net/ice: support flow mark ID in AVX512
[dpdk.git] / drivers / net / ice / ice_rxtx_vec_avx512.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include "ice_rxtx_vec_common.h"
6
7 #include <x86intrin.h>
8
9 #ifndef __INTEL_COMPILER
10 #pragma GCC diagnostic ignored "-Wcast-qual"
11 #endif
12
13 #define ICE_DESCS_PER_LOOP_AVX 8
14
15 static inline void
16 ice_rxq_rearm(struct ice_rx_queue *rxq)
17 {
18         int i;
19         uint16_t rx_id;
20         volatile union ice_rx_flex_desc *rxdp;
21         struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
22         struct rte_mempool_cache *cache = rte_mempool_default_cache(rxq->mp,
23                         rte_lcore_id());
24
25         rxdp = rxq->rx_ring + rxq->rxrearm_start;
26
27         /* We need to pull 'n' more MBUFs into the software ring */
28         if (cache->len < ICE_RXQ_REARM_THRESH) {
29                 uint32_t req = ICE_RXQ_REARM_THRESH + (cache->size -
30                                 cache->len);
31
32                 int ret = rte_mempool_ops_dequeue_bulk(rxq->mp,
33                                 &cache->objs[cache->len], req);
34                 if (ret == 0) {
35                         cache->len += req;
36                 } else {
37                         if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
38                             rxq->nb_rx_desc) {
39                                 __m128i dma_addr0;
40
41                                 dma_addr0 = _mm_setzero_si128();
42                                 for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
43                                         rxep[i].mbuf = &rxq->fake_mbuf;
44                                         _mm_store_si128
45                                                 ((__m128i *)&rxdp[i].read,
46                                                         dma_addr0);
47                                 }
48                         }
49                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
50                                 ICE_RXQ_REARM_THRESH;
51                         return;
52                 }
53         }
54
55         const __m512i iova_offsets =  _mm512_set1_epi64
56                 (offsetof(struct rte_mbuf, buf_iova));
57         const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
58
59 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
60         /* shuffle the iova into correct slots. Values 4-7 will contain
61          * zeros, so use 7 for a zero-value.
62          */
63         const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
64 #else
65         const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
66 #endif
67
68         /* fill up the rxd in vector, process 8 mbufs in one loop */
69         for (i = 0; i < ICE_RXQ_REARM_THRESH / 8; i++) {
70                 const __m512i mbuf_ptrs = _mm512_loadu_si512
71                         (&cache->objs[cache->len - 8]);
72                 _mm512_store_si512(rxep, mbuf_ptrs);
73
74                 /* gather iova of mbuf0-7 into one zmm reg */
75                 const __m512i iova_base_addrs = _mm512_i64gather_epi64
76                         (_mm512_add_epi64(mbuf_ptrs, iova_offsets),
77                                 0, /* base */
78                                 1  /* scale */);
79                 const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
80                                 headroom);
81 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
82                 const __m512i iovas0 = _mm512_castsi256_si512
83                         (_mm512_extracti64x4_epi64(iova_addrs, 0));
84                 const __m512i iovas1 = _mm512_castsi256_si512
85                         (_mm512_extracti64x4_epi64(iova_addrs, 1));
86
87                 /* permute leaves iova 2-3 in hdr_addr of desc 0-1
88                  * but these are ignored by driver since header split not
89                  * enabled. Similarly for desc 4 & 5.
90                  */
91                 const __m512i desc0_1 = _mm512_permutexvar_epi64
92                         (permute_idx, iovas0);
93                 const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
94
95                 const __m512i desc4_5 = _mm512_permutexvar_epi64
96                         (permute_idx, iovas1);
97                 const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
98
99                 _mm512_store_si512((void *)rxdp, desc0_1);
100                 _mm512_store_si512((void *)(rxdp + 2), desc2_3);
101                 _mm512_store_si512((void *)(rxdp + 4), desc4_5);
102                 _mm512_store_si512((void *)(rxdp + 6), desc6_7);
103 #else
104                 /* permute leaves iova 4-7 in hdr_addr of desc 0-3
105                  * but these are ignored by driver since header split not
106                  * enabled.
107                  */
108                 const __m512i desc0_3 = _mm512_permutexvar_epi64
109                         (permute_idx, iova_addrs);
110                 const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
111
112                 _mm512_store_si512((void *)rxdp, desc0_3);
113                 _mm512_store_si512((void *)(rxdp + 4), desc4_7);
114 #endif
115                 rxep += 8, rxdp += 8, cache->len -= 8;
116         }
117
118         rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
119         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
120                 rxq->rxrearm_start = 0;
121
122         rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
123
124         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
125                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
126
127         /* Update the tail pointer on the NIC */
128         ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
129 }
130
131 static inline __m256i
132 ice_flex_rxd_to_fdir_flags_vec_avx512(const __m256i fdir_id0_7)
133 {
134 #define FDID_MIS_MAGIC 0xFFFFFFFF
135         RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
136         RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
137         const __m256i pkt_fdir_bit = _mm256_set1_epi32(PKT_RX_FDIR |
138                         PKT_RX_FDIR_ID);
139         /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
140         const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
141         __m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
142                         fdir_mis_mask);
143         /* this XOR op results to bit-reverse the fdir_mask */
144         fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
145         const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
146
147         return fdir_flags;
148 }
149
150 static inline uint16_t
151 _ice_recv_raw_pkts_vec_avx512(struct ice_rx_queue *rxq,
152                               struct rte_mbuf **rx_pkts,
153                               uint16_t nb_pkts, uint8_t *split_packet)
154 {
155         const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
156         const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
157                         0, rxq->mbuf_initializer);
158         struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
159         volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
160
161         rte_prefetch0(rxdp);
162
163         /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
164         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
165
166         /* See if we need to rearm the RX queue - gives the prefetch a bit
167          * of time to act
168          */
169         if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
170                 ice_rxq_rearm(rxq);
171
172         /* Before we start moving massive data around, check to see if
173          * there is actually a packet available
174          */
175         if (!(rxdp->wb.status_error0 &
176                         rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
177                 return 0;
178
179         /* constants used in processing loop */
180         const __m512i crc_adjust =
181                 _mm512_set4_epi32
182                         (0,             /* ignore non-length fields */
183                          -rxq->crc_len, /* sub crc on data_len */
184                          -rxq->crc_len, /* sub crc on pkt_len */
185                          0              /* ignore non-length fields */
186                         );
187
188         /* 8 packets DD mask, LSB in each 32-bit value */
189         const __m256i dd_check = _mm256_set1_epi32(1);
190
191         /* 8 packets EOP mask, second-LSB in each 32-bit value */
192         const __m256i eop_check = _mm256_slli_epi32(dd_check,
193                         ICE_RX_DESC_STATUS_EOF_S);
194
195         /* mask to shuffle from desc. to mbuf (4 descriptors)*/
196         const __m512i shuf_msk =
197                 _mm512_set4_epi32
198                         (/* rss hash parsed separately */
199                          0xFFFFFFFF,
200                          /* octet 10~11, 16 bits vlan_macip */
201                          /* octet 4~5, 16 bits data_len */
202                          11 << 24 | 10 << 16 | 5 << 8 | 4,
203                          /* skip hi 16 bits pkt_len, zero out */
204                          /* octet 4~5, 16 bits pkt_len */
205                          0xFFFF << 16 | 5 << 8 | 4,
206                          /* pkt_type set as unknown */
207                          0xFFFFFFFF
208                         );
209
210         /**
211          * compile-time check the above crc and shuffle layout is correct.
212          * NOTE: the first field (lowest address) is given last in set_epi
213          * calls above.
214          */
215         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
216                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
217         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
218                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
219         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
220                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
221         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
222                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
223
224         /* Status/Error flag masks */
225         /**
226          * mask everything except Checksum Reports, RSS indication
227          * and VLAN indication.
228          * bit6:4 for IP/L4 checksum errors.
229          * bit12 is for RSS indication.
230          * bit13 is for VLAN indication.
231          */
232         const __m256i flags_mask =
233                  _mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13));
234         /**
235          * data to be shuffled by the result of the flags mask shifted by 4
236          * bits.  This gives use the l3_l4 flags.
237          */
238         const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
239                         /* shift right 1 bit to make sure it not exceed 255 */
240                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
241                          PKT_RX_IP_CKSUM_BAD) >> 1,
242                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
243                          PKT_RX_IP_CKSUM_GOOD) >> 1,
244                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
245                          PKT_RX_IP_CKSUM_BAD) >> 1,
246                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
247                          PKT_RX_IP_CKSUM_GOOD) >> 1,
248                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
249                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
250                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
251                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
252                         /* 2nd 128-bits */
253                         0, 0, 0, 0, 0, 0, 0, 0,
254                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
255                          PKT_RX_IP_CKSUM_BAD) >> 1,
256                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
257                          PKT_RX_IP_CKSUM_GOOD) >> 1,
258                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
259                          PKT_RX_IP_CKSUM_BAD) >> 1,
260                         (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
261                          PKT_RX_IP_CKSUM_GOOD) >> 1,
262                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
263                         (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
264                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
265                         (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
266         const __m256i cksum_mask =
267                  _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
268                                    PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
269                                    PKT_RX_EIP_CKSUM_BAD);
270         /**
271          * data to be shuffled by result of flag mask, shifted down 12.
272          * If RSS(bit12)/VLAN(bit13) are set,
273          * shuffle moves appropriate flags in place.
274          */
275         const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
276                         0, 0, 0, 0,
277                         0, 0, 0, 0,
278                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
279                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
280                         PKT_RX_RSS_HASH, 0,
281                         /* 2nd 128-bits */
282                         0, 0, 0, 0,
283                         0, 0, 0, 0,
284                         0, 0, 0, 0,
285                         PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
286                         PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
287                         PKT_RX_RSS_HASH, 0);
288
289         uint16_t i, received;
290
291         for (i = 0, received = 0; i < nb_pkts;
292              i += ICE_DESCS_PER_LOOP_AVX,
293              rxdp += ICE_DESCS_PER_LOOP_AVX) {
294                 /* step 1, copy over 8 mbuf pointers to rx_pkts array */
295                 _mm256_storeu_si256((void *)&rx_pkts[i],
296                                     _mm256_loadu_si256((void *)&sw_ring[i]));
297 #ifdef RTE_ARCH_X86_64
298                 _mm256_storeu_si256
299                         ((void *)&rx_pkts[i + 4],
300                          _mm256_loadu_si256((void *)&sw_ring[i + 4]));
301 #endif
302
303                 __m512i raw_desc0_3, raw_desc4_7;
304                 __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
305
306                 /* load in descriptors, in reverse order */
307                 const __m128i raw_desc7 =
308                         _mm_load_si128((void *)(rxdp + 7));
309                 rte_compiler_barrier();
310                 const __m128i raw_desc6 =
311                         _mm_load_si128((void *)(rxdp + 6));
312                 rte_compiler_barrier();
313                 const __m128i raw_desc5 =
314                         _mm_load_si128((void *)(rxdp + 5));
315                 rte_compiler_barrier();
316                 const __m128i raw_desc4 =
317                         _mm_load_si128((void *)(rxdp + 4));
318                 rte_compiler_barrier();
319                 const __m128i raw_desc3 =
320                         _mm_load_si128((void *)(rxdp + 3));
321                 rte_compiler_barrier();
322                 const __m128i raw_desc2 =
323                         _mm_load_si128((void *)(rxdp + 2));
324                 rte_compiler_barrier();
325                 const __m128i raw_desc1 =
326                         _mm_load_si128((void *)(rxdp + 1));
327                 rte_compiler_barrier();
328                 const __m128i raw_desc0 =
329                         _mm_load_si128((void *)(rxdp + 0));
330
331                 raw_desc6_7 =
332                         _mm256_inserti128_si256
333                                 (_mm256_castsi128_si256(raw_desc6),
334                                  raw_desc7, 1);
335                 raw_desc4_5 =
336                         _mm256_inserti128_si256
337                                 (_mm256_castsi128_si256(raw_desc4),
338                                  raw_desc5, 1);
339                 raw_desc2_3 =
340                         _mm256_inserti128_si256
341                                 (_mm256_castsi128_si256(raw_desc2),
342                                  raw_desc3, 1);
343                 raw_desc0_1 =
344                         _mm256_inserti128_si256
345                                 (_mm256_castsi128_si256(raw_desc0),
346                                  raw_desc1, 1);
347
348                 raw_desc4_7 =
349                         _mm512_inserti64x4
350                                 (_mm512_castsi256_si512(raw_desc4_5),
351                                  raw_desc6_7, 1);
352                 raw_desc0_3 =
353                         _mm512_inserti64x4
354                                 (_mm512_castsi256_si512(raw_desc0_1),
355                                  raw_desc2_3, 1);
356
357                 if (split_packet) {
358                         int j;
359
360                         for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
361                                 rte_mbuf_prefetch_part2(rx_pkts[i + j]);
362                 }
363
364                 /**
365                  * convert descriptors 0-7 into mbufs, re-arrange fields.
366                  * Then write into the mbuf.
367                  */
368                 __m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
369                 __m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
370
371                 mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
372                 mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
373
374                 /**
375                  * to get packet types, ptype is located in bit16-25
376                  * of each 128bits
377                  */
378                 const __m512i ptype_mask =
379                         _mm512_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
380
381                 /**
382                  * to get packet types, ptype is located in bit16-25
383                  * of each 128bits
384                  */
385                 const __m512i ptypes4_7 =
386                         _mm512_and_si512(raw_desc4_7, ptype_mask);
387                 const __m512i ptypes0_3 =
388                         _mm512_and_si512(raw_desc0_3, ptype_mask);
389
390                 const __m256i ptypes6_7 =
391                         _mm512_extracti64x4_epi64(ptypes4_7, 1);
392                 const __m256i ptypes4_5 =
393                         _mm512_extracti64x4_epi64(ptypes4_7, 0);
394                 const __m256i ptypes2_3 =
395                         _mm512_extracti64x4_epi64(ptypes0_3, 1);
396                 const __m256i ptypes0_1 =
397                         _mm512_extracti64x4_epi64(ptypes0_3, 0);
398                 const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
399                 const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
400                 const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
401                 const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
402                 const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
403                 const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
404                 const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
405                 const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
406
407                 const __m512i ptype4_7 = _mm512_set_epi32
408                         (0, 0, 0, ptype_tbl[ptype7],
409                          0, 0, 0, ptype_tbl[ptype6],
410                          0, 0, 0, ptype_tbl[ptype5],
411                          0, 0, 0, ptype_tbl[ptype4]);
412                 const __m512i ptype0_3 = _mm512_set_epi32
413                         (0, 0, 0, ptype_tbl[ptype3],
414                          0, 0, 0, ptype_tbl[ptype2],
415                          0, 0, 0, ptype_tbl[ptype1],
416                          0, 0, 0, ptype_tbl[ptype0]);
417
418                 mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
419                 mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
420
421                 __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
422                 __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
423                 __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
424                 __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
425
426                 /**
427                  * use permute/extract to get status content
428                  * After the operations, the packets status flags are in the
429                  * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
430                  */
431                 /* merge the status bits into one register */
432                 const __m512i status_permute_msk = _mm512_set_epi32
433                         (0, 0, 0, 0,
434                          0, 0, 0, 0,
435                          22, 30, 6, 14,
436                          18, 26, 2, 10);
437                 const __m512i raw_status0_7 = _mm512_permutex2var_epi32
438                         (raw_desc4_7, status_permute_msk, raw_desc0_3);
439                 __m256i status0_7 = _mm512_extracti64x4_epi64
440                         (raw_status0_7, 0);
441
442                 /* now do flag manipulation */
443
444                 /* get only flag/error bits we want */
445                 const __m256i flag_bits =
446                         _mm256_and_si256(status0_7, flags_mask);
447                 /**
448                  * l3_l4_error flags, shuffle, then shift to correct adjustment
449                  * of flags in flags_shuf, and finally mask out extra bits
450                  */
451                 __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
452                                 _mm256_srli_epi32(flag_bits, 4));
453                 l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
454                 l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
455                 /* set rss and vlan flags */
456                 const __m256i rss_vlan_flag_bits =
457                         _mm256_srli_epi32(flag_bits, 12);
458                 const __m256i rss_vlan_flags =
459                         _mm256_shuffle_epi8(rss_vlan_flags_shuf,
460                                             rss_vlan_flag_bits);
461
462                 /* merge flags */
463                 __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
464                                                      rss_vlan_flags);
465
466                 if (rxq->fdir_enabled) {
467                         const __m256i fdir_id4_7 =
468                                 _mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
469
470                         const __m256i fdir_id0_3 =
471                                 _mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
472
473                         const __m256i fdir_id0_7 =
474                                 _mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
475
476                         const __m256i fdir_flags =
477                                 ice_flex_rxd_to_fdir_flags_vec_avx512
478                                         (fdir_id0_7);
479
480                         /* merge with fdir_flags */
481                         mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags);
482
483                         /* write to mbuf: have to use scalar store here */
484                         rx_pkts[i + 0]->hash.fdir.hi =
485                                 _mm256_extract_epi32(fdir_id0_7, 3);
486
487                         rx_pkts[i + 1]->hash.fdir.hi =
488                                 _mm256_extract_epi32(fdir_id0_7, 7);
489
490                         rx_pkts[i + 2]->hash.fdir.hi =
491                                 _mm256_extract_epi32(fdir_id0_7, 2);
492
493                         rx_pkts[i + 3]->hash.fdir.hi =
494                                 _mm256_extract_epi32(fdir_id0_7, 6);
495
496                         rx_pkts[i + 4]->hash.fdir.hi =
497                                 _mm256_extract_epi32(fdir_id0_7, 1);
498
499                         rx_pkts[i + 5]->hash.fdir.hi =
500                                 _mm256_extract_epi32(fdir_id0_7, 5);
501
502                         rx_pkts[i + 6]->hash.fdir.hi =
503                                 _mm256_extract_epi32(fdir_id0_7, 0);
504
505                         rx_pkts[i + 7]->hash.fdir.hi =
506                                 _mm256_extract_epi32(fdir_id0_7, 4);
507                 } /* if() on fdir_enabled */
508
509 #ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
510                 /**
511                  * needs to load 2nd 16B of each desc for RSS hash parsing,
512                  * will cause performance drop to get into this context.
513                  */
514                 if (rxq->vsi->adapter->eth_dev->data->dev_conf.rxmode.offloads &
515                                 DEV_RX_OFFLOAD_RSS_HASH) {
516                         /* load bottom half of every 32B desc */
517                         const __m128i raw_desc_bh7 =
518                                 _mm_load_si128
519                                         ((void *)(&rxdp[7].wb.status_error1));
520                         rte_compiler_barrier();
521                         const __m128i raw_desc_bh6 =
522                                 _mm_load_si128
523                                         ((void *)(&rxdp[6].wb.status_error1));
524                         rte_compiler_barrier();
525                         const __m128i raw_desc_bh5 =
526                                 _mm_load_si128
527                                         ((void *)(&rxdp[5].wb.status_error1));
528                         rte_compiler_barrier();
529                         const __m128i raw_desc_bh4 =
530                                 _mm_load_si128
531                                         ((void *)(&rxdp[4].wb.status_error1));
532                         rte_compiler_barrier();
533                         const __m128i raw_desc_bh3 =
534                                 _mm_load_si128
535                                         ((void *)(&rxdp[3].wb.status_error1));
536                         rte_compiler_barrier();
537                         const __m128i raw_desc_bh2 =
538                                 _mm_load_si128
539                                         ((void *)(&rxdp[2].wb.status_error1));
540                         rte_compiler_barrier();
541                         const __m128i raw_desc_bh1 =
542                                 _mm_load_si128
543                                         ((void *)(&rxdp[1].wb.status_error1));
544                         rte_compiler_barrier();
545                         const __m128i raw_desc_bh0 =
546                                 _mm_load_si128
547                                         ((void *)(&rxdp[0].wb.status_error1));
548
549                         __m256i raw_desc_bh6_7 =
550                                 _mm256_inserti128_si256
551                                         (_mm256_castsi128_si256(raw_desc_bh6),
552                                         raw_desc_bh7, 1);
553                         __m256i raw_desc_bh4_5 =
554                                 _mm256_inserti128_si256
555                                         (_mm256_castsi128_si256(raw_desc_bh4),
556                                         raw_desc_bh5, 1);
557                         __m256i raw_desc_bh2_3 =
558                                 _mm256_inserti128_si256
559                                         (_mm256_castsi128_si256(raw_desc_bh2),
560                                         raw_desc_bh3, 1);
561                         __m256i raw_desc_bh0_1 =
562                                 _mm256_inserti128_si256
563                                         (_mm256_castsi128_si256(raw_desc_bh0),
564                                         raw_desc_bh1, 1);
565
566                         /**
567                          * to shift the 32b RSS hash value to the
568                          * highest 32b of each 128b before mask
569                          */
570                         __m256i rss_hash6_7 =
571                                 _mm256_slli_epi64(raw_desc_bh6_7, 32);
572                         __m256i rss_hash4_5 =
573                                 _mm256_slli_epi64(raw_desc_bh4_5, 32);
574                         __m256i rss_hash2_3 =
575                                 _mm256_slli_epi64(raw_desc_bh2_3, 32);
576                         __m256i rss_hash0_1 =
577                                 _mm256_slli_epi64(raw_desc_bh0_1, 32);
578
579                         __m256i rss_hash_msk =
580                                 _mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
581                                                  0xFFFFFFFF, 0, 0, 0);
582
583                         rss_hash6_7 = _mm256_and_si256
584                                         (rss_hash6_7, rss_hash_msk);
585                         rss_hash4_5 = _mm256_and_si256
586                                         (rss_hash4_5, rss_hash_msk);
587                         rss_hash2_3 = _mm256_and_si256
588                                         (rss_hash2_3, rss_hash_msk);
589                         rss_hash0_1 = _mm256_and_si256
590                                         (rss_hash0_1, rss_hash_msk);
591
592                         mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
593                         mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
594                         mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
595                         mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
596                 } /* if() on RSS hash parsing */
597 #endif
598
599                 /**
600                  * At this point, we have the 8 sets of flags in the low 16-bits
601                  * of each 32-bit value in vlan0.
602                  * We want to extract these, and merge them with the mbuf init
603                  * data so we can do a single write to the mbuf to set the flags
604                  * and all the other initialization fields. Extracting the
605                  * appropriate flags means that we have to do a shift and blend
606                  * for each mbuf before we do the write. However, we can also
607                  * add in the previously computed rx_descriptor fields to
608                  * make a single 256-bit write per mbuf
609                  */
610                 /* check the structure matches expectations */
611                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
612                                  offsetof(struct rte_mbuf, rearm_data) + 8);
613                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
614                                  RTE_ALIGN(offsetof(struct rte_mbuf,
615                                                     rearm_data),
616                                            16));
617                 /* build up data and do writes */
618                 __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
619                         rearm6, rearm7;
620
621                 rearm6 = _mm256_blend_epi32(mbuf_init,
622                                             _mm256_slli_si256(mbuf_flags, 8),
623                                             0x04);
624                 rearm4 = _mm256_blend_epi32(mbuf_init,
625                                             _mm256_slli_si256(mbuf_flags, 4),
626                                             0x04);
627                 rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
628                 rearm0 = _mm256_blend_epi32(mbuf_init,
629                                             _mm256_srli_si256(mbuf_flags, 4),
630                                             0x04);
631
632                 /* permute to add in the rx_descriptor e.g. rss fields */
633                 rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
634                 rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
635                 rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
636                 rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
637
638                 /* write to mbuf */
639                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
640                                     rearm6);
641                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
642                                     rearm4);
643                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
644                                     rearm2);
645                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
646                                     rearm0);
647
648                 /* repeat for the odd mbufs */
649                 const __m256i odd_flags =
650                         _mm256_castsi128_si256
651                                 (_mm256_extracti128_si256(mbuf_flags, 1));
652                 rearm7 = _mm256_blend_epi32(mbuf_init,
653                                             _mm256_slli_si256(odd_flags, 8),
654                                             0x04);
655                 rearm5 = _mm256_blend_epi32(mbuf_init,
656                                             _mm256_slli_si256(odd_flags, 4),
657                                             0x04);
658                 rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
659                 rearm1 = _mm256_blend_epi32(mbuf_init,
660                                             _mm256_srli_si256(odd_flags, 4),
661                                             0x04);
662
663                 /* since odd mbufs are already in hi 128-bits use blend */
664                 rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
665                 rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
666                 rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
667                 rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
668                 /* again write to mbufs */
669                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
670                                     rearm7);
671                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
672                                     rearm5);
673                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
674                                     rearm3);
675                 _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
676                                     rearm1);
677
678                 /* extract and record EOP bit */
679                 if (split_packet) {
680                         const __m128i eop_mask =
681                                 _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
682                         const __m256i eop_bits256 = _mm256_and_si256(status0_7,
683                                                                      eop_check);
684                         /* pack status bits into a single 128-bit register */
685                         const __m128i eop_bits =
686                                 _mm_packus_epi32
687                                         (_mm256_castsi256_si128(eop_bits256),
688                                          _mm256_extractf128_si256(eop_bits256,
689                                                                   1));
690                         /**
691                          * flip bits, and mask out the EOP bit, which is now
692                          * a split-packet bit i.e. !EOP, rather than EOP one.
693                          */
694                         __m128i split_bits = _mm_andnot_si128(eop_bits,
695                                         eop_mask);
696                         /**
697                          * eop bits are out of order, so we need to shuffle them
698                          * back into order again. In doing so, only use low 8
699                          * bits, which acts like another pack instruction
700                          * The original order is (hi->lo): 1,3,5,7,0,2,4,6
701                          * [Since we use epi8, the 16-bit positions are
702                          * multiplied by 2 in the eop_shuffle value.]
703                          */
704                         __m128i eop_shuffle =
705                                 _mm_set_epi8(/* zero hi 64b */
706                                              0xFF, 0xFF, 0xFF, 0xFF,
707                                              0xFF, 0xFF, 0xFF, 0xFF,
708                                              /* move values to lo 64b */
709                                              8, 0, 10, 2,
710                                              12, 4, 14, 6);
711                         split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
712                         *(uint64_t *)split_packet =
713                                 _mm_cvtsi128_si64(split_bits);
714                         split_packet += ICE_DESCS_PER_LOOP_AVX;
715                 }
716
717                 /* perform dd_check */
718                 status0_7 = _mm256_and_si256(status0_7, dd_check);
719                 status0_7 = _mm256_packs_epi32(status0_7,
720                                                _mm256_setzero_si256());
721
722                 uint64_t burst = __builtin_popcountll
723                                         (_mm_cvtsi128_si64
724                                                 (_mm256_extracti128_si256
725                                                         (status0_7, 1)));
726                 burst += __builtin_popcountll
727                                 (_mm_cvtsi128_si64
728                                         (_mm256_castsi256_si128(status0_7)));
729                 received += burst;
730                 if (burst != ICE_DESCS_PER_LOOP_AVX)
731                         break;
732         }
733
734         /* update tail pointers */
735         rxq->rx_tail += received;
736         rxq->rx_tail &= (rxq->nb_rx_desc - 1);
737         if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
738                 rxq->rx_tail--;
739                 received--;
740         }
741         rxq->rxrearm_nb += received;
742         return received;
743 }
744
745 /**
746  * Notice:
747  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
748  */
749 uint16_t
750 ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
751                          uint16_t nb_pkts)
752 {
753         return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL);
754 }
755
756 /**
757  * vPMD receive routine that reassembles single burst of 32 scattered packets
758  * Notice:
759  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
760  */
761 static uint16_t
762 ice_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
763                                     uint16_t nb_pkts)
764 {
765         struct ice_rx_queue *rxq = rx_queue;
766         uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
767
768         /* get some new buffers */
769         uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
770                                                        split_flags);
771         if (nb_bufs == 0)
772                 return 0;
773
774         /* happy day case, full burst + no packets to be joined */
775         const uint64_t *split_fl64 = (uint64_t *)split_flags;
776
777         if (!rxq->pkt_first_seg &&
778             split_fl64[0] == 0 && split_fl64[1] == 0 &&
779             split_fl64[2] == 0 && split_fl64[3] == 0)
780                 return nb_bufs;
781
782         /* reassemble any packets that need reassembly */
783         unsigned int i = 0;
784
785         if (!rxq->pkt_first_seg) {
786                 /* find the first split flag, and only reassemble then */
787                 while (i < nb_bufs && !split_flags[i])
788                         i++;
789                 if (i == nb_bufs)
790                         return nb_bufs;
791                 rxq->pkt_first_seg = rx_pkts[i];
792         }
793         return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
794                                              &split_flags[i]);
795 }
796
797 /**
798  * vPMD receive routine that reassembles scattered packets.
799  * Main receive routine that can handle arbitrary burst sizes
800  * Notice:
801  * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
802  */
803 uint16_t
804 ice_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
805                                    uint16_t nb_pkts)
806 {
807         uint16_t retval = 0;
808
809         while (nb_pkts > ICE_VPMD_RX_BURST) {
810                 uint16_t burst = ice_recv_scattered_burst_vec_avx512(rx_queue,
811                                 rx_pkts + retval, ICE_VPMD_RX_BURST);
812                 retval += burst;
813                 nb_pkts -= burst;
814                 if (burst < ICE_VPMD_RX_BURST)
815                         return retval;
816         }
817         return retval + ice_recv_scattered_burst_vec_avx512(rx_queue,
818                                 rx_pkts + retval, nb_pkts);
819 }
820
821 static __rte_always_inline int
822 ice_tx_free_bufs_avx512(struct ice_tx_queue *txq)
823 {
824         struct ice_vec_tx_entry *txep;
825         uint32_t n;
826         uint32_t i;
827         int nb_free = 0;
828         struct rte_mbuf *m, *free[ICE_TX_MAX_FREE_BUF_SZ];
829
830         /* check DD bits on threshold descriptor */
831         if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
832                         rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
833                         rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
834                 return 0;
835
836         n = txq->tx_rs_thresh;
837
838         /* first buffer to free from S/W ring is at index
839          * tx_next_dd - (tx_rs_thresh - 1)
840          */
841         txep = (void *)txq->sw_ring;
842         txep += txq->tx_next_dd - (n - 1);
843
844         if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
845                 struct rte_mempool *mp = txep[0].mbuf->pool;
846                 void **cache_objs;
847                 struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
848                                 rte_lcore_id());
849
850                 if (!cache || cache->len == 0)
851                         goto normal;
852
853                 cache_objs = &cache->objs[cache->len];
854
855                 if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
856                         rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
857                         goto done;
858                 }
859
860                 /* The cache follows the following algorithm
861                  *   1. Add the objects to the cache
862                  *   2. Anything greater than the cache min value (if it
863                  *   crosses the cache flush threshold) is flushed to the ring.
864                  */
865                 /* Add elements back into the cache */
866                 uint32_t copied = 0;
867                 /* n is multiple of 32 */
868                 while (copied < n) {
869                         const __m512i a = _mm512_loadu_si512(&txep[copied]);
870                         const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
871                         const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
872                         const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
873
874                         _mm512_storeu_si512(&cache_objs[copied], a);
875                         _mm512_storeu_si512(&cache_objs[copied + 8], b);
876                         _mm512_storeu_si512(&cache_objs[copied + 16], c);
877                         _mm512_storeu_si512(&cache_objs[copied + 24], d);
878                         copied += 32;
879                 }
880                 cache->len += n;
881
882                 if (cache->len >= cache->flushthresh) {
883                         rte_mempool_ops_enqueue_bulk
884                                 (mp, &cache->objs[cache->size],
885                                  cache->len - cache->size);
886                         cache->len = cache->size;
887                 }
888                 goto done;
889         }
890
891 normal:
892         m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
893         if (likely(m)) {
894                 free[0] = m;
895                 nb_free = 1;
896                 for (i = 1; i < n; i++) {
897                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
898                         if (likely(m)) {
899                                 if (likely(m->pool == free[0]->pool)) {
900                                         free[nb_free++] = m;
901                                 } else {
902                                         rte_mempool_put_bulk(free[0]->pool,
903                                                              (void *)free,
904                                                              nb_free);
905                                         free[0] = m;
906                                         nb_free = 1;
907                                 }
908                         }
909                 }
910                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
911         } else {
912                 for (i = 1; i < n; i++) {
913                         m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
914                         if (m)
915                                 rte_mempool_put(m->pool, m);
916                 }
917         }
918
919 done:
920         /* buffers were freed, update counters */
921         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
922         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
923         if (txq->tx_next_dd >= txq->nb_tx_desc)
924                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
925
926         return txq->tx_rs_thresh;
927 }
928
929 static inline void
930 ice_vtx1(volatile struct ice_tx_desc *txdp,
931          struct rte_mbuf *pkt, uint64_t flags)
932 {
933         uint64_t high_qw =
934                 (ICE_TX_DESC_DTYPE_DATA |
935                  ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
936                  ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
937
938         __m128i descriptor = _mm_set_epi64x(high_qw,
939                                 pkt->buf_iova + pkt->data_off);
940         _mm_store_si128((__m128i *)txdp, descriptor);
941 }
942
943 static inline void
944 ice_vtx(volatile struct ice_tx_desc *txdp,
945         struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
946 {
947         const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
948                         ((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
949
950         for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
951                 uint64_t hi_qw3 =
952                         hi_qw_tmpl |
953                         ((uint64_t)pkt[3]->data_len <<
954                          ICE_TXD_QW1_TX_BUF_SZ_S);
955                 uint64_t hi_qw2 =
956                         hi_qw_tmpl |
957                         ((uint64_t)pkt[2]->data_len <<
958                          ICE_TXD_QW1_TX_BUF_SZ_S);
959                 uint64_t hi_qw1 =
960                         hi_qw_tmpl |
961                         ((uint64_t)pkt[1]->data_len <<
962                          ICE_TXD_QW1_TX_BUF_SZ_S);
963                 uint64_t hi_qw0 =
964                         hi_qw_tmpl |
965                         ((uint64_t)pkt[0]->data_len <<
966                          ICE_TXD_QW1_TX_BUF_SZ_S);
967
968                 __m512i desc0_3 =
969                         _mm512_set_epi64
970                                 (hi_qw3,
971                                  pkt[3]->buf_iova + pkt[3]->data_off,
972                                  hi_qw2,
973                                  pkt[2]->buf_iova + pkt[2]->data_off,
974                                  hi_qw1,
975                                  pkt[1]->buf_iova + pkt[1]->data_off,
976                                  hi_qw0,
977                                  pkt[0]->buf_iova + pkt[0]->data_off);
978                 _mm512_storeu_si512((void *)txdp, desc0_3);
979         }
980
981         /* do any last ones */
982         while (nb_pkts) {
983                 ice_vtx1(txdp, *pkt, flags);
984                 txdp++, pkt++, nb_pkts--;
985         }
986 }
987
988 static __rte_always_inline void
989 ice_tx_backlog_entry_avx512(struct ice_vec_tx_entry *txep,
990                             struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
991 {
992         int i;
993
994         for (i = 0; i < (int)nb_pkts; ++i)
995                 txep[i].mbuf = tx_pkts[i];
996 }
997
998 static inline uint16_t
999 ice_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1000                                 uint16_t nb_pkts)
1001 {
1002         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1003         volatile struct ice_tx_desc *txdp;
1004         struct ice_vec_tx_entry *txep;
1005         uint16_t n, nb_commit, tx_id;
1006         uint64_t flags = ICE_TD_CMD;
1007         uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
1008
1009         /* cross rx_thresh boundary is not allowed */
1010         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1011
1012         if (txq->nb_tx_free < txq->tx_free_thresh)
1013                 ice_tx_free_bufs_avx512(txq);
1014
1015         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1016         if (unlikely(nb_pkts == 0))
1017                 return 0;
1018
1019         tx_id = txq->tx_tail;
1020         txdp = &txq->tx_ring[tx_id];
1021         txep = (void *)txq->sw_ring;
1022         txep += tx_id;
1023
1024         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1025
1026         n = (uint16_t)(txq->nb_tx_desc - tx_id);
1027         if (nb_commit >= n) {
1028                 ice_tx_backlog_entry_avx512(txep, tx_pkts, n);
1029
1030                 ice_vtx(txdp, tx_pkts, n - 1, flags);
1031                 tx_pkts += (n - 1);
1032                 txdp += (n - 1);
1033
1034                 ice_vtx1(txdp, *tx_pkts++, rs);
1035
1036                 nb_commit = (uint16_t)(nb_commit - n);
1037
1038                 tx_id = 0;
1039                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1040
1041                 /* avoid reach the end of ring */
1042                 txdp = txq->tx_ring;
1043                 txep = (void *)txq->sw_ring;
1044         }
1045
1046         ice_tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
1047
1048         ice_vtx(txdp, tx_pkts, nb_commit, flags);
1049
1050         tx_id = (uint16_t)(tx_id + nb_commit);
1051         if (tx_id > txq->tx_next_rs) {
1052                 txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
1053                         rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
1054                                          ICE_TXD_QW1_CMD_S);
1055                 txq->tx_next_rs =
1056                         (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1057         }
1058
1059         txq->tx_tail = tx_id;
1060
1061         ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
1062
1063         return nb_pkts;
1064 }
1065
1066 uint16_t
1067 ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1068                          uint16_t nb_pkts)
1069 {
1070         uint16_t nb_tx = 0;
1071         struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1072
1073         while (nb_pkts) {
1074                 uint16_t ret, num;
1075
1076                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1077                 ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
1078                                                       &tx_pkts[nb_tx], num);
1079                 nb_tx += ret;
1080                 nb_pkts -= ret;
1081                 if (ret < num)
1082                         break;
1083         }
1084
1085         return nb_tx;
1086 }