net/ice: add Tx AVX512 offload path
[dpdk.git] / drivers / net / ice / ice_rxtx_vec_avx512.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "ice_rxtx_vec_common.h"
6
7 #include <rte_vect.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 #define ICE_DESCS_PER_LOOP_AVX 8
14
15 static __rte_always_inline void
16 ice_rxq_rearm(struct ice_rx_queue *rxq)
17 {
18         int i;
19         uint16_t rx_id;
20         volatile union ice_rx_flex_desc *rxdp;
21         struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
22         struct rte_mempool_cache *cache = rte_mempool_default_cache(rxq->mp,
23                         rte_lcore_id());
24
25         rxdp = rxq->rx_ring + rxq->rxrearm_start;
26
27         if (unlikely(!cache))
28                 return ice_rxq_rearm_common(rxq, true);
29
30         /* We need to pull 'n' more MBUFs into the software ring */
31         if (cache->len < ICE_RXQ_REARM_THRESH) {
32                 uint32_t req = ICE_RXQ_REARM_THRESH + (cache->size -
33                                 cache->len);
34
35                 int ret = rte_mempool_ops_dequeue_bulk(rxq->mp,
36                                 &cache->objs[cache->len], req);
37                 if (ret == 0) {
38                         cache->len += req;
39                 } else {
40                         if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
41                             rxq->nb_rx_desc) {
42                                 __m128i dma_addr0;
43
44                                 dma_addr0 = _mm_setzero_si128();
45                                 for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
46                                         rxep[i].mbuf = &rxq->fake_mbuf;
47                                         _mm_store_si128
48                                                 ((__m128i *)&rxdp[i].read,
49                                                         dma_addr0);
50                                 }
51                         }
52                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
53                                 ICE_RXQ_REARM_THRESH;
54                         return;
55                 }
56         }
57
58         const __m512i iova_offsets =  _mm512_set1_epi64
59                 (offsetof(struct rte_mbuf, buf_iova));
60         const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
61
62 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
63         /* shuffle the iova into correct slots. Values 4-7 will contain
64          * zeros, so use 7 for a zero-value.
65          */
66         const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
67 #else
68         const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
69 #endif
70
71         /* fill up the rxd in vector, process 8 mbufs in one loop */
72         for (i = 0; i < ICE_RXQ_REARM_THRESH / 8; i++) {
73                 const __m512i mbuf_ptrs = _mm512_loadu_si512
74                         (&cache->objs[cache->len - 8]);
75                 _mm512_store_si512(rxep, mbuf_ptrs);
76
77                 /* gather iova of mbuf0-7 into one zmm reg */
78                 const __m512i iova_base_addrs = _mm512_i64gather_epi64
79                         (_mm512_add_epi64(mbuf_ptrs, iova_offsets),
80                                 0, /* base */
81                                 1  /* scale */);
82                 const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
83                                 headroom);
84 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
85                 const __m512i iovas0 = _mm512_castsi256_si512
86                         (_mm512_extracti64x4_epi64(iova_addrs, 0));
87                 const __m512i iovas1 = _mm512_castsi256_si512
88                         (_mm512_extracti64x4_epi64(iova_addrs, 1));
89
90                 /* permute leaves iova 2-3 in hdr_addr of desc 0-1
91                  * but these are ignored by driver since header split not
92                  * enabled. Similarly for desc 4 & 5.
93                  */
94                 const __m512i desc0_1 = _mm512_permutexvar_epi64
95                         (permute_idx, iovas0);
96                 const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
97
98                 const __m512i desc4_5 = _mm512_permutexvar_epi64
99                         (permute_idx, iovas1);
100                 const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
101
102                 _mm512_store_si512((void *)rxdp, desc0_1);
103                 _mm512_store_si512((void *)(rxdp + 2), desc2_3);
104                 _mm512_store_si512((void *)(rxdp + 4), desc4_5);
105                 _mm512_store_si512((void *)(rxdp + 6), desc6_7);
106 #else
107                 /* permute leaves iova 4-7 in hdr_addr of desc 0-3
108                  * but these are ignored by driver since header split not
109                  * enabled.
110                  */
111                 const __m512i desc0_3 = _mm512_permutexvar_epi64
112                         (permute_idx, iova_addrs);
113                 const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
114
115                 _mm512_store_si512((void *)rxdp, desc0_3);
116                 _mm512_store_si512((void *)(rxdp + 4), desc4_7);
117 #endif
118                 rxep += 8, rxdp += 8, cache->len -= 8;
119         }
120
121         rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
122         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
123                 rxq->rxrearm_start = 0;
124
125         rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
126
127         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
128                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
129
130         /* Update the tail pointer on the NIC */
131         ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
132 }
133
134 static inline __m256i
135 ice_flex_rxd_to_fdir_flags_vec_avx512(const __m256i fdir_id0_7)
136 {
137 #define FDID_MIS_MAGIC 0xFFFFFFFF
138         RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
139         RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
140         const __m256i pkt_fdir_bit = _mm256_set1_epi32(PKT_RX_FDIR |
141                         PKT_RX_FDIR_ID);
142         /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
143         const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
144         __m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
145                         fdir_mis_mask);
146         /* this XOR op results to bit-reverse the fdir_mask */
147         fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
148         const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
149
150         return fdir_flags;
151 }
152
153 static inline uint16_t
154 _ice_recv_raw_pkts_vec_avx512(struct ice_rx_queue *rxq,
155                               struct rte_mbuf **rx_pkts,
156                               uint16_t nb_pkts, uint8_t *split_packet)
157 {
158         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
159         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
160                         0, rxq->mbuf_initializer);
161         struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
162         volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
163
164         rte_prefetch0(rxdp);
165
166         /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
167         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
168
169         /* See if we need to rearm the RX queue - gives the prefetch a bit
170          * of time to act
171          */
172         if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
173                 ice_rxq_rearm(rxq);
174
175         /* Before we start moving massive data around, check to see if
176          * there is actually a packet available
177          */
178         if (!(rxdp->wb.status_error0 &
179                         rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
180                 return 0;
181
182         /* constants used in processing loop */
183         const __m512i crc_adjust =
184                 _mm512_set4_epi32
185                         (0,             /* ignore non-length fields */
186                          -rxq->crc_len, /* sub crc on data_len */
187                          -rxq->crc_len, /* sub crc on pkt_len */
188                          0              /* ignore non-length fields */
189                         );
190
191         /* 8 packets DD mask, LSB in each 32-bit value */
192         const __m256i dd_check = _mm256_set1_epi32(1);
193
194         /* 8 packets EOP mask, second-LSB in each 32-bit value */
195         const __m256i eop_check = _mm256_slli_epi32(dd_check,
196                         ICE_RX_DESC_STATUS_EOF_S);
197
198         /* mask to shuffle from desc. to mbuf (4 descriptors)*/
199         const __m512i shuf_msk =
200                 _mm512_set4_epi32
201                         (/* rss hash parsed separately */
202                          0xFFFFFFFF,
203                          /* octet 10~11, 16 bits vlan_macip */
204                          /* octet 4~5, 16 bits data_len */
205                          11 << 24 | 10 << 16 | 5 << 8 | 4,
206                          /* skip hi 16 bits pkt_len, zero out */
207                          /* octet 4~5, 16 bits pkt_len */
208                          0xFFFF << 16 | 5 << 8 | 4,
209                          /* pkt_type set as unknown */
210                          0xFFFFFFFF
211                         );
212
213         /**
214          * compile-time check the above crc and shuffle layout is correct.
215          * NOTE: the first field (lowest address) is given last in set_epi
216          * calls above.
217          */
218         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
219                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
220         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
221                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
222         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
223                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
224         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
225                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
226
227         /* Status/Error flag masks */
228         /**
229          * mask everything except Checksum Reports, RSS indication
230          * and VLAN indication.
231          * bit6:4 for IP/L4 checksum errors.
232          * bit12 is for RSS indication.
233          * bit13 is for VLAN indication.
234          */
235         const __m256i flags_mask =
236                  _mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
237         /**
238          * data to be shuffled by the result of the flags mask shifted by 4
239          * bits.  This gives use the l3_l4 flags.
240          */
241         const __m256i l3_l4_flags_shuf =
242                 _mm256_set_epi8((PKT_RX_OUTER_L4_CKSUM_BAD >> 20 |
243                  PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
244                   PKT_RX_IP_CKSUM_BAD) >> 1,
245                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
246                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
247                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
248                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
249                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
250                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
251                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
252                  PKT_RX_IP_CKSUM_BAD) >> 1,
253                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
254                  PKT_RX_IP_CKSUM_GOOD) >> 1,
255                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
256                  PKT_RX_IP_CKSUM_BAD) >> 1,
257                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
258                  PKT_RX_IP_CKSUM_GOOD) >> 1,
259                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
260                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
261                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
262                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
263                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
264                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
265                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
266                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
267                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
268                  PKT_RX_IP_CKSUM_BAD) >> 1,
269                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
270                  PKT_RX_IP_CKSUM_GOOD) >> 1,
271                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
272                  PKT_RX_IP_CKSUM_BAD) >> 1,
273                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
274                  PKT_RX_IP_CKSUM_GOOD) >> 1,
275                 /**
276                  * second 128-bits
277                  * shift right 20 bits to use the low two bits to indicate
278                  * outer checksum status
279                  * shift right 1 bit to make sure it not exceed 255
280                  */
281                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
282                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
283                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
284                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
285                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
286                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
287                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
288                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
289                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
290                  PKT_RX_IP_CKSUM_BAD) >> 1,
291                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
292                  PKT_RX_IP_CKSUM_GOOD) >> 1,
293                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
294                  PKT_RX_IP_CKSUM_BAD) >> 1,
295                 (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
296                  PKT_RX_IP_CKSUM_GOOD) >> 1,
297                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
298                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
299                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
300                  PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
301                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
302                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
303                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
304                  PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
305                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
306                  PKT_RX_IP_CKSUM_BAD) >> 1,
307                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
308                  PKT_RX_IP_CKSUM_GOOD) >> 1,
309                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
310                  PKT_RX_IP_CKSUM_BAD) >> 1,
311                 (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
312                  PKT_RX_IP_CKSUM_GOOD) >> 1);
313         const __m256i cksum_mask =
314                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_MASK |
315                                    PKT_RX_L4_CKSUM_MASK |
316                                    PKT_RX_OUTER_IP_CKSUM_BAD |
317                                    PKT_RX_OUTER_L4_CKSUM_MASK);
318         /**
319          * data to be shuffled by result of flag mask, shifted down 12.
320          * If RSS(bit12)/VLAN(bit13) are set,
321          * shuffle moves appropriate flags in place.
322          */
323         const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
324                         0, 0, 0, 0,
325                         0, 0, 0, 0,
326                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
327                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
328                         PKT_RX_RSS_HASH, 0,
329                         /* 2nd 128-bits */
330                         0, 0, 0, 0,
331                         0, 0, 0, 0,
332                         0, 0, 0, 0,
333                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
334                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
335                         PKT_RX_RSS_HASH, 0);
336
337         uint16_t i, received;
338
339         for (i = 0, received = 0; i < nb_pkts;
340              i += ICE_DESCS_PER_LOOP_AVX,
341              rxdp += ICE_DESCS_PER_LOOP_AVX) {
342                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
343                 _mm256_storeu_si256((void *)&rx_pkts[i],
344                                     _mm256_loadu_si256((void *)&sw_ring[i]));
345 #ifdef RTE_ARCH_X86_64
346                 _mm256_storeu_si256
347                         ((void *)&rx_pkts[i + 4],
348                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
349 #endif
350
351                 __m512i raw_desc0_3, raw_desc4_7;
352                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
353
354                 /* load in descriptors, in reverse order */
355                 const __m128i raw_desc7 =
356                         _mm_load_si128((void *)(rxdp + 7));
357                 rte_compiler_barrier();
358                 const __m128i raw_desc6 =
359                         _mm_load_si128((void *)(rxdp + 6));
360                 rte_compiler_barrier();
361                 const __m128i raw_desc5 =
362                         _mm_load_si128((void *)(rxdp + 5));
363                 rte_compiler_barrier();
364                 const __m128i raw_desc4 =
365                         _mm_load_si128((void *)(rxdp + 4));
366                 rte_compiler_barrier();
367                 const __m128i raw_desc3 =
368                         _mm_load_si128((void *)(rxdp + 3));
369                 rte_compiler_barrier();
370                 const __m128i raw_desc2 =
371                         _mm_load_si128((void *)(rxdp + 2));
372                 rte_compiler_barrier();
373                 const __m128i raw_desc1 =
374                         _mm_load_si128((void *)(rxdp + 1));
375                 rte_compiler_barrier();
376                 const __m128i raw_desc0 =
377                         _mm_load_si128((void *)(rxdp + 0));
378
379                 raw_desc6_7 =
380                         _mm256_inserti128_si256
381                                 (_mm256_castsi128_si256(raw_desc6),
382                                  raw_desc7, 1);
383                 raw_desc4_5 =
384                         _mm256_inserti128_si256
385                                 (_mm256_castsi128_si256(raw_desc4),
386                                  raw_desc5, 1);
387                 raw_desc2_3 =
388                         _mm256_inserti128_si256
389                                 (_mm256_castsi128_si256(raw_desc2),
390                                  raw_desc3, 1);
391                 raw_desc0_1 =
392                         _mm256_inserti128_si256
393                                 (_mm256_castsi128_si256(raw_desc0),
394                                  raw_desc1, 1);
395
396                 raw_desc4_7 =
397                         _mm512_inserti64x4
398                                 (_mm512_castsi256_si512(raw_desc4_5),
399                                  raw_desc6_7, 1);
400                 raw_desc0_3 =
401                         _mm512_inserti64x4
402                                 (_mm512_castsi256_si512(raw_desc0_1),
403                                  raw_desc2_3, 1);
404
405                 if (split_packet) {
406                         int j;
407
408                         for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
409                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
410                 }
411
412                 /**
413                  * convert descriptors 0-7 into mbufs, re-arrange fields.
414                  * Then write into the mbuf.
415                  */
416                 __m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
417                 __m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
418
419                 mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
420                 mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
421
422                 /**
423                  * to get packet types, ptype is located in bit16-25
424                  * of each 128bits
425                  */
426                 const __m512i ptype_mask =
427                         _mm512_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
428
429                 /**
430                  * to get packet types, ptype is located in bit16-25
431                  * of each 128bits
432                  */
433                 const __m512i ptypes4_7 =
434                         _mm512_and_si512(raw_desc4_7, ptype_mask);
435                 const __m512i ptypes0_3 =
436                         _mm512_and_si512(raw_desc0_3, ptype_mask);
437
438                 const __m256i ptypes6_7 =
439                         _mm512_extracti64x4_epi64(ptypes4_7, 1);
440                 const __m256i ptypes4_5 =
441                         _mm512_extracti64x4_epi64(ptypes4_7, 0);
442                 const __m256i ptypes2_3 =
443                         _mm512_extracti64x4_epi64(ptypes0_3, 1);
444                 const __m256i ptypes0_1 =
445                         _mm512_extracti64x4_epi64(ptypes0_3, 0);
446                 const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
447                 const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
448                 const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
449                 const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
450                 const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
451                 const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
452                 const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
453                 const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
454
455                 const __m512i ptype4_7 = _mm512_set_epi32
456                         (0, 0, 0, ptype_tbl[ptype7],
457                          0, 0, 0, ptype_tbl[ptype6],
458                          0, 0, 0, ptype_tbl[ptype5],
459                          0, 0, 0, ptype_tbl[ptype4]);
460                 const __m512i ptype0_3 = _mm512_set_epi32
461                         (0, 0, 0, ptype_tbl[ptype3],
462                          0, 0, 0, ptype_tbl[ptype2],
463                          0, 0, 0, ptype_tbl[ptype1],
464                          0, 0, 0, ptype_tbl[ptype0]);
465
466                 mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
467                 mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
468
469                 __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
470                 __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
471                 __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
472                 __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
473
474                 /**
475                  * use permute/extract to get status content
476                  * After the operations, the packets status flags are in the
477                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
478                  */
479                 /* merge the status bits into one register */
480                 const __m512i status_permute_msk = _mm512_set_epi32
481                         (0, 0, 0, 0,
482                          0, 0, 0, 0,
483                          22, 30, 6, 14,
484                          18, 26, 2, 10);
485                 const __m512i raw_status0_7 = _mm512_permutex2var_epi32
486                         (raw_desc4_7, status_permute_msk, raw_desc0_3);
487                 __m256i status0_7 = _mm512_extracti64x4_epi64
488                         (raw_status0_7, 0);
489
490                 /* now do flag manipulation */
491
492                 /* get only flag/error bits we want */
493                 const __m256i flag_bits =
494                         _mm256_and_si256(status0_7, flags_mask);
495                 /**
496                  * l3_l4_error flags, shuffle, then shift to correct adjustment
497                  * of flags in flags_shuf, and finally mask out extra bits
498                  */
499                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
500                                 _mm256_srli_epi32(flag_bits, 4));
501                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
502                 __m256i l4_outer_mask = _mm256_set1_epi32(0x6);
503                 __m256i l4_outer_flags =
504                                 _mm256_and_si256(l3_l4_flags, l4_outer_mask);
505                 l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
506
507                 __m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
508                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
509                 l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
510                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
511                 /* set rss and vlan flags */
512                 const __m256i rss_vlan_flag_bits =
513                         _mm256_srli_epi32(flag_bits, 12);
514                 const __m256i rss_vlan_flags =
515                         _mm256_shuffle_epi8(rss_vlan_flags_shuf,
516                                             rss_vlan_flag_bits);
517
518                 /* merge flags */
519                 __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
520                                                      rss_vlan_flags);
521
522                 if (rxq->fdir_enabled) {
523                         const __m256i fdir_id4_7 =
524                                 _mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
525
526                         const __m256i fdir_id0_3 =
527                                 _mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
528
529                         const __m256i fdir_id0_7 =
530                                 _mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
531
532                         const __m256i fdir_flags =
533                                 ice_flex_rxd_to_fdir_flags_vec_avx512
534                                         (fdir_id0_7);
535
536                         /* merge with fdir_flags */
537                         mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags);
538
539                         /* write to mbuf: have to use scalar store here */
540                         rx_pkts[i + 0]->hash.fdir.hi =
541                                 _mm256_extract_epi32(fdir_id0_7, 3);
542
543                         rx_pkts[i + 1]->hash.fdir.hi =
544                                 _mm256_extract_epi32(fdir_id0_7, 7);
545
546                         rx_pkts[i + 2]->hash.fdir.hi =
547                                 _mm256_extract_epi32(fdir_id0_7, 2);
548
549                         rx_pkts[i + 3]->hash.fdir.hi =
550                                 _mm256_extract_epi32(fdir_id0_7, 6);
551
552                         rx_pkts[i + 4]->hash.fdir.hi =
553                                 _mm256_extract_epi32(fdir_id0_7, 1);
554
555                         rx_pkts[i + 5]->hash.fdir.hi =
556                                 _mm256_extract_epi32(fdir_id0_7, 5);
557
558                         rx_pkts[i + 6]->hash.fdir.hi =
559                                 _mm256_extract_epi32(fdir_id0_7, 0);
560
561                         rx_pkts[i + 7]->hash.fdir.hi =
562                                 _mm256_extract_epi32(fdir_id0_7, 4);
563                 } /* if() on fdir_enabled */
564
565 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
566                 /**
567                  * needs to load 2nd 16B of each desc for RSS hash parsing,
568                  * will cause performance drop to get into this context.
569                  */
570                 if (rxq->vsi->adapter->eth_dev->data->dev_conf.rxmode.offloads &
571                                 DEV_RX_OFFLOAD_RSS_HASH) {
572                         /* load bottom half of every 32B desc */
573                         const __m128i raw_desc_bh7 =
574                                 _mm_load_si128
575                                         ((void *)(&rxdp[7].wb.status_error1));
576                         rte_compiler_barrier();
577                         const __m128i raw_desc_bh6 =
578                                 _mm_load_si128
579                                         ((void *)(&rxdp[6].wb.status_error1));
580                         rte_compiler_barrier();
581                         const __m128i raw_desc_bh5 =
582                                 _mm_load_si128
583                                         ((void *)(&rxdp[5].wb.status_error1));
584                         rte_compiler_barrier();
585                         const __m128i raw_desc_bh4 =
586                                 _mm_load_si128
587                                         ((void *)(&rxdp[4].wb.status_error1));
588                         rte_compiler_barrier();
589                         const __m128i raw_desc_bh3 =
590                                 _mm_load_si128
591                                         ((void *)(&rxdp[3].wb.status_error1));
592                         rte_compiler_barrier();
593                         const __m128i raw_desc_bh2 =
594                                 _mm_load_si128
595                                         ((void *)(&rxdp[2].wb.status_error1));
596                         rte_compiler_barrier();
597                         const __m128i raw_desc_bh1 =
598                                 _mm_load_si128
599                                         ((void *)(&rxdp[1].wb.status_error1));
600                         rte_compiler_barrier();
601                         const __m128i raw_desc_bh0 =
602                                 _mm_load_si128
603                                         ((void *)(&rxdp[0].wb.status_error1));
604
605                         __m256i raw_desc_bh6_7 =
606                                 _mm256_inserti128_si256
607                                         (_mm256_castsi128_si256(raw_desc_bh6),
608                                         raw_desc_bh7, 1);
609                         __m256i raw_desc_bh4_5 =
610                                 _mm256_inserti128_si256
611                                         (_mm256_castsi128_si256(raw_desc_bh4),
612                                         raw_desc_bh5, 1);
613                         __m256i raw_desc_bh2_3 =
614                                 _mm256_inserti128_si256
615                                         (_mm256_castsi128_si256(raw_desc_bh2),
616                                         raw_desc_bh3, 1);
617                         __m256i raw_desc_bh0_1 =
618                                 _mm256_inserti128_si256
619                                         (_mm256_castsi128_si256(raw_desc_bh0),
620                                         raw_desc_bh1, 1);
621
622                         /**
623                          * to shift the 32b RSS hash value to the
624                          * highest 32b of each 128b before mask
625                          */
626                         __m256i rss_hash6_7 =
627                                 _mm256_slli_epi64(raw_desc_bh6_7, 32);
628                         __m256i rss_hash4_5 =
629                                 _mm256_slli_epi64(raw_desc_bh4_5, 32);
630                         __m256i rss_hash2_3 =
631                                 _mm256_slli_epi64(raw_desc_bh2_3, 32);
632                         __m256i rss_hash0_1 =
633                                 _mm256_slli_epi64(raw_desc_bh0_1, 32);
634
635                         __m256i rss_hash_msk =
636                                 _mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
637                                                  0xFFFFFFFF, 0, 0, 0);
638
639                         rss_hash6_7 = _mm256_and_si256
640                                         (rss_hash6_7, rss_hash_msk);
641                         rss_hash4_5 = _mm256_and_si256
642                                         (rss_hash4_5, rss_hash_msk);
643                         rss_hash2_3 = _mm256_and_si256
644                                         (rss_hash2_3, rss_hash_msk);
645                         rss_hash0_1 = _mm256_and_si256
646                                         (rss_hash0_1, rss_hash_msk);
647
648                         mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
649                         mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
650                         mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
651                         mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
652                 } /* if() on RSS hash parsing */
653 #endif
654
655                 /**
656                  * At this point, we have the 8 sets of flags in the low 16-bits
657                  * of each 32-bit value in vlan0.
658                  * We want to extract these, and merge them with the mbuf init
659                  * data so we can do a single write to the mbuf to set the flags
660                  * and all the other initialization fields. Extracting the
661                  * appropriate flags means that we have to do a shift and blend
662                  * for each mbuf before we do the write. However, we can also
663                  * add in the previously computed rx_descriptor fields to
664                  * make a single 256-bit write per mbuf
665                  */
666                 /* check the structure matches expectations */
667                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
668                                  offsetof(struct rte_mbuf, rearm_data) + 8);
669                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
670                                  RTE_ALIGN(offsetof(struct rte_mbuf,
671                                                     rearm_data),
672                                            16));
673                 /* build up data and do writes */
674                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
675                         rearm6, rearm7;
676
677                 rearm6 = _mm256_blend_epi32(mbuf_init,
678                                             _mm256_slli_si256(mbuf_flags, 8),
679                                             0x04);
680                 rearm4 = _mm256_blend_epi32(mbuf_init,
681                                             _mm256_slli_si256(mbuf_flags, 4),
682                                             0x04);
683                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
684                 rearm0 = _mm256_blend_epi32(mbuf_init,
685                                             _mm256_srli_si256(mbuf_flags, 4),
686                                             0x04);
687
688                 /* permute to add in the rx_descriptor e.g. rss fields */
689                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
690                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
691                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
692                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
693
694                 /* write to mbuf */
695                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
696                                     rearm6);
697                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
698                                     rearm4);
699                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
700                                     rearm2);
701                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
702                                     rearm0);
703
704                 /* repeat for the odd mbufs */
705                 const __m256i odd_flags =
706                         _mm256_castsi128_si256
707                                 (_mm256_extracti128_si256(mbuf_flags, 1));
708                 rearm7 = _mm256_blend_epi32(mbuf_init,
709                                             _mm256_slli_si256(odd_flags, 8),
710                                             0x04);
711                 rearm5 = _mm256_blend_epi32(mbuf_init,
712                                             _mm256_slli_si256(odd_flags, 4),
713                                             0x04);
714                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
715                 rearm1 = _mm256_blend_epi32(mbuf_init,
716                                             _mm256_srli_si256(odd_flags, 4),
717                                             0x04);
718
719                 /* since odd mbufs are already in hi 128-bits use blend */
720                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
721                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
722                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
723                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
724                 /* again write to mbufs */
725                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
726                                     rearm7);
727                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
728                                     rearm5);
729                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
730                                     rearm3);
731                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
732                                     rearm1);
733
734                 /* extract and record EOP bit */
735                 if (split_packet) {
736                         const __m128i eop_mask =
737                                 _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
738                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
739                                                                      eop_check);
740                         /* pack status bits into a single 128-bit register */
741                         const __m128i eop_bits =
742                                 _mm_packus_epi32
743                                         (_mm256_castsi256_si128(eop_bits256),
744                                          _mm256_extractf128_si256(eop_bits256,
745                                                                   1));
746                         /**
747                          * flip bits, and mask out the EOP bit, which is now
748                          * a split-packet bit i.e. !EOP, rather than EOP one.
749                          */
750                         __m128i split_bits = _mm_andnot_si128(eop_bits,
751                                         eop_mask);
752                         /**
753                          * eop bits are out of order, so we need to shuffle them
754                          * back into order again. In doing so, only use low 8
755                          * bits, which acts like another pack instruction
756                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
757                          * [Since we use epi8, the 16-bit positions are
758                          * multiplied by 2 in the eop_shuffle value.]
759                          */
760                         __m128i eop_shuffle =
761                                 _mm_set_epi8(/* zero hi 64b */
762                                              0xFF, 0xFF, 0xFF, 0xFF,
763                                              0xFF, 0xFF, 0xFF, 0xFF,
764                                              /* move values to lo 64b */
765                                              8, 0, 10, 2,
766                                              12, 4, 14, 6);
767                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
768                         *(uint64_t *)split_packet =
769                                 _mm_cvtsi128_si64(split_bits);
770                         split_packet += ICE_DESCS_PER_LOOP_AVX;
771                 }
772
773                 /* perform dd_check */
774                 status0_7 = _mm256_and_si256(status0_7, dd_check);
775                 status0_7 = _mm256_packs_epi32(status0_7,
776                                                _mm256_setzero_si256());
777
778                 uint64_t burst = __builtin_popcountll
779                                         (_mm_cvtsi128_si64
780                                                 (_mm256_extracti128_si256
781                                                         (status0_7, 1)));
782                 burst += __builtin_popcountll
783                                 (_mm_cvtsi128_si64
784                                         (_mm256_castsi256_si128(status0_7)));
785                 received += burst;
786                 if (burst != ICE_DESCS_PER_LOOP_AVX)
787                         break;
788         }
789
790         /* update tail pointers */
791         rxq->rx_tail += received;
792         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
793         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
794                 rxq->rx_tail--;
795                 received--;
796         }
797         rxq->rxrearm_nb += received;
798         return received;
799 }
800
801 /**
802  * Notice:
803  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
804  */
805 uint16_t
806 ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
807                          uint16_t nb_pkts)
808 {
809         return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL);
810 }
811
812 /**
813  * vPMD receive routine that reassembles single burst of 32 scattered packets
814  * Notice:
815  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
816  */
817 static uint16_t
818 ice_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
819                                     uint16_t nb_pkts)
820 {
821         struct ice_rx_queue *rxq = rx_queue;
822         uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
823
824         /* get some new buffers */
825         uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
826                                                        split_flags);
827         if (nb_bufs == 0)
828                 return 0;
829
830         /* happy day case, full burst + no packets to be joined */
831         const uint64_t *split_fl64 = (uint64_t *)split_flags;
832
833         if (!rxq->pkt_first_seg &&
834             split_fl64[0] == 0 && split_fl64[1] == 0 &&
835             split_fl64[2] == 0 && split_fl64[3] == 0)
836                 return nb_bufs;
837
838         /* reassemble any packets that need reassembly */
839         unsigned int i = 0;
840
841         if (!rxq->pkt_first_seg) {
842                 /* find the first split flag, and only reassemble then */
843                 while (i < nb_bufs && !split_flags[i])
844                         i++;
845                 if (i == nb_bufs)
846                         return nb_bufs;
847                 rxq->pkt_first_seg = rx_pkts[i];
848         }
849         return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
850                                              &split_flags[i]);
851 }
852
853 /**
854  * vPMD receive routine that reassembles scattered packets.
855  * Main receive routine that can handle arbitrary burst sizes
856  * Notice:
857  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
858  */
859 uint16_t
860 ice_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
861                                    uint16_t nb_pkts)
862 {
863         uint16_t retval = 0;
864
865         while (nb_pkts > ICE_VPMD_RX_BURST) {
866                 uint16_t burst = ice_recv_scattered_burst_vec_avx512(rx_queue,
867                                 rx_pkts + retval, ICE_VPMD_RX_BURST);
868                 retval += burst;
869                 nb_pkts -= burst;
870                 if (burst < ICE_VPMD_RX_BURST)
871                         return retval;
872         }
873         return retval + ice_recv_scattered_burst_vec_avx512(rx_queue,
874                                 rx_pkts + retval, nb_pkts);
875 }
876
877 static __rte_always_inline int
878 ice_tx_free_bufs_avx512(struct ice_tx_queue *txq)
879 {
880         struct ice_vec_tx_entry *txep;
881         uint32_t n;
882         uint32_t i;
883         int nb_free = 0;
884         struct rte_mbuf *m, *free[ICE_TX_MAX_FREE_BUF_SZ];
885
886         /* check DD bits on threshold descriptor */
887         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
888                         rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
889                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
890                 return 0;
891
892         n = txq->tx_rs_thresh;
893
894         /* first buffer to free from S/W ring is at index
895          * tx_next_dd - (tx_rs_thresh - 1)
896          */
897         txep = (void *)txq->sw_ring;
898         txep += txq->tx_next_dd - (n - 1);
899
900         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
901                 struct rte_mempool *mp = txep[0].mbuf->pool;
902                 void **cache_objs;
903                 struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
904                                 rte_lcore_id());
905
906                 if (!cache || cache->len == 0)
907                         goto normal;
908
909                 cache_objs = &cache->objs[cache->len];
910
911                 if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
912                         rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
913                         goto done;
914                 }
915
916                 /* The cache follows the following algorithm
917                  *   1. Add the objects to the cache
918                  *   2. Anything greater than the cache min value (if it
919                  *   crosses the cache flush threshold) is flushed to the ring.
920                  */
921                 /* Add elements back into the cache */
922                 uint32_t copied = 0;
923                 /* n is multiple of 32 */
924                 while (copied < n) {
925                         const __m512i a = _mm512_loadu_si512(&txep[copied]);
926                         const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
927                         const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
928                         const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
929
930                         _mm512_storeu_si512(&cache_objs[copied], a);
931                         _mm512_storeu_si512(&cache_objs[copied + 8], b);
932                         _mm512_storeu_si512(&cache_objs[copied + 16], c);
933                         _mm512_storeu_si512(&cache_objs[copied + 24], d);
934                         copied += 32;
935                 }
936                 cache->len += n;
937
938                 if (cache->len >= cache->flushthresh) {
939                         rte_mempool_ops_enqueue_bulk
940                                 (mp, &cache->objs[cache->size],
941                                  cache->len - cache->size);
942                         cache->len = cache->size;
943                 }
944                 goto done;
945         }
946
947 normal:
948         m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
949         if (likely(m)) {
950                 free[0] = m;
951                 nb_free = 1;
952                 for (i = 1; i < n; i++) {
953                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
954                         if (likely(m)) {
955                                 if (likely(m->pool == free[0]->pool)) {
956                                         free[nb_free++] = m;
957                                 } else {
958                                         rte_mempool_put_bulk(free[0]->pool,
959                                                              (void *)free,
960                                                              nb_free);
961                                         free[0] = m;
962                                         nb_free = 1;
963                                 }
964                         }
965                 }
966                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
967         } else {
968                 for (i = 1; i < n; i++) {
969                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
970                         if (m)
971                                 rte_mempool_put(m->pool, m);
972                 }
973         }
974
975 done:
976         /* buffers were freed, update counters */
977         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
978         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
979         if (txq->tx_next_dd >= txq->nb_tx_desc)
980                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
981
982         return txq->tx_rs_thresh;
983 }
984
985 static __rte_always_inline void
986 ice_vtx1(volatile struct ice_tx_desc *txdp,
987          struct rte_mbuf *pkt, uint64_t flags, bool do_offload)
988 {
989         uint64_t high_qw =
990                 (ICE_TX_DESC_DTYPE_DATA |
991                  ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
992                  ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
993
994         if (do_offload)
995                 ice_txd_enable_offload(pkt, &high_qw);
996
997         __m128i descriptor = _mm_set_epi64x(high_qw,
998                                 pkt->buf_iova + pkt->data_off);
999         _mm_store_si128((__m128i *)txdp, descriptor);
1000 }
1001
1002 static __rte_always_inline void
1003 ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt,
1004         uint16_t nb_pkts,  uint64_t flags, bool do_offload)
1005 {
1006         const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
1007                         ((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
1008
1009         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
1010                 uint64_t hi_qw3 =
1011                         hi_qw_tmpl |
1012                         ((uint64_t)pkt[3]->data_len <<
1013                          ICE_TXD_QW1_TX_BUF_SZ_S);
1014                 if (do_offload)
1015                         ice_txd_enable_offload(pkt[3], &hi_qw3);
1016                 uint64_t hi_qw2 =
1017                         hi_qw_tmpl |
1018                         ((uint64_t)pkt[2]->data_len <<
1019                          ICE_TXD_QW1_TX_BUF_SZ_S);
1020                 if (do_offload)
1021                         ice_txd_enable_offload(pkt[2], &hi_qw2);
1022                 uint64_t hi_qw1 =
1023                         hi_qw_tmpl |
1024                         ((uint64_t)pkt[1]->data_len <<
1025                          ICE_TXD_QW1_TX_BUF_SZ_S);
1026                 if (do_offload)
1027                         ice_txd_enable_offload(pkt[1], &hi_qw1);
1028                 uint64_t hi_qw0 =
1029                         hi_qw_tmpl |
1030                         ((uint64_t)pkt[0]->data_len <<
1031                          ICE_TXD_QW1_TX_BUF_SZ_S);
1032                 if (do_offload)
1033                         ice_txd_enable_offload(pkt[0], &hi_qw0);
1034
1035                 __m512i desc0_3 =
1036                         _mm512_set_epi64
1037                                 (hi_qw3,
1038                                  pkt[3]->buf_iova + pkt[3]->data_off,
1039                                  hi_qw2,
1040                                  pkt[2]->buf_iova + pkt[2]->data_off,
1041                                  hi_qw1,
1042                                  pkt[1]->buf_iova + pkt[1]->data_off,
1043                                  hi_qw0,
1044                                  pkt[0]->buf_iova + pkt[0]->data_off);
1045                 _mm512_storeu_si512((void *)txdp, desc0_3);
1046         }
1047
1048         /* do any last ones */
1049         while (nb_pkts) {
1050                 ice_vtx1(txdp, *pkt, flags, do_offload);
1051                 txdp++, pkt++, nb_pkts--;
1052         }
1053 }
1054
1055 static __rte_always_inline void
1056 ice_tx_backlog_entry_avx512(struct ice_vec_tx_entry *txep,
1057                             struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1058 {
1059         int i;
1060
1061         for (i = 0; i < (int)nb_pkts; ++i)
1062                 txep[i].mbuf = tx_pkts[i];
1063 }
1064
1065 static __rte_always_inline uint16_t
1066 ice_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1067                                 uint16_t nb_pkts, bool do_offload)
1068 {
1069         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1070         volatile struct ice_tx_desc *txdp;
1071         struct ice_vec_tx_entry *txep;
1072         uint16_t n, nb_commit, tx_id;
1073         uint64_t flags = ICE_TD_CMD;
1074         uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
1075
1076         /* cross rx_thresh boundary is not allowed */
1077         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1078
1079         if (txq->nb_tx_free < txq->tx_free_thresh)
1080                 ice_tx_free_bufs_avx512(txq);
1081
1082         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1083         if (unlikely(nb_pkts == 0))
1084                 return 0;
1085
1086         tx_id = txq->tx_tail;
1087         txdp = &txq->tx_ring[tx_id];
1088         txep = (void *)txq->sw_ring;
1089         txep += tx_id;
1090
1091         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1092
1093         n = (uint16_t)(txq->nb_tx_desc - tx_id);
1094         if (nb_commit >= n) {
1095                 ice_tx_backlog_entry_avx512(txep, tx_pkts, n);
1096
1097                 ice_vtx(txdp, tx_pkts, n - 1, flags, do_offload);
1098                 tx_pkts += (n - 1);
1099                 txdp += (n - 1);
1100
1101                 ice_vtx1(txdp, *tx_pkts++, rs, do_offload);
1102
1103                 nb_commit = (uint16_t)(nb_commit - n);
1104
1105                 tx_id = 0;
1106                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1107
1108                 /* avoid reach the end of ring */
1109                 txdp = txq->tx_ring;
1110                 txep = (void *)txq->sw_ring;
1111         }
1112
1113         ice_tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
1114
1115         ice_vtx(txdp, tx_pkts, nb_commit, flags, do_offload);
1116
1117         tx_id = (uint16_t)(tx_id + nb_commit);
1118         if (tx_id > txq->tx_next_rs) {
1119                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
1120                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
1121                                          ICE_TXD_QW1_CMD_S);
1122                 txq->tx_next_rs =
1123                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1124         }
1125
1126         txq->tx_tail = tx_id;
1127
1128         ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1129
1130         return nb_pkts;
1131 }
1132
1133 uint16_t
1134 ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1135                          uint16_t nb_pkts)
1136 {
1137         uint16_t nb_tx = 0;
1138         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1139
1140         while (nb_pkts) {
1141                 uint16_t ret, num;
1142
1143                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1144                 ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
1145                                 &tx_pkts[nb_tx], num, false);
1146                 nb_tx += ret;
1147                 nb_pkts -= ret;
1148                 if (ret < num)
1149                         break;
1150         }
1151
1152         return nb_tx;
1153 }
1154
1155 uint16_t
1156 ice_xmit_pkts_vec_avx512_offload(void *tx_queue, struct rte_mbuf **tx_pkts,
1157                                  uint16_t nb_pkts)
1158 {
1159         uint16_t nb_tx = 0;
1160         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1161
1162         while (nb_pkts) {
1163                 uint16_t ret, num;
1164
1165                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1166                 ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
1167                                 &tx_pkts[nb_tx], num, true);
1168
1169                 nb_tx += ret;
1170                 nb_pkts -= ret;
1171                 if (ret < num)
1172                         break;
1173         }
1174
1175         return nb_tx;
1176 }