0a3e8da024170a3fc12e0b132155aebe4d5d06f0
[dpdk.git] / drivers / net / ice / ice_rxtx_vec_avx512.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "ice_rxtx_vec_common.h"
6
7 #include <rte_vect.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 #define ICE_DESCS_PER_LOOP_AVX 8
14
15 static inline void
16 ice_rxq_rearm(struct ice_rx_queue *rxq)
17 {
18         int i;
19         uint16_t rx_id;
20         volatile union ice_rx_flex_desc *rxdp;
21         struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
22         struct rte_mempool_cache *cache = rte_mempool_default_cache(rxq->mp,
23                         rte_lcore_id());
24
25         rxdp = rxq->rx_ring + rxq->rxrearm_start;
26
27         /* We need to pull 'n' more MBUFs into the software ring */
28         if (cache->len < ICE_RXQ_REARM_THRESH) {
29                 uint32_t req = ICE_RXQ_REARM_THRESH + (cache->size -
30                                 cache->len);
31
32                 int ret = rte_mempool_ops_dequeue_bulk(rxq->mp,
33                                 &cache->objs[cache->len], req);
34                 if (ret == 0) {
35                         cache->len += req;
36                 } else {
37                         if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
38                             rxq->nb_rx_desc) {
39                                 __m128i dma_addr0;
40
41                                 dma_addr0 = _mm_setzero_si128();
42                                 for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
43                                         rxep[i].mbuf = &rxq->fake_mbuf;
44                                         _mm_store_si128
45                                                 ((__m128i *)&rxdp[i].read,
46                                                         dma_addr0);
47                                 }
48                         }
49                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
50                                 ICE_RXQ_REARM_THRESH;
51                         return;
52                 }
53         }
54
55         const __m512i iova_offsets =  _mm512_set1_epi64
56                 (offsetof(struct rte_mbuf, buf_iova));
57         const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
58
59 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
60         /* shuffle the iova into correct slots. Values 4-7 will contain
61          * zeros, so use 7 for a zero-value.
62          */
63         const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
64 #else
65         const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
66 #endif
67
68         /* fill up the rxd in vector, process 8 mbufs in one loop */
69         for (i = 0; i < ICE_RXQ_REARM_THRESH / 8; i++) {
70                 const __m512i mbuf_ptrs = _mm512_loadu_si512
71                         (&cache->objs[cache->len - 8]);
72                 _mm512_store_si512(rxep, mbuf_ptrs);
73
74                 /* gather iova of mbuf0-7 into one zmm reg */
75                 const __m512i iova_base_addrs = _mm512_i64gather_epi64
76                         (_mm512_add_epi64(mbuf_ptrs, iova_offsets),
77                                 0, /* base */
78                                 1  /* scale */);
79                 const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
80                                 headroom);
81 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
82                 const __m512i iovas0 = _mm512_castsi256_si512
83                         (_mm512_extracti64x4_epi64(iova_addrs, 0));
84                 const __m512i iovas1 = _mm512_castsi256_si512
85                         (_mm512_extracti64x4_epi64(iova_addrs, 1));
86
87                 /* permute leaves iova 2-3 in hdr_addr of desc 0-1
88                  * but these are ignored by driver since header split not
89                  * enabled. Similarly for desc 4 & 5.
90                  */
91                 const __m512i desc0_1 = _mm512_permutexvar_epi64
92                         (permute_idx, iovas0);
93                 const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
94
95                 const __m512i desc4_5 = _mm512_permutexvar_epi64
96                         (permute_idx, iovas1);
97                 const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
98
99                 _mm512_store_si512((void *)rxdp, desc0_1);
100                 _mm512_store_si512((void *)(rxdp + 2), desc2_3);
101                 _mm512_store_si512((void *)(rxdp + 4), desc4_5);
102                 _mm512_store_si512((void *)(rxdp + 6), desc6_7);
103 #else
104                 /* permute leaves iova 4-7 in hdr_addr of desc 0-3
105                  * but these are ignored by driver since header split not
106                  * enabled.
107                  */
108                 const __m512i desc0_3 = _mm512_permutexvar_epi64
109                         (permute_idx, iova_addrs);
110                 const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
111
112                 _mm512_store_si512((void *)rxdp, desc0_3);
113                 _mm512_store_si512((void *)(rxdp + 4), desc4_7);
114 #endif
115                 rxep += 8, rxdp += 8, cache->len -= 8;
116         }
117
118         rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
119         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
120                 rxq->rxrearm_start = 0;
121
122         rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
123
124         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
125                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
126
127         /* Update the tail pointer on the NIC */
128         ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
129 }
130
131 static inline __m256i
132 ice_flex_rxd_to_fdir_flags_vec_avx512(const __m256i fdir_id0_7)
133 {
134 #define FDID_MIS_MAGIC 0xFFFFFFFF
135         RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
136         RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
137         const __m256i pkt_fdir_bit = _mm256_set1_epi32(PKT_RX_FDIR |
138                         PKT_RX_FDIR_ID);
139         /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
140         const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
141         __m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
142                         fdir_mis_mask);
143         /* this XOR op results to bit-reverse the fdir_mask */
144         fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
145         const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
146
147         return fdir_flags;
148 }
149
150 static inline uint16_t
151 _ice_recv_raw_pkts_vec_avx512(struct ice_rx_queue *rxq,
152                               struct rte_mbuf **rx_pkts,
153                               uint16_t nb_pkts, uint8_t *split_packet)
154 {
155         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
156         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
157                         0, rxq->mbuf_initializer);
158         struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
159         volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
160
161         rte_prefetch0(rxdp);
162
163         /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
164         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
165
166         /* See if we need to rearm the RX queue - gives the prefetch a bit
167          * of time to act
168          */
169         if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
170                 ice_rxq_rearm(rxq);
171
172         /* Before we start moving massive data around, check to see if
173          * there is actually a packet available
174          */
175         if (!(rxdp->wb.status_error0 &
176                         rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
177                 return 0;
178
179         /* constants used in processing loop */
180         const __m512i crc_adjust =
181                 _mm512_set4_epi32
182                         (0,             /* ignore non-length fields */
183                          -rxq->crc_len, /* sub crc on data_len */
184                          -rxq->crc_len, /* sub crc on pkt_len */
185                          0              /* ignore non-length fields */
186                         );
187
188         /* 8 packets DD mask, LSB in each 32-bit value */
189         const __m256i dd_check = _mm256_set1_epi32(1);
190
191         /* 8 packets EOP mask, second-LSB in each 32-bit value */
192         const __m256i eop_check = _mm256_slli_epi32(dd_check,
193                         ICE_RX_DESC_STATUS_EOF_S);
194
195         /* mask to shuffle from desc. to mbuf (4 descriptors)*/
196         const __m512i shuf_msk =
197                 _mm512_set4_epi32
198                         (/* rss hash parsed separately */
199                          0xFFFFFFFF,
200                          /* octet 10~11, 16 bits vlan_macip */
201                          /* octet 4~5, 16 bits data_len */
202                          11 << 24 | 10 << 16 | 5 << 8 | 4,
203                          /* skip hi 16 bits pkt_len, zero out */
204                          /* octet 4~5, 16 bits pkt_len */
205                          0xFFFF << 16 | 5 << 8 | 4,
206                          /* pkt_type set as unknown */
207                          0xFFFFFFFF
208                         );
209
210         /**
211          * compile-time check the above crc and shuffle layout is correct.
212          * NOTE: the first field (lowest address) is given last in set_epi
213          * calls above.
214          */
215         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
216                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
217         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
218                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
219         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
220                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
221         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
222                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
223
224         /* Status/Error flag masks */
225         /**
226          * mask everything except Checksum Reports, RSS indication
227          * and VLAN indication.
228          * bit6:4 for IP/L4 checksum errors.
229          * bit12 is for RSS indication.
230          * bit13 is for VLAN indication.
231          */
232         const __m256i flags_mask =
233                  _mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
234         /**
235          * data to be shuffled by the result of the flags mask shifted by 4
236          * bits.  This gives use the l3_l4 flags.
237          */
238         const __m256i l3_l4_flags_shuf =
239                 _mm256_set_epi8((PKT_RX_OUTER_L4_CKSUM_BAD >> 20 |
240                  PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
241                   PKT_RX_IP_CKSUM_BAD) >> 1,
242                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
243                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
244                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
245                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
246                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
247                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
248                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
249                  PKT_RX_IP_CKSUM_BAD) >> 1,
250                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
251                  PKT_RX_IP_CKSUM_GOOD) >> 1,
252                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
253                  PKT_RX_IP_CKSUM_BAD) >> 1,
254                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
255                  PKT_RX_IP_CKSUM_GOOD) >> 1,
256                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
257                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
258                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
259                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
260                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
261                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
262                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
263                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
264                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
265                  PKT_RX_IP_CKSUM_BAD) >> 1,
266                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
267                  PKT_RX_IP_CKSUM_GOOD) >> 1,
268                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
269                  PKT_RX_IP_CKSUM_BAD) >> 1,
270                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
271                  PKT_RX_IP_CKSUM_GOOD) >> 1,
272                 /**
273                  * second 128-bits
274                  * shift right 20 bits to use the low two bits to indicate
275                  * outer checksum status
276                  * shift right 1 bit to make sure it not exceed 255
277                  */
278                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
279                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
280                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
281                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
282                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
283                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
284                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
285                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
286                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
287                  PKT_RX_IP_CKSUM_BAD) >> 1,
288                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
289                  PKT_RX_IP_CKSUM_GOOD) >> 1,
290                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
291                  PKT_RX_IP_CKSUM_BAD) >> 1,
292                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
293                  PKT_RX_IP_CKSUM_GOOD) >> 1,
294                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
295                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
296                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
297                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
298                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
299                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
300                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
301                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
302                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
303                  PKT_RX_IP_CKSUM_BAD) >> 1,
304                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
305                  PKT_RX_IP_CKSUM_GOOD) >> 1,
306                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
307                  PKT_RX_IP_CKSUM_BAD) >> 1,
308                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
309                  PKT_RX_IP_CKSUM_GOOD) >> 1);
310         const __m256i cksum_mask =
311                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_MASK |
312                                    PKT_RX_L4_CKSUM_MASK |
313                                    PKT_RX_OUTER_IP_CKSUM_BAD |
314                                    PKT_RX_OUTER_L4_CKSUM_MASK);
315         /**
316          * data to be shuffled by result of flag mask, shifted down 12.
317          * If RSS(bit12)/VLAN(bit13) are set,
318          * shuffle moves appropriate flags in place.
319          */
320         const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
321                         0, 0, 0, 0,
322                         0, 0, 0, 0,
323                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
324                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
325                         PKT_RX_RSS_HASH, 0,
326                         /* 2nd 128-bits */
327                         0, 0, 0, 0,
328                         0, 0, 0, 0,
329                         0, 0, 0, 0,
330                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
331                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
332                         PKT_RX_RSS_HASH, 0);
333
334         uint16_t i, received;
335
336         for (i = 0, received = 0; i < nb_pkts;
337              i += ICE_DESCS_PER_LOOP_AVX,
338              rxdp += ICE_DESCS_PER_LOOP_AVX) {
339                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
340                 _mm256_storeu_si256((void *)&rx_pkts[i],
341                                     _mm256_loadu_si256((void *)&sw_ring[i]));
342 #ifdef RTE_ARCH_X86_64
343                 _mm256_storeu_si256
344                         ((void *)&rx_pkts[i + 4],
345                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
346 #endif
347
348                 __m512i raw_desc0_3, raw_desc4_7;
349                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
350
351                 /* load in descriptors, in reverse order */
352                 const __m128i raw_desc7 =
353                         _mm_load_si128((void *)(rxdp + 7));
354                 rte_compiler_barrier();
355                 const __m128i raw_desc6 =
356                         _mm_load_si128((void *)(rxdp + 6));
357                 rte_compiler_barrier();
358                 const __m128i raw_desc5 =
359                         _mm_load_si128((void *)(rxdp + 5));
360                 rte_compiler_barrier();
361                 const __m128i raw_desc4 =
362                         _mm_load_si128((void *)(rxdp + 4));
363                 rte_compiler_barrier();
364                 const __m128i raw_desc3 =
365                         _mm_load_si128((void *)(rxdp + 3));
366                 rte_compiler_barrier();
367                 const __m128i raw_desc2 =
368                         _mm_load_si128((void *)(rxdp + 2));
369                 rte_compiler_barrier();
370                 const __m128i raw_desc1 =
371                         _mm_load_si128((void *)(rxdp + 1));
372                 rte_compiler_barrier();
373                 const __m128i raw_desc0 =
374                         _mm_load_si128((void *)(rxdp + 0));
375
376                 raw_desc6_7 =
377                         _mm256_inserti128_si256
378                                 (_mm256_castsi128_si256(raw_desc6),
379                                  raw_desc7, 1);
380                 raw_desc4_5 =
381                         _mm256_inserti128_si256
382                                 (_mm256_castsi128_si256(raw_desc4),
383                                  raw_desc5, 1);
384                 raw_desc2_3 =
385                         _mm256_inserti128_si256
386                                 (_mm256_castsi128_si256(raw_desc2),
387                                  raw_desc3, 1);
388                 raw_desc0_1 =
389                         _mm256_inserti128_si256
390                                 (_mm256_castsi128_si256(raw_desc0),
391                                  raw_desc1, 1);
392
393                 raw_desc4_7 =
394                         _mm512_inserti64x4
395                                 (_mm512_castsi256_si512(raw_desc4_5),
396                                  raw_desc6_7, 1);
397                 raw_desc0_3 =
398                         _mm512_inserti64x4
399                                 (_mm512_castsi256_si512(raw_desc0_1),
400                                  raw_desc2_3, 1);
401
402                 if (split_packet) {
403                         int j;
404
405                         for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
406                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
407                 }
408
409                 /**
410                  * convert descriptors 0-7 into mbufs, re-arrange fields.
411                  * Then write into the mbuf.
412                  */
413                 __m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
414                 __m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
415
416                 mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
417                 mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
418
419                 /**
420                  * to get packet types, ptype is located in bit16-25
421                  * of each 128bits
422                  */
423                 const __m512i ptype_mask =
424                         _mm512_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
425
426                 /**
427                  * to get packet types, ptype is located in bit16-25
428                  * of each 128bits
429                  */
430                 const __m512i ptypes4_7 =
431                         _mm512_and_si512(raw_desc4_7, ptype_mask);
432                 const __m512i ptypes0_3 =
433                         _mm512_and_si512(raw_desc0_3, ptype_mask);
434
435                 const __m256i ptypes6_7 =
436                         _mm512_extracti64x4_epi64(ptypes4_7, 1);
437                 const __m256i ptypes4_5 =
438                         _mm512_extracti64x4_epi64(ptypes4_7, 0);
439                 const __m256i ptypes2_3 =
440                         _mm512_extracti64x4_epi64(ptypes0_3, 1);
441                 const __m256i ptypes0_1 =
442                         _mm512_extracti64x4_epi64(ptypes0_3, 0);
443                 const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
444                 const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
445                 const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
446                 const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
447                 const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
448                 const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
449                 const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
450                 const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
451
452                 const __m512i ptype4_7 = _mm512_set_epi32
453                         (0, 0, 0, ptype_tbl[ptype7],
454                          0, 0, 0, ptype_tbl[ptype6],
455                          0, 0, 0, ptype_tbl[ptype5],
456                          0, 0, 0, ptype_tbl[ptype4]);
457                 const __m512i ptype0_3 = _mm512_set_epi32
458                         (0, 0, 0, ptype_tbl[ptype3],
459                          0, 0, 0, ptype_tbl[ptype2],
460                          0, 0, 0, ptype_tbl[ptype1],
461                          0, 0, 0, ptype_tbl[ptype0]);
462
463                 mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
464                 mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
465
466                 __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
467                 __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
468                 __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
469                 __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
470
471                 /**
472                  * use permute/extract to get status content
473                  * After the operations, the packets status flags are in the
474                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
475                  */
476                 /* merge the status bits into one register */
477                 const __m512i status_permute_msk = _mm512_set_epi32
478                         (0, 0, 0, 0,
479                          0, 0, 0, 0,
480                          22, 30, 6, 14,
481                          18, 26, 2, 10);
482                 const __m512i raw_status0_7 = _mm512_permutex2var_epi32
483                         (raw_desc4_7, status_permute_msk, raw_desc0_3);
484                 __m256i status0_7 = _mm512_extracti64x4_epi64
485                         (raw_status0_7, 0);
486
487                 /* now do flag manipulation */
488
489                 /* get only flag/error bits we want */
490                 const __m256i flag_bits =
491                         _mm256_and_si256(status0_7, flags_mask);
492                 /**
493                  * l3_l4_error flags, shuffle, then shift to correct adjustment
494                  * of flags in flags_shuf, and finally mask out extra bits
495                  */
496                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
497                                 _mm256_srli_epi32(flag_bits, 4));
498                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
499                 __m256i l4_outer_mask = _mm256_set1_epi32(0x6);
500                 __m256i l4_outer_flags =
501                                 _mm256_and_si256(l3_l4_flags, l4_outer_mask);
502                 l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
503
504                 __m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
505                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
506                 l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
507                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
508                 /* set rss and vlan flags */
509                 const __m256i rss_vlan_flag_bits =
510                         _mm256_srli_epi32(flag_bits, 12);
511                 const __m256i rss_vlan_flags =
512                         _mm256_shuffle_epi8(rss_vlan_flags_shuf,
513                                             rss_vlan_flag_bits);
514
515                 /* merge flags */
516                 __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
517                                                      rss_vlan_flags);
518
519                 if (rxq->fdir_enabled) {
520                         const __m256i fdir_id4_7 =
521                                 _mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
522
523                         const __m256i fdir_id0_3 =
524                                 _mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
525
526                         const __m256i fdir_id0_7 =
527                                 _mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
528
529                         const __m256i fdir_flags =
530                                 ice_flex_rxd_to_fdir_flags_vec_avx512
531                                         (fdir_id0_7);
532
533                         /* merge with fdir_flags */
534                         mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags);
535
536                         /* write to mbuf: have to use scalar store here */
537                         rx_pkts[i + 0]->hash.fdir.hi =
538                                 _mm256_extract_epi32(fdir_id0_7, 3);
539
540                         rx_pkts[i + 1]->hash.fdir.hi =
541                                 _mm256_extract_epi32(fdir_id0_7, 7);
542
543                         rx_pkts[i + 2]->hash.fdir.hi =
544                                 _mm256_extract_epi32(fdir_id0_7, 2);
545
546                         rx_pkts[i + 3]->hash.fdir.hi =
547                                 _mm256_extract_epi32(fdir_id0_7, 6);
548
549                         rx_pkts[i + 4]->hash.fdir.hi =
550                                 _mm256_extract_epi32(fdir_id0_7, 1);
551
552                         rx_pkts[i + 5]->hash.fdir.hi =
553                                 _mm256_extract_epi32(fdir_id0_7, 5);
554
555                         rx_pkts[i + 6]->hash.fdir.hi =
556                                 _mm256_extract_epi32(fdir_id0_7, 0);
557
558                         rx_pkts[i + 7]->hash.fdir.hi =
559                                 _mm256_extract_epi32(fdir_id0_7, 4);
560                 } /* if() on fdir_enabled */
561
562 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
563                 /**
564                  * needs to load 2nd 16B of each desc for RSS hash parsing,
565                  * will cause performance drop to get into this context.
566                  */
567                 if (rxq->vsi->adapter->eth_dev->data->dev_conf.rxmode.offloads &
568                                 DEV_RX_OFFLOAD_RSS_HASH) {
569                         /* load bottom half of every 32B desc */
570                         const __m128i raw_desc_bh7 =
571                                 _mm_load_si128
572                                         ((void *)(&rxdp[7].wb.status_error1));
573                         rte_compiler_barrier();
574                         const __m128i raw_desc_bh6 =
575                                 _mm_load_si128
576                                         ((void *)(&rxdp[6].wb.status_error1));
577                         rte_compiler_barrier();
578                         const __m128i raw_desc_bh5 =
579                                 _mm_load_si128
580                                         ((void *)(&rxdp[5].wb.status_error1));
581                         rte_compiler_barrier();
582                         const __m128i raw_desc_bh4 =
583                                 _mm_load_si128
584                                         ((void *)(&rxdp[4].wb.status_error1));
585                         rte_compiler_barrier();
586                         const __m128i raw_desc_bh3 =
587                                 _mm_load_si128
588                                         ((void *)(&rxdp[3].wb.status_error1));
589                         rte_compiler_barrier();
590                         const __m128i raw_desc_bh2 =
591                                 _mm_load_si128
592                                         ((void *)(&rxdp[2].wb.status_error1));
593                         rte_compiler_barrier();
594                         const __m128i raw_desc_bh1 =
595                                 _mm_load_si128
596                                         ((void *)(&rxdp[1].wb.status_error1));
597                         rte_compiler_barrier();
598                         const __m128i raw_desc_bh0 =
599                                 _mm_load_si128
600                                         ((void *)(&rxdp[0].wb.status_error1));
601
602                         __m256i raw_desc_bh6_7 =
603                                 _mm256_inserti128_si256
604                                         (_mm256_castsi128_si256(raw_desc_bh6),
605                                         raw_desc_bh7, 1);
606                         __m256i raw_desc_bh4_5 =
607                                 _mm256_inserti128_si256
608                                         (_mm256_castsi128_si256(raw_desc_bh4),
609                                         raw_desc_bh5, 1);
610                         __m256i raw_desc_bh2_3 =
611                                 _mm256_inserti128_si256
612                                         (_mm256_castsi128_si256(raw_desc_bh2),
613                                         raw_desc_bh3, 1);
614                         __m256i raw_desc_bh0_1 =
615                                 _mm256_inserti128_si256
616                                         (_mm256_castsi128_si256(raw_desc_bh0),
617                                         raw_desc_bh1, 1);
618
619                         /**
620                          * to shift the 32b RSS hash value to the
621                          * highest 32b of each 128b before mask
622                          */
623                         __m256i rss_hash6_7 =
624                                 _mm256_slli_epi64(raw_desc_bh6_7, 32);
625                         __m256i rss_hash4_5 =
626                                 _mm256_slli_epi64(raw_desc_bh4_5, 32);
627                         __m256i rss_hash2_3 =
628                                 _mm256_slli_epi64(raw_desc_bh2_3, 32);
629                         __m256i rss_hash0_1 =
630                                 _mm256_slli_epi64(raw_desc_bh0_1, 32);
631
632                         __m256i rss_hash_msk =
633                                 _mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
634                                                  0xFFFFFFFF, 0, 0, 0);
635
636                         rss_hash6_7 = _mm256_and_si256
637                                         (rss_hash6_7, rss_hash_msk);
638                         rss_hash4_5 = _mm256_and_si256
639                                         (rss_hash4_5, rss_hash_msk);
640                         rss_hash2_3 = _mm256_and_si256
641                                         (rss_hash2_3, rss_hash_msk);
642                         rss_hash0_1 = _mm256_and_si256
643                                         (rss_hash0_1, rss_hash_msk);
644
645                         mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
646                         mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
647                         mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
648                         mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
649                 } /* if() on RSS hash parsing */
650 #endif
651
652                 /**
653                  * At this point, we have the 8 sets of flags in the low 16-bits
654                  * of each 32-bit value in vlan0.
655                  * We want to extract these, and merge them with the mbuf init
656                  * data so we can do a single write to the mbuf to set the flags
657                  * and all the other initialization fields. Extracting the
658                  * appropriate flags means that we have to do a shift and blend
659                  * for each mbuf before we do the write. However, we can also
660                  * add in the previously computed rx_descriptor fields to
661                  * make a single 256-bit write per mbuf
662                  */
663                 /* check the structure matches expectations */
664                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
665                                  offsetof(struct rte_mbuf, rearm_data) + 8);
666                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
667                                  RTE_ALIGN(offsetof(struct rte_mbuf,
668                                                     rearm_data),
669                                            16));
670                 /* build up data and do writes */
671                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
672                         rearm6, rearm7;
673
674                 rearm6 = _mm256_blend_epi32(mbuf_init,
675                                             _mm256_slli_si256(mbuf_flags, 8),
676                                             0x04);
677                 rearm4 = _mm256_blend_epi32(mbuf_init,
678                                             _mm256_slli_si256(mbuf_flags, 4),
679                                             0x04);
680                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
681                 rearm0 = _mm256_blend_epi32(mbuf_init,
682                                             _mm256_srli_si256(mbuf_flags, 4),
683                                             0x04);
684
685                 /* permute to add in the rx_descriptor e.g. rss fields */
686                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
687                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
688                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
689                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
690
691                 /* write to mbuf */
692                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
693                                     rearm6);
694                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
695                                     rearm4);
696                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
697                                     rearm2);
698                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
699                                     rearm0);
700
701                 /* repeat for the odd mbufs */
702                 const __m256i odd_flags =
703                         _mm256_castsi128_si256
704                                 (_mm256_extracti128_si256(mbuf_flags, 1));
705                 rearm7 = _mm256_blend_epi32(mbuf_init,
706                                             _mm256_slli_si256(odd_flags, 8),
707                                             0x04);
708                 rearm5 = _mm256_blend_epi32(mbuf_init,
709                                             _mm256_slli_si256(odd_flags, 4),
710                                             0x04);
711                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
712                 rearm1 = _mm256_blend_epi32(mbuf_init,
713                                             _mm256_srli_si256(odd_flags, 4),
714                                             0x04);
715
716                 /* since odd mbufs are already in hi 128-bits use blend */
717                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
718                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
719                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
720                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
721                 /* again write to mbufs */
722                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
723                                     rearm7);
724                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
725                                     rearm5);
726                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
727                                     rearm3);
728                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
729                                     rearm1);
730
731                 /* extract and record EOP bit */
732                 if (split_packet) {
733                         const __m128i eop_mask =
734                                 _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
735                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
736                                                                      eop_check);
737                         /* pack status bits into a single 128-bit register */
738                         const __m128i eop_bits =
739                                 _mm_packus_epi32
740                                         (_mm256_castsi256_si128(eop_bits256),
741                                          _mm256_extractf128_si256(eop_bits256,
742                                                                   1));
743                         /**
744                          * flip bits, and mask out the EOP bit, which is now
745                          * a split-packet bit i.e. !EOP, rather than EOP one.
746                          */
747                         __m128i split_bits = _mm_andnot_si128(eop_bits,
748                                         eop_mask);
749                         /**
750                          * eop bits are out of order, so we need to shuffle them
751                          * back into order again. In doing so, only use low 8
752                          * bits, which acts like another pack instruction
753                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
754                          * [Since we use epi8, the 16-bit positions are
755                          * multiplied by 2 in the eop_shuffle value.]
756                          */
757                         __m128i eop_shuffle =
758                                 _mm_set_epi8(/* zero hi 64b */
759                                              0xFF, 0xFF, 0xFF, 0xFF,
760                                              0xFF, 0xFF, 0xFF, 0xFF,
761                                              /* move values to lo 64b */
762                                              8, 0, 10, 2,
763                                              12, 4, 14, 6);
764                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
765                         *(uint64_t *)split_packet =
766                                 _mm_cvtsi128_si64(split_bits);
767                         split_packet += ICE_DESCS_PER_LOOP_AVX;
768                 }
769
770                 /* perform dd_check */
771                 status0_7 = _mm256_and_si256(status0_7, dd_check);
772                 status0_7 = _mm256_packs_epi32(status0_7,
773                                                _mm256_setzero_si256());
774
775                 uint64_t burst = __builtin_popcountll
776                                         (_mm_cvtsi128_si64
777                                                 (_mm256_extracti128_si256
778                                                         (status0_7, 1)));
779                 burst += __builtin_popcountll
780                                 (_mm_cvtsi128_si64
781                                         (_mm256_castsi256_si128(status0_7)));
782                 received += burst;
783                 if (burst != ICE_DESCS_PER_LOOP_AVX)
784                         break;
785         }
786
787         /* update tail pointers */
788         rxq->rx_tail += received;
789         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
790         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
791                 rxq->rx_tail--;
792                 received--;
793         }
794         rxq->rxrearm_nb += received;
795         return received;
796 }
797
798 /**
799  * Notice:
800  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
801  */
802 uint16_t
803 ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
804                          uint16_t nb_pkts)
805 {
806         return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL);
807 }
808
809 /**
810  * vPMD receive routine that reassembles single burst of 32 scattered packets
811  * Notice:
812  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
813  */
814 static uint16_t
815 ice_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
816                                     uint16_t nb_pkts)
817 {
818         struct ice_rx_queue *rxq = rx_queue;
819         uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
820
821         /* get some new buffers */
822         uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
823                                                        split_flags);
824         if (nb_bufs == 0)
825                 return 0;
826
827         /* happy day case, full burst + no packets to be joined */
828         const uint64_t *split_fl64 = (uint64_t *)split_flags;
829
830         if (!rxq->pkt_first_seg &&
831             split_fl64[0] == 0 && split_fl64[1] == 0 &&
832             split_fl64[2] == 0 && split_fl64[3] == 0)
833                 return nb_bufs;
834
835         /* reassemble any packets that need reassembly */
836         unsigned int i = 0;
837
838         if (!rxq->pkt_first_seg) {
839                 /* find the first split flag, and only reassemble then */
840                 while (i < nb_bufs && !split_flags[i])
841                         i++;
842                 if (i == nb_bufs)
843                         return nb_bufs;
844                 rxq->pkt_first_seg = rx_pkts[i];
845         }
846         return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
847                                              &split_flags[i]);
848 }
849
850 /**
851  * vPMD receive routine that reassembles scattered packets.
852  * Main receive routine that can handle arbitrary burst sizes
853  * Notice:
854  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
855  */
856 uint16_t
857 ice_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
858                                    uint16_t nb_pkts)
859 {
860         uint16_t retval = 0;
861
862         while (nb_pkts > ICE_VPMD_RX_BURST) {
863                 uint16_t burst = ice_recv_scattered_burst_vec_avx512(rx_queue,
864                                 rx_pkts + retval, ICE_VPMD_RX_BURST);
865                 retval += burst;
866                 nb_pkts -= burst;
867                 if (burst < ICE_VPMD_RX_BURST)
868                         return retval;
869         }
870         return retval + ice_recv_scattered_burst_vec_avx512(rx_queue,
871                                 rx_pkts + retval, nb_pkts);
872 }
873
874 static __rte_always_inline int
875 ice_tx_free_bufs_avx512(struct ice_tx_queue *txq)
876 {
877         struct ice_vec_tx_entry *txep;
878         uint32_t n;
879         uint32_t i;
880         int nb_free = 0;
881         struct rte_mbuf *m, *free[ICE_TX_MAX_FREE_BUF_SZ];
882
883         /* check DD bits on threshold descriptor */
884         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
885                         rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
886                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
887                 return 0;
888
889         n = txq->tx_rs_thresh;
890
891         /* first buffer to free from S/W ring is at index
892          * tx_next_dd - (tx_rs_thresh - 1)
893          */
894         txep = (void *)txq->sw_ring;
895         txep += txq->tx_next_dd - (n - 1);
896
897         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
898                 struct rte_mempool *mp = txep[0].mbuf->pool;
899                 void **cache_objs;
900                 struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
901                                 rte_lcore_id());
902
903                 if (!cache || cache->len == 0)
904                         goto normal;
905
906                 cache_objs = &cache->objs[cache->len];
907
908                 if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
909                         rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
910                         goto done;
911                 }
912
913                 /* The cache follows the following algorithm
914                  *   1. Add the objects to the cache
915                  *   2. Anything greater than the cache min value (if it
916                  *   crosses the cache flush threshold) is flushed to the ring.
917                  */
918                 /* Add elements back into the cache */
919                 uint32_t copied = 0;
920                 /* n is multiple of 32 */
921                 while (copied < n) {
922                         const __m512i a = _mm512_loadu_si512(&txep[copied]);
923                         const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
924                         const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
925                         const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
926
927                         _mm512_storeu_si512(&cache_objs[copied], a);
928                         _mm512_storeu_si512(&cache_objs[copied + 8], b);
929                         _mm512_storeu_si512(&cache_objs[copied + 16], c);
930                         _mm512_storeu_si512(&cache_objs[copied + 24], d);
931                         copied += 32;
932                 }
933                 cache->len += n;
934
935                 if (cache->len >= cache->flushthresh) {
936                         rte_mempool_ops_enqueue_bulk
937                                 (mp, &cache->objs[cache->size],
938                                  cache->len - cache->size);
939                         cache->len = cache->size;
940                 }
941                 goto done;
942         }
943
944 normal:
945         m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
946         if (likely(m)) {
947                 free[0] = m;
948                 nb_free = 1;
949                 for (i = 1; i < n; i++) {
950                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
951                         if (likely(m)) {
952                                 if (likely(m->pool == free[0]->pool)) {
953                                         free[nb_free++] = m;
954                                 } else {
955                                         rte_mempool_put_bulk(free[0]->pool,
956                                                              (void *)free,
957                                                              nb_free);
958                                         free[0] = m;
959                                         nb_free = 1;
960                                 }
961                         }
962                 }
963                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
964         } else {
965                 for (i = 1; i < n; i++) {
966                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
967                         if (m)
968                                 rte_mempool_put(m->pool, m);
969                 }
970         }
971
972 done:
973         /* buffers were freed, update counters */
974         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
975         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
976         if (txq->tx_next_dd >= txq->nb_tx_desc)
977                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
978
979         return txq->tx_rs_thresh;
980 }
981
982 static inline void
983 ice_vtx1(volatile struct ice_tx_desc *txdp,
984          struct rte_mbuf *pkt, uint64_t flags)
985 {
986         uint64_t high_qw =
987                 (ICE_TX_DESC_DTYPE_DATA |
988                  ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
989                  ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
990
991         __m128i descriptor = _mm_set_epi64x(high_qw,
992                                 pkt->buf_iova + pkt->data_off);
993         _mm_store_si128((__m128i *)txdp, descriptor);
994 }
995
996 static inline void
997 ice_vtx(volatile struct ice_tx_desc *txdp,
998         struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
999 {
1000         const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
1001                         ((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
1002
1003         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
1004                 uint64_t hi_qw3 =
1005                         hi_qw_tmpl |
1006                         ((uint64_t)pkt[3]->data_len <<
1007                          ICE_TXD_QW1_TX_BUF_SZ_S);
1008                 uint64_t hi_qw2 =
1009                         hi_qw_tmpl |
1010                         ((uint64_t)pkt[2]->data_len <<
1011                          ICE_TXD_QW1_TX_BUF_SZ_S);
1012                 uint64_t hi_qw1 =
1013                         hi_qw_tmpl |
1014                         ((uint64_t)pkt[1]->data_len <<
1015                          ICE_TXD_QW1_TX_BUF_SZ_S);
1016                 uint64_t hi_qw0 =
1017                         hi_qw_tmpl |
1018                         ((uint64_t)pkt[0]->data_len <<
1019                          ICE_TXD_QW1_TX_BUF_SZ_S);
1020
1021                 __m512i desc0_3 =
1022                         _mm512_set_epi64
1023                                 (hi_qw3,
1024                                  pkt[3]->buf_iova + pkt[3]->data_off,
1025                                  hi_qw2,
1026                                  pkt[2]->buf_iova + pkt[2]->data_off,
1027                                  hi_qw1,
1028                                  pkt[1]->buf_iova + pkt[1]->data_off,
1029                                  hi_qw0,
1030                                  pkt[0]->buf_iova + pkt[0]->data_off);
1031                 _mm512_storeu_si512((void *)txdp, desc0_3);
1032         }
1033
1034         /* do any last ones */
1035         while (nb_pkts) {
1036                 ice_vtx1(txdp, *pkt, flags);
1037                 txdp++, pkt++, nb_pkts--;
1038         }
1039 }
1040
1041 static __rte_always_inline void
1042 ice_tx_backlog_entry_avx512(struct ice_vec_tx_entry *txep,
1043                             struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1044 {
1045         int i;
1046
1047         for (i = 0; i < (int)nb_pkts; ++i)
1048                 txep[i].mbuf = tx_pkts[i];
1049 }
1050
1051 static inline uint16_t
1052 ice_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1053                                 uint16_t nb_pkts)
1054 {
1055         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1056         volatile struct ice_tx_desc *txdp;
1057         struct ice_vec_tx_entry *txep;
1058         uint16_t n, nb_commit, tx_id;
1059         uint64_t flags = ICE_TD_CMD;
1060         uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
1061
1062         /* cross rx_thresh boundary is not allowed */
1063         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1064
1065         if (txq->nb_tx_free < txq->tx_free_thresh)
1066                 ice_tx_free_bufs_avx512(txq);
1067
1068         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1069         if (unlikely(nb_pkts == 0))
1070                 return 0;
1071
1072         tx_id = txq->tx_tail;
1073         txdp = &txq->tx_ring[tx_id];
1074         txep = (void *)txq->sw_ring;
1075         txep += tx_id;
1076
1077         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1078
1079         n = (uint16_t)(txq->nb_tx_desc - tx_id);
1080         if (nb_commit >= n) {
1081                 ice_tx_backlog_entry_avx512(txep, tx_pkts, n);
1082
1083                 ice_vtx(txdp, tx_pkts, n - 1, flags);
1084                 tx_pkts += (n - 1);
1085                 txdp += (n - 1);
1086
1087                 ice_vtx1(txdp, *tx_pkts++, rs);
1088
1089                 nb_commit = (uint16_t)(nb_commit - n);
1090
1091                 tx_id = 0;
1092                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1093
1094                 /* avoid reach the end of ring */
1095                 txdp = txq->tx_ring;
1096                 txep = (void *)txq->sw_ring;
1097         }
1098
1099         ice_tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
1100
1101         ice_vtx(txdp, tx_pkts, nb_commit, flags);
1102
1103         tx_id = (uint16_t)(tx_id + nb_commit);
1104         if (tx_id > txq->tx_next_rs) {
1105                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
1106                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
1107                                          ICE_TXD_QW1_CMD_S);
1108                 txq->tx_next_rs =
1109                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1110         }
1111
1112         txq->tx_tail = tx_id;
1113
1114         ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1115
1116         return nb_pkts;
1117 }
1118
1119 uint16_t
1120 ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1121                          uint16_t nb_pkts)
1122 {
1123         uint16_t nb_tx = 0;
1124         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1125
1126         while (nb_pkts) {
1127                 uint16_t ret, num;
1128
1129                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1130                 ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
1131                                                       &tx_pkts[nb_tx], num);
1132                 nb_tx += ret;
1133                 nb_pkts -= ret;
1134                 if (ret < num)
1135                         break;
1136         }
1137
1138         return nb_tx;
1139 }