net/igc: support device initialization
[dpdk.git] / drivers / net / igc / base / igc_nvm.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2019
3  */
4
5 #include "igc_api.h"
6
7 static void igc_reload_nvm_generic(struct igc_hw *hw);
8
9 /**
10  *  igc_init_nvm_ops_generic - Initialize NVM function pointers
11  *  @hw: pointer to the HW structure
12  *
13  *  Setups up the function pointers to no-op functions
14  **/
15 void igc_init_nvm_ops_generic(struct igc_hw *hw)
16 {
17         struct igc_nvm_info *nvm = &hw->nvm;
18         DEBUGFUNC("igc_init_nvm_ops_generic");
19
20         /* Initialize function pointers */
21         nvm->ops.init_params = igc_null_ops_generic;
22         nvm->ops.acquire = igc_null_ops_generic;
23         nvm->ops.read = igc_null_read_nvm;
24         nvm->ops.release = igc_null_nvm_generic;
25         nvm->ops.reload = igc_reload_nvm_generic;
26         nvm->ops.update = igc_null_ops_generic;
27         nvm->ops.valid_led_default = igc_null_led_default;
28         nvm->ops.validate = igc_null_ops_generic;
29         nvm->ops.write = igc_null_write_nvm;
30 }
31
32 /**
33  *  igc_null_nvm_read - No-op function, return 0
34  *  @hw: pointer to the HW structure
35  *  @a: dummy variable
36  *  @b: dummy variable
37  *  @c: dummy variable
38  **/
39 s32 igc_null_read_nvm(struct igc_hw IGC_UNUSEDARG * hw,
40                         u16 IGC_UNUSEDARG a, u16 IGC_UNUSEDARG b,
41                         u16 IGC_UNUSEDARG * c)
42 {
43         DEBUGFUNC("igc_null_read_nvm");
44         UNREFERENCED_4PARAMETER(hw, a, b, c);
45         return IGC_SUCCESS;
46 }
47
48 /**
49  *  igc_null_nvm_generic - No-op function, return void
50  *  @hw: pointer to the HW structure
51  **/
52 void igc_null_nvm_generic(struct igc_hw IGC_UNUSEDARG * hw)
53 {
54         DEBUGFUNC("igc_null_nvm_generic");
55         UNREFERENCED_1PARAMETER(hw);
56 }
57
58 /**
59  *  igc_null_led_default - No-op function, return 0
60  *  @hw: pointer to the HW structure
61  *  @data: dummy variable
62  **/
63 s32 igc_null_led_default(struct igc_hw IGC_UNUSEDARG * hw,
64                            u16 IGC_UNUSEDARG * data)
65 {
66         DEBUGFUNC("igc_null_led_default");
67         UNREFERENCED_2PARAMETER(hw, data);
68         return IGC_SUCCESS;
69 }
70
71 /**
72  *  igc_null_write_nvm - No-op function, return 0
73  *  @hw: pointer to the HW structure
74  *  @a: dummy variable
75  *  @b: dummy variable
76  *  @c: dummy variable
77  **/
78 s32 igc_null_write_nvm(struct igc_hw IGC_UNUSEDARG * hw,
79                          u16 IGC_UNUSEDARG a, u16 IGC_UNUSEDARG b,
80                          u16 IGC_UNUSEDARG * c)
81 {
82         DEBUGFUNC("igc_null_write_nvm");
83         UNREFERENCED_4PARAMETER(hw, a, b, c);
84         return IGC_SUCCESS;
85 }
86
87 /**
88  *  igc_raise_eec_clk - Raise EEPROM clock
89  *  @hw: pointer to the HW structure
90  *  @eecd: pointer to the EEPROM
91  *
92  *  Enable/Raise the EEPROM clock bit.
93  **/
94 static void igc_raise_eec_clk(struct igc_hw *hw, u32 *eecd)
95 {
96         *eecd = *eecd | IGC_EECD_SK;
97         IGC_WRITE_REG(hw, IGC_EECD, *eecd);
98         IGC_WRITE_FLUSH(hw);
99         usec_delay(hw->nvm.delay_usec);
100 }
101
102 /**
103  *  igc_lower_eec_clk - Lower EEPROM clock
104  *  @hw: pointer to the HW structure
105  *  @eecd: pointer to the EEPROM
106  *
107  *  Clear/Lower the EEPROM clock bit.
108  **/
109 static void igc_lower_eec_clk(struct igc_hw *hw, u32 *eecd)
110 {
111         *eecd = *eecd & ~IGC_EECD_SK;
112         IGC_WRITE_REG(hw, IGC_EECD, *eecd);
113         IGC_WRITE_FLUSH(hw);
114         usec_delay(hw->nvm.delay_usec);
115 }
116
117 /**
118  *  igc_shift_out_eec_bits - Shift data bits our to the EEPROM
119  *  @hw: pointer to the HW structure
120  *  @data: data to send to the EEPROM
121  *  @count: number of bits to shift out
122  *
123  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
124  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
125  *  In order to do this, "data" must be broken down into bits.
126  **/
127 static void igc_shift_out_eec_bits(struct igc_hw *hw, u16 data, u16 count)
128 {
129         struct igc_nvm_info *nvm = &hw->nvm;
130         u32 eecd = IGC_READ_REG(hw, IGC_EECD);
131         u32 mask;
132
133         DEBUGFUNC("igc_shift_out_eec_bits");
134
135         mask = 0x01 << (count - 1);
136         if (nvm->type == igc_nvm_eeprom_microwire)
137                 eecd &= ~IGC_EECD_DO;
138         else if (nvm->type == igc_nvm_eeprom_spi)
139                 eecd |= IGC_EECD_DO;
140
141         do {
142                 eecd &= ~IGC_EECD_DI;
143
144                 if (data & mask)
145                         eecd |= IGC_EECD_DI;
146
147                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
148                 IGC_WRITE_FLUSH(hw);
149
150                 usec_delay(nvm->delay_usec);
151
152                 igc_raise_eec_clk(hw, &eecd);
153                 igc_lower_eec_clk(hw, &eecd);
154
155                 mask >>= 1;
156         } while (mask);
157
158         eecd &= ~IGC_EECD_DI;
159         IGC_WRITE_REG(hw, IGC_EECD, eecd);
160 }
161
162 /**
163  *  igc_shift_in_eec_bits - Shift data bits in from the EEPROM
164  *  @hw: pointer to the HW structure
165  *  @count: number of bits to shift in
166  *
167  *  In order to read a register from the EEPROM, we need to shift 'count' bits
168  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
169  *  the EEPROM (setting the SK bit), and then reading the value of the data out
170  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
171  *  always be clear.
172  **/
173 static u16 igc_shift_in_eec_bits(struct igc_hw *hw, u16 count)
174 {
175         u32 eecd;
176         u32 i;
177         u16 data;
178
179         DEBUGFUNC("igc_shift_in_eec_bits");
180
181         eecd = IGC_READ_REG(hw, IGC_EECD);
182
183         eecd &= ~(IGC_EECD_DO | IGC_EECD_DI);
184         data = 0;
185
186         for (i = 0; i < count; i++) {
187                 data <<= 1;
188                 igc_raise_eec_clk(hw, &eecd);
189
190                 eecd = IGC_READ_REG(hw, IGC_EECD);
191
192                 eecd &= ~IGC_EECD_DI;
193                 if (eecd & IGC_EECD_DO)
194                         data |= 1;
195
196                 igc_lower_eec_clk(hw, &eecd);
197         }
198
199         return data;
200 }
201
202 /**
203  *  igc_poll_eerd_eewr_done - Poll for EEPROM read/write completion
204  *  @hw: pointer to the HW structure
205  *  @ee_reg: EEPROM flag for polling
206  *
207  *  Polls the EEPROM status bit for either read or write completion based
208  *  upon the value of 'ee_reg'.
209  **/
210 s32 igc_poll_eerd_eewr_done(struct igc_hw *hw, int ee_reg)
211 {
212         u32 attempts = 100000;
213         u32 i, reg = 0;
214
215         DEBUGFUNC("igc_poll_eerd_eewr_done");
216
217         for (i = 0; i < attempts; i++) {
218                 if (ee_reg == IGC_NVM_POLL_READ)
219                         reg = IGC_READ_REG(hw, IGC_EERD);
220                 else
221                         reg = IGC_READ_REG(hw, IGC_EEWR);
222
223                 if (reg & IGC_NVM_RW_REG_DONE)
224                         return IGC_SUCCESS;
225
226                 usec_delay(5);
227         }
228
229         return -IGC_ERR_NVM;
230 }
231
232 /**
233  *  igc_acquire_nvm_generic - Generic request for access to EEPROM
234  *  @hw: pointer to the HW structure
235  *
236  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
237  *  Return successful if access grant bit set, else clear the request for
238  *  EEPROM access and return -IGC_ERR_NVM (-1).
239  **/
240 s32 igc_acquire_nvm_generic(struct igc_hw *hw)
241 {
242         u32 eecd = IGC_READ_REG(hw, IGC_EECD);
243         s32 timeout = IGC_NVM_GRANT_ATTEMPTS;
244
245         DEBUGFUNC("igc_acquire_nvm_generic");
246
247         IGC_WRITE_REG(hw, IGC_EECD, eecd | IGC_EECD_REQ);
248         eecd = IGC_READ_REG(hw, IGC_EECD);
249
250         while (timeout) {
251                 if (eecd & IGC_EECD_GNT)
252                         break;
253                 usec_delay(5);
254                 eecd = IGC_READ_REG(hw, IGC_EECD);
255                 timeout--;
256         }
257
258         if (!timeout) {
259                 eecd &= ~IGC_EECD_REQ;
260                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
261                 DEBUGOUT("Could not acquire NVM grant\n");
262                 return -IGC_ERR_NVM;
263         }
264
265         return IGC_SUCCESS;
266 }
267
268 /**
269  *  igc_standby_nvm - Return EEPROM to standby state
270  *  @hw: pointer to the HW structure
271  *
272  *  Return the EEPROM to a standby state.
273  **/
274 static void igc_standby_nvm(struct igc_hw *hw)
275 {
276         struct igc_nvm_info *nvm = &hw->nvm;
277         u32 eecd = IGC_READ_REG(hw, IGC_EECD);
278
279         DEBUGFUNC("igc_standby_nvm");
280
281         if (nvm->type == igc_nvm_eeprom_microwire) {
282                 eecd &= ~(IGC_EECD_CS | IGC_EECD_SK);
283                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
284                 IGC_WRITE_FLUSH(hw);
285                 usec_delay(nvm->delay_usec);
286
287                 igc_raise_eec_clk(hw, &eecd);
288
289                 /* Select EEPROM */
290                 eecd |= IGC_EECD_CS;
291                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
292                 IGC_WRITE_FLUSH(hw);
293                 usec_delay(nvm->delay_usec);
294
295                 igc_lower_eec_clk(hw, &eecd);
296         } else if (nvm->type == igc_nvm_eeprom_spi) {
297                 /* Toggle CS to flush commands */
298                 eecd |= IGC_EECD_CS;
299                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
300                 IGC_WRITE_FLUSH(hw);
301                 usec_delay(nvm->delay_usec);
302                 eecd &= ~IGC_EECD_CS;
303                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
304                 IGC_WRITE_FLUSH(hw);
305                 usec_delay(nvm->delay_usec);
306         }
307 }
308
309 /**
310  *  igc_stop_nvm - Terminate EEPROM command
311  *  @hw: pointer to the HW structure
312  *
313  *  Terminates the current command by inverting the EEPROM's chip select pin.
314  **/
315 void igc_stop_nvm(struct igc_hw *hw)
316 {
317         u32 eecd;
318
319         DEBUGFUNC("igc_stop_nvm");
320
321         eecd = IGC_READ_REG(hw, IGC_EECD);
322         if (hw->nvm.type == igc_nvm_eeprom_spi) {
323                 /* Pull CS high */
324                 eecd |= IGC_EECD_CS;
325                 igc_lower_eec_clk(hw, &eecd);
326         } else if (hw->nvm.type == igc_nvm_eeprom_microwire) {
327                 /* CS on Microwire is active-high */
328                 eecd &= ~(IGC_EECD_CS | IGC_EECD_DI);
329                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
330                 igc_raise_eec_clk(hw, &eecd);
331                 igc_lower_eec_clk(hw, &eecd);
332         }
333 }
334
335 /**
336  *  igc_release_nvm_generic - Release exclusive access to EEPROM
337  *  @hw: pointer to the HW structure
338  *
339  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
340  **/
341 void igc_release_nvm_generic(struct igc_hw *hw)
342 {
343         u32 eecd;
344
345         DEBUGFUNC("igc_release_nvm_generic");
346
347         igc_stop_nvm(hw);
348
349         eecd = IGC_READ_REG(hw, IGC_EECD);
350         eecd &= ~IGC_EECD_REQ;
351         IGC_WRITE_REG(hw, IGC_EECD, eecd);
352 }
353
354 /**
355  *  igc_ready_nvm_eeprom - Prepares EEPROM for read/write
356  *  @hw: pointer to the HW structure
357  *
358  *  Setups the EEPROM for reading and writing.
359  **/
360 static s32 igc_ready_nvm_eeprom(struct igc_hw *hw)
361 {
362         struct igc_nvm_info *nvm = &hw->nvm;
363         u32 eecd = IGC_READ_REG(hw, IGC_EECD);
364         u8 spi_stat_reg;
365
366         DEBUGFUNC("igc_ready_nvm_eeprom");
367
368         if (nvm->type == igc_nvm_eeprom_microwire) {
369                 /* Clear SK and DI */
370                 eecd &= ~(IGC_EECD_DI | IGC_EECD_SK);
371                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
372                 /* Set CS */
373                 eecd |= IGC_EECD_CS;
374                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
375         } else if (nvm->type == igc_nvm_eeprom_spi) {
376                 u16 timeout = NVM_MAX_RETRY_SPI;
377
378                 /* Clear SK and CS */
379                 eecd &= ~(IGC_EECD_CS | IGC_EECD_SK);
380                 IGC_WRITE_REG(hw, IGC_EECD, eecd);
381                 IGC_WRITE_FLUSH(hw);
382                 usec_delay(1);
383
384                 /* Read "Status Register" repeatedly until the LSB is cleared.
385                  * The EEPROM will signal that the command has been completed
386                  * by clearing bit 0 of the internal status register.  If it's
387                  * not cleared within 'timeout', then error out.
388                  */
389                 while (timeout) {
390                         igc_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
391                                                  hw->nvm.opcode_bits);
392                         spi_stat_reg = (u8)igc_shift_in_eec_bits(hw, 8);
393                         if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
394                                 break;
395
396                         usec_delay(5);
397                         igc_standby_nvm(hw);
398                         timeout--;
399                 }
400
401                 if (!timeout) {
402                         DEBUGOUT("SPI NVM Status error\n");
403                         return -IGC_ERR_NVM;
404                 }
405         }
406
407         return IGC_SUCCESS;
408 }
409
410 /**
411  *  igc_read_nvm_spi - Read EEPROM's using SPI
412  *  @hw: pointer to the HW structure
413  *  @offset: offset of word in the EEPROM to read
414  *  @words: number of words to read
415  *  @data: word read from the EEPROM
416  *
417  *  Reads a 16 bit word from the EEPROM.
418  **/
419 s32 igc_read_nvm_spi(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
420 {
421         struct igc_nvm_info *nvm = &hw->nvm;
422         u32 i = 0;
423         s32 ret_val;
424         u16 word_in;
425         u8 read_opcode = NVM_READ_OPCODE_SPI;
426
427         DEBUGFUNC("igc_read_nvm_spi");
428
429         /* A check for invalid values:  offset too large, too many words,
430          * and not enough words.
431          */
432         if (offset >= nvm->word_size || words > (nvm->word_size - offset) ||
433                         words == 0) {
434                 DEBUGOUT("nvm parameter(s) out of bounds\n");
435                 return -IGC_ERR_NVM;
436         }
437
438         ret_val = nvm->ops.acquire(hw);
439         if (ret_val)
440                 return ret_val;
441
442         ret_val = igc_ready_nvm_eeprom(hw);
443         if (ret_val)
444                 goto release;
445
446         igc_standby_nvm(hw);
447
448         if (nvm->address_bits == 8 && offset >= 128)
449                 read_opcode |= NVM_A8_OPCODE_SPI;
450
451         /* Send the READ command (opcode + addr) */
452         igc_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
453         igc_shift_out_eec_bits(hw, (u16)(offset * 2), nvm->address_bits);
454
455         /* Read the data.  SPI NVMs increment the address with each byte
456          * read and will roll over if reading beyond the end.  This allows
457          * us to read the whole NVM from any offset
458          */
459         for (i = 0; i < words; i++) {
460                 word_in = igc_shift_in_eec_bits(hw, 16);
461                 data[i] = (word_in >> 8) | (word_in << 8);
462         }
463
464 release:
465         nvm->ops.release(hw);
466
467         return ret_val;
468 }
469
470 /**
471  *  igc_read_nvm_microwire - Reads EEPROM's using microwire
472  *  @hw: pointer to the HW structure
473  *  @offset: offset of word in the EEPROM to read
474  *  @words: number of words to read
475  *  @data: word read from the EEPROM
476  *
477  *  Reads a 16 bit word from the EEPROM.
478  **/
479 s32 igc_read_nvm_microwire(struct igc_hw *hw, u16 offset, u16 words,
480                              u16 *data)
481 {
482         struct igc_nvm_info *nvm = &hw->nvm;
483         u32 i = 0;
484         s32 ret_val;
485         u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
486
487         DEBUGFUNC("igc_read_nvm_microwire");
488
489         /* A check for invalid values:  offset too large, too many words,
490          * and not enough words.
491          */
492         if (offset >= nvm->word_size || words > (nvm->word_size - offset) ||
493                         words == 0) {
494                 DEBUGOUT("nvm parameter(s) out of bounds\n");
495                 return -IGC_ERR_NVM;
496         }
497
498         ret_val = nvm->ops.acquire(hw);
499         if (ret_val)
500                 return ret_val;
501
502         ret_val = igc_ready_nvm_eeprom(hw);
503         if (ret_val)
504                 goto release;
505
506         for (i = 0; i < words; i++) {
507                 /* Send the READ command (opcode + addr) */
508                 igc_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
509                 igc_shift_out_eec_bits(hw, (u16)(offset + i),
510                                         nvm->address_bits);
511
512                 /* Read the data.  For microwire, each word requires the
513                  * overhead of setup and tear-down.
514                  */
515                 data[i] = igc_shift_in_eec_bits(hw, 16);
516                 igc_standby_nvm(hw);
517         }
518
519 release:
520         nvm->ops.release(hw);
521
522         return ret_val;
523 }
524
525 /**
526  *  igc_read_nvm_eerd - Reads EEPROM using EERD register
527  *  @hw: pointer to the HW structure
528  *  @offset: offset of word in the EEPROM to read
529  *  @words: number of words to read
530  *  @data: word read from the EEPROM
531  *
532  *  Reads a 16 bit word from the EEPROM using the EERD register.
533  **/
534 s32 igc_read_nvm_eerd(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
535 {
536         struct igc_nvm_info *nvm = &hw->nvm;
537         u32 i, eerd = 0;
538         s32 ret_val = IGC_SUCCESS;
539
540         DEBUGFUNC("igc_read_nvm_eerd");
541
542         /* A check for invalid values:  offset too large, too many words,
543          * too many words for the offset, and not enough words.
544          */
545         if (offset >= nvm->word_size || words > (nvm->word_size - offset) ||
546                         words == 0) {
547                 DEBUGOUT("nvm parameter(s) out of bounds\n");
548                 return -IGC_ERR_NVM;
549         }
550
551         for (i = 0; i < words; i++) {
552                 eerd = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) +
553                        IGC_NVM_RW_REG_START;
554
555                 IGC_WRITE_REG(hw, IGC_EERD, eerd);
556                 ret_val = igc_poll_eerd_eewr_done(hw, IGC_NVM_POLL_READ);
557                 if (ret_val)
558                         break;
559
560                 data[i] = (IGC_READ_REG(hw, IGC_EERD) >>
561                            IGC_NVM_RW_REG_DATA);
562         }
563
564         if (ret_val)
565                 DEBUGOUT1("NVM read error: %d\n", ret_val);
566
567         return ret_val;
568 }
569
570 /**
571  *  igc_write_nvm_spi - Write to EEPROM using SPI
572  *  @hw: pointer to the HW structure
573  *  @offset: offset within the EEPROM to be written to
574  *  @words: number of words to write
575  *  @data: 16 bit word(s) to be written to the EEPROM
576  *
577  *  Writes data to EEPROM at offset using SPI interface.
578  *
579  *  If igc_update_nvm_checksum is not called after this function , the
580  *  EEPROM will most likely contain an invalid checksum.
581  **/
582 s32 igc_write_nvm_spi(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
583 {
584         struct igc_nvm_info *nvm = &hw->nvm;
585         s32 ret_val = -IGC_ERR_NVM;
586         u16 widx = 0;
587
588         DEBUGFUNC("igc_write_nvm_spi");
589
590         /* A check for invalid values:  offset too large, too many words,
591          * and not enough words.
592          */
593         if (offset >= nvm->word_size || words > (nvm->word_size - offset) ||
594                         words == 0) {
595                 DEBUGOUT("nvm parameter(s) out of bounds\n");
596                 return -IGC_ERR_NVM;
597         }
598
599         while (widx < words) {
600                 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
601
602                 ret_val = nvm->ops.acquire(hw);
603                 if (ret_val)
604                         return ret_val;
605
606                 ret_val = igc_ready_nvm_eeprom(hw);
607                 if (ret_val) {
608                         nvm->ops.release(hw);
609                         return ret_val;
610                 }
611
612                 igc_standby_nvm(hw);
613
614                 /* Send the WRITE ENABLE command (8 bit opcode) */
615                 igc_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
616                                          nvm->opcode_bits);
617
618                 igc_standby_nvm(hw);
619
620                 /* Some SPI eeproms use the 8th address bit embedded in the
621                  * opcode
622                  */
623                 if (nvm->address_bits == 8 && offset >= 128)
624                         write_opcode |= NVM_A8_OPCODE_SPI;
625
626                 /* Send the Write command (8-bit opcode + addr) */
627                 igc_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
628                 igc_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
629                                          nvm->address_bits);
630
631                 /* Loop to allow for up to whole page write of eeprom */
632                 while (widx < words) {
633                         u16 word_out = data[widx];
634                         word_out = (word_out >> 8) | (word_out << 8);
635                         igc_shift_out_eec_bits(hw, word_out, 16);
636                         widx++;
637
638                         if ((((offset + widx) * 2) % nvm->page_size) == 0) {
639                                 igc_standby_nvm(hw);
640                                 break;
641                         }
642                 }
643                 msec_delay(10);
644                 nvm->ops.release(hw);
645         }
646
647         return ret_val;
648 }
649
650 /**
651  *  igc_write_nvm_microwire - Writes EEPROM using microwire
652  *  @hw: pointer to the HW structure
653  *  @offset: offset within the EEPROM to be written to
654  *  @words: number of words to write
655  *  @data: 16 bit word(s) to be written to the EEPROM
656  *
657  *  Writes data to EEPROM at offset using microwire interface.
658  *
659  *  If igc_update_nvm_checksum is not called after this function , the
660  *  EEPROM will most likely contain an invalid checksum.
661  **/
662 s32 igc_write_nvm_microwire(struct igc_hw *hw, u16 offset, u16 words,
663                               u16 *data)
664 {
665         struct igc_nvm_info *nvm = &hw->nvm;
666         s32  ret_val;
667         u32 eecd;
668         u16 words_written = 0;
669         u16 widx = 0;
670
671         DEBUGFUNC("igc_write_nvm_microwire");
672
673         /* A check for invalid values:  offset too large, too many words,
674          * and not enough words.
675          */
676         if (offset >= nvm->word_size || words > (nvm->word_size - offset) ||
677                         words == 0) {
678                 DEBUGOUT("nvm parameter(s) out of bounds\n");
679                 return -IGC_ERR_NVM;
680         }
681
682         ret_val = nvm->ops.acquire(hw);
683         if (ret_val)
684                 return ret_val;
685
686         ret_val = igc_ready_nvm_eeprom(hw);
687         if (ret_val)
688                 goto release;
689
690         igc_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
691                                  (u16)(nvm->opcode_bits + 2));
692
693         igc_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
694
695         igc_standby_nvm(hw);
696
697         while (words_written < words) {
698                 igc_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
699                                          nvm->opcode_bits);
700
701                 igc_shift_out_eec_bits(hw, (u16)(offset + words_written),
702                                          nvm->address_bits);
703
704                 igc_shift_out_eec_bits(hw, data[words_written], 16);
705
706                 igc_standby_nvm(hw);
707
708                 for (widx = 0; widx < 200; widx++) {
709                         eecd = IGC_READ_REG(hw, IGC_EECD);
710                         if (eecd & IGC_EECD_DO)
711                                 break;
712                         usec_delay(50);
713                 }
714
715                 if (widx == 200) {
716                         DEBUGOUT("NVM Write did not complete\n");
717                         ret_val = -IGC_ERR_NVM;
718                         goto release;
719                 }
720
721                 igc_standby_nvm(hw);
722
723                 words_written++;
724         }
725
726         igc_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
727                                  (u16)(nvm->opcode_bits + 2));
728
729         igc_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
730
731 release:
732         nvm->ops.release(hw);
733
734         return ret_val;
735 }
736
737 /**
738  *  igc_read_pba_string_generic - Read device part number
739  *  @hw: pointer to the HW structure
740  *  @pba_num: pointer to device part number
741  *  @pba_num_size: size of part number buffer
742  *
743  *  Reads the product board assembly (PBA) number from the EEPROM and stores
744  *  the value in pba_num.
745  **/
746 s32 igc_read_pba_string_generic(struct igc_hw *hw, u8 *pba_num,
747                                   u32 pba_num_size)
748 {
749         s32 ret_val;
750         u16 nvm_data;
751         u16 pba_ptr;
752         u16 offset;
753         u16 length;
754
755         DEBUGFUNC("igc_read_pba_string_generic");
756
757         if (pba_num == NULL) {
758                 DEBUGOUT("PBA string buffer was null\n");
759                 return -IGC_ERR_INVALID_ARGUMENT;
760         }
761
762         ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
763         if (ret_val) {
764                 DEBUGOUT("NVM Read Error\n");
765                 return ret_val;
766         }
767
768         ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
769         if (ret_val) {
770                 DEBUGOUT("NVM Read Error\n");
771                 return ret_val;
772         }
773
774         /* if nvm_data is not ptr guard the PBA must be in legacy format which
775          * means pba_ptr is actually our second data word for the PBA number
776          * and we can decode it into an ascii string
777          */
778         if (nvm_data != NVM_PBA_PTR_GUARD) {
779                 DEBUGOUT("NVM PBA number is not stored as string\n");
780
781                 /* make sure callers buffer is big enough to store the PBA */
782                 if (pba_num_size < IGC_PBANUM_LENGTH) {
783                         DEBUGOUT("PBA string buffer too small\n");
784                         return IGC_ERR_NO_SPACE;
785                 }
786
787                 /* extract hex string from data and pba_ptr */
788                 pba_num[0] = (nvm_data >> 12) & 0xF;
789                 pba_num[1] = (nvm_data >> 8) & 0xF;
790                 pba_num[2] = (nvm_data >> 4) & 0xF;
791                 pba_num[3] = nvm_data & 0xF;
792                 pba_num[4] = (pba_ptr >> 12) & 0xF;
793                 pba_num[5] = (pba_ptr >> 8) & 0xF;
794                 pba_num[6] = '-';
795                 pba_num[7] = 0;
796                 pba_num[8] = (pba_ptr >> 4) & 0xF;
797                 pba_num[9] = pba_ptr & 0xF;
798
799                 /* put a null character on the end of our string */
800                 pba_num[10] = '\0';
801
802                 /* switch all the data but the '-' to hex char */
803                 for (offset = 0; offset < 10; offset++) {
804                         if (pba_num[offset] < 0xA)
805                                 pba_num[offset] += '0';
806                         else if (pba_num[offset] < 0x10)
807                                 pba_num[offset] += 'A' - 0xA;
808                 }
809
810                 return IGC_SUCCESS;
811         }
812
813         ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
814         if (ret_val) {
815                 DEBUGOUT("NVM Read Error\n");
816                 return ret_val;
817         }
818
819         if (length == 0xFFFF || length == 0) {
820                 DEBUGOUT("NVM PBA number section invalid length\n");
821                 return -IGC_ERR_NVM_PBA_SECTION;
822         }
823         /* check if pba_num buffer is big enough */
824         if (pba_num_size < (((u32)length * 2) - 1)) {
825                 DEBUGOUT("PBA string buffer too small\n");
826                 return -IGC_ERR_NO_SPACE;
827         }
828
829         /* trim pba length from start of string */
830         pba_ptr++;
831         length--;
832
833         for (offset = 0; offset < length; offset++) {
834                 ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
835                 if (ret_val) {
836                         DEBUGOUT("NVM Read Error\n");
837                         return ret_val;
838                 }
839                 pba_num[offset * 2] = (u8)(nvm_data >> 8);
840                 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
841         }
842         pba_num[offset * 2] = '\0';
843
844         return IGC_SUCCESS;
845 }
846
847 /**
848  *  igc_read_pba_length_generic - Read device part number length
849  *  @hw: pointer to the HW structure
850  *  @pba_num_size: size of part number buffer
851  *
852  *  Reads the product board assembly (PBA) number length from the EEPROM and
853  *  stores the value in pba_num_size.
854  **/
855 s32 igc_read_pba_length_generic(struct igc_hw *hw, u32 *pba_num_size)
856 {
857         s32 ret_val;
858         u16 nvm_data;
859         u16 pba_ptr;
860         u16 length;
861
862         DEBUGFUNC("igc_read_pba_length_generic");
863
864         if (pba_num_size == NULL) {
865                 DEBUGOUT("PBA buffer size was null\n");
866                 return -IGC_ERR_INVALID_ARGUMENT;
867         }
868
869         ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
870         if (ret_val) {
871                 DEBUGOUT("NVM Read Error\n");
872                 return ret_val;
873         }
874
875         ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
876         if (ret_val) {
877                 DEBUGOUT("NVM Read Error\n");
878                 return ret_val;
879         }
880
881          /* if data is not ptr guard the PBA must be in legacy format */
882         if (nvm_data != NVM_PBA_PTR_GUARD) {
883                 *pba_num_size = IGC_PBANUM_LENGTH;
884                 return IGC_SUCCESS;
885         }
886
887         ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
888         if (ret_val) {
889                 DEBUGOUT("NVM Read Error\n");
890                 return ret_val;
891         }
892
893         if (length == 0xFFFF || length == 0) {
894                 DEBUGOUT("NVM PBA number section invalid length\n");
895                 return -IGC_ERR_NVM_PBA_SECTION;
896         }
897
898         /* Convert from length in u16 values to u8 chars, add 1 for NULL,
899          * and subtract 2 because length field is included in length.
900          */
901         *pba_num_size = ((u32)length * 2) - 1;
902
903         return IGC_SUCCESS;
904 }
905
906 /**
907  *  igc_read_pba_num_generic - Read device part number
908  *  @hw: pointer to the HW structure
909  *  @pba_num: pointer to device part number
910  *
911  *  Reads the product board assembly (PBA) number from the EEPROM and stores
912  *  the value in pba_num.
913  **/
914 s32 igc_read_pba_num_generic(struct igc_hw *hw, u32 *pba_num)
915 {
916         s32 ret_val;
917         u16 nvm_data;
918
919         DEBUGFUNC("igc_read_pba_num_generic");
920
921         ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
922         if (ret_val) {
923                 DEBUGOUT("NVM Read Error\n");
924                 return ret_val;
925         } else if (nvm_data == NVM_PBA_PTR_GUARD) {
926                 DEBUGOUT("NVM Not Supported\n");
927                 return -IGC_NOT_IMPLEMENTED;
928         }
929         *pba_num = (u32)(nvm_data << 16);
930
931         ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
932         if (ret_val) {
933                 DEBUGOUT("NVM Read Error\n");
934                 return ret_val;
935         }
936         *pba_num |= nvm_data;
937
938         return IGC_SUCCESS;
939 }
940
941
942 /**
943  *  igc_read_pba_raw
944  *  @hw: pointer to the HW structure
945  *  @eeprom_buf: optional pointer to EEPROM image
946  *  @eeprom_buf_size: size of EEPROM image in words
947  *  @max_pba_block_size: PBA block size limit
948  *  @pba: pointer to output PBA structure
949  *
950  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
951  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
952  *
953  **/
954 s32 igc_read_pba_raw(struct igc_hw *hw, u16 *eeprom_buf,
955                        u32 eeprom_buf_size, u16 max_pba_block_size,
956                        struct igc_pba *pba)
957 {
958         s32 ret_val;
959         u16 pba_block_size;
960
961         if (pba == NULL)
962                 return -IGC_ERR_PARAM;
963
964         if (eeprom_buf == NULL) {
965                 ret_val = igc_read_nvm(hw, NVM_PBA_OFFSET_0, 2,
966                                          &pba->word[0]);
967                 if (ret_val)
968                         return ret_val;
969         } else {
970                 if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
971                         pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
972                         pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
973                 } else {
974                         return -IGC_ERR_PARAM;
975                 }
976         }
977
978         if (pba->word[0] == NVM_PBA_PTR_GUARD) {
979                 if (pba->pba_block == NULL)
980                         return -IGC_ERR_PARAM;
981
982                 ret_val = igc_get_pba_block_size(hw, eeprom_buf,
983                                                    eeprom_buf_size,
984                                                    &pba_block_size);
985                 if (ret_val)
986                         return ret_val;
987
988                 if (pba_block_size > max_pba_block_size)
989                         return -IGC_ERR_PARAM;
990
991                 if (eeprom_buf == NULL) {
992                         ret_val = igc_read_nvm(hw, pba->word[1],
993                                                  pba_block_size,
994                                                  pba->pba_block);
995                         if (ret_val)
996                                 return ret_val;
997                 } else {
998                         if (eeprom_buf_size > (u32)(pba->word[1] +
999                                               pba_block_size)) {
1000                                 memcpy(pba->pba_block,
1001                                        &eeprom_buf[pba->word[1]],
1002                                        pba_block_size * sizeof(u16));
1003                         } else {
1004                                 return -IGC_ERR_PARAM;
1005                         }
1006                 }
1007         }
1008
1009         return IGC_SUCCESS;
1010 }
1011
1012 /**
1013  *  igc_write_pba_raw
1014  *  @hw: pointer to the HW structure
1015  *  @eeprom_buf: optional pointer to EEPROM image
1016  *  @eeprom_buf_size: size of EEPROM image in words
1017  *  @pba: pointer to PBA structure
1018  *
1019  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
1020  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
1021  *
1022  **/
1023 s32 igc_write_pba_raw(struct igc_hw *hw, u16 *eeprom_buf,
1024                         u32 eeprom_buf_size, struct igc_pba *pba)
1025 {
1026         s32 ret_val;
1027
1028         if (pba == NULL)
1029                 return -IGC_ERR_PARAM;
1030
1031         if (eeprom_buf == NULL) {
1032                 ret_val = igc_write_nvm(hw, NVM_PBA_OFFSET_0, 2,
1033                                           &pba->word[0]);
1034                 if (ret_val)
1035                         return ret_val;
1036         } else {
1037                 if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
1038                         eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0];
1039                         eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1];
1040                 } else {
1041                         return -IGC_ERR_PARAM;
1042                 }
1043         }
1044
1045         if (pba->word[0] == NVM_PBA_PTR_GUARD) {
1046                 if (pba->pba_block == NULL)
1047                         return -IGC_ERR_PARAM;
1048
1049                 if (eeprom_buf == NULL) {
1050                         ret_val = igc_write_nvm(hw, pba->word[1],
1051                                                   pba->pba_block[0],
1052                                                   pba->pba_block);
1053                         if (ret_val)
1054                                 return ret_val;
1055                 } else {
1056                         if (eeprom_buf_size > (u32)(pba->word[1] +
1057                                               pba->pba_block[0])) {
1058                                 memcpy(&eeprom_buf[pba->word[1]],
1059                                        pba->pba_block,
1060                                        pba->pba_block[0] * sizeof(u16));
1061                         } else {
1062                                 return -IGC_ERR_PARAM;
1063                         }
1064                 }
1065         }
1066
1067         return IGC_SUCCESS;
1068 }
1069
1070 /**
1071  *  igc_get_pba_block_size
1072  *  @hw: pointer to the HW structure
1073  *  @eeprom_buf: optional pointer to EEPROM image
1074  *  @eeprom_buf_size: size of EEPROM image in words
1075  *  @pba_data_size: pointer to output variable
1076  *
1077  *  Returns the size of the PBA block in words. Function operates on EEPROM
1078  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
1079  *  EEPROM device.
1080  *
1081  **/
1082 s32 igc_get_pba_block_size(struct igc_hw *hw, u16 *eeprom_buf,
1083                              u32 eeprom_buf_size, u16 *pba_block_size)
1084 {
1085         s32 ret_val;
1086         u16 pba_word[2];
1087         u16 length;
1088
1089         DEBUGFUNC("igc_get_pba_block_size");
1090
1091         if (eeprom_buf == NULL) {
1092                 ret_val = igc_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]);
1093                 if (ret_val)
1094                         return ret_val;
1095         } else {
1096                 if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
1097                         pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
1098                         pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
1099                 } else {
1100                         return -IGC_ERR_PARAM;
1101                 }
1102         }
1103
1104         if (pba_word[0] == NVM_PBA_PTR_GUARD) {
1105                 if (eeprom_buf == NULL) {
1106                         ret_val = igc_read_nvm(hw, pba_word[1] + 0, 1,
1107                                                  &length);
1108                         if (ret_val)
1109                                 return ret_val;
1110                 } else {
1111                         if (eeprom_buf_size > pba_word[1])
1112                                 length = eeprom_buf[pba_word[1] + 0];
1113                         else
1114                                 return -IGC_ERR_PARAM;
1115                 }
1116
1117                 if (length == 0xFFFF || length == 0)
1118                         return -IGC_ERR_NVM_PBA_SECTION;
1119         } else {
1120                 /* PBA number in legacy format, there is no PBA Block. */
1121                 length = 0;
1122         }
1123
1124         if (pba_block_size != NULL)
1125                 *pba_block_size = length;
1126
1127         return IGC_SUCCESS;
1128 }
1129
1130 /**
1131  *  igc_read_mac_addr_generic - Read device MAC address
1132  *  @hw: pointer to the HW structure
1133  *
1134  *  Reads the device MAC address from the EEPROM and stores the value.
1135  *  Since devices with two ports use the same EEPROM, we increment the
1136  *  last bit in the MAC address for the second port.
1137  **/
1138 s32 igc_read_mac_addr_generic(struct igc_hw *hw)
1139 {
1140         u32 rar_high;
1141         u32 rar_low;
1142         u16 i;
1143
1144         rar_high = IGC_READ_REG(hw, IGC_RAH(0));
1145         rar_low = IGC_READ_REG(hw, IGC_RAL(0));
1146
1147         for (i = 0; i < IGC_RAL_MAC_ADDR_LEN; i++)
1148                 hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
1149
1150         for (i = 0; i < IGC_RAH_MAC_ADDR_LEN; i++)
1151                 hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
1152
1153         for (i = 0; i < ETH_ADDR_LEN; i++)
1154                 hw->mac.addr[i] = hw->mac.perm_addr[i];
1155
1156         return IGC_SUCCESS;
1157 }
1158
1159 /**
1160  *  igc_validate_nvm_checksum_generic - Validate EEPROM checksum
1161  *  @hw: pointer to the HW structure
1162  *
1163  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1164  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
1165  **/
1166 s32 igc_validate_nvm_checksum_generic(struct igc_hw *hw)
1167 {
1168         s32 ret_val;
1169         u16 checksum = 0;
1170         u16 i, nvm_data;
1171
1172         DEBUGFUNC("igc_validate_nvm_checksum_generic");
1173
1174         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1175                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1176                 if (ret_val) {
1177                         DEBUGOUT("NVM Read Error\n");
1178                         return ret_val;
1179                 }
1180                 checksum += nvm_data;
1181         }
1182
1183         if (checksum != (u16)NVM_SUM) {
1184                 DEBUGOUT("NVM Checksum Invalid\n");
1185                 return -IGC_ERR_NVM;
1186         }
1187
1188         return IGC_SUCCESS;
1189 }
1190
1191 /**
1192  *  igc_update_nvm_checksum_generic - Update EEPROM checksum
1193  *  @hw: pointer to the HW structure
1194  *
1195  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
1196  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
1197  *  value to the EEPROM.
1198  **/
1199 s32 igc_update_nvm_checksum_generic(struct igc_hw *hw)
1200 {
1201         s32 ret_val;
1202         u16 checksum = 0;
1203         u16 i, nvm_data;
1204
1205         DEBUGFUNC("igc_update_nvm_checksum");
1206
1207         for (i = 0; i < NVM_CHECKSUM_REG; i++) {
1208                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1209                 if (ret_val) {
1210                         DEBUGOUT("NVM Read Error while updating checksum.\n");
1211                         return ret_val;
1212                 }
1213                 checksum += nvm_data;
1214         }
1215         checksum = (u16)NVM_SUM - checksum;
1216         ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
1217         if (ret_val)
1218                 DEBUGOUT("NVM Write Error while updating checksum.\n");
1219
1220         return ret_val;
1221 }
1222
1223 /**
1224  *  igc_reload_nvm_generic - Reloads EEPROM
1225  *  @hw: pointer to the HW structure
1226  *
1227  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1228  *  extended control register.
1229  **/
1230 static void igc_reload_nvm_generic(struct igc_hw *hw)
1231 {
1232         u32 ctrl_ext;
1233
1234         DEBUGFUNC("igc_reload_nvm_generic");
1235
1236         usec_delay(10);
1237         ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT);
1238         ctrl_ext |= IGC_CTRL_EXT_EE_RST;
1239         IGC_WRITE_REG(hw, IGC_CTRL_EXT, ctrl_ext);
1240         IGC_WRITE_FLUSH(hw);
1241 }
1242
1243 /**
1244  *  igc_get_fw_version - Get firmware version information
1245  *  @hw: pointer to the HW structure
1246  *  @fw_vers: pointer to output version structure
1247  *
1248  *  unsupported/not present features return 0 in version structure
1249  **/
1250 void igc_get_fw_version(struct igc_hw *hw, struct igc_fw_version *fw_vers)
1251 {
1252         u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
1253         u8 q, hval, rem, result;
1254         u16 comb_verh, comb_verl, comb_offset;
1255
1256         memset(fw_vers, 0, sizeof(struct igc_fw_version));
1257
1258         /*
1259          * basic eeprom version numbers, bits used vary by part and by tool
1260          * used to create the nvm images. Check which data format we have.
1261          */
1262         switch (hw->mac.type) {
1263         case igc_i225:
1264                 hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
1265                 /* find combo image version */
1266                 hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
1267                 if (comb_offset && comb_offset != NVM_VER_INVALID) {
1268                         hw->nvm.ops.read(hw, NVM_COMB_VER_OFF + comb_offset + 1,
1269                                         1, &comb_verh);
1270                         hw->nvm.ops.read(hw, NVM_COMB_VER_OFF + comb_offset,
1271                                         1, &comb_verl);
1272
1273                         /* get Option Rom version if it exists and is valid */
1274                         if (comb_verh && comb_verl &&
1275                                         comb_verh != NVM_VER_INVALID &&
1276                                         comb_verl != NVM_VER_INVALID) {
1277                                 fw_vers->or_valid = true;
1278                                 fw_vers->or_major = comb_verl >>
1279                                                 NVM_COMB_VER_SHFT;
1280                                 fw_vers->or_build = (comb_verl <<
1281                                                 NVM_COMB_VER_SHFT) |
1282                                                 (comb_verh >>
1283                                                 NVM_COMB_VER_SHFT);
1284                                 fw_vers->or_patch = comb_verh &
1285                                                 NVM_COMB_VER_MASK;
1286                         }
1287                 }
1288                 break;
1289         default:
1290                 hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
1291                 return;
1292         }
1293         hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
1294         fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
1295                               >> NVM_MAJOR_SHIFT;
1296
1297         /* check for old style version format in newer images*/
1298         if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
1299                 eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
1300         } else {
1301                 eeprom_verl = (fw_version & NVM_MINOR_MASK)
1302                                 >> NVM_MINOR_SHIFT;
1303         }
1304         /* Convert minor value to hex before assigning to output struct
1305          * Val to be converted will not be higher than 99, per tool output
1306          */
1307         q = eeprom_verl / NVM_HEX_CONV;
1308         hval = q * NVM_HEX_TENS;
1309         rem = eeprom_verl % NVM_HEX_CONV;
1310         result = hval + rem;
1311         fw_vers->eep_minor = result;
1312
1313         if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
1314                 hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
1315                 hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
1316                 fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
1317                         | eeprom_verl;
1318         } else if ((etrack_test & NVM_ETRACK_VALID) == 0) {
1319                 hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh);
1320                 hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl);
1321                 fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) |
1322                                      eeprom_verl;
1323         }
1324 }