net/ice: fix data path selection in secondary process
[dpdk.git] / drivers / net / ice / ice_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Intel Corporation
3  */
4
5 #include <ethdev_driver.h>
6 #include <rte_net.h>
7 #include <rte_vect.h>
8
9 #include "rte_pmd_ice.h"
10 #include "ice_rxtx.h"
11 #include "ice_rxtx_vec_common.h"
12
13 #define ICE_TX_CKSUM_OFFLOAD_MASK (              \
14                 PKT_TX_IP_CKSUM |                \
15                 PKT_TX_L4_MASK |                 \
16                 PKT_TX_TCP_SEG |                 \
17                 PKT_TX_OUTER_IP_CKSUM)
18
19 /* Offset of mbuf dynamic field for protocol extraction data */
20 int rte_net_ice_dynfield_proto_xtr_metadata_offs = -1;
21
22 /* Mask of mbuf dynamic flags for protocol extraction type */
23 uint64_t rte_net_ice_dynflag_proto_xtr_vlan_mask;
24 uint64_t rte_net_ice_dynflag_proto_xtr_ipv4_mask;
25 uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_mask;
26 uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
27 uint64_t rte_net_ice_dynflag_proto_xtr_tcp_mask;
28 uint64_t rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
29
30 int
31 ice_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
32 {
33         volatile union ice_rx_flex_desc *rxdp;
34         struct ice_rx_queue *rxq = rx_queue;
35         uint16_t desc;
36
37         desc = rxq->rx_tail;
38         rxdp = &rxq->rx_ring[desc];
39         /* watch for changes in status bit */
40         pmc->addr = &rxdp->wb.status_error0;
41
42         /*
43          * we expect the DD bit to be set to 1 if this descriptor was already
44          * written to.
45          */
46         pmc->val = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
47         pmc->mask = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
48
49         /* register is 16-bit */
50         pmc->size = sizeof(uint16_t);
51
52         return 0;
53 }
54
55
56 static inline uint8_t
57 ice_proto_xtr_type_to_rxdid(uint8_t xtr_type)
58 {
59         static uint8_t rxdid_map[] = {
60                 [PROTO_XTR_NONE]      = ICE_RXDID_COMMS_OVS,
61                 [PROTO_XTR_VLAN]      = ICE_RXDID_COMMS_AUX_VLAN,
62                 [PROTO_XTR_IPV4]      = ICE_RXDID_COMMS_AUX_IPV4,
63                 [PROTO_XTR_IPV6]      = ICE_RXDID_COMMS_AUX_IPV6,
64                 [PROTO_XTR_IPV6_FLOW] = ICE_RXDID_COMMS_AUX_IPV6_FLOW,
65                 [PROTO_XTR_TCP]       = ICE_RXDID_COMMS_AUX_TCP,
66                 [PROTO_XTR_IP_OFFSET] = ICE_RXDID_COMMS_AUX_IP_OFFSET,
67         };
68
69         return xtr_type < RTE_DIM(rxdid_map) ?
70                                 rxdid_map[xtr_type] : ICE_RXDID_COMMS_OVS;
71 }
72
73 static inline void
74 ice_rxd_to_pkt_fields_by_comms_generic(__rte_unused struct ice_rx_queue *rxq,
75                                        struct rte_mbuf *mb,
76                                        volatile union ice_rx_flex_desc *rxdp)
77 {
78         volatile struct ice_32b_rx_flex_desc_comms *desc =
79                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
80         uint16_t stat_err = rte_le_to_cpu_16(desc->status_error0);
81
82         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
83                 mb->ol_flags |= PKT_RX_RSS_HASH;
84                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
85         }
86
87 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
88         if (desc->flow_id != 0xFFFFFFFF) {
89                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
90                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
91         }
92 #endif
93 }
94
95 static inline void
96 ice_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct ice_rx_queue *rxq,
97                                    struct rte_mbuf *mb,
98                                    volatile union ice_rx_flex_desc *rxdp)
99 {
100         volatile struct ice_32b_rx_flex_desc_comms_ovs *desc =
101                         (volatile struct ice_32b_rx_flex_desc_comms_ovs *)rxdp;
102 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
103         uint16_t stat_err;
104 #endif
105
106         if (desc->flow_id != 0xFFFFFFFF) {
107                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
108                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
109         }
110
111 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
112         stat_err = rte_le_to_cpu_16(desc->status_error0);
113         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
114                 mb->ol_flags |= PKT_RX_RSS_HASH;
115                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
116         }
117 #endif
118 }
119
120 static inline void
121 ice_rxd_to_pkt_fields_by_comms_aux_v1(struct ice_rx_queue *rxq,
122                                       struct rte_mbuf *mb,
123                                       volatile union ice_rx_flex_desc *rxdp)
124 {
125         volatile struct ice_32b_rx_flex_desc_comms *desc =
126                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
127         uint16_t stat_err;
128
129         stat_err = rte_le_to_cpu_16(desc->status_error0);
130         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
131                 mb->ol_flags |= PKT_RX_RSS_HASH;
132                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
133         }
134
135 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
136         if (desc->flow_id != 0xFFFFFFFF) {
137                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
138                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
139         }
140
141         if (rxq->xtr_ol_flag) {
142                 uint32_t metadata = 0;
143
144                 stat_err = rte_le_to_cpu_16(desc->status_error1);
145
146                 if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
147                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
148
149                 if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
150                         metadata |=
151                                 rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
152
153                 if (metadata) {
154                         mb->ol_flags |= rxq->xtr_ol_flag;
155
156                         *RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
157                 }
158         }
159 #endif
160 }
161
162 static inline void
163 ice_rxd_to_pkt_fields_by_comms_aux_v2(struct ice_rx_queue *rxq,
164                                       struct rte_mbuf *mb,
165                                       volatile union ice_rx_flex_desc *rxdp)
166 {
167         volatile struct ice_32b_rx_flex_desc_comms *desc =
168                         (volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
169         uint16_t stat_err;
170
171         stat_err = rte_le_to_cpu_16(desc->status_error0);
172         if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
173                 mb->ol_flags |= PKT_RX_RSS_HASH;
174                 mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
175         }
176
177 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
178         if (desc->flow_id != 0xFFFFFFFF) {
179                 mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
180                 mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
181         }
182
183         if (rxq->xtr_ol_flag) {
184                 uint32_t metadata = 0;
185
186                 if (desc->flex_ts.flex.aux0 != 0xFFFF)
187                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
188                 else if (desc->flex_ts.flex.aux1 != 0xFFFF)
189                         metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
190
191                 if (metadata) {
192                         mb->ol_flags |= rxq->xtr_ol_flag;
193
194                         *RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
195                 }
196         }
197 #endif
198 }
199
200 void
201 ice_select_rxd_to_pkt_fields_handler(struct ice_rx_queue *rxq, uint32_t rxdid)
202 {
203         switch (rxdid) {
204         case ICE_RXDID_COMMS_AUX_VLAN:
205                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_vlan_mask;
206                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
207                 break;
208
209         case ICE_RXDID_COMMS_AUX_IPV4:
210                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv4_mask;
211                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
212                 break;
213
214         case ICE_RXDID_COMMS_AUX_IPV6:
215                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_mask;
216                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
217                 break;
218
219         case ICE_RXDID_COMMS_AUX_IPV6_FLOW:
220                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
221                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
222                 break;
223
224         case ICE_RXDID_COMMS_AUX_TCP:
225                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_tcp_mask;
226                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
227                 break;
228
229         case ICE_RXDID_COMMS_AUX_IP_OFFSET:
230                 rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
231                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v2;
232                 break;
233
234         case ICE_RXDID_COMMS_GENERIC:
235                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_generic;
236                 break;
237
238         case ICE_RXDID_COMMS_OVS:
239                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_ovs;
240                 break;
241
242         default:
243                 /* update this according to the RXDID for PROTO_XTR_NONE */
244                 rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_ovs;
245                 break;
246         }
247
248         if (!rte_net_ice_dynf_proto_xtr_metadata_avail())
249                 rxq->xtr_ol_flag = 0;
250 }
251
252 static enum ice_status
253 ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
254 {
255         struct ice_vsi *vsi = rxq->vsi;
256         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
257         struct ice_pf *pf = ICE_VSI_TO_PF(vsi);
258         struct rte_eth_dev *dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
259         struct ice_rlan_ctx rx_ctx;
260         enum ice_status err;
261         uint16_t buf_size, len;
262         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
263         uint32_t rxdid = ICE_RXDID_COMMS_OVS;
264         uint32_t regval;
265
266         /* Set buffer size as the head split is disabled. */
267         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
268                               RTE_PKTMBUF_HEADROOM);
269         rxq->rx_hdr_len = 0;
270         rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
271         len = ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len;
272         rxq->max_pkt_len = RTE_MIN(len,
273                                    dev->data->dev_conf.rxmode.max_rx_pkt_len);
274
275         if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
276                 if (rxq->max_pkt_len <= ICE_ETH_MAX_LEN ||
277                     rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
278                         PMD_DRV_LOG(ERR, "maximum packet length must "
279                                     "be larger than %u and smaller than %u,"
280                                     "as jumbo frame is enabled",
281                                     (uint32_t)ICE_ETH_MAX_LEN,
282                                     (uint32_t)ICE_FRAME_SIZE_MAX);
283                         return -EINVAL;
284                 }
285         } else {
286                 if (rxq->max_pkt_len < RTE_ETHER_MIN_LEN ||
287                     rxq->max_pkt_len > ICE_ETH_MAX_LEN) {
288                         PMD_DRV_LOG(ERR, "maximum packet length must be "
289                                     "larger than %u and smaller than %u, "
290                                     "as jumbo frame is disabled",
291                                     (uint32_t)RTE_ETHER_MIN_LEN,
292                                     (uint32_t)ICE_ETH_MAX_LEN);
293                         return -EINVAL;
294                 }
295         }
296
297         memset(&rx_ctx, 0, sizeof(rx_ctx));
298
299         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
300         rx_ctx.qlen = rxq->nb_rx_desc;
301         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
302         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
303         rx_ctx.dtype = 0; /* No Header Split mode */
304 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
305         rx_ctx.dsize = 1; /* 32B descriptors */
306 #endif
307         rx_ctx.rxmax = rxq->max_pkt_len;
308         /* TPH: Transaction Layer Packet (TLP) processing hints */
309         rx_ctx.tphrdesc_ena = 1;
310         rx_ctx.tphwdesc_ena = 1;
311         rx_ctx.tphdata_ena = 1;
312         rx_ctx.tphhead_ena = 1;
313         /* Low Receive Queue Threshold defined in 64 descriptors units.
314          * When the number of free descriptors goes below the lrxqthresh,
315          * an immediate interrupt is triggered.
316          */
317         rx_ctx.lrxqthresh = 2;
318         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
319         rx_ctx.l2tsel = 1;
320         rx_ctx.showiv = 0;
321         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
322
323         rxdid = ice_proto_xtr_type_to_rxdid(rxq->proto_xtr);
324
325         PMD_DRV_LOG(DEBUG, "Port (%u) - Rx queue (%u) is set with RXDID : %u",
326                     rxq->port_id, rxq->queue_id, rxdid);
327
328         if (!(pf->supported_rxdid & BIT(rxdid))) {
329                 PMD_DRV_LOG(ERR, "currently package doesn't support RXDID (%u)",
330                             rxdid);
331                 return -EINVAL;
332         }
333
334         ice_select_rxd_to_pkt_fields_handler(rxq, rxdid);
335
336         /* Enable Flexible Descriptors in the queue context which
337          * allows this driver to select a specific receive descriptor format
338          */
339         regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
340                 QRXFLXP_CNTXT_RXDID_IDX_M;
341
342         /* increasing context priority to pick up profile ID;
343          * default is 0x01; setting to 0x03 to ensure profile
344          * is programming if prev context is of same priority
345          */
346         regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
347                 QRXFLXP_CNTXT_RXDID_PRIO_M;
348
349         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
350
351         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
352         if (err) {
353                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
354                             rxq->queue_id);
355                 return -EINVAL;
356         }
357         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
358         if (err) {
359                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
360                             rxq->queue_id);
361                 return -EINVAL;
362         }
363
364         buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
365                               RTE_PKTMBUF_HEADROOM);
366
367         /* Check if scattered RX needs to be used. */
368         if (rxq->max_pkt_len > buf_size)
369                 dev->data->scattered_rx = 1;
370
371         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
372
373         /* Init the Rx tail register*/
374         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
375
376         return 0;
377 }
378
379 /* Allocate mbufs for all descriptors in rx queue */
380 static int
381 ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
382 {
383         struct ice_rx_entry *rxe = rxq->sw_ring;
384         uint64_t dma_addr;
385         uint16_t i;
386
387         for (i = 0; i < rxq->nb_rx_desc; i++) {
388                 volatile union ice_rx_flex_desc *rxd;
389                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
390
391                 if (unlikely(!mbuf)) {
392                         PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
393                         return -ENOMEM;
394                 }
395
396                 rte_mbuf_refcnt_set(mbuf, 1);
397                 mbuf->next = NULL;
398                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
399                 mbuf->nb_segs = 1;
400                 mbuf->port = rxq->port_id;
401
402                 dma_addr =
403                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
404
405                 rxd = &rxq->rx_ring[i];
406                 rxd->read.pkt_addr = dma_addr;
407                 rxd->read.hdr_addr = 0;
408 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
409                 rxd->read.rsvd1 = 0;
410                 rxd->read.rsvd2 = 0;
411 #endif
412                 rxe[i].mbuf = mbuf;
413         }
414
415         return 0;
416 }
417
418 /* Free all mbufs for descriptors in rx queue */
419 static void
420 _ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
421 {
422         uint16_t i;
423
424         if (!rxq || !rxq->sw_ring) {
425                 PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
426                 return;
427         }
428
429         for (i = 0; i < rxq->nb_rx_desc; i++) {
430                 if (rxq->sw_ring[i].mbuf) {
431                         rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
432                         rxq->sw_ring[i].mbuf = NULL;
433                 }
434         }
435         if (rxq->rx_nb_avail == 0)
436                 return;
437         for (i = 0; i < rxq->rx_nb_avail; i++)
438                 rte_pktmbuf_free_seg(rxq->rx_stage[rxq->rx_next_avail + i]);
439
440         rxq->rx_nb_avail = 0;
441 }
442
443 /* turn on or off rx queue
444  * @q_idx: queue index in pf scope
445  * @on: turn on or off the queue
446  */
447 static int
448 ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
449 {
450         uint32_t reg;
451         uint16_t j;
452
453         /* QRX_CTRL = QRX_ENA */
454         reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
455
456         if (on) {
457                 if (reg & QRX_CTRL_QENA_STAT_M)
458                         return 0; /* Already on, skip */
459                 reg |= QRX_CTRL_QENA_REQ_M;
460         } else {
461                 if (!(reg & QRX_CTRL_QENA_STAT_M))
462                         return 0; /* Already off, skip */
463                 reg &= ~QRX_CTRL_QENA_REQ_M;
464         }
465
466         /* Write the register */
467         ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
468         /* Check the result. It is said that QENA_STAT
469          * follows the QENA_REQ not more than 10 use.
470          * TODO: need to change the wait counter later
471          */
472         for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
473                 rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
474                 reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
475                 if (on) {
476                         if ((reg & QRX_CTRL_QENA_REQ_M) &&
477                             (reg & QRX_CTRL_QENA_STAT_M))
478                                 break;
479                 } else {
480                         if (!(reg & QRX_CTRL_QENA_REQ_M) &&
481                             !(reg & QRX_CTRL_QENA_STAT_M))
482                                 break;
483                 }
484         }
485
486         /* Check if it is timeout */
487         if (j >= ICE_CHK_Q_ENA_COUNT) {
488                 PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
489                             (on ? "enable" : "disable"), q_idx);
490                 return -ETIMEDOUT;
491         }
492
493         return 0;
494 }
495
496 static inline int
497 ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
498 {
499         int ret = 0;
500
501         if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
502                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
503                              "rxq->rx_free_thresh=%d, "
504                              "ICE_RX_MAX_BURST=%d",
505                              rxq->rx_free_thresh, ICE_RX_MAX_BURST);
506                 ret = -EINVAL;
507         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
508                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
509                              "rxq->rx_free_thresh=%d, "
510                              "rxq->nb_rx_desc=%d",
511                              rxq->rx_free_thresh, rxq->nb_rx_desc);
512                 ret = -EINVAL;
513         } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
514                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
515                              "rxq->nb_rx_desc=%d, "
516                              "rxq->rx_free_thresh=%d",
517                              rxq->nb_rx_desc, rxq->rx_free_thresh);
518                 ret = -EINVAL;
519         }
520
521         return ret;
522 }
523
524 /* reset fields in ice_rx_queue back to default */
525 static void
526 ice_reset_rx_queue(struct ice_rx_queue *rxq)
527 {
528         unsigned int i;
529         uint16_t len;
530
531         if (!rxq) {
532                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
533                 return;
534         }
535
536         len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
537
538         for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
539                 ((volatile char *)rxq->rx_ring)[i] = 0;
540
541         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
542         for (i = 0; i < ICE_RX_MAX_BURST; ++i)
543                 rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
544
545         rxq->rx_nb_avail = 0;
546         rxq->rx_next_avail = 0;
547         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
548
549         rxq->rx_tail = 0;
550         rxq->nb_rx_hold = 0;
551         rxq->pkt_first_seg = NULL;
552         rxq->pkt_last_seg = NULL;
553
554         rxq->rxrearm_start = 0;
555         rxq->rxrearm_nb = 0;
556 }
557
558 int
559 ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
560 {
561         struct ice_rx_queue *rxq;
562         int err;
563         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
564
565         PMD_INIT_FUNC_TRACE();
566
567         if (rx_queue_id >= dev->data->nb_rx_queues) {
568                 PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
569                             rx_queue_id, dev->data->nb_rx_queues);
570                 return -EINVAL;
571         }
572
573         rxq = dev->data->rx_queues[rx_queue_id];
574         if (!rxq || !rxq->q_set) {
575                 PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
576                             rx_queue_id);
577                 return -EINVAL;
578         }
579
580         err = ice_program_hw_rx_queue(rxq);
581         if (err) {
582                 PMD_DRV_LOG(ERR, "fail to program RX queue %u",
583                             rx_queue_id);
584                 return -EIO;
585         }
586
587         err = ice_alloc_rx_queue_mbufs(rxq);
588         if (err) {
589                 PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
590                 return -ENOMEM;
591         }
592
593         /* Init the RX tail register. */
594         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
595
596         err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
597         if (err) {
598                 PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
599                             rx_queue_id);
600
601                 rxq->rx_rel_mbufs(rxq);
602                 ice_reset_rx_queue(rxq);
603                 return -EINVAL;
604         }
605
606         dev->data->rx_queue_state[rx_queue_id] =
607                 RTE_ETH_QUEUE_STATE_STARTED;
608
609         return 0;
610 }
611
612 int
613 ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
614 {
615         struct ice_rx_queue *rxq;
616         int err;
617         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
618
619         if (rx_queue_id < dev->data->nb_rx_queues) {
620                 rxq = dev->data->rx_queues[rx_queue_id];
621
622                 err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
623                 if (err) {
624                         PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
625                                     rx_queue_id);
626                         return -EINVAL;
627                 }
628                 rxq->rx_rel_mbufs(rxq);
629                 ice_reset_rx_queue(rxq);
630                 dev->data->rx_queue_state[rx_queue_id] =
631                         RTE_ETH_QUEUE_STATE_STOPPED;
632         }
633
634         return 0;
635 }
636
637 int
638 ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
639 {
640         struct ice_tx_queue *txq;
641         int err;
642         struct ice_vsi *vsi;
643         struct ice_hw *hw;
644         struct ice_aqc_add_tx_qgrp *txq_elem;
645         struct ice_tlan_ctx tx_ctx;
646         int buf_len;
647
648         PMD_INIT_FUNC_TRACE();
649
650         if (tx_queue_id >= dev->data->nb_tx_queues) {
651                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
652                             tx_queue_id, dev->data->nb_tx_queues);
653                 return -EINVAL;
654         }
655
656         txq = dev->data->tx_queues[tx_queue_id];
657         if (!txq || !txq->q_set) {
658                 PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
659                             tx_queue_id);
660                 return -EINVAL;
661         }
662
663         buf_len = ice_struct_size(txq_elem, txqs, 1);
664         txq_elem = ice_malloc(hw, buf_len);
665         if (!txq_elem)
666                 return -ENOMEM;
667
668         vsi = txq->vsi;
669         hw = ICE_VSI_TO_HW(vsi);
670
671         memset(&tx_ctx, 0, sizeof(tx_ctx));
672         txq_elem->num_txqs = 1;
673         txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
674
675         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
676         tx_ctx.qlen = txq->nb_tx_desc;
677         tx_ctx.pf_num = hw->pf_id;
678         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
679         tx_ctx.src_vsi = vsi->vsi_id;
680         tx_ctx.port_num = hw->port_info->lport;
681         tx_ctx.tso_ena = 1; /* tso enable */
682         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
683         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
684
685         ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
686                     ice_tlan_ctx_info);
687
688         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
689
690         /* Init the Tx tail register*/
691         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
692
693         /* Fix me, we assume TC always 0 here */
694         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
695                         txq_elem, buf_len, NULL);
696         if (err) {
697                 PMD_DRV_LOG(ERR, "Failed to add lan txq");
698                 rte_free(txq_elem);
699                 return -EIO;
700         }
701         /* store the schedule node id */
702         txq->q_teid = txq_elem->txqs[0].q_teid;
703
704         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
705
706         rte_free(txq_elem);
707         return 0;
708 }
709
710 static enum ice_status
711 ice_fdir_program_hw_rx_queue(struct ice_rx_queue *rxq)
712 {
713         struct ice_vsi *vsi = rxq->vsi;
714         struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
715         uint32_t rxdid = ICE_RXDID_LEGACY_1;
716         struct ice_rlan_ctx rx_ctx;
717         enum ice_status err;
718         uint32_t regval;
719
720         rxq->rx_hdr_len = 0;
721         rxq->rx_buf_len = 1024;
722
723         memset(&rx_ctx, 0, sizeof(rx_ctx));
724
725         rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
726         rx_ctx.qlen = rxq->nb_rx_desc;
727         rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
728         rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
729         rx_ctx.dtype = 0; /* No Header Split mode */
730         rx_ctx.dsize = 1; /* 32B descriptors */
731         rx_ctx.rxmax = ICE_ETH_MAX_LEN;
732         /* TPH: Transaction Layer Packet (TLP) processing hints */
733         rx_ctx.tphrdesc_ena = 1;
734         rx_ctx.tphwdesc_ena = 1;
735         rx_ctx.tphdata_ena = 1;
736         rx_ctx.tphhead_ena = 1;
737         /* Low Receive Queue Threshold defined in 64 descriptors units.
738          * When the number of free descriptors goes below the lrxqthresh,
739          * an immediate interrupt is triggered.
740          */
741         rx_ctx.lrxqthresh = 2;
742         /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
743         rx_ctx.l2tsel = 1;
744         rx_ctx.showiv = 0;
745         rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
746
747         /* Enable Flexible Descriptors in the queue context which
748          * allows this driver to select a specific receive descriptor format
749          */
750         regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
751                 QRXFLXP_CNTXT_RXDID_IDX_M;
752
753         /* increasing context priority to pick up profile ID;
754          * default is 0x01; setting to 0x03 to ensure profile
755          * is programming if prev context is of same priority
756          */
757         regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
758                 QRXFLXP_CNTXT_RXDID_PRIO_M;
759
760         ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
761
762         err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
763         if (err) {
764                 PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
765                             rxq->queue_id);
766                 return -EINVAL;
767         }
768         err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
769         if (err) {
770                 PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
771                             rxq->queue_id);
772                 return -EINVAL;
773         }
774
775         rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
776
777         /* Init the Rx tail register*/
778         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
779
780         return 0;
781 }
782
783 int
784 ice_fdir_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
785 {
786         struct ice_rx_queue *rxq;
787         int err;
788         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
789         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
790
791         PMD_INIT_FUNC_TRACE();
792
793         rxq = pf->fdir.rxq;
794         if (!rxq || !rxq->q_set) {
795                 PMD_DRV_LOG(ERR, "FDIR RX queue %u not available or setup",
796                             rx_queue_id);
797                 return -EINVAL;
798         }
799
800         err = ice_fdir_program_hw_rx_queue(rxq);
801         if (err) {
802                 PMD_DRV_LOG(ERR, "fail to program FDIR RX queue %u",
803                             rx_queue_id);
804                 return -EIO;
805         }
806
807         /* Init the RX tail register. */
808         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
809
810         err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
811         if (err) {
812                 PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u on",
813                             rx_queue_id);
814
815                 ice_reset_rx_queue(rxq);
816                 return -EINVAL;
817         }
818
819         return 0;
820 }
821
822 int
823 ice_fdir_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
824 {
825         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
826         struct ice_tx_queue *txq;
827         int err;
828         struct ice_vsi *vsi;
829         struct ice_hw *hw;
830         struct ice_aqc_add_tx_qgrp *txq_elem;
831         struct ice_tlan_ctx tx_ctx;
832         int buf_len;
833
834         PMD_INIT_FUNC_TRACE();
835
836         txq = pf->fdir.txq;
837         if (!txq || !txq->q_set) {
838                 PMD_DRV_LOG(ERR, "FDIR TX queue %u is not available or setup",
839                             tx_queue_id);
840                 return -EINVAL;
841         }
842
843         buf_len = ice_struct_size(txq_elem, txqs, 1);
844         txq_elem = ice_malloc(hw, buf_len);
845         if (!txq_elem)
846                 return -ENOMEM;
847
848         vsi = txq->vsi;
849         hw = ICE_VSI_TO_HW(vsi);
850
851         memset(&tx_ctx, 0, sizeof(tx_ctx));
852         txq_elem->num_txqs = 1;
853         txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
854
855         tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
856         tx_ctx.qlen = txq->nb_tx_desc;
857         tx_ctx.pf_num = hw->pf_id;
858         tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
859         tx_ctx.src_vsi = vsi->vsi_id;
860         tx_ctx.port_num = hw->port_info->lport;
861         tx_ctx.tso_ena = 1; /* tso enable */
862         tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
863         tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
864
865         ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
866                     ice_tlan_ctx_info);
867
868         txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
869
870         /* Init the Tx tail register*/
871         ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
872
873         /* Fix me, we assume TC always 0 here */
874         err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
875                               txq_elem, buf_len, NULL);
876         if (err) {
877                 PMD_DRV_LOG(ERR, "Failed to add FDIR txq");
878                 rte_free(txq_elem);
879                 return -EIO;
880         }
881         /* store the schedule node id */
882         txq->q_teid = txq_elem->txqs[0].q_teid;
883
884         rte_free(txq_elem);
885         return 0;
886 }
887
888 /* Free all mbufs for descriptors in tx queue */
889 static void
890 _ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
891 {
892         uint16_t i;
893
894         if (!txq || !txq->sw_ring) {
895                 PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
896                 return;
897         }
898
899         for (i = 0; i < txq->nb_tx_desc; i++) {
900                 if (txq->sw_ring[i].mbuf) {
901                         rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
902                         txq->sw_ring[i].mbuf = NULL;
903                 }
904         }
905 }
906
907 static void
908 ice_reset_tx_queue(struct ice_tx_queue *txq)
909 {
910         struct ice_tx_entry *txe;
911         uint16_t i, prev, size;
912
913         if (!txq) {
914                 PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
915                 return;
916         }
917
918         txe = txq->sw_ring;
919         size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
920         for (i = 0; i < size; i++)
921                 ((volatile char *)txq->tx_ring)[i] = 0;
922
923         prev = (uint16_t)(txq->nb_tx_desc - 1);
924         for (i = 0; i < txq->nb_tx_desc; i++) {
925                 volatile struct ice_tx_desc *txd = &txq->tx_ring[i];
926
927                 txd->cmd_type_offset_bsz =
928                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
929                 txe[i].mbuf =  NULL;
930                 txe[i].last_id = i;
931                 txe[prev].next_id = i;
932                 prev = i;
933         }
934
935         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
936         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
937
938         txq->tx_tail = 0;
939         txq->nb_tx_used = 0;
940
941         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
942         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
943 }
944
945 int
946 ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
947 {
948         struct ice_tx_queue *txq;
949         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
950         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
951         struct ice_vsi *vsi = pf->main_vsi;
952         enum ice_status status;
953         uint16_t q_ids[1];
954         uint32_t q_teids[1];
955         uint16_t q_handle = tx_queue_id;
956
957         if (tx_queue_id >= dev->data->nb_tx_queues) {
958                 PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
959                             tx_queue_id, dev->data->nb_tx_queues);
960                 return -EINVAL;
961         }
962
963         txq = dev->data->tx_queues[tx_queue_id];
964         if (!txq) {
965                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
966                             tx_queue_id);
967                 return -EINVAL;
968         }
969
970         q_ids[0] = txq->reg_idx;
971         q_teids[0] = txq->q_teid;
972
973         /* Fix me, we assume TC always 0 here */
974         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
975                                 q_ids, q_teids, ICE_NO_RESET, 0, NULL);
976         if (status != ICE_SUCCESS) {
977                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
978                 return -EINVAL;
979         }
980
981         txq->tx_rel_mbufs(txq);
982         ice_reset_tx_queue(txq);
983         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
984
985         return 0;
986 }
987
988 int
989 ice_fdir_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
990 {
991         struct ice_rx_queue *rxq;
992         int err;
993         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
994         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
995
996         rxq = pf->fdir.rxq;
997
998         err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
999         if (err) {
1000                 PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u off",
1001                             rx_queue_id);
1002                 return -EINVAL;
1003         }
1004         rxq->rx_rel_mbufs(rxq);
1005
1006         return 0;
1007 }
1008
1009 int
1010 ice_fdir_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1011 {
1012         struct ice_tx_queue *txq;
1013         struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1014         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1015         struct ice_vsi *vsi = pf->main_vsi;
1016         enum ice_status status;
1017         uint16_t q_ids[1];
1018         uint32_t q_teids[1];
1019         uint16_t q_handle = tx_queue_id;
1020
1021         txq = pf->fdir.txq;
1022         if (!txq) {
1023                 PMD_DRV_LOG(ERR, "TX queue %u is not available",
1024                             tx_queue_id);
1025                 return -EINVAL;
1026         }
1027         vsi = txq->vsi;
1028
1029         q_ids[0] = txq->reg_idx;
1030         q_teids[0] = txq->q_teid;
1031
1032         /* Fix me, we assume TC always 0 here */
1033         status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
1034                                  q_ids, q_teids, ICE_NO_RESET, 0, NULL);
1035         if (status != ICE_SUCCESS) {
1036                 PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
1037                 return -EINVAL;
1038         }
1039
1040         txq->tx_rel_mbufs(txq);
1041
1042         return 0;
1043 }
1044
1045 int
1046 ice_rx_queue_setup(struct rte_eth_dev *dev,
1047                    uint16_t queue_idx,
1048                    uint16_t nb_desc,
1049                    unsigned int socket_id,
1050                    const struct rte_eth_rxconf *rx_conf,
1051                    struct rte_mempool *mp)
1052 {
1053         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1054         struct ice_adapter *ad =
1055                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1056         struct ice_vsi *vsi = pf->main_vsi;
1057         struct ice_rx_queue *rxq;
1058         const struct rte_memzone *rz;
1059         uint32_t ring_size;
1060         uint16_t len;
1061         int use_def_burst_func = 1;
1062         uint64_t offloads;
1063
1064         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1065             nb_desc > ICE_MAX_RING_DESC ||
1066             nb_desc < ICE_MIN_RING_DESC) {
1067                 PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
1068                              "invalid", nb_desc);
1069                 return -EINVAL;
1070         }
1071
1072         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1073
1074         /* Free memory if needed */
1075         if (dev->data->rx_queues[queue_idx]) {
1076                 ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
1077                 dev->data->rx_queues[queue_idx] = NULL;
1078         }
1079
1080         /* Allocate the rx queue data structure */
1081         rxq = rte_zmalloc_socket(NULL,
1082                                  sizeof(struct ice_rx_queue),
1083                                  RTE_CACHE_LINE_SIZE,
1084                                  socket_id);
1085         if (!rxq) {
1086                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1087                              "rx queue data structure");
1088                 return -ENOMEM;
1089         }
1090         rxq->mp = mp;
1091         rxq->nb_rx_desc = nb_desc;
1092         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1093         rxq->queue_id = queue_idx;
1094         rxq->offloads = offloads;
1095
1096         rxq->reg_idx = vsi->base_queue + queue_idx;
1097         rxq->port_id = dev->data->port_id;
1098         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1099                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1100         else
1101                 rxq->crc_len = 0;
1102
1103         rxq->drop_en = rx_conf->rx_drop_en;
1104         rxq->vsi = vsi;
1105         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
1106         rxq->proto_xtr = pf->proto_xtr != NULL ?
1107                          pf->proto_xtr[queue_idx] : PROTO_XTR_NONE;
1108
1109         /* Allocate the maximun number of RX ring hardware descriptor. */
1110         len = ICE_MAX_RING_DESC;
1111
1112         /**
1113          * Allocating a little more memory because vectorized/bulk_alloc Rx
1114          * functions doesn't check boundaries each time.
1115          */
1116         len += ICE_RX_MAX_BURST;
1117
1118         /* Allocate the maximum number of RX ring hardware descriptor. */
1119         ring_size = sizeof(union ice_rx_flex_desc) * len;
1120         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1121         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
1122                                       ring_size, ICE_RING_BASE_ALIGN,
1123                                       socket_id);
1124         if (!rz) {
1125                 ice_rx_queue_release(rxq);
1126                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
1127                 return -ENOMEM;
1128         }
1129
1130         /* Zero all the descriptors in the ring. */
1131         memset(rz->addr, 0, ring_size);
1132
1133         rxq->rx_ring_dma = rz->iova;
1134         rxq->rx_ring = rz->addr;
1135
1136         /* always reserve more for bulk alloc */
1137         len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
1138
1139         /* Allocate the software ring. */
1140         rxq->sw_ring = rte_zmalloc_socket(NULL,
1141                                           sizeof(struct ice_rx_entry) * len,
1142                                           RTE_CACHE_LINE_SIZE,
1143                                           socket_id);
1144         if (!rxq->sw_ring) {
1145                 ice_rx_queue_release(rxq);
1146                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
1147                 return -ENOMEM;
1148         }
1149
1150         ice_reset_rx_queue(rxq);
1151         rxq->q_set = true;
1152         dev->data->rx_queues[queue_idx] = rxq;
1153         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
1154
1155         use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
1156
1157         if (!use_def_burst_func) {
1158                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1159                              "satisfied. Rx Burst Bulk Alloc function will be "
1160                              "used on port=%d, queue=%d.",
1161                              rxq->port_id, rxq->queue_id);
1162         } else {
1163                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
1164                              "not satisfied, Scattered Rx is requested. "
1165                              "on port=%d, queue=%d.",
1166                              rxq->port_id, rxq->queue_id);
1167                 ad->rx_bulk_alloc_allowed = false;
1168         }
1169
1170         return 0;
1171 }
1172
1173 void
1174 ice_rx_queue_release(void *rxq)
1175 {
1176         struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
1177
1178         if (!q) {
1179                 PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
1180                 return;
1181         }
1182
1183         q->rx_rel_mbufs(q);
1184         rte_free(q->sw_ring);
1185         rte_free(q);
1186 }
1187
1188 int
1189 ice_tx_queue_setup(struct rte_eth_dev *dev,
1190                    uint16_t queue_idx,
1191                    uint16_t nb_desc,
1192                    unsigned int socket_id,
1193                    const struct rte_eth_txconf *tx_conf)
1194 {
1195         struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1196         struct ice_vsi *vsi = pf->main_vsi;
1197         struct ice_tx_queue *txq;
1198         const struct rte_memzone *tz;
1199         uint32_t ring_size;
1200         uint16_t tx_rs_thresh, tx_free_thresh;
1201         uint64_t offloads;
1202
1203         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1204
1205         if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
1206             nb_desc > ICE_MAX_RING_DESC ||
1207             nb_desc < ICE_MIN_RING_DESC) {
1208                 PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
1209                              "invalid", nb_desc);
1210                 return -EINVAL;
1211         }
1212
1213         /**
1214          * The following two parameters control the setting of the RS bit on
1215          * transmit descriptors. TX descriptors will have their RS bit set
1216          * after txq->tx_rs_thresh descriptors have been used. The TX
1217          * descriptor ring will be cleaned after txq->tx_free_thresh
1218          * descriptors are used or if the number of descriptors required to
1219          * transmit a packet is greater than the number of free TX descriptors.
1220          *
1221          * The following constraints must be satisfied:
1222          *  - tx_rs_thresh must be greater than 0.
1223          *  - tx_rs_thresh must be less than the size of the ring minus 2.
1224          *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
1225          *  - tx_rs_thresh must be a divisor of the ring size.
1226          *  - tx_free_thresh must be greater than 0.
1227          *  - tx_free_thresh must be less than the size of the ring minus 3.
1228          *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
1229          *
1230          * One descriptor in the TX ring is used as a sentinel to avoid a H/W
1231          * race condition, hence the maximum threshold constraints. When set
1232          * to zero use default values.
1233          */
1234         tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
1235                                     tx_conf->tx_free_thresh :
1236                                     ICE_DEFAULT_TX_FREE_THRESH);
1237         /* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
1238         tx_rs_thresh =
1239                 (ICE_DEFAULT_TX_RSBIT_THRESH + tx_free_thresh > nb_desc) ?
1240                         nb_desc - tx_free_thresh : ICE_DEFAULT_TX_RSBIT_THRESH;
1241         if (tx_conf->tx_rs_thresh)
1242                 tx_rs_thresh = tx_conf->tx_rs_thresh;
1243         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
1244                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
1245                                 "exceed nb_desc. (tx_rs_thresh=%u "
1246                                 "tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
1247                                 (unsigned int)tx_rs_thresh,
1248                                 (unsigned int)tx_free_thresh,
1249                                 (unsigned int)nb_desc,
1250                                 (int)dev->data->port_id,
1251                                 (int)queue_idx);
1252                 return -EINVAL;
1253         }
1254         if (tx_rs_thresh >= (nb_desc - 2)) {
1255                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1256                              "number of TX descriptors minus 2. "
1257                              "(tx_rs_thresh=%u port=%d queue=%d)",
1258                              (unsigned int)tx_rs_thresh,
1259                              (int)dev->data->port_id,
1260                              (int)queue_idx);
1261                 return -EINVAL;
1262         }
1263         if (tx_free_thresh >= (nb_desc - 3)) {
1264                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
1265                              "tx_free_thresh must be less than the "
1266                              "number of TX descriptors minus 3. "
1267                              "(tx_free_thresh=%u port=%d queue=%d)",
1268                              (unsigned int)tx_free_thresh,
1269                              (int)dev->data->port_id,
1270                              (int)queue_idx);
1271                 return -EINVAL;
1272         }
1273         if (tx_rs_thresh > tx_free_thresh) {
1274                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
1275                              "equal to tx_free_thresh. (tx_free_thresh=%u"
1276                              " tx_rs_thresh=%u port=%d queue=%d)",
1277                              (unsigned int)tx_free_thresh,
1278                              (unsigned int)tx_rs_thresh,
1279                              (int)dev->data->port_id,
1280                              (int)queue_idx);
1281                 return -EINVAL;
1282         }
1283         if ((nb_desc % tx_rs_thresh) != 0) {
1284                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
1285                              "number of TX descriptors. (tx_rs_thresh=%u"
1286                              " port=%d queue=%d)",
1287                              (unsigned int)tx_rs_thresh,
1288                              (int)dev->data->port_id,
1289                              (int)queue_idx);
1290                 return -EINVAL;
1291         }
1292         if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
1293                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
1294                              "tx_rs_thresh is greater than 1. "
1295                              "(tx_rs_thresh=%u port=%d queue=%d)",
1296                              (unsigned int)tx_rs_thresh,
1297                              (int)dev->data->port_id,
1298                              (int)queue_idx);
1299                 return -EINVAL;
1300         }
1301
1302         /* Free memory if needed. */
1303         if (dev->data->tx_queues[queue_idx]) {
1304                 ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
1305                 dev->data->tx_queues[queue_idx] = NULL;
1306         }
1307
1308         /* Allocate the TX queue data structure. */
1309         txq = rte_zmalloc_socket(NULL,
1310                                  sizeof(struct ice_tx_queue),
1311                                  RTE_CACHE_LINE_SIZE,
1312                                  socket_id);
1313         if (!txq) {
1314                 PMD_INIT_LOG(ERR, "Failed to allocate memory for "
1315                              "tx queue structure");
1316                 return -ENOMEM;
1317         }
1318
1319         /* Allocate TX hardware ring descriptors. */
1320         ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
1321         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
1322         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
1323                                       ring_size, ICE_RING_BASE_ALIGN,
1324                                       socket_id);
1325         if (!tz) {
1326                 ice_tx_queue_release(txq);
1327                 PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
1328                 return -ENOMEM;
1329         }
1330
1331         txq->nb_tx_desc = nb_desc;
1332         txq->tx_rs_thresh = tx_rs_thresh;
1333         txq->tx_free_thresh = tx_free_thresh;
1334         txq->pthresh = tx_conf->tx_thresh.pthresh;
1335         txq->hthresh = tx_conf->tx_thresh.hthresh;
1336         txq->wthresh = tx_conf->tx_thresh.wthresh;
1337         txq->queue_id = queue_idx;
1338
1339         txq->reg_idx = vsi->base_queue + queue_idx;
1340         txq->port_id = dev->data->port_id;
1341         txq->offloads = offloads;
1342         txq->vsi = vsi;
1343         txq->tx_deferred_start = tx_conf->tx_deferred_start;
1344
1345         txq->tx_ring_dma = tz->iova;
1346         txq->tx_ring = tz->addr;
1347
1348         /* Allocate software ring */
1349         txq->sw_ring =
1350                 rte_zmalloc_socket(NULL,
1351                                    sizeof(struct ice_tx_entry) * nb_desc,
1352                                    RTE_CACHE_LINE_SIZE,
1353                                    socket_id);
1354         if (!txq->sw_ring) {
1355                 ice_tx_queue_release(txq);
1356                 PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
1357                 return -ENOMEM;
1358         }
1359
1360         ice_reset_tx_queue(txq);
1361         txq->q_set = true;
1362         dev->data->tx_queues[queue_idx] = txq;
1363         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
1364         ice_set_tx_function_flag(dev, txq);
1365
1366         return 0;
1367 }
1368
1369 void
1370 ice_tx_queue_release(void *txq)
1371 {
1372         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
1373
1374         if (!q) {
1375                 PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
1376                 return;
1377         }
1378
1379         q->tx_rel_mbufs(q);
1380         rte_free(q->sw_ring);
1381         rte_free(q);
1382 }
1383
1384 void
1385 ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1386                  struct rte_eth_rxq_info *qinfo)
1387 {
1388         struct ice_rx_queue *rxq;
1389
1390         rxq = dev->data->rx_queues[queue_id];
1391
1392         qinfo->mp = rxq->mp;
1393         qinfo->scattered_rx = dev->data->scattered_rx;
1394         qinfo->nb_desc = rxq->nb_rx_desc;
1395
1396         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
1397         qinfo->conf.rx_drop_en = rxq->drop_en;
1398         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
1399 }
1400
1401 void
1402 ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
1403                  struct rte_eth_txq_info *qinfo)
1404 {
1405         struct ice_tx_queue *txq;
1406
1407         txq = dev->data->tx_queues[queue_id];
1408
1409         qinfo->nb_desc = txq->nb_tx_desc;
1410
1411         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
1412         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
1413         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
1414
1415         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
1416         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
1417         qinfo->conf.offloads = txq->offloads;
1418         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
1419 }
1420
1421 uint32_t
1422 ice_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1423 {
1424 #define ICE_RXQ_SCAN_INTERVAL 4
1425         volatile union ice_rx_flex_desc *rxdp;
1426         struct ice_rx_queue *rxq;
1427         uint16_t desc = 0;
1428
1429         rxq = dev->data->rx_queues[rx_queue_id];
1430         rxdp = &rxq->rx_ring[rxq->rx_tail];
1431         while ((desc < rxq->nb_rx_desc) &&
1432                rte_le_to_cpu_16(rxdp->wb.status_error0) &
1433                (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)) {
1434                 /**
1435                  * Check the DD bit of a rx descriptor of each 4 in a group,
1436                  * to avoid checking too frequently and downgrading performance
1437                  * too much.
1438                  */
1439                 desc += ICE_RXQ_SCAN_INTERVAL;
1440                 rxdp += ICE_RXQ_SCAN_INTERVAL;
1441                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1442                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1443                                  desc - rxq->nb_rx_desc]);
1444         }
1445
1446         return desc;
1447 }
1448
1449 #define ICE_RX_FLEX_ERR0_BITS   \
1450         ((1 << ICE_RX_FLEX_DESC_STATUS0_HBO_S) |        \
1451          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |   \
1452          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) |   \
1453          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) |  \
1454          (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
1455          (1 << ICE_RX_FLEX_DESC_STATUS0_RXE_S))
1456
1457 /* Rx L3/L4 checksum */
1458 static inline uint64_t
1459 ice_rxd_error_to_pkt_flags(uint16_t stat_err0)
1460 {
1461         uint64_t flags = 0;
1462
1463         /* check if HW has decoded the packet and checksum */
1464         if (unlikely(!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))))
1465                 return 0;
1466
1467         if (likely(!(stat_err0 & ICE_RX_FLEX_ERR0_BITS))) {
1468                 flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
1469                 return flags;
1470         }
1471
1472         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
1473                 flags |= PKT_RX_IP_CKSUM_BAD;
1474         else
1475                 flags |= PKT_RX_IP_CKSUM_GOOD;
1476
1477         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
1478                 flags |= PKT_RX_L4_CKSUM_BAD;
1479         else
1480                 flags |= PKT_RX_L4_CKSUM_GOOD;
1481
1482         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
1483                 flags |= PKT_RX_OUTER_IP_CKSUM_BAD;
1484
1485         if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
1486                 flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
1487         else
1488                 flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
1489
1490         return flags;
1491 }
1492
1493 static inline void
1494 ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_flex_desc *rxdp)
1495 {
1496         if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
1497             (1 << ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
1498                 mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
1499                 mb->vlan_tci =
1500                         rte_le_to_cpu_16(rxdp->wb.l2tag1);
1501                 PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
1502                            rte_le_to_cpu_16(rxdp->wb.l2tag1));
1503         } else {
1504                 mb->vlan_tci = 0;
1505         }
1506
1507 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
1508         if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
1509             (1 << ICE_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
1510                 mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
1511                                 PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
1512                 mb->vlan_tci_outer = mb->vlan_tci;
1513                 mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
1514                 PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
1515                            rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
1516                            rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
1517         } else {
1518                 mb->vlan_tci_outer = 0;
1519         }
1520 #endif
1521         PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
1522                    mb->vlan_tci, mb->vlan_tci_outer);
1523 }
1524
1525 #define ICE_LOOK_AHEAD 8
1526 #if (ICE_LOOK_AHEAD != 8)
1527 #error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
1528 #endif
1529 static inline int
1530 ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
1531 {
1532         volatile union ice_rx_flex_desc *rxdp;
1533         struct ice_rx_entry *rxep;
1534         struct rte_mbuf *mb;
1535         uint16_t stat_err0;
1536         uint16_t pkt_len;
1537         int32_t s[ICE_LOOK_AHEAD], nb_dd;
1538         int32_t i, j, nb_rx = 0;
1539         uint64_t pkt_flags = 0;
1540         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1541
1542         rxdp = &rxq->rx_ring[rxq->rx_tail];
1543         rxep = &rxq->sw_ring[rxq->rx_tail];
1544
1545         stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1546
1547         /* Make sure there is at least 1 packet to receive */
1548         if (!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1549                 return 0;
1550
1551         /**
1552          * Scan LOOK_AHEAD descriptors at a time to determine which
1553          * descriptors reference packets that are ready to be received.
1554          */
1555         for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
1556              rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
1557                 /* Read desc statuses backwards to avoid race condition */
1558                 for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--)
1559                         s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1560
1561                 rte_smp_rmb();
1562
1563                 /* Compute how many status bits were set */
1564                 for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
1565                         nb_dd += s[j] & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
1566
1567                 nb_rx += nb_dd;
1568
1569                 /* Translate descriptor info to mbuf parameters */
1570                 for (j = 0; j < nb_dd; j++) {
1571                         mb = rxep[j].mbuf;
1572                         pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
1573                                    ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
1574                         mb->data_len = pkt_len;
1575                         mb->pkt_len = pkt_len;
1576                         mb->ol_flags = 0;
1577                         stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
1578                         pkt_flags = ice_rxd_error_to_pkt_flags(stat_err0);
1579                         mb->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1580                                 rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
1581                         ice_rxd_to_vlan_tci(mb, &rxdp[j]);
1582                         rxq->rxd_to_pkt_fields(rxq, mb, &rxdp[j]);
1583
1584                         mb->ol_flags |= pkt_flags;
1585                 }
1586
1587                 for (j = 0; j < ICE_LOOK_AHEAD; j++)
1588                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1589
1590                 if (nb_dd != ICE_LOOK_AHEAD)
1591                         break;
1592         }
1593
1594         /* Clear software ring entries */
1595         for (i = 0; i < nb_rx; i++)
1596                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1597
1598         PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
1599                    "port_id=%u, queue_id=%u, nb_rx=%d",
1600                    rxq->port_id, rxq->queue_id, nb_rx);
1601
1602         return nb_rx;
1603 }
1604
1605 static inline uint16_t
1606 ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
1607                        struct rte_mbuf **rx_pkts,
1608                        uint16_t nb_pkts)
1609 {
1610         uint16_t i;
1611         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1612
1613         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1614
1615         for (i = 0; i < nb_pkts; i++)
1616                 rx_pkts[i] = stage[i];
1617
1618         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1619         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1620
1621         return nb_pkts;
1622 }
1623
1624 static inline int
1625 ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
1626 {
1627         volatile union ice_rx_flex_desc *rxdp;
1628         struct ice_rx_entry *rxep;
1629         struct rte_mbuf *mb;
1630         uint16_t alloc_idx, i;
1631         uint64_t dma_addr;
1632         int diag;
1633
1634         /* Allocate buffers in bulk */
1635         alloc_idx = (uint16_t)(rxq->rx_free_trigger -
1636                                (rxq->rx_free_thresh - 1));
1637         rxep = &rxq->sw_ring[alloc_idx];
1638         diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
1639                                     rxq->rx_free_thresh);
1640         if (unlikely(diag != 0)) {
1641                 PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
1642                 return -ENOMEM;
1643         }
1644
1645         rxdp = &rxq->rx_ring[alloc_idx];
1646         for (i = 0; i < rxq->rx_free_thresh; i++) {
1647                 if (likely(i < (rxq->rx_free_thresh - 1)))
1648                         /* Prefetch next mbuf */
1649                         rte_prefetch0(rxep[i + 1].mbuf);
1650
1651                 mb = rxep[i].mbuf;
1652                 rte_mbuf_refcnt_set(mb, 1);
1653                 mb->next = NULL;
1654                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1655                 mb->nb_segs = 1;
1656                 mb->port = rxq->port_id;
1657                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1658                 rxdp[i].read.hdr_addr = 0;
1659                 rxdp[i].read.pkt_addr = dma_addr;
1660         }
1661
1662         /* Update rx tail regsiter */
1663         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
1664
1665         rxq->rx_free_trigger =
1666                 (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
1667         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1668                 rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
1669
1670         return 0;
1671 }
1672
1673 static inline uint16_t
1674 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1675 {
1676         struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
1677         uint16_t nb_rx = 0;
1678         struct rte_eth_dev *dev;
1679
1680         if (!nb_pkts)
1681                 return 0;
1682
1683         if (rxq->rx_nb_avail)
1684                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1685
1686         nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
1687         rxq->rx_next_avail = 0;
1688         rxq->rx_nb_avail = nb_rx;
1689         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1690
1691         if (rxq->rx_tail > rxq->rx_free_trigger) {
1692                 if (ice_rx_alloc_bufs(rxq) != 0) {
1693                         uint16_t i, j;
1694
1695                         dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
1696                         dev->data->rx_mbuf_alloc_failed +=
1697                                 rxq->rx_free_thresh;
1698                         PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
1699                                    "port_id=%u, queue_id=%u",
1700                                    rxq->port_id, rxq->queue_id);
1701                         rxq->rx_nb_avail = 0;
1702                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1703                         for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
1704                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1705
1706                         return 0;
1707                 }
1708         }
1709
1710         if (rxq->rx_tail >= rxq->nb_rx_desc)
1711                 rxq->rx_tail = 0;
1712
1713         if (rxq->rx_nb_avail)
1714                 return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1715
1716         return 0;
1717 }
1718
1719 static uint16_t
1720 ice_recv_pkts_bulk_alloc(void *rx_queue,
1721                          struct rte_mbuf **rx_pkts,
1722                          uint16_t nb_pkts)
1723 {
1724         uint16_t nb_rx = 0;
1725         uint16_t n;
1726         uint16_t count;
1727
1728         if (unlikely(nb_pkts == 0))
1729                 return nb_rx;
1730
1731         if (likely(nb_pkts <= ICE_RX_MAX_BURST))
1732                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1733
1734         while (nb_pkts) {
1735                 n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
1736                 count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1737                 nb_rx = (uint16_t)(nb_rx + count);
1738                 nb_pkts = (uint16_t)(nb_pkts - count);
1739                 if (count < n)
1740                         break;
1741         }
1742
1743         return nb_rx;
1744 }
1745
1746 static uint16_t
1747 ice_recv_scattered_pkts(void *rx_queue,
1748                         struct rte_mbuf **rx_pkts,
1749                         uint16_t nb_pkts)
1750 {
1751         struct ice_rx_queue *rxq = rx_queue;
1752         volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
1753         volatile union ice_rx_flex_desc *rxdp;
1754         union ice_rx_flex_desc rxd;
1755         struct ice_rx_entry *sw_ring = rxq->sw_ring;
1756         struct ice_rx_entry *rxe;
1757         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
1758         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
1759         struct rte_mbuf *nmb; /* new allocated mbuf */
1760         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
1761         uint16_t rx_id = rxq->rx_tail;
1762         uint16_t nb_rx = 0;
1763         uint16_t nb_hold = 0;
1764         uint16_t rx_packet_len;
1765         uint16_t rx_stat_err0;
1766         uint64_t dma_addr;
1767         uint64_t pkt_flags;
1768         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
1769         struct rte_eth_dev *dev;
1770
1771         while (nb_rx < nb_pkts) {
1772                 rxdp = &rx_ring[rx_id];
1773                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
1774
1775                 /* Check the DD bit first */
1776                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
1777                         break;
1778
1779                 /* allocate mbuf */
1780                 nmb = rte_mbuf_raw_alloc(rxq->mp);
1781                 if (unlikely(!nmb)) {
1782                         dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
1783                         dev->data->rx_mbuf_alloc_failed++;
1784                         break;
1785                 }
1786                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
1787
1788                 nb_hold++;
1789                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
1790                 rx_id++;
1791                 if (unlikely(rx_id == rxq->nb_rx_desc))
1792                         rx_id = 0;
1793
1794                 /* Prefetch next mbuf */
1795                 rte_prefetch0(sw_ring[rx_id].mbuf);
1796
1797                 /**
1798                  * When next RX descriptor is on a cache line boundary,
1799                  * prefetch the next 4 RX descriptors and next 8 pointers
1800                  * to mbufs.
1801                  */
1802                 if ((rx_id & 0x3) == 0) {
1803                         rte_prefetch0(&rx_ring[rx_id]);
1804                         rte_prefetch0(&sw_ring[rx_id]);
1805                 }
1806
1807                 rxm = rxe->mbuf;
1808                 rxe->mbuf = nmb;
1809                 dma_addr =
1810                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1811
1812                 /* Set data buffer address and data length of the mbuf */
1813                 rxdp->read.hdr_addr = 0;
1814                 rxdp->read.pkt_addr = dma_addr;
1815                 rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
1816                                 ICE_RX_FLX_DESC_PKT_LEN_M;
1817                 rxm->data_len = rx_packet_len;
1818                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1819
1820                 /**
1821                  * If this is the first buffer of the received packet, set the
1822                  * pointer to the first mbuf of the packet and initialize its
1823                  * context. Otherwise, update the total length and the number
1824                  * of segments of the current scattered packet, and update the
1825                  * pointer to the last mbuf of the current packet.
1826                  */
1827                 if (!first_seg) {
1828                         first_seg = rxm;
1829                         first_seg->nb_segs = 1;
1830                         first_seg->pkt_len = rx_packet_len;
1831                 } else {
1832                         first_seg->pkt_len =
1833                                 (uint16_t)(first_seg->pkt_len +
1834                                            rx_packet_len);
1835                         first_seg->nb_segs++;
1836                         last_seg->next = rxm;
1837                 }
1838
1839                 /**
1840                  * If this is not the last buffer of the received packet,
1841                  * update the pointer to the last mbuf of the current scattered
1842                  * packet and continue to parse the RX ring.
1843                  */
1844                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_EOF_S))) {
1845                         last_seg = rxm;
1846                         continue;
1847                 }
1848
1849                 /**
1850                  * This is the last buffer of the received packet. If the CRC
1851                  * is not stripped by the hardware:
1852                  *  - Subtract the CRC length from the total packet length.
1853                  *  - If the last buffer only contains the whole CRC or a part
1854                  *  of it, free the mbuf associated to the last buffer. If part
1855                  *  of the CRC is also contained in the previous mbuf, subtract
1856                  *  the length of that CRC part from the data length of the
1857                  *  previous mbuf.
1858                  */
1859                 rxm->next = NULL;
1860                 if (unlikely(rxq->crc_len > 0)) {
1861                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1862                         if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
1863                                 rte_pktmbuf_free_seg(rxm);
1864                                 first_seg->nb_segs--;
1865                                 last_seg->data_len =
1866                                         (uint16_t)(last_seg->data_len -
1867                                         (RTE_ETHER_CRC_LEN - rx_packet_len));
1868                                 last_seg->next = NULL;
1869                         } else
1870                                 rxm->data_len = (uint16_t)(rx_packet_len -
1871                                                            RTE_ETHER_CRC_LEN);
1872                 }
1873
1874                 first_seg->port = rxq->port_id;
1875                 first_seg->ol_flags = 0;
1876                 first_seg->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
1877                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
1878                 ice_rxd_to_vlan_tci(first_seg, &rxd);
1879                 rxq->rxd_to_pkt_fields(rxq, first_seg, &rxd);
1880                 pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
1881                 first_seg->ol_flags |= pkt_flags;
1882                 /* Prefetch data of first segment, if configured to do so. */
1883                 rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
1884                                           first_seg->data_off));
1885                 rx_pkts[nb_rx++] = first_seg;
1886                 first_seg = NULL;
1887         }
1888
1889         /* Record index of the next RX descriptor to probe. */
1890         rxq->rx_tail = rx_id;
1891         rxq->pkt_first_seg = first_seg;
1892         rxq->pkt_last_seg = last_seg;
1893
1894         /**
1895          * If the number of free RX descriptors is greater than the RX free
1896          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1897          * register. Update the RDT with the value of the last processed RX
1898          * descriptor minus 1, to guarantee that the RDT register is never
1899          * equal to the RDH register, which creates a "full" ring situtation
1900          * from the hardware point of view.
1901          */
1902         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1903         if (nb_hold > rxq->rx_free_thresh) {
1904                 rx_id = (uint16_t)(rx_id == 0 ?
1905                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
1906                 /* write TAIL register */
1907                 ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1908                 nb_hold = 0;
1909         }
1910         rxq->nb_rx_hold = nb_hold;
1911
1912         /* return received packet in the burst */
1913         return nb_rx;
1914 }
1915
1916 const uint32_t *
1917 ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1918 {
1919         struct ice_adapter *ad =
1920                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1921         const uint32_t *ptypes;
1922
1923         static const uint32_t ptypes_os[] = {
1924                 /* refers to ice_get_default_pkt_type() */
1925                 RTE_PTYPE_L2_ETHER,
1926                 RTE_PTYPE_L2_ETHER_TIMESYNC,
1927                 RTE_PTYPE_L2_ETHER_LLDP,
1928                 RTE_PTYPE_L2_ETHER_ARP,
1929                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1930                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1931                 RTE_PTYPE_L4_FRAG,
1932                 RTE_PTYPE_L4_ICMP,
1933                 RTE_PTYPE_L4_NONFRAG,
1934                 RTE_PTYPE_L4_SCTP,
1935                 RTE_PTYPE_L4_TCP,
1936                 RTE_PTYPE_L4_UDP,
1937                 RTE_PTYPE_TUNNEL_GRENAT,
1938                 RTE_PTYPE_TUNNEL_IP,
1939                 RTE_PTYPE_INNER_L2_ETHER,
1940                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1941                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1942                 RTE_PTYPE_INNER_L4_FRAG,
1943                 RTE_PTYPE_INNER_L4_ICMP,
1944                 RTE_PTYPE_INNER_L4_NONFRAG,
1945                 RTE_PTYPE_INNER_L4_SCTP,
1946                 RTE_PTYPE_INNER_L4_TCP,
1947                 RTE_PTYPE_INNER_L4_UDP,
1948                 RTE_PTYPE_UNKNOWN
1949         };
1950
1951         static const uint32_t ptypes_comms[] = {
1952                 /* refers to ice_get_default_pkt_type() */
1953                 RTE_PTYPE_L2_ETHER,
1954                 RTE_PTYPE_L2_ETHER_TIMESYNC,
1955                 RTE_PTYPE_L2_ETHER_LLDP,
1956                 RTE_PTYPE_L2_ETHER_ARP,
1957                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1958                 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1959                 RTE_PTYPE_L4_FRAG,
1960                 RTE_PTYPE_L4_ICMP,
1961                 RTE_PTYPE_L4_NONFRAG,
1962                 RTE_PTYPE_L4_SCTP,
1963                 RTE_PTYPE_L4_TCP,
1964                 RTE_PTYPE_L4_UDP,
1965                 RTE_PTYPE_TUNNEL_GRENAT,
1966                 RTE_PTYPE_TUNNEL_IP,
1967                 RTE_PTYPE_INNER_L2_ETHER,
1968                 RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1969                 RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1970                 RTE_PTYPE_INNER_L4_FRAG,
1971                 RTE_PTYPE_INNER_L4_ICMP,
1972                 RTE_PTYPE_INNER_L4_NONFRAG,
1973                 RTE_PTYPE_INNER_L4_SCTP,
1974                 RTE_PTYPE_INNER_L4_TCP,
1975                 RTE_PTYPE_INNER_L4_UDP,
1976                 RTE_PTYPE_TUNNEL_GTPC,
1977                 RTE_PTYPE_TUNNEL_GTPU,
1978                 RTE_PTYPE_L2_ETHER_PPPOE,
1979                 RTE_PTYPE_UNKNOWN
1980         };
1981
1982         if (ad->active_pkg_type == ICE_PKG_TYPE_COMMS)
1983                 ptypes = ptypes_comms;
1984         else
1985                 ptypes = ptypes_os;
1986
1987         if (dev->rx_pkt_burst == ice_recv_pkts ||
1988             dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
1989             dev->rx_pkt_burst == ice_recv_scattered_pkts)
1990                 return ptypes;
1991
1992 #ifdef RTE_ARCH_X86
1993         if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
1994             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
1995 #ifdef CC_AVX512_SUPPORT
1996             dev->rx_pkt_burst == ice_recv_pkts_vec_avx512 ||
1997             dev->rx_pkt_burst == ice_recv_pkts_vec_avx512_offload ||
1998             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512 ||
1999             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512_offload ||
2000 #endif
2001             dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
2002             dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2)
2003                 return ptypes;
2004 #endif
2005
2006         return NULL;
2007 }
2008
2009 int
2010 ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
2011 {
2012         volatile union ice_rx_flex_desc *rxdp;
2013         struct ice_rx_queue *rxq = rx_queue;
2014         uint32_t desc;
2015
2016         if (unlikely(offset >= rxq->nb_rx_desc))
2017                 return -EINVAL;
2018
2019         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2020                 return RTE_ETH_RX_DESC_UNAVAIL;
2021
2022         desc = rxq->rx_tail + offset;
2023         if (desc >= rxq->nb_rx_desc)
2024                 desc -= rxq->nb_rx_desc;
2025
2026         rxdp = &rxq->rx_ring[desc];
2027         if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
2028             (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))
2029                 return RTE_ETH_RX_DESC_DONE;
2030
2031         return RTE_ETH_RX_DESC_AVAIL;
2032 }
2033
2034 int
2035 ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
2036 {
2037         struct ice_tx_queue *txq = tx_queue;
2038         volatile uint64_t *status;
2039         uint64_t mask, expect;
2040         uint32_t desc;
2041
2042         if (unlikely(offset >= txq->nb_tx_desc))
2043                 return -EINVAL;
2044
2045         desc = txq->tx_tail + offset;
2046         /* go to next desc that has the RS bit */
2047         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2048                 txq->tx_rs_thresh;
2049         if (desc >= txq->nb_tx_desc) {
2050                 desc -= txq->nb_tx_desc;
2051                 if (desc >= txq->nb_tx_desc)
2052                         desc -= txq->nb_tx_desc;
2053         }
2054
2055         status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2056         mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
2057         expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
2058                                   ICE_TXD_QW1_DTYPE_S);
2059         if ((*status & mask) == expect)
2060                 return RTE_ETH_TX_DESC_DONE;
2061
2062         return RTE_ETH_TX_DESC_FULL;
2063 }
2064
2065 void
2066 ice_free_queues(struct rte_eth_dev *dev)
2067 {
2068         uint16_t i;
2069
2070         PMD_INIT_FUNC_TRACE();
2071
2072         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2073                 if (!dev->data->rx_queues[i])
2074                         continue;
2075                 ice_rx_queue_release(dev->data->rx_queues[i]);
2076                 dev->data->rx_queues[i] = NULL;
2077                 rte_eth_dma_zone_free(dev, "rx_ring", i);
2078         }
2079         dev->data->nb_rx_queues = 0;
2080
2081         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2082                 if (!dev->data->tx_queues[i])
2083                         continue;
2084                 ice_tx_queue_release(dev->data->tx_queues[i]);
2085                 dev->data->tx_queues[i] = NULL;
2086                 rte_eth_dma_zone_free(dev, "tx_ring", i);
2087         }
2088         dev->data->nb_tx_queues = 0;
2089 }
2090
2091 #define ICE_FDIR_NUM_TX_DESC  ICE_MIN_RING_DESC
2092 #define ICE_FDIR_NUM_RX_DESC  ICE_MIN_RING_DESC
2093
2094 int
2095 ice_fdir_setup_tx_resources(struct ice_pf *pf)
2096 {
2097         struct ice_tx_queue *txq;
2098         const struct rte_memzone *tz = NULL;
2099         uint32_t ring_size;
2100         struct rte_eth_dev *dev;
2101
2102         if (!pf) {
2103                 PMD_DRV_LOG(ERR, "PF is not available");
2104                 return -EINVAL;
2105         }
2106
2107         dev = pf->adapter->eth_dev;
2108
2109         /* Allocate the TX queue data structure. */
2110         txq = rte_zmalloc_socket("ice fdir tx queue",
2111                                  sizeof(struct ice_tx_queue),
2112                                  RTE_CACHE_LINE_SIZE,
2113                                  SOCKET_ID_ANY);
2114         if (!txq) {
2115                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2116                             "tx queue structure.");
2117                 return -ENOMEM;
2118         }
2119
2120         /* Allocate TX hardware ring descriptors. */
2121         ring_size = sizeof(struct ice_tx_desc) * ICE_FDIR_NUM_TX_DESC;
2122         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2123
2124         tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
2125                                       ICE_FDIR_QUEUE_ID, ring_size,
2126                                       ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2127         if (!tz) {
2128                 ice_tx_queue_release(txq);
2129                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
2130                 return -ENOMEM;
2131         }
2132
2133         txq->nb_tx_desc = ICE_FDIR_NUM_TX_DESC;
2134         txq->queue_id = ICE_FDIR_QUEUE_ID;
2135         txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2136         txq->vsi = pf->fdir.fdir_vsi;
2137
2138         txq->tx_ring_dma = tz->iova;
2139         txq->tx_ring = (struct ice_tx_desc *)tz->addr;
2140         /*
2141          * don't need to allocate software ring and reset for the fdir
2142          * program queue just set the queue has been configured.
2143          */
2144         txq->q_set = true;
2145         pf->fdir.txq = txq;
2146
2147         txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
2148
2149         return ICE_SUCCESS;
2150 }
2151
2152 int
2153 ice_fdir_setup_rx_resources(struct ice_pf *pf)
2154 {
2155         struct ice_rx_queue *rxq;
2156         const struct rte_memzone *rz = NULL;
2157         uint32_t ring_size;
2158         struct rte_eth_dev *dev;
2159
2160         if (!pf) {
2161                 PMD_DRV_LOG(ERR, "PF is not available");
2162                 return -EINVAL;
2163         }
2164
2165         dev = pf->adapter->eth_dev;
2166
2167         /* Allocate the RX queue data structure. */
2168         rxq = rte_zmalloc_socket("ice fdir rx queue",
2169                                  sizeof(struct ice_rx_queue),
2170                                  RTE_CACHE_LINE_SIZE,
2171                                  SOCKET_ID_ANY);
2172         if (!rxq) {
2173                 PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2174                             "rx queue structure.");
2175                 return -ENOMEM;
2176         }
2177
2178         /* Allocate RX hardware ring descriptors. */
2179         ring_size = sizeof(union ice_32byte_rx_desc) * ICE_FDIR_NUM_RX_DESC;
2180         ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
2181
2182         rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
2183                                       ICE_FDIR_QUEUE_ID, ring_size,
2184                                       ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
2185         if (!rz) {
2186                 ice_rx_queue_release(rxq);
2187                 PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
2188                 return -ENOMEM;
2189         }
2190
2191         rxq->nb_rx_desc = ICE_FDIR_NUM_RX_DESC;
2192         rxq->queue_id = ICE_FDIR_QUEUE_ID;
2193         rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
2194         rxq->vsi = pf->fdir.fdir_vsi;
2195
2196         rxq->rx_ring_dma = rz->iova;
2197         memset(rz->addr, 0, ICE_FDIR_NUM_RX_DESC *
2198                sizeof(union ice_32byte_rx_desc));
2199         rxq->rx_ring = (union ice_rx_flex_desc *)rz->addr;
2200
2201         /*
2202          * Don't need to allocate software ring and reset for the fdir
2203          * rx queue, just set the queue has been configured.
2204          */
2205         rxq->q_set = true;
2206         pf->fdir.rxq = rxq;
2207
2208         rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
2209
2210         return ICE_SUCCESS;
2211 }
2212
2213 uint16_t
2214 ice_recv_pkts(void *rx_queue,
2215               struct rte_mbuf **rx_pkts,
2216               uint16_t nb_pkts)
2217 {
2218         struct ice_rx_queue *rxq = rx_queue;
2219         volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
2220         volatile union ice_rx_flex_desc *rxdp;
2221         union ice_rx_flex_desc rxd;
2222         struct ice_rx_entry *sw_ring = rxq->sw_ring;
2223         struct ice_rx_entry *rxe;
2224         struct rte_mbuf *nmb; /* new allocated mbuf */
2225         struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
2226         uint16_t rx_id = rxq->rx_tail;
2227         uint16_t nb_rx = 0;
2228         uint16_t nb_hold = 0;
2229         uint16_t rx_packet_len;
2230         uint16_t rx_stat_err0;
2231         uint64_t dma_addr;
2232         uint64_t pkt_flags;
2233         uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
2234         struct rte_eth_dev *dev;
2235
2236         while (nb_rx < nb_pkts) {
2237                 rxdp = &rx_ring[rx_id];
2238                 rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
2239
2240                 /* Check the DD bit first */
2241                 if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
2242                         break;
2243
2244                 /* allocate mbuf */
2245                 nmb = rte_mbuf_raw_alloc(rxq->mp);
2246                 if (unlikely(!nmb)) {
2247                         dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
2248                         dev->data->rx_mbuf_alloc_failed++;
2249                         break;
2250                 }
2251                 rxd = *rxdp; /* copy descriptor in ring to temp variable*/
2252
2253                 nb_hold++;
2254                 rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
2255                 rx_id++;
2256                 if (unlikely(rx_id == rxq->nb_rx_desc))
2257                         rx_id = 0;
2258                 rxm = rxe->mbuf;
2259                 rxe->mbuf = nmb;
2260                 dma_addr =
2261                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2262
2263                 /**
2264                  * fill the read format of descriptor with physic address in
2265                  * new allocated mbuf: nmb
2266                  */
2267                 rxdp->read.hdr_addr = 0;
2268                 rxdp->read.pkt_addr = dma_addr;
2269
2270                 /* calculate rx_packet_len of the received pkt */
2271                 rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
2272                                  ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
2273
2274                 /* fill old mbuf with received descriptor: rxd */
2275                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
2276                 rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
2277                 rxm->nb_segs = 1;
2278                 rxm->next = NULL;
2279                 rxm->pkt_len = rx_packet_len;
2280                 rxm->data_len = rx_packet_len;
2281                 rxm->port = rxq->port_id;
2282                 rxm->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
2283                         rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
2284                 ice_rxd_to_vlan_tci(rxm, &rxd);
2285                 rxq->rxd_to_pkt_fields(rxq, rxm, &rxd);
2286                 pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
2287                 rxm->ol_flags |= pkt_flags;
2288                 /* copy old mbuf to rx_pkts */
2289                 rx_pkts[nb_rx++] = rxm;
2290         }
2291         rxq->rx_tail = rx_id;
2292         /**
2293          * If the number of free RX descriptors is greater than the RX free
2294          * threshold of the queue, advance the receive tail register of queue.
2295          * Update that register with the value of the last processed RX
2296          * descriptor minus 1.
2297          */
2298         nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
2299         if (nb_hold > rxq->rx_free_thresh) {
2300                 rx_id = (uint16_t)(rx_id == 0 ?
2301                                    (rxq->nb_rx_desc - 1) : (rx_id - 1));
2302                 /* write TAIL register */
2303                 ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
2304                 nb_hold = 0;
2305         }
2306         rxq->nb_rx_hold = nb_hold;
2307
2308         /* return received packet in the burst */
2309         return nb_rx;
2310 }
2311
2312 static inline void
2313 ice_parse_tunneling_params(uint64_t ol_flags,
2314                             union ice_tx_offload tx_offload,
2315                             uint32_t *cd_tunneling)
2316 {
2317         /* EIPT: External (outer) IP header type */
2318         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
2319                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4;
2320         else if (ol_flags & PKT_TX_OUTER_IPV4)
2321                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
2322         else if (ol_flags & PKT_TX_OUTER_IPV6)
2323                 *cd_tunneling |= ICE_TX_CTX_EIPT_IPV6;
2324
2325         /* EIPLEN: External (outer) IP header length, in DWords */
2326         *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
2327                 ICE_TXD_CTX_QW0_EIPLEN_S;
2328
2329         /* L4TUNT: L4 Tunneling Type */
2330         switch (ol_flags & PKT_TX_TUNNEL_MASK) {
2331         case PKT_TX_TUNNEL_IPIP:
2332                 /* for non UDP / GRE tunneling, set to 00b */
2333                 break;
2334         case PKT_TX_TUNNEL_VXLAN:
2335         case PKT_TX_TUNNEL_GTP:
2336         case PKT_TX_TUNNEL_GENEVE:
2337                 *cd_tunneling |= ICE_TXD_CTX_UDP_TUNNELING;
2338                 break;
2339         case PKT_TX_TUNNEL_GRE:
2340                 *cd_tunneling |= ICE_TXD_CTX_GRE_TUNNELING;
2341                 break;
2342         default:
2343                 PMD_TX_LOG(ERR, "Tunnel type not supported");
2344                 return;
2345         }
2346
2347         /* L4TUNLEN: L4 Tunneling Length, in Words
2348          *
2349          * We depend on app to set rte_mbuf.l2_len correctly.
2350          * For IP in GRE it should be set to the length of the GRE
2351          * header;
2352          * For MAC in GRE or MAC in UDP it should be set to the length
2353          * of the GRE or UDP headers plus the inner MAC up to including
2354          * its last Ethertype.
2355          * If MPLS labels exists, it should include them as well.
2356          */
2357         *cd_tunneling |= (tx_offload.l2_len >> 1) <<
2358                 ICE_TXD_CTX_QW0_NATLEN_S;
2359
2360         /**
2361          * Calculate the tunneling UDP checksum.
2362          * Shall be set only if L4TUNT = 01b and EIPT is not zero
2363          */
2364         if (!(*cd_tunneling & ICE_TX_CTX_EIPT_NONE) &&
2365             (*cd_tunneling & ICE_TXD_CTX_UDP_TUNNELING))
2366                 *cd_tunneling |= ICE_TXD_CTX_QW0_L4T_CS_M;
2367 }
2368
2369 static inline void
2370 ice_txd_enable_checksum(uint64_t ol_flags,
2371                         uint32_t *td_cmd,
2372                         uint32_t *td_offset,
2373                         union ice_tx_offload tx_offload)
2374 {
2375         /* Set MACLEN */
2376         if (ol_flags & PKT_TX_TUNNEL_MASK)
2377                 *td_offset |= (tx_offload.outer_l2_len >> 1)
2378                         << ICE_TX_DESC_LEN_MACLEN_S;
2379         else
2380                 *td_offset |= (tx_offload.l2_len >> 1)
2381                         << ICE_TX_DESC_LEN_MACLEN_S;
2382
2383         /* Enable L3 checksum offloads */
2384         if (ol_flags & PKT_TX_IP_CKSUM) {
2385                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
2386                 *td_offset |= (tx_offload.l3_len >> 2) <<
2387                               ICE_TX_DESC_LEN_IPLEN_S;
2388         } else if (ol_flags & PKT_TX_IPV4) {
2389                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
2390                 *td_offset |= (tx_offload.l3_len >> 2) <<
2391                               ICE_TX_DESC_LEN_IPLEN_S;
2392         } else if (ol_flags & PKT_TX_IPV6) {
2393                 *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2394                 *td_offset |= (tx_offload.l3_len >> 2) <<
2395                               ICE_TX_DESC_LEN_IPLEN_S;
2396         }
2397
2398         if (ol_flags & PKT_TX_TCP_SEG) {
2399                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2400                 *td_offset |= (tx_offload.l4_len >> 2) <<
2401                               ICE_TX_DESC_LEN_L4_LEN_S;
2402                 return;
2403         }
2404
2405         /* Enable L4 checksum offloads */
2406         switch (ol_flags & PKT_TX_L4_MASK) {
2407         case PKT_TX_TCP_CKSUM:
2408                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2409                 *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
2410                               ICE_TX_DESC_LEN_L4_LEN_S;
2411                 break;
2412         case PKT_TX_SCTP_CKSUM:
2413                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2414                 *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
2415                               ICE_TX_DESC_LEN_L4_LEN_S;
2416                 break;
2417         case PKT_TX_UDP_CKSUM:
2418                 *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2419                 *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
2420                               ICE_TX_DESC_LEN_L4_LEN_S;
2421                 break;
2422         default:
2423                 break;
2424         }
2425 }
2426
2427 static inline int
2428 ice_xmit_cleanup(struct ice_tx_queue *txq)
2429 {
2430         struct ice_tx_entry *sw_ring = txq->sw_ring;
2431         volatile struct ice_tx_desc *txd = txq->tx_ring;
2432         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
2433         uint16_t nb_tx_desc = txq->nb_tx_desc;
2434         uint16_t desc_to_clean_to;
2435         uint16_t nb_tx_to_clean;
2436
2437         /* Determine the last descriptor needing to be cleaned */
2438         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
2439         if (desc_to_clean_to >= nb_tx_desc)
2440                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
2441
2442         /* Check to make sure the last descriptor to clean is done */
2443         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
2444         if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
2445             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
2446                 PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
2447                            "(port=%d queue=%d) value=0x%"PRIx64"\n",
2448                            desc_to_clean_to,
2449                            txq->port_id, txq->queue_id,
2450                            txd[desc_to_clean_to].cmd_type_offset_bsz);
2451                 /* Failed to clean any descriptors */
2452                 return -1;
2453         }
2454
2455         /* Figure out how many descriptors will be cleaned */
2456         if (last_desc_cleaned > desc_to_clean_to)
2457                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
2458                                             desc_to_clean_to);
2459         else
2460                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
2461                                             last_desc_cleaned);
2462
2463         /* The last descriptor to clean is done, so that means all the
2464          * descriptors from the last descriptor that was cleaned
2465          * up to the last descriptor with the RS bit set
2466          * are done. Only reset the threshold descriptor.
2467          */
2468         txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
2469
2470         /* Update the txq to reflect the last descriptor that was cleaned */
2471         txq->last_desc_cleaned = desc_to_clean_to;
2472         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
2473
2474         return 0;
2475 }
2476
2477 /* Construct the tx flags */
2478 static inline uint64_t
2479 ice_build_ctob(uint32_t td_cmd,
2480                uint32_t td_offset,
2481                uint16_t size,
2482                uint32_t td_tag)
2483 {
2484         return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2485                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2486                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2487                                 ((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
2488                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2489 }
2490
2491 /* Check if the context descriptor is needed for TX offloading */
2492 static inline uint16_t
2493 ice_calc_context_desc(uint64_t flags)
2494 {
2495         static uint64_t mask = PKT_TX_TCP_SEG |
2496                 PKT_TX_QINQ |
2497                 PKT_TX_OUTER_IP_CKSUM |
2498                 PKT_TX_TUNNEL_MASK;
2499
2500         return (flags & mask) ? 1 : 0;
2501 }
2502
2503 /* set ice TSO context descriptor */
2504 static inline uint64_t
2505 ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
2506 {
2507         uint64_t ctx_desc = 0;
2508         uint32_t cd_cmd, hdr_len, cd_tso_len;
2509
2510         if (!tx_offload.l4_len) {
2511                 PMD_TX_LOG(DEBUG, "L4 length set to 0");
2512                 return ctx_desc;
2513         }
2514
2515         hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
2516         hdr_len += (mbuf->ol_flags & PKT_TX_TUNNEL_MASK) ?
2517                    tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
2518
2519         cd_cmd = ICE_TX_CTX_DESC_TSO;
2520         cd_tso_len = mbuf->pkt_len - hdr_len;
2521         ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
2522                     ((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2523                     ((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
2524
2525         return ctx_desc;
2526 }
2527
2528 /* HW requires that TX buffer size ranges from 1B up to (16K-1)B. */
2529 #define ICE_MAX_DATA_PER_TXD \
2530         (ICE_TXD_QW1_TX_BUF_SZ_M >> ICE_TXD_QW1_TX_BUF_SZ_S)
2531 /* Calculate the number of TX descriptors needed for each pkt */
2532 static inline uint16_t
2533 ice_calc_pkt_desc(struct rte_mbuf *tx_pkt)
2534 {
2535         struct rte_mbuf *txd = tx_pkt;
2536         uint16_t count = 0;
2537
2538         while (txd != NULL) {
2539                 count += DIV_ROUND_UP(txd->data_len, ICE_MAX_DATA_PER_TXD);
2540                 txd = txd->next;
2541         }
2542
2543         return count;
2544 }
2545
2546 uint16_t
2547 ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2548 {
2549         struct ice_tx_queue *txq;
2550         volatile struct ice_tx_desc *tx_ring;
2551         volatile struct ice_tx_desc *txd;
2552         struct ice_tx_entry *sw_ring;
2553         struct ice_tx_entry *txe, *txn;
2554         struct rte_mbuf *tx_pkt;
2555         struct rte_mbuf *m_seg;
2556         uint32_t cd_tunneling_params;
2557         uint16_t tx_id;
2558         uint16_t nb_tx;
2559         uint16_t nb_used;
2560         uint16_t nb_ctx;
2561         uint32_t td_cmd = 0;
2562         uint32_t td_offset = 0;
2563         uint32_t td_tag = 0;
2564         uint16_t tx_last;
2565         uint16_t slen;
2566         uint64_t buf_dma_addr;
2567         uint64_t ol_flags;
2568         union ice_tx_offload tx_offload = {0};
2569
2570         txq = tx_queue;
2571         sw_ring = txq->sw_ring;
2572         tx_ring = txq->tx_ring;
2573         tx_id = txq->tx_tail;
2574         txe = &sw_ring[tx_id];
2575
2576         /* Check if the descriptor ring needs to be cleaned. */
2577         if (txq->nb_tx_free < txq->tx_free_thresh)
2578                 (void)ice_xmit_cleanup(txq);
2579
2580         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
2581                 tx_pkt = *tx_pkts++;
2582
2583                 td_cmd = 0;
2584                 td_tag = 0;
2585                 td_offset = 0;
2586                 ol_flags = tx_pkt->ol_flags;
2587                 tx_offload.l2_len = tx_pkt->l2_len;
2588                 tx_offload.l3_len = tx_pkt->l3_len;
2589                 tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
2590                 tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
2591                 tx_offload.l4_len = tx_pkt->l4_len;
2592                 tx_offload.tso_segsz = tx_pkt->tso_segsz;
2593                 /* Calculate the number of context descriptors needed. */
2594                 nb_ctx = ice_calc_context_desc(ol_flags);
2595
2596                 /* The number of descriptors that must be allocated for
2597                  * a packet equals to the number of the segments of that
2598                  * packet plus the number of context descriptor if needed.
2599                  * Recalculate the needed tx descs when TSO enabled in case
2600                  * the mbuf data size exceeds max data size that hw allows
2601                  * per tx desc.
2602                  */
2603                 if (ol_flags & PKT_TX_TCP_SEG)
2604                         nb_used = (uint16_t)(ice_calc_pkt_desc(tx_pkt) +
2605                                              nb_ctx);
2606                 else
2607                         nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
2608                 tx_last = (uint16_t)(tx_id + nb_used - 1);
2609
2610                 /* Circular ring */
2611                 if (tx_last >= txq->nb_tx_desc)
2612                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
2613
2614                 if (nb_used > txq->nb_tx_free) {
2615                         if (ice_xmit_cleanup(txq) != 0) {
2616                                 if (nb_tx == 0)
2617                                         return 0;
2618                                 goto end_of_tx;
2619                         }
2620                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
2621                                 while (nb_used > txq->nb_tx_free) {
2622                                         if (ice_xmit_cleanup(txq) != 0) {
2623                                                 if (nb_tx == 0)
2624                                                         return 0;
2625                                                 goto end_of_tx;
2626                                         }
2627                                 }
2628                         }
2629                 }
2630
2631                 /* Descriptor based VLAN insertion */
2632                 if (ol_flags & (PKT_TX_VLAN | PKT_TX_QINQ)) {
2633                         td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
2634                         td_tag = tx_pkt->vlan_tci;
2635                 }
2636
2637                 /* Fill in tunneling parameters if necessary */
2638                 cd_tunneling_params = 0;
2639                 if (ol_flags & PKT_TX_TUNNEL_MASK)
2640                         ice_parse_tunneling_params(ol_flags, tx_offload,
2641                                                    &cd_tunneling_params);
2642
2643                 /* Enable checksum offloading */
2644                 if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK)
2645                         ice_txd_enable_checksum(ol_flags, &td_cmd,
2646                                                 &td_offset, tx_offload);
2647
2648                 if (nb_ctx) {
2649                         /* Setup TX context descriptor if required */
2650                         volatile struct ice_tx_ctx_desc *ctx_txd =
2651                                 (volatile struct ice_tx_ctx_desc *)
2652                                         &tx_ring[tx_id];
2653                         uint16_t cd_l2tag2 = 0;
2654                         uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
2655
2656                         txn = &sw_ring[txe->next_id];
2657                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
2658                         if (txe->mbuf) {
2659                                 rte_pktmbuf_free_seg(txe->mbuf);
2660                                 txe->mbuf = NULL;
2661                         }
2662
2663                         if (ol_flags & PKT_TX_TCP_SEG)
2664                                 cd_type_cmd_tso_mss |=
2665                                         ice_set_tso_ctx(tx_pkt, tx_offload);
2666
2667                         ctx_txd->tunneling_params =
2668                                 rte_cpu_to_le_32(cd_tunneling_params);
2669
2670                         /* TX context descriptor based double VLAN insert */
2671                         if (ol_flags & PKT_TX_QINQ) {
2672                                 cd_l2tag2 = tx_pkt->vlan_tci_outer;
2673                                 cd_type_cmd_tso_mss |=
2674                                         ((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
2675                                          ICE_TXD_CTX_QW1_CMD_S);
2676                         }
2677                         ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
2678                         ctx_txd->qw1 =
2679                                 rte_cpu_to_le_64(cd_type_cmd_tso_mss);
2680
2681                         txe->last_id = tx_last;
2682                         tx_id = txe->next_id;
2683                         txe = txn;
2684                 }
2685                 m_seg = tx_pkt;
2686
2687                 do {
2688                         txd = &tx_ring[tx_id];
2689                         txn = &sw_ring[txe->next_id];
2690
2691                         if (txe->mbuf)
2692                                 rte_pktmbuf_free_seg(txe->mbuf);
2693                         txe->mbuf = m_seg;
2694
2695                         /* Setup TX Descriptor */
2696                         slen = m_seg->data_len;
2697                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
2698
2699                         while ((ol_flags & PKT_TX_TCP_SEG) &&
2700                                 unlikely(slen > ICE_MAX_DATA_PER_TXD)) {
2701                                 txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2702                                 txd->cmd_type_offset_bsz =
2703                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2704                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2705                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2706                                 ((uint64_t)ICE_MAX_DATA_PER_TXD <<
2707                                  ICE_TXD_QW1_TX_BUF_SZ_S) |
2708                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2709
2710                                 buf_dma_addr += ICE_MAX_DATA_PER_TXD;
2711                                 slen -= ICE_MAX_DATA_PER_TXD;
2712
2713                                 txe->last_id = tx_last;
2714                                 tx_id = txe->next_id;
2715                                 txe = txn;
2716                                 txd = &tx_ring[tx_id];
2717                                 txn = &sw_ring[txe->next_id];
2718                         }
2719
2720                         txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
2721                         txd->cmd_type_offset_bsz =
2722                                 rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
2723                                 ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
2724                                 ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
2725                                 ((uint64_t)slen << ICE_TXD_QW1_TX_BUF_SZ_S) |
2726                                 ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
2727
2728                         txe->last_id = tx_last;
2729                         tx_id = txe->next_id;
2730                         txe = txn;
2731                         m_seg = m_seg->next;
2732                 } while (m_seg);
2733
2734                 /* fill the last descriptor with End of Packet (EOP) bit */
2735                 td_cmd |= ICE_TX_DESC_CMD_EOP;
2736                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
2737                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
2738
2739                 /* set RS bit on the last descriptor of one packet */
2740                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
2741                         PMD_TX_LOG(DEBUG,
2742                                    "Setting RS bit on TXD id="
2743                                    "%4u (port=%d queue=%d)",
2744                                    tx_last, txq->port_id, txq->queue_id);
2745
2746                         td_cmd |= ICE_TX_DESC_CMD_RS;
2747
2748                         /* Update txq RS bit counters */
2749                         txq->nb_tx_used = 0;
2750                 }
2751                 txd->cmd_type_offset_bsz |=
2752                         rte_cpu_to_le_64(((uint64_t)td_cmd) <<
2753                                          ICE_TXD_QW1_CMD_S);
2754         }
2755 end_of_tx:
2756         /* update Tail register */
2757         ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
2758         txq->tx_tail = tx_id;
2759
2760         return nb_tx;
2761 }
2762
2763 static __rte_always_inline int
2764 ice_tx_free_bufs(struct ice_tx_queue *txq)
2765 {
2766         struct ice_tx_entry *txep;
2767         uint16_t i;
2768
2769         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
2770              rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
2771             rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
2772                 return 0;
2773
2774         txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
2775
2776         for (i = 0; i < txq->tx_rs_thresh; i++)
2777                 rte_prefetch0((txep + i)->mbuf);
2778
2779         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
2780                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2781                         rte_mempool_put(txep->mbuf->pool, txep->mbuf);
2782                         txep->mbuf = NULL;
2783                 }
2784         } else {
2785                 for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
2786                         rte_pktmbuf_free_seg(txep->mbuf);
2787                         txep->mbuf = NULL;
2788                 }
2789         }
2790
2791         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
2792         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
2793         if (txq->tx_next_dd >= txq->nb_tx_desc)
2794                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2795
2796         return txq->tx_rs_thresh;
2797 }
2798
2799 static int
2800 ice_tx_done_cleanup_full(struct ice_tx_queue *txq,
2801                         uint32_t free_cnt)
2802 {
2803         struct ice_tx_entry *swr_ring = txq->sw_ring;
2804         uint16_t i, tx_last, tx_id;
2805         uint16_t nb_tx_free_last;
2806         uint16_t nb_tx_to_clean;
2807         uint32_t pkt_cnt;
2808
2809         /* Start free mbuf from the next of tx_tail */
2810         tx_last = txq->tx_tail;
2811         tx_id  = swr_ring[tx_last].next_id;
2812
2813         if (txq->nb_tx_free == 0 && ice_xmit_cleanup(txq))
2814                 return 0;
2815
2816         nb_tx_to_clean = txq->nb_tx_free;
2817         nb_tx_free_last = txq->nb_tx_free;
2818         if (!free_cnt)
2819                 free_cnt = txq->nb_tx_desc;
2820
2821         /* Loop through swr_ring to count the amount of
2822          * freeable mubfs and packets.
2823          */
2824         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2825                 for (i = 0; i < nb_tx_to_clean &&
2826                         pkt_cnt < free_cnt &&
2827                         tx_id != tx_last; i++) {
2828                         if (swr_ring[tx_id].mbuf != NULL) {
2829                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2830                                 swr_ring[tx_id].mbuf = NULL;
2831
2832                                 /*
2833                                  * last segment in the packet,
2834                                  * increment packet count
2835                                  */
2836                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2837                         }
2838
2839                         tx_id = swr_ring[tx_id].next_id;
2840                 }
2841
2842                 if (txq->tx_rs_thresh > txq->nb_tx_desc -
2843                         txq->nb_tx_free || tx_id == tx_last)
2844                         break;
2845
2846                 if (pkt_cnt < free_cnt) {
2847                         if (ice_xmit_cleanup(txq))
2848                                 break;
2849
2850                         nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
2851                         nb_tx_free_last = txq->nb_tx_free;
2852                 }
2853         }
2854
2855         return (int)pkt_cnt;
2856 }
2857
2858 #ifdef RTE_ARCH_X86
2859 static int
2860 ice_tx_done_cleanup_vec(struct ice_tx_queue *txq __rte_unused,
2861                         uint32_t free_cnt __rte_unused)
2862 {
2863         return -ENOTSUP;
2864 }
2865 #endif
2866
2867 static int
2868 ice_tx_done_cleanup_simple(struct ice_tx_queue *txq,
2869                         uint32_t free_cnt)
2870 {
2871         int i, n, cnt;
2872
2873         if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
2874                 free_cnt = txq->nb_tx_desc;
2875
2876         cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
2877
2878         for (i = 0; i < cnt; i += n) {
2879                 if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
2880                         break;
2881
2882                 n = ice_tx_free_bufs(txq);
2883
2884                 if (n == 0)
2885                         break;
2886         }
2887
2888         return i;
2889 }
2890
2891 int
2892 ice_tx_done_cleanup(void *txq, uint32_t free_cnt)
2893 {
2894         struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
2895         struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
2896         struct ice_adapter *ad =
2897                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2898
2899 #ifdef RTE_ARCH_X86
2900         if (ad->tx_vec_allowed)
2901                 return ice_tx_done_cleanup_vec(q, free_cnt);
2902 #endif
2903         if (ad->tx_simple_allowed)
2904                 return ice_tx_done_cleanup_simple(q, free_cnt);
2905         else
2906                 return ice_tx_done_cleanup_full(q, free_cnt);
2907 }
2908
2909 /* Populate 4 descriptors with data from 4 mbufs */
2910 static inline void
2911 tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
2912 {
2913         uint64_t dma_addr;
2914         uint32_t i;
2915
2916         for (i = 0; i < 4; i++, txdp++, pkts++) {
2917                 dma_addr = rte_mbuf_data_iova(*pkts);
2918                 txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
2919                 txdp->cmd_type_offset_bsz =
2920                         ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
2921                                        (*pkts)->data_len, 0);
2922         }
2923 }
2924
2925 /* Populate 1 descriptor with data from 1 mbuf */
2926 static inline void
2927 tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
2928 {
2929         uint64_t dma_addr;
2930
2931         dma_addr = rte_mbuf_data_iova(*pkts);
2932         txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
2933         txdp->cmd_type_offset_bsz =
2934                 ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
2935                                (*pkts)->data_len, 0);
2936 }
2937
2938 static inline void
2939 ice_tx_fill_hw_ring(struct ice_tx_queue *txq, struct rte_mbuf **pkts,
2940                     uint16_t nb_pkts)
2941 {
2942         volatile struct ice_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
2943         struct ice_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
2944         const int N_PER_LOOP = 4;
2945         const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
2946         int mainpart, leftover;
2947         int i, j;
2948
2949         /**
2950          * Process most of the packets in chunks of N pkts.  Any
2951          * leftover packets will get processed one at a time.
2952          */
2953         mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
2954         leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
2955         for (i = 0; i < mainpart; i += N_PER_LOOP) {
2956                 /* Copy N mbuf pointers to the S/W ring */
2957                 for (j = 0; j < N_PER_LOOP; ++j)
2958                         (txep + i + j)->mbuf = *(pkts + i + j);
2959                 tx4(txdp + i, pkts + i);
2960         }
2961
2962         if (unlikely(leftover > 0)) {
2963                 for (i = 0; i < leftover; ++i) {
2964                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
2965                         tx1(txdp + mainpart + i, pkts + mainpart + i);
2966                 }
2967         }
2968 }
2969
2970 static inline uint16_t
2971 tx_xmit_pkts(struct ice_tx_queue *txq,
2972              struct rte_mbuf **tx_pkts,
2973              uint16_t nb_pkts)
2974 {
2975         volatile struct ice_tx_desc *txr = txq->tx_ring;
2976         uint16_t n = 0;
2977
2978         /**
2979          * Begin scanning the H/W ring for done descriptors when the number
2980          * of available descriptors drops below tx_free_thresh. For each done
2981          * descriptor, free the associated buffer.
2982          */
2983         if (txq->nb_tx_free < txq->tx_free_thresh)
2984                 ice_tx_free_bufs(txq);
2985
2986         /* Use available descriptor only */
2987         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
2988         if (unlikely(!nb_pkts))
2989                 return 0;
2990
2991         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
2992         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
2993                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
2994                 ice_tx_fill_hw_ring(txq, tx_pkts, n);
2995                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
2996                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
2997                                          ICE_TXD_QW1_CMD_S);
2998                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2999                 txq->tx_tail = 0;
3000         }
3001
3002         /* Fill hardware descriptor ring with mbuf data */
3003         ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
3004         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
3005
3006         /* Determin if RS bit needs to be set */
3007         if (txq->tx_tail > txq->tx_next_rs) {
3008                 txr[txq->tx_next_rs].cmd_type_offset_bsz |=
3009                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
3010                                          ICE_TXD_QW1_CMD_S);
3011                 txq->tx_next_rs =
3012                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
3013                 if (txq->tx_next_rs >= txq->nb_tx_desc)
3014                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
3015         }
3016
3017         if (txq->tx_tail >= txq->nb_tx_desc)
3018                 txq->tx_tail = 0;
3019
3020         /* Update the tx tail register */
3021         ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
3022
3023         return nb_pkts;
3024 }
3025
3026 static uint16_t
3027 ice_xmit_pkts_simple(void *tx_queue,
3028                      struct rte_mbuf **tx_pkts,
3029                      uint16_t nb_pkts)
3030 {
3031         uint16_t nb_tx = 0;
3032
3033         if (likely(nb_pkts <= ICE_TX_MAX_BURST))
3034                 return tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
3035                                     tx_pkts, nb_pkts);
3036
3037         while (nb_pkts) {
3038                 uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
3039                                                       ICE_TX_MAX_BURST);
3040
3041                 ret = tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
3042                                    &tx_pkts[nb_tx], num);
3043                 nb_tx = (uint16_t)(nb_tx + ret);
3044                 nb_pkts = (uint16_t)(nb_pkts - ret);
3045                 if (ret < num)
3046                         break;
3047         }
3048
3049         return nb_tx;
3050 }
3051
3052 void __rte_cold
3053 ice_set_rx_function(struct rte_eth_dev *dev)
3054 {
3055         PMD_INIT_FUNC_TRACE();
3056         struct ice_adapter *ad =
3057                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3058 #ifdef RTE_ARCH_X86
3059         struct ice_rx_queue *rxq;
3060         int i;
3061         int rx_check_ret = 0;
3062
3063         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3064                 ad->rx_use_avx512 = false;
3065                 ad->rx_use_avx2 = false;
3066                 rx_check_ret = ice_rx_vec_dev_check(dev);
3067                 if (rx_check_ret >= 0 && ad->rx_bulk_alloc_allowed &&
3068                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3069                         ad->rx_vec_allowed = true;
3070                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3071                                 rxq = dev->data->rx_queues[i];
3072                                 if (rxq && ice_rxq_vec_setup(rxq)) {
3073                                         ad->rx_vec_allowed = false;
3074                                         break;
3075                                 }
3076                         }
3077
3078                         if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3079                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3080                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3081 #ifdef CC_AVX512_SUPPORT
3082                                 ad->rx_use_avx512 = true;
3083 #else
3084                         PMD_DRV_LOG(NOTICE,
3085                                 "AVX512 is not supported in build env");
3086 #endif
3087                         if (!ad->rx_use_avx512 &&
3088                         (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3089                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3090                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3091                                 ad->rx_use_avx2 = true;
3092
3093                 } else {
3094                         ad->rx_vec_allowed = false;
3095                 }
3096         }
3097
3098         if (ad->rx_vec_allowed) {
3099                 if (dev->data->scattered_rx) {
3100                         if (ad->rx_use_avx512) {
3101 #ifdef CC_AVX512_SUPPORT
3102                                 if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3103                                         PMD_DRV_LOG(NOTICE,
3104                                                 "Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
3105                                                 dev->data->port_id);
3106                                         dev->rx_pkt_burst =
3107                                                 ice_recv_scattered_pkts_vec_avx512_offload;
3108                                 } else {
3109                                         PMD_DRV_LOG(NOTICE,
3110                                                 "Using AVX512 Vector Scattered Rx (port %d).",
3111                                                 dev->data->port_id);
3112                                         dev->rx_pkt_burst =
3113                                                 ice_recv_scattered_pkts_vec_avx512;
3114                                 }
3115 #endif
3116                         } else {
3117                                 PMD_DRV_LOG(DEBUG,
3118                                         "Using %sVector Scattered Rx (port %d).",
3119                                         ad->rx_use_avx2 ? "avx2 " : "",
3120                                         dev->data->port_id);
3121                                 dev->rx_pkt_burst = ad->rx_use_avx2 ?
3122                                         ice_recv_scattered_pkts_vec_avx2 :
3123                                         ice_recv_scattered_pkts_vec;
3124                         }
3125                 } else {
3126                         if (ad->rx_use_avx512) {
3127 #ifdef CC_AVX512_SUPPORT
3128                                 if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3129                                         PMD_DRV_LOG(NOTICE,
3130                                                 "Using AVX512 OFFLOAD Vector Rx (port %d).",
3131                                                 dev->data->port_id);
3132                                         dev->rx_pkt_burst =
3133                                                 ice_recv_pkts_vec_avx512_offload;
3134                                 } else {
3135                                         PMD_DRV_LOG(NOTICE,
3136                                                 "Using AVX512 Vector Rx (port %d).",
3137                                                 dev->data->port_id);
3138                                         dev->rx_pkt_burst =
3139                                                 ice_recv_pkts_vec_avx512;
3140                                 }
3141 #endif
3142                         } else {
3143                                 PMD_DRV_LOG(DEBUG,
3144                                         "Using %sVector Rx (port %d).",
3145                                         ad->rx_use_avx2 ? "avx2 " : "",
3146                                         dev->data->port_id);
3147                                 dev->rx_pkt_burst = ad->rx_use_avx2 ?
3148                                         ice_recv_pkts_vec_avx2 :
3149                                         ice_recv_pkts_vec;
3150                         }
3151                 }
3152                 return;
3153         }
3154
3155 #endif
3156
3157         if (dev->data->scattered_rx) {
3158                 /* Set the non-LRO scattered function */
3159                 PMD_INIT_LOG(DEBUG,
3160                              "Using a Scattered function on port %d.",
3161                              dev->data->port_id);
3162                 dev->rx_pkt_burst = ice_recv_scattered_pkts;
3163         } else if (ad->rx_bulk_alloc_allowed) {
3164                 PMD_INIT_LOG(DEBUG,
3165                              "Rx Burst Bulk Alloc Preconditions are "
3166                              "satisfied. Rx Burst Bulk Alloc function "
3167                              "will be used on port %d.",
3168                              dev->data->port_id);
3169                 dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
3170         } else {
3171                 PMD_INIT_LOG(DEBUG,
3172                              "Rx Burst Bulk Alloc Preconditions are not "
3173                              "satisfied, Normal Rx will be used on port %d.",
3174                              dev->data->port_id);
3175                 dev->rx_pkt_burst = ice_recv_pkts;
3176         }
3177 }
3178
3179 static const struct {
3180         eth_rx_burst_t pkt_burst;
3181         const char *info;
3182 } ice_rx_burst_infos[] = {
3183         { ice_recv_scattered_pkts,          "Scalar Scattered" },
3184         { ice_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
3185         { ice_recv_pkts,                    "Scalar" },
3186 #ifdef RTE_ARCH_X86
3187 #ifdef CC_AVX512_SUPPORT
3188         { ice_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
3189         { ice_recv_scattered_pkts_vec_avx512_offload, "Offload Vector AVX512 Scattered" },
3190         { ice_recv_pkts_vec_avx512,           "Vector AVX512" },
3191         { ice_recv_pkts_vec_avx512_offload,   "Offload Vector AVX512" },
3192 #endif
3193         { ice_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
3194         { ice_recv_pkts_vec_avx2,           "Vector AVX2" },
3195         { ice_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
3196         { ice_recv_pkts_vec,                "Vector SSE" },
3197 #endif
3198 };
3199
3200 int
3201 ice_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3202                       struct rte_eth_burst_mode *mode)
3203 {
3204         eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
3205         int ret = -EINVAL;
3206         unsigned int i;
3207
3208         for (i = 0; i < RTE_DIM(ice_rx_burst_infos); ++i) {
3209                 if (pkt_burst == ice_rx_burst_infos[i].pkt_burst) {
3210                         snprintf(mode->info, sizeof(mode->info), "%s",
3211                                  ice_rx_burst_infos[i].info);
3212                         ret = 0;
3213                         break;
3214                 }
3215         }
3216
3217         return ret;
3218 }
3219
3220 void __rte_cold
3221 ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ice_tx_queue *txq)
3222 {
3223         struct ice_adapter *ad =
3224                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3225
3226         /* Use a simple Tx queue if possible (only fast free is allowed) */
3227         ad->tx_simple_allowed =
3228                 (txq->offloads ==
3229                 (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
3230                 txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
3231
3232         if (ad->tx_simple_allowed)
3233                 PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3234                              txq->queue_id);
3235         else
3236                 PMD_INIT_LOG(DEBUG,
3237                              "Simple Tx can NOT be enabled on Tx queue %u.",
3238                              txq->queue_id);
3239 }
3240
3241 /*********************************************************************
3242  *
3243  *  TX prep functions
3244  *
3245  **********************************************************************/
3246 /* The default values of TSO MSS */
3247 #define ICE_MIN_TSO_MSS            64
3248 #define ICE_MAX_TSO_MSS            9728
3249 #define ICE_MAX_TSO_FRAME_SIZE     262144
3250 uint16_t
3251 ice_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
3252               uint16_t nb_pkts)
3253 {
3254         int i, ret;
3255         uint64_t ol_flags;
3256         struct rte_mbuf *m;
3257
3258         for (i = 0; i < nb_pkts; i++) {
3259                 m = tx_pkts[i];
3260                 ol_flags = m->ol_flags;
3261
3262                 if (ol_flags & PKT_TX_TCP_SEG &&
3263                     (m->tso_segsz < ICE_MIN_TSO_MSS ||
3264                      m->tso_segsz > ICE_MAX_TSO_MSS ||
3265                      m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
3266                         /**
3267                          * MSS outside the range are considered malicious
3268                          */
3269                         rte_errno = EINVAL;
3270                         return i;
3271                 }
3272
3273 #ifdef RTE_ETHDEV_DEBUG_TX
3274                 ret = rte_validate_tx_offload(m);
3275                 if (ret != 0) {
3276                         rte_errno = -ret;
3277                         return i;
3278                 }
3279 #endif
3280                 ret = rte_net_intel_cksum_prepare(m);
3281                 if (ret != 0) {
3282                         rte_errno = -ret;
3283                         return i;
3284                 }
3285         }
3286         return i;
3287 }
3288
3289 void __rte_cold
3290 ice_set_tx_function(struct rte_eth_dev *dev)
3291 {
3292         struct ice_adapter *ad =
3293                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3294 #ifdef RTE_ARCH_X86
3295         struct ice_tx_queue *txq;
3296         int i;
3297         int tx_check_ret = 0;
3298
3299         if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3300                 ad->tx_use_avx2 = false;
3301                 ad->tx_use_avx512 = false;
3302                 tx_check_ret = ice_tx_vec_dev_check(dev);
3303                 if (tx_check_ret >= 0 &&
3304                     rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3305                         ad->tx_vec_allowed = true;
3306
3307                         if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3308                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3309                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3310 #ifdef CC_AVX512_SUPPORT
3311                                 ad->tx_use_avx512 = true;
3312 #else
3313                         PMD_DRV_LOG(NOTICE,
3314                                 "AVX512 is not supported in build env");
3315 #endif
3316                         if (!ad->tx_use_avx512 && tx_check_ret == ICE_VECTOR_PATH &&
3317                         (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
3318                         rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
3319                         rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
3320                                 ad->tx_use_avx2 = true;
3321
3322                         if (!ad->tx_use_avx512 && tx_check_ret == ICE_VECTOR_OFFLOAD_PATH)
3323                                 ad->tx_vec_allowed = false;
3324
3325                         if (ad->tx_vec_allowed) {
3326                                 for (i = 0; i < dev->data->nb_tx_queues; i++) {
3327                                         txq = dev->data->tx_queues[i];
3328                                         if (txq && ice_txq_vec_setup(txq)) {
3329                                                 ad->tx_vec_allowed = false;
3330                                                 break;
3331                                         }
3332                                 }
3333                         }
3334                 } else {
3335                         ad->tx_vec_allowed = false;
3336                 }
3337         }
3338
3339         if (ad->tx_vec_allowed) {
3340                 if (ad->tx_use_avx512) {
3341 #ifdef CC_AVX512_SUPPORT
3342                         if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
3343                                 PMD_DRV_LOG(NOTICE,
3344                                             "Using AVX512 OFFLOAD Vector Tx (port %d).",
3345                                             dev->data->port_id);
3346                                 dev->tx_pkt_burst =
3347                                         ice_xmit_pkts_vec_avx512_offload;
3348                         } else {
3349                                 PMD_DRV_LOG(NOTICE,
3350                                             "Using AVX512 Vector Tx (port %d).",
3351                                             dev->data->port_id);
3352                                 dev->tx_pkt_burst = ice_xmit_pkts_vec_avx512;
3353                         }
3354 #endif
3355                 } else {
3356                         PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
3357                                     ad->tx_use_avx2 ? "avx2 " : "",
3358                                     dev->data->port_id);
3359                         dev->tx_pkt_burst = ad->tx_use_avx2 ?
3360                                             ice_xmit_pkts_vec_avx2 :
3361                                             ice_xmit_pkts_vec;
3362                 }
3363                 dev->tx_pkt_prepare = NULL;
3364
3365                 return;
3366         }
3367 #endif
3368
3369         if (ad->tx_simple_allowed) {
3370                 PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3371                 dev->tx_pkt_burst = ice_xmit_pkts_simple;
3372                 dev->tx_pkt_prepare = NULL;
3373         } else {
3374                 PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
3375                 dev->tx_pkt_burst = ice_xmit_pkts;
3376                 dev->tx_pkt_prepare = ice_prep_pkts;
3377         }
3378 }
3379
3380 static const struct {
3381         eth_tx_burst_t pkt_burst;
3382         const char *info;
3383 } ice_tx_burst_infos[] = {
3384         { ice_xmit_pkts_simple,   "Scalar Simple" },
3385         { ice_xmit_pkts,          "Scalar" },
3386 #ifdef RTE_ARCH_X86
3387 #ifdef CC_AVX512_SUPPORT
3388         { ice_xmit_pkts_vec_avx512, "Vector AVX512" },
3389         { ice_xmit_pkts_vec_avx512_offload, "Offload Vector AVX512" },
3390 #endif
3391         { ice_xmit_pkts_vec_avx2, "Vector AVX2" },
3392         { ice_xmit_pkts_vec,      "Vector SSE" },
3393 #endif
3394 };
3395
3396 int
3397 ice_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3398                       struct rte_eth_burst_mode *mode)
3399 {
3400         eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
3401         int ret = -EINVAL;
3402         unsigned int i;
3403
3404         for (i = 0; i < RTE_DIM(ice_tx_burst_infos); ++i) {
3405                 if (pkt_burst == ice_tx_burst_infos[i].pkt_burst) {
3406                         snprintf(mode->info, sizeof(mode->info), "%s",
3407                                  ice_tx_burst_infos[i].info);
3408                         ret = 0;
3409                         break;
3410                 }
3411         }
3412
3413         return ret;
3414 }
3415
3416 /* For each value it means, datasheet of hardware can tell more details
3417  *
3418  * @note: fix ice_dev_supported_ptypes_get() if any change here.
3419  */
3420 static inline uint32_t
3421 ice_get_default_pkt_type(uint16_t ptype)
3422 {
3423         static const uint32_t type_table[ICE_MAX_PKT_TYPE]
3424                 __rte_cache_aligned = {
3425                 /* L2 types */
3426                 /* [0] reserved */
3427                 [1] = RTE_PTYPE_L2_ETHER,
3428                 [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
3429                 /* [3] - [5] reserved */
3430                 [6] = RTE_PTYPE_L2_ETHER_LLDP,
3431                 /* [7] - [10] reserved */
3432                 [11] = RTE_PTYPE_L2_ETHER_ARP,
3433                 /* [12] - [21] reserved */
3434
3435                 /* Non tunneled IPv4 */
3436                 [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3437                        RTE_PTYPE_L4_FRAG,
3438                 [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3439                        RTE_PTYPE_L4_NONFRAG,
3440                 [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3441                        RTE_PTYPE_L4_UDP,
3442                 /* [25] reserved */
3443                 [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3444                        RTE_PTYPE_L4_TCP,
3445                 [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3446                        RTE_PTYPE_L4_SCTP,
3447                 [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3448                        RTE_PTYPE_L4_ICMP,
3449
3450                 /* IPv4 --> IPv4 */
3451                 [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3452                        RTE_PTYPE_TUNNEL_IP |
3453                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3454                        RTE_PTYPE_INNER_L4_FRAG,
3455                 [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3456                        RTE_PTYPE_TUNNEL_IP |
3457                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3458                        RTE_PTYPE_INNER_L4_NONFRAG,
3459                 [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3460                        RTE_PTYPE_TUNNEL_IP |
3461                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3462                        RTE_PTYPE_INNER_L4_UDP,
3463                 /* [32] reserved */
3464                 [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3465                        RTE_PTYPE_TUNNEL_IP |
3466                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3467                        RTE_PTYPE_INNER_L4_TCP,
3468                 [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3469                        RTE_PTYPE_TUNNEL_IP |
3470                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3471                        RTE_PTYPE_INNER_L4_SCTP,
3472                 [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3473                        RTE_PTYPE_TUNNEL_IP |
3474                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3475                        RTE_PTYPE_INNER_L4_ICMP,
3476
3477                 /* IPv4 --> IPv6 */
3478                 [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3479                        RTE_PTYPE_TUNNEL_IP |
3480                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3481                        RTE_PTYPE_INNER_L4_FRAG,
3482                 [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3483                        RTE_PTYPE_TUNNEL_IP |
3484                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3485                        RTE_PTYPE_INNER_L4_NONFRAG,
3486                 [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3487                        RTE_PTYPE_TUNNEL_IP |
3488                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3489                        RTE_PTYPE_INNER_L4_UDP,
3490                 /* [39] reserved */
3491                 [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3492                        RTE_PTYPE_TUNNEL_IP |
3493                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3494                        RTE_PTYPE_INNER_L4_TCP,
3495                 [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3496                        RTE_PTYPE_TUNNEL_IP |
3497                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3498                        RTE_PTYPE_INNER_L4_SCTP,
3499                 [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3500                        RTE_PTYPE_TUNNEL_IP |
3501                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3502                        RTE_PTYPE_INNER_L4_ICMP,
3503
3504                 /* IPv4 --> GRE/Teredo/VXLAN */
3505                 [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3506                        RTE_PTYPE_TUNNEL_GRENAT,
3507
3508                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
3509                 [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3510                        RTE_PTYPE_TUNNEL_GRENAT |
3511                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3512                        RTE_PTYPE_INNER_L4_FRAG,
3513                 [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3514                        RTE_PTYPE_TUNNEL_GRENAT |
3515                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3516                        RTE_PTYPE_INNER_L4_NONFRAG,
3517                 [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3518                        RTE_PTYPE_TUNNEL_GRENAT |
3519                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3520                        RTE_PTYPE_INNER_L4_UDP,
3521                 /* [47] reserved */
3522                 [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3523                        RTE_PTYPE_TUNNEL_GRENAT |
3524                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3525                        RTE_PTYPE_INNER_L4_TCP,
3526                 [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3527                        RTE_PTYPE_TUNNEL_GRENAT |
3528                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3529                        RTE_PTYPE_INNER_L4_SCTP,
3530                 [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3531                        RTE_PTYPE_TUNNEL_GRENAT |
3532                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3533                        RTE_PTYPE_INNER_L4_ICMP,
3534
3535                 /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
3536                 [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3537                        RTE_PTYPE_TUNNEL_GRENAT |
3538                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3539                        RTE_PTYPE_INNER_L4_FRAG,
3540                 [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3541                        RTE_PTYPE_TUNNEL_GRENAT |
3542                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3543                        RTE_PTYPE_INNER_L4_NONFRAG,
3544                 [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3545                        RTE_PTYPE_TUNNEL_GRENAT |
3546                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3547                        RTE_PTYPE_INNER_L4_UDP,
3548                 /* [54] reserved */
3549                 [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3550                        RTE_PTYPE_TUNNEL_GRENAT |
3551                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3552                        RTE_PTYPE_INNER_L4_TCP,
3553                 [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3554                        RTE_PTYPE_TUNNEL_GRENAT |
3555                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3556                        RTE_PTYPE_INNER_L4_SCTP,
3557                 [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3558                        RTE_PTYPE_TUNNEL_GRENAT |
3559                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3560                        RTE_PTYPE_INNER_L4_ICMP,
3561
3562                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
3563                 [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3564                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3565
3566                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3567                 [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3568                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3569                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3570                        RTE_PTYPE_INNER_L4_FRAG,
3571                 [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3572                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3573                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3574                        RTE_PTYPE_INNER_L4_NONFRAG,
3575                 [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3576                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3577                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3578                        RTE_PTYPE_INNER_L4_UDP,
3579                 /* [62] reserved */
3580                 [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3581                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3582                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3583                        RTE_PTYPE_INNER_L4_TCP,
3584                 [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3585                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3586                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3587                        RTE_PTYPE_INNER_L4_SCTP,
3588                 [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3589                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3590                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3591                        RTE_PTYPE_INNER_L4_ICMP,
3592
3593                 /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3594                 [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3595                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3596                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3597                        RTE_PTYPE_INNER_L4_FRAG,
3598                 [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3599                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3600                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3601                        RTE_PTYPE_INNER_L4_NONFRAG,
3602                 [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3603                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3604                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3605                        RTE_PTYPE_INNER_L4_UDP,
3606                 /* [69] reserved */
3607                 [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3608                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3609                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3610                        RTE_PTYPE_INNER_L4_TCP,
3611                 [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3612                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3613                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3614                        RTE_PTYPE_INNER_L4_SCTP,
3615                 [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3616                        RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3617                        RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3618                        RTE_PTYPE_INNER_L4_ICMP,
3619                 /* [73] - [87] reserved */
3620
3621                 /* Non tunneled IPv6 */
3622                 [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3623                        RTE_PTYPE_L4_FRAG,
3624                 [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3625                        RTE_PTYPE_L4_NONFRAG,
3626                 [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3627                        RTE_PTYPE_L4_UDP,
3628                 /* [91] reserved */
3629                 [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3630                        RTE_PTYPE_L4_TCP,
3631                 [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3632                        RTE_PTYPE_L4_SCTP,
3633                 [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3634                        RTE_PTYPE_L4_ICMP,
3635
3636                 /* IPv6 --> IPv4 */
3637                 [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3638                        RTE_PTYPE_TUNNEL_IP |
3639                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3640                        RTE_PTYPE_INNER_L4_FRAG,
3641                 [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3642                        RTE_PTYPE_TUNNEL_IP |
3643                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3644                        RTE_PTYPE_INNER_L4_NONFRAG,
3645                 [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3646                        RTE_PTYPE_TUNNEL_IP |
3647                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3648                        RTE_PTYPE_INNER_L4_UDP,
3649                 /* [98] reserved */
3650                 [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3651                        RTE_PTYPE_TUNNEL_IP |
3652                        RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3653                        RTE_PTYPE_INNER_L4_TCP,
3654                 [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3655                         RTE_PTYPE_TUNNEL_IP |
3656                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3657                         RTE_PTYPE_INNER_L4_SCTP,
3658                 [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3659                         RTE_PTYPE_TUNNEL_IP |
3660                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3661                         RTE_PTYPE_INNER_L4_ICMP,
3662
3663                 /* IPv6 --> IPv6 */
3664                 [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3665                         RTE_PTYPE_TUNNEL_IP |
3666                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3667                         RTE_PTYPE_INNER_L4_FRAG,
3668                 [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3669                         RTE_PTYPE_TUNNEL_IP |
3670                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3671                         RTE_PTYPE_INNER_L4_NONFRAG,
3672                 [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3673                         RTE_PTYPE_TUNNEL_IP |
3674                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3675                         RTE_PTYPE_INNER_L4_UDP,
3676                 /* [105] reserved */
3677                 [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3678                         RTE_PTYPE_TUNNEL_IP |
3679                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3680                         RTE_PTYPE_INNER_L4_TCP,
3681                 [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3682                         RTE_PTYPE_TUNNEL_IP |
3683                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3684                         RTE_PTYPE_INNER_L4_SCTP,
3685                 [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3686                         RTE_PTYPE_TUNNEL_IP |
3687                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3688                         RTE_PTYPE_INNER_L4_ICMP,
3689
3690                 /* IPv6 --> GRE/Teredo/VXLAN */
3691                 [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3692                         RTE_PTYPE_TUNNEL_GRENAT,
3693
3694                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
3695                 [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3696                         RTE_PTYPE_TUNNEL_GRENAT |
3697                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3698                         RTE_PTYPE_INNER_L4_FRAG,
3699                 [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3700                         RTE_PTYPE_TUNNEL_GRENAT |
3701                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3702                         RTE_PTYPE_INNER_L4_NONFRAG,
3703                 [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3704                         RTE_PTYPE_TUNNEL_GRENAT |
3705                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3706                         RTE_PTYPE_INNER_L4_UDP,
3707                 /* [113] reserved */
3708                 [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3709                         RTE_PTYPE_TUNNEL_GRENAT |
3710                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3711                         RTE_PTYPE_INNER_L4_TCP,
3712                 [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3713                         RTE_PTYPE_TUNNEL_GRENAT |
3714                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3715                         RTE_PTYPE_INNER_L4_SCTP,
3716                 [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3717                         RTE_PTYPE_TUNNEL_GRENAT |
3718                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3719                         RTE_PTYPE_INNER_L4_ICMP,
3720
3721                 /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
3722                 [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3723                         RTE_PTYPE_TUNNEL_GRENAT |
3724                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3725                         RTE_PTYPE_INNER_L4_FRAG,
3726                 [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3727                         RTE_PTYPE_TUNNEL_GRENAT |
3728                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3729                         RTE_PTYPE_INNER_L4_NONFRAG,
3730                 [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3731                         RTE_PTYPE_TUNNEL_GRENAT |
3732                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3733                         RTE_PTYPE_INNER_L4_UDP,
3734                 /* [120] reserved */
3735                 [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3736                         RTE_PTYPE_TUNNEL_GRENAT |
3737                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3738                         RTE_PTYPE_INNER_L4_TCP,
3739                 [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3740                         RTE_PTYPE_TUNNEL_GRENAT |
3741                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3742                         RTE_PTYPE_INNER_L4_SCTP,
3743                 [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3744                         RTE_PTYPE_TUNNEL_GRENAT |
3745                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3746                         RTE_PTYPE_INNER_L4_ICMP,
3747
3748                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
3749                 [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3750                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
3751
3752                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
3753                 [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3754                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3755                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3756                         RTE_PTYPE_INNER_L4_FRAG,
3757                 [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3758                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3759                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3760                         RTE_PTYPE_INNER_L4_NONFRAG,
3761                 [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3762                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3763                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3764                         RTE_PTYPE_INNER_L4_UDP,
3765                 /* [128] reserved */
3766                 [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3767                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3768                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3769                         RTE_PTYPE_INNER_L4_TCP,
3770                 [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3771                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3772                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3773                         RTE_PTYPE_INNER_L4_SCTP,
3774                 [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3775                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3776                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3777                         RTE_PTYPE_INNER_L4_ICMP,
3778
3779                 /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
3780                 [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3781                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3782                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3783                         RTE_PTYPE_INNER_L4_FRAG,
3784                 [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3785                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3786                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3787                         RTE_PTYPE_INNER_L4_NONFRAG,
3788                 [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3789                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3790                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3791                         RTE_PTYPE_INNER_L4_UDP,
3792                 /* [135] reserved */
3793                 [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3794                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3795                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3796                         RTE_PTYPE_INNER_L4_TCP,
3797                 [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3798                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3799                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3800                         RTE_PTYPE_INNER_L4_SCTP,
3801                 [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3802                         RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
3803                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3804                         RTE_PTYPE_INNER_L4_ICMP,
3805                 /* [139] - [299] reserved */
3806
3807                 /* PPPoE */
3808                 [300] = RTE_PTYPE_L2_ETHER_PPPOE,
3809                 [301] = RTE_PTYPE_L2_ETHER_PPPOE,
3810
3811                 /* PPPoE --> IPv4 */
3812                 [302] = RTE_PTYPE_L2_ETHER_PPPOE |
3813                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3814                         RTE_PTYPE_L4_FRAG,
3815                 [303] = RTE_PTYPE_L2_ETHER_PPPOE |
3816                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3817                         RTE_PTYPE_L4_NONFRAG,
3818                 [304] = RTE_PTYPE_L2_ETHER_PPPOE |
3819                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3820                         RTE_PTYPE_L4_UDP,
3821                 [305] = RTE_PTYPE_L2_ETHER_PPPOE |
3822                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3823                         RTE_PTYPE_L4_TCP,
3824                 [306] = RTE_PTYPE_L2_ETHER_PPPOE |
3825                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3826                         RTE_PTYPE_L4_SCTP,
3827                 [307] = RTE_PTYPE_L2_ETHER_PPPOE |
3828                         RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3829                         RTE_PTYPE_L4_ICMP,
3830
3831                 /* PPPoE --> IPv6 */
3832                 [308] = RTE_PTYPE_L2_ETHER_PPPOE |
3833                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3834                         RTE_PTYPE_L4_FRAG,
3835                 [309] = RTE_PTYPE_L2_ETHER_PPPOE |
3836                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3837                         RTE_PTYPE_L4_NONFRAG,
3838                 [310] = RTE_PTYPE_L2_ETHER_PPPOE |
3839                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3840                         RTE_PTYPE_L4_UDP,
3841                 [311] = RTE_PTYPE_L2_ETHER_PPPOE |
3842                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3843                         RTE_PTYPE_L4_TCP,
3844                 [312] = RTE_PTYPE_L2_ETHER_PPPOE |
3845                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3846                         RTE_PTYPE_L4_SCTP,
3847                 [313] = RTE_PTYPE_L2_ETHER_PPPOE |
3848                         RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3849                         RTE_PTYPE_L4_ICMP,
3850                 /* [314] - [324] reserved */
3851
3852                 /* IPv4/IPv6 --> GTPC/GTPU */
3853                 [325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3854                         RTE_PTYPE_TUNNEL_GTPC,
3855                 [326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3856                         RTE_PTYPE_TUNNEL_GTPC,
3857                 [327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3858                         RTE_PTYPE_TUNNEL_GTPC,
3859                 [328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3860                         RTE_PTYPE_TUNNEL_GTPC,
3861                 [329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3862                         RTE_PTYPE_TUNNEL_GTPU,
3863                 [330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3864                         RTE_PTYPE_TUNNEL_GTPU,
3865
3866                 /* IPv4 --> GTPU --> IPv4 */
3867                 [331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3868                         RTE_PTYPE_TUNNEL_GTPU |
3869                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3870                         RTE_PTYPE_INNER_L4_FRAG,
3871                 [332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3872                         RTE_PTYPE_TUNNEL_GTPU |
3873                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3874                         RTE_PTYPE_INNER_L4_NONFRAG,
3875                 [333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3876                         RTE_PTYPE_TUNNEL_GTPU |
3877                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3878                         RTE_PTYPE_INNER_L4_UDP,
3879                 [334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3880                         RTE_PTYPE_TUNNEL_GTPU |
3881                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3882                         RTE_PTYPE_INNER_L4_TCP,
3883                 [335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3884                         RTE_PTYPE_TUNNEL_GTPU |
3885                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3886                         RTE_PTYPE_INNER_L4_ICMP,
3887
3888                 /* IPv6 --> GTPU --> IPv4 */
3889                 [336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3890                         RTE_PTYPE_TUNNEL_GTPU |
3891                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3892                         RTE_PTYPE_INNER_L4_FRAG,
3893                 [337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3894                         RTE_PTYPE_TUNNEL_GTPU |
3895                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3896                         RTE_PTYPE_INNER_L4_NONFRAG,
3897                 [338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3898                         RTE_PTYPE_TUNNEL_GTPU |
3899                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3900                         RTE_PTYPE_INNER_L4_UDP,
3901                 [339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3902                         RTE_PTYPE_TUNNEL_GTPU |
3903                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3904                         RTE_PTYPE_INNER_L4_TCP,
3905                 [340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3906                         RTE_PTYPE_TUNNEL_GTPU |
3907                         RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
3908                         RTE_PTYPE_INNER_L4_ICMP,
3909
3910                 /* IPv4 --> GTPU --> IPv6 */
3911                 [341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3912                         RTE_PTYPE_TUNNEL_GTPU |
3913                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3914                         RTE_PTYPE_INNER_L4_FRAG,
3915                 [342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3916                         RTE_PTYPE_TUNNEL_GTPU |
3917                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3918                         RTE_PTYPE_INNER_L4_NONFRAG,
3919                 [343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3920                         RTE_PTYPE_TUNNEL_GTPU |
3921                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3922                         RTE_PTYPE_INNER_L4_UDP,
3923                 [344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3924                         RTE_PTYPE_TUNNEL_GTPU |
3925                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3926                         RTE_PTYPE_INNER_L4_TCP,
3927                 [345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3928                         RTE_PTYPE_TUNNEL_GTPU |
3929                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3930                         RTE_PTYPE_INNER_L4_ICMP,
3931
3932                 /* IPv6 --> GTPU --> IPv6 */
3933                 [346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3934                         RTE_PTYPE_TUNNEL_GTPU |
3935                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3936                         RTE_PTYPE_INNER_L4_FRAG,
3937                 [347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3938                         RTE_PTYPE_TUNNEL_GTPU |
3939                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3940                         RTE_PTYPE_INNER_L4_NONFRAG,
3941                 [348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3942                         RTE_PTYPE_TUNNEL_GTPU |
3943                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3944                         RTE_PTYPE_INNER_L4_UDP,
3945                 [349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3946                         RTE_PTYPE_TUNNEL_GTPU |
3947                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3948                         RTE_PTYPE_INNER_L4_TCP,
3949                 [350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3950                         RTE_PTYPE_TUNNEL_GTPU |
3951                         RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
3952                         RTE_PTYPE_INNER_L4_ICMP,
3953
3954                 /* IPv4 --> UDP ECPRI */
3955                 [372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3956                         RTE_PTYPE_L4_UDP,
3957                 [373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3958                         RTE_PTYPE_L4_UDP,
3959                 [374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3960                         RTE_PTYPE_L4_UDP,
3961                 [375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3962                         RTE_PTYPE_L4_UDP,
3963                 [376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3964                         RTE_PTYPE_L4_UDP,
3965                 [377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3966                         RTE_PTYPE_L4_UDP,
3967                 [378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3968                         RTE_PTYPE_L4_UDP,
3969                 [379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3970                         RTE_PTYPE_L4_UDP,
3971                 [380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3972                         RTE_PTYPE_L4_UDP,
3973                 [381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
3974                         RTE_PTYPE_L4_UDP,
3975
3976                 /* IPV6 --> UDP ECPRI */
3977                 [382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3978                         RTE_PTYPE_L4_UDP,
3979                 [383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3980                         RTE_PTYPE_L4_UDP,
3981                 [384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3982                         RTE_PTYPE_L4_UDP,
3983                 [385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3984                         RTE_PTYPE_L4_UDP,
3985                 [386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3986                         RTE_PTYPE_L4_UDP,
3987                 [387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3988                         RTE_PTYPE_L4_UDP,
3989                 [388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3990                         RTE_PTYPE_L4_UDP,
3991                 [389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3992                         RTE_PTYPE_L4_UDP,
3993                 [390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3994                         RTE_PTYPE_L4_UDP,
3995                 [391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
3996                         RTE_PTYPE_L4_UDP,
3997                 /* All others reserved */
3998         };
3999
4000         return type_table[ptype];
4001 }
4002
4003 void __rte_cold
4004 ice_set_default_ptype_table(struct rte_eth_dev *dev)
4005 {
4006         struct ice_adapter *ad =
4007                 ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
4008         int i;
4009
4010         for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
4011                 ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
4012 }
4013
4014 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S 1
4015 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M \
4016                         (0x3UL << ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S)
4017 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD 0
4018 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL 0x1
4019
4020 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S   4
4021 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M   \
4022         (1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S)
4023 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S      5
4024 #define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M      \
4025         (1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S)
4026
4027 /*
4028  * check the programming status descriptor in rx queue.
4029  * done after Programming Flow Director is programmed on
4030  * tx queue
4031  */
4032 static inline int
4033 ice_check_fdir_programming_status(struct ice_rx_queue *rxq)
4034 {
4035         volatile union ice_32byte_rx_desc *rxdp;
4036         uint64_t qword1;
4037         uint32_t rx_status;
4038         uint32_t error;
4039         uint32_t id;
4040         int ret = -EAGAIN;
4041
4042         rxdp = (volatile union ice_32byte_rx_desc *)
4043                 (&rxq->rx_ring[rxq->rx_tail]);
4044         qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
4045         rx_status = (qword1 & ICE_RXD_QW1_STATUS_M)
4046                         >> ICE_RXD_QW1_STATUS_S;
4047
4048         if (rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)) {
4049                 ret = 0;
4050                 error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M) >>
4051                         ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S;
4052                 id = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M) >>
4053                         ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S;
4054                 if (error) {
4055                         if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD)
4056                                 PMD_DRV_LOG(ERR, "Failed to add FDIR rule.");
4057                         else if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL)
4058                                 PMD_DRV_LOG(ERR, "Failed to remove FDIR rule.");
4059                         ret = -EINVAL;
4060                         goto err;
4061                 }
4062                 error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M) >>
4063                         ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S;
4064                 if (error) {
4065                         PMD_DRV_LOG(ERR, "Failed to create FDIR profile.");
4066                         ret = -EINVAL;
4067                 }
4068 err:
4069                 rxdp->wb.qword1.status_error_len = 0;
4070                 rxq->rx_tail++;
4071                 if (unlikely(rxq->rx_tail == rxq->nb_rx_desc))
4072                         rxq->rx_tail = 0;
4073                 if (rxq->rx_tail == 0)
4074                         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
4075                 else
4076                         ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_tail - 1);
4077         }
4078
4079         return ret;
4080 }
4081
4082 #define ICE_FDIR_MAX_WAIT_US 10000
4083
4084 int
4085 ice_fdir_programming(struct ice_pf *pf, struct ice_fltr_desc *fdir_desc)
4086 {
4087         struct ice_tx_queue *txq = pf->fdir.txq;
4088         struct ice_rx_queue *rxq = pf->fdir.rxq;
4089         volatile struct ice_fltr_desc *fdirdp;
4090         volatile struct ice_tx_desc *txdp;
4091         uint32_t td_cmd;
4092         uint16_t i;
4093
4094         fdirdp = (volatile struct ice_fltr_desc *)
4095                 (&txq->tx_ring[txq->tx_tail]);
4096         fdirdp->qidx_compq_space_stat = fdir_desc->qidx_compq_space_stat;
4097         fdirdp->dtype_cmd_vsi_fdid = fdir_desc->dtype_cmd_vsi_fdid;
4098
4099         txdp = &txq->tx_ring[txq->tx_tail + 1];
4100         txdp->buf_addr = rte_cpu_to_le_64(pf->fdir.dma_addr);
4101         td_cmd = ICE_TX_DESC_CMD_EOP |
4102                 ICE_TX_DESC_CMD_RS  |
4103                 ICE_TX_DESC_CMD_DUMMY;
4104
4105         txdp->cmd_type_offset_bsz =
4106                 ice_build_ctob(td_cmd, 0, ICE_FDIR_PKT_LEN, 0);
4107
4108         txq->tx_tail += 2;
4109         if (txq->tx_tail >= txq->nb_tx_desc)
4110                 txq->tx_tail = 0;
4111         /* Update the tx tail register */
4112         ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
4113         for (i = 0; i < ICE_FDIR_MAX_WAIT_US; i++) {
4114                 if ((txdp->cmd_type_offset_bsz &
4115                      rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) ==
4116                     rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
4117                         break;
4118                 rte_delay_us(1);
4119         }
4120         if (i >= ICE_FDIR_MAX_WAIT_US) {
4121                 PMD_DRV_LOG(ERR,
4122                             "Failed to program FDIR filter: time out to get DD on tx queue.");
4123                 return -ETIMEDOUT;
4124         }
4125
4126         for (; i < ICE_FDIR_MAX_WAIT_US; i++) {
4127                 int ret;
4128
4129                 ret = ice_check_fdir_programming_status(rxq);
4130                 if (ret == -EAGAIN)
4131                         rte_delay_us(1);
4132                 else
4133                         return ret;
4134         }
4135
4136         PMD_DRV_LOG(ERR,
4137                     "Failed to program FDIR filter: programming status reported.");
4138         return -ETIMEDOUT;
4139
4140
4141 }