f092709c02356d58895e59937ecc1b8aeb4323b9
[dpdk.git] / drivers / net / igc / igc_txrx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2020 Intel Corporation
3  */
4
5 #include <rte_config.h>
6 #include <rte_malloc.h>
7 #include <ethdev_driver.h>
8 #include <rte_net.h>
9
10 #include "igc_logs.h"
11 #include "igc_txrx.h"
12
13 #ifdef RTE_PMD_USE_PREFETCH
14 #define rte_igc_prefetch(p)             rte_prefetch0(p)
15 #else
16 #define rte_igc_prefetch(p)             do {} while (0)
17 #endif
18
19 #ifdef RTE_PMD_PACKET_PREFETCH
20 #define rte_packet_prefetch(p)          rte_prefetch1(p)
21 #else
22 #define rte_packet_prefetch(p)          do {} while (0)
23 #endif
24
25 /* Multicast / Unicast table offset mask. */
26 #define IGC_RCTL_MO_MSK                 (3u << IGC_RCTL_MO_SHIFT)
27
28 /* Loopback mode. */
29 #define IGC_RCTL_LBM_SHIFT              6
30 #define IGC_RCTL_LBM_MSK                (3u << IGC_RCTL_LBM_SHIFT)
31
32 /* Hash select for MTA */
33 #define IGC_RCTL_HSEL_SHIFT             8
34 #define IGC_RCTL_HSEL_MSK               (3u << IGC_RCTL_HSEL_SHIFT)
35 #define IGC_RCTL_PSP                    (1u << 21)
36
37 /* Receive buffer size for header buffer */
38 #define IGC_SRRCTL_BSIZEHEADER_SHIFT    8
39
40 /* RX descriptor status and error flags */
41 #define IGC_RXD_STAT_L4CS               (1u << 5)
42 #define IGC_RXD_STAT_VEXT               (1u << 9)
43 #define IGC_RXD_STAT_LLINT              (1u << 11)
44 #define IGC_RXD_STAT_SCRC               (1u << 12)
45 #define IGC_RXD_STAT_SMDT_MASK          (3u << 13)
46 #define IGC_RXD_STAT_MC                 (1u << 19)
47 #define IGC_RXD_EXT_ERR_L4E             (1u << 29)
48 #define IGC_RXD_EXT_ERR_IPE             (1u << 30)
49 #define IGC_RXD_EXT_ERR_RXE             (1u << 31)
50 #define IGC_RXD_RSS_TYPE_MASK           0xfu
51 #define IGC_RXD_PCTYPE_MASK             (0x7fu << 4)
52 #define IGC_RXD_ETQF_SHIFT              12
53 #define IGC_RXD_ETQF_MSK                (0xfu << IGC_RXD_ETQF_SHIFT)
54 #define IGC_RXD_VPKT                    (1u << 16)
55
56 /* TXD control bits */
57 #define IGC_TXDCTL_PTHRESH_SHIFT        0
58 #define IGC_TXDCTL_HTHRESH_SHIFT        8
59 #define IGC_TXDCTL_WTHRESH_SHIFT        16
60 #define IGC_TXDCTL_PTHRESH_MSK          (0x1fu << IGC_TXDCTL_PTHRESH_SHIFT)
61 #define IGC_TXDCTL_HTHRESH_MSK          (0x1fu << IGC_TXDCTL_HTHRESH_SHIFT)
62 #define IGC_TXDCTL_WTHRESH_MSK          (0x1fu << IGC_TXDCTL_WTHRESH_SHIFT)
63
64 /* RXD control bits */
65 #define IGC_RXDCTL_PTHRESH_SHIFT        0
66 #define IGC_RXDCTL_HTHRESH_SHIFT        8
67 #define IGC_RXDCTL_WTHRESH_SHIFT        16
68 #define IGC_RXDCTL_PTHRESH_MSK          (0x1fu << IGC_RXDCTL_PTHRESH_SHIFT)
69 #define IGC_RXDCTL_HTHRESH_MSK          (0x1fu << IGC_RXDCTL_HTHRESH_SHIFT)
70 #define IGC_RXDCTL_WTHRESH_MSK          (0x1fu << IGC_RXDCTL_WTHRESH_SHIFT)
71
72 #define IGC_TSO_MAX_HDRLEN              512
73 #define IGC_TSO_MAX_MSS                 9216
74
75 /* Bit Mask to indicate what bits required for building TX context */
76 #define IGC_TX_OFFLOAD_MASK (           \
77                 PKT_TX_OUTER_IPV4 |     \
78                 PKT_TX_IPV6 |           \
79                 PKT_TX_IPV4 |           \
80                 PKT_TX_VLAN_PKT |       \
81                 PKT_TX_IP_CKSUM |       \
82                 PKT_TX_L4_MASK |        \
83                 PKT_TX_TCP_SEG |        \
84                 PKT_TX_UDP_SEG)
85
86 #define IGC_TX_OFFLOAD_SEG      (PKT_TX_TCP_SEG | PKT_TX_UDP_SEG)
87
88 #define IGC_ADVTXD_POPTS_TXSM   0x00000200 /* L4 Checksum offload request */
89 #define IGC_ADVTXD_POPTS_IXSM   0x00000100 /* IP Checksum offload request */
90
91 /* L4 Packet TYPE of Reserved */
92 #define IGC_ADVTXD_TUCMD_L4T_RSV        0x00001800
93
94 #define IGC_TX_OFFLOAD_NOTSUP_MASK (PKT_TX_OFFLOAD_MASK ^ IGC_TX_OFFLOAD_MASK)
95
96 /**
97  * Structure associated with each descriptor of the RX ring of a RX queue.
98  */
99 struct igc_rx_entry {
100         struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
101 };
102
103 /**
104  * Structure associated with each RX queue.
105  */
106 struct igc_rx_queue {
107         struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
108         volatile union igc_adv_rx_desc *rx_ring;
109         /**< RX ring virtual address. */
110         uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
111         volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
112         volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
113         struct igc_rx_entry *sw_ring;   /**< address of RX software ring. */
114         struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
115         struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
116         uint16_t            nb_rx_desc; /**< number of RX descriptors. */
117         uint16_t            rx_tail;    /**< current value of RDT register. */
118         uint16_t            nb_rx_hold; /**< number of held free RX desc. */
119         uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
120         uint16_t            queue_id;   /**< RX queue index. */
121         uint16_t            reg_idx;    /**< RX queue register index. */
122         uint16_t            port_id;    /**< Device port identifier. */
123         uint8_t             pthresh;    /**< Prefetch threshold register. */
124         uint8_t             hthresh;    /**< Host threshold register. */
125         uint8_t             wthresh;    /**< Write-back threshold register. */
126         uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
127         uint8_t             drop_en;    /**< If not 0, set SRRCTL.Drop_En. */
128         uint32_t            flags;      /**< RX flags. */
129         uint64_t            offloads;   /**< offloads of DEV_RX_OFFLOAD_* */
130 };
131
132 /** Offload features */
133 union igc_tx_offload {
134         uint64_t data;
135         struct {
136                 uint64_t l3_len:9; /**< L3 (IP) Header Length. */
137                 uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
138                 uint64_t vlan_tci:16;
139                 /**< VLAN Tag Control Identifier(CPU order). */
140                 uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
141                 uint64_t tso_segsz:16; /**< TCP TSO segment size. */
142                 /* uint64_t unused:8; */
143         };
144 };
145
146 /*
147  * Compare mask for igc_tx_offload.data,
148  * should be in sync with igc_tx_offload layout.
149  */
150 #define TX_MACIP_LEN_CMP_MASK   0x000000000000FFFFULL /**< L2L3 header mask. */
151 #define TX_VLAN_CMP_MASK        0x00000000FFFF0000ULL /**< Vlan mask. */
152 #define TX_TCP_LEN_CMP_MASK     0x000000FF00000000ULL /**< TCP header mask. */
153 #define TX_TSO_MSS_CMP_MASK     0x00FFFF0000000000ULL /**< TSO segsz mask. */
154 /** Mac + IP + TCP + Mss mask. */
155 #define TX_TSO_CMP_MASK \
156         (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
157
158 /**
159  * Structure to check if new context need be built
160  */
161 struct igc_advctx_info {
162         uint64_t flags;           /**< ol_flags related to context build. */
163         /** tx offload: vlan, tso, l2-l3-l4 lengths. */
164         union igc_tx_offload tx_offload;
165         /** compare mask for tx offload. */
166         union igc_tx_offload tx_offload_mask;
167 };
168
169 /**
170  * Hardware context number
171  */
172 enum {
173         IGC_CTX_0    = 0, /**< CTX0    */
174         IGC_CTX_1    = 1, /**< CTX1    */
175         IGC_CTX_NUM  = 2, /**< CTX_NUM */
176 };
177
178 /**
179  * Structure associated with each descriptor of the TX ring of a TX queue.
180  */
181 struct igc_tx_entry {
182         struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
183         uint16_t next_id; /**< Index of next descriptor in ring. */
184         uint16_t last_id; /**< Index of last scattered descriptor. */
185 };
186
187 /**
188  * Structure associated with each TX queue.
189  */
190 struct igc_tx_queue {
191         volatile union igc_adv_tx_desc *tx_ring; /**< TX ring address */
192         uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
193         struct igc_tx_entry    *sw_ring; /**< virtual address of SW ring. */
194         volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
195         uint32_t               txd_type;      /**< Device-specific TXD type */
196         uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
197         uint16_t               tx_tail;  /**< Current value of TDT register. */
198         uint16_t               tx_head;
199         /**< Index of first used TX descriptor. */
200         uint16_t               queue_id; /**< TX queue index. */
201         uint16_t               reg_idx;  /**< TX queue register index. */
202         uint16_t               port_id;  /**< Device port identifier. */
203         uint8_t                pthresh;  /**< Prefetch threshold register. */
204         uint8_t                hthresh;  /**< Host threshold register. */
205         uint8_t                wthresh;  /**< Write-back threshold register. */
206         uint8_t                ctx_curr;
207
208         /**< Start context position for transmit queue. */
209         struct igc_advctx_info ctx_cache[IGC_CTX_NUM];
210         /**< Hardware context history.*/
211         uint64_t               offloads; /**< offloads of DEV_TX_OFFLOAD_* */
212 };
213
214 static inline uint64_t
215 rx_desc_statuserr_to_pkt_flags(uint32_t statuserr)
216 {
217         static uint64_t l4_chksum_flags[] = {0, 0, PKT_RX_L4_CKSUM_GOOD,
218                         PKT_RX_L4_CKSUM_BAD};
219
220         static uint64_t l3_chksum_flags[] = {0, 0, PKT_RX_IP_CKSUM_GOOD,
221                         PKT_RX_IP_CKSUM_BAD};
222         uint64_t pkt_flags = 0;
223         uint32_t tmp;
224
225         if (statuserr & IGC_RXD_STAT_VP)
226                 pkt_flags |= PKT_RX_VLAN_STRIPPED;
227
228         tmp = !!(statuserr & (IGC_RXD_STAT_L4CS | IGC_RXD_STAT_UDPCS));
229         tmp = (tmp << 1) | (uint32_t)!!(statuserr & IGC_RXD_EXT_ERR_L4E);
230         pkt_flags |= l4_chksum_flags[tmp];
231
232         tmp = !!(statuserr & IGC_RXD_STAT_IPCS);
233         tmp = (tmp << 1) | (uint32_t)!!(statuserr & IGC_RXD_EXT_ERR_IPE);
234         pkt_flags |= l3_chksum_flags[tmp];
235
236         return pkt_flags;
237 }
238
239 #define IGC_PACKET_TYPE_IPV4              0X01
240 #define IGC_PACKET_TYPE_IPV4_TCP          0X11
241 #define IGC_PACKET_TYPE_IPV4_UDP          0X21
242 #define IGC_PACKET_TYPE_IPV4_SCTP         0X41
243 #define IGC_PACKET_TYPE_IPV4_EXT          0X03
244 #define IGC_PACKET_TYPE_IPV4_EXT_SCTP     0X43
245 #define IGC_PACKET_TYPE_IPV6              0X04
246 #define IGC_PACKET_TYPE_IPV6_TCP          0X14
247 #define IGC_PACKET_TYPE_IPV6_UDP          0X24
248 #define IGC_PACKET_TYPE_IPV6_EXT          0X0C
249 #define IGC_PACKET_TYPE_IPV6_EXT_TCP      0X1C
250 #define IGC_PACKET_TYPE_IPV6_EXT_UDP      0X2C
251 #define IGC_PACKET_TYPE_IPV4_IPV6         0X05
252 #define IGC_PACKET_TYPE_IPV4_IPV6_TCP     0X15
253 #define IGC_PACKET_TYPE_IPV4_IPV6_UDP     0X25
254 #define IGC_PACKET_TYPE_IPV4_IPV6_EXT     0X0D
255 #define IGC_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
256 #define IGC_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
257 #define IGC_PACKET_TYPE_MAX               0X80
258 #define IGC_PACKET_TYPE_MASK              0X7F
259 #define IGC_PACKET_TYPE_SHIFT             0X04
260
261 static inline uint32_t
262 rx_desc_pkt_info_to_pkt_type(uint32_t pkt_info)
263 {
264         static const uint32_t
265                 ptype_table[IGC_PACKET_TYPE_MAX] __rte_cache_aligned = {
266                 [IGC_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
267                         RTE_PTYPE_L3_IPV4,
268                 [IGC_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
269                         RTE_PTYPE_L3_IPV4_EXT,
270                 [IGC_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
271                         RTE_PTYPE_L3_IPV6,
272                 [IGC_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
273                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
274                         RTE_PTYPE_INNER_L3_IPV6,
275                 [IGC_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
276                         RTE_PTYPE_L3_IPV6_EXT,
277                 [IGC_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
278                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
279                         RTE_PTYPE_INNER_L3_IPV6_EXT,
280                 [IGC_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
281                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
282                 [IGC_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
283                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
284                 [IGC_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
285                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
286                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
287                 [IGC_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
288                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
289                 [IGC_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
290                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
291                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
292                 [IGC_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
293                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
294                 [IGC_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
295                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
296                 [IGC_PACKET_TYPE_IPV4_IPV6_UDP] =  RTE_PTYPE_L2_ETHER |
297                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
298                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
299                 [IGC_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
300                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
301                 [IGC_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
302                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
303                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
304                 [IGC_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
305                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
306                 [IGC_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
307                         RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
308         };
309         if (unlikely(pkt_info & IGC_RXDADV_PKTTYPE_ETQF))
310                 return RTE_PTYPE_UNKNOWN;
311
312         pkt_info = (pkt_info >> IGC_PACKET_TYPE_SHIFT) & IGC_PACKET_TYPE_MASK;
313
314         return ptype_table[pkt_info];
315 }
316
317 static inline void
318 rx_desc_get_pkt_info(struct igc_rx_queue *rxq, struct rte_mbuf *rxm,
319                 union igc_adv_rx_desc *rxd, uint32_t staterr)
320 {
321         uint64_t pkt_flags;
322         uint32_t hlen_type_rss;
323         uint16_t pkt_info;
324
325         /* Prefetch data of first segment, if configured to do so. */
326         rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
327
328         rxm->port = rxq->port_id;
329         hlen_type_rss = rte_le_to_cpu_32(rxd->wb.lower.lo_dword.data);
330         rxm->hash.rss = rte_le_to_cpu_32(rxd->wb.lower.hi_dword.rss);
331         rxm->vlan_tci = rte_le_to_cpu_16(rxd->wb.upper.vlan);
332
333         pkt_flags = (hlen_type_rss & IGC_RXD_RSS_TYPE_MASK) ?
334                         PKT_RX_RSS_HASH : 0;
335
336         if (hlen_type_rss & IGC_RXD_VPKT)
337                 pkt_flags |= PKT_RX_VLAN;
338
339         pkt_flags |= rx_desc_statuserr_to_pkt_flags(staterr);
340
341         rxm->ol_flags = pkt_flags;
342         pkt_info = rte_le_to_cpu_16(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
343         rxm->packet_type = rx_desc_pkt_info_to_pkt_type(pkt_info);
344 }
345
346 static uint16_t
347 igc_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
348 {
349         struct igc_rx_queue * const rxq = rx_queue;
350         volatile union igc_adv_rx_desc * const rx_ring = rxq->rx_ring;
351         struct igc_rx_entry * const sw_ring = rxq->sw_ring;
352         uint16_t rx_id = rxq->rx_tail;
353         uint16_t nb_rx = 0;
354         uint16_t nb_hold = 0;
355
356         while (nb_rx < nb_pkts) {
357                 volatile union igc_adv_rx_desc *rxdp;
358                 struct igc_rx_entry *rxe;
359                 struct rte_mbuf *rxm;
360                 struct rte_mbuf *nmb;
361                 union igc_adv_rx_desc rxd;
362                 uint32_t staterr;
363                 uint16_t data_len;
364
365                 /*
366                  * The order of operations here is important as the DD status
367                  * bit must not be read after any other descriptor fields.
368                  * rx_ring and rxdp are pointing to volatile data so the order
369                  * of accesses cannot be reordered by the compiler. If they were
370                  * not volatile, they could be reordered which could lead to
371                  * using invalid descriptor fields when read from rxd.
372                  */
373                 rxdp = &rx_ring[rx_id];
374                 staterr = rte_cpu_to_le_32(rxdp->wb.upper.status_error);
375                 if (!(staterr & IGC_RXD_STAT_DD))
376                         break;
377                 rxd = *rxdp;
378
379                 /*
380                  * End of packet.
381                  *
382                  * If the IGC_RXD_STAT_EOP flag is not set, the RX packet is
383                  * likely to be invalid and to be dropped by the various
384                  * validation checks performed by the network stack.
385                  *
386                  * Allocate a new mbuf to replenish the RX ring descriptor.
387                  * If the allocation fails:
388                  *    - arrange for that RX descriptor to be the first one
389                  *      being parsed the next time the receive function is
390                  *      invoked [on the same queue].
391                  *
392                  *    - Stop parsing the RX ring and return immediately.
393                  *
394                  * This policy does not drop the packet received in the RX
395                  * descriptor for which the allocation of a new mbuf failed.
396                  * Thus, it allows that packet to be later retrieved if
397                  * mbuf have been freed in the mean time.
398                  * As a side effect, holding RX descriptors instead of
399                  * systematically giving them back to the NIC may lead to
400                  * RX ring exhaustion situations.
401                  * However, the NIC can gracefully prevent such situations
402                  * to happen by sending specific "back-pressure" flow control
403                  * frames to its peer(s).
404                  */
405                 PMD_RX_LOG(DEBUG,
406                         "port_id=%u queue_id=%u rx_id=%u staterr=0x%x data_len=%u",
407                         rxq->port_id, rxq->queue_id, rx_id, staterr,
408                         rte_le_to_cpu_16(rxd.wb.upper.length));
409
410                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
411                 if (nmb == NULL) {
412                         unsigned int id;
413                         PMD_RX_LOG(DEBUG,
414                                 "RX mbuf alloc failed, port_id=%u queue_id=%u",
415                                 rxq->port_id, rxq->queue_id);
416                         id = rxq->port_id;
417                         rte_eth_devices[id].data->rx_mbuf_alloc_failed++;
418                         break;
419                 }
420
421                 nb_hold++;
422                 rxe = &sw_ring[rx_id];
423                 rx_id++;
424                 if (rx_id >= rxq->nb_rx_desc)
425                         rx_id = 0;
426
427                 /* Prefetch next mbuf while processing current one. */
428                 rte_igc_prefetch(sw_ring[rx_id].mbuf);
429
430                 /*
431                  * When next RX descriptor is on a cache-line boundary,
432                  * prefetch the next 4 RX descriptors and the next 8 pointers
433                  * to mbufs.
434                  */
435                 if ((rx_id & 0x3) == 0) {
436                         rte_igc_prefetch(&rx_ring[rx_id]);
437                         rte_igc_prefetch(&sw_ring[rx_id]);
438                 }
439
440                 /*
441                  * Update RX descriptor with the physical address of the new
442                  * data buffer of the new allocated mbuf.
443                  */
444                 rxm = rxe->mbuf;
445                 rxe->mbuf = nmb;
446                 rxdp->read.hdr_addr = 0;
447                 rxdp->read.pkt_addr =
448                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
449                 rxm->next = NULL;
450
451                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
452                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length) - rxq->crc_len;
453                 rxm->data_len = data_len;
454                 rxm->pkt_len = data_len;
455                 rxm->nb_segs = 1;
456
457                 rx_desc_get_pkt_info(rxq, rxm, &rxd, staterr);
458
459                 /*
460                  * Store the mbuf address into the next entry of the array
461                  * of returned packets.
462                  */
463                 rx_pkts[nb_rx++] = rxm;
464         }
465         rxq->rx_tail = rx_id;
466
467         /*
468          * If the number of free RX descriptors is greater than the RX free
469          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
470          * register.
471          * Update the RDT with the value of the last processed RX descriptor
472          * minus 1, to guarantee that the RDT register is never equal to the
473          * RDH register, which creates a "full" ring situation from the
474          * hardware point of view...
475          */
476         nb_hold = nb_hold + rxq->nb_rx_hold;
477         if (nb_hold > rxq->rx_free_thresh) {
478                 PMD_RX_LOG(DEBUG,
479                         "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u nb_rx=%u",
480                         rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
481                 rx_id = (rx_id == 0) ? (rxq->nb_rx_desc - 1) : (rx_id - 1);
482                 IGC_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
483                 nb_hold = 0;
484         }
485         rxq->nb_rx_hold = nb_hold;
486         return nb_rx;
487 }
488
489 static uint16_t
490 igc_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
491                         uint16_t nb_pkts)
492 {
493         struct igc_rx_queue * const rxq = rx_queue;
494         volatile union igc_adv_rx_desc * const rx_ring = rxq->rx_ring;
495         struct igc_rx_entry * const sw_ring = rxq->sw_ring;
496         struct rte_mbuf *first_seg = rxq->pkt_first_seg;
497         struct rte_mbuf *last_seg = rxq->pkt_last_seg;
498
499         uint16_t rx_id = rxq->rx_tail;
500         uint16_t nb_rx = 0;
501         uint16_t nb_hold = 0;
502
503         while (nb_rx < nb_pkts) {
504                 volatile union igc_adv_rx_desc *rxdp;
505                 struct igc_rx_entry *rxe;
506                 struct rte_mbuf *rxm;
507                 struct rte_mbuf *nmb;
508                 union igc_adv_rx_desc rxd;
509                 uint32_t staterr;
510                 uint16_t data_len;
511
512 next_desc:
513                 /*
514                  * The order of operations here is important as the DD status
515                  * bit must not be read after any other descriptor fields.
516                  * rx_ring and rxdp are pointing to volatile data so the order
517                  * of accesses cannot be reordered by the compiler. If they were
518                  * not volatile, they could be reordered which could lead to
519                  * using invalid descriptor fields when read from rxd.
520                  */
521                 rxdp = &rx_ring[rx_id];
522                 staterr = rte_cpu_to_le_32(rxdp->wb.upper.status_error);
523                 if (!(staterr & IGC_RXD_STAT_DD))
524                         break;
525                 rxd = *rxdp;
526
527                 /*
528                  * Descriptor done.
529                  *
530                  * Allocate a new mbuf to replenish the RX ring descriptor.
531                  * If the allocation fails:
532                  *    - arrange for that RX descriptor to be the first one
533                  *      being parsed the next time the receive function is
534                  *      invoked [on the same queue].
535                  *
536                  *    - Stop parsing the RX ring and return immediately.
537                  *
538                  * This policy does not drop the packet received in the RX
539                  * descriptor for which the allocation of a new mbuf failed.
540                  * Thus, it allows that packet to be later retrieved if
541                  * mbuf have been freed in the mean time.
542                  * As a side effect, holding RX descriptors instead of
543                  * systematically giving them back to the NIC may lead to
544                  * RX ring exhaustion situations.
545                  * However, the NIC can gracefully prevent such situations
546                  * to happen by sending specific "back-pressure" flow control
547                  * frames to its peer(s).
548                  */
549                 PMD_RX_LOG(DEBUG,
550                         "port_id=%u queue_id=%u rx_id=%u staterr=0x%x data_len=%u",
551                         rxq->port_id, rxq->queue_id, rx_id, staterr,
552                         rte_le_to_cpu_16(rxd.wb.upper.length));
553
554                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
555                 if (nmb == NULL) {
556                         unsigned int id;
557                         PMD_RX_LOG(DEBUG,
558                                 "RX mbuf alloc failed, port_id=%u queue_id=%u",
559                                 rxq->port_id, rxq->queue_id);
560                         id = rxq->port_id;
561                         rte_eth_devices[id].data->rx_mbuf_alloc_failed++;
562                         break;
563                 }
564
565                 nb_hold++;
566                 rxe = &sw_ring[rx_id];
567                 rx_id++;
568                 if (rx_id >= rxq->nb_rx_desc)
569                         rx_id = 0;
570
571                 /* Prefetch next mbuf while processing current one. */
572                 rte_igc_prefetch(sw_ring[rx_id].mbuf);
573
574                 /*
575                  * When next RX descriptor is on a cache-line boundary,
576                  * prefetch the next 4 RX descriptors and the next 8 pointers
577                  * to mbufs.
578                  */
579                 if ((rx_id & 0x3) == 0) {
580                         rte_igc_prefetch(&rx_ring[rx_id]);
581                         rte_igc_prefetch(&sw_ring[rx_id]);
582                 }
583
584                 /*
585                  * Update RX descriptor with the physical address of the new
586                  * data buffer of the new allocated mbuf.
587                  */
588                 rxm = rxe->mbuf;
589                 rxe->mbuf = nmb;
590                 rxdp->read.hdr_addr = 0;
591                 rxdp->read.pkt_addr =
592                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
593                 rxm->next = NULL;
594
595                 /*
596                  * Set data length & data buffer address of mbuf.
597                  */
598                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
599                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
600                 rxm->data_len = data_len;
601
602                 /*
603                  * If this is the first buffer of the received packet,
604                  * set the pointer to the first mbuf of the packet and
605                  * initialize its context.
606                  * Otherwise, update the total length and the number of segments
607                  * of the current scattered packet, and update the pointer to
608                  * the last mbuf of the current packet.
609                  */
610                 if (first_seg == NULL) {
611                         first_seg = rxm;
612                         first_seg->pkt_len = data_len;
613                         first_seg->nb_segs = 1;
614                 } else {
615                         first_seg->pkt_len += data_len;
616                         first_seg->nb_segs++;
617                         last_seg->next = rxm;
618                 }
619
620                 /*
621                  * If this is not the last buffer of the received packet,
622                  * update the pointer to the last mbuf of the current scattered
623                  * packet and continue to parse the RX ring.
624                  */
625                 if (!(staterr & IGC_RXD_STAT_EOP)) {
626                         last_seg = rxm;
627                         goto next_desc;
628                 }
629
630                 /*
631                  * This is the last buffer of the received packet.
632                  * If the CRC is not stripped by the hardware:
633                  *   - Subtract the CRC length from the total packet length.
634                  *   - If the last buffer only contains the whole CRC or a part
635                  *     of it, free the mbuf associated to the last buffer.
636                  *     If part of the CRC is also contained in the previous
637                  *     mbuf, subtract the length of that CRC part from the
638                  *     data length of the previous mbuf.
639                  */
640                 if (unlikely(rxq->crc_len > 0)) {
641                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
642                         if (data_len <= RTE_ETHER_CRC_LEN) {
643                                 rte_pktmbuf_free_seg(rxm);
644                                 first_seg->nb_segs--;
645                                 last_seg->data_len = last_seg->data_len -
646                                          (RTE_ETHER_CRC_LEN - data_len);
647                                 last_seg->next = NULL;
648                         } else {
649                                 rxm->data_len = (uint16_t)
650                                         (data_len - RTE_ETHER_CRC_LEN);
651                         }
652                 }
653
654                 rx_desc_get_pkt_info(rxq, first_seg, &rxd, staterr);
655
656                 /*
657                  * Store the mbuf address into the next entry of the array
658                  * of returned packets.
659                  */
660                 rx_pkts[nb_rx++] = first_seg;
661
662                 /* Setup receipt context for a new packet. */
663                 first_seg = NULL;
664         }
665         rxq->rx_tail = rx_id;
666
667         /*
668          * Save receive context.
669          */
670         rxq->pkt_first_seg = first_seg;
671         rxq->pkt_last_seg = last_seg;
672
673         /*
674          * If the number of free RX descriptors is greater than the RX free
675          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
676          * register.
677          * Update the RDT with the value of the last processed RX descriptor
678          * minus 1, to guarantee that the RDT register is never equal to the
679          * RDH register, which creates a "full" ring situation from the
680          * hardware point of view...
681          */
682         nb_hold = nb_hold + rxq->nb_rx_hold;
683         if (nb_hold > rxq->rx_free_thresh) {
684                 PMD_RX_LOG(DEBUG,
685                         "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u nb_rx=%u",
686                         rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
687                 rx_id = (rx_id == 0) ? (rxq->nb_rx_desc - 1) : (rx_id - 1);
688                 IGC_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
689                 nb_hold = 0;
690         }
691         rxq->nb_rx_hold = nb_hold;
692         return nb_rx;
693 }
694
695 static void
696 igc_rx_queue_release_mbufs(struct igc_rx_queue *rxq)
697 {
698         unsigned int i;
699
700         if (rxq->sw_ring != NULL) {
701                 for (i = 0; i < rxq->nb_rx_desc; i++) {
702                         if (rxq->sw_ring[i].mbuf != NULL) {
703                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
704                                 rxq->sw_ring[i].mbuf = NULL;
705                         }
706                 }
707         }
708 }
709
710 static void
711 igc_rx_queue_release(struct igc_rx_queue *rxq)
712 {
713         igc_rx_queue_release_mbufs(rxq);
714         rte_free(rxq->sw_ring);
715         rte_free(rxq);
716 }
717
718 void eth_igc_rx_queue_release(void *rxq)
719 {
720         if (rxq)
721                 igc_rx_queue_release(rxq);
722 }
723
724 uint32_t eth_igc_rx_queue_count(struct rte_eth_dev *dev,
725                 uint16_t rx_queue_id)
726 {
727         /**
728          * Check the DD bit of a rx descriptor of each 4 in a group,
729          * to avoid checking too frequently and downgrading performance
730          * too much.
731          */
732 #define IGC_RXQ_SCAN_INTERVAL 4
733
734         volatile union igc_adv_rx_desc *rxdp;
735         struct igc_rx_queue *rxq;
736         uint16_t desc = 0;
737
738         rxq = dev->data->rx_queues[rx_queue_id];
739         rxdp = &rxq->rx_ring[rxq->rx_tail];
740
741         while (desc < rxq->nb_rx_desc - rxq->rx_tail) {
742                 if (unlikely(!(rxdp->wb.upper.status_error &
743                                 IGC_RXD_STAT_DD)))
744                         return desc;
745                 desc += IGC_RXQ_SCAN_INTERVAL;
746                 rxdp += IGC_RXQ_SCAN_INTERVAL;
747         }
748         rxdp = &rxq->rx_ring[rxq->rx_tail + desc - rxq->nb_rx_desc];
749
750         while (desc < rxq->nb_rx_desc &&
751                 (rxdp->wb.upper.status_error & IGC_RXD_STAT_DD)) {
752                 desc += IGC_RXQ_SCAN_INTERVAL;
753                 rxdp += IGC_RXQ_SCAN_INTERVAL;
754         }
755
756         return desc;
757 }
758
759 int eth_igc_rx_descriptor_done(void *rx_queue, uint16_t offset)
760 {
761         volatile union igc_adv_rx_desc *rxdp;
762         struct igc_rx_queue *rxq = rx_queue;
763         uint32_t desc;
764
765         if (unlikely(!rxq || offset >= rxq->nb_rx_desc))
766                 return 0;
767
768         desc = rxq->rx_tail + offset;
769         if (desc >= rxq->nb_rx_desc)
770                 desc -= rxq->nb_rx_desc;
771
772         rxdp = &rxq->rx_ring[desc];
773         return !!(rxdp->wb.upper.status_error &
774                         rte_cpu_to_le_32(IGC_RXD_STAT_DD));
775 }
776
777 int eth_igc_rx_descriptor_status(void *rx_queue, uint16_t offset)
778 {
779         struct igc_rx_queue *rxq = rx_queue;
780         volatile uint32_t *status;
781         uint32_t desc;
782
783         if (unlikely(!rxq || offset >= rxq->nb_rx_desc))
784                 return -EINVAL;
785
786         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
787                 return RTE_ETH_RX_DESC_UNAVAIL;
788
789         desc = rxq->rx_tail + offset;
790         if (desc >= rxq->nb_rx_desc)
791                 desc -= rxq->nb_rx_desc;
792
793         status = &rxq->rx_ring[desc].wb.upper.status_error;
794         if (*status & rte_cpu_to_le_32(IGC_RXD_STAT_DD))
795                 return RTE_ETH_RX_DESC_DONE;
796
797         return RTE_ETH_RX_DESC_AVAIL;
798 }
799
800 static int
801 igc_alloc_rx_queue_mbufs(struct igc_rx_queue *rxq)
802 {
803         struct igc_rx_entry *rxe = rxq->sw_ring;
804         uint64_t dma_addr;
805         unsigned int i;
806
807         /* Initialize software ring entries. */
808         for (i = 0; i < rxq->nb_rx_desc; i++) {
809                 volatile union igc_adv_rx_desc *rxd;
810                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
811
812                 if (mbuf == NULL) {
813                         PMD_DRV_LOG(ERR, "RX mbuf alloc failed, queue_id=%hu",
814                                 rxq->queue_id);
815                         return -ENOMEM;
816                 }
817                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
818                 rxd = &rxq->rx_ring[i];
819                 rxd->read.hdr_addr = 0;
820                 rxd->read.pkt_addr = dma_addr;
821                 rxe[i].mbuf = mbuf;
822         }
823
824         return 0;
825 }
826
827 /*
828  * RSS random key supplied in section 7.1.2.9.3 of the Intel I225 datasheet.
829  * Used as the default key.
830  */
831 static uint8_t default_rss_key[40] = {
832         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
833         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
834         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
835         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
836         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
837 };
838
839 void
840 igc_rss_disable(struct rte_eth_dev *dev)
841 {
842         struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
843         uint32_t mrqc;
844
845         mrqc = IGC_READ_REG(hw, IGC_MRQC);
846         mrqc &= ~IGC_MRQC_ENABLE_MASK;
847         IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
848 }
849
850 void
851 igc_hw_rss_hash_set(struct igc_hw *hw, struct rte_eth_rss_conf *rss_conf)
852 {
853         uint32_t *hash_key = (uint32_t *)rss_conf->rss_key;
854         uint32_t mrqc;
855         uint64_t rss_hf;
856
857         if (hash_key != NULL) {
858                 uint8_t i;
859
860                 /* Fill in RSS hash key */
861                 for (i = 0; i < IGC_HKEY_MAX_INDEX; i++)
862                         IGC_WRITE_REG_LE_VALUE(hw, IGC_RSSRK(i), hash_key[i]);
863         }
864
865         /* Set configured hashing protocols in MRQC register */
866         rss_hf = rss_conf->rss_hf;
867         mrqc = IGC_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
868         if (rss_hf & ETH_RSS_IPV4)
869                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4;
870         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
871                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_TCP;
872         if (rss_hf & ETH_RSS_IPV6)
873                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6;
874         if (rss_hf & ETH_RSS_IPV6_EX)
875                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_EX;
876         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
877                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP;
878         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
879                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
880         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
881                 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
882         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
883                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
884         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
885                 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP_EX;
886         IGC_WRITE_REG(hw, IGC_MRQC, mrqc);
887 }
888
889 static void
890 igc_rss_configure(struct rte_eth_dev *dev)
891 {
892         struct rte_eth_rss_conf rss_conf;
893         struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
894         uint16_t i;
895
896         /* Fill in redirection table. */
897         for (i = 0; i < IGC_RSS_RDT_SIZD; i++) {
898                 union igc_rss_reta_reg reta;
899                 uint16_t q_idx, reta_idx;
900
901                 q_idx = (uint8_t)((dev->data->nb_rx_queues > 1) ?
902                                    i % dev->data->nb_rx_queues : 0);
903                 reta_idx = i % sizeof(reta);
904                 reta.bytes[reta_idx] = q_idx;
905                 if (reta_idx == sizeof(reta) - 1)
906                         IGC_WRITE_REG_LE_VALUE(hw,
907                                 IGC_RETA(i / sizeof(reta)), reta.dword);
908         }
909
910         /*
911          * Configure the RSS key and the RSS protocols used to compute
912          * the RSS hash of input packets.
913          */
914         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
915         if (rss_conf.rss_key == NULL)
916                 rss_conf.rss_key = default_rss_key;
917         igc_hw_rss_hash_set(hw, &rss_conf);
918 }
919
920 int
921 igc_del_rss_filter(struct rte_eth_dev *dev)
922 {
923         struct igc_rss_filter *rss_filter = IGC_DEV_PRIVATE_RSS_FILTER(dev);
924
925         if (rss_filter->enable) {
926                 /* recover default RSS configuration */
927                 igc_rss_configure(dev);
928
929                 /* disable RSS logic and clear filter data */
930                 igc_rss_disable(dev);
931                 memset(rss_filter, 0, sizeof(*rss_filter));
932                 return 0;
933         }
934         PMD_DRV_LOG(ERR, "filter not exist!");
935         return -ENOENT;
936 }
937
938 /* Initiate the filter structure by the structure of rte_flow_action_rss */
939 void
940 igc_rss_conf_set(struct igc_rss_filter *out,
941                 const struct rte_flow_action_rss *rss)
942 {
943         out->conf.func = rss->func;
944         out->conf.level = rss->level;
945         out->conf.types = rss->types;
946
947         if (rss->key_len == sizeof(out->key)) {
948                 memcpy(out->key, rss->key, rss->key_len);
949                 out->conf.key = out->key;
950                 out->conf.key_len = rss->key_len;
951         } else {
952                 out->conf.key = NULL;
953                 out->conf.key_len = 0;
954         }
955
956         if (rss->queue_num <= IGC_RSS_RDT_SIZD) {
957                 memcpy(out->queue, rss->queue,
958                         sizeof(*out->queue) * rss->queue_num);
959                 out->conf.queue = out->queue;
960                 out->conf.queue_num = rss->queue_num;
961         } else {
962                 out->conf.queue = NULL;
963                 out->conf.queue_num = 0;
964         }
965 }
966
967 int
968 igc_add_rss_filter(struct rte_eth_dev *dev, struct igc_rss_filter *rss)
969 {
970         struct rte_eth_rss_conf rss_conf = {
971                 .rss_key = rss->conf.key_len ?
972                         (void *)(uintptr_t)rss->conf.key : NULL,
973                 .rss_key_len = rss->conf.key_len,
974                 .rss_hf = rss->conf.types,
975         };
976         struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
977         struct igc_rss_filter *rss_filter = IGC_DEV_PRIVATE_RSS_FILTER(dev);
978         uint32_t i, j;
979
980         /* check RSS type is valid */
981         if ((rss_conf.rss_hf & IGC_RSS_OFFLOAD_ALL) == 0) {
982                 PMD_DRV_LOG(ERR,
983                         "RSS type(0x%" PRIx64 ") error!, only 0x%" PRIx64
984                         " been supported", rss_conf.rss_hf,
985                         (uint64_t)IGC_RSS_OFFLOAD_ALL);
986                 return -EINVAL;
987         }
988
989         /* check queue count is not zero */
990         if (!rss->conf.queue_num) {
991                 PMD_DRV_LOG(ERR, "Queue number should not be 0!");
992                 return -EINVAL;
993         }
994
995         /* check queue id is valid */
996         for (i = 0; i < rss->conf.queue_num; i++)
997                 if (rss->conf.queue[i] >= dev->data->nb_rx_queues) {
998                         PMD_DRV_LOG(ERR, "Queue id %u is invalid!",
999                                         rss->conf.queue[i]);
1000                         return -EINVAL;
1001                 }
1002
1003         /* only support one filter */
1004         if (rss_filter->enable) {
1005                 PMD_DRV_LOG(ERR, "Only support one RSS filter!");
1006                 return -ENOTSUP;
1007         }
1008         rss_filter->enable = 1;
1009
1010         igc_rss_conf_set(rss_filter, &rss->conf);
1011
1012         /* Fill in redirection table. */
1013         for (i = 0, j = 0; i < IGC_RSS_RDT_SIZD; i++, j++) {
1014                 union igc_rss_reta_reg reta;
1015                 uint16_t q_idx, reta_idx;
1016
1017                 if (j == rss->conf.queue_num)
1018                         j = 0;
1019                 q_idx = rss->conf.queue[j];
1020                 reta_idx = i % sizeof(reta);
1021                 reta.bytes[reta_idx] = q_idx;
1022                 if (reta_idx == sizeof(reta) - 1)
1023                         IGC_WRITE_REG_LE_VALUE(hw,
1024                                 IGC_RETA(i / sizeof(reta)), reta.dword);
1025         }
1026
1027         if (rss_conf.rss_key == NULL)
1028                 rss_conf.rss_key = default_rss_key;
1029         igc_hw_rss_hash_set(hw, &rss_conf);
1030         return 0;
1031 }
1032
1033 void
1034 igc_clear_rss_filter(struct rte_eth_dev *dev)
1035 {
1036         struct igc_rss_filter *rss_filter = IGC_DEV_PRIVATE_RSS_FILTER(dev);
1037
1038         if (!rss_filter->enable)
1039                 return;
1040
1041         /* recover default RSS configuration */
1042         igc_rss_configure(dev);
1043
1044         /* disable RSS logic and clear filter data */
1045         igc_rss_disable(dev);
1046         memset(rss_filter, 0, sizeof(*rss_filter));
1047 }
1048
1049 static int
1050 igc_dev_mq_rx_configure(struct rte_eth_dev *dev)
1051 {
1052         if (RTE_ETH_DEV_SRIOV(dev).active) {
1053                 PMD_DRV_LOG(ERR, "SRIOV unsupported!");
1054                 return -EINVAL;
1055         }
1056
1057         switch (dev->data->dev_conf.rxmode.mq_mode) {
1058         case ETH_MQ_RX_RSS:
1059                 igc_rss_configure(dev);
1060                 break;
1061         case ETH_MQ_RX_NONE:
1062                 /*
1063                  * configure RSS register for following,
1064                  * then disable the RSS logic
1065                  */
1066                 igc_rss_configure(dev);
1067                 igc_rss_disable(dev);
1068                 break;
1069         default:
1070                 PMD_DRV_LOG(ERR, "rx mode(%d) not supported!",
1071                         dev->data->dev_conf.rxmode.mq_mode);
1072                 return -EINVAL;
1073         }
1074         return 0;
1075 }
1076
1077 int
1078 igc_rx_init(struct rte_eth_dev *dev)
1079 {
1080         struct igc_rx_queue *rxq;
1081         struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
1082         uint64_t offloads = dev->data->dev_conf.rxmode.offloads;
1083         uint32_t max_rx_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
1084         uint32_t rctl;
1085         uint32_t rxcsum;
1086         uint16_t buf_size;
1087         uint16_t rctl_bsize;
1088         uint16_t i;
1089         int ret;
1090
1091         dev->rx_pkt_burst = igc_recv_pkts;
1092
1093         /*
1094          * Make sure receives are disabled while setting
1095          * up the descriptor ring.
1096          */
1097         rctl = IGC_READ_REG(hw, IGC_RCTL);
1098         IGC_WRITE_REG(hw, IGC_RCTL, rctl & ~IGC_RCTL_EN);
1099
1100         /* Configure support of jumbo frames, if any. */
1101         if (offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
1102                 rctl |= IGC_RCTL_LPE;
1103
1104                 /*
1105                  * Set maximum packet length by default, and might be updated
1106                  * together with enabling/disabling dual VLAN.
1107                  */
1108                 IGC_WRITE_REG(hw, IGC_RLPML, max_rx_pkt_len);
1109         } else {
1110                 rctl &= ~IGC_RCTL_LPE;
1111         }
1112
1113         /* Configure and enable each RX queue. */
1114         rctl_bsize = 0;
1115         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1116                 uint64_t bus_addr;
1117                 uint32_t rxdctl;
1118                 uint32_t srrctl;
1119
1120                 rxq = dev->data->rx_queues[i];
1121                 rxq->flags = 0;
1122
1123                 /* Allocate buffers for descriptor rings and set up queue */
1124                 ret = igc_alloc_rx_queue_mbufs(rxq);
1125                 if (ret)
1126                         return ret;
1127
1128                 /*
1129                  * Reset crc_len in case it was changed after queue setup by a
1130                  * call to configure
1131                  */
1132                 rxq->crc_len = (offloads & DEV_RX_OFFLOAD_KEEP_CRC) ?
1133                                 RTE_ETHER_CRC_LEN : 0;
1134
1135                 bus_addr = rxq->rx_ring_phys_addr;
1136                 IGC_WRITE_REG(hw, IGC_RDLEN(rxq->reg_idx),
1137                                 rxq->nb_rx_desc *
1138                                 sizeof(union igc_adv_rx_desc));
1139                 IGC_WRITE_REG(hw, IGC_RDBAH(rxq->reg_idx),
1140                                 (uint32_t)(bus_addr >> 32));
1141                 IGC_WRITE_REG(hw, IGC_RDBAL(rxq->reg_idx),
1142                                 (uint32_t)bus_addr);
1143
1144                 /* set descriptor configuration */
1145                 srrctl = IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
1146
1147                 srrctl |= (uint32_t)(RTE_PKTMBUF_HEADROOM / 64) <<
1148                                 IGC_SRRCTL_BSIZEHEADER_SHIFT;
1149                 /*
1150                  * Configure RX buffer size.
1151                  */
1152                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
1153                         RTE_PKTMBUF_HEADROOM);
1154                 if (buf_size >= 1024) {
1155                         /*
1156                          * Configure the BSIZEPACKET field of the SRRCTL
1157                          * register of the queue.
1158                          * Value is in 1 KB resolution, from 1 KB to 16 KB.
1159                          * If this field is equal to 0b, then RCTL.BSIZE
1160                          * determines the RX packet buffer size.
1161                          */
1162
1163                         srrctl |= ((buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT) &
1164                                    IGC_SRRCTL_BSIZEPKT_MASK);
1165                         buf_size = (uint16_t)((srrctl &
1166                                         IGC_SRRCTL_BSIZEPKT_MASK) <<
1167                                         IGC_SRRCTL_BSIZEPKT_SHIFT);
1168
1169                         /* It adds dual VLAN length for supporting dual VLAN */
1170                         if (max_rx_pkt_len + 2 * VLAN_TAG_SIZE > buf_size)
1171                                 dev->data->scattered_rx = 1;
1172                 } else {
1173                         /*
1174                          * Use BSIZE field of the device RCTL register.
1175                          */
1176                         if (rctl_bsize == 0 || rctl_bsize > buf_size)
1177                                 rctl_bsize = buf_size;
1178                         dev->data->scattered_rx = 1;
1179                 }
1180
1181                 /* Set if packets are dropped when no descriptors available */
1182                 if (rxq->drop_en)
1183                         srrctl |= IGC_SRRCTL_DROP_EN;
1184
1185                 IGC_WRITE_REG(hw, IGC_SRRCTL(rxq->reg_idx), srrctl);
1186
1187                 /* Enable this RX queue. */
1188                 rxdctl = IGC_RXDCTL_QUEUE_ENABLE;
1189                 rxdctl |= ((uint32_t)rxq->pthresh << IGC_RXDCTL_PTHRESH_SHIFT) &
1190                                 IGC_RXDCTL_PTHRESH_MSK;
1191                 rxdctl |= ((uint32_t)rxq->hthresh << IGC_RXDCTL_HTHRESH_SHIFT) &
1192                                 IGC_RXDCTL_HTHRESH_MSK;
1193                 rxdctl |= ((uint32_t)rxq->wthresh << IGC_RXDCTL_WTHRESH_SHIFT) &
1194                                 IGC_RXDCTL_WTHRESH_MSK;
1195                 IGC_WRITE_REG(hw, IGC_RXDCTL(rxq->reg_idx), rxdctl);
1196         }
1197
1198         if (offloads & DEV_RX_OFFLOAD_SCATTER)
1199                 dev->data->scattered_rx = 1;
1200
1201         if (dev->data->scattered_rx) {
1202                 PMD_DRV_LOG(DEBUG, "forcing scatter mode");
1203                 dev->rx_pkt_burst = igc_recv_scattered_pkts;
1204         }
1205         /*
1206          * Setup BSIZE field of RCTL register, if needed.
1207          * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
1208          * register, since the code above configures the SRRCTL register of
1209          * the RX queue in such a case.
1210          * All configurable sizes are:
1211          * 16384: rctl |= (IGC_RCTL_SZ_16384 | IGC_RCTL_BSEX);
1212          *  8192: rctl |= (IGC_RCTL_SZ_8192  | IGC_RCTL_BSEX);
1213          *  4096: rctl |= (IGC_RCTL_SZ_4096  | IGC_RCTL_BSEX);
1214          *  2048: rctl |= IGC_RCTL_SZ_2048;
1215          *  1024: rctl |= IGC_RCTL_SZ_1024;
1216          *   512: rctl |= IGC_RCTL_SZ_512;
1217          *   256: rctl |= IGC_RCTL_SZ_256;
1218          */
1219         if (rctl_bsize > 0) {
1220                 if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
1221                         rctl |= IGC_RCTL_SZ_512;
1222                 else /* 256 <= buf_size < 512 - use 256 */
1223                         rctl |= IGC_RCTL_SZ_256;
1224         }
1225
1226         /*
1227          * Configure RSS if device configured with multiple RX queues.
1228          */
1229         igc_dev_mq_rx_configure(dev);
1230
1231         /* Update the rctl since igc_dev_mq_rx_configure may change its value */
1232         rctl |= IGC_READ_REG(hw, IGC_RCTL);
1233
1234         /*
1235          * Setup the Checksum Register.
1236          * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
1237          */
1238         rxcsum = IGC_READ_REG(hw, IGC_RXCSUM);
1239         rxcsum |= IGC_RXCSUM_PCSD;
1240
1241         /* Enable both L3/L4 rx checksum offload */
1242         if (offloads & DEV_RX_OFFLOAD_IPV4_CKSUM)
1243                 rxcsum |= IGC_RXCSUM_IPOFL;
1244         else
1245                 rxcsum &= ~IGC_RXCSUM_IPOFL;
1246
1247         if (offloads &
1248                 (DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM)) {
1249                 rxcsum |= IGC_RXCSUM_TUOFL;
1250                 offloads |= DEV_RX_OFFLOAD_SCTP_CKSUM;
1251         } else {
1252                 rxcsum &= ~IGC_RXCSUM_TUOFL;
1253         }
1254
1255         if (offloads & DEV_RX_OFFLOAD_SCTP_CKSUM)
1256                 rxcsum |= IGC_RXCSUM_CRCOFL;
1257         else
1258                 rxcsum &= ~IGC_RXCSUM_CRCOFL;
1259
1260         IGC_WRITE_REG(hw, IGC_RXCSUM, rxcsum);
1261
1262         /* Setup the Receive Control Register. */
1263         if (offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1264                 rctl &= ~IGC_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
1265         else
1266                 rctl |= IGC_RCTL_SECRC; /* Strip Ethernet CRC. */
1267
1268         rctl &= ~IGC_RCTL_MO_MSK;
1269         rctl &= ~IGC_RCTL_LBM_MSK;
1270         rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_LBM_NO |
1271                         IGC_RCTL_DPF |
1272                         (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
1273
1274         if (dev->data->dev_conf.lpbk_mode == 1)
1275                 rctl |= IGC_RCTL_LBM_MAC;
1276
1277         rctl &= ~(IGC_RCTL_HSEL_MSK | IGC_RCTL_CFIEN | IGC_RCTL_CFI |
1278                         IGC_RCTL_PSP | IGC_RCTL_PMCF);
1279
1280         /* Make sure VLAN Filters are off. */
1281         rctl &= ~IGC_RCTL_VFE;
1282         /* Don't store bad packets. */
1283         rctl &= ~IGC_RCTL_SBP;
1284
1285         /* Enable Receives. */
1286         IGC_WRITE_REG(hw, IGC_RCTL, rctl);
1287
1288         /*
1289          * Setup the HW Rx Head and Tail Descriptor Pointers.
1290          * This needs to be done after enable.
1291          */
1292         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1293                 rxq = dev->data->rx_queues[i];
1294                 IGC_WRITE_REG(hw, IGC_RDH(rxq->reg_idx), 0);
1295                 IGC_WRITE_REG(hw, IGC_RDT(rxq->reg_idx),
1296                                 rxq->nb_rx_desc - 1);
1297
1298                 /* strip queue vlan offload */
1299                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP) {
1300                         uint32_t dvmolr;
1301                         dvmolr = IGC_READ_REG(hw, IGC_DVMOLR(rxq->queue_id));
1302
1303                         /* If vlan been stripped off, the CRC is meaningless. */
1304                         dvmolr |= IGC_DVMOLR_STRVLAN | IGC_DVMOLR_STRCRC;
1305                         IGC_WRITE_REG(hw, IGC_DVMOLR(rxq->reg_idx), dvmolr);
1306                 }
1307         }
1308
1309         return 0;
1310 }
1311
1312 static void
1313 igc_reset_rx_queue(struct igc_rx_queue *rxq)
1314 {
1315         static const union igc_adv_rx_desc zeroed_desc = { {0} };
1316         unsigned int i;
1317
1318         /* Zero out HW ring memory */
1319         for (i = 0; i < rxq->nb_rx_desc; i++)
1320                 rxq->rx_ring[i] = zeroed_desc;
1321
1322         rxq->rx_tail = 0;
1323         rxq->pkt_first_seg = NULL;
1324         rxq->pkt_last_seg = NULL;
1325 }
1326
1327 int
1328 eth_igc_rx_queue_setup(struct rte_eth_dev *dev,
1329                          uint16_t queue_idx,
1330                          uint16_t nb_desc,
1331                          unsigned int socket_id,
1332                          const struct rte_eth_rxconf *rx_conf,
1333                          struct rte_mempool *mp)
1334 {
1335         struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
1336         const struct rte_memzone *rz;
1337         struct igc_rx_queue *rxq;
1338         unsigned int size;
1339
1340         /*
1341          * Validate number of receive descriptors.
1342          * It must not exceed hardware maximum, and must be multiple
1343          * of IGC_RX_DESCRIPTOR_MULTIPLE.
1344          */
1345         if (nb_desc % IGC_RX_DESCRIPTOR_MULTIPLE != 0 ||
1346                 nb_desc > IGC_MAX_RXD || nb_desc < IGC_MIN_RXD) {
1347                 PMD_DRV_LOG(ERR,
1348                         "RX descriptor must be multiple of %u(cur: %u) and between %u and %u",
1349                         IGC_RX_DESCRIPTOR_MULTIPLE, nb_desc,
1350                         IGC_MIN_RXD, IGC_MAX_RXD);
1351                 return -EINVAL;
1352         }
1353
1354         /* Free memory prior to re-allocation if needed */
1355         if (dev->data->rx_queues[queue_idx] != NULL) {
1356                 igc_rx_queue_release(dev->data->rx_queues[queue_idx]);
1357                 dev->data->rx_queues[queue_idx] = NULL;
1358         }
1359
1360         /* First allocate the RX queue data structure. */
1361         rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igc_rx_queue),
1362                           RTE_CACHE_LINE_SIZE);
1363         if (rxq == NULL)
1364                 return -ENOMEM;
1365         rxq->offloads = rx_conf->offloads;
1366         rxq->mb_pool = mp;
1367         rxq->nb_rx_desc = nb_desc;
1368         rxq->pthresh = rx_conf->rx_thresh.pthresh;
1369         rxq->hthresh = rx_conf->rx_thresh.hthresh;
1370         rxq->wthresh = rx_conf->rx_thresh.wthresh;
1371         rxq->drop_en = rx_conf->rx_drop_en;
1372         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1373         rxq->queue_id = queue_idx;
1374         rxq->reg_idx = queue_idx;
1375         rxq->port_id = dev->data->port_id;
1376
1377         /*
1378          *  Allocate RX ring hardware descriptors. A memzone large enough to
1379          *  handle the maximum ring size is allocated in order to allow for
1380          *  resizing in later calls to the queue setup function.
1381          */
1382         size = sizeof(union igc_adv_rx_desc) * IGC_MAX_RXD;
1383         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
1384                                       IGC_ALIGN, socket_id);
1385         if (rz == NULL) {
1386                 igc_rx_queue_release(rxq);
1387                 return -ENOMEM;
1388         }
1389         rxq->rdt_reg_addr = IGC_PCI_REG_ADDR(hw, IGC_RDT(rxq->reg_idx));
1390         rxq->rdh_reg_addr = IGC_PCI_REG_ADDR(hw, IGC_RDH(rxq->reg_idx));
1391         rxq->rx_ring_phys_addr = rz->iova;
1392         rxq->rx_ring = (union igc_adv_rx_desc *)rz->addr;
1393
1394         /* Allocate software ring. */
1395         rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1396                                    sizeof(struct igc_rx_entry) * nb_desc,
1397                                    RTE_CACHE_LINE_SIZE);
1398         if (rxq->sw_ring == NULL) {
1399                 igc_rx_queue_release(rxq);
1400                 return -ENOMEM;
1401         }
1402
1403         PMD_DRV_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%" PRIx64,
1404                 rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1405
1406         dev->data->rx_queues[queue_idx] = rxq;
1407         igc_reset_rx_queue(rxq);
1408
1409         return 0;
1410 }
1411
1412 /* prepare packets for transmit */
1413 static uint16_t
1414 eth_igc_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1415                 uint16_t nb_pkts)
1416 {
1417         int i, ret;
1418         struct rte_mbuf *m;
1419
1420         for (i = 0; i < nb_pkts; i++) {
1421                 m = tx_pkts[i];
1422
1423                 /* Check some limitations for TSO in hardware */
1424                 if (m->ol_flags & IGC_TX_OFFLOAD_SEG)
1425                         if (m->tso_segsz > IGC_TSO_MAX_MSS ||
1426                                 m->l2_len + m->l3_len + m->l4_len >
1427                                 IGC_TSO_MAX_HDRLEN) {
1428                                 rte_errno = EINVAL;
1429                                 return i;
1430                         }
1431
1432                 if (m->ol_flags & IGC_TX_OFFLOAD_NOTSUP_MASK) {
1433                         rte_errno = ENOTSUP;
1434                         return i;
1435                 }
1436
1437 #ifdef RTE_ETHDEV_DEBUG_TX
1438                 ret = rte_validate_tx_offload(m);
1439                 if (ret != 0) {
1440                         rte_errno = -ret;
1441                         return i;
1442                 }
1443 #endif
1444                 ret = rte_net_intel_cksum_prepare(m);
1445                 if (ret != 0) {
1446                         rte_errno = -ret;
1447                         return i;
1448                 }
1449         }
1450
1451         return i;
1452 }
1453
1454 /*
1455  *There're some limitations in hardware for TCP segmentation offload. We
1456  *should check whether the parameters are valid.
1457  */
1458 static inline uint64_t
1459 check_tso_para(uint64_t ol_req, union igc_tx_offload ol_para)
1460 {
1461         if (!(ol_req & IGC_TX_OFFLOAD_SEG))
1462                 return ol_req;
1463         if (ol_para.tso_segsz > IGC_TSO_MAX_MSS || ol_para.l2_len +
1464                 ol_para.l3_len + ol_para.l4_len > IGC_TSO_MAX_HDRLEN) {
1465                 ol_req &= ~IGC_TX_OFFLOAD_SEG;
1466                 ol_req |= PKT_TX_TCP_CKSUM;
1467         }
1468         return ol_req;
1469 }
1470
1471 /*
1472  * Check which hardware context can be used. Use the existing match
1473  * or create a new context descriptor.
1474  */
1475 static inline uint32_t
1476 what_advctx_update(struct igc_tx_queue *txq, uint64_t flags,
1477                 union igc_tx_offload tx_offload)
1478 {
1479         uint32_t curr = txq->ctx_curr;
1480
1481         /* If match with the current context */
1482         if (likely(txq->ctx_cache[curr].flags == flags &&
1483                 txq->ctx_cache[curr].tx_offload.data ==
1484                 (txq->ctx_cache[curr].tx_offload_mask.data &
1485                 tx_offload.data))) {
1486                 return curr;
1487         }
1488
1489         /* Total two context, if match with the second context */
1490         curr ^= 1;
1491         if (likely(txq->ctx_cache[curr].flags == flags &&
1492                 txq->ctx_cache[curr].tx_offload.data ==
1493                 (txq->ctx_cache[curr].tx_offload_mask.data &
1494                 tx_offload.data))) {
1495                 txq->ctx_curr = curr;
1496                 return curr;
1497         }
1498
1499         /* Mismatch, create new one */
1500         return IGC_CTX_NUM;
1501 }
1502
1503 /*
1504  * This is a separate function, looking for optimization opportunity here
1505  * Rework required to go with the pre-defined values.
1506  */
1507 static inline void
1508 igc_set_xmit_ctx(struct igc_tx_queue *txq,
1509                 volatile struct igc_adv_tx_context_desc *ctx_txd,
1510                 uint64_t ol_flags, union igc_tx_offload tx_offload)
1511 {
1512         uint32_t type_tucmd_mlhl;
1513         uint32_t mss_l4len_idx;
1514         uint32_t ctx_curr;
1515         uint32_t vlan_macip_lens;
1516         union igc_tx_offload tx_offload_mask;
1517
1518         /* Use the previous context */
1519         txq->ctx_curr ^= 1;
1520         ctx_curr = txq->ctx_curr;
1521
1522         tx_offload_mask.data = 0;
1523         type_tucmd_mlhl = 0;
1524
1525         /* Specify which HW CTX to upload. */
1526         mss_l4len_idx = (ctx_curr << IGC_ADVTXD_IDX_SHIFT);
1527
1528         if (ol_flags & PKT_TX_VLAN_PKT)
1529                 tx_offload_mask.vlan_tci = 0xffff;
1530
1531         /* check if TCP segmentation required for this packet */
1532         if (ol_flags & IGC_TX_OFFLOAD_SEG) {
1533                 /* implies IP cksum in IPv4 */
1534                 if (ol_flags & PKT_TX_IP_CKSUM)
1535                         type_tucmd_mlhl = IGC_ADVTXD_TUCMD_IPV4 |
1536                                 IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
1537                 else
1538                         type_tucmd_mlhl = IGC_ADVTXD_TUCMD_IPV6 |
1539                                 IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
1540
1541                 if (ol_flags & PKT_TX_TCP_SEG)
1542                         type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
1543                 else
1544                         type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
1545
1546                 tx_offload_mask.data |= TX_TSO_CMP_MASK;
1547                 mss_l4len_idx |= (uint32_t)tx_offload.tso_segsz <<
1548                                 IGC_ADVTXD_MSS_SHIFT;
1549                 mss_l4len_idx |= (uint32_t)tx_offload.l4_len <<
1550                                 IGC_ADVTXD_L4LEN_SHIFT;
1551         } else { /* no TSO, check if hardware checksum is needed */
1552                 if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
1553                         tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
1554
1555                 if (ol_flags & PKT_TX_IP_CKSUM)
1556                         type_tucmd_mlhl = IGC_ADVTXD_TUCMD_IPV4;
1557
1558                 switch (ol_flags & PKT_TX_L4_MASK) {
1559                 case PKT_TX_TCP_CKSUM:
1560                         type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP |
1561                                 IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
1562                         mss_l4len_idx |= (uint32_t)sizeof(struct rte_tcp_hdr)
1563                                 << IGC_ADVTXD_L4LEN_SHIFT;
1564                         break;
1565                 case PKT_TX_UDP_CKSUM:
1566                         type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP |
1567                                 IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
1568                         mss_l4len_idx |= (uint32_t)sizeof(struct rte_udp_hdr)
1569                                 << IGC_ADVTXD_L4LEN_SHIFT;
1570                         break;
1571                 case PKT_TX_SCTP_CKSUM:
1572                         type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_SCTP |
1573                                 IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
1574                         mss_l4len_idx |= (uint32_t)sizeof(struct rte_sctp_hdr)
1575                                 << IGC_ADVTXD_L4LEN_SHIFT;
1576                         break;
1577                 default:
1578                         type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_RSV |
1579                                 IGC_ADVTXD_DTYP_CTXT | IGC_ADVTXD_DCMD_DEXT;
1580                         break;
1581                 }
1582         }
1583
1584         txq->ctx_cache[ctx_curr].flags = ol_flags;
1585         txq->ctx_cache[ctx_curr].tx_offload.data =
1586                 tx_offload_mask.data & tx_offload.data;
1587         txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask;
1588
1589         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
1590         vlan_macip_lens = (uint32_t)tx_offload.data;
1591         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
1592         ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
1593         ctx_txd->u.launch_time = 0;
1594 }
1595
1596 static inline uint32_t
1597 tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
1598 {
1599         uint32_t cmdtype;
1600         static uint32_t vlan_cmd[2] = {0, IGC_ADVTXD_DCMD_VLE};
1601         static uint32_t tso_cmd[2] = {0, IGC_ADVTXD_DCMD_TSE};
1602         cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
1603         cmdtype |= tso_cmd[(ol_flags & IGC_TX_OFFLOAD_SEG) != 0];
1604         return cmdtype;
1605 }
1606
1607 static inline uint32_t
1608 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
1609 {
1610         static const uint32_t l4_olinfo[2] = {0, IGC_ADVTXD_POPTS_TXSM};
1611         static const uint32_t l3_olinfo[2] = {0, IGC_ADVTXD_POPTS_IXSM};
1612         uint32_t tmp;
1613
1614         tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
1615         tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
1616         tmp |= l4_olinfo[(ol_flags & IGC_TX_OFFLOAD_SEG) != 0];
1617         return tmp;
1618 }
1619
1620 static uint16_t
1621 igc_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1622 {
1623         struct igc_tx_queue * const txq = tx_queue;
1624         struct igc_tx_entry * const sw_ring = txq->sw_ring;
1625         struct igc_tx_entry *txe, *txn;
1626         volatile union igc_adv_tx_desc * const txr = txq->tx_ring;
1627         volatile union igc_adv_tx_desc *txd;
1628         struct rte_mbuf *tx_pkt;
1629         struct rte_mbuf *m_seg;
1630         uint64_t buf_dma_addr;
1631         uint32_t olinfo_status;
1632         uint32_t cmd_type_len;
1633         uint32_t pkt_len;
1634         uint16_t slen;
1635         uint64_t ol_flags;
1636         uint16_t tx_end;
1637         uint16_t tx_id;
1638         uint16_t tx_last;
1639         uint16_t nb_tx;
1640         uint64_t tx_ol_req;
1641         uint32_t new_ctx = 0;
1642         union igc_tx_offload tx_offload = {0};
1643
1644         tx_id = txq->tx_tail;
1645         txe = &sw_ring[tx_id];
1646
1647         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1648                 tx_pkt = *tx_pkts++;
1649                 pkt_len = tx_pkt->pkt_len;
1650
1651                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1652
1653                 /*
1654                  * The number of descriptors that must be allocated for a
1655                  * packet is the number of segments of that packet, plus 1
1656                  * Context Descriptor for the VLAN Tag Identifier, if any.
1657                  * Determine the last TX descriptor to allocate in the TX ring
1658                  * for the packet, starting from the current position (tx_id)
1659                  * in the ring.
1660                  */
1661                 tx_last = (uint16_t)(tx_id + tx_pkt->nb_segs - 1);
1662
1663                 ol_flags = tx_pkt->ol_flags;
1664                 tx_ol_req = ol_flags & IGC_TX_OFFLOAD_MASK;
1665
1666                 /* If a Context Descriptor need be built . */
1667                 if (tx_ol_req) {
1668                         tx_offload.l2_len = tx_pkt->l2_len;
1669                         tx_offload.l3_len = tx_pkt->l3_len;
1670                         tx_offload.l4_len = tx_pkt->l4_len;
1671                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
1672                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
1673                         tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
1674
1675                         new_ctx = what_advctx_update(txq, tx_ol_req,
1676                                         tx_offload);
1677                         /* Only allocate context descriptor if required*/
1678                         new_ctx = (new_ctx >= IGC_CTX_NUM);
1679                         tx_last = (uint16_t)(tx_last + new_ctx);
1680                 }
1681                 if (tx_last >= txq->nb_tx_desc)
1682                         tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1683
1684                 PMD_TX_LOG(DEBUG,
1685                         "port_id=%u queue_id=%u pktlen=%u tx_first=%u tx_last=%u",
1686                         txq->port_id, txq->queue_id, pkt_len, tx_id, tx_last);
1687
1688                 /*
1689                  * Check if there are enough free descriptors in the TX ring
1690                  * to transmit the next packet.
1691                  * This operation is based on the two following rules:
1692                  *
1693                  *   1- Only check that the last needed TX descriptor can be
1694                  *      allocated (by construction, if that descriptor is free,
1695                  *      all intermediate ones are also free).
1696                  *
1697                  *      For this purpose, the index of the last TX descriptor
1698                  *      used for a packet (the "last descriptor" of a packet)
1699                  *      is recorded in the TX entries (the last one included)
1700                  *      that are associated with all TX descriptors allocated
1701                  *      for that packet.
1702                  *
1703                  *   2- Avoid to allocate the last free TX descriptor of the
1704                  *      ring, in order to never set the TDT register with the
1705                  *      same value stored in parallel by the NIC in the TDH
1706                  *      register, which makes the TX engine of the NIC enter
1707                  *      in a deadlock situation.
1708                  *
1709                  *      By extension, avoid to allocate a free descriptor that
1710                  *      belongs to the last set of free descriptors allocated
1711                  *      to the same packet previously transmitted.
1712                  */
1713
1714                 /*
1715                  * The "last descriptor" of the previously sent packet, if any,
1716                  * which used the last descriptor to allocate.
1717                  */
1718                 tx_end = sw_ring[tx_last].last_id;
1719
1720                 /*
1721                  * The next descriptor following that "last descriptor" in the
1722                  * ring.
1723                  */
1724                 tx_end = sw_ring[tx_end].next_id;
1725
1726                 /*
1727                  * The "last descriptor" associated with that next descriptor.
1728                  */
1729                 tx_end = sw_ring[tx_end].last_id;
1730
1731                 /*
1732                  * Check that this descriptor is free.
1733                  */
1734                 if (!(txr[tx_end].wb.status & IGC_TXD_STAT_DD)) {
1735                         if (nb_tx == 0)
1736                                 return 0;
1737                         goto end_of_tx;
1738                 }
1739
1740                 /*
1741                  * Set common flags of all TX Data Descriptors.
1742                  *
1743                  * The following bits must be set in all Data Descriptors:
1744                  *   - IGC_ADVTXD_DTYP_DATA
1745                  *   - IGC_ADVTXD_DCMD_DEXT
1746                  *
1747                  * The following bits must be set in the first Data Descriptor
1748                  * and are ignored in the other ones:
1749                  *   - IGC_ADVTXD_DCMD_IFCS
1750                  *   - IGC_ADVTXD_MAC_1588
1751                  *   - IGC_ADVTXD_DCMD_VLE
1752                  *
1753                  * The following bits must only be set in the last Data
1754                  * Descriptor:
1755                  *   - IGC_TXD_CMD_EOP
1756                  *
1757                  * The following bits can be set in any Data Descriptor, but
1758                  * are only set in the last Data Descriptor:
1759                  *   - IGC_TXD_CMD_RS
1760                  */
1761                 cmd_type_len = txq->txd_type |
1762                         IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DCMD_DEXT;
1763                 if (tx_ol_req & IGC_TX_OFFLOAD_SEG)
1764                         pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len +
1765                                         tx_pkt->l4_len);
1766                 olinfo_status = (pkt_len << IGC_ADVTXD_PAYLEN_SHIFT);
1767
1768                 /*
1769                  * Timer 0 should be used to for packet timestamping,
1770                  * sample the packet timestamp to reg 0
1771                  */
1772                 if (ol_flags & PKT_TX_IEEE1588_TMST)
1773                         cmd_type_len |= IGC_ADVTXD_MAC_TSTAMP;
1774
1775                 if (tx_ol_req) {
1776                         /* Setup TX Advanced context descriptor if required */
1777                         if (new_ctx) {
1778                                 volatile struct igc_adv_tx_context_desc *
1779                                         ctx_txd = (volatile struct
1780                                         igc_adv_tx_context_desc *)&txr[tx_id];
1781
1782                                 txn = &sw_ring[txe->next_id];
1783                                 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1784
1785                                 if (txe->mbuf != NULL) {
1786                                         rte_pktmbuf_free_seg(txe->mbuf);
1787                                         txe->mbuf = NULL;
1788                                 }
1789
1790                                 igc_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
1791                                                 tx_offload);
1792
1793                                 txe->last_id = tx_last;
1794                                 tx_id = txe->next_id;
1795                                 txe = txn;
1796                         }
1797
1798                         /* Setup the TX Advanced Data Descriptor */
1799                         cmd_type_len |=
1800                                 tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
1801                         olinfo_status |=
1802                                 tx_desc_cksum_flags_to_olinfo(tx_ol_req);
1803                         olinfo_status |= (uint32_t)txq->ctx_curr <<
1804                                         IGC_ADVTXD_IDX_SHIFT;
1805                 }
1806
1807                 m_seg = tx_pkt;
1808                 do {
1809                         txn = &sw_ring[txe->next_id];
1810                         RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1811
1812                         txd = &txr[tx_id];
1813
1814                         if (txe->mbuf != NULL)
1815                                 rte_pktmbuf_free_seg(txe->mbuf);
1816                         txe->mbuf = m_seg;
1817
1818                         /* Set up transmit descriptor */
1819                         slen = (uint16_t)m_seg->data_len;
1820                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
1821                         txd->read.buffer_addr =
1822                                 rte_cpu_to_le_64(buf_dma_addr);
1823                         txd->read.cmd_type_len =
1824                                 rte_cpu_to_le_32(cmd_type_len | slen);
1825                         txd->read.olinfo_status =
1826                                 rte_cpu_to_le_32(olinfo_status);
1827                         txe->last_id = tx_last;
1828                         tx_id = txe->next_id;
1829                         txe = txn;
1830                         m_seg = m_seg->next;
1831                 } while (m_seg != NULL);
1832
1833                 /*
1834                  * The last packet data descriptor needs End Of Packet (EOP)
1835                  * and Report Status (RS).
1836                  */
1837                 txd->read.cmd_type_len |=
1838                         rte_cpu_to_le_32(IGC_TXD_CMD_EOP | IGC_TXD_CMD_RS);
1839         }
1840 end_of_tx:
1841         rte_wmb();
1842
1843         /*
1844          * Set the Transmit Descriptor Tail (TDT).
1845          */
1846         IGC_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
1847         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1848                 txq->port_id, txq->queue_id, tx_id, nb_tx);
1849         txq->tx_tail = tx_id;
1850
1851         return nb_tx;
1852 }
1853
1854 int eth_igc_tx_descriptor_status(void *tx_queue, uint16_t offset)
1855 {
1856         struct igc_tx_queue *txq = tx_queue;
1857         volatile uint32_t *status;
1858         uint32_t desc;
1859
1860         if (unlikely(!txq || offset >= txq->nb_tx_desc))
1861                 return -EINVAL;
1862
1863         desc = txq->tx_tail + offset;
1864         if (desc >= txq->nb_tx_desc)
1865                 desc -= txq->nb_tx_desc;
1866
1867         status = &txq->tx_ring[desc].wb.status;
1868         if (*status & rte_cpu_to_le_32(IGC_TXD_STAT_DD))
1869                 return RTE_ETH_TX_DESC_DONE;
1870
1871         return RTE_ETH_TX_DESC_FULL;
1872 }
1873
1874 static void
1875 igc_tx_queue_release_mbufs(struct igc_tx_queue *txq)
1876 {
1877         unsigned int i;
1878
1879         if (txq->sw_ring != NULL) {
1880                 for (i = 0; i < txq->nb_tx_desc; i++) {
1881                         if (txq->sw_ring[i].mbuf != NULL) {
1882                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1883                                 txq->sw_ring[i].mbuf = NULL;
1884                         }
1885                 }
1886         }
1887 }
1888
1889 static void
1890 igc_tx_queue_release(struct igc_tx_queue *txq)
1891 {
1892         igc_tx_queue_release_mbufs(txq);
1893         rte_free(txq->sw_ring);
1894         rte_free(txq);
1895 }
1896
1897 void eth_igc_tx_queue_release(void *txq)
1898 {
1899         if (txq)
1900                 igc_tx_queue_release(txq);
1901 }
1902
1903 static void
1904 igc_reset_tx_queue_stat(struct igc_tx_queue *txq)
1905 {
1906         txq->tx_head = 0;
1907         txq->tx_tail = 0;
1908         txq->ctx_curr = 0;
1909         memset((void *)&txq->ctx_cache, 0,
1910                 IGC_CTX_NUM * sizeof(struct igc_advctx_info));
1911 }
1912
1913 static void
1914 igc_reset_tx_queue(struct igc_tx_queue *txq)
1915 {
1916         struct igc_tx_entry *txe = txq->sw_ring;
1917         uint16_t i, prev;
1918
1919         /* Initialize ring entries */
1920         prev = (uint16_t)(txq->nb_tx_desc - 1);
1921         for (i = 0; i < txq->nb_tx_desc; i++) {
1922                 volatile union igc_adv_tx_desc *txd = &txq->tx_ring[i];
1923
1924                 txd->wb.status = IGC_TXD_STAT_DD;
1925                 txe[i].mbuf = NULL;
1926                 txe[i].last_id = i;
1927                 txe[prev].next_id = i;
1928                 prev = i;
1929         }
1930
1931         txq->txd_type = IGC_ADVTXD_DTYP_DATA;
1932         igc_reset_tx_queue_stat(txq);
1933 }
1934
1935 /*
1936  * clear all rx/tx queue
1937  */
1938 void
1939 igc_dev_clear_queues(struct rte_eth_dev *dev)
1940 {
1941         uint16_t i;
1942         struct igc_tx_queue *txq;
1943         struct igc_rx_queue *rxq;
1944
1945         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1946                 txq = dev->data->tx_queues[i];
1947                 if (txq != NULL) {
1948                         igc_tx_queue_release_mbufs(txq);
1949                         igc_reset_tx_queue(txq);
1950                 }
1951         }
1952
1953         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1954                 rxq = dev->data->rx_queues[i];
1955                 if (rxq != NULL) {
1956                         igc_rx_queue_release_mbufs(rxq);
1957                         igc_reset_rx_queue(rxq);
1958                 }
1959         }
1960 }
1961
1962 int eth_igc_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
1963                 uint16_t nb_desc, unsigned int socket_id,
1964                 const struct rte_eth_txconf *tx_conf)
1965 {
1966         const struct rte_memzone *tz;
1967         struct igc_tx_queue *txq;
1968         struct igc_hw *hw;
1969         uint32_t size;
1970
1971         if (nb_desc % IGC_TX_DESCRIPTOR_MULTIPLE != 0 ||
1972                 nb_desc > IGC_MAX_TXD || nb_desc < IGC_MIN_TXD) {
1973                 PMD_DRV_LOG(ERR,
1974                         "TX-descriptor must be a multiple of %u and between %u and %u, cur: %u",
1975                         IGC_TX_DESCRIPTOR_MULTIPLE,
1976                         IGC_MAX_TXD, IGC_MIN_TXD, nb_desc);
1977                 return -EINVAL;
1978         }
1979
1980         hw = IGC_DEV_PRIVATE_HW(dev);
1981
1982         /*
1983          * The tx_free_thresh and tx_rs_thresh values are not used in the 2.5G
1984          * driver.
1985          */
1986         if (tx_conf->tx_free_thresh != 0)
1987                 PMD_DRV_LOG(INFO,
1988                         "The tx_free_thresh parameter is not used for the 2.5G driver");
1989         if (tx_conf->tx_rs_thresh != 0)
1990                 PMD_DRV_LOG(INFO,
1991                         "The tx_rs_thresh parameter is not used for the 2.5G driver");
1992         if (tx_conf->tx_thresh.wthresh == 0)
1993                 PMD_DRV_LOG(INFO,
1994                         "To improve 2.5G driver performance, consider setting the TX WTHRESH value to 4, 8, or 16.");
1995
1996         /* Free memory prior to re-allocation if needed */
1997         if (dev->data->tx_queues[queue_idx] != NULL) {
1998                 igc_tx_queue_release(dev->data->tx_queues[queue_idx]);
1999                 dev->data->tx_queues[queue_idx] = NULL;
2000         }
2001
2002         /* First allocate the tx queue data structure */
2003         txq = rte_zmalloc("ethdev TX queue", sizeof(struct igc_tx_queue),
2004                                                 RTE_CACHE_LINE_SIZE);
2005         if (txq == NULL)
2006                 return -ENOMEM;
2007
2008         /*
2009          * Allocate TX ring hardware descriptors. A memzone large enough to
2010          * handle the maximum ring size is allocated in order to allow for
2011          * resizing in later calls to the queue setup function.
2012          */
2013         size = sizeof(union igc_adv_tx_desc) * IGC_MAX_TXD;
2014         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
2015                                       IGC_ALIGN, socket_id);
2016         if (tz == NULL) {
2017                 igc_tx_queue_release(txq);
2018                 return -ENOMEM;
2019         }
2020
2021         txq->nb_tx_desc = nb_desc;
2022         txq->pthresh = tx_conf->tx_thresh.pthresh;
2023         txq->hthresh = tx_conf->tx_thresh.hthresh;
2024         txq->wthresh = tx_conf->tx_thresh.wthresh;
2025
2026         txq->queue_id = queue_idx;
2027         txq->reg_idx = queue_idx;
2028         txq->port_id = dev->data->port_id;
2029
2030         txq->tdt_reg_addr = IGC_PCI_REG_ADDR(hw, IGC_TDT(txq->reg_idx));
2031         txq->tx_ring_phys_addr = tz->iova;
2032
2033         txq->tx_ring = (union igc_adv_tx_desc *)tz->addr;
2034         /* Allocate software ring */
2035         txq->sw_ring = rte_zmalloc("txq->sw_ring",
2036                                    sizeof(struct igc_tx_entry) * nb_desc,
2037                                    RTE_CACHE_LINE_SIZE);
2038         if (txq->sw_ring == NULL) {
2039                 igc_tx_queue_release(txq);
2040                 return -ENOMEM;
2041         }
2042         PMD_DRV_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%" PRIx64,
2043                 txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
2044
2045         igc_reset_tx_queue(txq);
2046         dev->tx_pkt_burst = igc_xmit_pkts;
2047         dev->tx_pkt_prepare = &eth_igc_prep_pkts;
2048         dev->data->tx_queues[queue_idx] = txq;
2049         txq->offloads = tx_conf->offloads;
2050
2051         return 0;
2052 }
2053
2054 int
2055 eth_igc_tx_done_cleanup(void *txqueue, uint32_t free_cnt)
2056 {
2057         struct igc_tx_queue *txq = txqueue;
2058         struct igc_tx_entry *sw_ring;
2059         volatile union igc_adv_tx_desc *txr;
2060         uint16_t tx_first; /* First segment analyzed. */
2061         uint16_t tx_id;    /* Current segment being processed. */
2062         uint16_t tx_last;  /* Last segment in the current packet. */
2063         uint16_t tx_next;  /* First segment of the next packet. */
2064         uint32_t count;
2065
2066         if (txq == NULL)
2067                 return -ENODEV;
2068
2069         count = 0;
2070         sw_ring = txq->sw_ring;
2071         txr = txq->tx_ring;
2072
2073         /*
2074          * tx_tail is the last sent packet on the sw_ring. Goto the end
2075          * of that packet (the last segment in the packet chain) and
2076          * then the next segment will be the start of the oldest segment
2077          * in the sw_ring. This is the first packet that will be
2078          * attempted to be freed.
2079          */
2080
2081         /* Get last segment in most recently added packet. */
2082         tx_first = sw_ring[txq->tx_tail].last_id;
2083
2084         /* Get the next segment, which is the oldest segment in ring. */
2085         tx_first = sw_ring[tx_first].next_id;
2086
2087         /* Set the current index to the first. */
2088         tx_id = tx_first;
2089
2090         /*
2091          * Loop through each packet. For each packet, verify that an
2092          * mbuf exists and that the last segment is free. If so, free
2093          * it and move on.
2094          */
2095         while (1) {
2096                 tx_last = sw_ring[tx_id].last_id;
2097
2098                 if (sw_ring[tx_last].mbuf) {
2099                         if (!(txr[tx_last].wb.status &
2100                                         rte_cpu_to_le_32(IGC_TXD_STAT_DD)))
2101                                 break;
2102
2103                         /* Get the start of the next packet. */
2104                         tx_next = sw_ring[tx_last].next_id;
2105
2106                         /*
2107                          * Loop through all segments in a
2108                          * packet.
2109                          */
2110                         do {
2111                                 rte_pktmbuf_free_seg(sw_ring[tx_id].mbuf);
2112                                 sw_ring[tx_id].mbuf = NULL;
2113                                 sw_ring[tx_id].last_id = tx_id;
2114
2115                                 /* Move to next segemnt. */
2116                                 tx_id = sw_ring[tx_id].next_id;
2117                         } while (tx_id != tx_next);
2118
2119                         /*
2120                          * Increment the number of packets
2121                          * freed.
2122                          */
2123                         count++;
2124                         if (unlikely(count == free_cnt))
2125                                 break;
2126                 } else {
2127                         /*
2128                          * There are multiple reasons to be here:
2129                          * 1) All the packets on the ring have been
2130                          *    freed - tx_id is equal to tx_first
2131                          *    and some packets have been freed.
2132                          *    - Done, exit
2133                          * 2) Interfaces has not sent a rings worth of
2134                          *    packets yet, so the segment after tail is
2135                          *    still empty. Or a previous call to this
2136                          *    function freed some of the segments but
2137                          *    not all so there is a hole in the list.
2138                          *    Hopefully this is a rare case.
2139                          *    - Walk the list and find the next mbuf. If
2140                          *      there isn't one, then done.
2141                          */
2142                         if (likely(tx_id == tx_first && count != 0))
2143                                 break;
2144
2145                         /*
2146                          * Walk the list and find the next mbuf, if any.
2147                          */
2148                         do {
2149                                 /* Move to next segemnt. */
2150                                 tx_id = sw_ring[tx_id].next_id;
2151
2152                                 if (sw_ring[tx_id].mbuf)
2153                                         break;
2154
2155                         } while (tx_id != tx_first);
2156
2157                         /*
2158                          * Determine why previous loop bailed. If there
2159                          * is not an mbuf, done.
2160                          */
2161                         if (sw_ring[tx_id].mbuf == NULL)
2162                                 break;
2163                 }
2164         }
2165
2166         return count;
2167 }
2168
2169 void
2170 igc_tx_init(struct rte_eth_dev *dev)
2171 {
2172         struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
2173         uint32_t tctl;
2174         uint32_t txdctl;
2175         uint16_t i;
2176
2177         /* Setup the Base and Length of the Tx Descriptor Rings. */
2178         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2179                 struct igc_tx_queue *txq = dev->data->tx_queues[i];
2180                 uint64_t bus_addr = txq->tx_ring_phys_addr;
2181
2182                 IGC_WRITE_REG(hw, IGC_TDLEN(txq->reg_idx),
2183                                 txq->nb_tx_desc *
2184                                 sizeof(union igc_adv_tx_desc));
2185                 IGC_WRITE_REG(hw, IGC_TDBAH(txq->reg_idx),
2186                                 (uint32_t)(bus_addr >> 32));
2187                 IGC_WRITE_REG(hw, IGC_TDBAL(txq->reg_idx),
2188                                 (uint32_t)bus_addr);
2189
2190                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2191                 IGC_WRITE_REG(hw, IGC_TDT(txq->reg_idx), 0);
2192                 IGC_WRITE_REG(hw, IGC_TDH(txq->reg_idx), 0);
2193
2194                 /* Setup Transmit threshold registers. */
2195                 txdctl = ((uint32_t)txq->pthresh << IGC_TXDCTL_PTHRESH_SHIFT) &
2196                                 IGC_TXDCTL_PTHRESH_MSK;
2197                 txdctl |= ((uint32_t)txq->hthresh << IGC_TXDCTL_HTHRESH_SHIFT) &
2198                                 IGC_TXDCTL_HTHRESH_MSK;
2199                 txdctl |= ((uint32_t)txq->wthresh << IGC_TXDCTL_WTHRESH_SHIFT) &
2200                                 IGC_TXDCTL_WTHRESH_MSK;
2201                 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
2202                 IGC_WRITE_REG(hw, IGC_TXDCTL(txq->reg_idx), txdctl);
2203         }
2204
2205         igc_config_collision_dist(hw);
2206
2207         /* Program the Transmit Control Register. */
2208         tctl = IGC_READ_REG(hw, IGC_TCTL);
2209         tctl &= ~IGC_TCTL_CT;
2210         tctl |= (IGC_TCTL_PSP | IGC_TCTL_RTLC | IGC_TCTL_EN |
2211                  ((uint32_t)IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT));
2212
2213         /* This write will effectively turn on the transmit unit. */
2214         IGC_WRITE_REG(hw, IGC_TCTL, tctl);
2215 }
2216
2217 void
2218 eth_igc_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2219         struct rte_eth_rxq_info *qinfo)
2220 {
2221         struct igc_rx_queue *rxq;
2222
2223         rxq = dev->data->rx_queues[queue_id];
2224
2225         qinfo->mp = rxq->mb_pool;
2226         qinfo->scattered_rx = dev->data->scattered_rx;
2227         qinfo->nb_desc = rxq->nb_rx_desc;
2228
2229         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2230         qinfo->conf.rx_drop_en = rxq->drop_en;
2231         qinfo->conf.offloads = rxq->offloads;
2232         qinfo->conf.rx_thresh.hthresh = rxq->hthresh;
2233         qinfo->conf.rx_thresh.pthresh = rxq->pthresh;
2234         qinfo->conf.rx_thresh.wthresh = rxq->wthresh;
2235 }
2236
2237 void
2238 eth_igc_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2239         struct rte_eth_txq_info *qinfo)
2240 {
2241         struct igc_tx_queue *txq;
2242
2243         txq = dev->data->tx_queues[queue_id];
2244
2245         qinfo->nb_desc = txq->nb_tx_desc;
2246
2247         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2248         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2249         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2250         qinfo->conf.offloads = txq->offloads;
2251 }
2252
2253 void
2254 eth_igc_vlan_strip_queue_set(struct rte_eth_dev *dev,
2255                         uint16_t rx_queue_id, int on)
2256 {
2257         struct igc_hw *hw = IGC_DEV_PRIVATE_HW(dev);
2258         struct igc_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
2259         uint32_t reg_val;
2260
2261         if (rx_queue_id >= IGC_QUEUE_PAIRS_NUM) {
2262                 PMD_DRV_LOG(ERR, "Queue index(%u) illegal, max is %u",
2263                         rx_queue_id, IGC_QUEUE_PAIRS_NUM - 1);
2264                 return;
2265         }
2266
2267         reg_val = IGC_READ_REG(hw, IGC_DVMOLR(rx_queue_id));
2268         if (on) {
2269                 /* If vlan been stripped off, the CRC is meaningless. */
2270                 reg_val |= IGC_DVMOLR_STRVLAN | IGC_DVMOLR_STRCRC;
2271                 rxq->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2272         } else {
2273                 reg_val &= ~(IGC_DVMOLR_STRVLAN | IGC_DVMOLR_HIDVLAN |
2274                                 IGC_DVMOLR_STRCRC);
2275                 rxq->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2276         }
2277
2278         IGC_WRITE_REG(hw, IGC_DVMOLR(rx_queue_id), reg_val);
2279 }