mbuf: rename outer IP checksum macro
[dpdk.git] / drivers / net / ice / ice_rxtx_vec_avx2.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "ice_rxtx_vec_common.h"
6
7 #include <x86intrin.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 static inline void
14 ice_rxq_rearm(struct ice_rx_queue *rxq)
15 {
16         int i;
17         uint16_t rx_id;
18         volatile union ice_rx_flex_desc *rxdp;
19         struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
20
21         rxdp = rxq->rx_ring + rxq->rxrearm_start;
22
23         /* Pull 'n' more MBUFs into the software ring */
24         if (rte_mempool_get_bulk(rxq->mp,
25                                  (void *)rxep,
26                                  ICE_RXQ_REARM_THRESH) < 0) {
27                 if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
28                     rxq->nb_rx_desc) {
29                         __m128i dma_addr0;
30
31                         dma_addr0 = _mm_setzero_si128();
32                         for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
33                                 rxep[i].mbuf = &rxq->fake_mbuf;
34                                 _mm_store_si128((__m128i *)&rxdp[i].read,
35                                                 dma_addr0);
36                         }
37                 }
38                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
39                         ICE_RXQ_REARM_THRESH;
40                 return;
41         }
42
43 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
44         struct rte_mbuf *mb0, *mb1;
45         __m128i dma_addr0, dma_addr1;
46         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
47                         RTE_PKTMBUF_HEADROOM);
48         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
49         for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
50                 __m128i vaddr0, vaddr1;
51
52                 mb0 = rxep[0].mbuf;
53                 mb1 = rxep[1].mbuf;
54
55                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
56                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
57                                 offsetof(struct rte_mbuf, buf_addr) + 8);
58                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
59                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
60
61                 /* convert pa to dma_addr hdr/data */
62                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
63                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
64
65                 /* add headroom to pa values */
66                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
67                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
68
69                 /* flush desc with pa dma_addr */
70                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
71                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
72         }
73 #else
74         struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
75         __m256i dma_addr0_1, dma_addr2_3;
76         __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
77         /* Initialize the mbufs in vector, process 4 mbufs in one loop */
78         for (i = 0; i < ICE_RXQ_REARM_THRESH;
79                         i += 4, rxep += 4, rxdp += 4) {
80                 __m128i vaddr0, vaddr1, vaddr2, vaddr3;
81                 __m256i vaddr0_1, vaddr2_3;
82
83                 mb0 = rxep[0].mbuf;
84                 mb1 = rxep[1].mbuf;
85                 mb2 = rxep[2].mbuf;
86                 mb3 = rxep[3].mbuf;
87
88                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
89                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
90                                 offsetof(struct rte_mbuf, buf_addr) + 8);
91                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
92                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
93                 vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
94                 vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
95
96                 /**
97                  * merge 0 & 1, by casting 0 to 256-bit and inserting 1
98                  * into the high lanes. Similarly for 2 & 3
99                  */
100                 vaddr0_1 =
101                         _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
102                                                 vaddr1, 1);
103                 vaddr2_3 =
104                         _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
105                                                 vaddr3, 1);
106
107                 /* convert pa to dma_addr hdr/data */
108                 dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
109                 dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
110
111                 /* add headroom to pa values */
112                 dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
113                 dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
114
115                 /* flush desc with pa dma_addr */
116                 _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
117                 _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
118         }
119
120 #endif
121
122         rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
123         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
124                 rxq->rxrearm_start = 0;
125
126         rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
127
128         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
129                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
130
131         /* Update the tail pointer on the NIC */
132         ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
133 }
134
135 static inline __m256i
136 ice_flex_rxd_to_fdir_flags_vec_avx2(const __m256i fdir_id0_7)
137 {
138 #define FDID_MIS_MAGIC 0xFFFFFFFF
139         RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
140         RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
141         const __m256i pkt_fdir_bit = _mm256_set1_epi32(PKT_RX_FDIR |
142                         PKT_RX_FDIR_ID);
143         /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
144         const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
145         __m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
146                         fdir_mis_mask);
147         /* this XOR op results to bit-reverse the fdir_mask */
148         fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
149         const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
150
151         return fdir_flags;
152 }
153
154 static inline uint16_t
155 _ice_recv_raw_pkts_vec_avx2(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
156                             uint16_t nb_pkts, uint8_t *split_packet)
157 {
158 #define ICE_DESCS_PER_LOOP_AVX 8
159
160         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
161         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
162                         0, rxq->mbuf_initializer);
163         struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
164         volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
165         const int avx_aligned = ((rxq->rx_tail & 1) == 0);
166
167         rte_prefetch0(rxdp);
168
169         /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
170         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
171
172         /* See if we need to rearm the RX queue - gives the prefetch a bit
173          * of time to act
174          */
175         if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
176                 ice_rxq_rearm(rxq);
177
178         /* Before we start moving massive data around, check to see if
179          * there is actually a packet available
180          */
181         if (!(rxdp->wb.status_error0 &
182                         rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
183                 return 0;
184
185         /* constants used in processing loop */
186         const __m256i crc_adjust =
187                 _mm256_set_epi16
188                         (/* first descriptor */
189                          0, 0, 0,       /* ignore non-length fields */
190                          -rxq->crc_len, /* sub crc on data_len */
191                          0,             /* ignore high-16bits of pkt_len */
192                          -rxq->crc_len, /* sub crc on pkt_len */
193                          0, 0,          /* ignore pkt_type field */
194                          /* second descriptor */
195                          0, 0, 0,       /* ignore non-length fields */
196                          -rxq->crc_len, /* sub crc on data_len */
197                          0,             /* ignore high-16bits of pkt_len */
198                          -rxq->crc_len, /* sub crc on pkt_len */
199                          0, 0           /* ignore pkt_type field */
200                         );
201
202         /* 8 packets DD mask, LSB in each 32-bit value */
203         const __m256i dd_check = _mm256_set1_epi32(1);
204
205         /* 8 packets EOP mask, second-LSB in each 32-bit value */
206         const __m256i eop_check = _mm256_slli_epi32(dd_check,
207                         ICE_RX_DESC_STATUS_EOF_S);
208
209         /* mask to shuffle from desc. to mbuf (2 descriptors)*/
210         const __m256i shuf_msk =
211                 _mm256_set_epi8
212                         (/* first descriptor */
213                          0xFF, 0xFF,
214                          0xFF, 0xFF,    /* rss hash parsed separately */
215                          11, 10,        /* octet 10~11, 16 bits vlan_macip */
216                          5, 4,          /* octet 4~5, 16 bits data_len */
217                          0xFF, 0xFF,    /* skip hi 16 bits pkt_len, zero out */
218                          5, 4,          /* octet 4~5, 16 bits pkt_len */
219                          0xFF, 0xFF,    /* pkt_type set as unknown */
220                          0xFF, 0xFF,    /*pkt_type set as unknown */
221                          /* second descriptor */
222                          0xFF, 0xFF,
223                          0xFF, 0xFF,    /* rss hash parsed separately */
224                          11, 10,        /* octet 10~11, 16 bits vlan_macip */
225                          5, 4,          /* octet 4~5, 16 bits data_len */
226                          0xFF, 0xFF,    /* skip hi 16 bits pkt_len, zero out */
227                          5, 4,          /* octet 4~5, 16 bits pkt_len */
228                          0xFF, 0xFF,    /* pkt_type set as unknown */
229                          0xFF, 0xFF     /*pkt_type set as unknown */
230                         );
231         /**
232          * compile-time check the above crc and shuffle layout is correct.
233          * NOTE: the first field (lowest address) is given last in set_epi
234          * calls above.
235          */
236         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
237                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
238         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
239                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
240         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
241                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
242         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
243                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
244
245         /* Status/Error flag masks */
246         /**
247          * mask everything except Checksum Reports, RSS indication
248          * and VLAN indication.
249          * bit6:4 for IP/L4 checksum errors.
250          * bit12 is for RSS indication.
251          * bit13 is for VLAN indication.
252          */
253         const __m256i flags_mask =
254                  _mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
255         /**
256          * data to be shuffled by the result of the flags mask shifted by 4
257          * bits.  This gives use the l3_l4 flags.
258          */
259         const __m256i l3_l4_flags_shuf =
260                 _mm256_set_epi8((PKT_RX_OUTER_L4_CKSUM_BAD >> 20 |
261                  PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
262                   PKT_RX_IP_CKSUM_BAD) >> 1,
263                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
264                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
265                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
266                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
267                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
268                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
269                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
270                  PKT_RX_IP_CKSUM_BAD) >> 1,
271                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
272                  PKT_RX_IP_CKSUM_GOOD) >> 1,
273                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
274                  PKT_RX_IP_CKSUM_BAD) >> 1,
275                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
276                  PKT_RX_IP_CKSUM_GOOD) >> 1,
277                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
278                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
279                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
280                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
281                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
282                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
283                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
284                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
285                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
286                  PKT_RX_IP_CKSUM_BAD) >> 1,
287                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
288                  PKT_RX_IP_CKSUM_GOOD) >> 1,
289                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
290                  PKT_RX_IP_CKSUM_BAD) >> 1,
291                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
292                  PKT_RX_IP_CKSUM_GOOD) >> 1,
293                 /**
294                  * second 128-bits
295                  * shift right 20 bits to use the low two bits to indicate
296                  * outer checksum status
297                  * shift right 1 bit to make sure it not exceed 255
298                  */
299                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
300                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
301                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
302                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
303                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
304                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
305                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
306                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
307                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
308                  PKT_RX_IP_CKSUM_BAD) >> 1,
309                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
310                  PKT_RX_IP_CKSUM_GOOD) >> 1,
311                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
312                  PKT_RX_IP_CKSUM_BAD) >> 1,
313                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
314                  PKT_RX_IP_CKSUM_GOOD) >> 1,
315                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
316                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
317                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
318                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
319                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
320                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
321                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
322                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
323                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
324                  PKT_RX_IP_CKSUM_BAD) >> 1,
325                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
326                  PKT_RX_IP_CKSUM_GOOD) >> 1,
327                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
328                  PKT_RX_IP_CKSUM_BAD) >> 1,
329                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
330                  PKT_RX_IP_CKSUM_GOOD) >> 1);
331         const __m256i cksum_mask =
332                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_MASK |
333                                    PKT_RX_L4_CKSUM_MASK |
334                                    PKT_RX_OUTER_IP_CKSUM_BAD |
335                                    PKT_RX_OUTER_L4_CKSUM_MASK);
336         /**
337          * data to be shuffled by result of flag mask, shifted down 12.
338          * If RSS(bit12)/VLAN(bit13) are set,
339          * shuffle moves appropriate flags in place.
340          */
341         const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
342                         0, 0, 0, 0,
343                         0, 0, 0, 0,
344                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
345                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
346                         PKT_RX_RSS_HASH, 0,
347                         /* end up 128-bits */
348                         0, 0, 0, 0,
349                         0, 0, 0, 0,
350                         0, 0, 0, 0,
351                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
352                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
353                         PKT_RX_RSS_HASH, 0);
354
355         RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
356
357         uint16_t i, received;
358
359         for (i = 0, received = 0; i < nb_pkts;
360              i += ICE_DESCS_PER_LOOP_AVX,
361              rxdp += ICE_DESCS_PER_LOOP_AVX) {
362                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
363                 _mm256_storeu_si256((void *)&rx_pkts[i],
364                                     _mm256_loadu_si256((void *)&sw_ring[i]));
365 #ifdef RTE_ARCH_X86_64
366                 _mm256_storeu_si256
367                         ((void *)&rx_pkts[i + 4],
368                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
369 #endif
370
371                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
372 #ifdef RTE_LIBRTE_ICE_16BYTE_RX_DESC
373                 /* for AVX we need alignment otherwise loads are not atomic */
374                 if (avx_aligned) {
375                         /* load in descriptors, 2 at a time, in reverse order */
376                         raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
377                         rte_compiler_barrier();
378                         raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
379                         rte_compiler_barrier();
380                         raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
381                         rte_compiler_barrier();
382                         raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
383                 } else
384 #endif
385                 {
386                         const __m128i raw_desc7 =
387                                 _mm_load_si128((void *)(rxdp + 7));
388                         rte_compiler_barrier();
389                         const __m128i raw_desc6 =
390                                 _mm_load_si128((void *)(rxdp + 6));
391                         rte_compiler_barrier();
392                         const __m128i raw_desc5 =
393                                 _mm_load_si128((void *)(rxdp + 5));
394                         rte_compiler_barrier();
395                         const __m128i raw_desc4 =
396                                 _mm_load_si128((void *)(rxdp + 4));
397                         rte_compiler_barrier();
398                         const __m128i raw_desc3 =
399                                 _mm_load_si128((void *)(rxdp + 3));
400                         rte_compiler_barrier();
401                         const __m128i raw_desc2 =
402                                 _mm_load_si128((void *)(rxdp + 2));
403                         rte_compiler_barrier();
404                         const __m128i raw_desc1 =
405                                 _mm_load_si128((void *)(rxdp + 1));
406                         rte_compiler_barrier();
407                         const __m128i raw_desc0 =
408                                 _mm_load_si128((void *)(rxdp + 0));
409
410                         raw_desc6_7 =
411                                 _mm256_inserti128_si256
412                                         (_mm256_castsi128_si256(raw_desc6),
413                                          raw_desc7, 1);
414                         raw_desc4_5 =
415                                 _mm256_inserti128_si256
416                                         (_mm256_castsi128_si256(raw_desc4),
417                                          raw_desc5, 1);
418                         raw_desc2_3 =
419                                 _mm256_inserti128_si256
420                                         (_mm256_castsi128_si256(raw_desc2),
421                                          raw_desc3, 1);
422                         raw_desc0_1 =
423                                 _mm256_inserti128_si256
424                                         (_mm256_castsi128_si256(raw_desc0),
425                                          raw_desc1, 1);
426                 }
427
428                 if (split_packet) {
429                         int j;
430
431                         for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
432                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
433                 }
434
435                 /**
436                  * convert descriptors 4-7 into mbufs, re-arrange fields.
437                  * Then write into the mbuf.
438                  */
439                 __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk);
440                 __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk);
441
442                 mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
443                 mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
444                 /**
445                  * to get packet types, ptype is located in bit16-25
446                  * of each 128bits
447                  */
448                 const __m256i ptype_mask =
449                         _mm256_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
450                 const __m256i ptypes6_7 =
451                         _mm256_and_si256(raw_desc6_7, ptype_mask);
452                 const __m256i ptypes4_5 =
453                         _mm256_and_si256(raw_desc4_5, ptype_mask);
454                 const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
455                 const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
456                 const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
457                 const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
458
459                 mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
460                 mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
461                 mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
462                 mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
463                 /* merge the status bits into one register */
464                 const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7,
465                                 raw_desc4_5);
466
467                 /**
468                  * convert descriptors 0-3 into mbufs, re-arrange fields.
469                  * Then write into the mbuf.
470                  */
471                 __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk);
472                 __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk);
473
474                 mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
475                 mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
476                 /**
477                  * to get packet types, ptype is located in bit16-25
478                  * of each 128bits
479                  */
480                 const __m256i ptypes2_3 =
481                         _mm256_and_si256(raw_desc2_3, ptype_mask);
482                 const __m256i ptypes0_1 =
483                         _mm256_and_si256(raw_desc0_1, ptype_mask);
484                 const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
485                 const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
486                 const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
487                 const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
488
489                 mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
490                 mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
491                 mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
492                 mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
493                 /* merge the status bits into one register */
494                 const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3,
495                                                                 raw_desc0_1);
496
497                 /**
498                  * take the two sets of status bits and merge to one
499                  * After merge, the packets status flags are in the
500                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
501                  */
502                 __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
503                                                           status0_3);
504
505                 /* now do flag manipulation */
506
507                 /* get only flag/error bits we want */
508                 const __m256i flag_bits =
509                         _mm256_and_si256(status0_7, flags_mask);
510                 /**
511                  * l3_l4_error flags, shuffle, then shift to correct adjustment
512                  * of flags in flags_shuf, and finally mask out extra bits
513                  */
514                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
515                                 _mm256_srli_epi32(flag_bits, 4));
516                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
517
518                 __m256i l4_outer_mask = _mm256_set1_epi32(0x6);
519                 __m256i l4_outer_flags =
520                                 _mm256_and_si256(l3_l4_flags, l4_outer_mask);
521                 l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
522
523                 __m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
524                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
525                 l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
526                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
527                 /* set rss and vlan flags */
528                 const __m256i rss_vlan_flag_bits =
529                         _mm256_srli_epi32(flag_bits, 12);
530                 const __m256i rss_vlan_flags =
531                         _mm256_shuffle_epi8(rss_vlan_flags_shuf,
532                                             rss_vlan_flag_bits);
533
534                 /* merge flags */
535                 __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
536                                 rss_vlan_flags);
537
538                 if (rxq->fdir_enabled) {
539                         const __m256i fdir_id4_7 =
540                                 _mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
541
542                         const __m256i fdir_id0_3 =
543                                 _mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
544
545                         const __m256i fdir_id0_7 =
546                                 _mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
547
548                         const __m256i fdir_flags =
549                                 ice_flex_rxd_to_fdir_flags_vec_avx2(fdir_id0_7);
550
551                         /* merge with fdir_flags */
552                         mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags);
553
554                         /* write to mbuf: have to use scalar store here */
555                         rx_pkts[i + 0]->hash.fdir.hi =
556                                 _mm256_extract_epi32(fdir_id0_7, 3);
557
558                         rx_pkts[i + 1]->hash.fdir.hi =
559                                 _mm256_extract_epi32(fdir_id0_7, 7);
560
561                         rx_pkts[i + 2]->hash.fdir.hi =
562                                 _mm256_extract_epi32(fdir_id0_7, 2);
563
564                         rx_pkts[i + 3]->hash.fdir.hi =
565                                 _mm256_extract_epi32(fdir_id0_7, 6);
566
567                         rx_pkts[i + 4]->hash.fdir.hi =
568                                 _mm256_extract_epi32(fdir_id0_7, 1);
569
570                         rx_pkts[i + 5]->hash.fdir.hi =
571                                 _mm256_extract_epi32(fdir_id0_7, 5);
572
573                         rx_pkts[i + 6]->hash.fdir.hi =
574                                 _mm256_extract_epi32(fdir_id0_7, 0);
575
576                         rx_pkts[i + 7]->hash.fdir.hi =
577                                 _mm256_extract_epi32(fdir_id0_7, 4);
578                 } /* if() on fdir_enabled */
579
580 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
581                 /**
582                  * needs to load 2nd 16B of each desc for RSS hash parsing,
583                  * will cause performance drop to get into this context.
584                  */
585                 if (rxq->vsi->adapter->eth_dev->data->dev_conf.rxmode.offloads &
586                                 DEV_RX_OFFLOAD_RSS_HASH) {
587                         /* load bottom half of every 32B desc */
588                         const __m128i raw_desc_bh7 =
589                                 _mm_load_si128
590                                         ((void *)(&rxdp[7].wb.status_error1));
591                         rte_compiler_barrier();
592                         const __m128i raw_desc_bh6 =
593                                 _mm_load_si128
594                                         ((void *)(&rxdp[6].wb.status_error1));
595                         rte_compiler_barrier();
596                         const __m128i raw_desc_bh5 =
597                                 _mm_load_si128
598                                         ((void *)(&rxdp[5].wb.status_error1));
599                         rte_compiler_barrier();
600                         const __m128i raw_desc_bh4 =
601                                 _mm_load_si128
602                                         ((void *)(&rxdp[4].wb.status_error1));
603                         rte_compiler_barrier();
604                         const __m128i raw_desc_bh3 =
605                                 _mm_load_si128
606                                         ((void *)(&rxdp[3].wb.status_error1));
607                         rte_compiler_barrier();
608                         const __m128i raw_desc_bh2 =
609                                 _mm_load_si128
610                                         ((void *)(&rxdp[2].wb.status_error1));
611                         rte_compiler_barrier();
612                         const __m128i raw_desc_bh1 =
613                                 _mm_load_si128
614                                         ((void *)(&rxdp[1].wb.status_error1));
615                         rte_compiler_barrier();
616                         const __m128i raw_desc_bh0 =
617                                 _mm_load_si128
618                                         ((void *)(&rxdp[0].wb.status_error1));
619
620                         __m256i raw_desc_bh6_7 =
621                                 _mm256_inserti128_si256
622                                         (_mm256_castsi128_si256(raw_desc_bh6),
623                                         raw_desc_bh7, 1);
624                         __m256i raw_desc_bh4_5 =
625                                 _mm256_inserti128_si256
626                                         (_mm256_castsi128_si256(raw_desc_bh4),
627                                         raw_desc_bh5, 1);
628                         __m256i raw_desc_bh2_3 =
629                                 _mm256_inserti128_si256
630                                         (_mm256_castsi128_si256(raw_desc_bh2),
631                                         raw_desc_bh3, 1);
632                         __m256i raw_desc_bh0_1 =
633                                 _mm256_inserti128_si256
634                                         (_mm256_castsi128_si256(raw_desc_bh0),
635                                         raw_desc_bh1, 1);
636
637                         /**
638                          * to shift the 32b RSS hash value to the
639                          * highest 32b of each 128b before mask
640                          */
641                         __m256i rss_hash6_7 =
642                                 _mm256_slli_epi64(raw_desc_bh6_7, 32);
643                         __m256i rss_hash4_5 =
644                                 _mm256_slli_epi64(raw_desc_bh4_5, 32);
645                         __m256i rss_hash2_3 =
646                                 _mm256_slli_epi64(raw_desc_bh2_3, 32);
647                         __m256i rss_hash0_1 =
648                                 _mm256_slli_epi64(raw_desc_bh0_1, 32);
649
650                         __m256i rss_hash_msk =
651                                 _mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
652                                                  0xFFFFFFFF, 0, 0, 0);
653
654                         rss_hash6_7 = _mm256_and_si256
655                                         (rss_hash6_7, rss_hash_msk);
656                         rss_hash4_5 = _mm256_and_si256
657                                         (rss_hash4_5, rss_hash_msk);
658                         rss_hash2_3 = _mm256_and_si256
659                                         (rss_hash2_3, rss_hash_msk);
660                         rss_hash0_1 = _mm256_and_si256
661                                         (rss_hash0_1, rss_hash_msk);
662
663                         mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
664                         mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
665                         mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
666                         mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
667                 } /* if() on RSS hash parsing */
668 #endif
669
670                 /**
671                  * At this point, we have the 8 sets of flags in the low 16-bits
672                  * of each 32-bit value in vlan0.
673                  * We want to extract these, and merge them with the mbuf init
674                  * data so we can do a single write to the mbuf to set the flags
675                  * and all the other initialization fields. Extracting the
676                  * appropriate flags means that we have to do a shift and blend
677                  * for each mbuf before we do the write. However, we can also
678                  * add in the previously computed rx_descriptor fields to
679                  * make a single 256-bit write per mbuf
680                  */
681                 /* check the structure matches expectations */
682                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
683                                  offsetof(struct rte_mbuf, rearm_data) + 8);
684                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
685                                  RTE_ALIGN(offsetof(struct rte_mbuf,
686                                                     rearm_data),
687                                            16));
688                 /* build up data and do writes */
689                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
690                         rearm6, rearm7;
691                 rearm6 = _mm256_blend_epi32(mbuf_init,
692                                             _mm256_slli_si256(mbuf_flags, 8),
693                                             0x04);
694                 rearm4 = _mm256_blend_epi32(mbuf_init,
695                                             _mm256_slli_si256(mbuf_flags, 4),
696                                             0x04);
697                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
698                 rearm0 = _mm256_blend_epi32(mbuf_init,
699                                             _mm256_srli_si256(mbuf_flags, 4),
700                                             0x04);
701                 /* permute to add in the rx_descriptor e.g. rss fields */
702                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
703                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
704                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
705                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
706                 /* write to mbuf */
707                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
708                                     rearm6);
709                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
710                                     rearm4);
711                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
712                                     rearm2);
713                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
714                                     rearm0);
715
716                 /* repeat for the odd mbufs */
717                 const __m256i odd_flags =
718                         _mm256_castsi128_si256
719                                 (_mm256_extracti128_si256(mbuf_flags, 1));
720                 rearm7 = _mm256_blend_epi32(mbuf_init,
721                                             _mm256_slli_si256(odd_flags, 8),
722                                             0x04);
723                 rearm5 = _mm256_blend_epi32(mbuf_init,
724                                             _mm256_slli_si256(odd_flags, 4),
725                                             0x04);
726                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
727                 rearm1 = _mm256_blend_epi32(mbuf_init,
728                                             _mm256_srli_si256(odd_flags, 4),
729                                             0x04);
730                 /* since odd mbufs are already in hi 128-bits use blend */
731                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
732                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
733                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
734                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
735                 /* again write to mbufs */
736                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
737                                     rearm7);
738                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
739                                     rearm5);
740                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
741                                     rearm3);
742                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
743                                     rearm1);
744
745                 /* extract and record EOP bit */
746                 if (split_packet) {
747                         const __m128i eop_mask =
748                                 _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
749                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
750                                                                      eop_check);
751                         /* pack status bits into a single 128-bit register */
752                         const __m128i eop_bits =
753                                 _mm_packus_epi32
754                                         (_mm256_castsi256_si128(eop_bits256),
755                                          _mm256_extractf128_si256(eop_bits256,
756                                                                   1));
757                         /**
758                          * flip bits, and mask out the EOP bit, which is now
759                          * a split-packet bit i.e. !EOP, rather than EOP one.
760                          */
761                         __m128i split_bits = _mm_andnot_si128(eop_bits,
762                                         eop_mask);
763                         /**
764                          * eop bits are out of order, so we need to shuffle them
765                          * back into order again. In doing so, only use low 8
766                          * bits, which acts like another pack instruction
767                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
768                          * [Since we use epi8, the 16-bit positions are
769                          * multiplied by 2 in the eop_shuffle value.]
770                          */
771                         __m128i eop_shuffle =
772                                 _mm_set_epi8(/* zero hi 64b */
773                                              0xFF, 0xFF, 0xFF, 0xFF,
774                                              0xFF, 0xFF, 0xFF, 0xFF,
775                                              /* move values to lo 64b */
776                                              8, 0, 10, 2,
777                                              12, 4, 14, 6);
778                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
779                         *(uint64_t *)split_packet =
780                                 _mm_cvtsi128_si64(split_bits);
781                         split_packet += ICE_DESCS_PER_LOOP_AVX;
782                 }
783
784                 /* perform dd_check */
785                 status0_7 = _mm256_and_si256(status0_7, dd_check);
786                 status0_7 = _mm256_packs_epi32(status0_7,
787                                                _mm256_setzero_si256());
788
789                 uint64_t burst = __builtin_popcountll
790                                         (_mm_cvtsi128_si64
791                                                 (_mm256_extracti128_si256
792                                                         (status0_7, 1)));
793                 burst += __builtin_popcountll
794                                 (_mm_cvtsi128_si64
795                                         (_mm256_castsi256_si128(status0_7)));
796                 received += burst;
797                 if (burst != ICE_DESCS_PER_LOOP_AVX)
798                         break;
799         }
800
801         /* update tail pointers */
802         rxq->rx_tail += received;
803         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
804         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
805                 rxq->rx_tail--;
806                 received--;
807         }
808         rxq->rxrearm_nb += received;
809         return received;
810 }
811
812 /**
813  * Notice:
814  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
815  */
816 uint16_t
817 ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
818                        uint16_t nb_pkts)
819 {
820         return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
821 }
822
823 /**
824  * vPMD receive routine that reassembles single burst of 32 scattered packets
825  * Notice:
826  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
827  */
828 static uint16_t
829 ice_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
830                                   uint16_t nb_pkts)
831 {
832         struct ice_rx_queue *rxq = rx_queue;
833         uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
834
835         /* get some new buffers */
836         uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
837                                                        split_flags);
838         if (nb_bufs == 0)
839                 return 0;
840
841         /* happy day case, full burst + no packets to be joined */
842         const uint64_t *split_fl64 = (uint64_t *)split_flags;
843
844         if (!rxq->pkt_first_seg &&
845             split_fl64[0] == 0 && split_fl64[1] == 0 &&
846             split_fl64[2] == 0 && split_fl64[3] == 0)
847                 return nb_bufs;
848
849         /* reassemble any packets that need reassembly*/
850         unsigned int i = 0;
851
852         if (!rxq->pkt_first_seg) {
853                 /* find the first split flag, and only reassemble then*/
854                 while (i < nb_bufs && !split_flags[i])
855                         i++;
856                 if (i == nb_bufs)
857                         return nb_bufs;
858                 rxq->pkt_first_seg = rx_pkts[i];
859         }
860         return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
861                                              &split_flags[i]);
862 }
863
864 /**
865  * vPMD receive routine that reassembles scattered packets.
866  * Main receive routine that can handle arbitrary burst sizes
867  * Notice:
868  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
869  */
870 uint16_t
871 ice_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
872                                  uint16_t nb_pkts)
873 {
874         uint16_t retval = 0;
875
876         while (nb_pkts > ICE_VPMD_RX_BURST) {
877                 uint16_t burst = ice_recv_scattered_burst_vec_avx2(rx_queue,
878                                 rx_pkts + retval, ICE_VPMD_RX_BURST);
879                 retval += burst;
880                 nb_pkts -= burst;
881                 if (burst < ICE_VPMD_RX_BURST)
882                         return retval;
883         }
884         return retval + ice_recv_scattered_burst_vec_avx2(rx_queue,
885                                 rx_pkts + retval, nb_pkts);
886 }
887
888 static inline void
889 ice_vtx1(volatile struct ice_tx_desc *txdp,
890          struct rte_mbuf *pkt, uint64_t flags)
891 {
892         uint64_t high_qw =
893                 (ICE_TX_DESC_DTYPE_DATA |
894                  ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
895                  ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
896
897         __m128i descriptor = _mm_set_epi64x(high_qw,
898                                 pkt->buf_iova + pkt->data_off);
899         _mm_store_si128((__m128i *)txdp, descriptor);
900 }
901
902 static inline void
903 ice_vtx(volatile struct ice_tx_desc *txdp,
904         struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
905 {
906         const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
907                         ((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
908
909         /* if unaligned on 32-bit boundary, do one to align */
910         if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
911                 ice_vtx1(txdp, *pkt, flags);
912                 nb_pkts--, txdp++, pkt++;
913         }
914
915         /* do two at a time while possible, in bursts */
916         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
917                 uint64_t hi_qw3 =
918                         hi_qw_tmpl |
919                         ((uint64_t)pkt[3]->data_len <<
920                          ICE_TXD_QW1_TX_BUF_SZ_S);
921                 uint64_t hi_qw2 =
922                         hi_qw_tmpl |
923                         ((uint64_t)pkt[2]->data_len <<
924                          ICE_TXD_QW1_TX_BUF_SZ_S);
925                 uint64_t hi_qw1 =
926                         hi_qw_tmpl |
927                         ((uint64_t)pkt[1]->data_len <<
928                          ICE_TXD_QW1_TX_BUF_SZ_S);
929                 uint64_t hi_qw0 =
930                         hi_qw_tmpl |
931                         ((uint64_t)pkt[0]->data_len <<
932                          ICE_TXD_QW1_TX_BUF_SZ_S);
933
934                 __m256i desc2_3 =
935                         _mm256_set_epi64x
936                                 (hi_qw3,
937                                  pkt[3]->buf_iova + pkt[3]->data_off,
938                                  hi_qw2,
939                                  pkt[2]->buf_iova + pkt[2]->data_off);
940                 __m256i desc0_1 =
941                         _mm256_set_epi64x
942                                 (hi_qw1,
943                                  pkt[1]->buf_iova + pkt[1]->data_off,
944                                  hi_qw0,
945                                  pkt[0]->buf_iova + pkt[0]->data_off);
946                 _mm256_store_si256((void *)(txdp + 2), desc2_3);
947                 _mm256_store_si256((void *)txdp, desc0_1);
948         }
949
950         /* do any last ones */
951         while (nb_pkts) {
952                 ice_vtx1(txdp, *pkt, flags);
953                 txdp++, pkt++, nb_pkts--;
954         }
955 }
956
957 static inline uint16_t
958 ice_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
959                               uint16_t nb_pkts)
960 {
961         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
962         volatile struct ice_tx_desc *txdp;
963         struct ice_tx_entry *txep;
964         uint16_t n, nb_commit, tx_id;
965         uint64_t flags = ICE_TD_CMD;
966         uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
967
968         /* cross rx_thresh boundary is not allowed */
969         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
970
971         if (txq->nb_tx_free < txq->tx_free_thresh)
972                 ice_tx_free_bufs(txq);
973
974         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
975         if (unlikely(nb_pkts == 0))
976                 return 0;
977
978         tx_id = txq->tx_tail;
979         txdp = &txq->tx_ring[tx_id];
980         txep = &txq->sw_ring[tx_id];
981
982         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
983
984         n = (uint16_t)(txq->nb_tx_desc - tx_id);
985         if (nb_commit >= n) {
986                 ice_tx_backlog_entry(txep, tx_pkts, n);
987
988                 ice_vtx(txdp, tx_pkts, n - 1, flags);
989                 tx_pkts += (n - 1);
990                 txdp += (n - 1);
991
992                 ice_vtx1(txdp, *tx_pkts++, rs);
993
994                 nb_commit = (uint16_t)(nb_commit - n);
995
996                 tx_id = 0;
997                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
998
999                 /* avoid reach the end of ring */
1000                 txdp = &txq->tx_ring[tx_id];
1001                 txep = &txq->sw_ring[tx_id];
1002         }
1003
1004         ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
1005
1006         ice_vtx(txdp, tx_pkts, nb_commit, flags);
1007
1008         tx_id = (uint16_t)(tx_id + nb_commit);
1009         if (tx_id > txq->tx_next_rs) {
1010                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
1011                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
1012                                          ICE_TXD_QW1_CMD_S);
1013                 txq->tx_next_rs =
1014                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1015         }
1016
1017         txq->tx_tail = tx_id;
1018
1019         ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1020
1021         return nb_pkts;
1022 }
1023
1024 uint16_t
1025 ice_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
1026                        uint16_t nb_pkts)
1027 {
1028         uint16_t nb_tx = 0;
1029         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1030
1031         while (nb_pkts) {
1032                 uint16_t ret, num;
1033
1034                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1035                 ret = ice_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
1036                                                     num);
1037                 nb_tx += ret;
1038                 nb_pkts -= ret;
1039                 if (ret < num)
1040                         break;
1041         }
1042
1043         return nb_tx;
1044 }