net/ixgbe: remove unnecessary cast
[dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <sys/queue.h>
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdarg.h>
14 #include <unistd.h>
15 #include <inttypes.h>
16
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_interrupts.h>
23 #include <rte_pci.h>
24 #include <rte_memory.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_malloc.h>
34 #include <rte_mbuf.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev_driver.h>
37 #include <rte_prefetch.h>
38 #include <rte_udp.h>
39 #include <rte_tcp.h>
40 #include <rte_sctp.h>
41 #include <rte_string_fns.h>
42 #include <rte_errno.h>
43 #include <rte_ip.h>
44 #include <rte_net.h>
45
46 #include "ixgbe_logs.h"
47 #include "base/ixgbe_api.h"
48 #include "base/ixgbe_vf.h"
49 #include "ixgbe_ethdev.h"
50 #include "base/ixgbe_dcb.h"
51 #include "base/ixgbe_common.h"
52 #include "ixgbe_rxtx.h"
53
54 #ifdef RTE_LIBRTE_IEEE1588
55 #define IXGBE_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
56 #else
57 #define IXGBE_TX_IEEE1588_TMST 0
58 #endif
59 /* Bit Mask to indicate what bits required for building TX context */
60 #define IXGBE_TX_OFFLOAD_MASK (                  \
61                 PKT_TX_OUTER_IPV6 |              \
62                 PKT_TX_OUTER_IPV4 |              \
63                 PKT_TX_IPV6 |                    \
64                 PKT_TX_IPV4 |                    \
65                 PKT_TX_VLAN_PKT |                \
66                 PKT_TX_IP_CKSUM |                \
67                 PKT_TX_L4_MASK |                 \
68                 PKT_TX_TCP_SEG |                 \
69                 PKT_TX_MACSEC |                  \
70                 PKT_TX_OUTER_IP_CKSUM |          \
71                 PKT_TX_SEC_OFFLOAD |     \
72                 IXGBE_TX_IEEE1588_TMST)
73
74 #define IXGBE_TX_OFFLOAD_NOTSUP_MASK \
75                 (PKT_TX_OFFLOAD_MASK ^ IXGBE_TX_OFFLOAD_MASK)
76
77 #if 1
78 #define RTE_PMD_USE_PREFETCH
79 #endif
80
81 #ifdef RTE_PMD_USE_PREFETCH
82 /*
83  * Prefetch a cache line into all cache levels.
84  */
85 #define rte_ixgbe_prefetch(p)   rte_prefetch0(p)
86 #else
87 #define rte_ixgbe_prefetch(p)   do {} while (0)
88 #endif
89
90 #ifdef RTE_IXGBE_INC_VECTOR
91 uint16_t ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
92                                     uint16_t nb_pkts);
93 #endif
94
95 /*********************************************************************
96  *
97  *  TX functions
98  *
99  **********************************************************************/
100
101 /*
102  * Check for descriptors with their DD bit set and free mbufs.
103  * Return the total number of buffers freed.
104  */
105 static __rte_always_inline int
106 ixgbe_tx_free_bufs(struct ixgbe_tx_queue *txq)
107 {
108         struct ixgbe_tx_entry *txep;
109         uint32_t status;
110         int i, nb_free = 0;
111         struct rte_mbuf *m, *free[RTE_IXGBE_TX_MAX_FREE_BUF_SZ];
112
113         /* check DD bit on threshold descriptor */
114         status = txq->tx_ring[txq->tx_next_dd].wb.status;
115         if (!(status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD)))
116                 return 0;
117
118         /*
119          * first buffer to free from S/W ring is at index
120          * tx_next_dd - (tx_rs_thresh-1)
121          */
122         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
123
124         for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
125                 /* free buffers one at a time */
126                 m = rte_pktmbuf_prefree_seg(txep->mbuf);
127                 txep->mbuf = NULL;
128
129                 if (unlikely(m == NULL))
130                         continue;
131
132                 if (nb_free >= RTE_IXGBE_TX_MAX_FREE_BUF_SZ ||
133                     (nb_free > 0 && m->pool != free[0]->pool)) {
134                         rte_mempool_put_bulk(free[0]->pool,
135                                              (void **)free, nb_free);
136                         nb_free = 0;
137                 }
138
139                 free[nb_free++] = m;
140         }
141
142         if (nb_free > 0)
143                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
144
145         /* buffers were freed, update counters */
146         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
147         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
148         if (txq->tx_next_dd >= txq->nb_tx_desc)
149                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
150
151         return txq->tx_rs_thresh;
152 }
153
154 /* Populate 4 descriptors with data from 4 mbufs */
155 static inline void
156 tx4(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
157 {
158         uint64_t buf_dma_addr;
159         uint32_t pkt_len;
160         int i;
161
162         for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
163                 buf_dma_addr = rte_mbuf_data_iova(*pkts);
164                 pkt_len = (*pkts)->data_len;
165
166                 /* write data to descriptor */
167                 txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
168
169                 txdp->read.cmd_type_len =
170                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
171
172                 txdp->read.olinfo_status =
173                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
174
175                 rte_prefetch0(&(*pkts)->pool);
176         }
177 }
178
179 /* Populate 1 descriptor with data from 1 mbuf */
180 static inline void
181 tx1(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
182 {
183         uint64_t buf_dma_addr;
184         uint32_t pkt_len;
185
186         buf_dma_addr = rte_mbuf_data_iova(*pkts);
187         pkt_len = (*pkts)->data_len;
188
189         /* write data to descriptor */
190         txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
191         txdp->read.cmd_type_len =
192                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
193         txdp->read.olinfo_status =
194                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
195         rte_prefetch0(&(*pkts)->pool);
196 }
197
198 /*
199  * Fill H/W descriptor ring with mbuf data.
200  * Copy mbuf pointers to the S/W ring.
201  */
202 static inline void
203 ixgbe_tx_fill_hw_ring(struct ixgbe_tx_queue *txq, struct rte_mbuf **pkts,
204                       uint16_t nb_pkts)
205 {
206         volatile union ixgbe_adv_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
207         struct ixgbe_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
208         const int N_PER_LOOP = 4;
209         const int N_PER_LOOP_MASK = N_PER_LOOP-1;
210         int mainpart, leftover;
211         int i, j;
212
213         /*
214          * Process most of the packets in chunks of N pkts.  Any
215          * leftover packets will get processed one at a time.
216          */
217         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
218         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
219         for (i = 0; i < mainpart; i += N_PER_LOOP) {
220                 /* Copy N mbuf pointers to the S/W ring */
221                 for (j = 0; j < N_PER_LOOP; ++j) {
222                         (txep + i + j)->mbuf = *(pkts + i + j);
223                 }
224                 tx4(txdp + i, pkts + i);
225         }
226
227         if (unlikely(leftover > 0)) {
228                 for (i = 0; i < leftover; ++i) {
229                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
230                         tx1(txdp + mainpart + i, pkts + mainpart + i);
231                 }
232         }
233 }
234
235 static inline uint16_t
236 tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
237              uint16_t nb_pkts)
238 {
239         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
240         volatile union ixgbe_adv_tx_desc *tx_r = txq->tx_ring;
241         uint16_t n = 0;
242
243         /*
244          * Begin scanning the H/W ring for done descriptors when the
245          * number of available descriptors drops below tx_free_thresh.  For
246          * each done descriptor, free the associated buffer.
247          */
248         if (txq->nb_tx_free < txq->tx_free_thresh)
249                 ixgbe_tx_free_bufs(txq);
250
251         /* Only use descriptors that are available */
252         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
253         if (unlikely(nb_pkts == 0))
254                 return 0;
255
256         /* Use exactly nb_pkts descriptors */
257         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
258
259         /*
260          * At this point, we know there are enough descriptors in the
261          * ring to transmit all the packets.  This assumes that each
262          * mbuf contains a single segment, and that no new offloads
263          * are expected, which would require a new context descriptor.
264          */
265
266         /*
267          * See if we're going to wrap-around. If so, handle the top
268          * of the descriptor ring first, then do the bottom.  If not,
269          * the processing looks just like the "bottom" part anyway...
270          */
271         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
272                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
273                 ixgbe_tx_fill_hw_ring(txq, tx_pkts, n);
274
275                 /*
276                  * We know that the last descriptor in the ring will need to
277                  * have its RS bit set because tx_rs_thresh has to be
278                  * a divisor of the ring size
279                  */
280                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
281                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
282                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
283
284                 txq->tx_tail = 0;
285         }
286
287         /* Fill H/W descriptor ring with mbuf data */
288         ixgbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
289         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
290
291         /*
292          * Determine if RS bit should be set
293          * This is what we actually want:
294          *   if ((txq->tx_tail - 1) >= txq->tx_next_rs)
295          * but instead of subtracting 1 and doing >=, we can just do
296          * greater than without subtracting.
297          */
298         if (txq->tx_tail > txq->tx_next_rs) {
299                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
300                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
301                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
302                                                 txq->tx_rs_thresh);
303                 if (txq->tx_next_rs >= txq->nb_tx_desc)
304                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
305         }
306
307         /*
308          * Check for wrap-around. This would only happen if we used
309          * up to the last descriptor in the ring, no more, no less.
310          */
311         if (txq->tx_tail >= txq->nb_tx_desc)
312                 txq->tx_tail = 0;
313
314         /* update tail pointer */
315         rte_wmb();
316         IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, txq->tx_tail);
317
318         return nb_pkts;
319 }
320
321 uint16_t
322 ixgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
323                        uint16_t nb_pkts)
324 {
325         uint16_t nb_tx;
326
327         /* Try to transmit at least chunks of TX_MAX_BURST pkts */
328         if (likely(nb_pkts <= RTE_PMD_IXGBE_TX_MAX_BURST))
329                 return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
330
331         /* transmit more than the max burst, in chunks of TX_MAX_BURST */
332         nb_tx = 0;
333         while (nb_pkts) {
334                 uint16_t ret, n;
335
336                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_TX_MAX_BURST);
337                 ret = tx_xmit_pkts(tx_queue, &(tx_pkts[nb_tx]), n);
338                 nb_tx = (uint16_t)(nb_tx + ret);
339                 nb_pkts = (uint16_t)(nb_pkts - ret);
340                 if (ret < n)
341                         break;
342         }
343
344         return nb_tx;
345 }
346
347 #ifdef RTE_IXGBE_INC_VECTOR
348 static uint16_t
349 ixgbe_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
350                     uint16_t nb_pkts)
351 {
352         uint16_t nb_tx = 0;
353         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
354
355         while (nb_pkts) {
356                 uint16_t ret, num;
357
358                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
359                 ret = ixgbe_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
360                                                  num);
361                 nb_tx += ret;
362                 nb_pkts -= ret;
363                 if (ret < num)
364                         break;
365         }
366
367         return nb_tx;
368 }
369 #endif
370
371 static inline void
372 ixgbe_set_xmit_ctx(struct ixgbe_tx_queue *txq,
373                 volatile struct ixgbe_adv_tx_context_desc *ctx_txd,
374                 uint64_t ol_flags, union ixgbe_tx_offload tx_offload,
375                 __rte_unused uint64_t *mdata)
376 {
377         uint32_t type_tucmd_mlhl;
378         uint32_t mss_l4len_idx = 0;
379         uint32_t ctx_idx;
380         uint32_t vlan_macip_lens;
381         union ixgbe_tx_offload tx_offload_mask;
382         uint32_t seqnum_seed = 0;
383
384         ctx_idx = txq->ctx_curr;
385         tx_offload_mask.data[0] = 0;
386         tx_offload_mask.data[1] = 0;
387         type_tucmd_mlhl = 0;
388
389         /* Specify which HW CTX to upload. */
390         mss_l4len_idx |= (ctx_idx << IXGBE_ADVTXD_IDX_SHIFT);
391
392         if (ol_flags & PKT_TX_VLAN_PKT) {
393                 tx_offload_mask.vlan_tci |= ~0;
394         }
395
396         /* check if TCP segmentation required for this packet */
397         if (ol_flags & PKT_TX_TCP_SEG) {
398                 /* implies IP cksum in IPv4 */
399                 if (ol_flags & PKT_TX_IP_CKSUM)
400                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4 |
401                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
402                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
403                 else
404                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV6 |
405                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
406                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
407
408                 tx_offload_mask.l2_len |= ~0;
409                 tx_offload_mask.l3_len |= ~0;
410                 tx_offload_mask.l4_len |= ~0;
411                 tx_offload_mask.tso_segsz |= ~0;
412                 mss_l4len_idx |= tx_offload.tso_segsz << IXGBE_ADVTXD_MSS_SHIFT;
413                 mss_l4len_idx |= tx_offload.l4_len << IXGBE_ADVTXD_L4LEN_SHIFT;
414         } else { /* no TSO, check if hardware checksum is needed */
415                 if (ol_flags & PKT_TX_IP_CKSUM) {
416                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4;
417                         tx_offload_mask.l2_len |= ~0;
418                         tx_offload_mask.l3_len |= ~0;
419                 }
420
421                 switch (ol_flags & PKT_TX_L4_MASK) {
422                 case PKT_TX_UDP_CKSUM:
423                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP |
424                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
425                         mss_l4len_idx |= sizeof(struct rte_udp_hdr)
426                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
427                         tx_offload_mask.l2_len |= ~0;
428                         tx_offload_mask.l3_len |= ~0;
429                         break;
430                 case PKT_TX_TCP_CKSUM:
431                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP |
432                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
433                         mss_l4len_idx |= sizeof(struct rte_tcp_hdr)
434                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
435                         tx_offload_mask.l2_len |= ~0;
436                         tx_offload_mask.l3_len |= ~0;
437                         break;
438                 case PKT_TX_SCTP_CKSUM:
439                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP |
440                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
441                         mss_l4len_idx |= sizeof(struct rte_sctp_hdr)
442                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
443                         tx_offload_mask.l2_len |= ~0;
444                         tx_offload_mask.l3_len |= ~0;
445                         break;
446                 default:
447                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_RSV |
448                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
449                         break;
450                 }
451         }
452
453         if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
454                 tx_offload_mask.outer_l2_len |= ~0;
455                 tx_offload_mask.outer_l3_len |= ~0;
456                 tx_offload_mask.l2_len |= ~0;
457                 seqnum_seed |= tx_offload.outer_l3_len
458                                << IXGBE_ADVTXD_OUTER_IPLEN;
459                 seqnum_seed |= tx_offload.l2_len
460                                << IXGBE_ADVTXD_TUNNEL_LEN;
461         }
462 #ifdef RTE_LIBRTE_SECURITY
463         if (ol_flags & PKT_TX_SEC_OFFLOAD) {
464                 union ixgbe_crypto_tx_desc_md *md =
465                                 (union ixgbe_crypto_tx_desc_md *)mdata;
466                 seqnum_seed |=
467                         (IXGBE_ADVTXD_IPSEC_SA_INDEX_MASK & md->sa_idx);
468                 type_tucmd_mlhl |= md->enc ?
469                                 (IXGBE_ADVTXD_TUCMD_IPSEC_TYPE_ESP |
470                                 IXGBE_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN) : 0;
471                 type_tucmd_mlhl |=
472                         (md->pad_len & IXGBE_ADVTXD_IPSEC_ESP_LEN_MASK);
473                 tx_offload_mask.sa_idx |= ~0;
474                 tx_offload_mask.sec_pad_len |= ~0;
475         }
476 #endif
477
478         txq->ctx_cache[ctx_idx].flags = ol_flags;
479         txq->ctx_cache[ctx_idx].tx_offload.data[0]  =
480                 tx_offload_mask.data[0] & tx_offload.data[0];
481         txq->ctx_cache[ctx_idx].tx_offload.data[1]  =
482                 tx_offload_mask.data[1] & tx_offload.data[1];
483         txq->ctx_cache[ctx_idx].tx_offload_mask    = tx_offload_mask;
484
485         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
486         vlan_macip_lens = tx_offload.l3_len;
487         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
488                 vlan_macip_lens |= (tx_offload.outer_l2_len <<
489                                     IXGBE_ADVTXD_MACLEN_SHIFT);
490         else
491                 vlan_macip_lens |= (tx_offload.l2_len <<
492                                     IXGBE_ADVTXD_MACLEN_SHIFT);
493         vlan_macip_lens |= ((uint32_t)tx_offload.vlan_tci << IXGBE_ADVTXD_VLAN_SHIFT);
494         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
495         ctx_txd->mss_l4len_idx   = rte_cpu_to_le_32(mss_l4len_idx);
496         ctx_txd->seqnum_seed     = seqnum_seed;
497 }
498
499 /*
500  * Check which hardware context can be used. Use the existing match
501  * or create a new context descriptor.
502  */
503 static inline uint32_t
504 what_advctx_update(struct ixgbe_tx_queue *txq, uint64_t flags,
505                    union ixgbe_tx_offload tx_offload)
506 {
507         /* If match with the current used context */
508         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
509                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
510                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
511                      & tx_offload.data[0])) &&
512                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
513                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
514                      & tx_offload.data[1]))))
515                 return txq->ctx_curr;
516
517         /* What if match with the next context  */
518         txq->ctx_curr ^= 1;
519         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
520                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
521                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
522                      & tx_offload.data[0])) &&
523                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
524                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
525                      & tx_offload.data[1]))))
526                 return txq->ctx_curr;
527
528         /* Mismatch, use the previous context */
529         return IXGBE_CTX_NUM;
530 }
531
532 static inline uint32_t
533 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
534 {
535         uint32_t tmp = 0;
536
537         if ((ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM)
538                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
539         if (ol_flags & PKT_TX_IP_CKSUM)
540                 tmp |= IXGBE_ADVTXD_POPTS_IXSM;
541         if (ol_flags & PKT_TX_TCP_SEG)
542                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
543         return tmp;
544 }
545
546 static inline uint32_t
547 tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
548 {
549         uint32_t cmdtype = 0;
550
551         if (ol_flags & PKT_TX_VLAN_PKT)
552                 cmdtype |= IXGBE_ADVTXD_DCMD_VLE;
553         if (ol_flags & PKT_TX_TCP_SEG)
554                 cmdtype |= IXGBE_ADVTXD_DCMD_TSE;
555         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
556                 cmdtype |= (1 << IXGBE_ADVTXD_OUTERIPCS_SHIFT);
557         if (ol_flags & PKT_TX_MACSEC)
558                 cmdtype |= IXGBE_ADVTXD_MAC_LINKSEC;
559         return cmdtype;
560 }
561
562 /* Default RS bit threshold values */
563 #ifndef DEFAULT_TX_RS_THRESH
564 #define DEFAULT_TX_RS_THRESH   32
565 #endif
566 #ifndef DEFAULT_TX_FREE_THRESH
567 #define DEFAULT_TX_FREE_THRESH 32
568 #endif
569
570 /* Reset transmit descriptors after they have been used */
571 static inline int
572 ixgbe_xmit_cleanup(struct ixgbe_tx_queue *txq)
573 {
574         struct ixgbe_tx_entry *sw_ring = txq->sw_ring;
575         volatile union ixgbe_adv_tx_desc *txr = txq->tx_ring;
576         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
577         uint16_t nb_tx_desc = txq->nb_tx_desc;
578         uint16_t desc_to_clean_to;
579         uint16_t nb_tx_to_clean;
580         uint32_t status;
581
582         /* Determine the last descriptor needing to be cleaned */
583         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
584         if (desc_to_clean_to >= nb_tx_desc)
585                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
586
587         /* Check to make sure the last descriptor to clean is done */
588         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
589         status = txr[desc_to_clean_to].wb.status;
590         if (!(status & rte_cpu_to_le_32(IXGBE_TXD_STAT_DD))) {
591                 PMD_TX_FREE_LOG(DEBUG,
592                                 "TX descriptor %4u is not done"
593                                 "(port=%d queue=%d)",
594                                 desc_to_clean_to,
595                                 txq->port_id, txq->queue_id);
596                 /* Failed to clean any descriptors, better luck next time */
597                 return -(1);
598         }
599
600         /* Figure out how many descriptors will be cleaned */
601         if (last_desc_cleaned > desc_to_clean_to)
602                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
603                                                         desc_to_clean_to);
604         else
605                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
606                                                 last_desc_cleaned);
607
608         PMD_TX_FREE_LOG(DEBUG,
609                         "Cleaning %4u TX descriptors: %4u to %4u "
610                         "(port=%d queue=%d)",
611                         nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
612                         txq->port_id, txq->queue_id);
613
614         /*
615          * The last descriptor to clean is done, so that means all the
616          * descriptors from the last descriptor that was cleaned
617          * up to the last descriptor with the RS bit set
618          * are done. Only reset the threshold descriptor.
619          */
620         txr[desc_to_clean_to].wb.status = 0;
621
622         /* Update the txq to reflect the last descriptor that was cleaned */
623         txq->last_desc_cleaned = desc_to_clean_to;
624         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
625
626         /* No Error */
627         return 0;
628 }
629
630 uint16_t
631 ixgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
632                 uint16_t nb_pkts)
633 {
634         struct ixgbe_tx_queue *txq;
635         struct ixgbe_tx_entry *sw_ring;
636         struct ixgbe_tx_entry *txe, *txn;
637         volatile union ixgbe_adv_tx_desc *txr;
638         volatile union ixgbe_adv_tx_desc *txd, *txp;
639         struct rte_mbuf     *tx_pkt;
640         struct rte_mbuf     *m_seg;
641         uint64_t buf_dma_addr;
642         uint32_t olinfo_status;
643         uint32_t cmd_type_len;
644         uint32_t pkt_len;
645         uint16_t slen;
646         uint64_t ol_flags;
647         uint16_t tx_id;
648         uint16_t tx_last;
649         uint16_t nb_tx;
650         uint16_t nb_used;
651         uint64_t tx_ol_req;
652         uint32_t ctx = 0;
653         uint32_t new_ctx;
654         union ixgbe_tx_offload tx_offload;
655 #ifdef RTE_LIBRTE_SECURITY
656         uint8_t use_ipsec;
657 #endif
658
659         tx_offload.data[0] = 0;
660         tx_offload.data[1] = 0;
661         txq = tx_queue;
662         sw_ring = txq->sw_ring;
663         txr     = txq->tx_ring;
664         tx_id   = txq->tx_tail;
665         txe = &sw_ring[tx_id];
666         txp = NULL;
667
668         /* Determine if the descriptor ring needs to be cleaned. */
669         if (txq->nb_tx_free < txq->tx_free_thresh)
670                 ixgbe_xmit_cleanup(txq);
671
672         rte_prefetch0(&txe->mbuf->pool);
673
674         /* TX loop */
675         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
676                 new_ctx = 0;
677                 tx_pkt = *tx_pkts++;
678                 pkt_len = tx_pkt->pkt_len;
679
680                 /*
681                  * Determine how many (if any) context descriptors
682                  * are needed for offload functionality.
683                  */
684                 ol_flags = tx_pkt->ol_flags;
685 #ifdef RTE_LIBRTE_SECURITY
686                 use_ipsec = txq->using_ipsec && (ol_flags & PKT_TX_SEC_OFFLOAD);
687 #endif
688
689                 /* If hardware offload required */
690                 tx_ol_req = ol_flags & IXGBE_TX_OFFLOAD_MASK;
691                 if (tx_ol_req) {
692                         tx_offload.l2_len = tx_pkt->l2_len;
693                         tx_offload.l3_len = tx_pkt->l3_len;
694                         tx_offload.l4_len = tx_pkt->l4_len;
695                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
696                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
697                         tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
698                         tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
699 #ifdef RTE_LIBRTE_SECURITY
700                         if (use_ipsec) {
701                                 union ixgbe_crypto_tx_desc_md *ipsec_mdata =
702                                         (union ixgbe_crypto_tx_desc_md *)
703                                                         &tx_pkt->udata64;
704                                 tx_offload.sa_idx = ipsec_mdata->sa_idx;
705                                 tx_offload.sec_pad_len = ipsec_mdata->pad_len;
706                         }
707 #endif
708
709                         /* If new context need be built or reuse the exist ctx. */
710                         ctx = what_advctx_update(txq, tx_ol_req,
711                                 tx_offload);
712                         /* Only allocate context descriptor if required*/
713                         new_ctx = (ctx == IXGBE_CTX_NUM);
714                         ctx = txq->ctx_curr;
715                 }
716
717                 /*
718                  * Keep track of how many descriptors are used this loop
719                  * This will always be the number of segments + the number of
720                  * Context descriptors required to transmit the packet
721                  */
722                 nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
723
724                 if (txp != NULL &&
725                                 nb_used + txq->nb_tx_used >= txq->tx_rs_thresh)
726                         /* set RS on the previous packet in the burst */
727                         txp->read.cmd_type_len |=
728                                 rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
729
730                 /*
731                  * The number of descriptors that must be allocated for a
732                  * packet is the number of segments of that packet, plus 1
733                  * Context Descriptor for the hardware offload, if any.
734                  * Determine the last TX descriptor to allocate in the TX ring
735                  * for the packet, starting from the current position (tx_id)
736                  * in the ring.
737                  */
738                 tx_last = (uint16_t) (tx_id + nb_used - 1);
739
740                 /* Circular ring */
741                 if (tx_last >= txq->nb_tx_desc)
742                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
743
744                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
745                            " tx_first=%u tx_last=%u",
746                            (unsigned) txq->port_id,
747                            (unsigned) txq->queue_id,
748                            (unsigned) pkt_len,
749                            (unsigned) tx_id,
750                            (unsigned) tx_last);
751
752                 /*
753                  * Make sure there are enough TX descriptors available to
754                  * transmit the entire packet.
755                  * nb_used better be less than or equal to txq->tx_rs_thresh
756                  */
757                 if (nb_used > txq->nb_tx_free) {
758                         PMD_TX_FREE_LOG(DEBUG,
759                                         "Not enough free TX descriptors "
760                                         "nb_used=%4u nb_free=%4u "
761                                         "(port=%d queue=%d)",
762                                         nb_used, txq->nb_tx_free,
763                                         txq->port_id, txq->queue_id);
764
765                         if (ixgbe_xmit_cleanup(txq) != 0) {
766                                 /* Could not clean any descriptors */
767                                 if (nb_tx == 0)
768                                         return 0;
769                                 goto end_of_tx;
770                         }
771
772                         /* nb_used better be <= txq->tx_rs_thresh */
773                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
774                                 PMD_TX_FREE_LOG(DEBUG,
775                                         "The number of descriptors needed to "
776                                         "transmit the packet exceeds the "
777                                         "RS bit threshold. This will impact "
778                                         "performance."
779                                         "nb_used=%4u nb_free=%4u "
780                                         "tx_rs_thresh=%4u. "
781                                         "(port=%d queue=%d)",
782                                         nb_used, txq->nb_tx_free,
783                                         txq->tx_rs_thresh,
784                                         txq->port_id, txq->queue_id);
785                                 /*
786                                  * Loop here until there are enough TX
787                                  * descriptors or until the ring cannot be
788                                  * cleaned.
789                                  */
790                                 while (nb_used > txq->nb_tx_free) {
791                                         if (ixgbe_xmit_cleanup(txq) != 0) {
792                                                 /*
793                                                  * Could not clean any
794                                                  * descriptors
795                                                  */
796                                                 if (nb_tx == 0)
797                                                         return 0;
798                                                 goto end_of_tx;
799                                         }
800                                 }
801                         }
802                 }
803
804                 /*
805                  * By now there are enough free TX descriptors to transmit
806                  * the packet.
807                  */
808
809                 /*
810                  * Set common flags of all TX Data Descriptors.
811                  *
812                  * The following bits must be set in all Data Descriptors:
813                  *   - IXGBE_ADVTXD_DTYP_DATA
814                  *   - IXGBE_ADVTXD_DCMD_DEXT
815                  *
816                  * The following bits must be set in the first Data Descriptor
817                  * and are ignored in the other ones:
818                  *   - IXGBE_ADVTXD_DCMD_IFCS
819                  *   - IXGBE_ADVTXD_MAC_1588
820                  *   - IXGBE_ADVTXD_DCMD_VLE
821                  *
822                  * The following bits must only be set in the last Data
823                  * Descriptor:
824                  *   - IXGBE_TXD_CMD_EOP
825                  *
826                  * The following bits can be set in any Data Descriptor, but
827                  * are only set in the last Data Descriptor:
828                  *   - IXGBE_TXD_CMD_RS
829                  */
830                 cmd_type_len = IXGBE_ADVTXD_DTYP_DATA |
831                         IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
832
833 #ifdef RTE_LIBRTE_IEEE1588
834                 if (ol_flags & PKT_TX_IEEE1588_TMST)
835                         cmd_type_len |= IXGBE_ADVTXD_MAC_1588;
836 #endif
837
838                 olinfo_status = 0;
839                 if (tx_ol_req) {
840
841                         if (ol_flags & PKT_TX_TCP_SEG) {
842                                 /* when TSO is on, paylen in descriptor is the
843                                  * not the packet len but the tcp payload len */
844                                 pkt_len -= (tx_offload.l2_len +
845                                         tx_offload.l3_len + tx_offload.l4_len);
846                         }
847
848                         /*
849                          * Setup the TX Advanced Context Descriptor if required
850                          */
851                         if (new_ctx) {
852                                 volatile struct ixgbe_adv_tx_context_desc *
853                                     ctx_txd;
854
855                                 ctx_txd = (volatile struct
856                                     ixgbe_adv_tx_context_desc *)
857                                     &txr[tx_id];
858
859                                 txn = &sw_ring[txe->next_id];
860                                 rte_prefetch0(&txn->mbuf->pool);
861
862                                 if (txe->mbuf != NULL) {
863                                         rte_pktmbuf_free_seg(txe->mbuf);
864                                         txe->mbuf = NULL;
865                                 }
866
867                                 ixgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
868                                         tx_offload, &tx_pkt->udata64);
869
870                                 txe->last_id = tx_last;
871                                 tx_id = txe->next_id;
872                                 txe = txn;
873                         }
874
875                         /*
876                          * Setup the TX Advanced Data Descriptor,
877                          * This path will go through
878                          * whatever new/reuse the context descriptor
879                          */
880                         cmd_type_len  |= tx_desc_ol_flags_to_cmdtype(ol_flags);
881                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
882                         olinfo_status |= ctx << IXGBE_ADVTXD_IDX_SHIFT;
883                 }
884
885                 olinfo_status |= (pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
886 #ifdef RTE_LIBRTE_SECURITY
887                 if (use_ipsec)
888                         olinfo_status |= IXGBE_ADVTXD_POPTS_IPSEC;
889 #endif
890
891                 m_seg = tx_pkt;
892                 do {
893                         txd = &txr[tx_id];
894                         txn = &sw_ring[txe->next_id];
895                         rte_prefetch0(&txn->mbuf->pool);
896
897                         if (txe->mbuf != NULL)
898                                 rte_pktmbuf_free_seg(txe->mbuf);
899                         txe->mbuf = m_seg;
900
901                         /*
902                          * Set up Transmit Data Descriptor.
903                          */
904                         slen = m_seg->data_len;
905                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
906                         txd->read.buffer_addr =
907                                 rte_cpu_to_le_64(buf_dma_addr);
908                         txd->read.cmd_type_len =
909                                 rte_cpu_to_le_32(cmd_type_len | slen);
910                         txd->read.olinfo_status =
911                                 rte_cpu_to_le_32(olinfo_status);
912                         txe->last_id = tx_last;
913                         tx_id = txe->next_id;
914                         txe = txn;
915                         m_seg = m_seg->next;
916                 } while (m_seg != NULL);
917
918                 /*
919                  * The last packet data descriptor needs End Of Packet (EOP)
920                  */
921                 cmd_type_len |= IXGBE_TXD_CMD_EOP;
922                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
923                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
924
925                 /* Set RS bit only on threshold packets' last descriptor */
926                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
927                         PMD_TX_FREE_LOG(DEBUG,
928                                         "Setting RS bit on TXD id="
929                                         "%4u (port=%d queue=%d)",
930                                         tx_last, txq->port_id, txq->queue_id);
931
932                         cmd_type_len |= IXGBE_TXD_CMD_RS;
933
934                         /* Update txq RS bit counters */
935                         txq->nb_tx_used = 0;
936                         txp = NULL;
937                 } else
938                         txp = txd;
939
940                 txd->read.cmd_type_len |= rte_cpu_to_le_32(cmd_type_len);
941         }
942
943 end_of_tx:
944         /* set RS on last packet in the burst */
945         if (txp != NULL)
946                 txp->read.cmd_type_len |= rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
947
948         rte_wmb();
949
950         /*
951          * Set the Transmit Descriptor Tail (TDT)
952          */
953         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
954                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
955                    (unsigned) tx_id, (unsigned) nb_tx);
956         IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
957         txq->tx_tail = tx_id;
958
959         return nb_tx;
960 }
961
962 /*********************************************************************
963  *
964  *  TX prep functions
965  *
966  **********************************************************************/
967 uint16_t
968 ixgbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
969 {
970         int i, ret;
971         uint64_t ol_flags;
972         struct rte_mbuf *m;
973         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
974
975         for (i = 0; i < nb_pkts; i++) {
976                 m = tx_pkts[i];
977                 ol_flags = m->ol_flags;
978
979                 /**
980                  * Check if packet meets requirements for number of segments
981                  *
982                  * NOTE: for ixgbe it's always (40 - WTHRESH) for both TSO and
983                  *       non-TSO
984                  */
985
986                 if (m->nb_segs > IXGBE_TX_MAX_SEG - txq->wthresh) {
987                         rte_errno = -EINVAL;
988                         return i;
989                 }
990
991                 if (ol_flags & IXGBE_TX_OFFLOAD_NOTSUP_MASK) {
992                         rte_errno = -ENOTSUP;
993                         return i;
994                 }
995
996 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
997                 ret = rte_validate_tx_offload(m);
998                 if (ret != 0) {
999                         rte_errno = ret;
1000                         return i;
1001                 }
1002 #endif
1003                 ret = rte_net_intel_cksum_prepare(m);
1004                 if (ret != 0) {
1005                         rte_errno = ret;
1006                         return i;
1007                 }
1008         }
1009
1010         return i;
1011 }
1012
1013 /*********************************************************************
1014  *
1015  *  RX functions
1016  *
1017  **********************************************************************/
1018
1019 #define IXGBE_PACKET_TYPE_ETHER                         0X00
1020 #define IXGBE_PACKET_TYPE_IPV4                          0X01
1021 #define IXGBE_PACKET_TYPE_IPV4_TCP                      0X11
1022 #define IXGBE_PACKET_TYPE_IPV4_UDP                      0X21
1023 #define IXGBE_PACKET_TYPE_IPV4_SCTP                     0X41
1024 #define IXGBE_PACKET_TYPE_IPV4_EXT                      0X03
1025 #define IXGBE_PACKET_TYPE_IPV4_EXT_TCP                  0X13
1026 #define IXGBE_PACKET_TYPE_IPV4_EXT_UDP                  0X23
1027 #define IXGBE_PACKET_TYPE_IPV4_EXT_SCTP                 0X43
1028 #define IXGBE_PACKET_TYPE_IPV6                          0X04
1029 #define IXGBE_PACKET_TYPE_IPV6_TCP                      0X14
1030 #define IXGBE_PACKET_TYPE_IPV6_UDP                      0X24
1031 #define IXGBE_PACKET_TYPE_IPV6_SCTP                     0X44
1032 #define IXGBE_PACKET_TYPE_IPV6_EXT                      0X0C
1033 #define IXGBE_PACKET_TYPE_IPV6_EXT_TCP                  0X1C
1034 #define IXGBE_PACKET_TYPE_IPV6_EXT_UDP                  0X2C
1035 #define IXGBE_PACKET_TYPE_IPV6_EXT_SCTP                 0X4C
1036 #define IXGBE_PACKET_TYPE_IPV4_IPV6                     0X05
1037 #define IXGBE_PACKET_TYPE_IPV4_IPV6_TCP                 0X15
1038 #define IXGBE_PACKET_TYPE_IPV4_IPV6_UDP                 0X25
1039 #define IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP                0X45
1040 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6                 0X07
1041 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP             0X17
1042 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP             0X27
1043 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP            0X47
1044 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT                 0X0D
1045 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP             0X1D
1046 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP             0X2D
1047 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP            0X4D
1048 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT             0X0F
1049 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP         0X1F
1050 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP         0X2F
1051 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP        0X4F
1052
1053 #define IXGBE_PACKET_TYPE_NVGRE                   0X00
1054 #define IXGBE_PACKET_TYPE_NVGRE_IPV4              0X01
1055 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP          0X11
1056 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP          0X21
1057 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP         0X41
1058 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT          0X03
1059 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP      0X13
1060 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP      0X23
1061 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP     0X43
1062 #define IXGBE_PACKET_TYPE_NVGRE_IPV6              0X04
1063 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP          0X14
1064 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP          0X24
1065 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP         0X44
1066 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT          0X0C
1067 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP      0X1C
1068 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP      0X2C
1069 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP     0X4C
1070 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6         0X05
1071 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP     0X15
1072 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP     0X25
1073 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT     0X0D
1074 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP 0X1D
1075 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP 0X2D
1076
1077 #define IXGBE_PACKET_TYPE_VXLAN                   0X80
1078 #define IXGBE_PACKET_TYPE_VXLAN_IPV4              0X81
1079 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP          0x91
1080 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP          0xA1
1081 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP         0xC1
1082 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT          0x83
1083 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP      0X93
1084 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP      0XA3
1085 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP     0XC3
1086 #define IXGBE_PACKET_TYPE_VXLAN_IPV6              0X84
1087 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP          0X94
1088 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP          0XA4
1089 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP         0XC4
1090 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT          0X8C
1091 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP      0X9C
1092 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP      0XAC
1093 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP     0XCC
1094 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6         0X85
1095 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP     0X95
1096 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP     0XA5
1097 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT     0X8D
1098 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP 0X9D
1099 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP 0XAD
1100
1101 /**
1102  * Use 2 different table for normal packet and tunnel packet
1103  * to save the space.
1104  */
1105 const uint32_t
1106         ptype_table[IXGBE_PACKET_TYPE_MAX] __rte_cache_aligned = {
1107         [IXGBE_PACKET_TYPE_ETHER] = RTE_PTYPE_L2_ETHER,
1108         [IXGBE_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
1109                 RTE_PTYPE_L3_IPV4,
1110         [IXGBE_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1111                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
1112         [IXGBE_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1113                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
1114         [IXGBE_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1115                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
1116         [IXGBE_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1117                 RTE_PTYPE_L3_IPV4_EXT,
1118         [IXGBE_PACKET_TYPE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1119                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
1120         [IXGBE_PACKET_TYPE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1121                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
1122         [IXGBE_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1123                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
1124         [IXGBE_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
1125                 RTE_PTYPE_L3_IPV6,
1126         [IXGBE_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1127                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
1128         [IXGBE_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1129                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
1130         [IXGBE_PACKET_TYPE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1131                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP,
1132         [IXGBE_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1133                 RTE_PTYPE_L3_IPV6_EXT,
1134         [IXGBE_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1135                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
1136         [IXGBE_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1137                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
1138         [IXGBE_PACKET_TYPE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1139                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_SCTP,
1140         [IXGBE_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1141                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1142                 RTE_PTYPE_INNER_L3_IPV6,
1143         [IXGBE_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1144                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1145                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1146         [IXGBE_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1147                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1148         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1149         [IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1150                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1151                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1152         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6] = RTE_PTYPE_L2_ETHER |
1153                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1154                 RTE_PTYPE_INNER_L3_IPV6,
1155         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1156                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1157                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1158         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1159                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1160                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1161         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1162                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1163                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1164         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1165                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1166                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1167         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1168                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1169                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1170         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1171                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1172                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1173         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1174                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1175                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1176         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1177                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1178                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1179         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1180                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1181                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1182         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1183                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1184                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1185         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP] =
1186                 RTE_PTYPE_L2_ETHER |
1187                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1188                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1189 };
1190
1191 const uint32_t
1192         ptype_table_tn[IXGBE_PACKET_TYPE_TN_MAX] __rte_cache_aligned = {
1193         [IXGBE_PACKET_TYPE_NVGRE] = RTE_PTYPE_L2_ETHER |
1194                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1195                 RTE_PTYPE_INNER_L2_ETHER,
1196         [IXGBE_PACKET_TYPE_NVGRE_IPV4] = RTE_PTYPE_L2_ETHER |
1197                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1198                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1199         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1200                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1201                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT,
1202         [IXGBE_PACKET_TYPE_NVGRE_IPV6] = RTE_PTYPE_L2_ETHER |
1203                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1204                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6,
1205         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1206                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1207                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1208         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1209                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1210                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT,
1211         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1212                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1213                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1214         [IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1215                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1216                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1217                 RTE_PTYPE_INNER_L4_TCP,
1218         [IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1219                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1220                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1221                 RTE_PTYPE_INNER_L4_TCP,
1222         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1223                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1224                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1225         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1226                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1227                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1228                 RTE_PTYPE_INNER_L4_TCP,
1229         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP] =
1230                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1231                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1232                 RTE_PTYPE_INNER_L3_IPV4,
1233         [IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1234                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1235                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1236                 RTE_PTYPE_INNER_L4_UDP,
1237         [IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1238                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1239                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1240                 RTE_PTYPE_INNER_L4_UDP,
1241         [IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1242                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1243                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1244                 RTE_PTYPE_INNER_L4_SCTP,
1245         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1246                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1247                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1248         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1249                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1250                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1251                 RTE_PTYPE_INNER_L4_UDP,
1252         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1253                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1254                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1255                 RTE_PTYPE_INNER_L4_SCTP,
1256         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP] =
1257                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1258                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1259                 RTE_PTYPE_INNER_L3_IPV4,
1260         [IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1261                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1262                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1263                 RTE_PTYPE_INNER_L4_SCTP,
1264         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1265                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1266                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1267                 RTE_PTYPE_INNER_L4_SCTP,
1268         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1269                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1270                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1271                 RTE_PTYPE_INNER_L4_TCP,
1272         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1273                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1274                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1275                 RTE_PTYPE_INNER_L4_UDP,
1276
1277         [IXGBE_PACKET_TYPE_VXLAN] = RTE_PTYPE_L2_ETHER |
1278                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1279                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER,
1280         [IXGBE_PACKET_TYPE_VXLAN_IPV4] = RTE_PTYPE_L2_ETHER |
1281                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1282                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1283                 RTE_PTYPE_INNER_L3_IPV4,
1284         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1285                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1286                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1287                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1288         [IXGBE_PACKET_TYPE_VXLAN_IPV6] = RTE_PTYPE_L2_ETHER |
1289                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1290                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1291                 RTE_PTYPE_INNER_L3_IPV6,
1292         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1293                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1294                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1295                 RTE_PTYPE_INNER_L3_IPV4,
1296         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1297                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1298                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1299                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1300         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1301                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1302                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1303                 RTE_PTYPE_INNER_L3_IPV4,
1304         [IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1305                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1306                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1307                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_TCP,
1308         [IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1309                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1310                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1311                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1312         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1313                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1314                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1315                 RTE_PTYPE_INNER_L3_IPV4,
1316         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1317                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1318                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1319                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1320         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP] =
1321                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1322                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1323                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1324         [IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1325                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1326                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1327                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_UDP,
1328         [IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1329                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1330                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1331                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1332         [IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1333                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1334                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1335                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1336         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1337                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1338                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1339                 RTE_PTYPE_INNER_L3_IPV4,
1340         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1341                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1342                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1343                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1344         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1345                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1346                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1347                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1348         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP] =
1349                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1350                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1351                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1352         [IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1353                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1354                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1355                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_SCTP,
1356         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1357                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1358                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1359                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_SCTP,
1360         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1361                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1362                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1363                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
1364         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1365                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1366                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1367                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
1368 };
1369
1370 /* @note: fix ixgbe_dev_supported_ptypes_get() if any change here. */
1371 static inline uint32_t
1372 ixgbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptype_mask)
1373 {
1374
1375         if (unlikely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1376                 return RTE_PTYPE_UNKNOWN;
1377
1378         pkt_info = (pkt_info >> IXGBE_PACKET_TYPE_SHIFT) & ptype_mask;
1379
1380         /* For tunnel packet */
1381         if (pkt_info & IXGBE_PACKET_TYPE_TUNNEL_BIT) {
1382                 /* Remove the tunnel bit to save the space. */
1383                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
1384                 return ptype_table_tn[pkt_info];
1385         }
1386
1387         /**
1388          * For x550, if it's not tunnel,
1389          * tunnel type bit should be set to 0.
1390          * Reuse 82599's mask.
1391          */
1392         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
1393
1394         return ptype_table[pkt_info];
1395 }
1396
1397 static inline uint64_t
1398 ixgbe_rxd_pkt_info_to_pkt_flags(uint16_t pkt_info)
1399 {
1400         static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
1401                 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
1402                 0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
1403                 PKT_RX_RSS_HASH, 0, 0, 0,
1404                 0, 0, 0,  PKT_RX_FDIR,
1405         };
1406 #ifdef RTE_LIBRTE_IEEE1588
1407         static uint64_t ip_pkt_etqf_map[8] = {
1408                 0, 0, 0, PKT_RX_IEEE1588_PTP,
1409                 0, 0, 0, 0,
1410         };
1411
1412         if (likely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1413                 return ip_pkt_etqf_map[(pkt_info >> 4) & 0X07] |
1414                                 ip_rss_types_map[pkt_info & 0XF];
1415         else
1416                 return ip_rss_types_map[pkt_info & 0XF];
1417 #else
1418         return ip_rss_types_map[pkt_info & 0XF];
1419 #endif
1420 }
1421
1422 static inline uint64_t
1423 rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
1424 {
1425         uint64_t pkt_flags;
1426
1427         /*
1428          * Check if VLAN present only.
1429          * Do not check whether L3/L4 rx checksum done by NIC or not,
1430          * That can be found from rte_eth_rxmode.offloads flag
1431          */
1432         pkt_flags = (rx_status & IXGBE_RXD_STAT_VP) ?  vlan_flags : 0;
1433
1434 #ifdef RTE_LIBRTE_IEEE1588
1435         if (rx_status & IXGBE_RXD_STAT_TMST)
1436                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
1437 #endif
1438         return pkt_flags;
1439 }
1440
1441 static inline uint64_t
1442 rx_desc_error_to_pkt_flags(uint32_t rx_status)
1443 {
1444         uint64_t pkt_flags;
1445
1446         /*
1447          * Bit 31: IPE, IPv4 checksum error
1448          * Bit 30: L4I, L4I integrity error
1449          */
1450         static uint64_t error_to_pkt_flags_map[4] = {
1451                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
1452                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
1453                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
1454                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
1455         };
1456         pkt_flags = error_to_pkt_flags_map[(rx_status >>
1457                 IXGBE_RXDADV_ERR_CKSUM_BIT) & IXGBE_RXDADV_ERR_CKSUM_MSK];
1458
1459         if ((rx_status & IXGBE_RXD_STAT_OUTERIPCS) &&
1460             (rx_status & IXGBE_RXDADV_ERR_OUTERIPER)) {
1461                 pkt_flags |= PKT_RX_EIP_CKSUM_BAD;
1462         }
1463
1464 #ifdef RTE_LIBRTE_SECURITY
1465         if (rx_status & IXGBE_RXD_STAT_SECP) {
1466                 pkt_flags |= PKT_RX_SEC_OFFLOAD;
1467                 if (rx_status & IXGBE_RXDADV_LNKSEC_ERROR_BAD_SIG)
1468                         pkt_flags |= PKT_RX_SEC_OFFLOAD_FAILED;
1469         }
1470 #endif
1471
1472         return pkt_flags;
1473 }
1474
1475 /*
1476  * LOOK_AHEAD defines how many desc statuses to check beyond the
1477  * current descriptor.
1478  * It must be a pound define for optimal performance.
1479  * Do not change the value of LOOK_AHEAD, as the ixgbe_rx_scan_hw_ring
1480  * function only works with LOOK_AHEAD=8.
1481  */
1482 #define LOOK_AHEAD 8
1483 #if (LOOK_AHEAD != 8)
1484 #error "PMD IXGBE: LOOK_AHEAD must be 8\n"
1485 #endif
1486 static inline int
1487 ixgbe_rx_scan_hw_ring(struct ixgbe_rx_queue *rxq)
1488 {
1489         volatile union ixgbe_adv_rx_desc *rxdp;
1490         struct ixgbe_rx_entry *rxep;
1491         struct rte_mbuf *mb;
1492         uint16_t pkt_len;
1493         uint64_t pkt_flags;
1494         int nb_dd;
1495         uint32_t s[LOOK_AHEAD];
1496         uint32_t pkt_info[LOOK_AHEAD];
1497         int i, j, nb_rx = 0;
1498         uint32_t status;
1499         uint64_t vlan_flags = rxq->vlan_flags;
1500
1501         /* get references to current descriptor and S/W ring entry */
1502         rxdp = &rxq->rx_ring[rxq->rx_tail];
1503         rxep = &rxq->sw_ring[rxq->rx_tail];
1504
1505         status = rxdp->wb.upper.status_error;
1506         /* check to make sure there is at least 1 packet to receive */
1507         if (!(status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1508                 return 0;
1509
1510         /*
1511          * Scan LOOK_AHEAD descriptors at a time to determine which descriptors
1512          * reference packets that are ready to be received.
1513          */
1514         for (i = 0; i < RTE_PMD_IXGBE_RX_MAX_BURST;
1515              i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
1516                 /* Read desc statuses backwards to avoid race condition */
1517                 for (j = 0; j < LOOK_AHEAD; j++)
1518                         s[j] = rte_le_to_cpu_32(rxdp[j].wb.upper.status_error);
1519
1520                 rte_smp_rmb();
1521
1522                 /* Compute how many status bits were set */
1523                 for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
1524                                 (s[nb_dd] & IXGBE_RXDADV_STAT_DD); nb_dd++)
1525                         ;
1526
1527                 for (j = 0; j < nb_dd; j++)
1528                         pkt_info[j] = rte_le_to_cpu_32(rxdp[j].wb.lower.
1529                                                        lo_dword.data);
1530
1531                 nb_rx += nb_dd;
1532
1533                 /* Translate descriptor info to mbuf format */
1534                 for (j = 0; j < nb_dd; ++j) {
1535                         mb = rxep[j].mbuf;
1536                         pkt_len = rte_le_to_cpu_16(rxdp[j].wb.upper.length) -
1537                                   rxq->crc_len;
1538                         mb->data_len = pkt_len;
1539                         mb->pkt_len = pkt_len;
1540                         mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].wb.upper.vlan);
1541
1542                         /* convert descriptor fields to rte mbuf flags */
1543                         pkt_flags = rx_desc_status_to_pkt_flags(s[j],
1544                                 vlan_flags);
1545                         pkt_flags |= rx_desc_error_to_pkt_flags(s[j]);
1546                         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags
1547                                         ((uint16_t)pkt_info[j]);
1548                         mb->ol_flags = pkt_flags;
1549                         mb->packet_type =
1550                                 ixgbe_rxd_pkt_info_to_pkt_type
1551                                         (pkt_info[j], rxq->pkt_type_mask);
1552
1553                         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1554                                 mb->hash.rss = rte_le_to_cpu_32(
1555                                     rxdp[j].wb.lower.hi_dword.rss);
1556                         else if (pkt_flags & PKT_RX_FDIR) {
1557                                 mb->hash.fdir.hash = rte_le_to_cpu_16(
1558                                     rxdp[j].wb.lower.hi_dword.csum_ip.csum) &
1559                                     IXGBE_ATR_HASH_MASK;
1560                                 mb->hash.fdir.id = rte_le_to_cpu_16(
1561                                     rxdp[j].wb.lower.hi_dword.csum_ip.ip_id);
1562                         }
1563                 }
1564
1565                 /* Move mbuf pointers from the S/W ring to the stage */
1566                 for (j = 0; j < LOOK_AHEAD; ++j) {
1567                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1568                 }
1569
1570                 /* stop if all requested packets could not be received */
1571                 if (nb_dd != LOOK_AHEAD)
1572                         break;
1573         }
1574
1575         /* clear software ring entries so we can cleanup correctly */
1576         for (i = 0; i < nb_rx; ++i) {
1577                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1578         }
1579
1580
1581         return nb_rx;
1582 }
1583
1584 static inline int
1585 ixgbe_rx_alloc_bufs(struct ixgbe_rx_queue *rxq, bool reset_mbuf)
1586 {
1587         volatile union ixgbe_adv_rx_desc *rxdp;
1588         struct ixgbe_rx_entry *rxep;
1589         struct rte_mbuf *mb;
1590         uint16_t alloc_idx;
1591         __le64 dma_addr;
1592         int diag, i;
1593
1594         /* allocate buffers in bulk directly into the S/W ring */
1595         alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
1596         rxep = &rxq->sw_ring[alloc_idx];
1597         diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
1598                                     rxq->rx_free_thresh);
1599         if (unlikely(diag != 0))
1600                 return -ENOMEM;
1601
1602         rxdp = &rxq->rx_ring[alloc_idx];
1603         for (i = 0; i < rxq->rx_free_thresh; ++i) {
1604                 /* populate the static rte mbuf fields */
1605                 mb = rxep[i].mbuf;
1606                 if (reset_mbuf) {
1607                         mb->port = rxq->port_id;
1608                 }
1609
1610                 rte_mbuf_refcnt_set(mb, 1);
1611                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1612
1613                 /* populate the descriptors */
1614                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1615                 rxdp[i].read.hdr_addr = 0;
1616                 rxdp[i].read.pkt_addr = dma_addr;
1617         }
1618
1619         /* update state of internal queue structure */
1620         rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
1621         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1622                 rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
1623
1624         /* no errors */
1625         return 0;
1626 }
1627
1628 static inline uint16_t
1629 ixgbe_rx_fill_from_stage(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
1630                          uint16_t nb_pkts)
1631 {
1632         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1633         int i;
1634
1635         /* how many packets are ready to return? */
1636         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1637
1638         /* copy mbuf pointers to the application's packet list */
1639         for (i = 0; i < nb_pkts; ++i)
1640                 rx_pkts[i] = stage[i];
1641
1642         /* update internal queue state */
1643         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1644         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1645
1646         return nb_pkts;
1647 }
1648
1649 static inline uint16_t
1650 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1651              uint16_t nb_pkts)
1652 {
1653         struct ixgbe_rx_queue *rxq = (struct ixgbe_rx_queue *)rx_queue;
1654         uint16_t nb_rx = 0;
1655
1656         /* Any previously recv'd pkts will be returned from the Rx stage */
1657         if (rxq->rx_nb_avail)
1658                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1659
1660         /* Scan the H/W ring for packets to receive */
1661         nb_rx = (uint16_t)ixgbe_rx_scan_hw_ring(rxq);
1662
1663         /* update internal queue state */
1664         rxq->rx_next_avail = 0;
1665         rxq->rx_nb_avail = nb_rx;
1666         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1667
1668         /* if required, allocate new buffers to replenish descriptors */
1669         if (rxq->rx_tail > rxq->rx_free_trigger) {
1670                 uint16_t cur_free_trigger = rxq->rx_free_trigger;
1671
1672                 if (ixgbe_rx_alloc_bufs(rxq, true) != 0) {
1673                         int i, j;
1674
1675                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1676                                    "queue_id=%u", (unsigned) rxq->port_id,
1677                                    (unsigned) rxq->queue_id);
1678
1679                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
1680                                 rxq->rx_free_thresh;
1681
1682                         /*
1683                          * Need to rewind any previous receives if we cannot
1684                          * allocate new buffers to replenish the old ones.
1685                          */
1686                         rxq->rx_nb_avail = 0;
1687                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1688                         for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
1689                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1690
1691                         return 0;
1692                 }
1693
1694                 /* update tail pointer */
1695                 rte_wmb();
1696                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
1697                                             cur_free_trigger);
1698         }
1699
1700         if (rxq->rx_tail >= rxq->nb_rx_desc)
1701                 rxq->rx_tail = 0;
1702
1703         /* received any packets this loop? */
1704         if (rxq->rx_nb_avail)
1705                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1706
1707         return 0;
1708 }
1709
1710 /* split requests into chunks of size RTE_PMD_IXGBE_RX_MAX_BURST */
1711 uint16_t
1712 ixgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
1713                            uint16_t nb_pkts)
1714 {
1715         uint16_t nb_rx;
1716
1717         if (unlikely(nb_pkts == 0))
1718                 return 0;
1719
1720         if (likely(nb_pkts <= RTE_PMD_IXGBE_RX_MAX_BURST))
1721                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1722
1723         /* request is relatively large, chunk it up */
1724         nb_rx = 0;
1725         while (nb_pkts) {
1726                 uint16_t ret, n;
1727
1728                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_RX_MAX_BURST);
1729                 ret = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1730                 nb_rx = (uint16_t)(nb_rx + ret);
1731                 nb_pkts = (uint16_t)(nb_pkts - ret);
1732                 if (ret < n)
1733                         break;
1734         }
1735
1736         return nb_rx;
1737 }
1738
1739 uint16_t
1740 ixgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1741                 uint16_t nb_pkts)
1742 {
1743         struct ixgbe_rx_queue *rxq;
1744         volatile union ixgbe_adv_rx_desc *rx_ring;
1745         volatile union ixgbe_adv_rx_desc *rxdp;
1746         struct ixgbe_rx_entry *sw_ring;
1747         struct ixgbe_rx_entry *rxe;
1748         struct rte_mbuf *rxm;
1749         struct rte_mbuf *nmb;
1750         union ixgbe_adv_rx_desc rxd;
1751         uint64_t dma_addr;
1752         uint32_t staterr;
1753         uint32_t pkt_info;
1754         uint16_t pkt_len;
1755         uint16_t rx_id;
1756         uint16_t nb_rx;
1757         uint16_t nb_hold;
1758         uint64_t pkt_flags;
1759         uint64_t vlan_flags;
1760
1761         nb_rx = 0;
1762         nb_hold = 0;
1763         rxq = rx_queue;
1764         rx_id = rxq->rx_tail;
1765         rx_ring = rxq->rx_ring;
1766         sw_ring = rxq->sw_ring;
1767         vlan_flags = rxq->vlan_flags;
1768         while (nb_rx < nb_pkts) {
1769                 /*
1770                  * The order of operations here is important as the DD status
1771                  * bit must not be read after any other descriptor fields.
1772                  * rx_ring and rxdp are pointing to volatile data so the order
1773                  * of accesses cannot be reordered by the compiler. If they were
1774                  * not volatile, they could be reordered which could lead to
1775                  * using invalid descriptor fields when read from rxd.
1776                  */
1777                 rxdp = &rx_ring[rx_id];
1778                 staterr = rxdp->wb.upper.status_error;
1779                 if (!(staterr & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1780                         break;
1781                 rxd = *rxdp;
1782
1783                 /*
1784                  * End of packet.
1785                  *
1786                  * If the IXGBE_RXDADV_STAT_EOP flag is not set, the RX packet
1787                  * is likely to be invalid and to be dropped by the various
1788                  * validation checks performed by the network stack.
1789                  *
1790                  * Allocate a new mbuf to replenish the RX ring descriptor.
1791                  * If the allocation fails:
1792                  *    - arrange for that RX descriptor to be the first one
1793                  *      being parsed the next time the receive function is
1794                  *      invoked [on the same queue].
1795                  *
1796                  *    - Stop parsing the RX ring and return immediately.
1797                  *
1798                  * This policy do not drop the packet received in the RX
1799                  * descriptor for which the allocation of a new mbuf failed.
1800                  * Thus, it allows that packet to be later retrieved if
1801                  * mbuf have been freed in the mean time.
1802                  * As a side effect, holding RX descriptors instead of
1803                  * systematically giving them back to the NIC may lead to
1804                  * RX ring exhaustion situations.
1805                  * However, the NIC can gracefully prevent such situations
1806                  * to happen by sending specific "back-pressure" flow control
1807                  * frames to its peer(s).
1808                  */
1809                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1810                            "ext_err_stat=0x%08x pkt_len=%u",
1811                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1812                            (unsigned) rx_id, (unsigned) staterr,
1813                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1814
1815                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1816                 if (nmb == NULL) {
1817                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1818                                    "queue_id=%u", (unsigned) rxq->port_id,
1819                                    (unsigned) rxq->queue_id);
1820                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1821                         break;
1822                 }
1823
1824                 nb_hold++;
1825                 rxe = &sw_ring[rx_id];
1826                 rx_id++;
1827                 if (rx_id == rxq->nb_rx_desc)
1828                         rx_id = 0;
1829
1830                 /* Prefetch next mbuf while processing current one. */
1831                 rte_ixgbe_prefetch(sw_ring[rx_id].mbuf);
1832
1833                 /*
1834                  * When next RX descriptor is on a cache-line boundary,
1835                  * prefetch the next 4 RX descriptors and the next 8 pointers
1836                  * to mbufs.
1837                  */
1838                 if ((rx_id & 0x3) == 0) {
1839                         rte_ixgbe_prefetch(&rx_ring[rx_id]);
1840                         rte_ixgbe_prefetch(&sw_ring[rx_id]);
1841                 }
1842
1843                 rxm = rxe->mbuf;
1844                 rxe->mbuf = nmb;
1845                 dma_addr =
1846                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1847                 rxdp->read.hdr_addr = 0;
1848                 rxdp->read.pkt_addr = dma_addr;
1849
1850                 /*
1851                  * Initialize the returned mbuf.
1852                  * 1) setup generic mbuf fields:
1853                  *    - number of segments,
1854                  *    - next segment,
1855                  *    - packet length,
1856                  *    - RX port identifier.
1857                  * 2) integrate hardware offload data, if any:
1858                  *    - RSS flag & hash,
1859                  *    - IP checksum flag,
1860                  *    - VLAN TCI, if any,
1861                  *    - error flags.
1862                  */
1863                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
1864                                       rxq->crc_len);
1865                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1866                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
1867                 rxm->nb_segs = 1;
1868                 rxm->next = NULL;
1869                 rxm->pkt_len = pkt_len;
1870                 rxm->data_len = pkt_len;
1871                 rxm->port = rxq->port_id;
1872
1873                 pkt_info = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1874                 /* Only valid if PKT_RX_VLAN set in pkt_flags */
1875                 rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
1876
1877                 pkt_flags = rx_desc_status_to_pkt_flags(staterr, vlan_flags);
1878                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1879                 pkt_flags = pkt_flags |
1880                         ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1881                 rxm->ol_flags = pkt_flags;
1882                 rxm->packet_type =
1883                         ixgbe_rxd_pkt_info_to_pkt_type(pkt_info,
1884                                                        rxq->pkt_type_mask);
1885
1886                 if (likely(pkt_flags & PKT_RX_RSS_HASH))
1887                         rxm->hash.rss = rte_le_to_cpu_32(
1888                                                 rxd.wb.lower.hi_dword.rss);
1889                 else if (pkt_flags & PKT_RX_FDIR) {
1890                         rxm->hash.fdir.hash = rte_le_to_cpu_16(
1891                                         rxd.wb.lower.hi_dword.csum_ip.csum) &
1892                                         IXGBE_ATR_HASH_MASK;
1893                         rxm->hash.fdir.id = rte_le_to_cpu_16(
1894                                         rxd.wb.lower.hi_dword.csum_ip.ip_id);
1895                 }
1896                 /*
1897                  * Store the mbuf address into the next entry of the array
1898                  * of returned packets.
1899                  */
1900                 rx_pkts[nb_rx++] = rxm;
1901         }
1902         rxq->rx_tail = rx_id;
1903
1904         /*
1905          * If the number of free RX descriptors is greater than the RX free
1906          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1907          * register.
1908          * Update the RDT with the value of the last processed RX descriptor
1909          * minus 1, to guarantee that the RDT register is never equal to the
1910          * RDH register, which creates a "full" ring situtation from the
1911          * hardware point of view...
1912          */
1913         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1914         if (nb_hold > rxq->rx_free_thresh) {
1915                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1916                            "nb_hold=%u nb_rx=%u",
1917                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1918                            (unsigned) rx_id, (unsigned) nb_hold,
1919                            (unsigned) nb_rx);
1920                 rx_id = (uint16_t) ((rx_id == 0) ?
1921                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1922                 IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1923                 nb_hold = 0;
1924         }
1925         rxq->nb_rx_hold = nb_hold;
1926         return nb_rx;
1927 }
1928
1929 /**
1930  * Detect an RSC descriptor.
1931  */
1932 static inline uint32_t
1933 ixgbe_rsc_count(union ixgbe_adv_rx_desc *rx)
1934 {
1935         return (rte_le_to_cpu_32(rx->wb.lower.lo_dword.data) &
1936                 IXGBE_RXDADV_RSCCNT_MASK) >> IXGBE_RXDADV_RSCCNT_SHIFT;
1937 }
1938
1939 /**
1940  * ixgbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
1941  *
1942  * Fill the following info in the HEAD buffer of the Rx cluster:
1943  *    - RX port identifier
1944  *    - hardware offload data, if any:
1945  *      - RSS flag & hash
1946  *      - IP checksum flag
1947  *      - VLAN TCI, if any
1948  *      - error flags
1949  * @head HEAD of the packet cluster
1950  * @desc HW descriptor to get data from
1951  * @rxq Pointer to the Rx queue
1952  */
1953 static inline void
1954 ixgbe_fill_cluster_head_buf(
1955         struct rte_mbuf *head,
1956         union ixgbe_adv_rx_desc *desc,
1957         struct ixgbe_rx_queue *rxq,
1958         uint32_t staterr)
1959 {
1960         uint32_t pkt_info;
1961         uint64_t pkt_flags;
1962
1963         head->port = rxq->port_id;
1964
1965         /* The vlan_tci field is only valid when PKT_RX_VLAN is
1966          * set in the pkt_flags field.
1967          */
1968         head->vlan_tci = rte_le_to_cpu_16(desc->wb.upper.vlan);
1969         pkt_info = rte_le_to_cpu_32(desc->wb.lower.lo_dword.data);
1970         pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
1971         pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
1972         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1973         head->ol_flags = pkt_flags;
1974         head->packet_type =
1975                 ixgbe_rxd_pkt_info_to_pkt_type(pkt_info, rxq->pkt_type_mask);
1976
1977         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1978                 head->hash.rss = rte_le_to_cpu_32(desc->wb.lower.hi_dword.rss);
1979         else if (pkt_flags & PKT_RX_FDIR) {
1980                 head->hash.fdir.hash =
1981                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.csum)
1982                                                           & IXGBE_ATR_HASH_MASK;
1983                 head->hash.fdir.id =
1984                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.ip_id);
1985         }
1986 }
1987
1988 /**
1989  * ixgbe_recv_pkts_lro - receive handler for and LRO case.
1990  *
1991  * @rx_queue Rx queue handle
1992  * @rx_pkts table of received packets
1993  * @nb_pkts size of rx_pkts table
1994  * @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
1995  *
1996  * Handles the Rx HW ring completions when RSC feature is configured. Uses an
1997  * additional ring of ixgbe_rsc_entry's that will hold the relevant RSC info.
1998  *
1999  * We use the same logic as in Linux and in FreeBSD ixgbe drivers:
2000  * 1) When non-EOP RSC completion arrives:
2001  *    a) Update the HEAD of the current RSC aggregation cluster with the new
2002  *       segment's data length.
2003  *    b) Set the "next" pointer of the current segment to point to the segment
2004  *       at the NEXTP index.
2005  *    c) Pass the HEAD of RSC aggregation cluster on to the next NEXTP entry
2006  *       in the sw_rsc_ring.
2007  * 2) When EOP arrives we just update the cluster's total length and offload
2008  *    flags and deliver the cluster up to the upper layers. In our case - put it
2009  *    in the rx_pkts table.
2010  *
2011  * Returns the number of received packets/clusters (according to the "bulk
2012  * receive" interface).
2013  */
2014 static inline uint16_t
2015 ixgbe_recv_pkts_lro(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
2016                     bool bulk_alloc)
2017 {
2018         struct ixgbe_rx_queue *rxq = rx_queue;
2019         volatile union ixgbe_adv_rx_desc *rx_ring = rxq->rx_ring;
2020         struct ixgbe_rx_entry *sw_ring = rxq->sw_ring;
2021         struct ixgbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
2022         uint16_t rx_id = rxq->rx_tail;
2023         uint16_t nb_rx = 0;
2024         uint16_t nb_hold = rxq->nb_rx_hold;
2025         uint16_t prev_id = rxq->rx_tail;
2026
2027         while (nb_rx < nb_pkts) {
2028                 bool eop;
2029                 struct ixgbe_rx_entry *rxe;
2030                 struct ixgbe_scattered_rx_entry *sc_entry;
2031                 struct ixgbe_scattered_rx_entry *next_sc_entry;
2032                 struct ixgbe_rx_entry *next_rxe = NULL;
2033                 struct rte_mbuf *first_seg;
2034                 struct rte_mbuf *rxm;
2035                 struct rte_mbuf *nmb = NULL;
2036                 union ixgbe_adv_rx_desc rxd;
2037                 uint16_t data_len;
2038                 uint16_t next_id;
2039                 volatile union ixgbe_adv_rx_desc *rxdp;
2040                 uint32_t staterr;
2041
2042 next_desc:
2043                 /*
2044                  * The code in this whole file uses the volatile pointer to
2045                  * ensure the read ordering of the status and the rest of the
2046                  * descriptor fields (on the compiler level only!!!). This is so
2047                  * UGLY - why not to just use the compiler barrier instead? DPDK
2048                  * even has the rte_compiler_barrier() for that.
2049                  *
2050                  * But most importantly this is just wrong because this doesn't
2051                  * ensure memory ordering in a general case at all. For
2052                  * instance, DPDK is supposed to work on Power CPUs where
2053                  * compiler barrier may just not be enough!
2054                  *
2055                  * I tried to write only this function properly to have a
2056                  * starting point (as a part of an LRO/RSC series) but the
2057                  * compiler cursed at me when I tried to cast away the
2058                  * "volatile" from rx_ring (yes, it's volatile too!!!). So, I'm
2059                  * keeping it the way it is for now.
2060                  *
2061                  * The code in this file is broken in so many other places and
2062                  * will just not work on a big endian CPU anyway therefore the
2063                  * lines below will have to be revisited together with the rest
2064                  * of the ixgbe PMD.
2065                  *
2066                  * TODO:
2067                  *    - Get rid of "volatile" and let the compiler do its job.
2068                  *    - Use the proper memory barrier (rte_rmb()) to ensure the
2069                  *      memory ordering below.
2070                  */
2071                 rxdp = &rx_ring[rx_id];
2072                 staterr = rte_le_to_cpu_32(rxdp->wb.upper.status_error);
2073
2074                 if (!(staterr & IXGBE_RXDADV_STAT_DD))
2075                         break;
2076
2077                 rxd = *rxdp;
2078
2079                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
2080                                   "staterr=0x%x data_len=%u",
2081                            rxq->port_id, rxq->queue_id, rx_id, staterr,
2082                            rte_le_to_cpu_16(rxd.wb.upper.length));
2083
2084                 if (!bulk_alloc) {
2085                         nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
2086                         if (nmb == NULL) {
2087                                 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed "
2088                                                   "port_id=%u queue_id=%u",
2089                                            rxq->port_id, rxq->queue_id);
2090
2091                                 rte_eth_devices[rxq->port_id].data->
2092                                                         rx_mbuf_alloc_failed++;
2093                                 break;
2094                         }
2095                 } else if (nb_hold > rxq->rx_free_thresh) {
2096                         uint16_t next_rdt = rxq->rx_free_trigger;
2097
2098                         if (!ixgbe_rx_alloc_bufs(rxq, false)) {
2099                                 rte_wmb();
2100                                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
2101                                                             next_rdt);
2102                                 nb_hold -= rxq->rx_free_thresh;
2103                         } else {
2104                                 PMD_RX_LOG(DEBUG, "RX bulk alloc failed "
2105                                                   "port_id=%u queue_id=%u",
2106                                            rxq->port_id, rxq->queue_id);
2107
2108                                 rte_eth_devices[rxq->port_id].data->
2109                                                         rx_mbuf_alloc_failed++;
2110                                 break;
2111                         }
2112                 }
2113
2114                 nb_hold++;
2115                 rxe = &sw_ring[rx_id];
2116                 eop = staterr & IXGBE_RXDADV_STAT_EOP;
2117
2118                 next_id = rx_id + 1;
2119                 if (next_id == rxq->nb_rx_desc)
2120                         next_id = 0;
2121
2122                 /* Prefetch next mbuf while processing current one. */
2123                 rte_ixgbe_prefetch(sw_ring[next_id].mbuf);
2124
2125                 /*
2126                  * When next RX descriptor is on a cache-line boundary,
2127                  * prefetch the next 4 RX descriptors and the next 4 pointers
2128                  * to mbufs.
2129                  */
2130                 if ((next_id & 0x3) == 0) {
2131                         rte_ixgbe_prefetch(&rx_ring[next_id]);
2132                         rte_ixgbe_prefetch(&sw_ring[next_id]);
2133                 }
2134
2135                 rxm = rxe->mbuf;
2136
2137                 if (!bulk_alloc) {
2138                         __le64 dma =
2139                           rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2140                         /*
2141                          * Update RX descriptor with the physical address of the
2142                          * new data buffer of the new allocated mbuf.
2143                          */
2144                         rxe->mbuf = nmb;
2145
2146                         rxm->data_off = RTE_PKTMBUF_HEADROOM;
2147                         rxdp->read.hdr_addr = 0;
2148                         rxdp->read.pkt_addr = dma;
2149                 } else
2150                         rxe->mbuf = NULL;
2151
2152                 /*
2153                  * Set data length & data buffer address of mbuf.
2154                  */
2155                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
2156                 rxm->data_len = data_len;
2157
2158                 if (!eop) {
2159                         uint16_t nextp_id;
2160                         /*
2161                          * Get next descriptor index:
2162                          *  - For RSC it's in the NEXTP field.
2163                          *  - For a scattered packet - it's just a following
2164                          *    descriptor.
2165                          */
2166                         if (ixgbe_rsc_count(&rxd))
2167                                 nextp_id =
2168                                         (staterr & IXGBE_RXDADV_NEXTP_MASK) >>
2169                                                        IXGBE_RXDADV_NEXTP_SHIFT;
2170                         else
2171                                 nextp_id = next_id;
2172
2173                         next_sc_entry = &sw_sc_ring[nextp_id];
2174                         next_rxe = &sw_ring[nextp_id];
2175                         rte_ixgbe_prefetch(next_rxe);
2176                 }
2177
2178                 sc_entry = &sw_sc_ring[rx_id];
2179                 first_seg = sc_entry->fbuf;
2180                 sc_entry->fbuf = NULL;
2181
2182                 /*
2183                  * If this is the first buffer of the received packet,
2184                  * set the pointer to the first mbuf of the packet and
2185                  * initialize its context.
2186                  * Otherwise, update the total length and the number of segments
2187                  * of the current scattered packet, and update the pointer to
2188                  * the last mbuf of the current packet.
2189                  */
2190                 if (first_seg == NULL) {
2191                         first_seg = rxm;
2192                         first_seg->pkt_len = data_len;
2193                         first_seg->nb_segs = 1;
2194                 } else {
2195                         first_seg->pkt_len += data_len;
2196                         first_seg->nb_segs++;
2197                 }
2198
2199                 prev_id = rx_id;
2200                 rx_id = next_id;
2201
2202                 /*
2203                  * If this is not the last buffer of the received packet, update
2204                  * the pointer to the first mbuf at the NEXTP entry in the
2205                  * sw_sc_ring and continue to parse the RX ring.
2206                  */
2207                 if (!eop && next_rxe) {
2208                         rxm->next = next_rxe->mbuf;
2209                         next_sc_entry->fbuf = first_seg;
2210                         goto next_desc;
2211                 }
2212
2213                 /* Initialize the first mbuf of the returned packet */
2214                 ixgbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
2215
2216                 /*
2217                  * Deal with the case, when HW CRC srip is disabled.
2218                  * That can't happen when LRO is enabled, but still could
2219                  * happen for scattered RX mode.
2220                  */
2221                 first_seg->pkt_len -= rxq->crc_len;
2222                 if (unlikely(rxm->data_len <= rxq->crc_len)) {
2223                         struct rte_mbuf *lp;
2224
2225                         for (lp = first_seg; lp->next != rxm; lp = lp->next)
2226                                 ;
2227
2228                         first_seg->nb_segs--;
2229                         lp->data_len -= rxq->crc_len - rxm->data_len;
2230                         lp->next = NULL;
2231                         rte_pktmbuf_free_seg(rxm);
2232                 } else
2233                         rxm->data_len -= rxq->crc_len;
2234
2235                 /* Prefetch data of first segment, if configured to do so. */
2236                 rte_packet_prefetch((char *)first_seg->buf_addr +
2237                         first_seg->data_off);
2238
2239                 /*
2240                  * Store the mbuf address into the next entry of the array
2241                  * of returned packets.
2242                  */
2243                 rx_pkts[nb_rx++] = first_seg;
2244         }
2245
2246         /*
2247          * Record index of the next RX descriptor to probe.
2248          */
2249         rxq->rx_tail = rx_id;
2250
2251         /*
2252          * If the number of free RX descriptors is greater than the RX free
2253          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
2254          * register.
2255          * Update the RDT with the value of the last processed RX descriptor
2256          * minus 1, to guarantee that the RDT register is never equal to the
2257          * RDH register, which creates a "full" ring situtation from the
2258          * hardware point of view...
2259          */
2260         if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
2261                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
2262                            "nb_hold=%u nb_rx=%u",
2263                            rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
2264
2265                 rte_wmb();
2266                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr, prev_id);
2267                 nb_hold = 0;
2268         }
2269
2270         rxq->nb_rx_hold = nb_hold;
2271         return nb_rx;
2272 }
2273
2274 uint16_t
2275 ixgbe_recv_pkts_lro_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2276                                  uint16_t nb_pkts)
2277 {
2278         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, false);
2279 }
2280
2281 uint16_t
2282 ixgbe_recv_pkts_lro_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2283                                uint16_t nb_pkts)
2284 {
2285         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, true);
2286 }
2287
2288 /*********************************************************************
2289  *
2290  *  Queue management functions
2291  *
2292  **********************************************************************/
2293
2294 static void __attribute__((cold))
2295 ixgbe_tx_queue_release_mbufs(struct ixgbe_tx_queue *txq)
2296 {
2297         unsigned i;
2298
2299         if (txq->sw_ring != NULL) {
2300                 for (i = 0; i < txq->nb_tx_desc; i++) {
2301                         if (txq->sw_ring[i].mbuf != NULL) {
2302                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2303                                 txq->sw_ring[i].mbuf = NULL;
2304                         }
2305                 }
2306         }
2307 }
2308
2309 static void __attribute__((cold))
2310 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
2311 {
2312         if (txq != NULL &&
2313             txq->sw_ring != NULL)
2314                 rte_free(txq->sw_ring);
2315 }
2316
2317 static void __attribute__((cold))
2318 ixgbe_tx_queue_release(struct ixgbe_tx_queue *txq)
2319 {
2320         if (txq != NULL && txq->ops != NULL) {
2321                 txq->ops->release_mbufs(txq);
2322                 txq->ops->free_swring(txq);
2323                 rte_free(txq);
2324         }
2325 }
2326
2327 void __attribute__((cold))
2328 ixgbe_dev_tx_queue_release(void *txq)
2329 {
2330         ixgbe_tx_queue_release(txq);
2331 }
2332
2333 /* (Re)set dynamic ixgbe_tx_queue fields to defaults */
2334 static void __attribute__((cold))
2335 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
2336 {
2337         static const union ixgbe_adv_tx_desc zeroed_desc = {{0}};
2338         struct ixgbe_tx_entry *txe = txq->sw_ring;
2339         uint16_t prev, i;
2340
2341         /* Zero out HW ring memory */
2342         for (i = 0; i < txq->nb_tx_desc; i++) {
2343                 txq->tx_ring[i] = zeroed_desc;
2344         }
2345
2346         /* Initialize SW ring entries */
2347         prev = (uint16_t) (txq->nb_tx_desc - 1);
2348         for (i = 0; i < txq->nb_tx_desc; i++) {
2349                 volatile union ixgbe_adv_tx_desc *txd = &txq->tx_ring[i];
2350
2351                 txd->wb.status = rte_cpu_to_le_32(IXGBE_TXD_STAT_DD);
2352                 txe[i].mbuf = NULL;
2353                 txe[i].last_id = i;
2354                 txe[prev].next_id = i;
2355                 prev = i;
2356         }
2357
2358         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2359         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2360
2361         txq->tx_tail = 0;
2362         txq->nb_tx_used = 0;
2363         /*
2364          * Always allow 1 descriptor to be un-allocated to avoid
2365          * a H/W race condition
2366          */
2367         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2368         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2369         txq->ctx_curr = 0;
2370         memset((void *)&txq->ctx_cache, 0,
2371                 IXGBE_CTX_NUM * sizeof(struct ixgbe_advctx_info));
2372 }
2373
2374 static const struct ixgbe_txq_ops def_txq_ops = {
2375         .release_mbufs = ixgbe_tx_queue_release_mbufs,
2376         .free_swring = ixgbe_tx_free_swring,
2377         .reset = ixgbe_reset_tx_queue,
2378 };
2379
2380 /* Takes an ethdev and a queue and sets up the tx function to be used based on
2381  * the queue parameters. Used in tx_queue_setup by primary process and then
2382  * in dev_init by secondary process when attaching to an existing ethdev.
2383  */
2384 void __attribute__((cold))
2385 ixgbe_set_tx_function(struct rte_eth_dev *dev, struct ixgbe_tx_queue *txq)
2386 {
2387         /* Use a simple Tx queue (no offloads, no multi segs) if possible */
2388         if ((txq->offloads == 0) &&
2389 #ifdef RTE_LIBRTE_SECURITY
2390                         !(txq->using_ipsec) &&
2391 #endif
2392                         (txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST)) {
2393                 PMD_INIT_LOG(DEBUG, "Using simple tx code path");
2394                 dev->tx_pkt_prepare = NULL;
2395 #ifdef RTE_IXGBE_INC_VECTOR
2396                 if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
2397                                 (rte_eal_process_type() != RTE_PROC_PRIMARY ||
2398                                         ixgbe_txq_vec_setup(txq) == 0)) {
2399                         PMD_INIT_LOG(DEBUG, "Vector tx enabled.");
2400                         dev->tx_pkt_burst = ixgbe_xmit_pkts_vec;
2401                 } else
2402 #endif
2403                 dev->tx_pkt_burst = ixgbe_xmit_pkts_simple;
2404         } else {
2405                 PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
2406                 PMD_INIT_LOG(DEBUG,
2407                                 " - offloads = 0x%" PRIx64,
2408                                 txq->offloads);
2409                 PMD_INIT_LOG(DEBUG,
2410                                 " - tx_rs_thresh = %lu " "[RTE_PMD_IXGBE_TX_MAX_BURST=%lu]",
2411                                 (unsigned long)txq->tx_rs_thresh,
2412                                 (unsigned long)RTE_PMD_IXGBE_TX_MAX_BURST);
2413                 dev->tx_pkt_burst = ixgbe_xmit_pkts;
2414                 dev->tx_pkt_prepare = ixgbe_prep_pkts;
2415         }
2416 }
2417
2418 uint64_t
2419 ixgbe_get_tx_queue_offloads(struct rte_eth_dev *dev)
2420 {
2421         RTE_SET_USED(dev);
2422
2423         return 0;
2424 }
2425
2426 uint64_t
2427 ixgbe_get_tx_port_offloads(struct rte_eth_dev *dev)
2428 {
2429         uint64_t tx_offload_capa;
2430         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2431
2432         tx_offload_capa =
2433                 DEV_TX_OFFLOAD_VLAN_INSERT |
2434                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2435                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2436                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2437                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2438                 DEV_TX_OFFLOAD_TCP_TSO     |
2439                 DEV_TX_OFFLOAD_MULTI_SEGS;
2440
2441         if (hw->mac.type == ixgbe_mac_82599EB ||
2442             hw->mac.type == ixgbe_mac_X540)
2443                 tx_offload_capa |= DEV_TX_OFFLOAD_MACSEC_INSERT;
2444
2445         if (hw->mac.type == ixgbe_mac_X550 ||
2446             hw->mac.type == ixgbe_mac_X550EM_x ||
2447             hw->mac.type == ixgbe_mac_X550EM_a)
2448                 tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
2449
2450 #ifdef RTE_LIBRTE_SECURITY
2451         if (dev->security_ctx)
2452                 tx_offload_capa |= DEV_TX_OFFLOAD_SECURITY;
2453 #endif
2454         return tx_offload_capa;
2455 }
2456
2457 int __attribute__((cold))
2458 ixgbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
2459                          uint16_t queue_idx,
2460                          uint16_t nb_desc,
2461                          unsigned int socket_id,
2462                          const struct rte_eth_txconf *tx_conf)
2463 {
2464         const struct rte_memzone *tz;
2465         struct ixgbe_tx_queue *txq;
2466         struct ixgbe_hw     *hw;
2467         uint16_t tx_rs_thresh, tx_free_thresh;
2468         uint64_t offloads;
2469
2470         PMD_INIT_FUNC_TRACE();
2471         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2472
2473         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2474
2475         /*
2476          * Validate number of transmit descriptors.
2477          * It must not exceed hardware maximum, and must be multiple
2478          * of IXGBE_ALIGN.
2479          */
2480         if (nb_desc % IXGBE_TXD_ALIGN != 0 ||
2481                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2482                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2483                 return -EINVAL;
2484         }
2485
2486         /*
2487          * The following two parameters control the setting of the RS bit on
2488          * transmit descriptors.
2489          * TX descriptors will have their RS bit set after txq->tx_rs_thresh
2490          * descriptors have been used.
2491          * The TX descriptor ring will be cleaned after txq->tx_free_thresh
2492          * descriptors are used or if the number of descriptors required
2493          * to transmit a packet is greater than the number of free TX
2494          * descriptors.
2495          * The following constraints must be satisfied:
2496          *  tx_rs_thresh must be greater than 0.
2497          *  tx_rs_thresh must be less than the size of the ring minus 2.
2498          *  tx_rs_thresh must be less than or equal to tx_free_thresh.
2499          *  tx_rs_thresh must be a divisor of the ring size.
2500          *  tx_free_thresh must be greater than 0.
2501          *  tx_free_thresh must be less than the size of the ring minus 3.
2502          *  tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
2503          * One descriptor in the TX ring is used as a sentinel to avoid a
2504          * H/W race condition, hence the maximum threshold constraints.
2505          * When set to zero use default values.
2506          */
2507         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2508                         tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2509         /* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
2510         tx_rs_thresh = (DEFAULT_TX_RS_THRESH + tx_free_thresh > nb_desc) ?
2511                         nb_desc - tx_free_thresh : DEFAULT_TX_RS_THRESH;
2512         if (tx_conf->tx_rs_thresh > 0)
2513                 tx_rs_thresh = tx_conf->tx_rs_thresh;
2514         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
2515                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
2516                              "exceed nb_desc. (tx_rs_thresh=%u "
2517                              "tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
2518                              (unsigned int)tx_rs_thresh,
2519                              (unsigned int)tx_free_thresh,
2520                              (unsigned int)nb_desc,
2521                              (int)dev->data->port_id,
2522                              (int)queue_idx);
2523                 return -(EINVAL);
2524         }
2525         if (tx_rs_thresh >= (nb_desc - 2)) {
2526                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the number "
2527                         "of TX descriptors minus 2. (tx_rs_thresh=%u "
2528                         "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2529                         (int)dev->data->port_id, (int)queue_idx);
2530                 return -(EINVAL);
2531         }
2532         if (tx_rs_thresh > DEFAULT_TX_RS_THRESH) {
2533                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less or equal than %u. "
2534                         "(tx_rs_thresh=%u port=%d queue=%d)",
2535                         DEFAULT_TX_RS_THRESH, (unsigned int)tx_rs_thresh,
2536                         (int)dev->data->port_id, (int)queue_idx);
2537                 return -(EINVAL);
2538         }
2539         if (tx_free_thresh >= (nb_desc - 3)) {
2540                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2541                              "tx_free_thresh must be less than the number of "
2542                              "TX descriptors minus 3. (tx_free_thresh=%u "
2543                              "port=%d queue=%d)",
2544                              (unsigned int)tx_free_thresh,
2545                              (int)dev->data->port_id, (int)queue_idx);
2546                 return -(EINVAL);
2547         }
2548         if (tx_rs_thresh > tx_free_thresh) {
2549                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
2550                              "tx_free_thresh. (tx_free_thresh=%u "
2551                              "tx_rs_thresh=%u port=%d queue=%d)",
2552                              (unsigned int)tx_free_thresh,
2553                              (unsigned int)tx_rs_thresh,
2554                              (int)dev->data->port_id,
2555                              (int)queue_idx);
2556                 return -(EINVAL);
2557         }
2558         if ((nb_desc % tx_rs_thresh) != 0) {
2559                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2560                              "number of TX descriptors. (tx_rs_thresh=%u "
2561                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2562                              (int)dev->data->port_id, (int)queue_idx);
2563                 return -(EINVAL);
2564         }
2565
2566         /*
2567          * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
2568          * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
2569          * by the NIC and all descriptors are written back after the NIC
2570          * accumulates WTHRESH descriptors.
2571          */
2572         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2573                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2574                              "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
2575                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2576                              (int)dev->data->port_id, (int)queue_idx);
2577                 return -(EINVAL);
2578         }
2579
2580         /* Free memory prior to re-allocation if needed... */
2581         if (dev->data->tx_queues[queue_idx] != NULL) {
2582                 ixgbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
2583                 dev->data->tx_queues[queue_idx] = NULL;
2584         }
2585
2586         /* First allocate the tx queue data structure */
2587         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct ixgbe_tx_queue),
2588                                  RTE_CACHE_LINE_SIZE, socket_id);
2589         if (txq == NULL)
2590                 return -ENOMEM;
2591
2592         /*
2593          * Allocate TX ring hardware descriptors. A memzone large enough to
2594          * handle the maximum ring size is allocated in order to allow for
2595          * resizing in later calls to the queue setup function.
2596          */
2597         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2598                         sizeof(union ixgbe_adv_tx_desc) * IXGBE_MAX_RING_DESC,
2599                         IXGBE_ALIGN, socket_id);
2600         if (tz == NULL) {
2601                 ixgbe_tx_queue_release(txq);
2602                 return -ENOMEM;
2603         }
2604
2605         txq->nb_tx_desc = nb_desc;
2606         txq->tx_rs_thresh = tx_rs_thresh;
2607         txq->tx_free_thresh = tx_free_thresh;
2608         txq->pthresh = tx_conf->tx_thresh.pthresh;
2609         txq->hthresh = tx_conf->tx_thresh.hthresh;
2610         txq->wthresh = tx_conf->tx_thresh.wthresh;
2611         txq->queue_id = queue_idx;
2612         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2613                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2614         txq->port_id = dev->data->port_id;
2615         txq->offloads = offloads;
2616         txq->ops = &def_txq_ops;
2617         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2618 #ifdef RTE_LIBRTE_SECURITY
2619         txq->using_ipsec = !!(dev->data->dev_conf.txmode.offloads &
2620                         DEV_TX_OFFLOAD_SECURITY);
2621 #endif
2622
2623         /*
2624          * Modification to set VFTDT for virtual function if vf is detected
2625          */
2626         if (hw->mac.type == ixgbe_mac_82599_vf ||
2627             hw->mac.type == ixgbe_mac_X540_vf ||
2628             hw->mac.type == ixgbe_mac_X550_vf ||
2629             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2630             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2631                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_VFTDT(queue_idx));
2632         else
2633                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_TDT(txq->reg_idx));
2634
2635         txq->tx_ring_phys_addr = tz->iova;
2636         txq->tx_ring = (union ixgbe_adv_tx_desc *) tz->addr;
2637
2638         /* Allocate software ring */
2639         txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
2640                                 sizeof(struct ixgbe_tx_entry) * nb_desc,
2641                                 RTE_CACHE_LINE_SIZE, socket_id);
2642         if (txq->sw_ring == NULL) {
2643                 ixgbe_tx_queue_release(txq);
2644                 return -ENOMEM;
2645         }
2646         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
2647                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
2648
2649         /* set up vector or scalar TX function as appropriate */
2650         ixgbe_set_tx_function(dev, txq);
2651
2652         txq->ops->reset(txq);
2653
2654         dev->data->tx_queues[queue_idx] = txq;
2655
2656
2657         return 0;
2658 }
2659
2660 /**
2661  * ixgbe_free_sc_cluster - free the not-yet-completed scattered cluster
2662  *
2663  * The "next" pointer of the last segment of (not-yet-completed) RSC clusters
2664  * in the sw_rsc_ring is not set to NULL but rather points to the next
2665  * mbuf of this RSC aggregation (that has not been completed yet and still
2666  * resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
2667  * will just free first "nb_segs" segments of the cluster explicitly by calling
2668  * an rte_pktmbuf_free_seg().
2669  *
2670  * @m scattered cluster head
2671  */
2672 static void __attribute__((cold))
2673 ixgbe_free_sc_cluster(struct rte_mbuf *m)
2674 {
2675         uint16_t i, nb_segs = m->nb_segs;
2676         struct rte_mbuf *next_seg;
2677
2678         for (i = 0; i < nb_segs; i++) {
2679                 next_seg = m->next;
2680                 rte_pktmbuf_free_seg(m);
2681                 m = next_seg;
2682         }
2683 }
2684
2685 static void __attribute__((cold))
2686 ixgbe_rx_queue_release_mbufs(struct ixgbe_rx_queue *rxq)
2687 {
2688         unsigned i;
2689
2690 #ifdef RTE_IXGBE_INC_VECTOR
2691         /* SSE Vector driver has a different way of releasing mbufs. */
2692         if (rxq->rx_using_sse) {
2693                 ixgbe_rx_queue_release_mbufs_vec(rxq);
2694                 return;
2695         }
2696 #endif
2697
2698         if (rxq->sw_ring != NULL) {
2699                 for (i = 0; i < rxq->nb_rx_desc; i++) {
2700                         if (rxq->sw_ring[i].mbuf != NULL) {
2701                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2702                                 rxq->sw_ring[i].mbuf = NULL;
2703                         }
2704                 }
2705                 if (rxq->rx_nb_avail) {
2706                         for (i = 0; i < rxq->rx_nb_avail; ++i) {
2707                                 struct rte_mbuf *mb;
2708
2709                                 mb = rxq->rx_stage[rxq->rx_next_avail + i];
2710                                 rte_pktmbuf_free_seg(mb);
2711                         }
2712                         rxq->rx_nb_avail = 0;
2713                 }
2714         }
2715
2716         if (rxq->sw_sc_ring)
2717                 for (i = 0; i < rxq->nb_rx_desc; i++)
2718                         if (rxq->sw_sc_ring[i].fbuf) {
2719                                 ixgbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
2720                                 rxq->sw_sc_ring[i].fbuf = NULL;
2721                         }
2722 }
2723
2724 static void __attribute__((cold))
2725 ixgbe_rx_queue_release(struct ixgbe_rx_queue *rxq)
2726 {
2727         if (rxq != NULL) {
2728                 ixgbe_rx_queue_release_mbufs(rxq);
2729                 rte_free(rxq->sw_ring);
2730                 rte_free(rxq->sw_sc_ring);
2731                 rte_free(rxq);
2732         }
2733 }
2734
2735 void __attribute__((cold))
2736 ixgbe_dev_rx_queue_release(void *rxq)
2737 {
2738         ixgbe_rx_queue_release(rxq);
2739 }
2740
2741 /*
2742  * Check if Rx Burst Bulk Alloc function can be used.
2743  * Return
2744  *        0: the preconditions are satisfied and the bulk allocation function
2745  *           can be used.
2746  *  -EINVAL: the preconditions are NOT satisfied and the default Rx burst
2747  *           function must be used.
2748  */
2749 static inline int __attribute__((cold))
2750 check_rx_burst_bulk_alloc_preconditions(struct ixgbe_rx_queue *rxq)
2751 {
2752         int ret = 0;
2753
2754         /*
2755          * Make sure the following pre-conditions are satisfied:
2756          *   rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST
2757          *   rxq->rx_free_thresh < rxq->nb_rx_desc
2758          *   (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
2759          * Scattered packets are not supported.  This should be checked
2760          * outside of this function.
2761          */
2762         if (!(rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST)) {
2763                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2764                              "rxq->rx_free_thresh=%d, "
2765                              "RTE_PMD_IXGBE_RX_MAX_BURST=%d",
2766                              rxq->rx_free_thresh, RTE_PMD_IXGBE_RX_MAX_BURST);
2767                 ret = -EINVAL;
2768         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
2769                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2770                              "rxq->rx_free_thresh=%d, "
2771                              "rxq->nb_rx_desc=%d",
2772                              rxq->rx_free_thresh, rxq->nb_rx_desc);
2773                 ret = -EINVAL;
2774         } else if (!((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)) {
2775                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2776                              "rxq->nb_rx_desc=%d, "
2777                              "rxq->rx_free_thresh=%d",
2778                              rxq->nb_rx_desc, rxq->rx_free_thresh);
2779                 ret = -EINVAL;
2780         }
2781
2782         return ret;
2783 }
2784
2785 /* Reset dynamic ixgbe_rx_queue fields back to defaults */
2786 static void __attribute__((cold))
2787 ixgbe_reset_rx_queue(struct ixgbe_adapter *adapter, struct ixgbe_rx_queue *rxq)
2788 {
2789         static const union ixgbe_adv_rx_desc zeroed_desc = {{0}};
2790         unsigned i;
2791         uint16_t len = rxq->nb_rx_desc;
2792
2793         /*
2794          * By default, the Rx queue setup function allocates enough memory for
2795          * IXGBE_MAX_RING_DESC.  The Rx Burst bulk allocation function requires
2796          * extra memory at the end of the descriptor ring to be zero'd out.
2797          */
2798         if (adapter->rx_bulk_alloc_allowed)
2799                 /* zero out extra memory */
2800                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
2801
2802         /*
2803          * Zero out HW ring memory. Zero out extra memory at the end of
2804          * the H/W ring so look-ahead logic in Rx Burst bulk alloc function
2805          * reads extra memory as zeros.
2806          */
2807         for (i = 0; i < len; i++) {
2808                 rxq->rx_ring[i] = zeroed_desc;
2809         }
2810
2811         /*
2812          * initialize extra software ring entries. Space for these extra
2813          * entries is always allocated
2814          */
2815         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2816         for (i = rxq->nb_rx_desc; i < len; ++i) {
2817                 rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
2818         }
2819
2820         rxq->rx_nb_avail = 0;
2821         rxq->rx_next_avail = 0;
2822         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2823         rxq->rx_tail = 0;
2824         rxq->nb_rx_hold = 0;
2825         rxq->pkt_first_seg = NULL;
2826         rxq->pkt_last_seg = NULL;
2827
2828 #ifdef RTE_IXGBE_INC_VECTOR
2829         rxq->rxrearm_start = 0;
2830         rxq->rxrearm_nb = 0;
2831 #endif
2832 }
2833
2834 static int
2835 ixgbe_is_vf(struct rte_eth_dev *dev)
2836 {
2837         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2838
2839         switch (hw->mac.type) {
2840         case ixgbe_mac_82599_vf:
2841         case ixgbe_mac_X540_vf:
2842         case ixgbe_mac_X550_vf:
2843         case ixgbe_mac_X550EM_x_vf:
2844         case ixgbe_mac_X550EM_a_vf:
2845                 return 1;
2846         default:
2847                 return 0;
2848         }
2849 }
2850
2851 uint64_t
2852 ixgbe_get_rx_queue_offloads(struct rte_eth_dev *dev)
2853 {
2854         uint64_t offloads = 0;
2855         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2856
2857         if (hw->mac.type != ixgbe_mac_82598EB)
2858                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2859
2860         return offloads;
2861 }
2862
2863 uint64_t
2864 ixgbe_get_rx_port_offloads(struct rte_eth_dev *dev)
2865 {
2866         uint64_t offloads;
2867         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2868
2869         offloads = DEV_RX_OFFLOAD_IPV4_CKSUM  |
2870                    DEV_RX_OFFLOAD_UDP_CKSUM   |
2871                    DEV_RX_OFFLOAD_TCP_CKSUM   |
2872                    DEV_RX_OFFLOAD_KEEP_CRC    |
2873                    DEV_RX_OFFLOAD_JUMBO_FRAME |
2874                    DEV_RX_OFFLOAD_VLAN_FILTER |
2875                    DEV_RX_OFFLOAD_SCATTER;
2876
2877         if (hw->mac.type == ixgbe_mac_82598EB)
2878                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2879
2880         if (ixgbe_is_vf(dev) == 0)
2881                 offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2882
2883         /*
2884          * RSC is only supported by 82599 and x540 PF devices in a non-SR-IOV
2885          * mode.
2886          */
2887         if ((hw->mac.type == ixgbe_mac_82599EB ||
2888              hw->mac.type == ixgbe_mac_X540 ||
2889              hw->mac.type == ixgbe_mac_X550) &&
2890             !RTE_ETH_DEV_SRIOV(dev).active)
2891                 offloads |= DEV_RX_OFFLOAD_TCP_LRO;
2892
2893         if (hw->mac.type == ixgbe_mac_82599EB ||
2894             hw->mac.type == ixgbe_mac_X540)
2895                 offloads |= DEV_RX_OFFLOAD_MACSEC_STRIP;
2896
2897         if (hw->mac.type == ixgbe_mac_X550 ||
2898             hw->mac.type == ixgbe_mac_X550EM_x ||
2899             hw->mac.type == ixgbe_mac_X550EM_a)
2900                 offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
2901
2902 #ifdef RTE_LIBRTE_SECURITY
2903         if (dev->security_ctx)
2904                 offloads |= DEV_RX_OFFLOAD_SECURITY;
2905 #endif
2906
2907         return offloads;
2908 }
2909
2910 int __attribute__((cold))
2911 ixgbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
2912                          uint16_t queue_idx,
2913                          uint16_t nb_desc,
2914                          unsigned int socket_id,
2915                          const struct rte_eth_rxconf *rx_conf,
2916                          struct rte_mempool *mp)
2917 {
2918         const struct rte_memzone *rz;
2919         struct ixgbe_rx_queue *rxq;
2920         struct ixgbe_hw     *hw;
2921         uint16_t len;
2922         struct ixgbe_adapter *adapter = dev->data->dev_private;
2923         uint64_t offloads;
2924
2925         PMD_INIT_FUNC_TRACE();
2926         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2927
2928         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
2929
2930         /*
2931          * Validate number of receive descriptors.
2932          * It must not exceed hardware maximum, and must be multiple
2933          * of IXGBE_ALIGN.
2934          */
2935         if (nb_desc % IXGBE_RXD_ALIGN != 0 ||
2936                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2937                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2938                 return -EINVAL;
2939         }
2940
2941         /* Free memory prior to re-allocation if needed... */
2942         if (dev->data->rx_queues[queue_idx] != NULL) {
2943                 ixgbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
2944                 dev->data->rx_queues[queue_idx] = NULL;
2945         }
2946
2947         /* First allocate the rx queue data structure */
2948         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct ixgbe_rx_queue),
2949                                  RTE_CACHE_LINE_SIZE, socket_id);
2950         if (rxq == NULL)
2951                 return -ENOMEM;
2952         rxq->mb_pool = mp;
2953         rxq->nb_rx_desc = nb_desc;
2954         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
2955         rxq->queue_id = queue_idx;
2956         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2957                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2958         rxq->port_id = dev->data->port_id;
2959         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
2960                 rxq->crc_len = RTE_ETHER_CRC_LEN;
2961         else
2962                 rxq->crc_len = 0;
2963         rxq->drop_en = rx_conf->rx_drop_en;
2964         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
2965         rxq->offloads = offloads;
2966
2967         /*
2968          * The packet type in RX descriptor is different for different NICs.
2969          * Some bits are used for x550 but reserved for other NICS.
2970          * So set different masks for different NICs.
2971          */
2972         if (hw->mac.type == ixgbe_mac_X550 ||
2973             hw->mac.type == ixgbe_mac_X550EM_x ||
2974             hw->mac.type == ixgbe_mac_X550EM_a ||
2975             hw->mac.type == ixgbe_mac_X550_vf ||
2976             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2977             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2978                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_X550;
2979         else
2980                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_82599;
2981
2982         /*
2983          * Allocate RX ring hardware descriptors. A memzone large enough to
2984          * handle the maximum ring size is allocated in order to allow for
2985          * resizing in later calls to the queue setup function.
2986          */
2987         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
2988                                       RX_RING_SZ, IXGBE_ALIGN, socket_id);
2989         if (rz == NULL) {
2990                 ixgbe_rx_queue_release(rxq);
2991                 return -ENOMEM;
2992         }
2993
2994         /*
2995          * Zero init all the descriptors in the ring.
2996          */
2997         memset(rz->addr, 0, RX_RING_SZ);
2998
2999         /*
3000          * Modified to setup VFRDT for Virtual Function
3001          */
3002         if (hw->mac.type == ixgbe_mac_82599_vf ||
3003             hw->mac.type == ixgbe_mac_X540_vf ||
3004             hw->mac.type == ixgbe_mac_X550_vf ||
3005             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
3006             hw->mac.type == ixgbe_mac_X550EM_a_vf) {
3007                 rxq->rdt_reg_addr =
3008                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDT(queue_idx));
3009                 rxq->rdh_reg_addr =
3010                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDH(queue_idx));
3011         } else {
3012                 rxq->rdt_reg_addr =
3013                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDT(rxq->reg_idx));
3014                 rxq->rdh_reg_addr =
3015                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDH(rxq->reg_idx));
3016         }
3017
3018         rxq->rx_ring_phys_addr = rz->iova;
3019         rxq->rx_ring = (union ixgbe_adv_rx_desc *) rz->addr;
3020
3021         /*
3022          * Certain constraints must be met in order to use the bulk buffer
3023          * allocation Rx burst function. If any of Rx queues doesn't meet them
3024          * the feature should be disabled for the whole port.
3025          */
3026         if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
3027                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Rx Bulk Alloc "
3028                                     "preconditions - canceling the feature for "
3029                                     "the whole port[%d]",
3030                              rxq->queue_id, rxq->port_id);
3031                 adapter->rx_bulk_alloc_allowed = false;
3032         }
3033
3034         /*
3035          * Allocate software ring. Allow for space at the end of the
3036          * S/W ring to make sure look-ahead logic in bulk alloc Rx burst
3037          * function does not access an invalid memory region.
3038          */
3039         len = nb_desc;
3040         if (adapter->rx_bulk_alloc_allowed)
3041                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
3042
3043         rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
3044                                           sizeof(struct ixgbe_rx_entry) * len,
3045                                           RTE_CACHE_LINE_SIZE, socket_id);
3046         if (!rxq->sw_ring) {
3047                 ixgbe_rx_queue_release(rxq);
3048                 return -ENOMEM;
3049         }
3050
3051         /*
3052          * Always allocate even if it's not going to be needed in order to
3053          * simplify the code.
3054          *
3055          * This ring is used in LRO and Scattered Rx cases and Scattered Rx may
3056          * be requested in ixgbe_dev_rx_init(), which is called later from
3057          * dev_start() flow.
3058          */
3059         rxq->sw_sc_ring =
3060                 rte_zmalloc_socket("rxq->sw_sc_ring",
3061                                    sizeof(struct ixgbe_scattered_rx_entry) * len,
3062                                    RTE_CACHE_LINE_SIZE, socket_id);
3063         if (!rxq->sw_sc_ring) {
3064                 ixgbe_rx_queue_release(rxq);
3065                 return -ENOMEM;
3066         }
3067
3068         PMD_INIT_LOG(DEBUG, "sw_ring=%p sw_sc_ring=%p hw_ring=%p "
3069                             "dma_addr=0x%"PRIx64,
3070                      rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
3071                      rxq->rx_ring_phys_addr);
3072
3073         if (!rte_is_power_of_2(nb_desc)) {
3074                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Vector Rx "
3075                                     "preconditions - canceling the feature for "
3076                                     "the whole port[%d]",
3077                              rxq->queue_id, rxq->port_id);
3078                 adapter->rx_vec_allowed = false;
3079         } else
3080                 ixgbe_rxq_vec_setup(rxq);
3081
3082         dev->data->rx_queues[queue_idx] = rxq;
3083
3084         ixgbe_reset_rx_queue(adapter, rxq);
3085
3086         return 0;
3087 }
3088
3089 uint32_t
3090 ixgbe_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
3091 {
3092 #define IXGBE_RXQ_SCAN_INTERVAL 4
3093         volatile union ixgbe_adv_rx_desc *rxdp;
3094         struct ixgbe_rx_queue *rxq;
3095         uint32_t desc = 0;
3096
3097         rxq = dev->data->rx_queues[rx_queue_id];
3098         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
3099
3100         while ((desc < rxq->nb_rx_desc) &&
3101                 (rxdp->wb.upper.status_error &
3102                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))) {
3103                 desc += IXGBE_RXQ_SCAN_INTERVAL;
3104                 rxdp += IXGBE_RXQ_SCAN_INTERVAL;
3105                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
3106                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
3107                                 desc - rxq->nb_rx_desc]);
3108         }
3109
3110         return desc;
3111 }
3112
3113 int
3114 ixgbe_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
3115 {
3116         volatile union ixgbe_adv_rx_desc *rxdp;
3117         struct ixgbe_rx_queue *rxq = rx_queue;
3118         uint32_t desc;
3119
3120         if (unlikely(offset >= rxq->nb_rx_desc))
3121                 return 0;
3122         desc = rxq->rx_tail + offset;
3123         if (desc >= rxq->nb_rx_desc)
3124                 desc -= rxq->nb_rx_desc;
3125
3126         rxdp = &rxq->rx_ring[desc];
3127         return !!(rxdp->wb.upper.status_error &
3128                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD));
3129 }
3130
3131 int
3132 ixgbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
3133 {
3134         struct ixgbe_rx_queue *rxq = rx_queue;
3135         volatile uint32_t *status;
3136         uint32_t nb_hold, desc;
3137
3138         if (unlikely(offset >= rxq->nb_rx_desc))
3139                 return -EINVAL;
3140
3141 #ifdef RTE_IXGBE_INC_VECTOR
3142         if (rxq->rx_using_sse)
3143                 nb_hold = rxq->rxrearm_nb;
3144         else
3145 #endif
3146                 nb_hold = rxq->nb_rx_hold;
3147         if (offset >= rxq->nb_rx_desc - nb_hold)
3148                 return RTE_ETH_RX_DESC_UNAVAIL;
3149
3150         desc = rxq->rx_tail + offset;
3151         if (desc >= rxq->nb_rx_desc)
3152                 desc -= rxq->nb_rx_desc;
3153
3154         status = &rxq->rx_ring[desc].wb.upper.status_error;
3155         if (*status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))
3156                 return RTE_ETH_RX_DESC_DONE;
3157
3158         return RTE_ETH_RX_DESC_AVAIL;
3159 }
3160
3161 int
3162 ixgbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
3163 {
3164         struct ixgbe_tx_queue *txq = tx_queue;
3165         volatile uint32_t *status;
3166         uint32_t desc;
3167
3168         if (unlikely(offset >= txq->nb_tx_desc))
3169                 return -EINVAL;
3170
3171         desc = txq->tx_tail + offset;
3172         /* go to next desc that has the RS bit */
3173         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
3174                 txq->tx_rs_thresh;
3175         if (desc >= txq->nb_tx_desc) {
3176                 desc -= txq->nb_tx_desc;
3177                 if (desc >= txq->nb_tx_desc)
3178                         desc -= txq->nb_tx_desc;
3179         }
3180
3181         status = &txq->tx_ring[desc].wb.status;
3182         if (*status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD))
3183                 return RTE_ETH_TX_DESC_DONE;
3184
3185         return RTE_ETH_TX_DESC_FULL;
3186 }
3187
3188 /*
3189  * Set up link loopback for X540/X550 mode Tx->Rx.
3190  */
3191 static inline void __attribute__((cold))
3192 ixgbe_setup_loopback_link_x540_x550(struct ixgbe_hw *hw, bool enable)
3193 {
3194         uint32_t macc;
3195         PMD_INIT_FUNC_TRACE();
3196
3197         u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
3198
3199         hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
3200                              IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg);
3201         macc = IXGBE_READ_REG(hw, IXGBE_MACC);
3202
3203         if (enable) {
3204                 /* datasheet 15.2.1: disable AUTONEG (PHY Bit 7.0.C) */
3205                 autoneg_reg |= IXGBE_MII_AUTONEG_ENABLE;
3206                 /* datasheet 15.2.1: MACC.FLU = 1 (force link up) */
3207                 macc |= IXGBE_MACC_FLU;
3208         } else {
3209                 autoneg_reg &= ~IXGBE_MII_AUTONEG_ENABLE;
3210                 macc &= ~IXGBE_MACC_FLU;
3211         }
3212
3213         hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
3214                               IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg);
3215
3216         IXGBE_WRITE_REG(hw, IXGBE_MACC, macc);
3217 }
3218
3219 void __attribute__((cold))
3220 ixgbe_dev_clear_queues(struct rte_eth_dev *dev)
3221 {
3222         unsigned i;
3223         struct ixgbe_adapter *adapter = dev->data->dev_private;
3224         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3225
3226         PMD_INIT_FUNC_TRACE();
3227
3228         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3229                 struct ixgbe_tx_queue *txq = dev->data->tx_queues[i];
3230
3231                 if (txq != NULL) {
3232                         txq->ops->release_mbufs(txq);
3233                         txq->ops->reset(txq);
3234                 }
3235         }
3236
3237         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3238                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
3239
3240                 if (rxq != NULL) {
3241                         ixgbe_rx_queue_release_mbufs(rxq);
3242                         ixgbe_reset_rx_queue(adapter, rxq);
3243                 }
3244         }
3245         /* If loopback mode was enabled, reconfigure the link accordingly */
3246         if (dev->data->dev_conf.lpbk_mode != 0) {
3247                 if (hw->mac.type == ixgbe_mac_X540 ||
3248                      hw->mac.type == ixgbe_mac_X550 ||
3249                      hw->mac.type == ixgbe_mac_X550EM_x ||
3250                      hw->mac.type == ixgbe_mac_X550EM_a)
3251                         ixgbe_setup_loopback_link_x540_x550(hw, false);
3252         }
3253 }
3254
3255 void
3256 ixgbe_dev_free_queues(struct rte_eth_dev *dev)
3257 {
3258         unsigned i;
3259
3260         PMD_INIT_FUNC_TRACE();
3261
3262         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3263                 ixgbe_dev_rx_queue_release(dev->data->rx_queues[i]);
3264                 dev->data->rx_queues[i] = NULL;
3265         }
3266         dev->data->nb_rx_queues = 0;
3267
3268         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3269                 ixgbe_dev_tx_queue_release(dev->data->tx_queues[i]);
3270                 dev->data->tx_queues[i] = NULL;
3271         }
3272         dev->data->nb_tx_queues = 0;
3273 }
3274
3275 /*********************************************************************
3276  *
3277  *  Device RX/TX init functions
3278  *
3279  **********************************************************************/
3280
3281 /**
3282  * Receive Side Scaling (RSS)
3283  * See section 7.1.2.8 in the following document:
3284  *     "Intel 82599 10 GbE Controller Datasheet" - Revision 2.1 October 2009
3285  *
3286  * Principles:
3287  * The source and destination IP addresses of the IP header and the source
3288  * and destination ports of TCP/UDP headers, if any, of received packets are
3289  * hashed against a configurable random key to compute a 32-bit RSS hash result.
3290  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
3291  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
3292  * RSS output index which is used as the RX queue index where to store the
3293  * received packets.
3294  * The following output is supplied in the RX write-back descriptor:
3295  *     - 32-bit result of the Microsoft RSS hash function,
3296  *     - 4-bit RSS type field.
3297  */
3298
3299 /*
3300  * RSS random key supplied in section 7.1.2.8.3 of the Intel 82599 datasheet.
3301  * Used as the default key.
3302  */
3303 static uint8_t rss_intel_key[40] = {
3304         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
3305         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
3306         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
3307         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
3308         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
3309 };
3310
3311 static void
3312 ixgbe_rss_disable(struct rte_eth_dev *dev)
3313 {
3314         struct ixgbe_hw *hw;
3315         uint32_t mrqc;
3316         uint32_t mrqc_reg;
3317
3318         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3319         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3320         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3321         mrqc &= ~IXGBE_MRQC_RSSEN;
3322         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3323 }
3324
3325 static void
3326 ixgbe_hw_rss_hash_set(struct ixgbe_hw *hw, struct rte_eth_rss_conf *rss_conf)
3327 {
3328         uint8_t  *hash_key;
3329         uint32_t mrqc;
3330         uint32_t rss_key;
3331         uint64_t rss_hf;
3332         uint16_t i;
3333         uint32_t mrqc_reg;
3334         uint32_t rssrk_reg;
3335
3336         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3337         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3338
3339         hash_key = rss_conf->rss_key;
3340         if (hash_key != NULL) {
3341                 /* Fill in RSS hash key */
3342                 for (i = 0; i < 10; i++) {
3343                         rss_key  = hash_key[(i * 4)];
3344                         rss_key |= hash_key[(i * 4) + 1] << 8;
3345                         rss_key |= hash_key[(i * 4) + 2] << 16;
3346                         rss_key |= hash_key[(i * 4) + 3] << 24;
3347                         IXGBE_WRITE_REG_ARRAY(hw, rssrk_reg, i, rss_key);
3348                 }
3349         }
3350
3351         /* Set configured hashing protocols in MRQC register */
3352         rss_hf = rss_conf->rss_hf;
3353         mrqc = IXGBE_MRQC_RSSEN; /* Enable RSS */
3354         if (rss_hf & ETH_RSS_IPV4)
3355                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4;
3356         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
3357                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_TCP;
3358         if (rss_hf & ETH_RSS_IPV6)
3359                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6;
3360         if (rss_hf & ETH_RSS_IPV6_EX)
3361                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX;
3362         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
3363                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_TCP;
3364         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
3365                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP;
3366         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
3367                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_UDP;
3368         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
3369                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_UDP;
3370         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
3371                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP;
3372         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3373 }
3374
3375 int
3376 ixgbe_dev_rss_hash_update(struct rte_eth_dev *dev,
3377                           struct rte_eth_rss_conf *rss_conf)
3378 {
3379         struct ixgbe_hw *hw;
3380         uint32_t mrqc;
3381         uint64_t rss_hf;
3382         uint32_t mrqc_reg;
3383
3384         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3385
3386         if (!ixgbe_rss_update_sp(hw->mac.type)) {
3387                 PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
3388                         "NIC.");
3389                 return -ENOTSUP;
3390         }
3391         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3392
3393         /*
3394          * Excerpt from section 7.1.2.8 Receive-Side Scaling (RSS):
3395          *     "RSS enabling cannot be done dynamically while it must be
3396          *      preceded by a software reset"
3397          * Before changing anything, first check that the update RSS operation
3398          * does not attempt to disable RSS, if RSS was enabled at
3399          * initialization time, or does not attempt to enable RSS, if RSS was
3400          * disabled at initialization time.
3401          */
3402         rss_hf = rss_conf->rss_hf & IXGBE_RSS_OFFLOAD_ALL;
3403         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3404         if (!(mrqc & IXGBE_MRQC_RSSEN)) { /* RSS disabled */
3405                 if (rss_hf != 0) /* Enable RSS */
3406                         return -(EINVAL);
3407                 return 0; /* Nothing to do */
3408         }
3409         /* RSS enabled */
3410         if (rss_hf == 0) /* Disable RSS */
3411                 return -(EINVAL);
3412         ixgbe_hw_rss_hash_set(hw, rss_conf);
3413         return 0;
3414 }
3415
3416 int
3417 ixgbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
3418                             struct rte_eth_rss_conf *rss_conf)
3419 {
3420         struct ixgbe_hw *hw;
3421         uint8_t *hash_key;
3422         uint32_t mrqc;
3423         uint32_t rss_key;
3424         uint64_t rss_hf;
3425         uint16_t i;
3426         uint32_t mrqc_reg;
3427         uint32_t rssrk_reg;
3428
3429         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3430         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3431         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3432         hash_key = rss_conf->rss_key;
3433         if (hash_key != NULL) {
3434                 /* Return RSS hash key */
3435                 for (i = 0; i < 10; i++) {
3436                         rss_key = IXGBE_READ_REG_ARRAY(hw, rssrk_reg, i);
3437                         hash_key[(i * 4)] = rss_key & 0x000000FF;
3438                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
3439                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
3440                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
3441                 }
3442         }
3443
3444         /* Get RSS functions configured in MRQC register */
3445         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3446         if ((mrqc & IXGBE_MRQC_RSSEN) == 0) { /* RSS is disabled */
3447                 rss_conf->rss_hf = 0;
3448                 return 0;
3449         }
3450         rss_hf = 0;
3451         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4)
3452                 rss_hf |= ETH_RSS_IPV4;
3453         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_TCP)
3454                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
3455         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6)
3456                 rss_hf |= ETH_RSS_IPV6;
3457         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX)
3458                 rss_hf |= ETH_RSS_IPV6_EX;
3459         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_TCP)
3460                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
3461         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP)
3462                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
3463         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_UDP)
3464                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
3465         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_UDP)
3466                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
3467         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP)
3468                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
3469         rss_conf->rss_hf = rss_hf;
3470         return 0;
3471 }
3472
3473 static void
3474 ixgbe_rss_configure(struct rte_eth_dev *dev)
3475 {
3476         struct rte_eth_rss_conf rss_conf;
3477         struct ixgbe_adapter *adapter;
3478         struct ixgbe_hw *hw;
3479         uint32_t reta;
3480         uint16_t i;
3481         uint16_t j;
3482         uint16_t sp_reta_size;
3483         uint32_t reta_reg;
3484
3485         PMD_INIT_FUNC_TRACE();
3486         adapter = dev->data->dev_private;
3487         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3488
3489         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
3490
3491         /*
3492          * Fill in redirection table
3493          * The byte-swap is needed because NIC registers are in
3494          * little-endian order.
3495          */
3496         if (adapter->rss_reta_updated == 0) {
3497                 reta = 0;
3498                 for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
3499                         reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
3500
3501                         if (j == dev->data->nb_rx_queues)
3502                                 j = 0;
3503                         reta = (reta << 8) | j;
3504                         if ((i & 3) == 3)
3505                                 IXGBE_WRITE_REG(hw, reta_reg,
3506                                                 rte_bswap32(reta));
3507                 }
3508         }
3509
3510         /*
3511          * Configure the RSS key and the RSS protocols used to compute
3512          * the RSS hash of input packets.
3513          */
3514         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
3515         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
3516                 ixgbe_rss_disable(dev);
3517                 return;
3518         }
3519         if (rss_conf.rss_key == NULL)
3520                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
3521         ixgbe_hw_rss_hash_set(hw, &rss_conf);
3522 }
3523
3524 #define NUM_VFTA_REGISTERS 128
3525 #define NIC_RX_BUFFER_SIZE 0x200
3526 #define X550_RX_BUFFER_SIZE 0x180
3527
3528 static void
3529 ixgbe_vmdq_dcb_configure(struct rte_eth_dev *dev)
3530 {
3531         struct rte_eth_vmdq_dcb_conf *cfg;
3532         struct ixgbe_hw *hw;
3533         enum rte_eth_nb_pools num_pools;
3534         uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl;
3535         uint16_t pbsize;
3536         uint8_t nb_tcs; /* number of traffic classes */
3537         int i;
3538
3539         PMD_INIT_FUNC_TRACE();
3540         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3541         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3542         num_pools = cfg->nb_queue_pools;
3543         /* Check we have a valid number of pools */
3544         if (num_pools != ETH_16_POOLS && num_pools != ETH_32_POOLS) {
3545                 ixgbe_rss_disable(dev);
3546                 return;
3547         }
3548         /* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */
3549         nb_tcs = (uint8_t)(ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools);
3550
3551         /*
3552          * RXPBSIZE
3553          * split rx buffer up into sections, each for 1 traffic class
3554          */
3555         switch (hw->mac.type) {
3556         case ixgbe_mac_X550:
3557         case ixgbe_mac_X550EM_x:
3558         case ixgbe_mac_X550EM_a:
3559                 pbsize = (uint16_t)(X550_RX_BUFFER_SIZE / nb_tcs);
3560                 break;
3561         default:
3562                 pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
3563                 break;
3564         }
3565         for (i = 0; i < nb_tcs; i++) {
3566                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3567
3568                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3569                 /* clear 10 bits. */
3570                 rxpbsize |= (pbsize << IXGBE_RXPBSIZE_SHIFT); /* set value */
3571                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3572         }
3573         /* zero alloc all unused TCs */
3574         for (i = nb_tcs; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3575                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3576
3577                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3578                 /* clear 10 bits. */
3579                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3580         }
3581
3582         /* MRQC: enable vmdq and dcb */
3583         mrqc = (num_pools == ETH_16_POOLS) ?
3584                 IXGBE_MRQC_VMDQRT8TCEN : IXGBE_MRQC_VMDQRT4TCEN;
3585         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
3586
3587         /* PFVTCTL: turn on virtualisation and set the default pool */
3588         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
3589         if (cfg->enable_default_pool) {
3590                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
3591         } else {
3592                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
3593         }
3594
3595         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
3596
3597         /* RTRUP2TC: mapping user priorities to traffic classes (TCs) */
3598         queue_mapping = 0;
3599         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++)
3600                 /*
3601                  * mapping is done with 3 bits per priority,
3602                  * so shift by i*3 each time
3603                  */
3604                 queue_mapping |= ((cfg->dcb_tc[i] & 0x07) << (i * 3));
3605
3606         IXGBE_WRITE_REG(hw, IXGBE_RTRUP2TC, queue_mapping);
3607
3608         /* RTRPCS: DCB related */
3609         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, IXGBE_RMCS_RRM);
3610
3611         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3612         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3613         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3614         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3615
3616         /* VFTA - enable all vlan filters */
3617         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3618                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3619         }
3620
3621         /* VFRE: pool enabling for receive - 16 or 32 */
3622         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0),
3623                         num_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3624
3625         /*
3626          * MPSAR - allow pools to read specific mac addresses
3627          * In this case, all pools should be able to read from mac addr 0
3628          */
3629         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), 0xFFFFFFFF);
3630         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), 0xFFFFFFFF);
3631
3632         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
3633         for (i = 0; i < cfg->nb_pool_maps; i++) {
3634                 /* set vlan id in VF register and set the valid bit */
3635                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
3636                                 (cfg->pool_map[i].vlan_id & 0xFFF)));
3637                 /*
3638                  * Put the allowed pools in VFB reg. As we only have 16 or 32
3639                  * pools, we only need to use the first half of the register
3640                  * i.e. bits 0-31
3641                  */
3642                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i*2), cfg->pool_map[i].pools);
3643         }
3644 }
3645
3646 /**
3647  * ixgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters
3648  * @dev: pointer to eth_dev structure
3649  * @dcb_config: pointer to ixgbe_dcb_config structure
3650  */
3651 static void
3652 ixgbe_dcb_tx_hw_config(struct rte_eth_dev *dev,
3653                        struct ixgbe_dcb_config *dcb_config)
3654 {
3655         uint32_t reg;
3656         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3657
3658         PMD_INIT_FUNC_TRACE();
3659         if (hw->mac.type != ixgbe_mac_82598EB) {
3660                 /* Disable the Tx desc arbiter so that MTQC can be changed */
3661                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3662                 reg |= IXGBE_RTTDCS_ARBDIS;
3663                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3664
3665                 /* Enable DCB for Tx with 8 TCs */
3666                 if (dcb_config->num_tcs.pg_tcs == 8) {
3667                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_8TC_8TQ;
3668                 } else {
3669                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_4TC_4TQ;
3670                 }
3671                 if (dcb_config->vt_mode)
3672                         reg |= IXGBE_MTQC_VT_ENA;
3673                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
3674
3675                 /* Enable the Tx desc arbiter */
3676                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3677                 reg &= ~IXGBE_RTTDCS_ARBDIS;
3678                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3679
3680                 /* Enable Security TX Buffer IFG for DCB */
3681                 reg = IXGBE_READ_REG(hw, IXGBE_SECTXMINIFG);
3682                 reg |= IXGBE_SECTX_DCB;
3683                 IXGBE_WRITE_REG(hw, IXGBE_SECTXMINIFG, reg);
3684         }
3685 }
3686
3687 /**
3688  * ixgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters
3689  * @dev: pointer to rte_eth_dev structure
3690  * @dcb_config: pointer to ixgbe_dcb_config structure
3691  */
3692 static void
3693 ixgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev,
3694                         struct ixgbe_dcb_config *dcb_config)
3695 {
3696         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3697                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3698         struct ixgbe_hw *hw =
3699                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3700
3701         PMD_INIT_FUNC_TRACE();
3702         if (hw->mac.type != ixgbe_mac_82598EB)
3703                 /*PF VF Transmit Enable*/
3704                 IXGBE_WRITE_REG(hw, IXGBE_VFTE(0),
3705                         vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3706
3707         /*Configure general DCB TX parameters*/
3708         ixgbe_dcb_tx_hw_config(dev, dcb_config);
3709 }
3710
3711 static void
3712 ixgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev,
3713                         struct ixgbe_dcb_config *dcb_config)
3714 {
3715         struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
3716                         &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3717         struct ixgbe_dcb_tc_config *tc;
3718         uint8_t i, j;
3719
3720         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3721         if (vmdq_rx_conf->nb_queue_pools == ETH_16_POOLS) {
3722                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3723                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3724         } else {
3725                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3726                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3727         }
3728
3729         /* Initialize User Priority to Traffic Class mapping */
3730         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3731                 tc = &dcb_config->tc_config[j];
3732                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3733         }
3734
3735         /* User Priority to Traffic Class mapping */
3736         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3737                 j = vmdq_rx_conf->dcb_tc[i];
3738                 tc = &dcb_config->tc_config[j];
3739                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3740                                                 (uint8_t)(1 << i);
3741         }
3742 }
3743
3744 static void
3745 ixgbe_dcb_vt_tx_config(struct rte_eth_dev *dev,
3746                         struct ixgbe_dcb_config *dcb_config)
3747 {
3748         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3749                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3750         struct ixgbe_dcb_tc_config *tc;
3751         uint8_t i, j;
3752
3753         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3754         if (vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS) {
3755                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3756                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3757         } else {
3758                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3759                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3760         }
3761
3762         /* Initialize User Priority to Traffic Class mapping */
3763         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3764                 tc = &dcb_config->tc_config[j];
3765                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3766         }
3767
3768         /* User Priority to Traffic Class mapping */
3769         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3770                 j = vmdq_tx_conf->dcb_tc[i];
3771                 tc = &dcb_config->tc_config[j];
3772                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3773                                                 (uint8_t)(1 << i);
3774         }
3775 }
3776
3777 static void
3778 ixgbe_dcb_rx_config(struct rte_eth_dev *dev,
3779                 struct ixgbe_dcb_config *dcb_config)
3780 {
3781         struct rte_eth_dcb_rx_conf *rx_conf =
3782                         &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
3783         struct ixgbe_dcb_tc_config *tc;
3784         uint8_t i, j;
3785
3786         dcb_config->num_tcs.pg_tcs = (uint8_t)rx_conf->nb_tcs;
3787         dcb_config->num_tcs.pfc_tcs = (uint8_t)rx_conf->nb_tcs;
3788
3789         /* Initialize User Priority to Traffic Class mapping */
3790         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3791                 tc = &dcb_config->tc_config[j];
3792                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3793         }
3794
3795         /* User Priority to Traffic Class mapping */
3796         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3797                 j = rx_conf->dcb_tc[i];
3798                 tc = &dcb_config->tc_config[j];
3799                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3800                                                 (uint8_t)(1 << i);
3801         }
3802 }
3803
3804 static void
3805 ixgbe_dcb_tx_config(struct rte_eth_dev *dev,
3806                 struct ixgbe_dcb_config *dcb_config)
3807 {
3808         struct rte_eth_dcb_tx_conf *tx_conf =
3809                         &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
3810         struct ixgbe_dcb_tc_config *tc;
3811         uint8_t i, j;
3812
3813         dcb_config->num_tcs.pg_tcs = (uint8_t)tx_conf->nb_tcs;
3814         dcb_config->num_tcs.pfc_tcs = (uint8_t)tx_conf->nb_tcs;
3815
3816         /* Initialize User Priority to Traffic Class mapping */
3817         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3818                 tc = &dcb_config->tc_config[j];
3819                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3820         }
3821
3822         /* User Priority to Traffic Class mapping */
3823         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3824                 j = tx_conf->dcb_tc[i];
3825                 tc = &dcb_config->tc_config[j];
3826                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3827                                                 (uint8_t)(1 << i);
3828         }
3829 }
3830
3831 /**
3832  * ixgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters
3833  * @dev: pointer to eth_dev structure
3834  * @dcb_config: pointer to ixgbe_dcb_config structure
3835  */
3836 static void
3837 ixgbe_dcb_rx_hw_config(struct rte_eth_dev *dev,
3838                        struct ixgbe_dcb_config *dcb_config)
3839 {
3840         uint32_t reg;
3841         uint32_t vlanctrl;
3842         uint8_t i;
3843         uint32_t q;
3844         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3845
3846         PMD_INIT_FUNC_TRACE();
3847         /*
3848          * Disable the arbiter before changing parameters
3849          * (always enable recycle mode; WSP)
3850          */
3851         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC | IXGBE_RTRPCS_ARBDIS;
3852         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
3853
3854         if (hw->mac.type != ixgbe_mac_82598EB) {
3855                 reg = IXGBE_READ_REG(hw, IXGBE_MRQC);
3856                 if (dcb_config->num_tcs.pg_tcs == 4) {
3857                         if (dcb_config->vt_mode)
3858                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3859                                         IXGBE_MRQC_VMDQRT4TCEN;
3860                         else {
3861                                 /* no matter the mode is DCB or DCB_RSS, just
3862                                  * set the MRQE to RSSXTCEN. RSS is controlled
3863                                  * by RSS_FIELD
3864                                  */
3865                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
3866                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3867                                         IXGBE_MRQC_RTRSS4TCEN;
3868                         }
3869                 }
3870                 if (dcb_config->num_tcs.pg_tcs == 8) {
3871                         if (dcb_config->vt_mode)
3872                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3873                                         IXGBE_MRQC_VMDQRT8TCEN;
3874                         else {
3875                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
3876                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3877                                         IXGBE_MRQC_RTRSS8TCEN;
3878                         }
3879                 }
3880
3881                 IXGBE_WRITE_REG(hw, IXGBE_MRQC, reg);
3882
3883                 if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
3884                         /* Disable drop for all queues in VMDQ mode*/
3885                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
3886                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
3887                                                 (IXGBE_QDE_WRITE |
3888                                                  (q << IXGBE_QDE_IDX_SHIFT)));
3889                 } else {
3890                         /* Enable drop for all queues in SRIOV mode */
3891                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
3892                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
3893                                                 (IXGBE_QDE_WRITE |
3894                                                  (q << IXGBE_QDE_IDX_SHIFT) |
3895                                                  IXGBE_QDE_ENABLE));
3896                 }
3897         }
3898
3899         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3900         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3901         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3902         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3903
3904         /* VFTA - enable all vlan filters */
3905         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3906                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3907         }
3908
3909         /*
3910          * Configure Rx packet plane (recycle mode; WSP) and
3911          * enable arbiter
3912          */
3913         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC;
3914         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
3915 }
3916
3917 static void
3918 ixgbe_dcb_hw_arbite_rx_config(struct ixgbe_hw *hw, uint16_t *refill,
3919                         uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
3920 {
3921         switch (hw->mac.type) {
3922         case ixgbe_mac_82598EB:
3923                 ixgbe_dcb_config_rx_arbiter_82598(hw, refill, max, tsa);
3924                 break;
3925         case ixgbe_mac_82599EB:
3926         case ixgbe_mac_X540:
3927         case ixgbe_mac_X550:
3928         case ixgbe_mac_X550EM_x:
3929         case ixgbe_mac_X550EM_a:
3930                 ixgbe_dcb_config_rx_arbiter_82599(hw, refill, max, bwg_id,
3931                                                   tsa, map);
3932                 break;
3933         default:
3934                 break;
3935         }
3936 }
3937
3938 static void
3939 ixgbe_dcb_hw_arbite_tx_config(struct ixgbe_hw *hw, uint16_t *refill, uint16_t *max,
3940                             uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
3941 {
3942         switch (hw->mac.type) {
3943         case ixgbe_mac_82598EB:
3944                 ixgbe_dcb_config_tx_desc_arbiter_82598(hw, refill, max, bwg_id, tsa);
3945                 ixgbe_dcb_config_tx_data_arbiter_82598(hw, refill, max, bwg_id, tsa);
3946                 break;
3947         case ixgbe_mac_82599EB:
3948         case ixgbe_mac_X540:
3949         case ixgbe_mac_X550:
3950         case ixgbe_mac_X550EM_x:
3951         case ixgbe_mac_X550EM_a:
3952                 ixgbe_dcb_config_tx_desc_arbiter_82599(hw, refill, max, bwg_id, tsa);
3953                 ixgbe_dcb_config_tx_data_arbiter_82599(hw, refill, max, bwg_id, tsa, map);
3954                 break;
3955         default:
3956                 break;
3957         }
3958 }
3959
3960 #define DCB_RX_CONFIG  1
3961 #define DCB_TX_CONFIG  1
3962 #define DCB_TX_PB      1024
3963 /**
3964  * ixgbe_dcb_hw_configure - Enable DCB and configure
3965  * general DCB in VT mode and non-VT mode parameters
3966  * @dev: pointer to rte_eth_dev structure
3967  * @dcb_config: pointer to ixgbe_dcb_config structure
3968  */
3969 static int
3970 ixgbe_dcb_hw_configure(struct rte_eth_dev *dev,
3971                         struct ixgbe_dcb_config *dcb_config)
3972 {
3973         int     ret = 0;
3974         uint8_t i, pfc_en, nb_tcs;
3975         uint16_t pbsize, rx_buffer_size;
3976         uint8_t config_dcb_rx = 0;
3977         uint8_t config_dcb_tx = 0;
3978         uint8_t tsa[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3979         uint8_t bwgid[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3980         uint16_t refill[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3981         uint16_t max[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3982         uint8_t map[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3983         struct ixgbe_dcb_tc_config *tc;
3984         uint32_t max_frame = dev->data->mtu + RTE_ETHER_HDR_LEN +
3985                 RTE_ETHER_CRC_LEN;
3986         struct ixgbe_hw *hw =
3987                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3988         struct ixgbe_bw_conf *bw_conf =
3989                 IXGBE_DEV_PRIVATE_TO_BW_CONF(dev->data->dev_private);
3990
3991         switch (dev->data->dev_conf.rxmode.mq_mode) {
3992         case ETH_MQ_RX_VMDQ_DCB:
3993                 dcb_config->vt_mode = true;
3994                 if (hw->mac.type != ixgbe_mac_82598EB) {
3995                         config_dcb_rx = DCB_RX_CONFIG;
3996                         /*
3997                          *get dcb and VT rx configuration parameters
3998                          *from rte_eth_conf
3999                          */
4000                         ixgbe_vmdq_dcb_rx_config(dev, dcb_config);
4001                         /*Configure general VMDQ and DCB RX parameters*/
4002                         ixgbe_vmdq_dcb_configure(dev);
4003                 }
4004                 break;
4005         case ETH_MQ_RX_DCB:
4006         case ETH_MQ_RX_DCB_RSS:
4007                 dcb_config->vt_mode = false;
4008                 config_dcb_rx = DCB_RX_CONFIG;
4009                 /* Get dcb TX configuration parameters from rte_eth_conf */
4010                 ixgbe_dcb_rx_config(dev, dcb_config);
4011                 /*Configure general DCB RX parameters*/
4012                 ixgbe_dcb_rx_hw_config(dev, dcb_config);
4013                 break;
4014         default:
4015                 PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration");
4016                 break;
4017         }
4018         switch (dev->data->dev_conf.txmode.mq_mode) {
4019         case ETH_MQ_TX_VMDQ_DCB:
4020                 dcb_config->vt_mode = true;
4021                 config_dcb_tx = DCB_TX_CONFIG;
4022                 /* get DCB and VT TX configuration parameters
4023                  * from rte_eth_conf
4024                  */
4025                 ixgbe_dcb_vt_tx_config(dev, dcb_config);
4026                 /*Configure general VMDQ and DCB TX parameters*/
4027                 ixgbe_vmdq_dcb_hw_tx_config(dev, dcb_config);
4028                 break;
4029
4030         case ETH_MQ_TX_DCB:
4031                 dcb_config->vt_mode = false;
4032                 config_dcb_tx = DCB_TX_CONFIG;
4033                 /*get DCB TX configuration parameters from rte_eth_conf*/
4034                 ixgbe_dcb_tx_config(dev, dcb_config);
4035                 /*Configure general DCB TX parameters*/
4036                 ixgbe_dcb_tx_hw_config(dev, dcb_config);
4037                 break;
4038         default:
4039                 PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration");
4040                 break;
4041         }
4042
4043         nb_tcs = dcb_config->num_tcs.pfc_tcs;
4044         /* Unpack map */
4045         ixgbe_dcb_unpack_map_cee(dcb_config, IXGBE_DCB_RX_CONFIG, map);
4046         if (nb_tcs == ETH_4_TCS) {
4047                 /* Avoid un-configured priority mapping to TC0 */
4048                 uint8_t j = 4;
4049                 uint8_t mask = 0xFF;
4050
4051                 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES - 4; i++)
4052                         mask = (uint8_t)(mask & (~(1 << map[i])));
4053                 for (i = 0; mask && (i < IXGBE_DCB_MAX_TRAFFIC_CLASS); i++) {
4054                         if ((mask & 0x1) && (j < ETH_DCB_NUM_USER_PRIORITIES))
4055                                 map[j++] = i;
4056                         mask >>= 1;
4057                 }
4058                 /* Re-configure 4 TCs BW */
4059                 for (i = 0; i < nb_tcs; i++) {
4060                         tc = &dcb_config->tc_config[i];
4061                         if (bw_conf->tc_num != nb_tcs)
4062                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4063                                         (uint8_t)(100 / nb_tcs);
4064                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4065                                                 (uint8_t)(100 / nb_tcs);
4066                 }
4067                 for (; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
4068                         tc = &dcb_config->tc_config[i];
4069                         tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent = 0;
4070                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent = 0;
4071                 }
4072         } else {
4073                 /* Re-configure 8 TCs BW */
4074                 for (i = 0; i < nb_tcs; i++) {
4075                         tc = &dcb_config->tc_config[i];
4076                         if (bw_conf->tc_num != nb_tcs)
4077                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4078                                         (uint8_t)(100 / nb_tcs + (i & 1));
4079                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4080                                 (uint8_t)(100 / nb_tcs + (i & 1));
4081                 }
4082         }
4083
4084         switch (hw->mac.type) {
4085         case ixgbe_mac_X550:
4086         case ixgbe_mac_X550EM_x:
4087         case ixgbe_mac_X550EM_a:
4088                 rx_buffer_size = X550_RX_BUFFER_SIZE;
4089                 break;
4090         default:
4091                 rx_buffer_size = NIC_RX_BUFFER_SIZE;
4092                 break;
4093         }
4094
4095         if (config_dcb_rx) {
4096                 /* Set RX buffer size */
4097                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4098                 uint32_t rxpbsize = pbsize << IXGBE_RXPBSIZE_SHIFT;
4099
4100                 for (i = 0; i < nb_tcs; i++) {
4101                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
4102                 }
4103                 /* zero alloc all unused TCs */
4104                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4105                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4106                 }
4107         }
4108         if (config_dcb_tx) {
4109                 /* Only support an equally distributed
4110                  *  Tx packet buffer strategy.
4111                  */
4112                 uint32_t txpktsize = IXGBE_TXPBSIZE_MAX / nb_tcs;
4113                 uint32_t txpbthresh = (txpktsize / DCB_TX_PB) - IXGBE_TXPKT_SIZE_MAX;
4114
4115                 for (i = 0; i < nb_tcs; i++) {
4116                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4117                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4118                 }
4119                 /* Clear unused TCs, if any, to zero buffer size*/
4120                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4121                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4122                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4123                 }
4124         }
4125
4126         /*Calculates traffic class credits*/
4127         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4128                                 IXGBE_DCB_TX_CONFIG);
4129         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4130                                 IXGBE_DCB_RX_CONFIG);
4131
4132         if (config_dcb_rx) {
4133                 /* Unpack CEE standard containers */
4134                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_RX_CONFIG, refill);
4135                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4136                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_RX_CONFIG, bwgid);
4137                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_RX_CONFIG, tsa);
4138                 /* Configure PG(ETS) RX */
4139                 ixgbe_dcb_hw_arbite_rx_config(hw, refill, max, bwgid, tsa, map);
4140         }
4141
4142         if (config_dcb_tx) {
4143                 /* Unpack CEE standard containers */
4144                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_TX_CONFIG, refill);
4145                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4146                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_TX_CONFIG, bwgid);
4147                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_TX_CONFIG, tsa);
4148                 /* Configure PG(ETS) TX */
4149                 ixgbe_dcb_hw_arbite_tx_config(hw, refill, max, bwgid, tsa, map);
4150         }
4151
4152         /*Configure queue statistics registers*/
4153         ixgbe_dcb_config_tc_stats_82599(hw, dcb_config);
4154
4155         /* Check if the PFC is supported */
4156         if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) {
4157                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4158                 for (i = 0; i < nb_tcs; i++) {
4159                         /*
4160                         * If the TC count is 8,and the default high_water is 48,
4161                         * the low_water is 16 as default.
4162                         */
4163                         hw->fc.high_water[i] = (pbsize * 3) / 4;
4164                         hw->fc.low_water[i] = pbsize / 4;
4165                         /* Enable pfc for this TC */
4166                         tc = &dcb_config->tc_config[i];
4167                         tc->pfc = ixgbe_dcb_pfc_enabled;
4168                 }
4169                 ixgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en);
4170                 if (dcb_config->num_tcs.pfc_tcs == ETH_4_TCS)
4171                         pfc_en &= 0x0F;
4172                 ret = ixgbe_dcb_config_pfc(hw, pfc_en, map);
4173         }
4174
4175         return ret;
4176 }
4177
4178 /**
4179  * ixgbe_configure_dcb - Configure DCB  Hardware
4180  * @dev: pointer to rte_eth_dev
4181  */
4182 void ixgbe_configure_dcb(struct rte_eth_dev *dev)
4183 {
4184         struct ixgbe_dcb_config *dcb_cfg =
4185                         IXGBE_DEV_PRIVATE_TO_DCB_CFG(dev->data->dev_private);
4186         struct rte_eth_conf *dev_conf = &(dev->data->dev_conf);
4187
4188         PMD_INIT_FUNC_TRACE();
4189
4190         /* check support mq_mode for DCB */
4191         if ((dev_conf->rxmode.mq_mode != ETH_MQ_RX_VMDQ_DCB) &&
4192             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB) &&
4193             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB_RSS))
4194                 return;
4195
4196         if (dev->data->nb_rx_queues > ETH_DCB_NUM_QUEUES)
4197                 return;
4198
4199         /** Configure DCB hardware **/
4200         ixgbe_dcb_hw_configure(dev, dcb_cfg);
4201 }
4202
4203 /*
4204  * VMDq only support for 10 GbE NIC.
4205  */
4206 static void
4207 ixgbe_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
4208 {
4209         struct rte_eth_vmdq_rx_conf *cfg;
4210         struct ixgbe_hw *hw;
4211         enum rte_eth_nb_pools num_pools;
4212         uint32_t mrqc, vt_ctl, vlanctrl;
4213         uint32_t vmolr = 0;
4214         int i;
4215
4216         PMD_INIT_FUNC_TRACE();
4217         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4218         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
4219         num_pools = cfg->nb_queue_pools;
4220
4221         ixgbe_rss_disable(dev);
4222
4223         /* MRQC: enable vmdq */
4224         mrqc = IXGBE_MRQC_VMDQEN;
4225         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4226
4227         /* PFVTCTL: turn on virtualisation and set the default pool */
4228         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
4229         if (cfg->enable_default_pool)
4230                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
4231         else
4232                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
4233
4234         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
4235
4236         for (i = 0; i < (int)num_pools; i++) {
4237                 vmolr = ixgbe_convert_vm_rx_mask_to_val(cfg->rx_mode, vmolr);
4238                 IXGBE_WRITE_REG(hw, IXGBE_VMOLR(i), vmolr);
4239         }
4240
4241         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
4242         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
4243         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
4244         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
4245
4246         /* VFTA - enable all vlan filters */
4247         for (i = 0; i < NUM_VFTA_REGISTERS; i++)
4248                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), UINT32_MAX);
4249
4250         /* VFRE: pool enabling for receive - 64 */
4251         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0), UINT32_MAX);
4252         if (num_pools == ETH_64_POOLS)
4253                 IXGBE_WRITE_REG(hw, IXGBE_VFRE(1), UINT32_MAX);
4254
4255         /*
4256          * MPSAR - allow pools to read specific mac addresses
4257          * In this case, all pools should be able to read from mac addr 0
4258          */
4259         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), UINT32_MAX);
4260         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), UINT32_MAX);
4261
4262         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
4263         for (i = 0; i < cfg->nb_pool_maps; i++) {
4264                 /* set vlan id in VF register and set the valid bit */
4265                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
4266                                 (cfg->pool_map[i].vlan_id & IXGBE_RXD_VLAN_ID_MASK)));
4267                 /*
4268                  * Put the allowed pools in VFB reg. As we only have 16 or 64
4269                  * pools, we only need to use the first half of the register
4270                  * i.e. bits 0-31
4271                  */
4272                 if (((cfg->pool_map[i].pools >> 32) & UINT32_MAX) == 0)
4273                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i * 2),
4274                                         (cfg->pool_map[i].pools & UINT32_MAX));
4275                 else
4276                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB((i * 2 + 1)),
4277                                         ((cfg->pool_map[i].pools >> 32) & UINT32_MAX));
4278
4279         }
4280
4281         /* PFDMA Tx General Switch Control Enables VMDQ loopback */
4282         if (cfg->enable_loop_back) {
4283                 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, IXGBE_PFDTXGSWC_VT_LBEN);
4284                 for (i = 0; i < RTE_IXGBE_VMTXSW_REGISTER_COUNT; i++)
4285                         IXGBE_WRITE_REG(hw, IXGBE_VMTXSW(i), UINT32_MAX);
4286         }
4287
4288         IXGBE_WRITE_FLUSH(hw);
4289 }
4290
4291 /*
4292  * ixgbe_dcb_config_tx_hw_config - Configure general VMDq TX parameters
4293  * @hw: pointer to hardware structure
4294  */
4295 static void
4296 ixgbe_vmdq_tx_hw_configure(struct ixgbe_hw *hw)
4297 {
4298         uint32_t reg;
4299         uint32_t q;
4300
4301         PMD_INIT_FUNC_TRACE();
4302         /*PF VF Transmit Enable*/
4303         IXGBE_WRITE_REG(hw, IXGBE_VFTE(0), UINT32_MAX);
4304         IXGBE_WRITE_REG(hw, IXGBE_VFTE(1), UINT32_MAX);
4305
4306         /* Disable the Tx desc arbiter so that MTQC can be changed */
4307         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4308         reg |= IXGBE_RTTDCS_ARBDIS;
4309         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4310
4311         reg = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4312         IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
4313
4314         /* Disable drop for all queues */
4315         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4316                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4317                   (IXGBE_QDE_WRITE | (q << IXGBE_QDE_IDX_SHIFT)));
4318
4319         /* Enable the Tx desc arbiter */
4320         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4321         reg &= ~IXGBE_RTTDCS_ARBDIS;
4322         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4323
4324         IXGBE_WRITE_FLUSH(hw);
4325 }
4326
4327 static int __attribute__((cold))
4328 ixgbe_alloc_rx_queue_mbufs(struct ixgbe_rx_queue *rxq)
4329 {
4330         struct ixgbe_rx_entry *rxe = rxq->sw_ring;
4331         uint64_t dma_addr;
4332         unsigned int i;
4333
4334         /* Initialize software ring entries */
4335         for (i = 0; i < rxq->nb_rx_desc; i++) {
4336                 volatile union ixgbe_adv_rx_desc *rxd;
4337                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
4338
4339                 if (mbuf == NULL) {
4340                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
4341                                      (unsigned) rxq->queue_id);
4342                         return -ENOMEM;
4343                 }
4344
4345                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
4346                 mbuf->port = rxq->port_id;
4347
4348                 dma_addr =
4349                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
4350                 rxd = &rxq->rx_ring[i];
4351                 rxd->read.hdr_addr = 0;
4352                 rxd->read.pkt_addr = dma_addr;
4353                 rxe[i].mbuf = mbuf;
4354         }
4355
4356         return 0;
4357 }
4358
4359 static int
4360 ixgbe_config_vf_rss(struct rte_eth_dev *dev)
4361 {
4362         struct ixgbe_hw *hw;
4363         uint32_t mrqc;
4364
4365         ixgbe_rss_configure(dev);
4366
4367         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4368
4369         /* MRQC: enable VF RSS */
4370         mrqc = IXGBE_READ_REG(hw, IXGBE_MRQC);
4371         mrqc &= ~IXGBE_MRQC_MRQE_MASK;
4372         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4373         case ETH_64_POOLS:
4374                 mrqc |= IXGBE_MRQC_VMDQRSS64EN;
4375                 break;
4376
4377         case ETH_32_POOLS:
4378                 mrqc |= IXGBE_MRQC_VMDQRSS32EN;
4379                 break;
4380
4381         default:
4382                 PMD_INIT_LOG(ERR, "Invalid pool number in IOV mode with VMDQ RSS");
4383                 return -EINVAL;
4384         }
4385
4386         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4387
4388         return 0;
4389 }
4390
4391 static int
4392 ixgbe_config_vf_default(struct rte_eth_dev *dev)
4393 {
4394         struct ixgbe_hw *hw =
4395                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4396
4397         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4398         case ETH_64_POOLS:
4399                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4400                         IXGBE_MRQC_VMDQEN);
4401                 break;
4402
4403         case ETH_32_POOLS:
4404                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4405                         IXGBE_MRQC_VMDQRT4TCEN);
4406                 break;
4407
4408         case ETH_16_POOLS:
4409                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4410                         IXGBE_MRQC_VMDQRT8TCEN);
4411                 break;
4412         default:
4413                 PMD_INIT_LOG(ERR,
4414                         "invalid pool number in IOV mode");
4415                 break;
4416         }
4417         return 0;
4418 }
4419
4420 static int
4421 ixgbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
4422 {
4423         struct ixgbe_hw *hw =
4424                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4425
4426         if (hw->mac.type == ixgbe_mac_82598EB)
4427                 return 0;
4428
4429         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4430                 /*
4431                  * SRIOV inactive scheme
4432                  * any DCB/RSS w/o VMDq multi-queue setting
4433                  */
4434                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4435                 case ETH_MQ_RX_RSS:
4436                 case ETH_MQ_RX_DCB_RSS:
4437                 case ETH_MQ_RX_VMDQ_RSS:
4438                         ixgbe_rss_configure(dev);
4439                         break;
4440
4441                 case ETH_MQ_RX_VMDQ_DCB:
4442                         ixgbe_vmdq_dcb_configure(dev);
4443                         break;
4444
4445                 case ETH_MQ_RX_VMDQ_ONLY:
4446                         ixgbe_vmdq_rx_hw_configure(dev);
4447                         break;
4448
4449                 case ETH_MQ_RX_NONE:
4450                 default:
4451                         /* if mq_mode is none, disable rss mode.*/
4452                         ixgbe_rss_disable(dev);
4453                         break;
4454                 }
4455         } else {
4456                 /* SRIOV active scheme
4457                  * Support RSS together with SRIOV.
4458                  */
4459                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4460                 case ETH_MQ_RX_RSS:
4461                 case ETH_MQ_RX_VMDQ_RSS:
4462                         ixgbe_config_vf_rss(dev);
4463                         break;
4464                 case ETH_MQ_RX_VMDQ_DCB:
4465                 case ETH_MQ_RX_DCB:
4466                 /* In SRIOV, the configuration is the same as VMDq case */
4467                         ixgbe_vmdq_dcb_configure(dev);
4468                         break;
4469                 /* DCB/RSS together with SRIOV is not supported */
4470                 case ETH_MQ_RX_VMDQ_DCB_RSS:
4471                 case ETH_MQ_RX_DCB_RSS:
4472                         PMD_INIT_LOG(ERR,
4473                                 "Could not support DCB/RSS with VMDq & SRIOV");
4474                         return -1;
4475                 default:
4476                         ixgbe_config_vf_default(dev);
4477                         break;
4478                 }
4479         }
4480
4481         return 0;
4482 }
4483
4484 static int
4485 ixgbe_dev_mq_tx_configure(struct rte_eth_dev *dev)
4486 {
4487         struct ixgbe_hw *hw =
4488                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4489         uint32_t mtqc;
4490         uint32_t rttdcs;
4491
4492         if (hw->mac.type == ixgbe_mac_82598EB)
4493                 return 0;
4494
4495         /* disable arbiter before setting MTQC */
4496         rttdcs = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4497         rttdcs |= IXGBE_RTTDCS_ARBDIS;
4498         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4499
4500         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4501                 /*
4502                  * SRIOV inactive scheme
4503                  * any DCB w/o VMDq multi-queue setting
4504                  */
4505                 if (dev->data->dev_conf.txmode.mq_mode == ETH_MQ_TX_VMDQ_ONLY)
4506                         ixgbe_vmdq_tx_hw_configure(hw);
4507                 else {
4508                         mtqc = IXGBE_MTQC_64Q_1PB;
4509                         IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4510                 }
4511         } else {
4512                 switch (RTE_ETH_DEV_SRIOV(dev).active) {
4513
4514                 /*
4515                  * SRIOV active scheme
4516                  * FIXME if support DCB together with VMDq & SRIOV
4517                  */
4518                 case ETH_64_POOLS:
4519                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4520                         break;
4521                 case ETH_32_POOLS:
4522                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_32VF;
4523                         break;
4524                 case ETH_16_POOLS:
4525                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_RT_ENA |
4526                                 IXGBE_MTQC_8TC_8TQ;
4527                         break;
4528                 default:
4529                         mtqc = IXGBE_MTQC_64Q_1PB;
4530                         PMD_INIT_LOG(ERR, "invalid pool number in IOV mode");
4531                 }
4532                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4533         }
4534
4535         /* re-enable arbiter */
4536         rttdcs &= ~IXGBE_RTTDCS_ARBDIS;
4537         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4538
4539         return 0;
4540 }
4541
4542 /**
4543  * ixgbe_get_rscctl_maxdesc - Calculate the RSCCTL[n].MAXDESC for PF
4544  *
4545  * Return the RSCCTL[n].MAXDESC for 82599 and x540 PF devices according to the
4546  * spec rev. 3.0 chapter 8.2.3.8.13.
4547  *
4548  * @pool Memory pool of the Rx queue
4549  */
4550 static inline uint32_t
4551 ixgbe_get_rscctl_maxdesc(struct rte_mempool *pool)
4552 {
4553         struct rte_pktmbuf_pool_private *mp_priv = rte_mempool_get_priv(pool);
4554
4555         /* MAXDESC * SRRCTL.BSIZEPKT must not exceed 64 KB minus one */
4556         uint16_t maxdesc =
4557                 RTE_IPV4_MAX_PKT_LEN /
4558                         (mp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM);
4559
4560         if (maxdesc >= 16)
4561                 return IXGBE_RSCCTL_MAXDESC_16;
4562         else if (maxdesc >= 8)
4563                 return IXGBE_RSCCTL_MAXDESC_8;
4564         else if (maxdesc >= 4)
4565                 return IXGBE_RSCCTL_MAXDESC_4;
4566         else
4567                 return IXGBE_RSCCTL_MAXDESC_1;
4568 }
4569
4570 /**
4571  * ixgbe_set_ivar - Setup the correct IVAR register for a particular MSIX
4572  * interrupt
4573  *
4574  * (Taken from FreeBSD tree)
4575  * (yes this is all very magic and confusing :)
4576  *
4577  * @dev port handle
4578  * @entry the register array entry
4579  * @vector the MSIX vector for this queue
4580  * @type RX/TX/MISC
4581  */
4582 static void
4583 ixgbe_set_ivar(struct rte_eth_dev *dev, u8 entry, u8 vector, s8 type)
4584 {
4585         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4586         u32 ivar, index;
4587
4588         vector |= IXGBE_IVAR_ALLOC_VAL;
4589
4590         switch (hw->mac.type) {
4591
4592         case ixgbe_mac_82598EB:
4593                 if (type == -1)
4594                         entry = IXGBE_IVAR_OTHER_CAUSES_INDEX;
4595                 else
4596                         entry += (type * 64);
4597                 index = (entry >> 2) & 0x1F;
4598                 ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(index));
4599                 ivar &= ~(0xFF << (8 * (entry & 0x3)));
4600                 ivar |= (vector << (8 * (entry & 0x3)));
4601                 IXGBE_WRITE_REG(hw, IXGBE_IVAR(index), ivar);
4602                 break;
4603
4604         case ixgbe_mac_82599EB:
4605         case ixgbe_mac_X540:
4606                 if (type == -1) { /* MISC IVAR */
4607                         index = (entry & 1) * 8;
4608                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR_MISC);
4609                         ivar &= ~(0xFF << index);
4610                         ivar |= (vector << index);
4611                         IXGBE_WRITE_REG(hw, IXGBE_IVAR_MISC, ivar);
4612                 } else {        /* RX/TX IVARS */
4613                         index = (16 * (entry & 1)) + (8 * type);
4614                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(entry >> 1));
4615                         ivar &= ~(0xFF << index);
4616                         ivar |= (vector << index);
4617                         IXGBE_WRITE_REG(hw, IXGBE_IVAR(entry >> 1), ivar);
4618                 }
4619
4620                 break;
4621
4622         default:
4623                 break;
4624         }
4625 }
4626
4627 void __attribute__((cold))
4628 ixgbe_set_rx_function(struct rte_eth_dev *dev)
4629 {
4630         uint16_t i, rx_using_sse;
4631         struct ixgbe_adapter *adapter = dev->data->dev_private;
4632
4633         /*
4634          * In order to allow Vector Rx there are a few configuration
4635          * conditions to be met and Rx Bulk Allocation should be allowed.
4636          */
4637         if (ixgbe_rx_vec_dev_conf_condition_check(dev) ||
4638             !adapter->rx_bulk_alloc_allowed) {
4639                 PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet Vector Rx "
4640                                     "preconditions or RTE_IXGBE_INC_VECTOR is "
4641                                     "not enabled",
4642                              dev->data->port_id);
4643
4644                 adapter->rx_vec_allowed = false;
4645         }
4646
4647         /*
4648          * Initialize the appropriate LRO callback.
4649          *
4650          * If all queues satisfy the bulk allocation preconditions
4651          * (hw->rx_bulk_alloc_allowed is TRUE) then we may use bulk allocation.
4652          * Otherwise use a single allocation version.
4653          */
4654         if (dev->data->lro) {
4655                 if (adapter->rx_bulk_alloc_allowed) {
4656                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a bulk "
4657                                            "allocation version");
4658                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4659                 } else {
4660                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a single "
4661                                            "allocation version");
4662                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4663                 }
4664         } else if (dev->data->scattered_rx) {
4665                 /*
4666                  * Set the non-LRO scattered callback: there are Vector and
4667                  * single allocation versions.
4668                  */
4669                 if (adapter->rx_vec_allowed) {
4670                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
4671                                             "callback (port=%d).",
4672                                      dev->data->port_id);
4673
4674                         dev->rx_pkt_burst = ixgbe_recv_scattered_pkts_vec;
4675                 } else if (adapter->rx_bulk_alloc_allowed) {
4676                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
4677                                            "allocation callback (port=%d).",
4678                                      dev->data->port_id);
4679                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4680                 } else {
4681                         PMD_INIT_LOG(DEBUG, "Using Regualr (non-vector, "
4682                                             "single allocation) "
4683                                             "Scattered Rx callback "
4684                                             "(port=%d).",
4685                                      dev->data->port_id);
4686
4687                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4688                 }
4689         /*
4690          * Below we set "simple" callbacks according to port/queues parameters.
4691          * If parameters allow we are going to choose between the following
4692          * callbacks:
4693          *    - Vector
4694          *    - Bulk Allocation
4695          *    - Single buffer allocation (the simplest one)
4696          */
4697         } else if (adapter->rx_vec_allowed) {
4698                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
4699                                     "burst size no less than %d (port=%d).",
4700                              RTE_IXGBE_DESCS_PER_LOOP,
4701                              dev->data->port_id);
4702
4703                 dev->rx_pkt_burst = ixgbe_recv_pkts_vec;
4704         } else if (adapter->rx_bulk_alloc_allowed) {
4705                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
4706                                     "satisfied. Rx Burst Bulk Alloc function "
4707                                     "will be used on port=%d.",
4708                              dev->data->port_id);
4709
4710                 dev->rx_pkt_burst = ixgbe_recv_pkts_bulk_alloc;
4711         } else {
4712                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
4713                                     "satisfied, or Scattered Rx is requested "
4714                                     "(port=%d).",
4715                              dev->data->port_id);
4716
4717                 dev->rx_pkt_burst = ixgbe_recv_pkts;
4718         }
4719
4720         /* Propagate information about RX function choice through all queues. */
4721
4722         rx_using_sse =
4723                 (dev->rx_pkt_burst == ixgbe_recv_scattered_pkts_vec ||
4724                 dev->rx_pkt_burst == ixgbe_recv_pkts_vec);
4725
4726         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4727                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4728
4729                 rxq->rx_using_sse = rx_using_sse;
4730 #ifdef RTE_LIBRTE_SECURITY
4731                 rxq->using_ipsec = !!(dev->data->dev_conf.rxmode.offloads &
4732                                 DEV_RX_OFFLOAD_SECURITY);
4733 #endif
4734         }
4735 }
4736
4737 /**
4738  * ixgbe_set_rsc - configure RSC related port HW registers
4739  *
4740  * Configures the port's RSC related registers according to the 4.6.7.2 chapter
4741  * of 82599 Spec (x540 configuration is virtually the same).
4742  *
4743  * @dev port handle
4744  *
4745  * Returns 0 in case of success or a non-zero error code
4746  */
4747 static int
4748 ixgbe_set_rsc(struct rte_eth_dev *dev)
4749 {
4750         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4751         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4752         struct rte_eth_dev_info dev_info = { 0 };
4753         bool rsc_capable = false;
4754         uint16_t i;
4755         uint32_t rdrxctl;
4756         uint32_t rfctl;
4757
4758         /* Sanity check */
4759         dev->dev_ops->dev_infos_get(dev, &dev_info);
4760         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO)
4761                 rsc_capable = true;
4762
4763         if (!rsc_capable && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4764                 PMD_INIT_LOG(CRIT, "LRO is requested on HW that doesn't "
4765                                    "support it");
4766                 return -EINVAL;
4767         }
4768
4769         /* RSC global configuration (chapter 4.6.7.2.1 of 82599 Spec) */
4770
4771         if ((rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC) &&
4772              (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4773                 /*
4774                  * According to chapter of 4.6.7.2.1 of the Spec Rev.
4775                  * 3.0 RSC configuration requires HW CRC stripping being
4776                  * enabled. If user requested both HW CRC stripping off
4777                  * and RSC on - return an error.
4778                  */
4779                 PMD_INIT_LOG(CRIT, "LRO can't be enabled when HW CRC "
4780                                     "is disabled");
4781                 return -EINVAL;
4782         }
4783
4784         /* RFCTL configuration  */
4785         rfctl = IXGBE_READ_REG(hw, IXGBE_RFCTL);
4786         if ((rsc_capable) && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4787                 /*
4788                  * Since NFS packets coalescing is not supported - clear
4789                  * RFCTL.NFSW_DIS and RFCTL.NFSR_DIS when RSC is
4790                  * enabled.
4791                  */
4792                 rfctl &= ~(IXGBE_RFCTL_RSC_DIS | IXGBE_RFCTL_NFSW_DIS |
4793                            IXGBE_RFCTL_NFSR_DIS);
4794         else
4795                 rfctl |= IXGBE_RFCTL_RSC_DIS;
4796         IXGBE_WRITE_REG(hw, IXGBE_RFCTL, rfctl);
4797
4798         /* If LRO hasn't been requested - we are done here. */
4799         if (!(rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4800                 return 0;
4801
4802         /* Set RDRXCTL.RSCACKC bit */
4803         rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
4804         rdrxctl |= IXGBE_RDRXCTL_RSCACKC;
4805         IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
4806
4807         /* Per-queue RSC configuration (chapter 4.6.7.2.2 of 82599 Spec) */
4808         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4809                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4810                 uint32_t srrctl =
4811                         IXGBE_READ_REG(hw, IXGBE_SRRCTL(rxq->reg_idx));
4812                 uint32_t rscctl =
4813                         IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxq->reg_idx));
4814                 uint32_t psrtype =
4815                         IXGBE_READ_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx));
4816                 uint32_t eitr =
4817                         IXGBE_READ_REG(hw, IXGBE_EITR(rxq->reg_idx));
4818
4819                 /*
4820                  * ixgbe PMD doesn't support header-split at the moment.
4821                  *
4822                  * Following the 4.6.7.2.1 chapter of the 82599/x540
4823                  * Spec if RSC is enabled the SRRCTL[n].BSIZEHEADER
4824                  * should be configured even if header split is not
4825                  * enabled. We will configure it 128 bytes following the
4826                  * recommendation in the spec.
4827                  */
4828                 srrctl &= ~IXGBE_SRRCTL_BSIZEHDR_MASK;
4829                 srrctl |= (128 << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
4830                                             IXGBE_SRRCTL_BSIZEHDR_MASK;
4831
4832                 /*
4833                  * TODO: Consider setting the Receive Descriptor Minimum
4834                  * Threshold Size for an RSC case. This is not an obviously
4835                  * beneficiary option but the one worth considering...
4836                  */
4837
4838                 rscctl |= IXGBE_RSCCTL_RSCEN;
4839                 rscctl |= ixgbe_get_rscctl_maxdesc(rxq->mb_pool);
4840                 psrtype |= IXGBE_PSRTYPE_TCPHDR;
4841
4842                 /*
4843                  * RSC: Set ITR interval corresponding to 2K ints/s.
4844                  *
4845                  * Full-sized RSC aggregations for a 10Gb/s link will
4846                  * arrive at about 20K aggregation/s rate.
4847                  *
4848                  * 2K inst/s rate will make only 10% of the
4849                  * aggregations to be closed due to the interrupt timer
4850                  * expiration for a streaming at wire-speed case.
4851                  *
4852                  * For a sparse streaming case this setting will yield
4853                  * at most 500us latency for a single RSC aggregation.
4854                  */
4855                 eitr &= ~IXGBE_EITR_ITR_INT_MASK;
4856                 eitr |= IXGBE_EITR_INTERVAL_US(IXGBE_QUEUE_ITR_INTERVAL_DEFAULT);
4857                 eitr |= IXGBE_EITR_CNT_WDIS;
4858
4859                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
4860                 IXGBE_WRITE_REG(hw, IXGBE_RSCCTL(rxq->reg_idx), rscctl);
4861                 IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx), psrtype);
4862                 IXGBE_WRITE_REG(hw, IXGBE_EITR(rxq->reg_idx), eitr);
4863
4864                 /*
4865                  * RSC requires the mapping of the queue to the
4866                  * interrupt vector.
4867                  */
4868                 ixgbe_set_ivar(dev, rxq->reg_idx, i, 0);
4869         }
4870
4871         dev->data->lro = 1;
4872
4873         PMD_INIT_LOG(DEBUG, "enabling LRO mode");
4874
4875         return 0;
4876 }
4877
4878 /*
4879  * Initializes Receive Unit.
4880  */
4881 int __attribute__((cold))
4882 ixgbe_dev_rx_init(struct rte_eth_dev *dev)
4883 {
4884         struct ixgbe_hw     *hw;
4885         struct ixgbe_rx_queue *rxq;
4886         uint64_t bus_addr;
4887         uint32_t rxctrl;
4888         uint32_t fctrl;
4889         uint32_t hlreg0;
4890         uint32_t maxfrs;
4891         uint32_t srrctl;
4892         uint32_t rdrxctl;
4893         uint32_t rxcsum;
4894         uint16_t buf_size;
4895         uint16_t i;
4896         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4897         int rc;
4898
4899         PMD_INIT_FUNC_TRACE();
4900         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4901
4902         /*
4903          * Make sure receives are disabled while setting
4904          * up the RX context (registers, descriptor rings, etc.).
4905          */
4906         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4907         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl & ~IXGBE_RXCTRL_RXEN);
4908
4909         /* Enable receipt of broadcasted frames */
4910         fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
4911         fctrl |= IXGBE_FCTRL_BAM;
4912         fctrl |= IXGBE_FCTRL_DPF;
4913         fctrl |= IXGBE_FCTRL_PMCF;
4914         IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
4915
4916         /*
4917          * Configure CRC stripping, if any.
4918          */
4919         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4920         if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4921                 hlreg0 &= ~IXGBE_HLREG0_RXCRCSTRP;
4922         else
4923                 hlreg0 |= IXGBE_HLREG0_RXCRCSTRP;
4924
4925         /*
4926          * Configure jumbo frame support, if any.
4927          */
4928         if (rx_conf->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
4929                 hlreg0 |= IXGBE_HLREG0_JUMBOEN;
4930                 maxfrs = IXGBE_READ_REG(hw, IXGBE_MAXFRS);
4931                 maxfrs &= 0x0000FFFF;
4932                 maxfrs |= (rx_conf->max_rx_pkt_len << 16);
4933                 IXGBE_WRITE_REG(hw, IXGBE_MAXFRS, maxfrs);
4934         } else
4935                 hlreg0 &= ~IXGBE_HLREG0_JUMBOEN;
4936
4937         /*
4938          * If loopback mode is configured, set LPBK bit.
4939          */
4940         if (dev->data->dev_conf.lpbk_mode != 0) {
4941                 rc = ixgbe_check_supported_loopback_mode(dev);
4942                 if (rc < 0) {
4943                         PMD_INIT_LOG(ERR, "Unsupported loopback mode");
4944                         return rc;
4945                 }
4946                 hlreg0 |= IXGBE_HLREG0_LPBK;
4947         } else {
4948                 hlreg0 &= ~IXGBE_HLREG0_LPBK;
4949         }
4950
4951         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4952
4953         /*
4954          * Assume no header split and no VLAN strip support
4955          * on any Rx queue first .
4956          */
4957         rx_conf->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
4958         /* Setup RX queues */
4959         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4960                 rxq = dev->data->rx_queues[i];
4961
4962                 /*
4963                  * Reset crc_len in case it was changed after queue setup by a
4964                  * call to configure.
4965                  */
4966                 if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4967                         rxq->crc_len = RTE_ETHER_CRC_LEN;
4968                 else
4969                         rxq->crc_len = 0;
4970
4971                 /* Setup the Base and Length of the Rx Descriptor Rings */
4972                 bus_addr = rxq->rx_ring_phys_addr;
4973                 IXGBE_WRITE_REG(hw, IXGBE_RDBAL(rxq->reg_idx),
4974                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
4975                 IXGBE_WRITE_REG(hw, IXGBE_RDBAH(rxq->reg_idx),
4976                                 (uint32_t)(bus_addr >> 32));
4977                 IXGBE_WRITE_REG(hw, IXGBE_RDLEN(rxq->reg_idx),
4978                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
4979                 IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
4980                 IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), 0);
4981
4982                 /* Configure the SRRCTL register */
4983                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
4984
4985                 /* Set if packets are dropped when no descriptors available */
4986                 if (rxq->drop_en)
4987                         srrctl |= IXGBE_SRRCTL_DROP_EN;
4988
4989                 /*
4990                  * Configure the RX buffer size in the BSIZEPACKET field of
4991                  * the SRRCTL register of the queue.
4992                  * The value is in 1 KB resolution. Valid values can be from
4993                  * 1 KB to 16 KB.
4994                  */
4995                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
4996                         RTE_PKTMBUF_HEADROOM);
4997                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
4998                            IXGBE_SRRCTL_BSIZEPKT_MASK);
4999
5000                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
5001
5002                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5003                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5004
5005                 /* It adds dual VLAN length for supporting dual VLAN */
5006                 if (dev->data->dev_conf.rxmode.max_rx_pkt_len +
5007                                             2 * IXGBE_VLAN_TAG_SIZE > buf_size)
5008                         dev->data->scattered_rx = 1;
5009                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
5010                         rx_conf->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
5011         }
5012
5013         if (rx_conf->offloads & DEV_RX_OFFLOAD_SCATTER)
5014                 dev->data->scattered_rx = 1;
5015
5016         /*
5017          * Device configured with multiple RX queues.
5018          */
5019         ixgbe_dev_mq_rx_configure(dev);
5020
5021         /*
5022          * Setup the Checksum Register.
5023          * Disable Full-Packet Checksum which is mutually exclusive with RSS.
5024          * Enable IP/L4 checkum computation by hardware if requested to do so.
5025          */
5026         rxcsum = IXGBE_READ_REG(hw, IXGBE_RXCSUM);
5027         rxcsum |= IXGBE_RXCSUM_PCSD;
5028         if (rx_conf->offloads & DEV_RX_OFFLOAD_CHECKSUM)
5029                 rxcsum |= IXGBE_RXCSUM_IPPCSE;
5030         else
5031                 rxcsum &= ~IXGBE_RXCSUM_IPPCSE;
5032
5033         IXGBE_WRITE_REG(hw, IXGBE_RXCSUM, rxcsum);
5034
5035         if (hw->mac.type == ixgbe_mac_82599EB ||
5036             hw->mac.type == ixgbe_mac_X540) {
5037                 rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
5038                 if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
5039                         rdrxctl &= ~IXGBE_RDRXCTL_CRCSTRIP;
5040                 else
5041                         rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP;
5042                 rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE;
5043                 IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
5044         }
5045
5046         rc = ixgbe_set_rsc(dev);
5047         if (rc)
5048                 return rc;
5049
5050         ixgbe_set_rx_function(dev);
5051
5052         return 0;
5053 }
5054
5055 /*
5056  * Initializes Transmit Unit.
5057  */
5058 void __attribute__((cold))
5059 ixgbe_dev_tx_init(struct rte_eth_dev *dev)
5060 {
5061         struct ixgbe_hw     *hw;
5062         struct ixgbe_tx_queue *txq;
5063         uint64_t bus_addr;
5064         uint32_t hlreg0;
5065         uint32_t txctrl;
5066         uint16_t i;
5067
5068         PMD_INIT_FUNC_TRACE();
5069         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5070
5071         /* Enable TX CRC (checksum offload requirement) and hw padding
5072          * (TSO requirement)
5073          */
5074         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
5075         hlreg0 |= (IXGBE_HLREG0_TXCRCEN | IXGBE_HLREG0_TXPADEN);
5076         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
5077
5078         /* Setup the Base and Length of the Tx Descriptor Rings */
5079         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5080                 txq = dev->data->tx_queues[i];
5081
5082                 bus_addr = txq->tx_ring_phys_addr;
5083                 IXGBE_WRITE_REG(hw, IXGBE_TDBAL(txq->reg_idx),
5084                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5085                 IXGBE_WRITE_REG(hw, IXGBE_TDBAH(txq->reg_idx),
5086                                 (uint32_t)(bus_addr >> 32));
5087                 IXGBE_WRITE_REG(hw, IXGBE_TDLEN(txq->reg_idx),
5088                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5089                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5090                 IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5091                 IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5092
5093                 /*
5094                  * Disable Tx Head Writeback RO bit, since this hoses
5095                  * bookkeeping if things aren't delivered in order.
5096                  */
5097                 switch (hw->mac.type) {
5098                 case ixgbe_mac_82598EB:
5099                         txctrl = IXGBE_READ_REG(hw,
5100                                                 IXGBE_DCA_TXCTRL(txq->reg_idx));
5101                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5102                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL(txq->reg_idx),
5103                                         txctrl);
5104                         break;
5105
5106                 case ixgbe_mac_82599EB:
5107                 case ixgbe_mac_X540:
5108                 case ixgbe_mac_X550:
5109                 case ixgbe_mac_X550EM_x:
5110                 case ixgbe_mac_X550EM_a:
5111                 default:
5112                         txctrl = IXGBE_READ_REG(hw,
5113                                                 IXGBE_DCA_TXCTRL_82599(txq->reg_idx));
5114                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5115                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(txq->reg_idx),
5116                                         txctrl);
5117                         break;
5118                 }
5119         }
5120
5121         /* Device configured with multiple TX queues. */
5122         ixgbe_dev_mq_tx_configure(dev);
5123 }
5124
5125 /*
5126  * Check if requested loopback mode is supported
5127  */
5128 int
5129 ixgbe_check_supported_loopback_mode(struct rte_eth_dev *dev)
5130 {
5131         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5132
5133         if (dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_TX_RX)
5134                 if (hw->mac.type == ixgbe_mac_82599EB ||
5135                      hw->mac.type == ixgbe_mac_X540 ||
5136                      hw->mac.type == ixgbe_mac_X550 ||
5137                      hw->mac.type == ixgbe_mac_X550EM_x ||
5138                      hw->mac.type == ixgbe_mac_X550EM_a)
5139                         return 0;
5140
5141         return -ENOTSUP;
5142 }
5143
5144 /*
5145  * Set up link for 82599 loopback mode Tx->Rx.
5146  */
5147 static inline void __attribute__((cold))
5148 ixgbe_setup_loopback_link_82599(struct ixgbe_hw *hw)
5149 {
5150         PMD_INIT_FUNC_TRACE();
5151
5152         if (ixgbe_verify_lesm_fw_enabled_82599(hw)) {
5153                 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM) !=
5154                                 IXGBE_SUCCESS) {
5155                         PMD_INIT_LOG(ERR, "Could not enable loopback mode");
5156                         /* ignore error */
5157                         return;
5158                 }
5159         }
5160
5161         /* Restart link */
5162         IXGBE_WRITE_REG(hw,
5163                         IXGBE_AUTOC,
5164                         IXGBE_AUTOC_LMS_10G_LINK_NO_AN | IXGBE_AUTOC_FLU);
5165         ixgbe_reset_pipeline_82599(hw);
5166
5167         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
5168         msec_delay(50);
5169 }
5170
5171
5172 /*
5173  * Start Transmit and Receive Units.
5174  */
5175 int __attribute__((cold))
5176 ixgbe_dev_rxtx_start(struct rte_eth_dev *dev)
5177 {
5178         struct ixgbe_hw     *hw;
5179         struct ixgbe_tx_queue *txq;
5180         struct ixgbe_rx_queue *rxq;
5181         uint32_t txdctl;
5182         uint32_t dmatxctl;
5183         uint32_t rxctrl;
5184         uint16_t i;
5185         int ret = 0;
5186
5187         PMD_INIT_FUNC_TRACE();
5188         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5189
5190         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5191                 txq = dev->data->tx_queues[i];
5192                 /* Setup Transmit Threshold Registers */
5193                 txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5194                 txdctl |= txq->pthresh & 0x7F;
5195                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5196                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5197                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5198         }
5199
5200         if (hw->mac.type != ixgbe_mac_82598EB) {
5201                 dmatxctl = IXGBE_READ_REG(hw, IXGBE_DMATXCTL);
5202                 dmatxctl |= IXGBE_DMATXCTL_TE;
5203                 IXGBE_WRITE_REG(hw, IXGBE_DMATXCTL, dmatxctl);
5204         }
5205
5206         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5207                 txq = dev->data->tx_queues[i];
5208                 if (!txq->tx_deferred_start) {
5209                         ret = ixgbe_dev_tx_queue_start(dev, i);
5210                         if (ret < 0)
5211                                 return ret;
5212                 }
5213         }
5214
5215         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5216                 rxq = dev->data->rx_queues[i];
5217                 if (!rxq->rx_deferred_start) {
5218                         ret = ixgbe_dev_rx_queue_start(dev, i);
5219                         if (ret < 0)
5220                                 return ret;
5221                 }
5222         }
5223
5224         /* Enable Receive engine */
5225         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5226         if (hw->mac.type == ixgbe_mac_82598EB)
5227                 rxctrl |= IXGBE_RXCTRL_DMBYPS;
5228         rxctrl |= IXGBE_RXCTRL_RXEN;
5229         hw->mac.ops.enable_rx_dma(hw, rxctrl);
5230
5231         /* If loopback mode is enabled, set up the link accordingly */
5232         if (dev->data->dev_conf.lpbk_mode != 0) {
5233                 if (hw->mac.type == ixgbe_mac_82599EB)
5234                         ixgbe_setup_loopback_link_82599(hw);
5235                 else if (hw->mac.type == ixgbe_mac_X540 ||
5236                      hw->mac.type == ixgbe_mac_X550 ||
5237                      hw->mac.type == ixgbe_mac_X550EM_x ||
5238                      hw->mac.type == ixgbe_mac_X550EM_a)
5239                         ixgbe_setup_loopback_link_x540_x550(hw, true);
5240         }
5241
5242 #ifdef RTE_LIBRTE_SECURITY
5243         if ((dev->data->dev_conf.rxmode.offloads &
5244                         DEV_RX_OFFLOAD_SECURITY) ||
5245                 (dev->data->dev_conf.txmode.offloads &
5246                         DEV_TX_OFFLOAD_SECURITY)) {
5247                 ret = ixgbe_crypto_enable_ipsec(dev);
5248                 if (ret != 0) {
5249                         PMD_DRV_LOG(ERR,
5250                                     "ixgbe_crypto_enable_ipsec fails with %d.",
5251                                     ret);
5252                         return ret;
5253                 }
5254         }
5255 #endif
5256
5257         return 0;
5258 }
5259
5260 /*
5261  * Start Receive Units for specified queue.
5262  */
5263 int __attribute__((cold))
5264 ixgbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5265 {
5266         struct ixgbe_hw     *hw;
5267         struct ixgbe_rx_queue *rxq;
5268         uint32_t rxdctl;
5269         int poll_ms;
5270
5271         PMD_INIT_FUNC_TRACE();
5272         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5273
5274         rxq = dev->data->rx_queues[rx_queue_id];
5275
5276         /* Allocate buffers for descriptor rings */
5277         if (ixgbe_alloc_rx_queue_mbufs(rxq) != 0) {
5278                 PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
5279                              rx_queue_id);
5280                 return -1;
5281         }
5282         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5283         rxdctl |= IXGBE_RXDCTL_ENABLE;
5284         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5285
5286         /* Wait until RX Enable ready */
5287         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5288         do {
5289                 rte_delay_ms(1);
5290                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5291         } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5292         if (!poll_ms)
5293                 PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", rx_queue_id);
5294         rte_wmb();
5295         IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
5296         IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
5297         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5298
5299         return 0;
5300 }
5301
5302 /*
5303  * Stop Receive Units for specified queue.
5304  */
5305 int __attribute__((cold))
5306 ixgbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5307 {
5308         struct ixgbe_hw     *hw;
5309         struct ixgbe_adapter *adapter = dev->data->dev_private;
5310         struct ixgbe_rx_queue *rxq;
5311         uint32_t rxdctl;
5312         int poll_ms;
5313
5314         PMD_INIT_FUNC_TRACE();
5315         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5316
5317         rxq = dev->data->rx_queues[rx_queue_id];
5318
5319         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5320         rxdctl &= ~IXGBE_RXDCTL_ENABLE;
5321         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5322
5323         /* Wait until RX Enable bit clear */
5324         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5325         do {
5326                 rte_delay_ms(1);
5327                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5328         } while (--poll_ms && (rxdctl & IXGBE_RXDCTL_ENABLE));
5329         if (!poll_ms)
5330                 PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d", rx_queue_id);
5331
5332         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5333
5334         ixgbe_rx_queue_release_mbufs(rxq);
5335         ixgbe_reset_rx_queue(adapter, rxq);
5336         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5337
5338         return 0;
5339 }
5340
5341
5342 /*
5343  * Start Transmit Units for specified queue.
5344  */
5345 int __attribute__((cold))
5346 ixgbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5347 {
5348         struct ixgbe_hw     *hw;
5349         struct ixgbe_tx_queue *txq;
5350         uint32_t txdctl;
5351         int poll_ms;
5352
5353         PMD_INIT_FUNC_TRACE();
5354         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5355
5356         txq = dev->data->tx_queues[tx_queue_id];
5357         IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5358         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5359         txdctl |= IXGBE_TXDCTL_ENABLE;
5360         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5361
5362         /* Wait until TX Enable ready */
5363         if (hw->mac.type == ixgbe_mac_82599EB) {
5364                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5365                 do {
5366                         rte_delay_ms(1);
5367                         txdctl = IXGBE_READ_REG(hw,
5368                                 IXGBE_TXDCTL(txq->reg_idx));
5369                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5370                 if (!poll_ms)
5371                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d",
5372                                 tx_queue_id);
5373         }
5374         rte_wmb();
5375         IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5376         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5377
5378         return 0;
5379 }
5380
5381 /*
5382  * Stop Transmit Units for specified queue.
5383  */
5384 int __attribute__((cold))
5385 ixgbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5386 {
5387         struct ixgbe_hw     *hw;
5388         struct ixgbe_tx_queue *txq;
5389         uint32_t txdctl;
5390         uint32_t txtdh, txtdt;
5391         int poll_ms;
5392
5393         PMD_INIT_FUNC_TRACE();
5394         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5395
5396         txq = dev->data->tx_queues[tx_queue_id];
5397
5398         /* Wait until TX queue is empty */
5399         if (hw->mac.type == ixgbe_mac_82599EB) {
5400                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5401                 do {
5402                         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5403                         txtdh = IXGBE_READ_REG(hw,
5404                                                IXGBE_TDH(txq->reg_idx));
5405                         txtdt = IXGBE_READ_REG(hw,
5406                                                IXGBE_TDT(txq->reg_idx));
5407                 } while (--poll_ms && (txtdh != txtdt));
5408                 if (!poll_ms)
5409                         PMD_INIT_LOG(ERR,
5410                                 "Tx Queue %d is not empty when stopping.",
5411                                 tx_queue_id);
5412         }
5413
5414         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5415         txdctl &= ~IXGBE_TXDCTL_ENABLE;
5416         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5417
5418         /* Wait until TX Enable bit clear */
5419         if (hw->mac.type == ixgbe_mac_82599EB) {
5420                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5421                 do {
5422                         rte_delay_ms(1);
5423                         txdctl = IXGBE_READ_REG(hw,
5424                                                 IXGBE_TXDCTL(txq->reg_idx));
5425                 } while (--poll_ms && (txdctl & IXGBE_TXDCTL_ENABLE));
5426                 if (!poll_ms)
5427                         PMD_INIT_LOG(ERR, "Could not disable Tx Queue %d",
5428                                 tx_queue_id);
5429         }
5430
5431         if (txq->ops != NULL) {
5432                 txq->ops->release_mbufs(txq);
5433                 txq->ops->reset(txq);
5434         }
5435         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5436
5437         return 0;
5438 }
5439
5440 void
5441 ixgbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5442         struct rte_eth_rxq_info *qinfo)
5443 {
5444         struct ixgbe_rx_queue *rxq;
5445
5446         rxq = dev->data->rx_queues[queue_id];
5447
5448         qinfo->mp = rxq->mb_pool;
5449         qinfo->scattered_rx = dev->data->scattered_rx;
5450         qinfo->nb_desc = rxq->nb_rx_desc;
5451
5452         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
5453         qinfo->conf.rx_drop_en = rxq->drop_en;
5454         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
5455         qinfo->conf.offloads = rxq->offloads;
5456 }
5457
5458 void
5459 ixgbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5460         struct rte_eth_txq_info *qinfo)
5461 {
5462         struct ixgbe_tx_queue *txq;
5463
5464         txq = dev->data->tx_queues[queue_id];
5465
5466         qinfo->nb_desc = txq->nb_tx_desc;
5467
5468         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
5469         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
5470         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
5471
5472         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
5473         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
5474         qinfo->conf.offloads = txq->offloads;
5475         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
5476 }
5477
5478 /*
5479  * [VF] Initializes Receive Unit.
5480  */
5481 int __attribute__((cold))
5482 ixgbevf_dev_rx_init(struct rte_eth_dev *dev)
5483 {
5484         struct ixgbe_hw     *hw;
5485         struct ixgbe_rx_queue *rxq;
5486         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
5487         uint64_t bus_addr;
5488         uint32_t srrctl, psrtype = 0;
5489         uint16_t buf_size;
5490         uint16_t i;
5491         int ret;
5492
5493         PMD_INIT_FUNC_TRACE();
5494         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5495
5496         if (rte_is_power_of_2(dev->data->nb_rx_queues) == 0) {
5497                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5498                         "it should be power of 2");
5499                 return -1;
5500         }
5501
5502         if (dev->data->nb_rx_queues > hw->mac.max_rx_queues) {
5503                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5504                         "it should be equal to or less than %d",
5505                         hw->mac.max_rx_queues);
5506                 return -1;
5507         }
5508
5509         /*
5510          * When the VF driver issues a IXGBE_VF_RESET request, the PF driver
5511          * disables the VF receipt of packets if the PF MTU is > 1500.
5512          * This is done to deal with 82599 limitations that imposes
5513          * the PF and all VFs to share the same MTU.
5514          * Then, the PF driver enables again the VF receipt of packet when
5515          * the VF driver issues a IXGBE_VF_SET_LPE request.
5516          * In the meantime, the VF device cannot be used, even if the VF driver
5517          * and the Guest VM network stack are ready to accept packets with a
5518          * size up to the PF MTU.
5519          * As a work-around to this PF behaviour, force the call to
5520          * ixgbevf_rlpml_set_vf even if jumbo frames are not used. This way,
5521          * VF packets received can work in all cases.
5522          */
5523         ixgbevf_rlpml_set_vf(hw,
5524                 (uint16_t)dev->data->dev_conf.rxmode.max_rx_pkt_len);
5525
5526         /*
5527          * Assume no header split and no VLAN strip support
5528          * on any Rx queue first .
5529          */
5530         rxmode->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
5531         /* Setup RX queues */
5532         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5533                 rxq = dev->data->rx_queues[i];
5534
5535                 /* Allocate buffers for descriptor rings */
5536                 ret = ixgbe_alloc_rx_queue_mbufs(rxq);
5537                 if (ret)
5538                         return ret;
5539
5540                 /* Setup the Base and Length of the Rx Descriptor Rings */
5541                 bus_addr = rxq->rx_ring_phys_addr;
5542
5543                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(i),
5544                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5545                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(i),
5546                                 (uint32_t)(bus_addr >> 32));
5547                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(i),
5548                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
5549                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(i), 0);
5550                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), 0);
5551
5552
5553                 /* Configure the SRRCTL register */
5554                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
5555
5556                 /* Set if packets are dropped when no descriptors available */
5557                 if (rxq->drop_en)
5558                         srrctl |= IXGBE_SRRCTL_DROP_EN;
5559
5560                 /*
5561                  * Configure the RX buffer size in the BSIZEPACKET field of
5562                  * the SRRCTL register of the queue.
5563                  * The value is in 1 KB resolution. Valid values can be from
5564                  * 1 KB to 16 KB.
5565                  */
5566                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
5567                         RTE_PKTMBUF_HEADROOM);
5568                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
5569                            IXGBE_SRRCTL_BSIZEPKT_MASK);
5570
5571                 /*
5572                  * VF modification to write virtual function SRRCTL register
5573                  */
5574                 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(i), srrctl);
5575
5576                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5577                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5578
5579                 if (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ||
5580                     /* It adds dual VLAN length for supporting dual VLAN */
5581                     (rxmode->max_rx_pkt_len +
5582                                 2 * IXGBE_VLAN_TAG_SIZE) > buf_size) {
5583                         if (!dev->data->scattered_rx)
5584                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
5585                         dev->data->scattered_rx = 1;
5586                 }
5587
5588                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
5589                         rxmode->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
5590         }
5591
5592         /* Set RQPL for VF RSS according to max Rx queue */
5593         psrtype |= (dev->data->nb_rx_queues >> 1) <<
5594                 IXGBE_PSRTYPE_RQPL_SHIFT;
5595         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
5596
5597         ixgbe_set_rx_function(dev);
5598
5599         return 0;
5600 }
5601
5602 /*
5603  * [VF] Initializes Transmit Unit.
5604  */
5605 void __attribute__((cold))
5606 ixgbevf_dev_tx_init(struct rte_eth_dev *dev)
5607 {
5608         struct ixgbe_hw     *hw;
5609         struct ixgbe_tx_queue *txq;
5610         uint64_t bus_addr;
5611         uint32_t txctrl;
5612         uint16_t i;
5613
5614         PMD_INIT_FUNC_TRACE();
5615         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5616
5617         /* Setup the Base and Length of the Tx Descriptor Rings */
5618         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5619                 txq = dev->data->tx_queues[i];
5620                 bus_addr = txq->tx_ring_phys_addr;
5621                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(i),
5622                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5623                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(i),
5624                                 (uint32_t)(bus_addr >> 32));
5625                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(i),
5626                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5627                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5628                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(i), 0);
5629                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(i), 0);
5630
5631                 /*
5632                  * Disable Tx Head Writeback RO bit, since this hoses
5633                  * bookkeeping if things aren't delivered in order.
5634                  */
5635                 txctrl = IXGBE_READ_REG(hw,
5636                                 IXGBE_VFDCA_TXCTRL(i));
5637                 txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5638                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(i),
5639                                 txctrl);
5640         }
5641 }
5642
5643 /*
5644  * [VF] Start Transmit and Receive Units.
5645  */
5646 void __attribute__((cold))
5647 ixgbevf_dev_rxtx_start(struct rte_eth_dev *dev)
5648 {
5649         struct ixgbe_hw     *hw;
5650         struct ixgbe_tx_queue *txq;
5651         struct ixgbe_rx_queue *rxq;
5652         uint32_t txdctl;
5653         uint32_t rxdctl;
5654         uint16_t i;
5655         int poll_ms;
5656
5657         PMD_INIT_FUNC_TRACE();
5658         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5659
5660         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5661                 txq = dev->data->tx_queues[i];
5662                 /* Setup Transmit Threshold Registers */
5663                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5664                 txdctl |= txq->pthresh & 0x7F;
5665                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5666                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5667                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5668         }
5669
5670         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5671
5672                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5673                 txdctl |= IXGBE_TXDCTL_ENABLE;
5674                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5675
5676                 poll_ms = 10;
5677                 /* Wait until TX Enable ready */
5678                 do {
5679                         rte_delay_ms(1);
5680                         txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5681                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5682                 if (!poll_ms)
5683                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d", i);
5684         }
5685         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5686
5687                 rxq = dev->data->rx_queues[i];
5688
5689                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5690                 rxdctl |= IXGBE_RXDCTL_ENABLE;
5691                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(i), rxdctl);
5692
5693                 /* Wait until RX Enable ready */
5694                 poll_ms = 10;
5695                 do {
5696                         rte_delay_ms(1);
5697                         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5698                 } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5699                 if (!poll_ms)
5700                         PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", i);
5701                 rte_wmb();
5702                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), rxq->nb_rx_desc - 1);
5703
5704         }
5705 }
5706
5707 int
5708 ixgbe_rss_conf_init(struct ixgbe_rte_flow_rss_conf *out,
5709                     const struct rte_flow_action_rss *in)
5710 {
5711         if (in->key_len > RTE_DIM(out->key) ||
5712             in->queue_num > RTE_DIM(out->queue))
5713                 return -EINVAL;
5714         out->conf = (struct rte_flow_action_rss){
5715                 .func = in->func,
5716                 .level = in->level,
5717                 .types = in->types,
5718                 .key_len = in->key_len,
5719                 .queue_num = in->queue_num,
5720                 .key = memcpy(out->key, in->key, in->key_len),
5721                 .queue = memcpy(out->queue, in->queue,
5722                                 sizeof(*in->queue) * in->queue_num),
5723         };
5724         return 0;
5725 }
5726
5727 int
5728 ixgbe_action_rss_same(const struct rte_flow_action_rss *comp,
5729                       const struct rte_flow_action_rss *with)
5730 {
5731         return (comp->func == with->func &&
5732                 comp->level == with->level &&
5733                 comp->types == with->types &&
5734                 comp->key_len == with->key_len &&
5735                 comp->queue_num == with->queue_num &&
5736                 !memcmp(comp->key, with->key, with->key_len) &&
5737                 !memcmp(comp->queue, with->queue,
5738                         sizeof(*with->queue) * with->queue_num));
5739 }
5740
5741 int
5742 ixgbe_config_rss_filter(struct rte_eth_dev *dev,
5743                 struct ixgbe_rte_flow_rss_conf *conf, bool add)
5744 {
5745         struct ixgbe_hw *hw;
5746         uint32_t reta;
5747         uint16_t i;
5748         uint16_t j;
5749         uint16_t sp_reta_size;
5750         uint32_t reta_reg;
5751         struct rte_eth_rss_conf rss_conf = {
5752                 .rss_key = conf->conf.key_len ?
5753                         (void *)(uintptr_t)conf->conf.key : NULL,
5754                 .rss_key_len = conf->conf.key_len,
5755                 .rss_hf = conf->conf.types,
5756         };
5757         struct ixgbe_filter_info *filter_info =
5758                 IXGBE_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5759
5760         PMD_INIT_FUNC_TRACE();
5761         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5762
5763         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
5764
5765         if (!add) {
5766                 if (ixgbe_action_rss_same(&filter_info->rss_info.conf,
5767                                           &conf->conf)) {
5768                         ixgbe_rss_disable(dev);
5769                         memset(&filter_info->rss_info, 0,
5770                                 sizeof(struct ixgbe_rte_flow_rss_conf));
5771                         return 0;
5772                 }
5773                 return -EINVAL;
5774         }
5775
5776         if (filter_info->rss_info.conf.queue_num)
5777                 return -EINVAL;
5778         /* Fill in redirection table
5779          * The byte-swap is needed because NIC registers are in
5780          * little-endian order.
5781          */
5782         reta = 0;
5783         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
5784                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
5785
5786                 if (j == conf->conf.queue_num)
5787                         j = 0;
5788                 reta = (reta << 8) | conf->conf.queue[j];
5789                 if ((i & 3) == 3)
5790                         IXGBE_WRITE_REG(hw, reta_reg,
5791                                         rte_bswap32(reta));
5792         }
5793
5794         /* Configure the RSS key and the RSS protocols used to compute
5795          * the RSS hash of input packets.
5796          */
5797         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
5798                 ixgbe_rss_disable(dev);
5799                 return 0;
5800         }
5801         if (rss_conf.rss_key == NULL)
5802                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
5803         ixgbe_hw_rss_hash_set(hw, &rss_conf);
5804
5805         if (ixgbe_rss_conf_init(&filter_info->rss_info, &conf->conf))
5806                 return -EINVAL;
5807
5808         return 0;
5809 }
5810
5811 /* Stubs needed for linkage when CONFIG_RTE_IXGBE_INC_VECTOR is set to 'n' */
5812 __rte_weak int
5813 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
5814 {
5815         return -1;
5816 }
5817
5818 __rte_weak uint16_t
5819 ixgbe_recv_pkts_vec(
5820         void __rte_unused *rx_queue,
5821         struct rte_mbuf __rte_unused **rx_pkts,
5822         uint16_t __rte_unused nb_pkts)
5823 {
5824         return 0;
5825 }
5826
5827 __rte_weak uint16_t
5828 ixgbe_recv_scattered_pkts_vec(
5829         void __rte_unused *rx_queue,
5830         struct rte_mbuf __rte_unused **rx_pkts,
5831         uint16_t __rte_unused nb_pkts)
5832 {
5833         return 0;
5834 }
5835
5836 __rte_weak int
5837 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue __rte_unused *rxq)
5838 {
5839         return -1;
5840 }