net/ice: fix address of first segment
[dpdk.git] / drivers / net / ice / ice_rxtx_vec_avx2.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "ice_rxtx_vec_common.h"
6
7 #include <x86intrin.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 static inline void
14 ice_rxq_rearm(struct ice_rx_queue *rxq)
15 {
16         int i;
17         uint16_t rx_id;
18         volatile union ice_rx_desc *rxdp;
19         struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
20
21         rxdp = rxq->rx_ring + rxq->rxrearm_start;
22
23         /* Pull 'n' more MBUFs into the software ring */
24         if (rte_mempool_get_bulk(rxq->mp,
25                                  (void *)rxep,
26                                  ICE_RXQ_REARM_THRESH) < 0) {
27                 if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
28                     rxq->nb_rx_desc) {
29                         __m128i dma_addr0;
30
31                         dma_addr0 = _mm_setzero_si128();
32                         for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
33                                 rxep[i].mbuf = &rxq->fake_mbuf;
34                                 _mm_store_si128((__m128i *)&rxdp[i].read,
35                                                 dma_addr0);
36                         }
37                 }
38                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
39                         ICE_RXQ_REARM_THRESH;
40                 return;
41         }
42
43 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
44         struct rte_mbuf *mb0, *mb1;
45         __m128i dma_addr0, dma_addr1;
46         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
47                         RTE_PKTMBUF_HEADROOM);
48         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
49         for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
50                 __m128i vaddr0, vaddr1;
51
52                 mb0 = rxep[0].mbuf;
53                 mb1 = rxep[1].mbuf;
54
55                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
56                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
57                                 offsetof(struct rte_mbuf, buf_addr) + 8);
58                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
59                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
60
61                 /* convert pa to dma_addr hdr/data */
62                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
63                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
64
65                 /* add headroom to pa values */
66                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
67                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
68
69                 /* flush desc with pa dma_addr */
70                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
71                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
72         }
73 #else
74         struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
75         __m256i dma_addr0_1, dma_addr2_3;
76         __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
77         /* Initialize the mbufs in vector, process 4 mbufs in one loop */
78         for (i = 0; i < ICE_RXQ_REARM_THRESH;
79                         i += 4, rxep += 4, rxdp += 4) {
80                 __m128i vaddr0, vaddr1, vaddr2, vaddr3;
81                 __m256i vaddr0_1, vaddr2_3;
82
83                 mb0 = rxep[0].mbuf;
84                 mb1 = rxep[1].mbuf;
85                 mb2 = rxep[2].mbuf;
86                 mb3 = rxep[3].mbuf;
87
88                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
89                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
90                                 offsetof(struct rte_mbuf, buf_addr) + 8);
91                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
92                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
93                 vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
94                 vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
95
96                 /**
97                  * merge 0 & 1, by casting 0 to 256-bit and inserting 1
98                  * into the high lanes. Similarly for 2 & 3
99                  */
100                 vaddr0_1 =
101                         _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
102                                                 vaddr1, 1);
103                 vaddr2_3 =
104                         _mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
105                                                 vaddr3, 1);
106
107                 /* convert pa to dma_addr hdr/data */
108                 dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
109                 dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
110
111                 /* add headroom to pa values */
112                 dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
113                 dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
114
115                 /* flush desc with pa dma_addr */
116                 _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
117                 _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
118         }
119
120 #endif
121
122         rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
123         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
124                 rxq->rxrearm_start = 0;
125
126         rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
127
128         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
129                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
130
131         /* Update the tail pointer on the NIC */
132         ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
133 }
134
135 #define PKTLEN_SHIFT     10
136
137 static inline uint16_t
138 _ice_recv_raw_pkts_vec_avx2(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
139                             uint16_t nb_pkts, uint8_t *split_packet)
140 {
141 #define ICE_DESCS_PER_LOOP_AVX 8
142
143         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
144         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
145                         0, rxq->mbuf_initializer);
146         struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
147         volatile union ice_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
148         const int avx_aligned = ((rxq->rx_tail & 1) == 0);
149
150         rte_prefetch0(rxdp);
151
152         /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
153         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
154
155         /* See if we need to rearm the RX queue - gives the prefetch a bit
156          * of time to act
157          */
158         if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
159                 ice_rxq_rearm(rxq);
160
161         /* Before we start moving massive data around, check to see if
162          * there is actually a packet available
163          */
164         if (!(rxdp->wb.qword1.status_error_len &
165                         rte_cpu_to_le_32(1 << ICE_RX_DESC_STATUS_DD_S)))
166                 return 0;
167
168         /* constants used in processing loop */
169         const __m256i crc_adjust =
170                 _mm256_set_epi16
171                         (/* first descriptor */
172                          0, 0, 0,       /* ignore non-length fields */
173                          -rxq->crc_len, /* sub crc on data_len */
174                          0,             /* ignore high-16bits of pkt_len */
175                          -rxq->crc_len, /* sub crc on pkt_len */
176                          0, 0,          /* ignore pkt_type field */
177                          /* second descriptor */
178                          0, 0, 0,       /* ignore non-length fields */
179                          -rxq->crc_len, /* sub crc on data_len */
180                          0,             /* ignore high-16bits of pkt_len */
181                          -rxq->crc_len, /* sub crc on pkt_len */
182                          0, 0           /* ignore pkt_type field */
183                         );
184
185         /* 8 packets DD mask, LSB in each 32-bit value */
186         const __m256i dd_check = _mm256_set1_epi32(1);
187
188         /* 8 packets EOP mask, second-LSB in each 32-bit value */
189         const __m256i eop_check = _mm256_slli_epi32(dd_check,
190                         ICE_RX_DESC_STATUS_EOF_S);
191
192         /* mask to shuffle from desc. to mbuf (2 descriptors)*/
193         const __m256i shuf_msk =
194                 _mm256_set_epi8
195                         (/* first descriptor */
196                          7, 6, 5, 4,  /* octet 4~7, 32bits rss */
197                          3, 2,        /* octet 2~3, low 16 bits vlan_macip */
198                          15, 14,      /* octet 15~14, 16 bits data_len */
199                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
200                          15, 14,      /* octet 15~14, low 16 bits pkt_len */
201                          0xFF, 0xFF,  /* pkt_type set as unknown */
202                          0xFF, 0xFF,  /*pkt_type set as unknown */
203                          /* second descriptor */
204                          7, 6, 5, 4,  /* octet 4~7, 32bits rss */
205                          3, 2,        /* octet 2~3, low 16 bits vlan_macip */
206                          15, 14,      /* octet 15~14, 16 bits data_len */
207                          0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
208                          15, 14,      /* octet 15~14, low 16 bits pkt_len */
209                          0xFF, 0xFF,  /* pkt_type set as unknown */
210                          0xFF, 0xFF   /*pkt_type set as unknown */
211                         );
212         /**
213          * compile-time check the above crc and shuffle layout is correct.
214          * NOTE: the first field (lowest address) is given last in set_epi
215          * calls above.
216          */
217         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
218                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
219         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
220                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
221         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
222                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
223         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
224                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
225
226         /* Status/Error flag masks */
227         /**
228          * mask everything except RSS, flow director and VLAN flags
229          * bit2 is for VLAN tag, bit11 for flow director indication
230          * bit13:12 for RSS indication. Bits 3-5 of error
231          * field (bits 22-24) are for IP/L4 checksum errors
232          */
233         const __m256i flags_mask =
234                  _mm256_set1_epi32((1 << 2) | (1 << 11) |
235                                    (3 << 12) | (7 << 22));
236         /**
237          * data to be shuffled by result of flag mask. If VLAN bit is set,
238          * (bit 2), then position 4 in this array will be used in the
239          * destination
240          */
241         const __m256i vlan_flags_shuf =
242                 _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
243                                  0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
244         /**
245          * data to be shuffled by result of flag mask, shifted down 11.
246          * If RSS/FDIR bits are set, shuffle moves appropriate flags in
247          * place.
248          */
249         const __m256i rss_flags_shuf =
250                 _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
251                                 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
252                                 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
253                                 0, 0, 0, 0, 0, 0, 0, 0,
254                                 PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
255                                 0, 0, 0, 0, PKT_RX_FDIR, 0);
256
257         /**
258          * data to be shuffled by the result of the flags mask shifted by 22
259          * bits.  This gives use the l3_l4 flags.
260          */
261         const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
262                         /* shift right 1 bit to make sure it not exceed 255 */
263                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
264                          PKT_RX_IP_CKSUM_BAD) >> 1,
265                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
266                          PKT_RX_L4_CKSUM_BAD) >> 1,
267                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
268                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
269                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
270                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
271                         PKT_RX_IP_CKSUM_BAD >> 1,
272                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
273                         /* second 128-bits */
274                         0, 0, 0, 0, 0, 0, 0, 0,
275                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
276                          PKT_RX_IP_CKSUM_BAD) >> 1,
277                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
278                          PKT_RX_L4_CKSUM_BAD) >> 1,
279                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
280                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
281                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
282                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
283                         PKT_RX_IP_CKSUM_BAD >> 1,
284                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
285
286         const __m256i cksum_mask =
287                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
288                                    PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
289                                    PKT_RX_EIP_CKSUM_BAD);
290
291         RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
292
293         uint16_t i, received;
294
295         for (i = 0, received = 0; i < nb_pkts;
296              i += ICE_DESCS_PER_LOOP_AVX,
297              rxdp += ICE_DESCS_PER_LOOP_AVX) {
298                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
299                 _mm256_storeu_si256((void *)&rx_pkts[i],
300                                     _mm256_loadu_si256((void *)&sw_ring[i]));
301 #ifdef RTE_ARCH_X86_64
302                 _mm256_storeu_si256
303                         ((void *)&rx_pkts[i + 4],
304                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
305 #endif
306
307                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
308 #ifdef RTE_LIBRTE_ICE_16BYTE_RX_DESC
309                 /* for AVX we need alignment otherwise loads are not atomic */
310                 if (avx_aligned) {
311                         /* load in descriptors, 2 at a time, in reverse order */
312                         raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
313                         rte_compiler_barrier();
314                         raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
315                         rte_compiler_barrier();
316                         raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
317                         rte_compiler_barrier();
318                         raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
319                 } else
320 #endif
321                 {
322                         const __m128i raw_desc7 =
323                                 _mm_load_si128((void *)(rxdp + 7));
324                         rte_compiler_barrier();
325                         const __m128i raw_desc6 =
326                                 _mm_load_si128((void *)(rxdp + 6));
327                         rte_compiler_barrier();
328                         const __m128i raw_desc5 =
329                                 _mm_load_si128((void *)(rxdp + 5));
330                         rte_compiler_barrier();
331                         const __m128i raw_desc4 =
332                                 _mm_load_si128((void *)(rxdp + 4));
333                         rte_compiler_barrier();
334                         const __m128i raw_desc3 =
335                                 _mm_load_si128((void *)(rxdp + 3));
336                         rte_compiler_barrier();
337                         const __m128i raw_desc2 =
338                                 _mm_load_si128((void *)(rxdp + 2));
339                         rte_compiler_barrier();
340                         const __m128i raw_desc1 =
341                                 _mm_load_si128((void *)(rxdp + 1));
342                         rte_compiler_barrier();
343                         const __m128i raw_desc0 =
344                                 _mm_load_si128((void *)(rxdp + 0));
345
346                         raw_desc6_7 =
347                                 _mm256_inserti128_si256
348                                         (_mm256_castsi128_si256(raw_desc6),
349                                          raw_desc7, 1);
350                         raw_desc4_5 =
351                                 _mm256_inserti128_si256
352                                         (_mm256_castsi128_si256(raw_desc4),
353                                          raw_desc5, 1);
354                         raw_desc2_3 =
355                                 _mm256_inserti128_si256
356                                         (_mm256_castsi128_si256(raw_desc2),
357                                          raw_desc3, 1);
358                         raw_desc0_1 =
359                                 _mm256_inserti128_si256
360                                         (_mm256_castsi128_si256(raw_desc0),
361                                          raw_desc1, 1);
362                 }
363
364                 if (split_packet) {
365                         int j;
366
367                         for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
368                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
369                 }
370
371                 /**
372                  * convert descriptors 4-7 into mbufs, adjusting length and
373                  * re-arranging fields. Then write into the mbuf
374                  */
375                 const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7,
376                                                          PKTLEN_SHIFT);
377                 const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5,
378                                                          PKTLEN_SHIFT);
379                 const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7,
380                                                            len6_7, 0x80);
381                 const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5,
382                                                            len4_5, 0x80);
383                 __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
384                 __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
385
386                 mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
387                 mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
388                 /**
389                  * to get packet types, shift 64-bit values down 30 bits
390                  * and so ptype is in lower 8-bits in each
391                  */
392                 const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
393                 const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
394                 const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
395                 const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
396                 const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
397                 const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
398
399                 mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
400                 mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
401                 mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
402                 mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
403                 /* merge the status bits into one register */
404                 const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
405                                 desc4_5);
406
407                 /**
408                  * convert descriptors 0-3 into mbufs, adjusting length and
409                  * re-arranging fields. Then write into the mbuf
410                  */
411                 const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3,
412                                                          PKTLEN_SHIFT);
413                 const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1,
414                                                          PKTLEN_SHIFT);
415                 const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3,
416                                                            len2_3, 0x80);
417                 const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1,
418                                                            len0_1, 0x80);
419                 __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
420                 __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
421
422                 mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
423                 mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
424                 /* get the packet types */
425                 const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
426                 const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
427                 const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
428                 const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
429                 const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
430                 const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
431
432                 mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
433                 mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
434                 mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
435                 mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
436                 /* merge the status bits into one register */
437                 const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
438                                                                 desc0_1);
439
440                 /**
441                  * take the two sets of status bits and merge to one
442                  * After merge, the packets status flags are in the
443                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
444                  */
445                 __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
446                                                           status0_3);
447
448                 /* now do flag manipulation */
449
450                 /* get only flag/error bits we want */
451                 const __m256i flag_bits =
452                         _mm256_and_si256(status0_7, flags_mask);
453                 /* set vlan and rss flags */
454                 const __m256i vlan_flags =
455                         _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
456                 const __m256i rss_flags =
457                         _mm256_shuffle_epi8(rss_flags_shuf,
458                                             _mm256_srli_epi32(flag_bits, 11));
459                 /**
460                  * l3_l4_error flags, shuffle, then shift to correct adjustment
461                  * of flags in flags_shuf, and finally mask out extra bits
462                  */
463                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
464                                 _mm256_srli_epi32(flag_bits, 22));
465                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
466                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
467
468                 /* merge flags */
469                 const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
470                                 _mm256_or_si256(rss_flags, vlan_flags));
471                 /**
472                  * At this point, we have the 8 sets of flags in the low 16-bits
473                  * of each 32-bit value in vlan0.
474                  * We want to extract these, and merge them with the mbuf init
475                  * data so we can do a single write to the mbuf to set the flags
476                  * and all the other initialization fields. Extracting the
477                  * appropriate flags means that we have to do a shift and blend
478                  * for each mbuf before we do the write. However, we can also
479                  * add in the previously computed rx_descriptor fields to
480                  * make a single 256-bit write per mbuf
481                  */
482                 /* check the structure matches expectations */
483                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
484                                  offsetof(struct rte_mbuf, rearm_data) + 8);
485                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
486                                  RTE_ALIGN(offsetof(struct rte_mbuf,
487                                                     rearm_data),
488                                            16));
489                 /* build up data and do writes */
490                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
491                         rearm6, rearm7;
492                 rearm6 = _mm256_blend_epi32(mbuf_init,
493                                             _mm256_slli_si256(mbuf_flags, 8),
494                                             0x04);
495                 rearm4 = _mm256_blend_epi32(mbuf_init,
496                                             _mm256_slli_si256(mbuf_flags, 4),
497                                             0x04);
498                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
499                 rearm0 = _mm256_blend_epi32(mbuf_init,
500                                             _mm256_srli_si256(mbuf_flags, 4),
501                                             0x04);
502                 /* permute to add in the rx_descriptor e.g. rss fields */
503                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
504                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
505                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
506                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
507                 /* write to mbuf */
508                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
509                                     rearm6);
510                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
511                                     rearm4);
512                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
513                                     rearm2);
514                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
515                                     rearm0);
516
517                 /* repeat for the odd mbufs */
518                 const __m256i odd_flags =
519                         _mm256_castsi128_si256
520                                 (_mm256_extracti128_si256(mbuf_flags, 1));
521                 rearm7 = _mm256_blend_epi32(mbuf_init,
522                                             _mm256_slli_si256(odd_flags, 8),
523                                             0x04);
524                 rearm5 = _mm256_blend_epi32(mbuf_init,
525                                             _mm256_slli_si256(odd_flags, 4),
526                                             0x04);
527                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
528                 rearm1 = _mm256_blend_epi32(mbuf_init,
529                                             _mm256_srli_si256(odd_flags, 4),
530                                             0x04);
531                 /* since odd mbufs are already in hi 128-bits use blend */
532                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
533                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
534                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
535                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
536                 /* again write to mbufs */
537                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
538                                     rearm7);
539                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
540                                     rearm5);
541                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
542                                     rearm3);
543                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
544                                     rearm1);
545
546                 /* extract and record EOP bit */
547                 if (split_packet) {
548                         const __m128i eop_mask =
549                                 _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
550                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
551                                                                      eop_check);
552                         /* pack status bits into a single 128-bit register */
553                         const __m128i eop_bits =
554                                 _mm_packus_epi32
555                                         (_mm256_castsi256_si128(eop_bits256),
556                                          _mm256_extractf128_si256(eop_bits256,
557                                                                   1));
558                         /**
559                          * flip bits, and mask out the EOP bit, which is now
560                          * a split-packet bit i.e. !EOP, rather than EOP one.
561                          */
562                         __m128i split_bits = _mm_andnot_si128(eop_bits,
563                                         eop_mask);
564                         /**
565                          * eop bits are out of order, so we need to shuffle them
566                          * back into order again. In doing so, only use low 8
567                          * bits, which acts like another pack instruction
568                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
569                          * [Since we use epi8, the 16-bit positions are
570                          * multiplied by 2 in the eop_shuffle value.]
571                          */
572                         __m128i eop_shuffle =
573                                 _mm_set_epi8(/* zero hi 64b */
574                                              0xFF, 0xFF, 0xFF, 0xFF,
575                                              0xFF, 0xFF, 0xFF, 0xFF,
576                                              /* move values to lo 64b */
577                                              8, 0, 10, 2,
578                                              12, 4, 14, 6);
579                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
580                         *(uint64_t *)split_packet =
581                                 _mm_cvtsi128_si64(split_bits);
582                         split_packet += ICE_DESCS_PER_LOOP_AVX;
583                 }
584
585                 /* perform dd_check */
586                 status0_7 = _mm256_and_si256(status0_7, dd_check);
587                 status0_7 = _mm256_packs_epi32(status0_7,
588                                                _mm256_setzero_si256());
589
590                 uint64_t burst = __builtin_popcountll
591                                         (_mm_cvtsi128_si64
592                                                 (_mm256_extracti128_si256
593                                                         (status0_7, 1)));
594                 burst += __builtin_popcountll
595                                 (_mm_cvtsi128_si64
596                                         (_mm256_castsi256_si128(status0_7)));
597                 received += burst;
598                 if (burst != ICE_DESCS_PER_LOOP_AVX)
599                         break;
600         }
601
602         /* update tail pointers */
603         rxq->rx_tail += received;
604         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
605         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
606                 rxq->rx_tail--;
607                 received--;
608         }
609         rxq->rxrearm_nb += received;
610         return received;
611 }
612
613 /**
614  * Notice:
615  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
616  */
617 uint16_t
618 ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
619                        uint16_t nb_pkts)
620 {
621         return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
622 }
623
624 /**
625  * vPMD receive routine that reassembles single burst of 32 scattered packets
626  * Notice:
627  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
628  */
629 static uint16_t
630 ice_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
631                                   uint16_t nb_pkts)
632 {
633         struct ice_rx_queue *rxq = rx_queue;
634         uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
635
636         /* get some new buffers */
637         uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
638                                                        split_flags);
639         if (nb_bufs == 0)
640                 return 0;
641
642         /* happy day case, full burst + no packets to be joined */
643         const uint64_t *split_fl64 = (uint64_t *)split_flags;
644
645         if (!rxq->pkt_first_seg &&
646             split_fl64[0] == 0 && split_fl64[1] == 0 &&
647             split_fl64[2] == 0 && split_fl64[3] == 0)
648                 return nb_bufs;
649
650         /* reassemble any packets that need reassembly*/
651         unsigned int i = 0;
652
653         if (!rxq->pkt_first_seg) {
654                 /* find the first split flag, and only reassemble then*/
655                 while (i < nb_bufs && !split_flags[i])
656                         i++;
657                 if (i == nb_bufs)
658                         return nb_bufs;
659                 rxq->pkt_first_seg = rx_pkts[i];
660         }
661         return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
662                                              &split_flags[i]);
663 }
664
665 /**
666  * vPMD receive routine that reassembles scattered packets.
667  * Main receive routine that can handle arbitrary burst sizes
668  * Notice:
669  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
670  */
671 uint16_t
672 ice_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
673                                  uint16_t nb_pkts)
674 {
675         uint16_t retval = 0;
676
677         while (nb_pkts > ICE_VPMD_RX_BURST) {
678                 uint16_t burst = ice_recv_scattered_burst_vec_avx2(rx_queue,
679                                 rx_pkts + retval, ICE_VPMD_RX_BURST);
680                 retval += burst;
681                 nb_pkts -= burst;
682                 if (burst < ICE_VPMD_RX_BURST)
683                         return retval;
684         }
685         return retval + ice_recv_scattered_burst_vec_avx2(rx_queue,
686                                 rx_pkts + retval, nb_pkts);
687 }
688
689 static inline void
690 ice_vtx1(volatile struct ice_tx_desc *txdp,
691          struct rte_mbuf *pkt, uint64_t flags)
692 {
693         uint64_t high_qw =
694                 (ICE_TX_DESC_DTYPE_DATA |
695                  ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
696                  ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
697
698         __m128i descriptor = _mm_set_epi64x(high_qw,
699                                 pkt->buf_physaddr + pkt->data_off);
700         _mm_store_si128((__m128i *)txdp, descriptor);
701 }
702
703 static inline void
704 ice_vtx(volatile struct ice_tx_desc *txdp,
705         struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
706 {
707         const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
708                         ((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
709
710         /* if unaligned on 32-bit boundary, do one to align */
711         if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
712                 ice_vtx1(txdp, *pkt, flags);
713                 nb_pkts--, txdp++, pkt++;
714         }
715
716         /* do two at a time while possible, in bursts */
717         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
718                 uint64_t hi_qw3 =
719                         hi_qw_tmpl |
720                         ((uint64_t)pkt[3]->data_len <<
721                          ICE_TXD_QW1_TX_BUF_SZ_S);
722                 uint64_t hi_qw2 =
723                         hi_qw_tmpl |
724                         ((uint64_t)pkt[2]->data_len <<
725                          ICE_TXD_QW1_TX_BUF_SZ_S);
726                 uint64_t hi_qw1 =
727                         hi_qw_tmpl |
728                         ((uint64_t)pkt[1]->data_len <<
729                          ICE_TXD_QW1_TX_BUF_SZ_S);
730                 uint64_t hi_qw0 =
731                         hi_qw_tmpl |
732                         ((uint64_t)pkt[0]->data_len <<
733                          ICE_TXD_QW1_TX_BUF_SZ_S);
734
735                 __m256i desc2_3 =
736                         _mm256_set_epi64x
737                                 (hi_qw3,
738                                  pkt[3]->buf_physaddr + pkt[3]->data_off,
739                                  hi_qw2,
740                                  pkt[2]->buf_physaddr + pkt[2]->data_off);
741                 __m256i desc0_1 =
742                         _mm256_set_epi64x
743                                 (hi_qw1,
744                                  pkt[1]->buf_physaddr + pkt[1]->data_off,
745                                  hi_qw0,
746                                  pkt[0]->buf_physaddr + pkt[0]->data_off);
747                 _mm256_store_si256((void *)(txdp + 2), desc2_3);
748                 _mm256_store_si256((void *)txdp, desc0_1);
749         }
750
751         /* do any last ones */
752         while (nb_pkts) {
753                 ice_vtx1(txdp, *pkt, flags);
754                 txdp++, pkt++, nb_pkts--;
755         }
756 }
757
758 static inline uint16_t
759 ice_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
760                               uint16_t nb_pkts)
761 {
762         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
763         volatile struct ice_tx_desc *txdp;
764         struct ice_tx_entry *txep;
765         uint16_t n, nb_commit, tx_id;
766         uint64_t flags = ICE_TD_CMD;
767         uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
768
769         /* cross rx_thresh boundary is not allowed */
770         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
771
772         if (txq->nb_tx_free < txq->tx_free_thresh)
773                 ice_tx_free_bufs(txq);
774
775         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
776         if (unlikely(nb_pkts == 0))
777                 return 0;
778
779         tx_id = txq->tx_tail;
780         txdp = &txq->tx_ring[tx_id];
781         txep = &txq->sw_ring[tx_id];
782
783         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
784
785         n = (uint16_t)(txq->nb_tx_desc - tx_id);
786         if (nb_commit >= n) {
787                 ice_tx_backlog_entry(txep, tx_pkts, n);
788
789                 ice_vtx(txdp, tx_pkts, n - 1, flags);
790                 tx_pkts += (n - 1);
791                 txdp += (n - 1);
792
793                 ice_vtx1(txdp, *tx_pkts++, rs);
794
795                 nb_commit = (uint16_t)(nb_commit - n);
796
797                 tx_id = 0;
798                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
799
800                 /* avoid reach the end of ring */
801                 txdp = &txq->tx_ring[tx_id];
802                 txep = &txq->sw_ring[tx_id];
803         }
804
805         ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
806
807         ice_vtx(txdp, tx_pkts, nb_commit, flags);
808
809         tx_id = (uint16_t)(tx_id + nb_commit);
810         if (tx_id > txq->tx_next_rs) {
811                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
812                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
813                                          ICE_TXD_QW1_CMD_S);
814                 txq->tx_next_rs =
815                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
816         }
817
818         txq->tx_tail = tx_id;
819
820         ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
821
822         return nb_pkts;
823 }
824
825 uint16_t
826 ice_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
827                        uint16_t nb_pkts)
828 {
829         uint16_t nb_tx = 0;
830         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
831
832         while (nb_pkts) {
833                 uint16_t ret, num;
834
835                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
836                 ret = ice_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
837                                                     num);
838                 nb_tx += ret;
839                 nb_pkts -= ret;
840                 if (ret < num)
841                         break;
842         }
843
844         return nb_tx;
845 }