net/ice: switch to Rx flexible descriptor in AVX path
[dpdk.git] / drivers / net / ice / ice_rxtx_vec_avx2.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "ice_rxtx_vec_common.h"
6
7 #include <x86intrin.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 static inline void
14 ice_rxq_rearm(struct ice_rx_queue *rxq)
15 {
16         int i;
17         uint16_t rx_id;
18         volatile union ice_rx_flex_desc *rxdp;
19         struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
20
21         rxdp = (union ice_rx_flex_desc *)rxq->rx_ring + rxq->rxrearm_start;
22
23         /* Pull 'n' more MBUFs into the software ring */
24         if (rte_mempool_get_bulk(rxq->mp,
25                                  (void *)rxep,
26                                  ICE_RXQ_REARM_THRESH) < 0) {
27                 if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
28                     rxq->nb_rx_desc) {
29                         __m128i dma_addr0;
30
31                         dma_addr0 = _mm_setzero_si128();
32                         for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
33                                 rxep[i].mbuf = &rxq->fake_mbuf;
34                                 _mm_store_si128((__m128i *)&rxdp[i].read,
35                                                 dma_addr0);
36                         }
37                 }
38                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
39                         ICE_RXQ_REARM_THRESH;
40                 return;
41         }
42
43 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
44         struct rte_mbuf *mb0, *mb1;
45         __m128i dma_addr0, dma_addr1;
46         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
47                         RTE_PKTMBUF_HEADROOM);
48         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
49         for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
50                 __m128i vaddr0, vaddr1;
51
52                 mb0 = rxep[0].mbuf;
53                 mb1 = rxep[1].mbuf;
54
55                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
56                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
57                                 offsetof(struct rte_mbuf, buf_addr) + 8);
58                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
59                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
60
61                 /* convert pa to dma_addr hdr/data */
62                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
63                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
64
65                 /* add headroom to pa values */
66                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
67                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
68
69                 /* flush desc with pa dma_addr */
70                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
71                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
72         }
73 #else
74         struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
75         __m256i dma_addr0_1, dma_addr2_3;
76         __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
77         /* Initialize the mbufs in vector, process 4 mbufs in one loop */
78         for (i = 0; i < ICE_RXQ_REARM_THRESH;
79                         i += 4, rxep += 4, rxdp += 4) {
80                 __m128i vaddr0, vaddr1, vaddr2, vaddr3;
81                 __m256i vaddr0_1, vaddr2_3;
82
83                 mb0 = rxep[0].mbuf;
84                 mb1 = rxep[1].mbuf;
85                 mb2 = rxep[2].mbuf;
86                 mb3 = rxep[3].mbuf;
87
88                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
89                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
90                                 offsetof(struct rte_mbuf, buf_addr) + 8);
91                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
92                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
93                 vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
94                 vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
95
96                 /**
97                  * merge 0 & 1, by casting 0 to 256-bit and inserting 1
98                  * into the high lanes. Similarly for 2 & 3
99                  */
100                 vaddr0_1 =
101                         _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
102                                                 vaddr1, 1);
103                 vaddr2_3 =
104                         _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
105                                                 vaddr3, 1);
106
107                 /* convert pa to dma_addr hdr/data */
108                 dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
109                 dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
110
111                 /* add headroom to pa values */
112                 dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
113                 dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
114
115                 /* flush desc with pa dma_addr */
116                 _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
117                 _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
118         }
119
120 #endif
121
122         rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
123         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
124                 rxq->rxrearm_start = 0;
125
126         rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
127
128         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
129                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
130
131         /* Update the tail pointer on the NIC */
132         ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
133 }
134
135 static inline uint16_t
136 _ice_recv_raw_pkts_vec_avx2(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
137                             uint16_t nb_pkts, uint8_t *split_packet)
138 {
139 #define ICE_DESCS_PER_LOOP_AVX 8
140
141         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
142         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
143                         0, rxq->mbuf_initializer);
144         struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
145         volatile union ice_rx_flex_desc *rxdp =
146                 (union ice_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
147         const int avx_aligned = ((rxq->rx_tail & 1) == 0);
148
149         rte_prefetch0(rxdp);
150
151         /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
152         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
153
154         /* See if we need to rearm the RX queue - gives the prefetch a bit
155          * of time to act
156          */
157         if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
158                 ice_rxq_rearm(rxq);
159
160         /* Before we start moving massive data around, check to see if
161          * there is actually a packet available
162          */
163         if (!(rxdp->wb.status_error0 &
164                         rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
165                 return 0;
166
167         /* constants used in processing loop */
168         const __m256i crc_adjust =
169                 _mm256_set_epi16
170                         (/* first descriptor */
171                          0, 0, 0,       /* ignore non-length fields */
172                          -rxq->crc_len, /* sub crc on data_len */
173                          0,             /* ignore high-16bits of pkt_len */
174                          -rxq->crc_len, /* sub crc on pkt_len */
175                          0, 0,          /* ignore pkt_type field */
176                          /* second descriptor */
177                          0, 0, 0,       /* ignore non-length fields */
178                          -rxq->crc_len, /* sub crc on data_len */
179                          0,             /* ignore high-16bits of pkt_len */
180                          -rxq->crc_len, /* sub crc on pkt_len */
181                          0, 0           /* ignore pkt_type field */
182                         );
183
184         /* 8 packets DD mask, LSB in each 32-bit value */
185         const __m256i dd_check = _mm256_set1_epi32(1);
186
187         /* 8 packets EOP mask, second-LSB in each 32-bit value */
188         const __m256i eop_check = _mm256_slli_epi32(dd_check,
189                         ICE_RX_DESC_STATUS_EOF_S);
190
191         /* mask to shuffle from desc. to mbuf (2 descriptors)*/
192         const __m256i shuf_msk =
193                 _mm256_set_epi8
194                         (/* first descriptor */
195                          0xFF, 0xFF,
196                          0xFF, 0xFF,    /* rss not supported */
197                          11, 10,        /* octet 10~11, 16 bits vlan_macip */
198                          5, 4,          /* octet 4~5, 16 bits data_len */
199                          0xFF, 0xFF,    /* skip hi 16 bits pkt_len, zero out */
200                          5, 4,          /* octet 4~5, 16 bits pkt_len */
201                          0xFF, 0xFF,    /* pkt_type set as unknown */
202                          0xFF, 0xFF,    /*pkt_type set as unknown */
203                          /* second descriptor */
204                          0xFF, 0xFF,
205                          0xFF, 0xFF,    /* rss not supported */
206                          11, 10,        /* octet 10~11, 16 bits vlan_macip */
207                          5, 4,          /* octet 4~5, 16 bits data_len */
208                          0xFF, 0xFF,    /* skip hi 16 bits pkt_len, zero out */
209                          5, 4,          /* octet 4~5, 16 bits pkt_len */
210                          0xFF, 0xFF,    /* pkt_type set as unknown */
211                          0xFF, 0xFF     /*pkt_type set as unknown */
212                         );
213         /**
214          * compile-time check the above crc and shuffle layout is correct.
215          * NOTE: the first field (lowest address) is given last in set_epi
216          * calls above.
217          */
218         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
219                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
220         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
221                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
222         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
223                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
224         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
225                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
226
227         /* Status/Error flag masks */
228         /**
229          * mask everything except Checksum Reports, RSS indication
230          * and VLAN indication.
231          * bit6:4 for IP/L4 checksum errors.
232          * bit12 is for RSS indication.
233          * bit13 is for VLAN indication.
234          */
235         const __m256i flags_mask =
236                  _mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13));
237         /**
238          * data to be shuffled by the result of the flags mask shifted by 4
239          * bits.  This gives use the l3_l4 flags.
240          */
241         const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
242                         /* shift right 1 bit to make sure it not exceed 255 */
243                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
244                          PKT_RX_IP_CKSUM_BAD) >> 1,
245                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
246                          PKT_RX_IP_CKSUM_GOOD) >> 1,
247                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
248                          PKT_RX_IP_CKSUM_BAD) >> 1,
249                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
250                          PKT_RX_IP_CKSUM_GOOD) >> 1,
251                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
252                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
253                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
254                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
255                         /* second 128-bits */
256                         0, 0, 0, 0, 0, 0, 0, 0,
257                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
258                          PKT_RX_IP_CKSUM_BAD) >> 1,
259                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
260                          PKT_RX_IP_CKSUM_GOOD) >> 1,
261                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
262                          PKT_RX_IP_CKSUM_BAD) >> 1,
263                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
264                          PKT_RX_IP_CKSUM_GOOD) >> 1,
265                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
266                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
267                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
268                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
269         const __m256i cksum_mask =
270                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
271                                    PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
272                                    PKT_RX_EIP_CKSUM_BAD);
273         /**
274          * data to be shuffled by result of flag mask, shifted down 12.
275          * If RSS(bit12)/VLAN(bit13) are set,
276          * shuffle moves appropriate flags in place.
277          */
278         const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
279                         0, 0, 0, 0,
280                         0, 0, 0, 0,
281                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
282                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
283                         PKT_RX_RSS_HASH, 0,
284                         /* end up 128-bits */
285                         0, 0, 0, 0,
286                         0, 0, 0, 0,
287                         0, 0, 0, 0,
288                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
289                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
290                         PKT_RX_RSS_HASH, 0);
291
292         RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
293
294         uint16_t i, received;
295
296         for (i = 0, received = 0; i < nb_pkts;
297              i += ICE_DESCS_PER_LOOP_AVX,
298              rxdp += ICE_DESCS_PER_LOOP_AVX) {
299                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
300                 _mm256_storeu_si256((void *)&rx_pkts[i],
301                                     _mm256_loadu_si256((void *)&sw_ring[i]));
302 #ifdef RTE_ARCH_X86_64
303                 _mm256_storeu_si256
304                         ((void *)&rx_pkts[i + 4],
305                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
306 #endif
307
308                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
309 #ifdef RTE_LIBRTE_ICE_16BYTE_RX_DESC
310                 /* for AVX we need alignment otherwise loads are not atomic */
311                 if (avx_aligned) {
312                         /* load in descriptors, 2 at a time, in reverse order */
313                         raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
314                         rte_compiler_barrier();
315                         raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
316                         rte_compiler_barrier();
317                         raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
318                         rte_compiler_barrier();
319                         raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
320                 } else
321 #endif
322                 {
323                         const __m128i raw_desc7 =
324                                 _mm_load_si128((void *)(rxdp + 7));
325                         rte_compiler_barrier();
326                         const __m128i raw_desc6 =
327                                 _mm_load_si128((void *)(rxdp + 6));
328                         rte_compiler_barrier();
329                         const __m128i raw_desc5 =
330                                 _mm_load_si128((void *)(rxdp + 5));
331                         rte_compiler_barrier();
332                         const __m128i raw_desc4 =
333                                 _mm_load_si128((void *)(rxdp + 4));
334                         rte_compiler_barrier();
335                         const __m128i raw_desc3 =
336                                 _mm_load_si128((void *)(rxdp + 3));
337                         rte_compiler_barrier();
338                         const __m128i raw_desc2 =
339                                 _mm_load_si128((void *)(rxdp + 2));
340                         rte_compiler_barrier();
341                         const __m128i raw_desc1 =
342                                 _mm_load_si128((void *)(rxdp + 1));
343                         rte_compiler_barrier();
344                         const __m128i raw_desc0 =
345                                 _mm_load_si128((void *)(rxdp + 0));
346
347                         raw_desc6_7 =
348                                 _mm256_inserti128_si256
349                                         (_mm256_castsi128_si256(raw_desc6),
350                                          raw_desc7, 1);
351                         raw_desc4_5 =
352                                 _mm256_inserti128_si256
353                                         (_mm256_castsi128_si256(raw_desc4),
354                                          raw_desc5, 1);
355                         raw_desc2_3 =
356                                 _mm256_inserti128_si256
357                                         (_mm256_castsi128_si256(raw_desc2),
358                                          raw_desc3, 1);
359                         raw_desc0_1 =
360                                 _mm256_inserti128_si256
361                                         (_mm256_castsi128_si256(raw_desc0),
362                                          raw_desc1, 1);
363                 }
364
365                 if (split_packet) {
366                         int j;
367
368                         for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
369                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
370                 }
371
372                 /**
373                  * convert descriptors 4-7 into mbufs, re-arrange fields.
374                  * Then write into the mbuf.
375                  */
376                 __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk);
377                 __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk);
378
379                 mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
380                 mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
381                 /**
382                  * to get packet types, ptype is located in bit16-25
383                  * of each 128bits
384                  */
385                 const __m256i ptype_mask =
386                         _mm256_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
387                 const __m256i ptypes6_7 =
388                         _mm256_and_si256(raw_desc6_7, ptype_mask);
389                 const __m256i ptypes4_5 =
390                         _mm256_and_si256(raw_desc4_5, ptype_mask);
391                 const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
392                 const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
393                 const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
394                 const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
395
396                 mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
397                 mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
398                 mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
399                 mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
400                 /* merge the status bits into one register */
401                 const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7,
402                                 raw_desc4_5);
403
404                 /**
405                  * convert descriptors 0-3 into mbufs, re-arrange fields.
406                  * Then write into the mbuf.
407                  */
408                 __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk);
409                 __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk);
410
411                 mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
412                 mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
413                 /**
414                  * to get packet types, ptype is located in bit16-25
415                  * of each 128bits
416                  */
417                 const __m256i ptypes2_3 =
418                         _mm256_and_si256(raw_desc2_3, ptype_mask);
419                 const __m256i ptypes0_1 =
420                         _mm256_and_si256(raw_desc0_1, ptype_mask);
421                 const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
422                 const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
423                 const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
424                 const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
425
426                 mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
427                 mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
428                 mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
429                 mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
430                 /* merge the status bits into one register */
431                 const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3,
432                                                                 raw_desc0_1);
433
434                 /**
435                  * take the two sets of status bits and merge to one
436                  * After merge, the packets status flags are in the
437                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
438                  */
439                 __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
440                                                           status0_3);
441
442                 /* now do flag manipulation */
443
444                 /* get only flag/error bits we want */
445                 const __m256i flag_bits =
446                         _mm256_and_si256(status0_7, flags_mask);
447                 /**
448                  * l3_l4_error flags, shuffle, then shift to correct adjustment
449                  * of flags in flags_shuf, and finally mask out extra bits
450                  */
451                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
452                                 _mm256_srli_epi32(flag_bits, 4));
453                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
454                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
455                 /* set rss and vlan flags */
456                 const __m256i rss_vlan_flag_bits =
457                         _mm256_srli_epi32(flag_bits, 12);
458                 const __m256i rss_vlan_flags =
459                         _mm256_shuffle_epi8(rss_vlan_flags_shuf,
460                                             rss_vlan_flag_bits);
461
462                 /* merge flags */
463                 const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
464                                 rss_vlan_flags);
465                 /**
466                  * At this point, we have the 8 sets of flags in the low 16-bits
467                  * of each 32-bit value in vlan0.
468                  * We want to extract these, and merge them with the mbuf init
469                  * data so we can do a single write to the mbuf to set the flags
470                  * and all the other initialization fields. Extracting the
471                  * appropriate flags means that we have to do a shift and blend
472                  * for each mbuf before we do the write. However, we can also
473                  * add in the previously computed rx_descriptor fields to
474                  * make a single 256-bit write per mbuf
475                  */
476                 /* check the structure matches expectations */
477                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
478                                  offsetof(struct rte_mbuf, rearm_data) + 8);
479                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
480                                  RTE_ALIGN(offsetof(struct rte_mbuf,
481                                                     rearm_data),
482                                            16));
483                 /* build up data and do writes */
484                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
485                         rearm6, rearm7;
486                 rearm6 = _mm256_blend_epi32(mbuf_init,
487                                             _mm256_slli_si256(mbuf_flags, 8),
488                                             0x04);
489                 rearm4 = _mm256_blend_epi32(mbuf_init,
490                                             _mm256_slli_si256(mbuf_flags, 4),
491                                             0x04);
492                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
493                 rearm0 = _mm256_blend_epi32(mbuf_init,
494                                             _mm256_srli_si256(mbuf_flags, 4),
495                                             0x04);
496                 /* permute to add in the rx_descriptor e.g. rss fields */
497                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
498                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
499                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
500                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
501                 /* write to mbuf */
502                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
503                                     rearm6);
504                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
505                                     rearm4);
506                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
507                                     rearm2);
508                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
509                                     rearm0);
510
511                 /* repeat for the odd mbufs */
512                 const __m256i odd_flags =
513                         _mm256_castsi128_si256
514                                 (_mm256_extracti128_si256(mbuf_flags, 1));
515                 rearm7 = _mm256_blend_epi32(mbuf_init,
516                                             _mm256_slli_si256(odd_flags, 8),
517                                             0x04);
518                 rearm5 = _mm256_blend_epi32(mbuf_init,
519                                             _mm256_slli_si256(odd_flags, 4),
520                                             0x04);
521                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
522                 rearm1 = _mm256_blend_epi32(mbuf_init,
523                                             _mm256_srli_si256(odd_flags, 4),
524                                             0x04);
525                 /* since odd mbufs are already in hi 128-bits use blend */
526                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
527                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
528                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
529                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
530                 /* again write to mbufs */
531                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
532                                     rearm7);
533                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
534                                     rearm5);
535                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
536                                     rearm3);
537                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
538                                     rearm1);
539
540                 /* extract and record EOP bit */
541                 if (split_packet) {
542                         const __m128i eop_mask =
543                                 _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
544                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
545                                                                      eop_check);
546                         /* pack status bits into a single 128-bit register */
547                         const __m128i eop_bits =
548                                 _mm_packus_epi32
549                                         (_mm256_castsi256_si128(eop_bits256),
550                                          _mm256_extractf128_si256(eop_bits256,
551                                                                   1));
552                         /**
553                          * flip bits, and mask out the EOP bit, which is now
554                          * a split-packet bit i.e. !EOP, rather than EOP one.
555                          */
556                         __m128i split_bits = _mm_andnot_si128(eop_bits,
557                                         eop_mask);
558                         /**
559                          * eop bits are out of order, so we need to shuffle them
560                          * back into order again. In doing so, only use low 8
561                          * bits, which acts like another pack instruction
562                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
563                          * [Since we use epi8, the 16-bit positions are
564                          * multiplied by 2 in the eop_shuffle value.]
565                          */
566                         __m128i eop_shuffle =
567                                 _mm_set_epi8(/* zero hi 64b */
568                                              0xFF, 0xFF, 0xFF, 0xFF,
569                                              0xFF, 0xFF, 0xFF, 0xFF,
570                                              /* move values to lo 64b */
571                                              8, 0, 10, 2,
572                                              12, 4, 14, 6);
573                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
574                         *(uint64_t *)split_packet =
575                                 _mm_cvtsi128_si64(split_bits);
576                         split_packet += ICE_DESCS_PER_LOOP_AVX;
577                 }
578
579                 /* perform dd_check */
580                 status0_7 = _mm256_and_si256(status0_7, dd_check);
581                 status0_7 = _mm256_packs_epi32(status0_7,
582                                                _mm256_setzero_si256());
583
584                 uint64_t burst = __builtin_popcountll
585                                         (_mm_cvtsi128_si64
586                                                 (_mm256_extracti128_si256
587                                                         (status0_7, 1)));
588                 burst += __builtin_popcountll
589                                 (_mm_cvtsi128_si64
590                                         (_mm256_castsi256_si128(status0_7)));
591                 received += burst;
592                 if (burst != ICE_DESCS_PER_LOOP_AVX)
593                         break;
594         }
595
596         /* update tail pointers */
597         rxq->rx_tail += received;
598         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
599         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
600                 rxq->rx_tail--;
601                 received--;
602         }
603         rxq->rxrearm_nb += received;
604         return received;
605 }
606
607 /**
608  * Notice:
609  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
610  */
611 uint16_t
612 ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
613                        uint16_t nb_pkts)
614 {
615         return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
616 }
617
618 /**
619  * vPMD receive routine that reassembles single burst of 32 scattered packets
620  * Notice:
621  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
622  */
623 static uint16_t
624 ice_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
625                                   uint16_t nb_pkts)
626 {
627         struct ice_rx_queue *rxq = rx_queue;
628         uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
629
630         /* get some new buffers */
631         uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
632                                                        split_flags);
633         if (nb_bufs == 0)
634                 return 0;
635
636         /* happy day case, full burst + no packets to be joined */
637         const uint64_t *split_fl64 = (uint64_t *)split_flags;
638
639         if (!rxq->pkt_first_seg &&
640             split_fl64[0] == 0 && split_fl64[1] == 0 &&
641             split_fl64[2] == 0 && split_fl64[3] == 0)
642                 return nb_bufs;
643
644         /* reassemble any packets that need reassembly*/
645         unsigned int i = 0;
646
647         if (!rxq->pkt_first_seg) {
648                 /* find the first split flag, and only reassemble then*/
649                 while (i < nb_bufs && !split_flags[i])
650                         i++;
651                 if (i == nb_bufs)
652                         return nb_bufs;
653                 rxq->pkt_first_seg = rx_pkts[i];
654         }
655         return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
656                                              &split_flags[i]);
657 }
658
659 /**
660  * vPMD receive routine that reassembles scattered packets.
661  * Main receive routine that can handle arbitrary burst sizes
662  * Notice:
663  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
664  */
665 uint16_t
666 ice_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
667                                  uint16_t nb_pkts)
668 {
669         uint16_t retval = 0;
670
671         while (nb_pkts > ICE_VPMD_RX_BURST) {
672                 uint16_t burst = ice_recv_scattered_burst_vec_avx2(rx_queue,
673                                 rx_pkts + retval, ICE_VPMD_RX_BURST);
674                 retval += burst;
675                 nb_pkts -= burst;
676                 if (burst < ICE_VPMD_RX_BURST)
677                         return retval;
678         }
679         return retval + ice_recv_scattered_burst_vec_avx2(rx_queue,
680                                 rx_pkts + retval, nb_pkts);
681 }
682
683 static inline void
684 ice_vtx1(volatile struct ice_tx_desc *txdp,
685          struct rte_mbuf *pkt, uint64_t flags)
686 {
687         uint64_t high_qw =
688                 (ICE_TX_DESC_DTYPE_DATA |
689                  ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
690                  ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
691
692         __m128i descriptor = _mm_set_epi64x(high_qw,
693                                 pkt->buf_physaddr + pkt->data_off);
694         _mm_store_si128((__m128i *)txdp, descriptor);
695 }
696
697 static inline void
698 ice_vtx(volatile struct ice_tx_desc *txdp,
699         struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
700 {
701         const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
702                         ((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
703
704         /* if unaligned on 32-bit boundary, do one to align */
705         if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
706                 ice_vtx1(txdp, *pkt, flags);
707                 nb_pkts--, txdp++, pkt++;
708         }
709
710         /* do two at a time while possible, in bursts */
711         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
712                 uint64_t hi_qw3 =
713                         hi_qw_tmpl |
714                         ((uint64_t)pkt[3]->data_len <<
715                          ICE_TXD_QW1_TX_BUF_SZ_S);
716                 uint64_t hi_qw2 =
717                         hi_qw_tmpl |
718                         ((uint64_t)pkt[2]->data_len <<
719                          ICE_TXD_QW1_TX_BUF_SZ_S);
720                 uint64_t hi_qw1 =
721                         hi_qw_tmpl |
722                         ((uint64_t)pkt[1]->data_len <<
723                          ICE_TXD_QW1_TX_BUF_SZ_S);
724                 uint64_t hi_qw0 =
725                         hi_qw_tmpl |
726                         ((uint64_t)pkt[0]->data_len <<
727                          ICE_TXD_QW1_TX_BUF_SZ_S);
728
729                 __m256i desc2_3 =
730                         _mm256_set_epi64x
731                                 (hi_qw3,
732                                  pkt[3]->buf_physaddr + pkt[3]->data_off,
733                                  hi_qw2,
734                                  pkt[2]->buf_physaddr + pkt[2]->data_off);
735                 __m256i desc0_1 =
736                         _mm256_set_epi64x
737                                 (hi_qw1,
738                                  pkt[1]->buf_physaddr + pkt[1]->data_off,
739                                  hi_qw0,
740                                  pkt[0]->buf_physaddr + pkt[0]->data_off);
741                 _mm256_store_si256((void *)(txdp + 2), desc2_3);
742                 _mm256_store_si256((void *)txdp, desc0_1);
743         }
744
745         /* do any last ones */
746         while (nb_pkts) {
747                 ice_vtx1(txdp, *pkt, flags);
748                 txdp++, pkt++, nb_pkts--;
749         }
750 }
751
752 static inline uint16_t
753 ice_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
754                               uint16_t nb_pkts)
755 {
756         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
757         volatile struct ice_tx_desc *txdp;
758         struct ice_tx_entry *txep;
759         uint16_t n, nb_commit, tx_id;
760         uint64_t flags = ICE_TD_CMD;
761         uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
762
763         /* cross rx_thresh boundary is not allowed */
764         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
765
766         if (txq->nb_tx_free < txq->tx_free_thresh)
767                 ice_tx_free_bufs(txq);
768
769         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
770         if (unlikely(nb_pkts == 0))
771                 return 0;
772
773         tx_id = txq->tx_tail;
774         txdp = &txq->tx_ring[tx_id];
775         txep = &txq->sw_ring[tx_id];
776
777         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
778
779         n = (uint16_t)(txq->nb_tx_desc - tx_id);
780         if (nb_commit >= n) {
781                 ice_tx_backlog_entry(txep, tx_pkts, n);
782
783                 ice_vtx(txdp, tx_pkts, n - 1, flags);
784                 tx_pkts += (n - 1);
785                 txdp += (n - 1);
786
787                 ice_vtx1(txdp, *tx_pkts++, rs);
788
789                 nb_commit = (uint16_t)(nb_commit - n);
790
791                 tx_id = 0;
792                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
793
794                 /* avoid reach the end of ring */
795                 txdp = &txq->tx_ring[tx_id];
796                 txep = &txq->sw_ring[tx_id];
797         }
798
799         ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
800
801         ice_vtx(txdp, tx_pkts, nb_commit, flags);
802
803         tx_id = (uint16_t)(tx_id + nb_commit);
804         if (tx_id > txq->tx_next_rs) {
805                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
806                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
807                                          ICE_TXD_QW1_CMD_S);
808                 txq->tx_next_rs =
809                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
810         }
811
812         txq->tx_tail = tx_id;
813
814         ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
815
816         return nb_pkts;
817 }
818
819 uint16_t
820 ice_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
821                        uint16_t nb_pkts)
822 {
823         uint16_t nb_tx = 0;
824         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
825
826         while (nb_pkts) {
827                 uint16_t ret, num;
828
829                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
830                 ret = ice_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
831                                                     num);
832                 nb_tx += ret;
833                 nb_pkts -= ret;
834                 if (ret < num)
835                         break;
836         }
837
838         return nb_tx;
839 }