net/ice: add AVX512 vector path
[dpdk.git] / drivers / net / ice / ice_rxtx_vec_avx512.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "ice_rxtx_vec_common.h"
6
7 #include <x86intrin.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 #define ICE_DESCS_PER_LOOP_AVX 8
14
15 static inline void
16 ice_rxq_rearm(struct ice_rx_queue *rxq)
17 {
18         int i;
19         uint16_t rx_id;
20         volatile union ice_rx_flex_desc *rxdp;
21         struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
22         struct rte_mempool_cache *cache = rte_mempool_default_cache(rxq->mp,
23                         rte_lcore_id());
24
25         rxdp = rxq->rx_ring + rxq->rxrearm_start;
26
27         /* We need to pull 'n' more MBUFs into the software ring */
28         if (cache->len < ICE_RXQ_REARM_THRESH) {
29                 uint32_t req = ICE_RXQ_REARM_THRESH + (cache->size -
30                                 cache->len);
31
32                 int ret = rte_mempool_ops_dequeue_bulk(rxq->mp,
33                                 &cache->objs[cache->len], req);
34                 if (ret == 0) {
35                         cache->len += req;
36                 } else {
37                         if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
38                             rxq->nb_rx_desc) {
39                                 __m128i dma_addr0;
40
41                                 dma_addr0 = _mm_setzero_si128();
42                                 for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
43                                         rxep[i].mbuf = &rxq->fake_mbuf;
44                                         _mm_store_si128
45                                                 ((__m128i *)&rxdp[i].read,
46                                                         dma_addr0);
47                                 }
48                         }
49                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
50                                 ICE_RXQ_REARM_THRESH;
51                         return;
52                 }
53         }
54
55         const __m512i iova_offsets =  _mm512_set1_epi64
56                 (offsetof(struct rte_mbuf, buf_iova));
57         const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
58
59 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
60         /* shuffle the iova into correct slots. Values 4-7 will contain
61          * zeros, so use 7 for a zero-value.
62          */
63         const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
64 #else
65         const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
66 #endif
67
68         /* fill up the rxd in vector, process 8 mbufs in one loop */
69         for (i = 0; i < ICE_RXQ_REARM_THRESH / 8; i++) {
70                 const __m512i mbuf_ptrs = _mm512_loadu_si512
71                         (&cache->objs[cache->len - 8]);
72                 _mm512_store_si512(rxep, mbuf_ptrs);
73
74                 /* gather iova of mbuf0-7 into one zmm reg */
75                 const __m512i iova_base_addrs = _mm512_i64gather_epi64
76                         (_mm512_add_epi64(mbuf_ptrs, iova_offsets),
77                                 0, /* base */
78                                 1  /* scale */);
79                 const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
80                                 headroom);
81 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
82                 const __m512i iovas0 = _mm512_castsi256_si512
83                         (_mm512_extracti64x4_epi64(iova_addrs, 0));
84                 const __m512i iovas1 = _mm512_castsi256_si512
85                         (_mm512_extracti64x4_epi64(iova_addrs, 1));
86
87                 /* permute leaves iova 2-3 in hdr_addr of desc 0-1
88                  * but these are ignored by driver since header split not
89                  * enabled. Similarly for desc 4 & 5.
90                  */
91                 const __m512i desc0_1 = _mm512_permutexvar_epi64
92                         (permute_idx, iovas0);
93                 const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
94
95                 const __m512i desc4_5 = _mm512_permutexvar_epi64
96                         (permute_idx, iovas1);
97                 const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
98
99                 _mm512_store_si512((void *)rxdp, desc0_1);
100                 _mm512_store_si512((void *)(rxdp + 2), desc2_3);
101                 _mm512_store_si512((void *)(rxdp + 4), desc4_5);
102                 _mm512_store_si512((void *)(rxdp + 6), desc6_7);
103 #else
104                 /* permute leaves iova 4-7 in hdr_addr of desc 0-3
105                  * but these are ignored by driver since header split not
106                  * enabled.
107                  */
108                 const __m512i desc0_3 = _mm512_permutexvar_epi64
109                         (permute_idx, iova_addrs);
110                 const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
111
112                 _mm512_store_si512((void *)rxdp, desc0_3);
113                 _mm512_store_si512((void *)(rxdp + 4), desc4_7);
114 #endif
115                 rxep += 8, rxdp += 8, cache->len -= 8;
116         }
117
118         rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
119         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
120                 rxq->rxrearm_start = 0;
121
122         rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
123
124         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
125                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
126
127         /* Update the tail pointer on the NIC */
128         ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
129 }
130
131 static inline uint16_t
132 _ice_recv_raw_pkts_vec_avx512(struct ice_rx_queue *rxq,
133                               struct rte_mbuf **rx_pkts,
134                               uint16_t nb_pkts, uint8_t *split_packet)
135 {
136         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
137         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
138                         0, rxq->mbuf_initializer);
139         struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
140         volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
141
142         rte_prefetch0(rxdp);
143
144         /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
145         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
146
147         /* See if we need to rearm the RX queue - gives the prefetch a bit
148          * of time to act
149          */
150         if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
151                 ice_rxq_rearm(rxq);
152
153         /* Before we start moving massive data around, check to see if
154          * there is actually a packet available
155          */
156         if (!(rxdp->wb.status_error0 &
157                         rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
158                 return 0;
159
160         /* constants used in processing loop */
161         const __m512i crc_adjust =
162                 _mm512_set4_epi32
163                         (0,             /* ignore non-length fields */
164                          -rxq->crc_len, /* sub crc on data_len */
165                          -rxq->crc_len, /* sub crc on pkt_len */
166                          0              /* ignore non-length fields */
167                         );
168
169         /* 8 packets DD mask, LSB in each 32-bit value */
170         const __m256i dd_check = _mm256_set1_epi32(1);
171
172         /* 8 packets EOP mask, second-LSB in each 32-bit value */
173         const __m256i eop_check = _mm256_slli_epi32(dd_check,
174                         ICE_RX_DESC_STATUS_EOF_S);
175
176         /* mask to shuffle from desc. to mbuf (4 descriptors)*/
177         const __m512i shuf_msk =
178                 _mm512_set4_epi32
179                         (/* octet 12~15, 32 bits rss */
180                          15 << 24 | 14 << 16 | 13 << 8 | 12,
181                          /* octet 10~11, 16 bits vlan_macip */
182                          /* octet 4~5, 16 bits data_len */
183                          11 << 24 | 10 << 16 | 5 << 8 | 4,
184                          /* skip hi 16 bits pkt_len, zero out */
185                          /* octet 4~5, 16 bits pkt_len */
186                          0xFFFF << 16 | 5 << 8 | 4,
187                          /* pkt_type set as unknown */
188                          0xFFFFFFFF
189                         );
190
191         /**
192          * compile-time check the above crc and shuffle layout is correct.
193          * NOTE: the first field (lowest address) is given last in set_epi
194          * calls above.
195          */
196         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
197                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
198         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
199                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
200         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
201                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
202         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
203                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
204
205         /* Status/Error flag masks */
206         /**
207          * mask everything except Checksum Reports, RSS indication
208          * and VLAN indication.
209          * bit6:4 for IP/L4 checksum errors.
210          * bit12 is for RSS indication.
211          * bit13 is for VLAN indication.
212          */
213         const __m256i flags_mask =
214                  _mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13));
215         /**
216          * data to be shuffled by the result of the flags mask shifted by 4
217          * bits.  This gives use the l3_l4 flags.
218          */
219         const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
220                         /* shift right 1 bit to make sure it not exceed 255 */
221                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
222                          PKT_RX_IP_CKSUM_BAD) >> 1,
223                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
224                          PKT_RX_IP_CKSUM_GOOD) >> 1,
225                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
226                          PKT_RX_IP_CKSUM_BAD) >> 1,
227                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
228                          PKT_RX_IP_CKSUM_GOOD) >> 1,
229                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
230                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
231                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
232                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
233                         /* 2nd 128-bits */
234                         0, 0, 0, 0, 0, 0, 0, 0,
235                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
236                          PKT_RX_IP_CKSUM_BAD) >> 1,
237                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
238                          PKT_RX_IP_CKSUM_GOOD) >> 1,
239                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
240                          PKT_RX_IP_CKSUM_BAD) >> 1,
241                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
242                          PKT_RX_IP_CKSUM_GOOD) >> 1,
243                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
244                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
245                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
246                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
247         const __m256i cksum_mask =
248                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
249                                    PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
250                                    PKT_RX_EIP_CKSUM_BAD);
251         /**
252          * data to be shuffled by result of flag mask, shifted down 12.
253          * If RSS(bit12)/VLAN(bit13) are set,
254          * shuffle moves appropriate flags in place.
255          */
256         const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
257                         0, 0, 0, 0,
258                         0, 0, 0, 0,
259                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
260                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
261                         PKT_RX_RSS_HASH, 0,
262                         /* 2nd 128-bits */
263                         0, 0, 0, 0,
264                         0, 0, 0, 0,
265                         0, 0, 0, 0,
266                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
267                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
268                         PKT_RX_RSS_HASH, 0);
269
270         uint16_t i, received;
271
272         for (i = 0, received = 0; i < nb_pkts;
273              i += ICE_DESCS_PER_LOOP_AVX,
274              rxdp += ICE_DESCS_PER_LOOP_AVX) {
275                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
276                 _mm256_storeu_si256((void *)&rx_pkts[i],
277                                     _mm256_loadu_si256((void *)&sw_ring[i]));
278 #ifdef RTE_ARCH_X86_64
279                 _mm256_storeu_si256
280                         ((void *)&rx_pkts[i + 4],
281                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
282 #endif
283
284                 __m512i raw_desc0_3, raw_desc4_7;
285                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
286
287                 /* load in descriptors, in reverse order */
288                 const __m128i raw_desc7 =
289                         _mm_load_si128((void *)(rxdp + 7));
290                 rte_compiler_barrier();
291                 const __m128i raw_desc6 =
292                         _mm_load_si128((void *)(rxdp + 6));
293                 rte_compiler_barrier();
294                 const __m128i raw_desc5 =
295                         _mm_load_si128((void *)(rxdp + 5));
296                 rte_compiler_barrier();
297                 const __m128i raw_desc4 =
298                         _mm_load_si128((void *)(rxdp + 4));
299                 rte_compiler_barrier();
300                 const __m128i raw_desc3 =
301                         _mm_load_si128((void *)(rxdp + 3));
302                 rte_compiler_barrier();
303                 const __m128i raw_desc2 =
304                         _mm_load_si128((void *)(rxdp + 2));
305                 rte_compiler_barrier();
306                 const __m128i raw_desc1 =
307                         _mm_load_si128((void *)(rxdp + 1));
308                 rte_compiler_barrier();
309                 const __m128i raw_desc0 =
310                         _mm_load_si128((void *)(rxdp + 0));
311
312                 raw_desc6_7 =
313                         _mm256_inserti128_si256
314                                 (_mm256_castsi128_si256(raw_desc6),
315                                  raw_desc7, 1);
316                 raw_desc4_5 =
317                         _mm256_inserti128_si256
318                                 (_mm256_castsi128_si256(raw_desc4),
319                                  raw_desc5, 1);
320                 raw_desc2_3 =
321                         _mm256_inserti128_si256
322                                 (_mm256_castsi128_si256(raw_desc2),
323                                  raw_desc3, 1);
324                 raw_desc0_1 =
325                         _mm256_inserti128_si256
326                                 (_mm256_castsi128_si256(raw_desc0),
327                                  raw_desc1, 1);
328
329                 raw_desc4_7 =
330                         _mm512_inserti64x4
331                                 (_mm512_castsi256_si512(raw_desc4_5),
332                                  raw_desc6_7, 1);
333                 raw_desc0_3 =
334                         _mm512_inserti64x4
335                                 (_mm512_castsi256_si512(raw_desc0_1),
336                                  raw_desc2_3, 1);
337
338                 if (split_packet) {
339                         int j;
340
341                         for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
342                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
343                 }
344
345                 /**
346                  * convert descriptors 0-7 into mbufs, re-arrange fields.
347                  * Then write into the mbuf.
348                  */
349                 __m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
350                 __m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
351
352                 mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
353                 mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
354
355                 /**
356                  * to get packet types, ptype is located in bit16-25
357                  * of each 128bits
358                  */
359                 const __m512i ptype_mask =
360                         _mm512_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
361
362                 /**
363                  * to get packet types, ptype is located in bit16-25
364                  * of each 128bits
365                  */
366                 const __m512i ptypes4_7 =
367                         _mm512_and_si512(raw_desc4_7, ptype_mask);
368                 const __m512i ptypes0_3 =
369                         _mm512_and_si512(raw_desc0_3, ptype_mask);
370
371                 const __m256i ptypes6_7 =
372                         _mm512_extracti64x4_epi64(ptypes4_7, 1);
373                 const __m256i ptypes4_5 =
374                         _mm512_extracti64x4_epi64(ptypes4_7, 0);
375                 const __m256i ptypes2_3 =
376                         _mm512_extracti64x4_epi64(ptypes0_3, 1);
377                 const __m256i ptypes0_1 =
378                         _mm512_extracti64x4_epi64(ptypes0_3, 0);
379                 const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
380                 const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
381                 const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
382                 const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
383                 const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
384                 const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
385                 const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
386                 const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
387
388                 const __m512i ptype4_7 = _mm512_set_epi32
389                         (0, 0, 0, ptype_tbl[ptype7],
390                          0, 0, 0, ptype_tbl[ptype6],
391                          0, 0, 0, ptype_tbl[ptype5],
392                          0, 0, 0, ptype_tbl[ptype4]);
393                 const __m512i ptype0_3 = _mm512_set_epi32
394                         (0, 0, 0, ptype_tbl[ptype3],
395                          0, 0, 0, ptype_tbl[ptype2],
396                          0, 0, 0, ptype_tbl[ptype1],
397                          0, 0, 0, ptype_tbl[ptype0]);
398
399                 mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
400                 mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
401
402                 /**
403                  * use permute/extract to get status content
404                  * After the operations, the packets status flags are in the
405                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
406                  */
407                 /* merge the status bits into one register */
408                 const __m512i status_permute_msk = _mm512_set_epi32
409                         (0, 0, 0, 0,
410                          0, 0, 0, 0,
411                          22, 30, 6, 14,
412                          18, 26, 2, 10);
413                 const __m512i raw_status0_7 = _mm512_permutex2var_epi32
414                         (raw_desc4_7, status_permute_msk, raw_desc0_3);
415                 __m256i status0_7 = _mm512_extracti64x4_epi64
416                         (raw_status0_7, 0);
417
418                 /* now do flag manipulation */
419
420                 /* get only flag/error bits we want */
421                 const __m256i flag_bits =
422                         _mm256_and_si256(status0_7, flags_mask);
423                 /**
424                  * l3_l4_error flags, shuffle, then shift to correct adjustment
425                  * of flags in flags_shuf, and finally mask out extra bits
426                  */
427                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
428                                 _mm256_srli_epi32(flag_bits, 4));
429                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
430                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
431                 /* set rss and vlan flags */
432                 const __m256i rss_vlan_flag_bits =
433                         _mm256_srli_epi32(flag_bits, 12);
434                 const __m256i rss_vlan_flags =
435                         _mm256_shuffle_epi8(rss_vlan_flags_shuf,
436                                             rss_vlan_flag_bits);
437
438                 /* merge flags */
439                 const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
440                                 rss_vlan_flags);
441                 /**
442                  * At this point, we have the 8 sets of flags in the low 16-bits
443                  * of each 32-bit value in vlan0.
444                  * We want to extract these, and merge them with the mbuf init
445                  * data so we can do a single write to the mbuf to set the flags
446                  * and all the other initialization fields. Extracting the
447                  * appropriate flags means that we have to do a shift and blend
448                  * for each mbuf before we do the write. However, we can also
449                  * add in the previously computed rx_descriptor fields to
450                  * make a single 256-bit write per mbuf
451                  */
452                 /* check the structure matches expectations */
453                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
454                                  offsetof(struct rte_mbuf, rearm_data) + 8);
455                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
456                                  RTE_ALIGN(offsetof(struct rte_mbuf,
457                                                     rearm_data),
458                                            16));
459                 /* build up data and do writes */
460                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
461                         rearm6, rearm7;
462
463                 rearm6 = _mm256_blend_epi32(mbuf_init,
464                                             _mm256_slli_si256(mbuf_flags, 8),
465                                             0x04);
466                 rearm4 = _mm256_blend_epi32(mbuf_init,
467                                             _mm256_slli_si256(mbuf_flags, 4),
468                                             0x04);
469                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
470                 rearm0 = _mm256_blend_epi32(mbuf_init,
471                                             _mm256_srli_si256(mbuf_flags, 4),
472                                             0x04);
473
474                 const __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
475                 const __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
476                 const __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
477                 const __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
478
479                 /* permute to add in the rx_descriptor e.g. rss fields */
480                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
481                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
482                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
483                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
484
485                 /* write to mbuf */
486                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
487                                     rearm6);
488                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
489                                     rearm4);
490                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
491                                     rearm2);
492                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
493                                     rearm0);
494
495                 /* repeat for the odd mbufs */
496                 const __m256i odd_flags =
497                         _mm256_castsi128_si256
498                                 (_mm256_extracti128_si256(mbuf_flags, 1));
499                 rearm7 = _mm256_blend_epi32(mbuf_init,
500                                             _mm256_slli_si256(odd_flags, 8),
501                                             0x04);
502                 rearm5 = _mm256_blend_epi32(mbuf_init,
503                                             _mm256_slli_si256(odd_flags, 4),
504                                             0x04);
505                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
506                 rearm1 = _mm256_blend_epi32(mbuf_init,
507                                             _mm256_srli_si256(odd_flags, 4),
508                                             0x04);
509
510                 /* since odd mbufs are already in hi 128-bits use blend */
511                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
512                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
513                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
514                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
515                 /* again write to mbufs */
516                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
517                                     rearm7);
518                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
519                                     rearm5);
520                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
521                                     rearm3);
522                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
523                                     rearm1);
524
525                 /* extract and record EOP bit */
526                 if (split_packet) {
527                         const __m128i eop_mask =
528                                 _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
529                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
530                                                                      eop_check);
531                         /* pack status bits into a single 128-bit register */
532                         const __m128i eop_bits =
533                                 _mm_packus_epi32
534                                         (_mm256_castsi256_si128(eop_bits256),
535                                          _mm256_extractf128_si256(eop_bits256,
536                                                                   1));
537                         /**
538                          * flip bits, and mask out the EOP bit, which is now
539                          * a split-packet bit i.e. !EOP, rather than EOP one.
540                          */
541                         __m128i split_bits = _mm_andnot_si128(eop_bits,
542                                         eop_mask);
543                         /**
544                          * eop bits are out of order, so we need to shuffle them
545                          * back into order again. In doing so, only use low 8
546                          * bits, which acts like another pack instruction
547                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
548                          * [Since we use epi8, the 16-bit positions are
549                          * multiplied by 2 in the eop_shuffle value.]
550                          */
551                         __m128i eop_shuffle =
552                                 _mm_set_epi8(/* zero hi 64b */
553                                              0xFF, 0xFF, 0xFF, 0xFF,
554                                              0xFF, 0xFF, 0xFF, 0xFF,
555                                              /* move values to lo 64b */
556                                              8, 0, 10, 2,
557                                              12, 4, 14, 6);
558                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
559                         *(uint64_t *)split_packet =
560                                 _mm_cvtsi128_si64(split_bits);
561                         split_packet += ICE_DESCS_PER_LOOP_AVX;
562                 }
563
564                 /* perform dd_check */
565                 status0_7 = _mm256_and_si256(status0_7, dd_check);
566                 status0_7 = _mm256_packs_epi32(status0_7,
567                                                _mm256_setzero_si256());
568
569                 uint64_t burst = __builtin_popcountll
570                                         (_mm_cvtsi128_si64
571                                                 (_mm256_extracti128_si256
572                                                         (status0_7, 1)));
573                 burst += __builtin_popcountll
574                                 (_mm_cvtsi128_si64
575                                         (_mm256_castsi256_si128(status0_7)));
576                 received += burst;
577                 if (burst != ICE_DESCS_PER_LOOP_AVX)
578                         break;
579         }
580
581         /* update tail pointers */
582         rxq->rx_tail += received;
583         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
584         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
585                 rxq->rx_tail--;
586                 received--;
587         }
588         rxq->rxrearm_nb += received;
589         return received;
590 }
591
592 /**
593  * Notice:
594  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
595  */
596 uint16_t
597 ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
598                          uint16_t nb_pkts)
599 {
600         return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL);
601 }
602
603 /**
604  * vPMD receive routine that reassembles single burst of 32 scattered packets
605  * Notice:
606  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
607  */
608 static uint16_t
609 ice_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
610                                     uint16_t nb_pkts)
611 {
612         struct ice_rx_queue *rxq = rx_queue;
613         uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
614
615         /* get some new buffers */
616         uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
617                                                        split_flags);
618         if (nb_bufs == 0)
619                 return 0;
620
621         /* happy day case, full burst + no packets to be joined */
622         const uint64_t *split_fl64 = (uint64_t *)split_flags;
623
624         if (!rxq->pkt_first_seg &&
625             split_fl64[0] == 0 && split_fl64[1] == 0 &&
626             split_fl64[2] == 0 && split_fl64[3] == 0)
627                 return nb_bufs;
628
629         /* reassemble any packets that need reassembly */
630         unsigned int i = 0;
631
632         if (!rxq->pkt_first_seg) {
633                 /* find the first split flag, and only reassemble then */
634                 while (i < nb_bufs && !split_flags[i])
635                         i++;
636                 if (i == nb_bufs)
637                         return nb_bufs;
638                 rxq->pkt_first_seg = rx_pkts[i];
639         }
640         return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
641                                              &split_flags[i]);
642 }
643
644 /**
645  * vPMD receive routine that reassembles scattered packets.
646  * Main receive routine that can handle arbitrary burst sizes
647  * Notice:
648  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
649  */
650 uint16_t
651 ice_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
652                                    uint16_t nb_pkts)
653 {
654         uint16_t retval = 0;
655
656         while (nb_pkts > ICE_VPMD_RX_BURST) {
657                 uint16_t burst = ice_recv_scattered_burst_vec_avx512(rx_queue,
658                                 rx_pkts + retval, ICE_VPMD_RX_BURST);
659                 retval += burst;
660                 nb_pkts -= burst;
661                 if (burst < ICE_VPMD_RX_BURST)
662                         return retval;
663         }
664         return retval + ice_recv_scattered_burst_vec_avx512(rx_queue,
665                                 rx_pkts + retval, nb_pkts);
666 }
667
668 static inline void
669 ice_vtx1(volatile struct ice_tx_desc *txdp,
670          struct rte_mbuf *pkt, uint64_t flags)
671 {
672         uint64_t high_qw =
673                 (ICE_TX_DESC_DTYPE_DATA |
674                  ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
675                  ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
676
677         __m128i descriptor = _mm_set_epi64x(high_qw,
678                                 pkt->buf_iova + pkt->data_off);
679         _mm_store_si128((__m128i *)txdp, descriptor);
680 }
681
682 static inline void
683 ice_vtx(volatile struct ice_tx_desc *txdp,
684         struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
685 {
686         const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
687                         ((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
688
689         /* if unaligned on 32-bit boundary, do one to align */
690         if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
691                 ice_vtx1(txdp, *pkt, flags);
692                 nb_pkts--, txdp++, pkt++;
693         }
694
695         /* do two at a time while possible, in bursts */
696         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
697                 uint64_t hi_qw3 =
698                         hi_qw_tmpl |
699                         ((uint64_t)pkt[3]->data_len <<
700                          ICE_TXD_QW1_TX_BUF_SZ_S);
701                 uint64_t hi_qw2 =
702                         hi_qw_tmpl |
703                         ((uint64_t)pkt[2]->data_len <<
704                          ICE_TXD_QW1_TX_BUF_SZ_S);
705                 uint64_t hi_qw1 =
706                         hi_qw_tmpl |
707                         ((uint64_t)pkt[1]->data_len <<
708                          ICE_TXD_QW1_TX_BUF_SZ_S);
709                 uint64_t hi_qw0 =
710                         hi_qw_tmpl |
711                         ((uint64_t)pkt[0]->data_len <<
712                          ICE_TXD_QW1_TX_BUF_SZ_S);
713
714                 __m256i desc2_3 =
715                         _mm256_set_epi64x
716                                 (hi_qw3,
717                                  pkt[3]->buf_iova + pkt[3]->data_off,
718                                  hi_qw2,
719                                  pkt[2]->buf_iova + pkt[2]->data_off);
720                 __m256i desc0_1 =
721                         _mm256_set_epi64x
722                                 (hi_qw1,
723                                  pkt[1]->buf_iova + pkt[1]->data_off,
724                                  hi_qw0,
725                                  pkt[0]->buf_iova + pkt[0]->data_off);
726                 _mm256_store_si256((void *)(txdp + 2), desc2_3);
727                 _mm256_store_si256((void *)txdp, desc0_1);
728         }
729
730         /* do any last ones */
731         while (nb_pkts) {
732                 ice_vtx1(txdp, *pkt, flags);
733                 txdp++, pkt++, nb_pkts--;
734         }
735 }
736
737 static inline uint16_t
738 ice_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
739                                 uint16_t nb_pkts)
740 {
741         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
742         volatile struct ice_tx_desc *txdp;
743         struct ice_tx_entry *txep;
744         uint16_t n, nb_commit, tx_id;
745         uint64_t flags = ICE_TD_CMD;
746         uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
747
748         /* cross rx_thresh boundary is not allowed */
749         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
750
751         if (txq->nb_tx_free < txq->tx_free_thresh)
752                 ice_tx_free_bufs(txq);
753
754         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
755         if (unlikely(nb_pkts == 0))
756                 return 0;
757
758         tx_id = txq->tx_tail;
759         txdp = &txq->tx_ring[tx_id];
760         txep = &txq->sw_ring[tx_id];
761
762         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
763
764         n = (uint16_t)(txq->nb_tx_desc - tx_id);
765         if (nb_commit >= n) {
766                 ice_tx_backlog_entry(txep, tx_pkts, n);
767
768                 ice_vtx(txdp, tx_pkts, n - 1, flags);
769                 tx_pkts += (n - 1);
770                 txdp += (n - 1);
771
772                 ice_vtx1(txdp, *tx_pkts++, rs);
773
774                 nb_commit = (uint16_t)(nb_commit - n);
775
776                 tx_id = 0;
777                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
778
779                 /* avoid reach the end of ring */
780                 txdp = &txq->tx_ring[tx_id];
781                 txep = &txq->sw_ring[tx_id];
782         }
783
784         ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
785
786         ice_vtx(txdp, tx_pkts, nb_commit, flags);
787
788         tx_id = (uint16_t)(tx_id + nb_commit);
789         if (tx_id > txq->tx_next_rs) {
790                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
791                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
792                                          ICE_TXD_QW1_CMD_S);
793                 txq->tx_next_rs =
794                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
795         }
796
797         txq->tx_tail = tx_id;
798
799         ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
800
801         return nb_pkts;
802 }
803
804 uint16_t
805 ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
806                          uint16_t nb_pkts)
807 {
808         uint16_t nb_tx = 0;
809         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
810
811         while (nb_pkts) {
812                 uint16_t ret, num;
813
814                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
815                 ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
816                                                       &tx_pkts[nb_tx], num);
817                 nb_tx += ret;
818                 nb_pkts -= ret;
819                 if (ret < num)
820                         break;
821         }
822
823         return nb_tx;
824 }