932 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S   4
3933 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M   \
3934         (1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S)
3935 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S      5
3936 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M      \
3937         (1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S)
3938
3939 /*
3940  * check the programming status descriptor in rx queue.
3941  * done after Programming Flow Director is programmed on
3942  * tx queue
3943  */
3944 static inline int
3945 ice_check_fdir_programming_status(struct ice_rx_queue *rxq)
3946 {
3947         volatile union ice_32byte_rx_desc *rxdp;
3948         uint64_t qword1;
3949         uint32_t rx_status;
3950         uint32_t error;
3951         uint32_t id;
3952         int ret = -EAGAIN;
3953
3954         rxdp = (volatile union ice_32byte_rx_desc *)
3955                 (&rxq->rx_ring[rxq->rx_tail]);
3956         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
3957         rx_status = (qword1 & ICE_RXD_QW1_STATUS_M)
3958                         >> ICE_RXD_QW1_STATUS_S;
3959
3960         if (rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)) {
3961                 ret = 0;
3962                 error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M) >>
3963                         ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S;
3964                 id = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M) >>
3965                         ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S;
3966                 if (error) {
3967                         if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD)
3968                                 PMD_DRV_LOG(ERR, "Failed to add FDIR rule.");
3969                         else if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL)
3970                                 PMD_DRV_LOG(ERR, "Failed to remove FDIR rule.");
3971                         ret = -EINVAL;
3972                         goto err;
3973                 }
3974                 error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M) >>
3975                         ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S;
3976                 if (error) {
3977                         PMD_DRV_LOG(ERR, "Failed to create FDIR profile.");
3978                         ret = -EINVAL;
3979                 }
3980 err:
3981                 rxdp->wb.qword1.status_error_len = 0;
3982                 rxq->rx_tail++;
3983                 if (unlikely(rxq->rx_tail == rxq->nb_rx_desc))
3984                         rxq->rx_tail = 0;
3985                 if (rxq->rx_tail == 0)
3986                         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
3987                 else
3988                         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_tail - 1);
3989         }
3990
3991         return ret;
3992 }
3993
3994 #define ICE_FDIR_MAX_WAIT_US 10000
3995
3996 int
3997 ice_fdir_programming(struct ice_pf *pf, struct ice_fltr_desc *fdir_desc)
3998 {
3999         struct ice_tx_queue *txq = pf->fdir.txq;
4000         struct ice_rx_queue *rxq = pf->fdir.rxq;
4001         volatile struct ice_fltr_desc *fdirdp;
4002         volatile struct ice_tx_desc *txdp;
4003         uint32_t td_cmd;
4004         uint16_t i;
4005
4006         fdirdp = (volatile struct ice_fltr_desc *)
4007                 (&txq->tx_ring[txq->tx_tail]);
4008         fdirdp->qidx_compq_space_stat = fdir_desc->qidx_compq_space_stat;
4009         fdirdp->dtype_cmd_vsi_fdid = fdir_desc->dtype_cmd_vsi_fdid;
4010
4011         txdp = &txq->tx_ring[txq->tx_tail + 1];
4012         txdp->buf_addr = rte_cpu_to_le_64(pf->fdir.dma_addr);
4013         td_cmd = ICE_TX_DESC_CMD_EOP |
4014                 ICE_TX_DESC_CMD_RS  |
4015                 ICE_TX_DESC_CMD_DUMMY;
4016
4017         txdp->cmd_type_offset_bsz =
4018                 ice_build_ctob(td_cmd, 0, ICE_FDIR_PKT_LEN, 0);
4019
4020         txq->tx_tail += 2;
4021         if (txq->tx_tail >= txq->nb_tx_desc)
4022                 txq->tx_tail = 0;
4023         /* Update the tx tail register */
4024         ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
4025         for (i = 0; i < ICE_FDIR_MAX_WAIT_US; i++) {
4026                 if ((txdp->cmd_type_offset_bsz &
4027                      rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) ==
4028                     rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
4029                         break;
4030                 rte_delay_us(1);
4031         }
4032         if (i >= ICE_FDIR_MAX_WAIT_US) {
4033                 PMD_DRV_LOG(ERR,
4034                             "Failed to program FDIR filter: time out to get DD on tx queue.");
4035                 return -ETIMEDOUT;
4036         }
4037
4038         for (; i < ICE_FDIR_MAX_WAIT_US; i++) {
4039                 int ret;
4040
4041                 ret = ice_check_fdir_programming_status(rxq);
4042                 if (ret == -EAGAIN)
4043                         rte_delay_us(1);
4044                 else
4045                         return ret;
4046         }
4047
4048         PMD_DRV_LOG(ERR,
4049                     "Failed to program FDIR filter: programming status reported.");
4050         return -ETIMEDOUT;
4051
4052
4053 }