drivers/net: update Rx RSS hash offload capabilities
[dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <sys/queue.h>
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdarg.h>
14 #include <unistd.h>
15 #include <inttypes.h>
16
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_interrupts.h>
23 #include <rte_pci.h>
24 #include <rte_memory.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_malloc.h>
34 #include <rte_mbuf.h>
35 #include <rte_ether.h>
36 #include <rte_ethdev_driver.h>
37 #include <rte_prefetch.h>
38 #include <rte_udp.h>
39 #include <rte_tcp.h>
40 #include <rte_sctp.h>
41 #include <rte_string_fns.h>
42 #include <rte_errno.h>
43 #include <rte_ip.h>
44 #include <rte_net.h>
45
46 #include "ixgbe_logs.h"
47 #include "base/ixgbe_api.h"
48 #include "base/ixgbe_vf.h"
49 #include "ixgbe_ethdev.h"
50 #include "base/ixgbe_dcb.h"
51 #include "base/ixgbe_common.h"
52 #include "ixgbe_rxtx.h"
53
54 #ifdef RTE_LIBRTE_IEEE1588
55 #define IXGBE_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
56 #else
57 #define IXGBE_TX_IEEE1588_TMST 0
58 #endif
59 /* Bit Mask to indicate what bits required for building TX context */
60 #define IXGBE_TX_OFFLOAD_MASK (                  \
61                 PKT_TX_OUTER_IPV6 |              \
62                 PKT_TX_OUTER_IPV4 |              \
63                 PKT_TX_IPV6 |                    \
64                 PKT_TX_IPV4 |                    \
65                 PKT_TX_VLAN_PKT |                \
66                 PKT_TX_IP_CKSUM |                \
67                 PKT_TX_L4_MASK |                 \
68                 PKT_TX_TCP_SEG |                 \
69                 PKT_TX_MACSEC |                  \
70                 PKT_TX_OUTER_IP_CKSUM |          \
71                 PKT_TX_SEC_OFFLOAD |     \
72                 IXGBE_TX_IEEE1588_TMST)
73
74 #define IXGBE_TX_OFFLOAD_NOTSUP_MASK \
75                 (PKT_TX_OFFLOAD_MASK ^ IXGBE_TX_OFFLOAD_MASK)
76
77 #if 1
78 #define RTE_PMD_USE_PREFETCH
79 #endif
80
81 #ifdef RTE_PMD_USE_PREFETCH
82 /*
83  * Prefetch a cache line into all cache levels.
84  */
85 #define rte_ixgbe_prefetch(p)   rte_prefetch0(p)
86 #else
87 #define rte_ixgbe_prefetch(p)   do {} while (0)
88 #endif
89
90 #ifdef RTE_IXGBE_INC_VECTOR
91 uint16_t ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
92                                     uint16_t nb_pkts);
93 #endif
94
95 /*********************************************************************
96  *
97  *  TX functions
98  *
99  **********************************************************************/
100
101 /*
102  * Check for descriptors with their DD bit set and free mbufs.
103  * Return the total number of buffers freed.
104  */
105 static __rte_always_inline int
106 ixgbe_tx_free_bufs(struct ixgbe_tx_queue *txq)
107 {
108         struct ixgbe_tx_entry *txep;
109         uint32_t status;
110         int i, nb_free = 0;
111         struct rte_mbuf *m, *free[RTE_IXGBE_TX_MAX_FREE_BUF_SZ];
112
113         /* check DD bit on threshold descriptor */
114         status = txq->tx_ring[txq->tx_next_dd].wb.status;
115         if (!(status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD)))
116                 return 0;
117
118         /*
119          * first buffer to free from S/W ring is at index
120          * tx_next_dd - (tx_rs_thresh-1)
121          */
122         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
123
124         for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
125                 /* free buffers one at a time */
126                 m = rte_pktmbuf_prefree_seg(txep->mbuf);
127                 txep->mbuf = NULL;
128
129                 if (unlikely(m == NULL))
130                         continue;
131
132                 if (nb_free >= RTE_IXGBE_TX_MAX_FREE_BUF_SZ ||
133                     (nb_free > 0 && m->pool != free[0]->pool)) {
134                         rte_mempool_put_bulk(free[0]->pool,
135                                              (void **)free, nb_free);
136                         nb_free = 0;
137                 }
138
139                 free[nb_free++] = m;
140         }
141
142         if (nb_free > 0)
143                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
144
145         /* buffers were freed, update counters */
146         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
147         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
148         if (txq->tx_next_dd >= txq->nb_tx_desc)
149                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
150
151         return txq->tx_rs_thresh;
152 }
153
154 /* Populate 4 descriptors with data from 4 mbufs */
155 static inline void
156 tx4(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
157 {
158         uint64_t buf_dma_addr;
159         uint32_t pkt_len;
160         int i;
161
162         for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
163                 buf_dma_addr = rte_mbuf_data_iova(*pkts);
164                 pkt_len = (*pkts)->data_len;
165
166                 /* write data to descriptor */
167                 txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
168
169                 txdp->read.cmd_type_len =
170                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
171
172                 txdp->read.olinfo_status =
173                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
174
175                 rte_prefetch0(&(*pkts)->pool);
176         }
177 }
178
179 /* Populate 1 descriptor with data from 1 mbuf */
180 static inline void
181 tx1(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
182 {
183         uint64_t buf_dma_addr;
184         uint32_t pkt_len;
185
186         buf_dma_addr = rte_mbuf_data_iova(*pkts);
187         pkt_len = (*pkts)->data_len;
188
189         /* write data to descriptor */
190         txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
191         txdp->read.cmd_type_len =
192                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
193         txdp->read.olinfo_status =
194                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
195         rte_prefetch0(&(*pkts)->pool);
196 }
197
198 /*
199  * Fill H/W descriptor ring with mbuf data.
200  * Copy mbuf pointers to the S/W ring.
201  */
202 static inline void
203 ixgbe_tx_fill_hw_ring(struct ixgbe_tx_queue *txq, struct rte_mbuf **pkts,
204                       uint16_t nb_pkts)
205 {
206         volatile union ixgbe_adv_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
207         struct ixgbe_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
208         const int N_PER_LOOP = 4;
209         const int N_PER_LOOP_MASK = N_PER_LOOP-1;
210         int mainpart, leftover;
211         int i, j;
212
213         /*
214          * Process most of the packets in chunks of N pkts.  Any
215          * leftover packets will get processed one at a time.
216          */
217         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
218         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
219         for (i = 0; i < mainpart; i += N_PER_LOOP) {
220                 /* Copy N mbuf pointers to the S/W ring */
221                 for (j = 0; j < N_PER_LOOP; ++j) {
222                         (txep + i + j)->mbuf = *(pkts + i + j);
223                 }
224                 tx4(txdp + i, pkts + i);
225         }
226
227         if (unlikely(leftover > 0)) {
228                 for (i = 0; i < leftover; ++i) {
229                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
230                         tx1(txdp + mainpart + i, pkts + mainpart + i);
231                 }
232         }
233 }
234
235 static inline uint16_t
236 tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
237              uint16_t nb_pkts)
238 {
239         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
240         volatile union ixgbe_adv_tx_desc *tx_r = txq->tx_ring;
241         uint16_t n = 0;
242
243         /*
244          * Begin scanning the H/W ring for done descriptors when the
245          * number of available descriptors drops below tx_free_thresh.  For
246          * each done descriptor, free the associated buffer.
247          */
248         if (txq->nb_tx_free < txq->tx_free_thresh)
249                 ixgbe_tx_free_bufs(txq);
250
251         /* Only use descriptors that are available */
252         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
253         if (unlikely(nb_pkts == 0))
254                 return 0;
255
256         /* Use exactly nb_pkts descriptors */
257         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
258
259         /*
260          * At this point, we know there are enough descriptors in the
261          * ring to transmit all the packets.  This assumes that each
262          * mbuf contains a single segment, and that no new offloads
263          * are expected, which would require a new context descriptor.
264          */
265
266         /*
267          * See if we're going to wrap-around. If so, handle the top
268          * of the descriptor ring first, then do the bottom.  If not,
269          * the processing looks just like the "bottom" part anyway...
270          */
271         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
272                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
273                 ixgbe_tx_fill_hw_ring(txq, tx_pkts, n);
274
275                 /*
276                  * We know that the last descriptor in the ring will need to
277                  * have its RS bit set because tx_rs_thresh has to be
278                  * a divisor of the ring size
279                  */
280                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
281                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
282                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
283
284                 txq->tx_tail = 0;
285         }
286
287         /* Fill H/W descriptor ring with mbuf data */
288         ixgbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
289         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
290
291         /*
292          * Determine if RS bit should be set
293          * This is what we actually want:
294          *   if ((txq->tx_tail - 1) >= txq->tx_next_rs)
295          * but instead of subtracting 1 and doing >=, we can just do
296          * greater than without subtracting.
297          */
298         if (txq->tx_tail > txq->tx_next_rs) {
299                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
300                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
301                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
302                                                 txq->tx_rs_thresh);
303                 if (txq->tx_next_rs >= txq->nb_tx_desc)
304                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
305         }
306
307         /*
308          * Check for wrap-around. This would only happen if we used
309          * up to the last descriptor in the ring, no more, no less.
310          */
311         if (txq->tx_tail >= txq->nb_tx_desc)
312                 txq->tx_tail = 0;
313
314         /* update tail pointer */
315         rte_wmb();
316         IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, txq->tx_tail);
317
318         return nb_pkts;
319 }
320
321 uint16_t
322 ixgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
323                        uint16_t nb_pkts)
324 {
325         uint16_t nb_tx;
326
327         /* Try to transmit at least chunks of TX_MAX_BURST pkts */
328         if (likely(nb_pkts <= RTE_PMD_IXGBE_TX_MAX_BURST))
329                 return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
330
331         /* transmit more than the max burst, in chunks of TX_MAX_BURST */
332         nb_tx = 0;
333         while (nb_pkts) {
334                 uint16_t ret, n;
335
336                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_TX_MAX_BURST);
337                 ret = tx_xmit_pkts(tx_queue, &(tx_pkts[nb_tx]), n);
338                 nb_tx = (uint16_t)(nb_tx + ret);
339                 nb_pkts = (uint16_t)(nb_pkts - ret);
340                 if (ret < n)
341                         break;
342         }
343
344         return nb_tx;
345 }
346
347 #ifdef RTE_IXGBE_INC_VECTOR
348 static uint16_t
349 ixgbe_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
350                     uint16_t nb_pkts)
351 {
352         uint16_t nb_tx = 0;
353         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
354
355         while (nb_pkts) {
356                 uint16_t ret, num;
357
358                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
359                 ret = ixgbe_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
360                                                  num);
361                 nb_tx += ret;
362                 nb_pkts -= ret;
363                 if (ret < num)
364                         break;
365         }
366
367         return nb_tx;
368 }
369 #endif
370
371 static inline void
372 ixgbe_set_xmit_ctx(struct ixgbe_tx_queue *txq,
373                 volatile struct ixgbe_adv_tx_context_desc *ctx_txd,
374                 uint64_t ol_flags, union ixgbe_tx_offload tx_offload,
375                 __rte_unused uint64_t *mdata)
376 {
377         uint32_t type_tucmd_mlhl;
378         uint32_t mss_l4len_idx = 0;
379         uint32_t ctx_idx;
380         uint32_t vlan_macip_lens;
381         union ixgbe_tx_offload tx_offload_mask;
382         uint32_t seqnum_seed = 0;
383
384         ctx_idx = txq->ctx_curr;
385         tx_offload_mask.data[0] = 0;
386         tx_offload_mask.data[1] = 0;
387         type_tucmd_mlhl = 0;
388
389         /* Specify which HW CTX to upload. */
390         mss_l4len_idx |= (ctx_idx << IXGBE_ADVTXD_IDX_SHIFT);
391
392         if (ol_flags & PKT_TX_VLAN_PKT) {
393                 tx_offload_mask.vlan_tci |= ~0;
394         }
395
396         /* check if TCP segmentation required for this packet */
397         if (ol_flags & PKT_TX_TCP_SEG) {
398                 /* implies IP cksum in IPv4 */
399                 if (ol_flags & PKT_TX_IP_CKSUM)
400                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4 |
401                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
402                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
403                 else
404                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV6 |
405                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
406                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
407
408                 tx_offload_mask.l2_len |= ~0;
409                 tx_offload_mask.l3_len |= ~0;
410                 tx_offload_mask.l4_len |= ~0;
411                 tx_offload_mask.tso_segsz |= ~0;
412                 mss_l4len_idx |= tx_offload.tso_segsz << IXGBE_ADVTXD_MSS_SHIFT;
413                 mss_l4len_idx |= tx_offload.l4_len << IXGBE_ADVTXD_L4LEN_SHIFT;
414         } else { /* no TSO, check if hardware checksum is needed */
415                 if (ol_flags & PKT_TX_IP_CKSUM) {
416                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4;
417                         tx_offload_mask.l2_len |= ~0;
418                         tx_offload_mask.l3_len |= ~0;
419                 }
420
421                 switch (ol_flags & PKT_TX_L4_MASK) {
422                 case PKT_TX_UDP_CKSUM:
423                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP |
424                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
425                         mss_l4len_idx |= sizeof(struct rte_udp_hdr)
426                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
427                         tx_offload_mask.l2_len |= ~0;
428                         tx_offload_mask.l3_len |= ~0;
429                         break;
430                 case PKT_TX_TCP_CKSUM:
431                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP |
432                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
433                         mss_l4len_idx |= sizeof(struct rte_tcp_hdr)
434                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
435                         tx_offload_mask.l2_len |= ~0;
436                         tx_offload_mask.l3_len |= ~0;
437                         break;
438                 case PKT_TX_SCTP_CKSUM:
439                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP |
440                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
441                         mss_l4len_idx |= sizeof(struct rte_sctp_hdr)
442                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
443                         tx_offload_mask.l2_len |= ~0;
444                         tx_offload_mask.l3_len |= ~0;
445                         break;
446                 default:
447                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_RSV |
448                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
449                         break;
450                 }
451         }
452
453         if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
454                 tx_offload_mask.outer_l2_len |= ~0;
455                 tx_offload_mask.outer_l3_len |= ~0;
456                 tx_offload_mask.l2_len |= ~0;
457                 seqnum_seed |= tx_offload.outer_l3_len
458                                << IXGBE_ADVTXD_OUTER_IPLEN;
459                 seqnum_seed |= tx_offload.l2_len
460                                << IXGBE_ADVTXD_TUNNEL_LEN;
461         }
462 #ifdef RTE_LIBRTE_SECURITY
463         if (ol_flags & PKT_TX_SEC_OFFLOAD) {
464                 union ixgbe_crypto_tx_desc_md *md =
465                                 (union ixgbe_crypto_tx_desc_md *)mdata;
466                 seqnum_seed |=
467                         (IXGBE_ADVTXD_IPSEC_SA_INDEX_MASK & md->sa_idx);
468                 type_tucmd_mlhl |= md->enc ?
469                                 (IXGBE_ADVTXD_TUCMD_IPSEC_TYPE_ESP |
470                                 IXGBE_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN) : 0;
471                 type_tucmd_mlhl |=
472                         (md->pad_len & IXGBE_ADVTXD_IPSEC_ESP_LEN_MASK);
473                 tx_offload_mask.sa_idx |= ~0;
474                 tx_offload_mask.sec_pad_len |= ~0;
475         }
476 #endif
477
478         txq->ctx_cache[ctx_idx].flags = ol_flags;
479         txq->ctx_cache[ctx_idx].tx_offload.data[0]  =
480                 tx_offload_mask.data[0] & tx_offload.data[0];
481         txq->ctx_cache[ctx_idx].tx_offload.data[1]  =
482                 tx_offload_mask.data[1] & tx_offload.data[1];
483         txq->ctx_cache[ctx_idx].tx_offload_mask    = tx_offload_mask;
484
485         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
486         vlan_macip_lens = tx_offload.l3_len;
487         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
488                 vlan_macip_lens |= (tx_offload.outer_l2_len <<
489                                     IXGBE_ADVTXD_MACLEN_SHIFT);
490         else
491                 vlan_macip_lens |= (tx_offload.l2_len <<
492                                     IXGBE_ADVTXD_MACLEN_SHIFT);
493         vlan_macip_lens |= ((uint32_t)tx_offload.vlan_tci << IXGBE_ADVTXD_VLAN_SHIFT);
494         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
495         ctx_txd->mss_l4len_idx   = rte_cpu_to_le_32(mss_l4len_idx);
496         ctx_txd->seqnum_seed     = seqnum_seed;
497 }
498
499 /*
500  * Check which hardware context can be used. Use the existing match
501  * or create a new context descriptor.
502  */
503 static inline uint32_t
504 what_advctx_update(struct ixgbe_tx_queue *txq, uint64_t flags,
505                    union ixgbe_tx_offload tx_offload)
506 {
507         /* If match with the current used context */
508         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
509                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
510                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
511                      & tx_offload.data[0])) &&
512                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
513                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
514                      & tx_offload.data[1]))))
515                 return txq->ctx_curr;
516
517         /* What if match with the next context  */
518         txq->ctx_curr ^= 1;
519         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
520                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
521                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
522                      & tx_offload.data[0])) &&
523                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
524                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
525                      & tx_offload.data[1]))))
526                 return txq->ctx_curr;
527
528         /* Mismatch, use the previous context */
529         return IXGBE_CTX_NUM;
530 }
531
532 static inline uint32_t
533 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
534 {
535         uint32_t tmp = 0;
536
537         if ((ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM)
538                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
539         if (ol_flags & PKT_TX_IP_CKSUM)
540                 tmp |= IXGBE_ADVTXD_POPTS_IXSM;
541         if (ol_flags & PKT_TX_TCP_SEG)
542                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
543         return tmp;
544 }
545
546 static inline uint32_t
547 tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
548 {
549         uint32_t cmdtype = 0;
550
551         if (ol_flags & PKT_TX_VLAN_PKT)
552                 cmdtype |= IXGBE_ADVTXD_DCMD_VLE;
553         if (ol_flags & PKT_TX_TCP_SEG)
554                 cmdtype |= IXGBE_ADVTXD_DCMD_TSE;
555         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
556                 cmdtype |= (1 << IXGBE_ADVTXD_OUTERIPCS_SHIFT);
557         if (ol_flags & PKT_TX_MACSEC)
558                 cmdtype |= IXGBE_ADVTXD_MAC_LINKSEC;
559         return cmdtype;
560 }
561
562 /* Default RS bit threshold values */
563 #ifndef DEFAULT_TX_RS_THRESH
564 #define DEFAULT_TX_RS_THRESH   32
565 #endif
566 #ifndef DEFAULT_TX_FREE_THRESH
567 #define DEFAULT_TX_FREE_THRESH 32
568 #endif
569
570 /* Reset transmit descriptors after they have been used */
571 static inline int
572 ixgbe_xmit_cleanup(struct ixgbe_tx_queue *txq)
573 {
574         struct ixgbe_tx_entry *sw_ring = txq->sw_ring;
575         volatile union ixgbe_adv_tx_desc *txr = txq->tx_ring;
576         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
577         uint16_t nb_tx_desc = txq->nb_tx_desc;
578         uint16_t desc_to_clean_to;
579         uint16_t nb_tx_to_clean;
580         uint32_t status;
581
582         /* Determine the last descriptor needing to be cleaned */
583         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
584         if (desc_to_clean_to >= nb_tx_desc)
585                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
586
587         /* Check to make sure the last descriptor to clean is done */
588         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
589         status = txr[desc_to_clean_to].wb.status;
590         if (!(status & rte_cpu_to_le_32(IXGBE_TXD_STAT_DD))) {
591                 PMD_TX_FREE_LOG(DEBUG,
592                                 "TX descriptor %4u is not done"
593                                 "(port=%d queue=%d)",
594                                 desc_to_clean_to,
595                                 txq->port_id, txq->queue_id);
596                 /* Failed to clean any descriptors, better luck next time */
597                 return -(1);
598         }
599
600         /* Figure out how many descriptors will be cleaned */
601         if (last_desc_cleaned > desc_to_clean_to)
602                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
603                                                         desc_to_clean_to);
604         else
605                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
606                                                 last_desc_cleaned);
607
608         PMD_TX_FREE_LOG(DEBUG,
609                         "Cleaning %4u TX descriptors: %4u to %4u "
610                         "(port=%d queue=%d)",
611                         nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
612                         txq->port_id, txq->queue_id);
613
614         /*
615          * The last descriptor to clean is done, so that means all the
616          * descriptors from the last descriptor that was cleaned
617          * up to the last descriptor with the RS bit set
618          * are done. Only reset the threshold descriptor.
619          */
620         txr[desc_to_clean_to].wb.status = 0;
621
622         /* Update the txq to reflect the last descriptor that was cleaned */
623         txq->last_desc_cleaned = desc_to_clean_to;
624         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
625
626         /* No Error */
627         return 0;
628 }
629
630 uint16_t
631 ixgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
632                 uint16_t nb_pkts)
633 {
634         struct ixgbe_tx_queue *txq;
635         struct ixgbe_tx_entry *sw_ring;
636         struct ixgbe_tx_entry *txe, *txn;
637         volatile union ixgbe_adv_tx_desc *txr;
638         volatile union ixgbe_adv_tx_desc *txd, *txp;
639         struct rte_mbuf     *tx_pkt;
640         struct rte_mbuf     *m_seg;
641         uint64_t buf_dma_addr;
642         uint32_t olinfo_status;
643         uint32_t cmd_type_len;
644         uint32_t pkt_len;
645         uint16_t slen;
646         uint64_t ol_flags;
647         uint16_t tx_id;
648         uint16_t tx_last;
649         uint16_t nb_tx;
650         uint16_t nb_used;
651         uint64_t tx_ol_req;
652         uint32_t ctx = 0;
653         uint32_t new_ctx;
654         union ixgbe_tx_offload tx_offload;
655 #ifdef RTE_LIBRTE_SECURITY
656         uint8_t use_ipsec;
657 #endif
658
659         tx_offload.data[0] = 0;
660         tx_offload.data[1] = 0;
661         txq = tx_queue;
662         sw_ring = txq->sw_ring;
663         txr     = txq->tx_ring;
664         tx_id   = txq->tx_tail;
665         txe = &sw_ring[tx_id];
666         txp = NULL;
667
668         /* Determine if the descriptor ring needs to be cleaned. */
669         if (txq->nb_tx_free < txq->tx_free_thresh)
670                 ixgbe_xmit_cleanup(txq);
671
672         rte_prefetch0(&txe->mbuf->pool);
673
674         /* TX loop */
675         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
676                 new_ctx = 0;
677                 tx_pkt = *tx_pkts++;
678                 pkt_len = tx_pkt->pkt_len;
679
680                 /*
681                  * Determine how many (if any) context descriptors
682                  * are needed for offload functionality.
683                  */
684                 ol_flags = tx_pkt->ol_flags;
685 #ifdef RTE_LIBRTE_SECURITY
686                 use_ipsec = txq->using_ipsec && (ol_flags & PKT_TX_SEC_OFFLOAD);
687 #endif
688
689                 /* If hardware offload required */
690                 tx_ol_req = ol_flags & IXGBE_TX_OFFLOAD_MASK;
691                 if (tx_ol_req) {
692                         tx_offload.l2_len = tx_pkt->l2_len;
693                         tx_offload.l3_len = tx_pkt->l3_len;
694                         tx_offload.l4_len = tx_pkt->l4_len;
695                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
696                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
697                         tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
698                         tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
699 #ifdef RTE_LIBRTE_SECURITY
700                         if (use_ipsec) {
701                                 union ixgbe_crypto_tx_desc_md *ipsec_mdata =
702                                         (union ixgbe_crypto_tx_desc_md *)
703                                                         &tx_pkt->udata64;
704                                 tx_offload.sa_idx = ipsec_mdata->sa_idx;
705                                 tx_offload.sec_pad_len = ipsec_mdata->pad_len;
706                         }
707 #endif
708
709                         /* If new context need be built or reuse the exist ctx. */
710                         ctx = what_advctx_update(txq, tx_ol_req,
711                                 tx_offload);
712                         /* Only allocate context descriptor if required*/
713                         new_ctx = (ctx == IXGBE_CTX_NUM);
714                         ctx = txq->ctx_curr;
715                 }
716
717                 /*
718                  * Keep track of how many descriptors are used this loop
719                  * This will always be the number of segments + the number of
720                  * Context descriptors required to transmit the packet
721                  */
722                 nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
723
724                 if (txp != NULL &&
725                                 nb_used + txq->nb_tx_used >= txq->tx_rs_thresh)
726                         /* set RS on the previous packet in the burst */
727                         txp->read.cmd_type_len |=
728                                 rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
729
730                 /*
731                  * The number of descriptors that must be allocated for a
732                  * packet is the number of segments of that packet, plus 1
733                  * Context Descriptor for the hardware offload, if any.
734                  * Determine the last TX descriptor to allocate in the TX ring
735                  * for the packet, starting from the current position (tx_id)
736                  * in the ring.
737                  */
738                 tx_last = (uint16_t) (tx_id + nb_used - 1);
739
740                 /* Circular ring */
741                 if (tx_last >= txq->nb_tx_desc)
742                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
743
744                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
745                            " tx_first=%u tx_last=%u",
746                            (unsigned) txq->port_id,
747                            (unsigned) txq->queue_id,
748                            (unsigned) pkt_len,
749                            (unsigned) tx_id,
750                            (unsigned) tx_last);
751
752                 /*
753                  * Make sure there are enough TX descriptors available to
754                  * transmit the entire packet.
755                  * nb_used better be less than or equal to txq->tx_rs_thresh
756                  */
757                 if (nb_used > txq->nb_tx_free) {
758                         PMD_TX_FREE_LOG(DEBUG,
759                                         "Not enough free TX descriptors "
760                                         "nb_used=%4u nb_free=%4u "
761                                         "(port=%d queue=%d)",
762                                         nb_used, txq->nb_tx_free,
763                                         txq->port_id, txq->queue_id);
764
765                         if (ixgbe_xmit_cleanup(txq) != 0) {
766                                 /* Could not clean any descriptors */
767                                 if (nb_tx == 0)
768                                         return 0;
769                                 goto end_of_tx;
770                         }
771
772                         /* nb_used better be <= txq->tx_rs_thresh */
773                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
774                                 PMD_TX_FREE_LOG(DEBUG,
775                                         "The number of descriptors needed to "
776                                         "transmit the packet exceeds the "
777                                         "RS bit threshold. This will impact "
778                                         "performance."
779                                         "nb_used=%4u nb_free=%4u "
780                                         "tx_rs_thresh=%4u. "
781                                         "(port=%d queue=%d)",
782                                         nb_used, txq->nb_tx_free,
783                                         txq->tx_rs_thresh,
784                                         txq->port_id, txq->queue_id);
785                                 /*
786                                  * Loop here until there are enough TX
787                                  * descriptors or until the ring cannot be
788                                  * cleaned.
789                                  */
790                                 while (nb_used > txq->nb_tx_free) {
791                                         if (ixgbe_xmit_cleanup(txq) != 0) {
792                                                 /*
793                                                  * Could not clean any
794                                                  * descriptors
795                                                  */
796                                                 if (nb_tx == 0)
797                                                         return 0;
798                                                 goto end_of_tx;
799                                         }
800                                 }
801                         }
802                 }
803
804                 /*
805                  * By now there are enough free TX descriptors to transmit
806                  * the packet.
807                  */
808
809                 /*
810                  * Set common flags of all TX Data Descriptors.
811                  *
812                  * The following bits must be set in all Data Descriptors:
813                  *   - IXGBE_ADVTXD_DTYP_DATA
814                  *   - IXGBE_ADVTXD_DCMD_DEXT
815                  *
816                  * The following bits must be set in the first Data Descriptor
817                  * and are ignored in the other ones:
818                  *   - IXGBE_ADVTXD_DCMD_IFCS
819                  *   - IXGBE_ADVTXD_MAC_1588
820                  *   - IXGBE_ADVTXD_DCMD_VLE
821                  *
822                  * The following bits must only be set in the last Data
823                  * Descriptor:
824                  *   - IXGBE_TXD_CMD_EOP
825                  *
826                  * The following bits can be set in any Data Descriptor, but
827                  * are only set in the last Data Descriptor:
828                  *   - IXGBE_TXD_CMD_RS
829                  */
830                 cmd_type_len = IXGBE_ADVTXD_DTYP_DATA |
831                         IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
832
833 #ifdef RTE_LIBRTE_IEEE1588
834                 if (ol_flags & PKT_TX_IEEE1588_TMST)
835                         cmd_type_len |= IXGBE_ADVTXD_MAC_1588;
836 #endif
837
838                 olinfo_status = 0;
839                 if (tx_ol_req) {
840
841                         if (ol_flags & PKT_TX_TCP_SEG) {
842                                 /* when TSO is on, paylen in descriptor is the
843                                  * not the packet len but the tcp payload len */
844                                 pkt_len -= (tx_offload.l2_len +
845                                         tx_offload.l3_len + tx_offload.l4_len);
846                         }
847
848                         /*
849                          * Setup the TX Advanced Context Descriptor if required
850                          */
851                         if (new_ctx) {
852                                 volatile struct ixgbe_adv_tx_context_desc *
853                                     ctx_txd;
854
855                                 ctx_txd = (volatile struct
856                                     ixgbe_adv_tx_context_desc *)
857                                     &txr[tx_id];
858
859                                 txn = &sw_ring[txe->next_id];
860                                 rte_prefetch0(&txn->mbuf->pool);
861
862                                 if (txe->mbuf != NULL) {
863                                         rte_pktmbuf_free_seg(txe->mbuf);
864                                         txe->mbuf = NULL;
865                                 }
866
867                                 ixgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
868                                         tx_offload, &tx_pkt->udata64);
869
870                                 txe->last_id = tx_last;
871                                 tx_id = txe->next_id;
872                                 txe = txn;
873                         }
874
875                         /*
876                          * Setup the TX Advanced Data Descriptor,
877                          * This path will go through
878                          * whatever new/reuse the context descriptor
879                          */
880                         cmd_type_len  |= tx_desc_ol_flags_to_cmdtype(ol_flags);
881                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
882                         olinfo_status |= ctx << IXGBE_ADVTXD_IDX_SHIFT;
883                 }
884
885                 olinfo_status |= (pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
886 #ifdef RTE_LIBRTE_SECURITY
887                 if (use_ipsec)
888                         olinfo_status |= IXGBE_ADVTXD_POPTS_IPSEC;
889 #endif
890
891                 m_seg = tx_pkt;
892                 do {
893                         txd = &txr[tx_id];
894                         txn = &sw_ring[txe->next_id];
895                         rte_prefetch0(&txn->mbuf->pool);
896
897                         if (txe->mbuf != NULL)
898                                 rte_pktmbuf_free_seg(txe->mbuf);
899                         txe->mbuf = m_seg;
900
901                         /*
902                          * Set up Transmit Data Descriptor.
903                          */
904                         slen = m_seg->data_len;
905                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
906                         txd->read.buffer_addr =
907                                 rte_cpu_to_le_64(buf_dma_addr);
908                         txd->read.cmd_type_len =
909                                 rte_cpu_to_le_32(cmd_type_len | slen);
910                         txd->read.olinfo_status =
911                                 rte_cpu_to_le_32(olinfo_status);
912                         txe->last_id = tx_last;
913                         tx_id = txe->next_id;
914                         txe = txn;
915                         m_seg = m_seg->next;
916                 } while (m_seg != NULL);
917
918                 /*
919                  * The last packet data descriptor needs End Of Packet (EOP)
920                  */
921                 cmd_type_len |= IXGBE_TXD_CMD_EOP;
922                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
923                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
924
925                 /* Set RS bit only on threshold packets' last descriptor */
926                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
927                         PMD_TX_FREE_LOG(DEBUG,
928                                         "Setting RS bit on TXD id="
929                                         "%4u (port=%d queue=%d)",
930                                         tx_last, txq->port_id, txq->queue_id);
931
932                         cmd_type_len |= IXGBE_TXD_CMD_RS;
933
934                         /* Update txq RS bit counters */
935                         txq->nb_tx_used = 0;
936                         txp = NULL;
937                 } else
938                         txp = txd;
939
940                 txd->read.cmd_type_len |= rte_cpu_to_le_32(cmd_type_len);
941         }
942
943 end_of_tx:
944         /* set RS on last packet in the burst */
945         if (txp != NULL)
946                 txp->read.cmd_type_len |= rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
947
948         rte_wmb();
949
950         /*
951          * Set the Transmit Descriptor Tail (TDT)
952          */
953         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
954                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
955                    (unsigned) tx_id, (unsigned) nb_tx);
956         IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
957         txq->tx_tail = tx_id;
958
959         return nb_tx;
960 }
961
962 /*********************************************************************
963  *
964  *  TX prep functions
965  *
966  **********************************************************************/
967 uint16_t
968 ixgbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
969 {
970         int i, ret;
971         uint64_t ol_flags;
972         struct rte_mbuf *m;
973         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
974
975         for (i = 0; i < nb_pkts; i++) {
976                 m = tx_pkts[i];
977                 ol_flags = m->ol_flags;
978
979                 /**
980                  * Check if packet meets requirements for number of segments
981                  *
982                  * NOTE: for ixgbe it's always (40 - WTHRESH) for both TSO and
983                  *       non-TSO
984                  */
985
986                 if (m->nb_segs > IXGBE_TX_MAX_SEG - txq->wthresh) {
987                         rte_errno = EINVAL;
988                         return i;
989                 }
990
991                 if (ol_flags & IXGBE_TX_OFFLOAD_NOTSUP_MASK) {
992                         rte_errno = ENOTSUP;
993                         return i;
994                 }
995
996 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
997                 ret = rte_validate_tx_offload(m);
998                 if (ret != 0) {
999                         rte_errno = -ret;
1000                         return i;
1001                 }
1002 #endif
1003                 ret = rte_net_intel_cksum_prepare(m);
1004                 if (ret != 0) {
1005                         rte_errno = -ret;
1006                         return i;
1007                 }
1008         }
1009
1010         return i;
1011 }
1012
1013 /*********************************************************************
1014  *
1015  *  RX functions
1016  *
1017  **********************************************************************/
1018
1019 #define IXGBE_PACKET_TYPE_ETHER                         0X00
1020 #define IXGBE_PACKET_TYPE_IPV4                          0X01
1021 #define IXGBE_PACKET_TYPE_IPV4_TCP                      0X11
1022 #define IXGBE_PACKET_TYPE_IPV4_UDP                      0X21
1023 #define IXGBE_PACKET_TYPE_IPV4_SCTP                     0X41
1024 #define IXGBE_PACKET_TYPE_IPV4_EXT                      0X03
1025 #define IXGBE_PACKET_TYPE_IPV4_EXT_TCP                  0X13
1026 #define IXGBE_PACKET_TYPE_IPV4_EXT_UDP                  0X23
1027 #define IXGBE_PACKET_TYPE_IPV4_EXT_SCTP                 0X43
1028 #define IXGBE_PACKET_TYPE_IPV6                          0X04
1029 #define IXGBE_PACKET_TYPE_IPV6_TCP                      0X14
1030 #define IXGBE_PACKET_TYPE_IPV6_UDP                      0X24
1031 #define IXGBE_PACKET_TYPE_IPV6_SCTP                     0X44
1032 #define IXGBE_PACKET_TYPE_IPV6_EXT                      0X0C
1033 #define IXGBE_PACKET_TYPE_IPV6_EXT_TCP                  0X1C
1034 #define IXGBE_PACKET_TYPE_IPV6_EXT_UDP                  0X2C
1035 #define IXGBE_PACKET_TYPE_IPV6_EXT_SCTP                 0X4C
1036 #define IXGBE_PACKET_TYPE_IPV4_IPV6                     0X05
1037 #define IXGBE_PACKET_TYPE_IPV4_IPV6_TCP                 0X15
1038 #define IXGBE_PACKET_TYPE_IPV4_IPV6_UDP                 0X25
1039 #define IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP                0X45
1040 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6                 0X07
1041 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP             0X17
1042 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP             0X27
1043 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP            0X47
1044 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT                 0X0D
1045 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP             0X1D
1046 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP             0X2D
1047 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP            0X4D
1048 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT             0X0F
1049 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP         0X1F
1050 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP         0X2F
1051 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP        0X4F
1052
1053 #define IXGBE_PACKET_TYPE_NVGRE                   0X00
1054 #define IXGBE_PACKET_TYPE_NVGRE_IPV4              0X01
1055 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP          0X11
1056 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP          0X21
1057 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP         0X41
1058 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT          0X03
1059 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP      0X13
1060 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP      0X23
1061 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP     0X43
1062 #define IXGBE_PACKET_TYPE_NVGRE_IPV6              0X04
1063 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP          0X14
1064 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP          0X24
1065 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP         0X44
1066 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT          0X0C
1067 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP      0X1C
1068 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP      0X2C
1069 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP     0X4C
1070 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6         0X05
1071 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP     0X15
1072 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP     0X25
1073 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT     0X0D
1074 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP 0X1D
1075 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP 0X2D
1076
1077 #define IXGBE_PACKET_TYPE_VXLAN                   0X80
1078 #define IXGBE_PACKET_TYPE_VXLAN_IPV4              0X81
1079 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP          0x91
1080 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP          0xA1
1081 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP         0xC1
1082 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT          0x83
1083 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP      0X93
1084 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP      0XA3
1085 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP     0XC3
1086 #define IXGBE_PACKET_TYPE_VXLAN_IPV6              0X84
1087 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP          0X94
1088 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP          0XA4
1089 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP         0XC4
1090 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT          0X8C
1091 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP      0X9C
1092 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP      0XAC
1093 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP     0XCC
1094 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6         0X85
1095 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP     0X95
1096 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP     0XA5
1097 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT     0X8D
1098 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP 0X9D
1099 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP 0XAD
1100
1101 /**
1102  * Use 2 different table for normal packet and tunnel packet
1103  * to save the space.
1104  */
1105 const uint32_t
1106         ptype_table[IXGBE_PACKET_TYPE_MAX] __rte_cache_aligned = {
1107         [IXGBE_PACKET_TYPE_ETHER] = RTE_PTYPE_L2_ETHER,
1108         [IXGBE_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
1109                 RTE_PTYPE_L3_IPV4,
1110         [IXGBE_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1111                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
1112         [IXGBE_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1113                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
1114         [IXGBE_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1115                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
1116         [IXGBE_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1117                 RTE_PTYPE_L3_IPV4_EXT,
1118         [IXGBE_PACKET_TYPE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1119                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
1120         [IXGBE_PACKET_TYPE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1121                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
1122         [IXGBE_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1123                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
1124         [IXGBE_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
1125                 RTE_PTYPE_L3_IPV6,
1126         [IXGBE_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1127                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
1128         [IXGBE_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1129                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
1130         [IXGBE_PACKET_TYPE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1131                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP,
1132         [IXGBE_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1133                 RTE_PTYPE_L3_IPV6_EXT,
1134         [IXGBE_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1135                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
1136         [IXGBE_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1137                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
1138         [IXGBE_PACKET_TYPE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1139                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_SCTP,
1140         [IXGBE_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1141                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1142                 RTE_PTYPE_INNER_L3_IPV6,
1143         [IXGBE_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1144                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1145                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1146         [IXGBE_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1147                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1148         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1149         [IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1150                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1151                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1152         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6] = RTE_PTYPE_L2_ETHER |
1153                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1154                 RTE_PTYPE_INNER_L3_IPV6,
1155         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1156                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1157                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1158         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1159                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1160                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1161         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1162                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1163                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1164         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1165                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1166                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1167         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1168                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1169                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1170         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1171                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1172                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1173         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1174                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1175                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1176         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1177                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1178                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1179         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1180                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1181                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1182         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1183                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1184                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1185         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP] =
1186                 RTE_PTYPE_L2_ETHER |
1187                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1188                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1189 };
1190
1191 const uint32_t
1192         ptype_table_tn[IXGBE_PACKET_TYPE_TN_MAX] __rte_cache_aligned = {
1193         [IXGBE_PACKET_TYPE_NVGRE] = RTE_PTYPE_L2_ETHER |
1194                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1195                 RTE_PTYPE_INNER_L2_ETHER,
1196         [IXGBE_PACKET_TYPE_NVGRE_IPV4] = RTE_PTYPE_L2_ETHER |
1197                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1198                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1199         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1200                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1201                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT,
1202         [IXGBE_PACKET_TYPE_NVGRE_IPV6] = RTE_PTYPE_L2_ETHER |
1203                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1204                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6,
1205         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1206                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1207                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1208         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1209                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1210                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT,
1211         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1212                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1213                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1214         [IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1215                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1216                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1217                 RTE_PTYPE_INNER_L4_TCP,
1218         [IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1219                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1220                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1221                 RTE_PTYPE_INNER_L4_TCP,
1222         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1223                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1224                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1225         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1226                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1227                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1228                 RTE_PTYPE_INNER_L4_TCP,
1229         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP] =
1230                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1231                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1232                 RTE_PTYPE_INNER_L3_IPV4,
1233         [IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1234                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1235                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1236                 RTE_PTYPE_INNER_L4_UDP,
1237         [IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1238                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1239                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1240                 RTE_PTYPE_INNER_L4_UDP,
1241         [IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1242                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1243                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1244                 RTE_PTYPE_INNER_L4_SCTP,
1245         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1246                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1247                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1248         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1249                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1250                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1251                 RTE_PTYPE_INNER_L4_UDP,
1252         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1253                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1254                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1255                 RTE_PTYPE_INNER_L4_SCTP,
1256         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP] =
1257                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1258                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1259                 RTE_PTYPE_INNER_L3_IPV4,
1260         [IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1261                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1262                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1263                 RTE_PTYPE_INNER_L4_SCTP,
1264         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1265                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1266                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1267                 RTE_PTYPE_INNER_L4_SCTP,
1268         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1269                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1270                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1271                 RTE_PTYPE_INNER_L4_TCP,
1272         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1273                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1274                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1275                 RTE_PTYPE_INNER_L4_UDP,
1276
1277         [IXGBE_PACKET_TYPE_VXLAN] = RTE_PTYPE_L2_ETHER |
1278                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1279                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER,
1280         [IXGBE_PACKET_TYPE_VXLAN_IPV4] = RTE_PTYPE_L2_ETHER |
1281                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1282                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1283                 RTE_PTYPE_INNER_L3_IPV4,
1284         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1285                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1286                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1287                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1288         [IXGBE_PACKET_TYPE_VXLAN_IPV6] = RTE_PTYPE_L2_ETHER |
1289                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1290                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1291                 RTE_PTYPE_INNER_L3_IPV6,
1292         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1293                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1294                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1295                 RTE_PTYPE_INNER_L3_IPV4,
1296         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1297                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1298                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1299                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1300         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1301                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1302                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1303                 RTE_PTYPE_INNER_L3_IPV4,
1304         [IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1305                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1306                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1307                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_TCP,
1308         [IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1309                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1310                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1311                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1312         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1313                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1314                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1315                 RTE_PTYPE_INNER_L3_IPV4,
1316         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1317                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1318                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1319                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1320         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP] =
1321                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1322                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1323                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1324         [IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1325                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1326                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1327                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_UDP,
1328         [IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1329                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1330                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1331                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1332         [IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1333                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1334                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1335                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1336         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1337                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1338                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1339                 RTE_PTYPE_INNER_L3_IPV4,
1340         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1341                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1342                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1343                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1344         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1345                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1346                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1347                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1348         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP] =
1349                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1350                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1351                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1352         [IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1353                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1354                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1355                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_SCTP,
1356         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1357                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1358                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1359                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_SCTP,
1360         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1361                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1362                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1363                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
1364         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1365                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1366                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1367                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
1368 };
1369
1370 /* @note: fix ixgbe_dev_supported_ptypes_get() if any change here. */
1371 static inline uint32_t
1372 ixgbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptype_mask)
1373 {
1374
1375         if (unlikely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1376                 return RTE_PTYPE_UNKNOWN;
1377
1378         pkt_info = (pkt_info >> IXGBE_PACKET_TYPE_SHIFT) & ptype_mask;
1379
1380         /* For tunnel packet */
1381         if (pkt_info & IXGBE_PACKET_TYPE_TUNNEL_BIT) {
1382                 /* Remove the tunnel bit to save the space. */
1383                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
1384                 return ptype_table_tn[pkt_info];
1385         }
1386
1387         /**
1388          * For x550, if it's not tunnel,
1389          * tunnel type bit should be set to 0.
1390          * Reuse 82599's mask.
1391          */
1392         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
1393
1394         return ptype_table[pkt_info];
1395 }
1396
1397 static inline uint64_t
1398 ixgbe_rxd_pkt_info_to_pkt_flags(uint16_t pkt_info)
1399 {
1400         static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
1401                 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
1402                 0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
1403                 PKT_RX_RSS_HASH, 0, 0, 0,
1404                 0, 0, 0,  PKT_RX_FDIR,
1405         };
1406 #ifdef RTE_LIBRTE_IEEE1588
1407         static uint64_t ip_pkt_etqf_map[8] = {
1408                 0, 0, 0, PKT_RX_IEEE1588_PTP,
1409                 0, 0, 0, 0,
1410         };
1411
1412         if (likely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1413                 return ip_pkt_etqf_map[(pkt_info >> 4) & 0X07] |
1414                                 ip_rss_types_map[pkt_info & 0XF];
1415         else
1416                 return ip_rss_types_map[pkt_info & 0XF];
1417 #else
1418         return ip_rss_types_map[pkt_info & 0XF];
1419 #endif
1420 }
1421
1422 static inline uint64_t
1423 rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
1424 {
1425         uint64_t pkt_flags;
1426
1427         /*
1428          * Check if VLAN present only.
1429          * Do not check whether L3/L4 rx checksum done by NIC or not,
1430          * That can be found from rte_eth_rxmode.offloads flag
1431          */
1432         pkt_flags = (rx_status & IXGBE_RXD_STAT_VP) ?  vlan_flags : 0;
1433
1434 #ifdef RTE_LIBRTE_IEEE1588
1435         if (rx_status & IXGBE_RXD_STAT_TMST)
1436                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
1437 #endif
1438         return pkt_flags;
1439 }
1440
1441 static inline uint64_t
1442 rx_desc_error_to_pkt_flags(uint32_t rx_status)
1443 {
1444         uint64_t pkt_flags;
1445
1446         /*
1447          * Bit 31: IPE, IPv4 checksum error
1448          * Bit 30: L4I, L4I integrity error
1449          */
1450         static uint64_t error_to_pkt_flags_map[4] = {
1451                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
1452                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
1453                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
1454                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
1455         };
1456         pkt_flags = error_to_pkt_flags_map[(rx_status >>
1457                 IXGBE_RXDADV_ERR_CKSUM_BIT) & IXGBE_RXDADV_ERR_CKSUM_MSK];
1458
1459         if ((rx_status & IXGBE_RXD_STAT_OUTERIPCS) &&
1460             (rx_status & IXGBE_RXDADV_ERR_OUTERIPER)) {
1461                 pkt_flags |= PKT_RX_EIP_CKSUM_BAD;
1462         }
1463
1464 #ifdef RTE_LIBRTE_SECURITY
1465         if (rx_status & IXGBE_RXD_STAT_SECP) {
1466                 pkt_flags |= PKT_RX_SEC_OFFLOAD;
1467                 if (rx_status & IXGBE_RXDADV_LNKSEC_ERROR_BAD_SIG)
1468                         pkt_flags |= PKT_RX_SEC_OFFLOAD_FAILED;
1469         }
1470 #endif
1471
1472         return pkt_flags;
1473 }
1474
1475 /*
1476  * LOOK_AHEAD defines how many desc statuses to check beyond the
1477  * current descriptor.
1478  * It must be a pound define for optimal performance.
1479  * Do not change the value of LOOK_AHEAD, as the ixgbe_rx_scan_hw_ring
1480  * function only works with LOOK_AHEAD=8.
1481  */
1482 #define LOOK_AHEAD 8
1483 #if (LOOK_AHEAD != 8)
1484 #error "PMD IXGBE: LOOK_AHEAD must be 8\n"
1485 #endif
1486 static inline int
1487 ixgbe_rx_scan_hw_ring(struct ixgbe_rx_queue *rxq)
1488 {
1489         volatile union ixgbe_adv_rx_desc *rxdp;
1490         struct ixgbe_rx_entry *rxep;
1491         struct rte_mbuf *mb;
1492         uint16_t pkt_len;
1493         uint64_t pkt_flags;
1494         int nb_dd;
1495         uint32_t s[LOOK_AHEAD];
1496         uint32_t pkt_info[LOOK_AHEAD];
1497         int i, j, nb_rx = 0;
1498         uint32_t status;
1499         uint64_t vlan_flags = rxq->vlan_flags;
1500
1501         /* get references to current descriptor and S/W ring entry */
1502         rxdp = &rxq->rx_ring[rxq->rx_tail];
1503         rxep = &rxq->sw_ring[rxq->rx_tail];
1504
1505         status = rxdp->wb.upper.status_error;
1506         /* check to make sure there is at least 1 packet to receive */
1507         if (!(status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1508                 return 0;
1509
1510         /*
1511          * Scan LOOK_AHEAD descriptors at a time to determine which descriptors
1512          * reference packets that are ready to be received.
1513          */
1514         for (i = 0; i < RTE_PMD_IXGBE_RX_MAX_BURST;
1515              i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
1516                 /* Read desc statuses backwards to avoid race condition */
1517                 for (j = 0; j < LOOK_AHEAD; j++)
1518                         s[j] = rte_le_to_cpu_32(rxdp[j].wb.upper.status_error);
1519
1520                 rte_smp_rmb();
1521
1522                 /* Compute how many status bits were set */
1523                 for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
1524                                 (s[nb_dd] & IXGBE_RXDADV_STAT_DD); nb_dd++)
1525                         ;
1526
1527                 for (j = 0; j < nb_dd; j++)
1528                         pkt_info[j] = rte_le_to_cpu_32(rxdp[j].wb.lower.
1529                                                        lo_dword.data);
1530
1531                 nb_rx += nb_dd;
1532
1533                 /* Translate descriptor info to mbuf format */
1534                 for (j = 0; j < nb_dd; ++j) {
1535                         mb = rxep[j].mbuf;
1536                         pkt_len = rte_le_to_cpu_16(rxdp[j].wb.upper.length) -
1537                                   rxq->crc_len;
1538                         mb->data_len = pkt_len;
1539                         mb->pkt_len = pkt_len;
1540                         mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].wb.upper.vlan);
1541
1542                         /* convert descriptor fields to rte mbuf flags */
1543                         pkt_flags = rx_desc_status_to_pkt_flags(s[j],
1544                                 vlan_flags);
1545                         pkt_flags |= rx_desc_error_to_pkt_flags(s[j]);
1546                         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags
1547                                         ((uint16_t)pkt_info[j]);
1548                         mb->ol_flags = pkt_flags;
1549                         mb->packet_type =
1550                                 ixgbe_rxd_pkt_info_to_pkt_type
1551                                         (pkt_info[j], rxq->pkt_type_mask);
1552
1553                         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1554                                 mb->hash.rss = rte_le_to_cpu_32(
1555                                     rxdp[j].wb.lower.hi_dword.rss);
1556                         else if (pkt_flags & PKT_RX_FDIR) {
1557                                 mb->hash.fdir.hash = rte_le_to_cpu_16(
1558                                     rxdp[j].wb.lower.hi_dword.csum_ip.csum) &
1559                                     IXGBE_ATR_HASH_MASK;
1560                                 mb->hash.fdir.id = rte_le_to_cpu_16(
1561                                     rxdp[j].wb.lower.hi_dword.csum_ip.ip_id);
1562                         }
1563                 }
1564
1565                 /* Move mbuf pointers from the S/W ring to the stage */
1566                 for (j = 0; j < LOOK_AHEAD; ++j) {
1567                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1568                 }
1569
1570                 /* stop if all requested packets could not be received */
1571                 if (nb_dd != LOOK_AHEAD)
1572                         break;
1573         }
1574
1575         /* clear software ring entries so we can cleanup correctly */
1576         for (i = 0; i < nb_rx; ++i) {
1577                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1578         }
1579
1580
1581         return nb_rx;
1582 }
1583
1584 static inline int
1585 ixgbe_rx_alloc_bufs(struct ixgbe_rx_queue *rxq, bool reset_mbuf)
1586 {
1587         volatile union ixgbe_adv_rx_desc *rxdp;
1588         struct ixgbe_rx_entry *rxep;
1589         struct rte_mbuf *mb;
1590         uint16_t alloc_idx;
1591         __le64 dma_addr;
1592         int diag, i;
1593
1594         /* allocate buffers in bulk directly into the S/W ring */
1595         alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
1596         rxep = &rxq->sw_ring[alloc_idx];
1597         diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
1598                                     rxq->rx_free_thresh);
1599         if (unlikely(diag != 0))
1600                 return -ENOMEM;
1601
1602         rxdp = &rxq->rx_ring[alloc_idx];
1603         for (i = 0; i < rxq->rx_free_thresh; ++i) {
1604                 /* populate the static rte mbuf fields */
1605                 mb = rxep[i].mbuf;
1606                 if (reset_mbuf) {
1607                         mb->port = rxq->port_id;
1608                 }
1609
1610                 rte_mbuf_refcnt_set(mb, 1);
1611                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1612
1613                 /* populate the descriptors */
1614                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1615                 rxdp[i].read.hdr_addr = 0;
1616                 rxdp[i].read.pkt_addr = dma_addr;
1617         }
1618
1619         /* update state of internal queue structure */
1620         rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
1621         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1622                 rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
1623
1624         /* no errors */
1625         return 0;
1626 }
1627
1628 static inline uint16_t
1629 ixgbe_rx_fill_from_stage(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
1630                          uint16_t nb_pkts)
1631 {
1632         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1633         int i;
1634
1635         /* how many packets are ready to return? */
1636         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1637
1638         /* copy mbuf pointers to the application's packet list */
1639         for (i = 0; i < nb_pkts; ++i)
1640                 rx_pkts[i] = stage[i];
1641
1642         /* update internal queue state */
1643         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1644         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1645
1646         return nb_pkts;
1647 }
1648
1649 static inline uint16_t
1650 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1651              uint16_t nb_pkts)
1652 {
1653         struct ixgbe_rx_queue *rxq = (struct ixgbe_rx_queue *)rx_queue;
1654         uint16_t nb_rx = 0;
1655
1656         /* Any previously recv'd pkts will be returned from the Rx stage */
1657         if (rxq->rx_nb_avail)
1658                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1659
1660         /* Scan the H/W ring for packets to receive */
1661         nb_rx = (uint16_t)ixgbe_rx_scan_hw_ring(rxq);
1662
1663         /* update internal queue state */
1664         rxq->rx_next_avail = 0;
1665         rxq->rx_nb_avail = nb_rx;
1666         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1667
1668         /* if required, allocate new buffers to replenish descriptors */
1669         if (rxq->rx_tail > rxq->rx_free_trigger) {
1670                 uint16_t cur_free_trigger = rxq->rx_free_trigger;
1671
1672                 if (ixgbe_rx_alloc_bufs(rxq, true) != 0) {
1673                         int i, j;
1674
1675                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1676                                    "queue_id=%u", (unsigned) rxq->port_id,
1677                                    (unsigned) rxq->queue_id);
1678
1679                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
1680                                 rxq->rx_free_thresh;
1681
1682                         /*
1683                          * Need to rewind any previous receives if we cannot
1684                          * allocate new buffers to replenish the old ones.
1685                          */
1686                         rxq->rx_nb_avail = 0;
1687                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1688                         for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
1689                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1690
1691                         return 0;
1692                 }
1693
1694                 /* update tail pointer */
1695                 rte_wmb();
1696                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
1697                                             cur_free_trigger);
1698         }
1699
1700         if (rxq->rx_tail >= rxq->nb_rx_desc)
1701                 rxq->rx_tail = 0;
1702
1703         /* received any packets this loop? */
1704         if (rxq->rx_nb_avail)
1705                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1706
1707         return 0;
1708 }
1709
1710 /* split requests into chunks of size RTE_PMD_IXGBE_RX_MAX_BURST */
1711 uint16_t
1712 ixgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
1713                            uint16_t nb_pkts)
1714 {
1715         uint16_t nb_rx;
1716
1717         if (unlikely(nb_pkts == 0))
1718                 return 0;
1719
1720         if (likely(nb_pkts <= RTE_PMD_IXGBE_RX_MAX_BURST))
1721                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1722
1723         /* request is relatively large, chunk it up */
1724         nb_rx = 0;
1725         while (nb_pkts) {
1726                 uint16_t ret, n;
1727
1728                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_RX_MAX_BURST);
1729                 ret = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1730                 nb_rx = (uint16_t)(nb_rx + ret);
1731                 nb_pkts = (uint16_t)(nb_pkts - ret);
1732                 if (ret < n)
1733                         break;
1734         }
1735
1736         return nb_rx;
1737 }
1738
1739 uint16_t
1740 ixgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1741                 uint16_t nb_pkts)
1742 {
1743         struct ixgbe_rx_queue *rxq;
1744         volatile union ixgbe_adv_rx_desc *rx_ring;
1745         volatile union ixgbe_adv_rx_desc *rxdp;
1746         struct ixgbe_rx_entry *sw_ring;
1747         struct ixgbe_rx_entry *rxe;
1748         struct rte_mbuf *rxm;
1749         struct rte_mbuf *nmb;
1750         union ixgbe_adv_rx_desc rxd;
1751         uint64_t dma_addr;
1752         uint32_t staterr;
1753         uint32_t pkt_info;
1754         uint16_t pkt_len;
1755         uint16_t rx_id;
1756         uint16_t nb_rx;
1757         uint16_t nb_hold;
1758         uint64_t pkt_flags;
1759         uint64_t vlan_flags;
1760
1761         nb_rx = 0;
1762         nb_hold = 0;
1763         rxq = rx_queue;
1764         rx_id = rxq->rx_tail;
1765         rx_ring = rxq->rx_ring;
1766         sw_ring = rxq->sw_ring;
1767         vlan_flags = rxq->vlan_flags;
1768         while (nb_rx < nb_pkts) {
1769                 /*
1770                  * The order of operations here is important as the DD status
1771                  * bit must not be read after any other descriptor fields.
1772                  * rx_ring and rxdp are pointing to volatile data so the order
1773                  * of accesses cannot be reordered by the compiler. If they were
1774                  * not volatile, they could be reordered which could lead to
1775                  * using invalid descriptor fields when read from rxd.
1776                  */
1777                 rxdp = &rx_ring[rx_id];
1778                 staterr = rxdp->wb.upper.status_error;
1779                 if (!(staterr & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1780                         break;
1781                 rxd = *rxdp;
1782
1783                 /*
1784                  * End of packet.
1785                  *
1786                  * If the IXGBE_RXDADV_STAT_EOP flag is not set, the RX packet
1787                  * is likely to be invalid and to be dropped by the various
1788                  * validation checks performed by the network stack.
1789                  *
1790                  * Allocate a new mbuf to replenish the RX ring descriptor.
1791                  * If the allocation fails:
1792                  *    - arrange for that RX descriptor to be the first one
1793                  *      being parsed the next time the receive function is
1794                  *      invoked [on the same queue].
1795                  *
1796                  *    - Stop parsing the RX ring and return immediately.
1797                  *
1798                  * This policy do not drop the packet received in the RX
1799                  * descriptor for which the allocation of a new mbuf failed.
1800                  * Thus, it allows that packet to be later retrieved if
1801                  * mbuf have been freed in the mean time.
1802                  * As a side effect, holding RX descriptors instead of
1803                  * systematically giving them back to the NIC may lead to
1804                  * RX ring exhaustion situations.
1805                  * However, the NIC can gracefully prevent such situations
1806                  * to happen by sending specific "back-pressure" flow control
1807                  * frames to its peer(s).
1808                  */
1809                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1810                            "ext_err_stat=0x%08x pkt_len=%u",
1811                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1812                            (unsigned) rx_id, (unsigned) staterr,
1813                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1814
1815                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1816                 if (nmb == NULL) {
1817                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1818                                    "queue_id=%u", (unsigned) rxq->port_id,
1819                                    (unsigned) rxq->queue_id);
1820                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1821                         break;
1822                 }
1823
1824                 nb_hold++;
1825                 rxe = &sw_ring[rx_id];
1826                 rx_id++;
1827                 if (rx_id == rxq->nb_rx_desc)
1828                         rx_id = 0;
1829
1830                 /* Prefetch next mbuf while processing current one. */
1831                 rte_ixgbe_prefetch(sw_ring[rx_id].mbuf);
1832
1833                 /*
1834                  * When next RX descriptor is on a cache-line boundary,
1835                  * prefetch the next 4 RX descriptors and the next 8 pointers
1836                  * to mbufs.
1837                  */
1838                 if ((rx_id & 0x3) == 0) {
1839                         rte_ixgbe_prefetch(&rx_ring[rx_id]);
1840                         rte_ixgbe_prefetch(&sw_ring[rx_id]);
1841                 }
1842
1843                 rxm = rxe->mbuf;
1844                 rxe->mbuf = nmb;
1845                 dma_addr =
1846                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1847                 rxdp->read.hdr_addr = 0;
1848                 rxdp->read.pkt_addr = dma_addr;
1849
1850                 /*
1851                  * Initialize the returned mbuf.
1852                  * 1) setup generic mbuf fields:
1853                  *    - number of segments,
1854                  *    - next segment,
1855                  *    - packet length,
1856                  *    - RX port identifier.
1857                  * 2) integrate hardware offload data, if any:
1858                  *    - RSS flag & hash,
1859                  *    - IP checksum flag,
1860                  *    - VLAN TCI, if any,
1861                  *    - error flags.
1862                  */
1863                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
1864                                       rxq->crc_len);
1865                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1866                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
1867                 rxm->nb_segs = 1;
1868                 rxm->next = NULL;
1869                 rxm->pkt_len = pkt_len;
1870                 rxm->data_len = pkt_len;
1871                 rxm->port = rxq->port_id;
1872
1873                 pkt_info = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1874                 /* Only valid if PKT_RX_VLAN set in pkt_flags */
1875                 rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
1876
1877                 pkt_flags = rx_desc_status_to_pkt_flags(staterr, vlan_flags);
1878                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1879                 pkt_flags = pkt_flags |
1880                         ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1881                 rxm->ol_flags = pkt_flags;
1882                 rxm->packet_type =
1883                         ixgbe_rxd_pkt_info_to_pkt_type(pkt_info,
1884                                                        rxq->pkt_type_mask);
1885
1886                 if (likely(pkt_flags & PKT_RX_RSS_HASH))
1887                         rxm->hash.rss = rte_le_to_cpu_32(
1888                                                 rxd.wb.lower.hi_dword.rss);
1889                 else if (pkt_flags & PKT_RX_FDIR) {
1890                         rxm->hash.fdir.hash = rte_le_to_cpu_16(
1891                                         rxd.wb.lower.hi_dword.csum_ip.csum) &
1892                                         IXGBE_ATR_HASH_MASK;
1893                         rxm->hash.fdir.id = rte_le_to_cpu_16(
1894                                         rxd.wb.lower.hi_dword.csum_ip.ip_id);
1895                 }
1896                 /*
1897                  * Store the mbuf address into the next entry of the array
1898                  * of returned packets.
1899                  */
1900                 rx_pkts[nb_rx++] = rxm;
1901         }
1902         rxq->rx_tail = rx_id;
1903
1904         /*
1905          * If the number of free RX descriptors is greater than the RX free
1906          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1907          * register.
1908          * Update the RDT with the value of the last processed RX descriptor
1909          * minus 1, to guarantee that the RDT register is never equal to the
1910          * RDH register, which creates a "full" ring situtation from the
1911          * hardware point of view...
1912          */
1913         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1914         if (nb_hold > rxq->rx_free_thresh) {
1915                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1916                            "nb_hold=%u nb_rx=%u",
1917                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1918                            (unsigned) rx_id, (unsigned) nb_hold,
1919                            (unsigned) nb_rx);
1920                 rx_id = (uint16_t) ((rx_id == 0) ?
1921                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1922                 IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1923                 nb_hold = 0;
1924         }
1925         rxq->nb_rx_hold = nb_hold;
1926         return nb_rx;
1927 }
1928
1929 /**
1930  * Detect an RSC descriptor.
1931  */
1932 static inline uint32_t
1933 ixgbe_rsc_count(union ixgbe_adv_rx_desc *rx)
1934 {
1935         return (rte_le_to_cpu_32(rx->wb.lower.lo_dword.data) &
1936                 IXGBE_RXDADV_RSCCNT_MASK) >> IXGBE_RXDADV_RSCCNT_SHIFT;
1937 }
1938
1939 /**
1940  * ixgbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
1941  *
1942  * Fill the following info in the HEAD buffer of the Rx cluster:
1943  *    - RX port identifier
1944  *    - hardware offload data, if any:
1945  *      - RSS flag & hash
1946  *      - IP checksum flag
1947  *      - VLAN TCI, if any
1948  *      - error flags
1949  * @head HEAD of the packet cluster
1950  * @desc HW descriptor to get data from
1951  * @rxq Pointer to the Rx queue
1952  */
1953 static inline void
1954 ixgbe_fill_cluster_head_buf(
1955         struct rte_mbuf *head,
1956         union ixgbe_adv_rx_desc *desc,
1957         struct ixgbe_rx_queue *rxq,
1958         uint32_t staterr)
1959 {
1960         uint32_t pkt_info;
1961         uint64_t pkt_flags;
1962
1963         head->port = rxq->port_id;
1964
1965         /* The vlan_tci field is only valid when PKT_RX_VLAN is
1966          * set in the pkt_flags field.
1967          */
1968         head->vlan_tci = rte_le_to_cpu_16(desc->wb.upper.vlan);
1969         pkt_info = rte_le_to_cpu_32(desc->wb.lower.lo_dword.data);
1970         pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
1971         pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
1972         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1973         head->ol_flags = pkt_flags;
1974         head->packet_type =
1975                 ixgbe_rxd_pkt_info_to_pkt_type(pkt_info, rxq->pkt_type_mask);
1976
1977         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1978                 head->hash.rss = rte_le_to_cpu_32(desc->wb.lower.hi_dword.rss);
1979         else if (pkt_flags & PKT_RX_FDIR) {
1980                 head->hash.fdir.hash =
1981                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.csum)
1982                                                           & IXGBE_ATR_HASH_MASK;
1983                 head->hash.fdir.id =
1984                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.ip_id);
1985         }
1986 }
1987
1988 /**
1989  * ixgbe_recv_pkts_lro - receive handler for and LRO case.
1990  *
1991  * @rx_queue Rx queue handle
1992  * @rx_pkts table of received packets
1993  * @nb_pkts size of rx_pkts table
1994  * @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
1995  *
1996  * Handles the Rx HW ring completions when RSC feature is configured. Uses an
1997  * additional ring of ixgbe_rsc_entry's that will hold the relevant RSC info.
1998  *
1999  * We use the same logic as in Linux and in FreeBSD ixgbe drivers:
2000  * 1) When non-EOP RSC completion arrives:
2001  *    a) Update the HEAD of the current RSC aggregation cluster with the new
2002  *       segment's data length.
2003  *    b) Set the "next" pointer of the current segment to point to the segment
2004  *       at the NEXTP index.
2005  *    c) Pass the HEAD of RSC aggregation cluster on to the next NEXTP entry
2006  *       in the sw_rsc_ring.
2007  * 2) When EOP arrives we just update the cluster's total length and offload
2008  *    flags and deliver the cluster up to the upper layers. In our case - put it
2009  *    in the rx_pkts table.
2010  *
2011  * Returns the number of received packets/clusters (according to the "bulk
2012  * receive" interface).
2013  */
2014 static inline uint16_t
2015 ixgbe_recv_pkts_lro(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
2016                     bool bulk_alloc)
2017 {
2018         struct ixgbe_rx_queue *rxq = rx_queue;
2019         volatile union ixgbe_adv_rx_desc *rx_ring = rxq->rx_ring;
2020         struct ixgbe_rx_entry *sw_ring = rxq->sw_ring;
2021         struct ixgbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
2022         uint16_t rx_id = rxq->rx_tail;
2023         uint16_t nb_rx = 0;
2024         uint16_t nb_hold = rxq->nb_rx_hold;
2025         uint16_t prev_id = rxq->rx_tail;
2026
2027         while (nb_rx < nb_pkts) {
2028                 bool eop;
2029                 struct ixgbe_rx_entry *rxe;
2030                 struct ixgbe_scattered_rx_entry *sc_entry;
2031                 struct ixgbe_scattered_rx_entry *next_sc_entry;
2032                 struct ixgbe_rx_entry *next_rxe = NULL;
2033                 struct rte_mbuf *first_seg;
2034                 struct rte_mbuf *rxm;
2035                 struct rte_mbuf *nmb = NULL;
2036                 union ixgbe_adv_rx_desc rxd;
2037                 uint16_t data_len;
2038                 uint16_t next_id;
2039                 volatile union ixgbe_adv_rx_desc *rxdp;
2040                 uint32_t staterr;
2041
2042 next_desc:
2043                 /*
2044                  * The code in this whole file uses the volatile pointer to
2045                  * ensure the read ordering of the status and the rest of the
2046                  * descriptor fields (on the compiler level only!!!). This is so
2047                  * UGLY - why not to just use the compiler barrier instead? DPDK
2048                  * even has the rte_compiler_barrier() for that.
2049                  *
2050                  * But most importantly this is just wrong because this doesn't
2051                  * ensure memory ordering in a general case at all. For
2052                  * instance, DPDK is supposed to work on Power CPUs where
2053                  * compiler barrier may just not be enough!
2054                  *
2055                  * I tried to write only this function properly to have a
2056                  * starting point (as a part of an LRO/RSC series) but the
2057                  * compiler cursed at me when I tried to cast away the
2058                  * "volatile" from rx_ring (yes, it's volatile too!!!). So, I'm
2059                  * keeping it the way it is for now.
2060                  *
2061                  * The code in this file is broken in so many other places and
2062                  * will just not work on a big endian CPU anyway therefore the
2063                  * lines below will have to be revisited together with the rest
2064                  * of the ixgbe PMD.
2065                  *
2066                  * TODO:
2067                  *    - Get rid of "volatile" and let the compiler do its job.
2068                  *    - Use the proper memory barrier (rte_rmb()) to ensure the
2069                  *      memory ordering below.
2070                  */
2071                 rxdp = &rx_ring[rx_id];
2072                 staterr = rte_le_to_cpu_32(rxdp->wb.upper.status_error);
2073
2074                 if (!(staterr & IXGBE_RXDADV_STAT_DD))
2075                         break;
2076
2077                 rxd = *rxdp;
2078
2079                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
2080                                   "staterr=0x%x data_len=%u",
2081                            rxq->port_id, rxq->queue_id, rx_id, staterr,
2082                            rte_le_to_cpu_16(rxd.wb.upper.length));
2083
2084                 if (!bulk_alloc) {
2085                         nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
2086                         if (nmb == NULL) {
2087                                 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed "
2088                                                   "port_id=%u queue_id=%u",
2089                                            rxq->port_id, rxq->queue_id);
2090
2091                                 rte_eth_devices[rxq->port_id].data->
2092                                                         rx_mbuf_alloc_failed++;
2093                                 break;
2094                         }
2095                 } else if (nb_hold > rxq->rx_free_thresh) {
2096                         uint16_t next_rdt = rxq->rx_free_trigger;
2097
2098                         if (!ixgbe_rx_alloc_bufs(rxq, false)) {
2099                                 rte_wmb();
2100                                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
2101                                                             next_rdt);
2102                                 nb_hold -= rxq->rx_free_thresh;
2103                         } else {
2104                                 PMD_RX_LOG(DEBUG, "RX bulk alloc failed "
2105                                                   "port_id=%u queue_id=%u",
2106                                            rxq->port_id, rxq->queue_id);
2107
2108                                 rte_eth_devices[rxq->port_id].data->
2109                                                         rx_mbuf_alloc_failed++;
2110                                 break;
2111                         }
2112                 }
2113
2114                 nb_hold++;
2115                 rxe = &sw_ring[rx_id];
2116                 eop = staterr & IXGBE_RXDADV_STAT_EOP;
2117
2118                 next_id = rx_id + 1;
2119                 if (next_id == rxq->nb_rx_desc)
2120                         next_id = 0;
2121
2122                 /* Prefetch next mbuf while processing current one. */
2123                 rte_ixgbe_prefetch(sw_ring[next_id].mbuf);
2124
2125                 /*
2126                  * When next RX descriptor is on a cache-line boundary,
2127                  * prefetch the next 4 RX descriptors and the next 4 pointers
2128                  * to mbufs.
2129                  */
2130                 if ((next_id & 0x3) == 0) {
2131                         rte_ixgbe_prefetch(&rx_ring[next_id]);
2132                         rte_ixgbe_prefetch(&sw_ring[next_id]);
2133                 }
2134
2135                 rxm = rxe->mbuf;
2136
2137                 if (!bulk_alloc) {
2138                         __le64 dma =
2139                           rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2140                         /*
2141                          * Update RX descriptor with the physical address of the
2142                          * new data buffer of the new allocated mbuf.
2143                          */
2144                         rxe->mbuf = nmb;
2145
2146                         rxm->data_off = RTE_PKTMBUF_HEADROOM;
2147                         rxdp->read.hdr_addr = 0;
2148                         rxdp->read.pkt_addr = dma;
2149                 } else
2150                         rxe->mbuf = NULL;
2151
2152                 /*
2153                  * Set data length & data buffer address of mbuf.
2154                  */
2155                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
2156                 rxm->data_len = data_len;
2157
2158                 if (!eop) {
2159                         uint16_t nextp_id;
2160                         /*
2161                          * Get next descriptor index:
2162                          *  - For RSC it's in the NEXTP field.
2163                          *  - For a scattered packet - it's just a following
2164                          *    descriptor.
2165                          */
2166                         if (ixgbe_rsc_count(&rxd))
2167                                 nextp_id =
2168                                         (staterr & IXGBE_RXDADV_NEXTP_MASK) >>
2169                                                        IXGBE_RXDADV_NEXTP_SHIFT;
2170                         else
2171                                 nextp_id = next_id;
2172
2173                         next_sc_entry = &sw_sc_ring[nextp_id];
2174                         next_rxe = &sw_ring[nextp_id];
2175                         rte_ixgbe_prefetch(next_rxe);
2176                 }
2177
2178                 sc_entry = &sw_sc_ring[rx_id];
2179                 first_seg = sc_entry->fbuf;
2180                 sc_entry->fbuf = NULL;
2181
2182                 /*
2183                  * If this is the first buffer of the received packet,
2184                  * set the pointer to the first mbuf of the packet and
2185                  * initialize its context.
2186                  * Otherwise, update the total length and the number of segments
2187                  * of the current scattered packet, and update the pointer to
2188                  * the last mbuf of the current packet.
2189                  */
2190                 if (first_seg == NULL) {
2191                         first_seg = rxm;
2192                         first_seg->pkt_len = data_len;
2193                         first_seg->nb_segs = 1;
2194                 } else {
2195                         first_seg->pkt_len += data_len;
2196                         first_seg->nb_segs++;
2197                 }
2198
2199                 prev_id = rx_id;
2200                 rx_id = next_id;
2201
2202                 /*
2203                  * If this is not the last buffer of the received packet, update
2204                  * the pointer to the first mbuf at the NEXTP entry in the
2205                  * sw_sc_ring and continue to parse the RX ring.
2206                  */
2207                 if (!eop && next_rxe) {
2208                         rxm->next = next_rxe->mbuf;
2209                         next_sc_entry->fbuf = first_seg;
2210                         goto next_desc;
2211                 }
2212
2213                 /* Initialize the first mbuf of the returned packet */
2214                 ixgbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
2215
2216                 /*
2217                  * Deal with the case, when HW CRC srip is disabled.
2218                  * That can't happen when LRO is enabled, but still could
2219                  * happen for scattered RX mode.
2220                  */
2221                 first_seg->pkt_len -= rxq->crc_len;
2222                 if (unlikely(rxm->data_len <= rxq->crc_len)) {
2223                         struct rte_mbuf *lp;
2224
2225                         for (lp = first_seg; lp->next != rxm; lp = lp->next)
2226                                 ;
2227
2228                         first_seg->nb_segs--;
2229                         lp->data_len -= rxq->crc_len - rxm->data_len;
2230                         lp->next = NULL;
2231                         rte_pktmbuf_free_seg(rxm);
2232                 } else
2233                         rxm->data_len -= rxq->crc_len;
2234
2235                 /* Prefetch data of first segment, if configured to do so. */
2236                 rte_packet_prefetch((char *)first_seg->buf_addr +
2237                         first_seg->data_off);
2238
2239                 /*
2240                  * Store the mbuf address into the next entry of the array
2241                  * of returned packets.
2242                  */
2243                 rx_pkts[nb_rx++] = first_seg;
2244         }
2245
2246         /*
2247          * Record index of the next RX descriptor to probe.
2248          */
2249         rxq->rx_tail = rx_id;
2250
2251         /*
2252          * If the number of free RX descriptors is greater than the RX free
2253          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
2254          * register.
2255          * Update the RDT with the value of the last processed RX descriptor
2256          * minus 1, to guarantee that the RDT register is never equal to the
2257          * RDH register, which creates a "full" ring situtation from the
2258          * hardware point of view...
2259          */
2260         if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
2261                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
2262                            "nb_hold=%u nb_rx=%u",
2263                            rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
2264
2265                 rte_wmb();
2266                 IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr, prev_id);
2267                 nb_hold = 0;
2268         }
2269
2270         rxq->nb_rx_hold = nb_hold;
2271         return nb_rx;
2272 }
2273
2274 uint16_t
2275 ixgbe_recv_pkts_lro_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2276                                  uint16_t nb_pkts)
2277 {
2278         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, false);
2279 }
2280
2281 uint16_t
2282 ixgbe_recv_pkts_lro_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2283                                uint16_t nb_pkts)
2284 {
2285         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, true);
2286 }
2287
2288 /*********************************************************************
2289  *
2290  *  Queue management functions
2291  *
2292  **********************************************************************/
2293
2294 static void __attribute__((cold))
2295 ixgbe_tx_queue_release_mbufs(struct ixgbe_tx_queue *txq)
2296 {
2297         unsigned i;
2298
2299         if (txq->sw_ring != NULL) {
2300                 for (i = 0; i < txq->nb_tx_desc; i++) {
2301                         if (txq->sw_ring[i].mbuf != NULL) {
2302                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2303                                 txq->sw_ring[i].mbuf = NULL;
2304                         }
2305                 }
2306         }
2307 }
2308
2309 static void __attribute__((cold))
2310 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
2311 {
2312         if (txq != NULL &&
2313             txq->sw_ring != NULL)
2314                 rte_free(txq->sw_ring);
2315 }
2316
2317 static void __attribute__((cold))
2318 ixgbe_tx_queue_release(struct ixgbe_tx_queue *txq)
2319 {
2320         if (txq != NULL && txq->ops != NULL) {
2321                 txq->ops->release_mbufs(txq);
2322                 txq->ops->free_swring(txq);
2323                 rte_free(txq);
2324         }
2325 }
2326
2327 void __attribute__((cold))
2328 ixgbe_dev_tx_queue_release(void *txq)
2329 {
2330         ixgbe_tx_queue_release(txq);
2331 }
2332
2333 /* (Re)set dynamic ixgbe_tx_queue fields to defaults */
2334 static void __attribute__((cold))
2335 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
2336 {
2337         static const union ixgbe_adv_tx_desc zeroed_desc = {{0}};
2338         struct ixgbe_tx_entry *txe = txq->sw_ring;
2339         uint16_t prev, i;
2340
2341         /* Zero out HW ring memory */
2342         for (i = 0; i < txq->nb_tx_desc; i++) {
2343                 txq->tx_ring[i] = zeroed_desc;
2344         }
2345
2346         /* Initialize SW ring entries */
2347         prev = (uint16_t) (txq->nb_tx_desc - 1);
2348         for (i = 0; i < txq->nb_tx_desc; i++) {
2349                 volatile union ixgbe_adv_tx_desc *txd = &txq->tx_ring[i];
2350
2351                 txd->wb.status = rte_cpu_to_le_32(IXGBE_TXD_STAT_DD);
2352                 txe[i].mbuf = NULL;
2353                 txe[i].last_id = i;
2354                 txe[prev].next_id = i;
2355                 prev = i;
2356         }
2357
2358         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2359         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2360
2361         txq->tx_tail = 0;
2362         txq->nb_tx_used = 0;
2363         /*
2364          * Always allow 1 descriptor to be un-allocated to avoid
2365          * a H/W race condition
2366          */
2367         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2368         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2369         txq->ctx_curr = 0;
2370         memset((void *)&txq->ctx_cache, 0,
2371                 IXGBE_CTX_NUM * sizeof(struct ixgbe_advctx_info));
2372 }
2373
2374 static const struct ixgbe_txq_ops def_txq_ops = {
2375         .release_mbufs = ixgbe_tx_queue_release_mbufs,
2376         .free_swring = ixgbe_tx_free_swring,
2377         .reset = ixgbe_reset_tx_queue,
2378 };
2379
2380 /* Takes an ethdev and a queue and sets up the tx function to be used based on
2381  * the queue parameters. Used in tx_queue_setup by primary process and then
2382  * in dev_init by secondary process when attaching to an existing ethdev.
2383  */
2384 void __attribute__((cold))
2385 ixgbe_set_tx_function(struct rte_eth_dev *dev, struct ixgbe_tx_queue *txq)
2386 {
2387         /* Use a simple Tx queue (no offloads, no multi segs) if possible */
2388         if ((txq->offloads == 0) &&
2389 #ifdef RTE_LIBRTE_SECURITY
2390                         !(txq->using_ipsec) &&
2391 #endif
2392                         (txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST)) {
2393                 PMD_INIT_LOG(DEBUG, "Using simple tx code path");
2394                 dev->tx_pkt_prepare = NULL;
2395 #ifdef RTE_IXGBE_INC_VECTOR
2396                 if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
2397                                 (rte_eal_process_type() != RTE_PROC_PRIMARY ||
2398                                         ixgbe_txq_vec_setup(txq) == 0)) {
2399                         PMD_INIT_LOG(DEBUG, "Vector tx enabled.");
2400                         dev->tx_pkt_burst = ixgbe_xmit_pkts_vec;
2401                 } else
2402 #endif
2403                 dev->tx_pkt_burst = ixgbe_xmit_pkts_simple;
2404         } else {
2405                 PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
2406                 PMD_INIT_LOG(DEBUG,
2407                                 " - offloads = 0x%" PRIx64,
2408                                 txq->offloads);
2409                 PMD_INIT_LOG(DEBUG,
2410                                 " - tx_rs_thresh = %lu " "[RTE_PMD_IXGBE_TX_MAX_BURST=%lu]",
2411                                 (unsigned long)txq->tx_rs_thresh,
2412                                 (unsigned long)RTE_PMD_IXGBE_TX_MAX_BURST);
2413                 dev->tx_pkt_burst = ixgbe_xmit_pkts;
2414                 dev->tx_pkt_prepare = ixgbe_prep_pkts;
2415         }
2416 }
2417
2418 uint64_t
2419 ixgbe_get_tx_queue_offloads(struct rte_eth_dev *dev)
2420 {
2421         RTE_SET_USED(dev);
2422
2423         return 0;
2424 }
2425
2426 uint64_t
2427 ixgbe_get_tx_port_offloads(struct rte_eth_dev *dev)
2428 {
2429         uint64_t tx_offload_capa;
2430         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2431
2432         tx_offload_capa =
2433                 DEV_TX_OFFLOAD_VLAN_INSERT |
2434                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2435                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2436                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2437                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2438                 DEV_TX_OFFLOAD_TCP_TSO     |
2439                 DEV_TX_OFFLOAD_MULTI_SEGS;
2440
2441         if (hw->mac.type == ixgbe_mac_82599EB ||
2442             hw->mac.type == ixgbe_mac_X540)
2443                 tx_offload_capa |= DEV_TX_OFFLOAD_MACSEC_INSERT;
2444
2445         if (hw->mac.type == ixgbe_mac_X550 ||
2446             hw->mac.type == ixgbe_mac_X550EM_x ||
2447             hw->mac.type == ixgbe_mac_X550EM_a)
2448                 tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
2449
2450 #ifdef RTE_LIBRTE_SECURITY
2451         if (dev->security_ctx)
2452                 tx_offload_capa |= DEV_TX_OFFLOAD_SECURITY;
2453 #endif
2454         return tx_offload_capa;
2455 }
2456
2457 int __attribute__((cold))
2458 ixgbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
2459                          uint16_t queue_idx,
2460                          uint16_t nb_desc,
2461                          unsigned int socket_id,
2462                          const struct rte_eth_txconf *tx_conf)
2463 {
2464         const struct rte_memzone *tz;
2465         struct ixgbe_tx_queue *txq;
2466         struct ixgbe_hw     *hw;
2467         uint16_t tx_rs_thresh, tx_free_thresh;
2468         uint64_t offloads;
2469
2470         PMD_INIT_FUNC_TRACE();
2471         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2472
2473         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2474
2475         /*
2476          * Validate number of transmit descriptors.
2477          * It must not exceed hardware maximum, and must be multiple
2478          * of IXGBE_ALIGN.
2479          */
2480         if (nb_desc % IXGBE_TXD_ALIGN != 0 ||
2481                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2482                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2483                 return -EINVAL;
2484         }
2485
2486         /*
2487          * The following two parameters control the setting of the RS bit on
2488          * transmit descriptors.
2489          * TX descriptors will have their RS bit set after txq->tx_rs_thresh
2490          * descriptors have been used.
2491          * The TX descriptor ring will be cleaned after txq->tx_free_thresh
2492          * descriptors are used or if the number of descriptors required
2493          * to transmit a packet is greater than the number of free TX
2494          * descriptors.
2495          * The following constraints must be satisfied:
2496          *  tx_rs_thresh must be greater than 0.
2497          *  tx_rs_thresh must be less than the size of the ring minus 2.
2498          *  tx_rs_thresh must be less than or equal to tx_free_thresh.
2499          *  tx_rs_thresh must be a divisor of the ring size.
2500          *  tx_free_thresh must be greater than 0.
2501          *  tx_free_thresh must be less than the size of the ring minus 3.
2502          *  tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
2503          * One descriptor in the TX ring is used as a sentinel to avoid a
2504          * H/W race condition, hence the maximum threshold constraints.
2505          * When set to zero use default values.
2506          */
2507         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2508                         tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2509         /* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
2510         tx_rs_thresh = (DEFAULT_TX_RS_THRESH + tx_free_thresh > nb_desc) ?
2511                         nb_desc - tx_free_thresh : DEFAULT_TX_RS_THRESH;
2512         if (tx_conf->tx_rs_thresh > 0)
2513                 tx_rs_thresh = tx_conf->tx_rs_thresh;
2514         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
2515                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
2516                              "exceed nb_desc. (tx_rs_thresh=%u "
2517                              "tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
2518                              (unsigned int)tx_rs_thresh,
2519                              (unsigned int)tx_free_thresh,
2520                              (unsigned int)nb_desc,
2521                              (int)dev->data->port_id,
2522                              (int)queue_idx);
2523                 return -(EINVAL);
2524         }
2525         if (tx_rs_thresh >= (nb_desc - 2)) {
2526                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the number "
2527                         "of TX descriptors minus 2. (tx_rs_thresh=%u "
2528                         "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2529                         (int)dev->data->port_id, (int)queue_idx);
2530                 return -(EINVAL);
2531         }
2532         if (tx_rs_thresh > DEFAULT_TX_RS_THRESH) {
2533                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less or equal than %u. "
2534                         "(tx_rs_thresh=%u port=%d queue=%d)",
2535                         DEFAULT_TX_RS_THRESH, (unsigned int)tx_rs_thresh,
2536                         (int)dev->data->port_id, (int)queue_idx);
2537                 return -(EINVAL);
2538         }
2539         if (tx_free_thresh >= (nb_desc - 3)) {
2540                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2541                              "tx_free_thresh must be less than the number of "
2542                              "TX descriptors minus 3. (tx_free_thresh=%u "
2543                              "port=%d queue=%d)",
2544                              (unsigned int)tx_free_thresh,
2545                              (int)dev->data->port_id, (int)queue_idx);
2546                 return -(EINVAL);
2547         }
2548         if (tx_rs_thresh > tx_free_thresh) {
2549                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
2550                              "tx_free_thresh. (tx_free_thresh=%u "
2551                              "tx_rs_thresh=%u port=%d queue=%d)",
2552                              (unsigned int)tx_free_thresh,
2553                              (unsigned int)tx_rs_thresh,
2554                              (int)dev->data->port_id,
2555                              (int)queue_idx);
2556                 return -(EINVAL);
2557         }
2558         if ((nb_desc % tx_rs_thresh) != 0) {
2559                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2560                              "number of TX descriptors. (tx_rs_thresh=%u "
2561                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2562                              (int)dev->data->port_id, (int)queue_idx);
2563                 return -(EINVAL);
2564         }
2565
2566         /*
2567          * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
2568          * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
2569          * by the NIC and all descriptors are written back after the NIC
2570          * accumulates WTHRESH descriptors.
2571          */
2572         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2573                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2574                              "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
2575                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2576                              (int)dev->data->port_id, (int)queue_idx);
2577                 return -(EINVAL);
2578         }
2579
2580         /* Free memory prior to re-allocation if needed... */
2581         if (dev->data->tx_queues[queue_idx] != NULL) {
2582                 ixgbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
2583                 dev->data->tx_queues[queue_idx] = NULL;
2584         }
2585
2586         /* First allocate the tx queue data structure */
2587         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct ixgbe_tx_queue),
2588                                  RTE_CACHE_LINE_SIZE, socket_id);
2589         if (txq == NULL)
2590                 return -ENOMEM;
2591
2592         /*
2593          * Allocate TX ring hardware descriptors. A memzone large enough to
2594          * handle the maximum ring size is allocated in order to allow for
2595          * resizing in later calls to the queue setup function.
2596          */
2597         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2598                         sizeof(union ixgbe_adv_tx_desc) * IXGBE_MAX_RING_DESC,
2599                         IXGBE_ALIGN, socket_id);
2600         if (tz == NULL) {
2601                 ixgbe_tx_queue_release(txq);
2602                 return -ENOMEM;
2603         }
2604
2605         txq->nb_tx_desc = nb_desc;
2606         txq->tx_rs_thresh = tx_rs_thresh;
2607         txq->tx_free_thresh = tx_free_thresh;
2608         txq->pthresh = tx_conf->tx_thresh.pthresh;
2609         txq->hthresh = tx_conf->tx_thresh.hthresh;
2610         txq->wthresh = tx_conf->tx_thresh.wthresh;
2611         txq->queue_id = queue_idx;
2612         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2613                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2614         txq->port_id = dev->data->port_id;
2615         txq->offloads = offloads;
2616         txq->ops = &def_txq_ops;
2617         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2618 #ifdef RTE_LIBRTE_SECURITY
2619         txq->using_ipsec = !!(dev->data->dev_conf.txmode.offloads &
2620                         DEV_TX_OFFLOAD_SECURITY);
2621 #endif
2622
2623         /*
2624          * Modification to set VFTDT for virtual function if vf is detected
2625          */
2626         if (hw->mac.type == ixgbe_mac_82599_vf ||
2627             hw->mac.type == ixgbe_mac_X540_vf ||
2628             hw->mac.type == ixgbe_mac_X550_vf ||
2629             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2630             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2631                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_VFTDT(queue_idx));
2632         else
2633                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_TDT(txq->reg_idx));
2634
2635         txq->tx_ring_phys_addr = tz->iova;
2636         txq->tx_ring = (union ixgbe_adv_tx_desc *) tz->addr;
2637
2638         /* Allocate software ring */
2639         txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
2640                                 sizeof(struct ixgbe_tx_entry) * nb_desc,
2641                                 RTE_CACHE_LINE_SIZE, socket_id);
2642         if (txq->sw_ring == NULL) {
2643                 ixgbe_tx_queue_release(txq);
2644                 return -ENOMEM;
2645         }
2646         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
2647                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
2648
2649         /* set up vector or scalar TX function as appropriate */
2650         ixgbe_set_tx_function(dev, txq);
2651
2652         txq->ops->reset(txq);
2653
2654         dev->data->tx_queues[queue_idx] = txq;
2655
2656
2657         return 0;
2658 }
2659
2660 /**
2661  * ixgbe_free_sc_cluster - free the not-yet-completed scattered cluster
2662  *
2663  * The "next" pointer of the last segment of (not-yet-completed) RSC clusters
2664  * in the sw_rsc_ring is not set to NULL but rather points to the next
2665  * mbuf of this RSC aggregation (that has not been completed yet and still
2666  * resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
2667  * will just free first "nb_segs" segments of the cluster explicitly by calling
2668  * an rte_pktmbuf_free_seg().
2669  *
2670  * @m scattered cluster head
2671  */
2672 static void __attribute__((cold))
2673 ixgbe_free_sc_cluster(struct rte_mbuf *m)
2674 {
2675         uint16_t i, nb_segs = m->nb_segs;
2676         struct rte_mbuf *next_seg;
2677
2678         for (i = 0; i < nb_segs; i++) {
2679                 next_seg = m->next;
2680                 rte_pktmbuf_free_seg(m);
2681                 m = next_seg;
2682         }
2683 }
2684
2685 static void __attribute__((cold))
2686 ixgbe_rx_queue_release_mbufs(struct ixgbe_rx_queue *rxq)
2687 {
2688         unsigned i;
2689
2690 #ifdef RTE_IXGBE_INC_VECTOR
2691         /* SSE Vector driver has a different way of releasing mbufs. */
2692         if (rxq->rx_using_sse) {
2693                 ixgbe_rx_queue_release_mbufs_vec(rxq);
2694                 return;
2695         }
2696 #endif
2697
2698         if (rxq->sw_ring != NULL) {
2699                 for (i = 0; i < rxq->nb_rx_desc; i++) {
2700                         if (rxq->sw_ring[i].mbuf != NULL) {
2701                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2702                                 rxq->sw_ring[i].mbuf = NULL;
2703                         }
2704                 }
2705                 if (rxq->rx_nb_avail) {
2706                         for (i = 0; i < rxq->rx_nb_avail; ++i) {
2707                                 struct rte_mbuf *mb;
2708
2709                                 mb = rxq->rx_stage[rxq->rx_next_avail + i];
2710                                 rte_pktmbuf_free_seg(mb);
2711                         }
2712                         rxq->rx_nb_avail = 0;
2713                 }
2714         }
2715
2716         if (rxq->sw_sc_ring)
2717                 for (i = 0; i < rxq->nb_rx_desc; i++)
2718                         if (rxq->sw_sc_ring[i].fbuf) {
2719                                 ixgbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
2720                                 rxq->sw_sc_ring[i].fbuf = NULL;
2721                         }
2722 }
2723
2724 static void __attribute__((cold))
2725 ixgbe_rx_queue_release(struct ixgbe_rx_queue *rxq)
2726 {
2727         if (rxq != NULL) {
2728                 ixgbe_rx_queue_release_mbufs(rxq);
2729                 rte_free(rxq->sw_ring);
2730                 rte_free(rxq->sw_sc_ring);
2731                 rte_free(rxq);
2732         }
2733 }
2734
2735 void __attribute__((cold))
2736 ixgbe_dev_rx_queue_release(void *rxq)
2737 {
2738         ixgbe_rx_queue_release(rxq);
2739 }
2740
2741 /*
2742  * Check if Rx Burst Bulk Alloc function can be used.
2743  * Return
2744  *        0: the preconditions are satisfied and the bulk allocation function
2745  *           can be used.
2746  *  -EINVAL: the preconditions are NOT satisfied and the default Rx burst
2747  *           function must be used.
2748  */
2749 static inline int __attribute__((cold))
2750 check_rx_burst_bulk_alloc_preconditions(struct ixgbe_rx_queue *rxq)
2751 {
2752         int ret = 0;
2753
2754         /*
2755          * Make sure the following pre-conditions are satisfied:
2756          *   rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST
2757          *   rxq->rx_free_thresh < rxq->nb_rx_desc
2758          *   (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
2759          * Scattered packets are not supported.  This should be checked
2760          * outside of this function.
2761          */
2762         if (!(rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST)) {
2763                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2764                              "rxq->rx_free_thresh=%d, "
2765                              "RTE_PMD_IXGBE_RX_MAX_BURST=%d",
2766                              rxq->rx_free_thresh, RTE_PMD_IXGBE_RX_MAX_BURST);
2767                 ret = -EINVAL;
2768         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
2769                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2770                              "rxq->rx_free_thresh=%d, "
2771                              "rxq->nb_rx_desc=%d",
2772                              rxq->rx_free_thresh, rxq->nb_rx_desc);
2773                 ret = -EINVAL;
2774         } else if (!((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)) {
2775                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2776                              "rxq->nb_rx_desc=%d, "
2777                              "rxq->rx_free_thresh=%d",
2778                              rxq->nb_rx_desc, rxq->rx_free_thresh);
2779                 ret = -EINVAL;
2780         }
2781
2782         return ret;
2783 }
2784
2785 /* Reset dynamic ixgbe_rx_queue fields back to defaults */
2786 static void __attribute__((cold))
2787 ixgbe_reset_rx_queue(struct ixgbe_adapter *adapter, struct ixgbe_rx_queue *rxq)
2788 {
2789         static const union ixgbe_adv_rx_desc zeroed_desc = {{0}};
2790         unsigned i;
2791         uint16_t len = rxq->nb_rx_desc;
2792
2793         /*
2794          * By default, the Rx queue setup function allocates enough memory for
2795          * IXGBE_MAX_RING_DESC.  The Rx Burst bulk allocation function requires
2796          * extra memory at the end of the descriptor ring to be zero'd out.
2797          */
2798         if (adapter->rx_bulk_alloc_allowed)
2799                 /* zero out extra memory */
2800                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
2801
2802         /*
2803          * Zero out HW ring memory. Zero out extra memory at the end of
2804          * the H/W ring so look-ahead logic in Rx Burst bulk alloc function
2805          * reads extra memory as zeros.
2806          */
2807         for (i = 0; i < len; i++) {
2808                 rxq->rx_ring[i] = zeroed_desc;
2809         }
2810
2811         /*
2812          * initialize extra software ring entries. Space for these extra
2813          * entries is always allocated
2814          */
2815         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2816         for (i = rxq->nb_rx_desc; i < len; ++i) {
2817                 rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
2818         }
2819
2820         rxq->rx_nb_avail = 0;
2821         rxq->rx_next_avail = 0;
2822         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2823         rxq->rx_tail = 0;
2824         rxq->nb_rx_hold = 0;
2825         rxq->pkt_first_seg = NULL;
2826         rxq->pkt_last_seg = NULL;
2827
2828 #ifdef RTE_IXGBE_INC_VECTOR
2829         rxq->rxrearm_start = 0;
2830         rxq->rxrearm_nb = 0;
2831 #endif
2832 }
2833
2834 static int
2835 ixgbe_is_vf(struct rte_eth_dev *dev)
2836 {
2837         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2838
2839         switch (hw->mac.type) {
2840         case ixgbe_mac_82599_vf:
2841         case ixgbe_mac_X540_vf:
2842         case ixgbe_mac_X550_vf:
2843         case ixgbe_mac_X550EM_x_vf:
2844         case ixgbe_mac_X550EM_a_vf:
2845                 return 1;
2846         default:
2847                 return 0;
2848         }
2849 }
2850
2851 uint64_t
2852 ixgbe_get_rx_queue_offloads(struct rte_eth_dev *dev)
2853 {
2854         uint64_t offloads = 0;
2855         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2856
2857         if (hw->mac.type != ixgbe_mac_82598EB)
2858                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2859
2860         return offloads;
2861 }
2862
2863 uint64_t
2864 ixgbe_get_rx_port_offloads(struct rte_eth_dev *dev)
2865 {
2866         uint64_t offloads;
2867         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2868
2869         offloads = DEV_RX_OFFLOAD_IPV4_CKSUM  |
2870                    DEV_RX_OFFLOAD_UDP_CKSUM   |
2871                    DEV_RX_OFFLOAD_TCP_CKSUM   |
2872                    DEV_RX_OFFLOAD_KEEP_CRC    |
2873                    DEV_RX_OFFLOAD_JUMBO_FRAME |
2874                    DEV_RX_OFFLOAD_VLAN_FILTER |
2875                    DEV_RX_OFFLOAD_SCATTER |
2876                    DEV_RX_OFFLOAD_RSS_HASH;
2877
2878         if (hw->mac.type == ixgbe_mac_82598EB)
2879                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2880
2881         if (ixgbe_is_vf(dev) == 0)
2882                 offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2883
2884         /*
2885          * RSC is only supported by 82599 and x540 PF devices in a non-SR-IOV
2886          * mode.
2887          */
2888         if ((hw->mac.type == ixgbe_mac_82599EB ||
2889              hw->mac.type == ixgbe_mac_X540 ||
2890              hw->mac.type == ixgbe_mac_X550) &&
2891             !RTE_ETH_DEV_SRIOV(dev).active)
2892                 offloads |= DEV_RX_OFFLOAD_TCP_LRO;
2893
2894         if (hw->mac.type == ixgbe_mac_82599EB ||
2895             hw->mac.type == ixgbe_mac_X540)
2896                 offloads |= DEV_RX_OFFLOAD_MACSEC_STRIP;
2897
2898         if (hw->mac.type == ixgbe_mac_X550 ||
2899             hw->mac.type == ixgbe_mac_X550EM_x ||
2900             hw->mac.type == ixgbe_mac_X550EM_a)
2901                 offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
2902
2903 #ifdef RTE_LIBRTE_SECURITY
2904         if (dev->security_ctx)
2905                 offloads |= DEV_RX_OFFLOAD_SECURITY;
2906 #endif
2907
2908         return offloads;
2909 }
2910
2911 int __attribute__((cold))
2912 ixgbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
2913                          uint16_t queue_idx,
2914                          uint16_t nb_desc,
2915                          unsigned int socket_id,
2916                          const struct rte_eth_rxconf *rx_conf,
2917                          struct rte_mempool *mp)
2918 {
2919         const struct rte_memzone *rz;
2920         struct ixgbe_rx_queue *rxq;
2921         struct ixgbe_hw     *hw;
2922         uint16_t len;
2923         struct ixgbe_adapter *adapter = dev->data->dev_private;
2924         uint64_t offloads;
2925
2926         PMD_INIT_FUNC_TRACE();
2927         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2928
2929         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
2930
2931         /*
2932          * Validate number of receive descriptors.
2933          * It must not exceed hardware maximum, and must be multiple
2934          * of IXGBE_ALIGN.
2935          */
2936         if (nb_desc % IXGBE_RXD_ALIGN != 0 ||
2937                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2938                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2939                 return -EINVAL;
2940         }
2941
2942         /* Free memory prior to re-allocation if needed... */
2943         if (dev->data->rx_queues[queue_idx] != NULL) {
2944                 ixgbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
2945                 dev->data->rx_queues[queue_idx] = NULL;
2946         }
2947
2948         /* First allocate the rx queue data structure */
2949         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct ixgbe_rx_queue),
2950                                  RTE_CACHE_LINE_SIZE, socket_id);
2951         if (rxq == NULL)
2952                 return -ENOMEM;
2953         rxq->mb_pool = mp;
2954         rxq->nb_rx_desc = nb_desc;
2955         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
2956         rxq->queue_id = queue_idx;
2957         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2958                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2959         rxq->port_id = dev->data->port_id;
2960         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
2961                 rxq->crc_len = RTE_ETHER_CRC_LEN;
2962         else
2963                 rxq->crc_len = 0;
2964         rxq->drop_en = rx_conf->rx_drop_en;
2965         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
2966         rxq->offloads = offloads;
2967
2968         /*
2969          * The packet type in RX descriptor is different for different NICs.
2970          * Some bits are used for x550 but reserved for other NICS.
2971          * So set different masks for different NICs.
2972          */
2973         if (hw->mac.type == ixgbe_mac_X550 ||
2974             hw->mac.type == ixgbe_mac_X550EM_x ||
2975             hw->mac.type == ixgbe_mac_X550EM_a ||
2976             hw->mac.type == ixgbe_mac_X550_vf ||
2977             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2978             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2979                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_X550;
2980         else
2981                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_82599;
2982
2983         /*
2984          * Allocate RX ring hardware descriptors. A memzone large enough to
2985          * handle the maximum ring size is allocated in order to allow for
2986          * resizing in later calls to the queue setup function.
2987          */
2988         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
2989                                       RX_RING_SZ, IXGBE_ALIGN, socket_id);
2990         if (rz == NULL) {
2991                 ixgbe_rx_queue_release(rxq);
2992                 return -ENOMEM;
2993         }
2994
2995         /*
2996          * Zero init all the descriptors in the ring.
2997          */
2998         memset(rz->addr, 0, RX_RING_SZ);
2999
3000         /*
3001          * Modified to setup VFRDT for Virtual Function
3002          */
3003         if (hw->mac.type == ixgbe_mac_82599_vf ||
3004             hw->mac.type == ixgbe_mac_X540_vf ||
3005             hw->mac.type == ixgbe_mac_X550_vf ||
3006             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
3007             hw->mac.type == ixgbe_mac_X550EM_a_vf) {
3008                 rxq->rdt_reg_addr =
3009                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDT(queue_idx));
3010                 rxq->rdh_reg_addr =
3011                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDH(queue_idx));
3012         } else {
3013                 rxq->rdt_reg_addr =
3014                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDT(rxq->reg_idx));
3015                 rxq->rdh_reg_addr =
3016                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDH(rxq->reg_idx));
3017         }
3018
3019         rxq->rx_ring_phys_addr = rz->iova;
3020         rxq->rx_ring = (union ixgbe_adv_rx_desc *) rz->addr;
3021
3022         /*
3023          * Certain constraints must be met in order to use the bulk buffer
3024          * allocation Rx burst function. If any of Rx queues doesn't meet them
3025          * the feature should be disabled for the whole port.
3026          */
3027         if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
3028                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Rx Bulk Alloc "
3029                                     "preconditions - canceling the feature for "
3030                                     "the whole port[%d]",
3031                              rxq->queue_id, rxq->port_id);
3032                 adapter->rx_bulk_alloc_allowed = false;
3033         }
3034
3035         /*
3036          * Allocate software ring. Allow for space at the end of the
3037          * S/W ring to make sure look-ahead logic in bulk alloc Rx burst
3038          * function does not access an invalid memory region.
3039          */
3040         len = nb_desc;
3041         if (adapter->rx_bulk_alloc_allowed)
3042                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
3043
3044         rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
3045                                           sizeof(struct ixgbe_rx_entry) * len,
3046                                           RTE_CACHE_LINE_SIZE, socket_id);
3047         if (!rxq->sw_ring) {
3048                 ixgbe_rx_queue_release(rxq);
3049                 return -ENOMEM;
3050         }
3051
3052         /*
3053          * Always allocate even if it's not going to be needed in order to
3054          * simplify the code.
3055          *
3056          * This ring is used in LRO and Scattered Rx cases and Scattered Rx may
3057          * be requested in ixgbe_dev_rx_init(), which is called later from
3058          * dev_start() flow.
3059          */
3060         rxq->sw_sc_ring =
3061                 rte_zmalloc_socket("rxq->sw_sc_ring",
3062                                    sizeof(struct ixgbe_scattered_rx_entry) * len,
3063                                    RTE_CACHE_LINE_SIZE, socket_id);
3064         if (!rxq->sw_sc_ring) {
3065                 ixgbe_rx_queue_release(rxq);
3066                 return -ENOMEM;
3067         }
3068
3069         PMD_INIT_LOG(DEBUG, "sw_ring=%p sw_sc_ring=%p hw_ring=%p "
3070                             "dma_addr=0x%"PRIx64,
3071                      rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
3072                      rxq->rx_ring_phys_addr);
3073
3074         if (!rte_is_power_of_2(nb_desc)) {
3075                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Vector Rx "
3076                                     "preconditions - canceling the feature for "
3077                                     "the whole port[%d]",
3078                              rxq->queue_id, rxq->port_id);
3079                 adapter->rx_vec_allowed = false;
3080         } else
3081                 ixgbe_rxq_vec_setup(rxq);
3082
3083         dev->data->rx_queues[queue_idx] = rxq;
3084
3085         ixgbe_reset_rx_queue(adapter, rxq);
3086
3087         return 0;
3088 }
3089
3090 uint32_t
3091 ixgbe_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
3092 {
3093 #define IXGBE_RXQ_SCAN_INTERVAL 4
3094         volatile union ixgbe_adv_rx_desc *rxdp;
3095         struct ixgbe_rx_queue *rxq;
3096         uint32_t desc = 0;
3097
3098         rxq = dev->data->rx_queues[rx_queue_id];
3099         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
3100
3101         while ((desc < rxq->nb_rx_desc) &&
3102                 (rxdp->wb.upper.status_error &
3103                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))) {
3104                 desc += IXGBE_RXQ_SCAN_INTERVAL;
3105                 rxdp += IXGBE_RXQ_SCAN_INTERVAL;
3106                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
3107                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
3108                                 desc - rxq->nb_rx_desc]);
3109         }
3110
3111         return desc;
3112 }
3113
3114 int
3115 ixgbe_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
3116 {
3117         volatile union ixgbe_adv_rx_desc *rxdp;
3118         struct ixgbe_rx_queue *rxq = rx_queue;
3119         uint32_t desc;
3120
3121         if (unlikely(offset >= rxq->nb_rx_desc))
3122                 return 0;
3123         desc = rxq->rx_tail + offset;
3124         if (desc >= rxq->nb_rx_desc)
3125                 desc -= rxq->nb_rx_desc;
3126
3127         rxdp = &rxq->rx_ring[desc];
3128         return !!(rxdp->wb.upper.status_error &
3129                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD));
3130 }
3131
3132 int
3133 ixgbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
3134 {
3135         struct ixgbe_rx_queue *rxq = rx_queue;
3136         volatile uint32_t *status;
3137         uint32_t nb_hold, desc;
3138
3139         if (unlikely(offset >= rxq->nb_rx_desc))
3140                 return -EINVAL;
3141
3142 #ifdef RTE_IXGBE_INC_VECTOR
3143         if (rxq->rx_using_sse)
3144                 nb_hold = rxq->rxrearm_nb;
3145         else
3146 #endif
3147                 nb_hold = rxq->nb_rx_hold;
3148         if (offset >= rxq->nb_rx_desc - nb_hold)
3149                 return RTE_ETH_RX_DESC_UNAVAIL;
3150
3151         desc = rxq->rx_tail + offset;
3152         if (desc >= rxq->nb_rx_desc)
3153                 desc -= rxq->nb_rx_desc;
3154
3155         status = &rxq->rx_ring[desc].wb.upper.status_error;
3156         if (*status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))
3157                 return RTE_ETH_RX_DESC_DONE;
3158
3159         return RTE_ETH_RX_DESC_AVAIL;
3160 }
3161
3162 int
3163 ixgbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
3164 {
3165         struct ixgbe_tx_queue *txq = tx_queue;
3166         volatile uint32_t *status;
3167         uint32_t desc;
3168
3169         if (unlikely(offset >= txq->nb_tx_desc))
3170                 return -EINVAL;
3171
3172         desc = txq->tx_tail + offset;
3173         /* go to next desc that has the RS bit */
3174         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
3175                 txq->tx_rs_thresh;
3176         if (desc >= txq->nb_tx_desc) {
3177                 desc -= txq->nb_tx_desc;
3178                 if (desc >= txq->nb_tx_desc)
3179                         desc -= txq->nb_tx_desc;
3180         }
3181
3182         status = &txq->tx_ring[desc].wb.status;
3183         if (*status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD))
3184                 return RTE_ETH_TX_DESC_DONE;
3185
3186         return RTE_ETH_TX_DESC_FULL;
3187 }
3188
3189 /*
3190  * Set up link loopback for X540/X550 mode Tx->Rx.
3191  */
3192 static inline void __attribute__((cold))
3193 ixgbe_setup_loopback_link_x540_x550(struct ixgbe_hw *hw, bool enable)
3194 {
3195         uint32_t macc;
3196         PMD_INIT_FUNC_TRACE();
3197
3198         u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
3199
3200         hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
3201                              IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg);
3202         macc = IXGBE_READ_REG(hw, IXGBE_MACC);
3203
3204         if (enable) {
3205                 /* datasheet 15.2.1: disable AUTONEG (PHY Bit 7.0.C) */
3206                 autoneg_reg |= IXGBE_MII_AUTONEG_ENABLE;
3207                 /* datasheet 15.2.1: MACC.FLU = 1 (force link up) */
3208                 macc |= IXGBE_MACC_FLU;
3209         } else {
3210                 autoneg_reg &= ~IXGBE_MII_AUTONEG_ENABLE;
3211                 macc &= ~IXGBE_MACC_FLU;
3212         }
3213
3214         hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
3215                               IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg);
3216
3217         IXGBE_WRITE_REG(hw, IXGBE_MACC, macc);
3218 }
3219
3220 void __attribute__((cold))
3221 ixgbe_dev_clear_queues(struct rte_eth_dev *dev)
3222 {
3223         unsigned i;
3224         struct ixgbe_adapter *adapter = dev->data->dev_private;
3225         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3226
3227         PMD_INIT_FUNC_TRACE();
3228
3229         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3230                 struct ixgbe_tx_queue *txq = dev->data->tx_queues[i];
3231
3232                 if (txq != NULL) {
3233                         txq->ops->release_mbufs(txq);
3234                         txq->ops->reset(txq);
3235                 }
3236         }
3237
3238         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3239                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
3240
3241                 if (rxq != NULL) {
3242                         ixgbe_rx_queue_release_mbufs(rxq);
3243                         ixgbe_reset_rx_queue(adapter, rxq);
3244                 }
3245         }
3246         /* If loopback mode was enabled, reconfigure the link accordingly */
3247         if (dev->data->dev_conf.lpbk_mode != 0) {
3248                 if (hw->mac.type == ixgbe_mac_X540 ||
3249                      hw->mac.type == ixgbe_mac_X550 ||
3250                      hw->mac.type == ixgbe_mac_X550EM_x ||
3251                      hw->mac.type == ixgbe_mac_X550EM_a)
3252                         ixgbe_setup_loopback_link_x540_x550(hw, false);
3253         }
3254 }
3255
3256 void
3257 ixgbe_dev_free_queues(struct rte_eth_dev *dev)
3258 {
3259         unsigned i;
3260
3261         PMD_INIT_FUNC_TRACE();
3262
3263         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3264                 ixgbe_dev_rx_queue_release(dev->data->rx_queues[i]);
3265                 dev->data->rx_queues[i] = NULL;
3266         }
3267         dev->data->nb_rx_queues = 0;
3268
3269         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3270                 ixgbe_dev_tx_queue_release(dev->data->tx_queues[i]);
3271                 dev->data->tx_queues[i] = NULL;
3272         }
3273         dev->data->nb_tx_queues = 0;
3274 }
3275
3276 /*********************************************************************
3277  *
3278  *  Device RX/TX init functions
3279  *
3280  **********************************************************************/
3281
3282 /**
3283  * Receive Side Scaling (RSS)
3284  * See section 7.1.2.8 in the following document:
3285  *     "Intel 82599 10 GbE Controller Datasheet" - Revision 2.1 October 2009
3286  *
3287  * Principles:
3288  * The source and destination IP addresses of the IP header and the source
3289  * and destination ports of TCP/UDP headers, if any, of received packets are
3290  * hashed against a configurable random key to compute a 32-bit RSS hash result.
3291  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
3292  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
3293  * RSS output index which is used as the RX queue index where to store the
3294  * received packets.
3295  * The following output is supplied in the RX write-back descriptor:
3296  *     - 32-bit result of the Microsoft RSS hash function,
3297  *     - 4-bit RSS type field.
3298  */
3299
3300 /*
3301  * RSS random key supplied in section 7.1.2.8.3 of the Intel 82599 datasheet.
3302  * Used as the default key.
3303  */
3304 static uint8_t rss_intel_key[40] = {
3305         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
3306         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
3307         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
3308         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
3309         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
3310 };
3311
3312 static void
3313 ixgbe_rss_disable(struct rte_eth_dev *dev)
3314 {
3315         struct ixgbe_hw *hw;
3316         uint32_t mrqc;
3317         uint32_t mrqc_reg;
3318
3319         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3320         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3321         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3322         mrqc &= ~IXGBE_MRQC_RSSEN;
3323         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3324 }
3325
3326 static void
3327 ixgbe_hw_rss_hash_set(struct ixgbe_hw *hw, struct rte_eth_rss_conf *rss_conf)
3328 {
3329         uint8_t  *hash_key;
3330         uint32_t mrqc;
3331         uint32_t rss_key;
3332         uint64_t rss_hf;
3333         uint16_t i;
3334         uint32_t mrqc_reg;
3335         uint32_t rssrk_reg;
3336
3337         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3338         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3339
3340         hash_key = rss_conf->rss_key;
3341         if (hash_key != NULL) {
3342                 /* Fill in RSS hash key */
3343                 for (i = 0; i < 10; i++) {
3344                         rss_key  = hash_key[(i * 4)];
3345                         rss_key |= hash_key[(i * 4) + 1] << 8;
3346                         rss_key |= hash_key[(i * 4) + 2] << 16;
3347                         rss_key |= hash_key[(i * 4) + 3] << 24;
3348                         IXGBE_WRITE_REG_ARRAY(hw, rssrk_reg, i, rss_key);
3349                 }
3350         }
3351
3352         /* Set configured hashing protocols in MRQC register */
3353         rss_hf = rss_conf->rss_hf;
3354         mrqc = IXGBE_MRQC_RSSEN; /* Enable RSS */
3355         if (rss_hf & ETH_RSS_IPV4)
3356                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4;
3357         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
3358                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_TCP;
3359         if (rss_hf & ETH_RSS_IPV6)
3360                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6;
3361         if (rss_hf & ETH_RSS_IPV6_EX)
3362                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX;
3363         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
3364                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_TCP;
3365         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
3366                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP;
3367         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
3368                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_UDP;
3369         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
3370                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_UDP;
3371         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
3372                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP;
3373         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3374 }
3375
3376 int
3377 ixgbe_dev_rss_hash_update(struct rte_eth_dev *dev,
3378                           struct rte_eth_rss_conf *rss_conf)
3379 {
3380         struct ixgbe_hw *hw;
3381         uint32_t mrqc;
3382         uint64_t rss_hf;
3383         uint32_t mrqc_reg;
3384
3385         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3386
3387         if (!ixgbe_rss_update_sp(hw->mac.type)) {
3388                 PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
3389                         "NIC.");
3390                 return -ENOTSUP;
3391         }
3392         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3393
3394         /*
3395          * Excerpt from section 7.1.2.8 Receive-Side Scaling (RSS):
3396          *     "RSS enabling cannot be done dynamically while it must be
3397          *      preceded by a software reset"
3398          * Before changing anything, first check that the update RSS operation
3399          * does not attempt to disable RSS, if RSS was enabled at
3400          * initialization time, or does not attempt to enable RSS, if RSS was
3401          * disabled at initialization time.
3402          */
3403         rss_hf = rss_conf->rss_hf & IXGBE_RSS_OFFLOAD_ALL;
3404         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3405         if (!(mrqc & IXGBE_MRQC_RSSEN)) { /* RSS disabled */
3406                 if (rss_hf != 0) /* Enable RSS */
3407                         return -(EINVAL);
3408                 return 0; /* Nothing to do */
3409         }
3410         /* RSS enabled */
3411         if (rss_hf == 0) /* Disable RSS */
3412                 return -(EINVAL);
3413         ixgbe_hw_rss_hash_set(hw, rss_conf);
3414         return 0;
3415 }
3416
3417 int
3418 ixgbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
3419                             struct rte_eth_rss_conf *rss_conf)
3420 {
3421         struct ixgbe_hw *hw;
3422         uint8_t *hash_key;
3423         uint32_t mrqc;
3424         uint32_t rss_key;
3425         uint64_t rss_hf;
3426         uint16_t i;
3427         uint32_t mrqc_reg;
3428         uint32_t rssrk_reg;
3429
3430         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3431         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3432         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3433         hash_key = rss_conf->rss_key;
3434         if (hash_key != NULL) {
3435                 /* Return RSS hash key */
3436                 for (i = 0; i < 10; i++) {
3437                         rss_key = IXGBE_READ_REG_ARRAY(hw, rssrk_reg, i);
3438                         hash_key[(i * 4)] = rss_key & 0x000000FF;
3439                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
3440                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
3441                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
3442                 }
3443         }
3444
3445         /* Get RSS functions configured in MRQC register */
3446         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3447         if ((mrqc & IXGBE_MRQC_RSSEN) == 0) { /* RSS is disabled */
3448                 rss_conf->rss_hf = 0;
3449                 return 0;
3450         }
3451         rss_hf = 0;
3452         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4)
3453                 rss_hf |= ETH_RSS_IPV4;
3454         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_TCP)
3455                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
3456         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6)
3457                 rss_hf |= ETH_RSS_IPV6;
3458         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX)
3459                 rss_hf |= ETH_RSS_IPV6_EX;
3460         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_TCP)
3461                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
3462         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP)
3463                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
3464         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_UDP)
3465                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
3466         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_UDP)
3467                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
3468         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP)
3469                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
3470         rss_conf->rss_hf = rss_hf;
3471         return 0;
3472 }
3473
3474 static void
3475 ixgbe_rss_configure(struct rte_eth_dev *dev)
3476 {
3477         struct rte_eth_rss_conf rss_conf;
3478         struct ixgbe_adapter *adapter;
3479         struct ixgbe_hw *hw;
3480         uint32_t reta;
3481         uint16_t i;
3482         uint16_t j;
3483         uint16_t sp_reta_size;
3484         uint32_t reta_reg;
3485
3486         PMD_INIT_FUNC_TRACE();
3487         adapter = dev->data->dev_private;
3488         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3489
3490         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
3491
3492         /*
3493          * Fill in redirection table
3494          * The byte-swap is needed because NIC registers are in
3495          * little-endian order.
3496          */
3497         if (adapter->rss_reta_updated == 0) {
3498                 reta = 0;
3499                 for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
3500                         reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
3501
3502                         if (j == dev->data->nb_rx_queues)
3503                                 j = 0;
3504                         reta = (reta << 8) | j;
3505                         if ((i & 3) == 3)
3506                                 IXGBE_WRITE_REG(hw, reta_reg,
3507                                                 rte_bswap32(reta));
3508                 }
3509         }
3510
3511         /*
3512          * Configure the RSS key and the RSS protocols used to compute
3513          * the RSS hash of input packets.
3514          */
3515         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
3516         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
3517                 ixgbe_rss_disable(dev);
3518                 return;
3519         }
3520         if (rss_conf.rss_key == NULL)
3521                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
3522         ixgbe_hw_rss_hash_set(hw, &rss_conf);
3523 }
3524
3525 #define NUM_VFTA_REGISTERS 128
3526 #define NIC_RX_BUFFER_SIZE 0x200
3527 #define X550_RX_BUFFER_SIZE 0x180
3528
3529 static void
3530 ixgbe_vmdq_dcb_configure(struct rte_eth_dev *dev)
3531 {
3532         struct rte_eth_vmdq_dcb_conf *cfg;
3533         struct ixgbe_hw *hw;
3534         enum rte_eth_nb_pools num_pools;
3535         uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl;
3536         uint16_t pbsize;
3537         uint8_t nb_tcs; /* number of traffic classes */
3538         int i;
3539
3540         PMD_INIT_FUNC_TRACE();
3541         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3542         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3543         num_pools = cfg->nb_queue_pools;
3544         /* Check we have a valid number of pools */
3545         if (num_pools != ETH_16_POOLS && num_pools != ETH_32_POOLS) {
3546                 ixgbe_rss_disable(dev);
3547                 return;
3548         }
3549         /* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */
3550         nb_tcs = (uint8_t)(ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools);
3551
3552         /*
3553          * RXPBSIZE
3554          * split rx buffer up into sections, each for 1 traffic class
3555          */
3556         switch (hw->mac.type) {
3557         case ixgbe_mac_X550:
3558         case ixgbe_mac_X550EM_x:
3559         case ixgbe_mac_X550EM_a:
3560                 pbsize = (uint16_t)(X550_RX_BUFFER_SIZE / nb_tcs);
3561                 break;
3562         default:
3563                 pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
3564                 break;
3565         }
3566         for (i = 0; i < nb_tcs; i++) {
3567                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3568
3569                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3570                 /* clear 10 bits. */
3571                 rxpbsize |= (pbsize << IXGBE_RXPBSIZE_SHIFT); /* set value */
3572                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3573         }
3574         /* zero alloc all unused TCs */
3575         for (i = nb_tcs; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3576                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3577
3578                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3579                 /* clear 10 bits. */
3580                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3581         }
3582
3583         /* MRQC: enable vmdq and dcb */
3584         mrqc = (num_pools == ETH_16_POOLS) ?
3585                 IXGBE_MRQC_VMDQRT8TCEN : IXGBE_MRQC_VMDQRT4TCEN;
3586         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
3587
3588         /* PFVTCTL: turn on virtualisation and set the default pool */
3589         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
3590         if (cfg->enable_default_pool) {
3591                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
3592         } else {
3593                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
3594         }
3595
3596         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
3597
3598         /* RTRUP2TC: mapping user priorities to traffic classes (TCs) */
3599         queue_mapping = 0;
3600         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++)
3601                 /*
3602                  * mapping is done with 3 bits per priority,
3603                  * so shift by i*3 each time
3604                  */
3605                 queue_mapping |= ((cfg->dcb_tc[i] & 0x07) << (i * 3));
3606
3607         IXGBE_WRITE_REG(hw, IXGBE_RTRUP2TC, queue_mapping);
3608
3609         /* RTRPCS: DCB related */
3610         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, IXGBE_RMCS_RRM);
3611
3612         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3613         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3614         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3615         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3616
3617         /* VFTA - enable all vlan filters */
3618         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3619                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3620         }
3621
3622         /* VFRE: pool enabling for receive - 16 or 32 */
3623         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0),
3624                         num_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3625
3626         /*
3627          * MPSAR - allow pools to read specific mac addresses
3628          * In this case, all pools should be able to read from mac addr 0
3629          */
3630         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), 0xFFFFFFFF);
3631         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), 0xFFFFFFFF);
3632
3633         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
3634         for (i = 0; i < cfg->nb_pool_maps; i++) {
3635                 /* set vlan id in VF register and set the valid bit */
3636                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
3637                                 (cfg->pool_map[i].vlan_id & 0xFFF)));
3638                 /*
3639                  * Put the allowed pools in VFB reg. As we only have 16 or 32
3640                  * pools, we only need to use the first half of the register
3641                  * i.e. bits 0-31
3642                  */
3643                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i*2), cfg->pool_map[i].pools);
3644         }
3645 }
3646
3647 /**
3648  * ixgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters
3649  * @dev: pointer to eth_dev structure
3650  * @dcb_config: pointer to ixgbe_dcb_config structure
3651  */
3652 static void
3653 ixgbe_dcb_tx_hw_config(struct rte_eth_dev *dev,
3654                        struct ixgbe_dcb_config *dcb_config)
3655 {
3656         uint32_t reg;
3657         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3658
3659         PMD_INIT_FUNC_TRACE();
3660         if (hw->mac.type != ixgbe_mac_82598EB) {
3661                 /* Disable the Tx desc arbiter so that MTQC can be changed */
3662                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3663                 reg |= IXGBE_RTTDCS_ARBDIS;
3664                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3665
3666                 /* Enable DCB for Tx with 8 TCs */
3667                 if (dcb_config->num_tcs.pg_tcs == 8) {
3668                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_8TC_8TQ;
3669                 } else {
3670                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_4TC_4TQ;
3671                 }
3672                 if (dcb_config->vt_mode)
3673                         reg |= IXGBE_MTQC_VT_ENA;
3674                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
3675
3676                 /* Enable the Tx desc arbiter */
3677                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3678                 reg &= ~IXGBE_RTTDCS_ARBDIS;
3679                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3680
3681                 /* Enable Security TX Buffer IFG for DCB */
3682                 reg = IXGBE_READ_REG(hw, IXGBE_SECTXMINIFG);
3683                 reg |= IXGBE_SECTX_DCB;
3684                 IXGBE_WRITE_REG(hw, IXGBE_SECTXMINIFG, reg);
3685         }
3686 }
3687
3688 /**
3689  * ixgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters
3690  * @dev: pointer to rte_eth_dev structure
3691  * @dcb_config: pointer to ixgbe_dcb_config structure
3692  */
3693 static void
3694 ixgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev,
3695                         struct ixgbe_dcb_config *dcb_config)
3696 {
3697         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3698                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3699         struct ixgbe_hw *hw =
3700                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3701
3702         PMD_INIT_FUNC_TRACE();
3703         if (hw->mac.type != ixgbe_mac_82598EB)
3704                 /*PF VF Transmit Enable*/
3705                 IXGBE_WRITE_REG(hw, IXGBE_VFTE(0),
3706                         vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3707
3708         /*Configure general DCB TX parameters*/
3709         ixgbe_dcb_tx_hw_config(dev, dcb_config);
3710 }
3711
3712 static void
3713 ixgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev,
3714                         struct ixgbe_dcb_config *dcb_config)
3715 {
3716         struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
3717                         &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3718         struct ixgbe_dcb_tc_config *tc;
3719         uint8_t i, j;
3720
3721         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3722         if (vmdq_rx_conf->nb_queue_pools == ETH_16_POOLS) {
3723                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3724                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3725         } else {
3726                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3727                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3728         }
3729
3730         /* Initialize User Priority to Traffic Class mapping */
3731         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3732                 tc = &dcb_config->tc_config[j];
3733                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3734         }
3735
3736         /* User Priority to Traffic Class mapping */
3737         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3738                 j = vmdq_rx_conf->dcb_tc[i];
3739                 tc = &dcb_config->tc_config[j];
3740                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3741                                                 (uint8_t)(1 << i);
3742         }
3743 }
3744
3745 static void
3746 ixgbe_dcb_vt_tx_config(struct rte_eth_dev *dev,
3747                         struct ixgbe_dcb_config *dcb_config)
3748 {
3749         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3750                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3751         struct ixgbe_dcb_tc_config *tc;
3752         uint8_t i, j;
3753
3754         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3755         if (vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS) {
3756                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3757                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3758         } else {
3759                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3760                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3761         }
3762
3763         /* Initialize User Priority to Traffic Class mapping */
3764         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3765                 tc = &dcb_config->tc_config[j];
3766                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3767         }
3768
3769         /* User Priority to Traffic Class mapping */
3770         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3771                 j = vmdq_tx_conf->dcb_tc[i];
3772                 tc = &dcb_config->tc_config[j];
3773                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3774                                                 (uint8_t)(1 << i);
3775         }
3776 }
3777
3778 static void
3779 ixgbe_dcb_rx_config(struct rte_eth_dev *dev,
3780                 struct ixgbe_dcb_config *dcb_config)
3781 {
3782         struct rte_eth_dcb_rx_conf *rx_conf =
3783                         &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
3784         struct ixgbe_dcb_tc_config *tc;
3785         uint8_t i, j;
3786
3787         dcb_config->num_tcs.pg_tcs = (uint8_t)rx_conf->nb_tcs;
3788         dcb_config->num_tcs.pfc_tcs = (uint8_t)rx_conf->nb_tcs;
3789
3790         /* Initialize User Priority to Traffic Class mapping */
3791         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3792                 tc = &dcb_config->tc_config[j];
3793                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3794         }
3795
3796         /* User Priority to Traffic Class mapping */
3797         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3798                 j = rx_conf->dcb_tc[i];
3799                 tc = &dcb_config->tc_config[j];
3800                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3801                                                 (uint8_t)(1 << i);
3802         }
3803 }
3804
3805 static void
3806 ixgbe_dcb_tx_config(struct rte_eth_dev *dev,
3807                 struct ixgbe_dcb_config *dcb_config)
3808 {
3809         struct rte_eth_dcb_tx_conf *tx_conf =
3810                         &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
3811         struct ixgbe_dcb_tc_config *tc;
3812         uint8_t i, j;
3813
3814         dcb_config->num_tcs.pg_tcs = (uint8_t)tx_conf->nb_tcs;
3815         dcb_config->num_tcs.pfc_tcs = (uint8_t)tx_conf->nb_tcs;
3816
3817         /* Initialize User Priority to Traffic Class mapping */
3818         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3819                 tc = &dcb_config->tc_config[j];
3820                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3821         }
3822
3823         /* User Priority to Traffic Class mapping */
3824         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3825                 j = tx_conf->dcb_tc[i];
3826                 tc = &dcb_config->tc_config[j];
3827                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3828                                                 (uint8_t)(1 << i);
3829         }
3830 }
3831
3832 /**
3833  * ixgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters
3834  * @dev: pointer to eth_dev structure
3835  * @dcb_config: pointer to ixgbe_dcb_config structure
3836  */
3837 static void
3838 ixgbe_dcb_rx_hw_config(struct rte_eth_dev *dev,
3839                        struct ixgbe_dcb_config *dcb_config)
3840 {
3841         uint32_t reg;
3842         uint32_t vlanctrl;
3843         uint8_t i;
3844         uint32_t q;
3845         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3846
3847         PMD_INIT_FUNC_TRACE();
3848         /*
3849          * Disable the arbiter before changing parameters
3850          * (always enable recycle mode; WSP)
3851          */
3852         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC | IXGBE_RTRPCS_ARBDIS;
3853         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
3854
3855         if (hw->mac.type != ixgbe_mac_82598EB) {
3856                 reg = IXGBE_READ_REG(hw, IXGBE_MRQC);
3857                 if (dcb_config->num_tcs.pg_tcs == 4) {
3858                         if (dcb_config->vt_mode)
3859                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3860                                         IXGBE_MRQC_VMDQRT4TCEN;
3861                         else {
3862                                 /* no matter the mode is DCB or DCB_RSS, just
3863                                  * set the MRQE to RSSXTCEN. RSS is controlled
3864                                  * by RSS_FIELD
3865                                  */
3866                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
3867                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3868                                         IXGBE_MRQC_RTRSS4TCEN;
3869                         }
3870                 }
3871                 if (dcb_config->num_tcs.pg_tcs == 8) {
3872                         if (dcb_config->vt_mode)
3873                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3874                                         IXGBE_MRQC_VMDQRT8TCEN;
3875                         else {
3876                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
3877                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
3878                                         IXGBE_MRQC_RTRSS8TCEN;
3879                         }
3880                 }
3881
3882                 IXGBE_WRITE_REG(hw, IXGBE_MRQC, reg);
3883
3884                 if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
3885                         /* Disable drop for all queues in VMDQ mode*/
3886                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
3887                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
3888                                                 (IXGBE_QDE_WRITE |
3889                                                  (q << IXGBE_QDE_IDX_SHIFT)));
3890                 } else {
3891                         /* Enable drop for all queues in SRIOV mode */
3892                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
3893                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
3894                                                 (IXGBE_QDE_WRITE |
3895                                                  (q << IXGBE_QDE_IDX_SHIFT) |
3896                                                  IXGBE_QDE_ENABLE));
3897                 }
3898         }
3899
3900         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3901         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3902         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3903         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3904
3905         /* VFTA - enable all vlan filters */
3906         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3907                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3908         }
3909
3910         /*
3911          * Configure Rx packet plane (recycle mode; WSP) and
3912          * enable arbiter
3913          */
3914         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC;
3915         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
3916 }
3917
3918 static void
3919 ixgbe_dcb_hw_arbite_rx_config(struct ixgbe_hw *hw, uint16_t *refill,
3920                         uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
3921 {
3922         switch (hw->mac.type) {
3923         case ixgbe_mac_82598EB:
3924                 ixgbe_dcb_config_rx_arbiter_82598(hw, refill, max, tsa);
3925                 break;
3926         case ixgbe_mac_82599EB:
3927         case ixgbe_mac_X540:
3928         case ixgbe_mac_X550:
3929         case ixgbe_mac_X550EM_x:
3930         case ixgbe_mac_X550EM_a:
3931                 ixgbe_dcb_config_rx_arbiter_82599(hw, refill, max, bwg_id,
3932                                                   tsa, map);
3933                 break;
3934         default:
3935                 break;
3936         }
3937 }
3938
3939 static void
3940 ixgbe_dcb_hw_arbite_tx_config(struct ixgbe_hw *hw, uint16_t *refill, uint16_t *max,
3941                             uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
3942 {
3943         switch (hw->mac.type) {
3944         case ixgbe_mac_82598EB:
3945                 ixgbe_dcb_config_tx_desc_arbiter_82598(hw, refill, max, bwg_id, tsa);
3946                 ixgbe_dcb_config_tx_data_arbiter_82598(hw, refill, max, bwg_id, tsa);
3947                 break;
3948         case ixgbe_mac_82599EB:
3949         case ixgbe_mac_X540:
3950         case ixgbe_mac_X550:
3951         case ixgbe_mac_X550EM_x:
3952         case ixgbe_mac_X550EM_a:
3953                 ixgbe_dcb_config_tx_desc_arbiter_82599(hw, refill, max, bwg_id, tsa);
3954                 ixgbe_dcb_config_tx_data_arbiter_82599(hw, refill, max, bwg_id, tsa, map);
3955                 break;
3956         default:
3957                 break;
3958         }
3959 }
3960
3961 #define DCB_RX_CONFIG  1
3962 #define DCB_TX_CONFIG  1
3963 #define DCB_TX_PB      1024
3964 /**
3965  * ixgbe_dcb_hw_configure - Enable DCB and configure
3966  * general DCB in VT mode and non-VT mode parameters
3967  * @dev: pointer to rte_eth_dev structure
3968  * @dcb_config: pointer to ixgbe_dcb_config structure
3969  */
3970 static int
3971 ixgbe_dcb_hw_configure(struct rte_eth_dev *dev,
3972                         struct ixgbe_dcb_config *dcb_config)
3973 {
3974         int     ret = 0;
3975         uint8_t i, pfc_en, nb_tcs;
3976         uint16_t pbsize, rx_buffer_size;
3977         uint8_t config_dcb_rx = 0;
3978         uint8_t config_dcb_tx = 0;
3979         uint8_t tsa[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3980         uint8_t bwgid[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3981         uint16_t refill[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3982         uint16_t max[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3983         uint8_t map[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
3984         struct ixgbe_dcb_tc_config *tc;
3985         uint32_t max_frame = dev->data->mtu + RTE_ETHER_HDR_LEN +
3986                 RTE_ETHER_CRC_LEN;
3987         struct ixgbe_hw *hw =
3988                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3989         struct ixgbe_bw_conf *bw_conf =
3990                 IXGBE_DEV_PRIVATE_TO_BW_CONF(dev->data->dev_private);
3991
3992         switch (dev->data->dev_conf.rxmode.mq_mode) {
3993         case ETH_MQ_RX_VMDQ_DCB:
3994                 dcb_config->vt_mode = true;
3995                 if (hw->mac.type != ixgbe_mac_82598EB) {
3996                         config_dcb_rx = DCB_RX_CONFIG;
3997                         /*
3998                          *get dcb and VT rx configuration parameters
3999                          *from rte_eth_conf
4000                          */
4001                         ixgbe_vmdq_dcb_rx_config(dev, dcb_config);
4002                         /*Configure general VMDQ and DCB RX parameters*/
4003                         ixgbe_vmdq_dcb_configure(dev);
4004                 }
4005                 break;
4006         case ETH_MQ_RX_DCB:
4007         case ETH_MQ_RX_DCB_RSS:
4008                 dcb_config->vt_mode = false;
4009                 config_dcb_rx = DCB_RX_CONFIG;
4010                 /* Get dcb TX configuration parameters from rte_eth_conf */
4011                 ixgbe_dcb_rx_config(dev, dcb_config);
4012                 /*Configure general DCB RX parameters*/
4013                 ixgbe_dcb_rx_hw_config(dev, dcb_config);
4014                 break;
4015         default:
4016                 PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration");
4017                 break;
4018         }
4019         switch (dev->data->dev_conf.txmode.mq_mode) {
4020         case ETH_MQ_TX_VMDQ_DCB:
4021                 dcb_config->vt_mode = true;
4022                 config_dcb_tx = DCB_TX_CONFIG;
4023                 /* get DCB and VT TX configuration parameters
4024                  * from rte_eth_conf
4025                  */
4026                 ixgbe_dcb_vt_tx_config(dev, dcb_config);
4027                 /*Configure general VMDQ and DCB TX parameters*/
4028                 ixgbe_vmdq_dcb_hw_tx_config(dev, dcb_config);
4029                 break;
4030
4031         case ETH_MQ_TX_DCB:
4032                 dcb_config->vt_mode = false;
4033                 config_dcb_tx = DCB_TX_CONFIG;
4034                 /*get DCB TX configuration parameters from rte_eth_conf*/
4035                 ixgbe_dcb_tx_config(dev, dcb_config);
4036                 /*Configure general DCB TX parameters*/
4037                 ixgbe_dcb_tx_hw_config(dev, dcb_config);
4038                 break;
4039         default:
4040                 PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration");
4041                 break;
4042         }
4043
4044         nb_tcs = dcb_config->num_tcs.pfc_tcs;
4045         /* Unpack map */
4046         ixgbe_dcb_unpack_map_cee(dcb_config, IXGBE_DCB_RX_CONFIG, map);
4047         if (nb_tcs == ETH_4_TCS) {
4048                 /* Avoid un-configured priority mapping to TC0 */
4049                 uint8_t j = 4;
4050                 uint8_t mask = 0xFF;
4051
4052                 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES - 4; i++)
4053                         mask = (uint8_t)(mask & (~(1 << map[i])));
4054                 for (i = 0; mask && (i < IXGBE_DCB_MAX_TRAFFIC_CLASS); i++) {
4055                         if ((mask & 0x1) && (j < ETH_DCB_NUM_USER_PRIORITIES))
4056                                 map[j++] = i;
4057                         mask >>= 1;
4058                 }
4059                 /* Re-configure 4 TCs BW */
4060                 for (i = 0; i < nb_tcs; i++) {
4061                         tc = &dcb_config->tc_config[i];
4062                         if (bw_conf->tc_num != nb_tcs)
4063                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4064                                         (uint8_t)(100 / nb_tcs);
4065                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4066                                                 (uint8_t)(100 / nb_tcs);
4067                 }
4068                 for (; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
4069                         tc = &dcb_config->tc_config[i];
4070                         tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent = 0;
4071                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent = 0;
4072                 }
4073         } else {
4074                 /* Re-configure 8 TCs BW */
4075                 for (i = 0; i < nb_tcs; i++) {
4076                         tc = &dcb_config->tc_config[i];
4077                         if (bw_conf->tc_num != nb_tcs)
4078                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4079                                         (uint8_t)(100 / nb_tcs + (i & 1));
4080                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4081                                 (uint8_t)(100 / nb_tcs + (i & 1));
4082                 }
4083         }
4084
4085         switch (hw->mac.type) {
4086         case ixgbe_mac_X550:
4087         case ixgbe_mac_X550EM_x:
4088         case ixgbe_mac_X550EM_a:
4089                 rx_buffer_size = X550_RX_BUFFER_SIZE;
4090                 break;
4091         default:
4092                 rx_buffer_size = NIC_RX_BUFFER_SIZE;
4093                 break;
4094         }
4095
4096         if (config_dcb_rx) {
4097                 /* Set RX buffer size */
4098                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4099                 uint32_t rxpbsize = pbsize << IXGBE_RXPBSIZE_SHIFT;
4100
4101                 for (i = 0; i < nb_tcs; i++) {
4102                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
4103                 }
4104                 /* zero alloc all unused TCs */
4105                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4106                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4107                 }
4108         }
4109         if (config_dcb_tx) {
4110                 /* Only support an equally distributed
4111                  *  Tx packet buffer strategy.
4112                  */
4113                 uint32_t txpktsize = IXGBE_TXPBSIZE_MAX / nb_tcs;
4114                 uint32_t txpbthresh = (txpktsize / DCB_TX_PB) - IXGBE_TXPKT_SIZE_MAX;
4115
4116                 for (i = 0; i < nb_tcs; i++) {
4117                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4118                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4119                 }
4120                 /* Clear unused TCs, if any, to zero buffer size*/
4121                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4122                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4123                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4124                 }
4125         }
4126
4127         /*Calculates traffic class credits*/
4128         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4129                                 IXGBE_DCB_TX_CONFIG);
4130         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4131                                 IXGBE_DCB_RX_CONFIG);
4132
4133         if (config_dcb_rx) {
4134                 /* Unpack CEE standard containers */
4135                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_RX_CONFIG, refill);
4136                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4137                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_RX_CONFIG, bwgid);
4138                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_RX_CONFIG, tsa);
4139                 /* Configure PG(ETS) RX */
4140                 ixgbe_dcb_hw_arbite_rx_config(hw, refill, max, bwgid, tsa, map);
4141         }
4142
4143         if (config_dcb_tx) {
4144                 /* Unpack CEE standard containers */
4145                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_TX_CONFIG, refill);
4146                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4147                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_TX_CONFIG, bwgid);
4148                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_TX_CONFIG, tsa);
4149                 /* Configure PG(ETS) TX */
4150                 ixgbe_dcb_hw_arbite_tx_config(hw, refill, max, bwgid, tsa, map);
4151         }
4152
4153         /*Configure queue statistics registers*/
4154         ixgbe_dcb_config_tc_stats_82599(hw, dcb_config);
4155
4156         /* Check if the PFC is supported */
4157         if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) {
4158                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4159                 for (i = 0; i < nb_tcs; i++) {
4160                         /*
4161                         * If the TC count is 8,and the default high_water is 48,
4162                         * the low_water is 16 as default.
4163                         */
4164                         hw->fc.high_water[i] = (pbsize * 3) / 4;
4165                         hw->fc.low_water[i] = pbsize / 4;
4166                         /* Enable pfc for this TC */
4167                         tc = &dcb_config->tc_config[i];
4168                         tc->pfc = ixgbe_dcb_pfc_enabled;
4169                 }
4170                 ixgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en);
4171                 if (dcb_config->num_tcs.pfc_tcs == ETH_4_TCS)
4172                         pfc_en &= 0x0F;
4173                 ret = ixgbe_dcb_config_pfc(hw, pfc_en, map);
4174         }
4175
4176         return ret;
4177 }
4178
4179 /**
4180  * ixgbe_configure_dcb - Configure DCB  Hardware
4181  * @dev: pointer to rte_eth_dev
4182  */
4183 void ixgbe_configure_dcb(struct rte_eth_dev *dev)
4184 {
4185         struct ixgbe_dcb_config *dcb_cfg =
4186                         IXGBE_DEV_PRIVATE_TO_DCB_CFG(dev->data->dev_private);
4187         struct rte_eth_conf *dev_conf = &(dev->data->dev_conf);
4188
4189         PMD_INIT_FUNC_TRACE();
4190
4191         /* check support mq_mode for DCB */
4192         if ((dev_conf->rxmode.mq_mode != ETH_MQ_RX_VMDQ_DCB) &&
4193             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB) &&
4194             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB_RSS))
4195                 return;
4196
4197         if (dev->data->nb_rx_queues > ETH_DCB_NUM_QUEUES)
4198                 return;
4199
4200         /** Configure DCB hardware **/
4201         ixgbe_dcb_hw_configure(dev, dcb_cfg);
4202 }
4203
4204 /*
4205  * VMDq only support for 10 GbE NIC.
4206  */
4207 static void
4208 ixgbe_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
4209 {
4210         struct rte_eth_vmdq_rx_conf *cfg;
4211         struct ixgbe_hw *hw;
4212         enum rte_eth_nb_pools num_pools;
4213         uint32_t mrqc, vt_ctl, vlanctrl;
4214         uint32_t vmolr = 0;
4215         int i;
4216
4217         PMD_INIT_FUNC_TRACE();
4218         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4219         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
4220         num_pools = cfg->nb_queue_pools;
4221
4222         ixgbe_rss_disable(dev);
4223
4224         /* MRQC: enable vmdq */
4225         mrqc = IXGBE_MRQC_VMDQEN;
4226         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4227
4228         /* PFVTCTL: turn on virtualisation and set the default pool */
4229         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
4230         if (cfg->enable_default_pool)
4231                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
4232         else
4233                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
4234
4235         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
4236
4237         for (i = 0; i < (int)num_pools; i++) {
4238                 vmolr = ixgbe_convert_vm_rx_mask_to_val(cfg->rx_mode, vmolr);
4239                 IXGBE_WRITE_REG(hw, IXGBE_VMOLR(i), vmolr);
4240         }
4241
4242         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
4243         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
4244         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
4245         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
4246
4247         /* VFTA - enable all vlan filters */
4248         for (i = 0; i < NUM_VFTA_REGISTERS; i++)
4249                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), UINT32_MAX);
4250
4251         /* VFRE: pool enabling for receive - 64 */
4252         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0), UINT32_MAX);
4253         if (num_pools == ETH_64_POOLS)
4254                 IXGBE_WRITE_REG(hw, IXGBE_VFRE(1), UINT32_MAX);
4255
4256         /*
4257          * MPSAR - allow pools to read specific mac addresses
4258          * In this case, all pools should be able to read from mac addr 0
4259          */
4260         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), UINT32_MAX);
4261         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), UINT32_MAX);
4262
4263         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
4264         for (i = 0; i < cfg->nb_pool_maps; i++) {
4265                 /* set vlan id in VF register and set the valid bit */
4266                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
4267                                 (cfg->pool_map[i].vlan_id & IXGBE_RXD_VLAN_ID_MASK)));
4268                 /*
4269                  * Put the allowed pools in VFB reg. As we only have 16 or 64
4270                  * pools, we only need to use the first half of the register
4271                  * i.e. bits 0-31
4272                  */
4273                 if (((cfg->pool_map[i].pools >> 32) & UINT32_MAX) == 0)
4274                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i * 2),
4275                                         (cfg->pool_map[i].pools & UINT32_MAX));
4276                 else
4277                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB((i * 2 + 1)),
4278                                         ((cfg->pool_map[i].pools >> 32) & UINT32_MAX));
4279
4280         }
4281
4282         /* PFDMA Tx General Switch Control Enables VMDQ loopback */
4283         if (cfg->enable_loop_back) {
4284                 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, IXGBE_PFDTXGSWC_VT_LBEN);
4285                 for (i = 0; i < RTE_IXGBE_VMTXSW_REGISTER_COUNT; i++)
4286                         IXGBE_WRITE_REG(hw, IXGBE_VMTXSW(i), UINT32_MAX);
4287         }
4288
4289         IXGBE_WRITE_FLUSH(hw);
4290 }
4291
4292 /*
4293  * ixgbe_dcb_config_tx_hw_config - Configure general VMDq TX parameters
4294  * @hw: pointer to hardware structure
4295  */
4296 static void
4297 ixgbe_vmdq_tx_hw_configure(struct ixgbe_hw *hw)
4298 {
4299         uint32_t reg;
4300         uint32_t q;
4301
4302         PMD_INIT_FUNC_TRACE();
4303         /*PF VF Transmit Enable*/
4304         IXGBE_WRITE_REG(hw, IXGBE_VFTE(0), UINT32_MAX);
4305         IXGBE_WRITE_REG(hw, IXGBE_VFTE(1), UINT32_MAX);
4306
4307         /* Disable the Tx desc arbiter so that MTQC can be changed */
4308         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4309         reg |= IXGBE_RTTDCS_ARBDIS;
4310         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4311
4312         reg = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4313         IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
4314
4315         /* Disable drop for all queues */
4316         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4317                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4318                   (IXGBE_QDE_WRITE | (q << IXGBE_QDE_IDX_SHIFT)));
4319
4320         /* Enable the Tx desc arbiter */
4321         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4322         reg &= ~IXGBE_RTTDCS_ARBDIS;
4323         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4324
4325         IXGBE_WRITE_FLUSH(hw);
4326 }
4327
4328 static int __attribute__((cold))
4329 ixgbe_alloc_rx_queue_mbufs(struct ixgbe_rx_queue *rxq)
4330 {
4331         struct ixgbe_rx_entry *rxe = rxq->sw_ring;
4332         uint64_t dma_addr;
4333         unsigned int i;
4334
4335         /* Initialize software ring entries */
4336         for (i = 0; i < rxq->nb_rx_desc; i++) {
4337                 volatile union ixgbe_adv_rx_desc *rxd;
4338                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
4339
4340                 if (mbuf == NULL) {
4341                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
4342                                      (unsigned) rxq->queue_id);
4343                         return -ENOMEM;
4344                 }
4345
4346                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
4347                 mbuf->port = rxq->port_id;
4348
4349                 dma_addr =
4350                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
4351                 rxd = &rxq->rx_ring[i];
4352                 rxd->read.hdr_addr = 0;
4353                 rxd->read.pkt_addr = dma_addr;
4354                 rxe[i].mbuf = mbuf;
4355         }
4356
4357         return 0;
4358 }
4359
4360 static int
4361 ixgbe_config_vf_rss(struct rte_eth_dev *dev)
4362 {
4363         struct ixgbe_hw *hw;
4364         uint32_t mrqc;
4365
4366         ixgbe_rss_configure(dev);
4367
4368         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4369
4370         /* MRQC: enable VF RSS */
4371         mrqc = IXGBE_READ_REG(hw, IXGBE_MRQC);
4372         mrqc &= ~IXGBE_MRQC_MRQE_MASK;
4373         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4374         case ETH_64_POOLS:
4375                 mrqc |= IXGBE_MRQC_VMDQRSS64EN;
4376                 break;
4377
4378         case ETH_32_POOLS:
4379                 mrqc |= IXGBE_MRQC_VMDQRSS32EN;
4380                 break;
4381
4382         default:
4383                 PMD_INIT_LOG(ERR, "Invalid pool number in IOV mode with VMDQ RSS");
4384                 return -EINVAL;
4385         }
4386
4387         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4388
4389         return 0;
4390 }
4391
4392 static int
4393 ixgbe_config_vf_default(struct rte_eth_dev *dev)
4394 {
4395         struct ixgbe_hw *hw =
4396                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4397
4398         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4399         case ETH_64_POOLS:
4400                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4401                         IXGBE_MRQC_VMDQEN);
4402                 break;
4403
4404         case ETH_32_POOLS:
4405                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4406                         IXGBE_MRQC_VMDQRT4TCEN);
4407                 break;
4408
4409         case ETH_16_POOLS:
4410                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4411                         IXGBE_MRQC_VMDQRT8TCEN);
4412                 break;
4413         default:
4414                 PMD_INIT_LOG(ERR,
4415                         "invalid pool number in IOV mode");
4416                 break;
4417         }
4418         return 0;
4419 }
4420
4421 static int
4422 ixgbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
4423 {
4424         struct ixgbe_hw *hw =
4425                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4426
4427         if (hw->mac.type == ixgbe_mac_82598EB)
4428                 return 0;
4429
4430         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4431                 /*
4432                  * SRIOV inactive scheme
4433                  * any DCB/RSS w/o VMDq multi-queue setting
4434                  */
4435                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4436                 case ETH_MQ_RX_RSS:
4437                 case ETH_MQ_RX_DCB_RSS:
4438                 case ETH_MQ_RX_VMDQ_RSS:
4439                         ixgbe_rss_configure(dev);
4440                         break;
4441
4442                 case ETH_MQ_RX_VMDQ_DCB:
4443                         ixgbe_vmdq_dcb_configure(dev);
4444                         break;
4445
4446                 case ETH_MQ_RX_VMDQ_ONLY:
4447                         ixgbe_vmdq_rx_hw_configure(dev);
4448                         break;
4449
4450                 case ETH_MQ_RX_NONE:
4451                 default:
4452                         /* if mq_mode is none, disable rss mode.*/
4453                         ixgbe_rss_disable(dev);
4454                         break;
4455                 }
4456         } else {
4457                 /* SRIOV active scheme
4458                  * Support RSS together with SRIOV.
4459                  */
4460                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4461                 case ETH_MQ_RX_RSS:
4462                 case ETH_MQ_RX_VMDQ_RSS:
4463                         ixgbe_config_vf_rss(dev);
4464                         break;
4465                 case ETH_MQ_RX_VMDQ_DCB:
4466                 case ETH_MQ_RX_DCB:
4467                 /* In SRIOV, the configuration is the same as VMDq case */
4468                         ixgbe_vmdq_dcb_configure(dev);
4469                         break;
4470                 /* DCB/RSS together with SRIOV is not supported */
4471                 case ETH_MQ_RX_VMDQ_DCB_RSS:
4472                 case ETH_MQ_RX_DCB_RSS:
4473                         PMD_INIT_LOG(ERR,
4474                                 "Could not support DCB/RSS with VMDq & SRIOV");
4475                         return -1;
4476                 default:
4477                         ixgbe_config_vf_default(dev);
4478                         break;
4479                 }
4480         }
4481
4482         return 0;
4483 }
4484
4485 static int
4486 ixgbe_dev_mq_tx_configure(struct rte_eth_dev *dev)
4487 {
4488         struct ixgbe_hw *hw =
4489                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4490         uint32_t mtqc;
4491         uint32_t rttdcs;
4492
4493         if (hw->mac.type == ixgbe_mac_82598EB)
4494                 return 0;
4495
4496         /* disable arbiter before setting MTQC */
4497         rttdcs = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4498         rttdcs |= IXGBE_RTTDCS_ARBDIS;
4499         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4500
4501         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4502                 /*
4503                  * SRIOV inactive scheme
4504                  * any DCB w/o VMDq multi-queue setting
4505                  */
4506                 if (dev->data->dev_conf.txmode.mq_mode == ETH_MQ_TX_VMDQ_ONLY)
4507                         ixgbe_vmdq_tx_hw_configure(hw);
4508                 else {
4509                         mtqc = IXGBE_MTQC_64Q_1PB;
4510                         IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4511                 }
4512         } else {
4513                 switch (RTE_ETH_DEV_SRIOV(dev).active) {
4514
4515                 /*
4516                  * SRIOV active scheme
4517                  * FIXME if support DCB together with VMDq & SRIOV
4518                  */
4519                 case ETH_64_POOLS:
4520                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4521                         break;
4522                 case ETH_32_POOLS:
4523                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_32VF;
4524                         break;
4525                 case ETH_16_POOLS:
4526                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_RT_ENA |
4527                                 IXGBE_MTQC_8TC_8TQ;
4528                         break;
4529                 default:
4530                         mtqc = IXGBE_MTQC_64Q_1PB;
4531                         PMD_INIT_LOG(ERR, "invalid pool number in IOV mode");
4532                 }
4533                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4534         }
4535
4536         /* re-enable arbiter */
4537         rttdcs &= ~IXGBE_RTTDCS_ARBDIS;
4538         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4539
4540         return 0;
4541 }
4542
4543 /**
4544  * ixgbe_get_rscctl_maxdesc - Calculate the RSCCTL[n].MAXDESC for PF
4545  *
4546  * Return the RSCCTL[n].MAXDESC for 82599 and x540 PF devices according to the
4547  * spec rev. 3.0 chapter 8.2.3.8.13.
4548  *
4549  * @pool Memory pool of the Rx queue
4550  */
4551 static inline uint32_t
4552 ixgbe_get_rscctl_maxdesc(struct rte_mempool *pool)
4553 {
4554         struct rte_pktmbuf_pool_private *mp_priv = rte_mempool_get_priv(pool);
4555
4556         /* MAXDESC * SRRCTL.BSIZEPKT must not exceed 64 KB minus one */
4557         uint16_t maxdesc =
4558                 RTE_IPV4_MAX_PKT_LEN /
4559                         (mp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM);
4560
4561         if (maxdesc >= 16)
4562                 return IXGBE_RSCCTL_MAXDESC_16;
4563         else if (maxdesc >= 8)
4564                 return IXGBE_RSCCTL_MAXDESC_8;
4565         else if (maxdesc >= 4)
4566                 return IXGBE_RSCCTL_MAXDESC_4;
4567         else
4568                 return IXGBE_RSCCTL_MAXDESC_1;
4569 }
4570
4571 /**
4572  * ixgbe_set_ivar - Setup the correct IVAR register for a particular MSIX
4573  * interrupt
4574  *
4575  * (Taken from FreeBSD tree)
4576  * (yes this is all very magic and confusing :)
4577  *
4578  * @dev port handle
4579  * @entry the register array entry
4580  * @vector the MSIX vector for this queue
4581  * @type RX/TX/MISC
4582  */
4583 static void
4584 ixgbe_set_ivar(struct rte_eth_dev *dev, u8 entry, u8 vector, s8 type)
4585 {
4586         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4587         u32 ivar, index;
4588
4589         vector |= IXGBE_IVAR_ALLOC_VAL;
4590
4591         switch (hw->mac.type) {
4592
4593         case ixgbe_mac_82598EB:
4594                 if (type == -1)
4595                         entry = IXGBE_IVAR_OTHER_CAUSES_INDEX;
4596                 else
4597                         entry += (type * 64);
4598                 index = (entry >> 2) & 0x1F;
4599                 ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(index));
4600                 ivar &= ~(0xFF << (8 * (entry & 0x3)));
4601                 ivar |= (vector << (8 * (entry & 0x3)));
4602                 IXGBE_WRITE_REG(hw, IXGBE_IVAR(index), ivar);
4603                 break;
4604
4605         case ixgbe_mac_82599EB:
4606         case ixgbe_mac_X540:
4607                 if (type == -1) { /* MISC IVAR */
4608                         index = (entry & 1) * 8;
4609                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR_MISC);
4610                         ivar &= ~(0xFF << index);
4611                         ivar |= (vector << index);
4612                         IXGBE_WRITE_REG(hw, IXGBE_IVAR_MISC, ivar);
4613                 } else {        /* RX/TX IVARS */
4614                         index = (16 * (entry & 1)) + (8 * type);
4615                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(entry >> 1));
4616                         ivar &= ~(0xFF << index);
4617                         ivar |= (vector << index);
4618                         IXGBE_WRITE_REG(hw, IXGBE_IVAR(entry >> 1), ivar);
4619                 }
4620
4621                 break;
4622
4623         default:
4624                 break;
4625         }
4626 }
4627
4628 void __attribute__((cold))
4629 ixgbe_set_rx_function(struct rte_eth_dev *dev)
4630 {
4631         uint16_t i, rx_using_sse;
4632         struct ixgbe_adapter *adapter = dev->data->dev_private;
4633
4634         /*
4635          * In order to allow Vector Rx there are a few configuration
4636          * conditions to be met and Rx Bulk Allocation should be allowed.
4637          */
4638         if (ixgbe_rx_vec_dev_conf_condition_check(dev) ||
4639             !adapter->rx_bulk_alloc_allowed) {
4640                 PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet Vector Rx "
4641                                     "preconditions or RTE_IXGBE_INC_VECTOR is "
4642                                     "not enabled",
4643                              dev->data->port_id);
4644
4645                 adapter->rx_vec_allowed = false;
4646         }
4647
4648         /*
4649          * Initialize the appropriate LRO callback.
4650          *
4651          * If all queues satisfy the bulk allocation preconditions
4652          * (hw->rx_bulk_alloc_allowed is TRUE) then we may use bulk allocation.
4653          * Otherwise use a single allocation version.
4654          */
4655         if (dev->data->lro) {
4656                 if (adapter->rx_bulk_alloc_allowed) {
4657                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a bulk "
4658                                            "allocation version");
4659                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4660                 } else {
4661                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a single "
4662                                            "allocation version");
4663                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4664                 }
4665         } else if (dev->data->scattered_rx) {
4666                 /*
4667                  * Set the non-LRO scattered callback: there are Vector and
4668                  * single allocation versions.
4669                  */
4670                 if (adapter->rx_vec_allowed) {
4671                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
4672                                             "callback (port=%d).",
4673                                      dev->data->port_id);
4674
4675                         dev->rx_pkt_burst = ixgbe_recv_scattered_pkts_vec;
4676                 } else if (adapter->rx_bulk_alloc_allowed) {
4677                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
4678                                            "allocation callback (port=%d).",
4679                                      dev->data->port_id);
4680                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4681                 } else {
4682                         PMD_INIT_LOG(DEBUG, "Using Regualr (non-vector, "
4683                                             "single allocation) "
4684                                             "Scattered Rx callback "
4685                                             "(port=%d).",
4686                                      dev->data->port_id);
4687
4688                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4689                 }
4690         /*
4691          * Below we set "simple" callbacks according to port/queues parameters.
4692          * If parameters allow we are going to choose between the following
4693          * callbacks:
4694          *    - Vector
4695          *    - Bulk Allocation
4696          *    - Single buffer allocation (the simplest one)
4697          */
4698         } else if (adapter->rx_vec_allowed) {
4699                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
4700                                     "burst size no less than %d (port=%d).",
4701                              RTE_IXGBE_DESCS_PER_LOOP,
4702                              dev->data->port_id);
4703
4704                 dev->rx_pkt_burst = ixgbe_recv_pkts_vec;
4705         } else if (adapter->rx_bulk_alloc_allowed) {
4706                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
4707                                     "satisfied. Rx Burst Bulk Alloc function "
4708                                     "will be used on port=%d.",
4709                              dev->data->port_id);
4710
4711                 dev->rx_pkt_burst = ixgbe_recv_pkts_bulk_alloc;
4712         } else {
4713                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
4714                                     "satisfied, or Scattered Rx is requested "
4715                                     "(port=%d).",
4716                              dev->data->port_id);
4717
4718                 dev->rx_pkt_burst = ixgbe_recv_pkts;
4719         }
4720
4721         /* Propagate information about RX function choice through all queues. */
4722
4723         rx_using_sse =
4724                 (dev->rx_pkt_burst == ixgbe_recv_scattered_pkts_vec ||
4725                 dev->rx_pkt_burst == ixgbe_recv_pkts_vec);
4726
4727         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4728                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4729
4730                 rxq->rx_using_sse = rx_using_sse;
4731 #ifdef RTE_LIBRTE_SECURITY
4732                 rxq->using_ipsec = !!(dev->data->dev_conf.rxmode.offloads &
4733                                 DEV_RX_OFFLOAD_SECURITY);
4734 #endif
4735         }
4736 }
4737
4738 /**
4739  * ixgbe_set_rsc - configure RSC related port HW registers
4740  *
4741  * Configures the port's RSC related registers according to the 4.6.7.2 chapter
4742  * of 82599 Spec (x540 configuration is virtually the same).
4743  *
4744  * @dev port handle
4745  *
4746  * Returns 0 in case of success or a non-zero error code
4747  */
4748 static int
4749 ixgbe_set_rsc(struct rte_eth_dev *dev)
4750 {
4751         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4752         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4753         struct rte_eth_dev_info dev_info = { 0 };
4754         bool rsc_capable = false;
4755         uint16_t i;
4756         uint32_t rdrxctl;
4757         uint32_t rfctl;
4758
4759         /* Sanity check */
4760         dev->dev_ops->dev_infos_get(dev, &dev_info);
4761         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO)
4762                 rsc_capable = true;
4763
4764         if (!rsc_capable && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4765                 PMD_INIT_LOG(CRIT, "LRO is requested on HW that doesn't "
4766                                    "support it");
4767                 return -EINVAL;
4768         }
4769
4770         /* RSC global configuration (chapter 4.6.7.2.1 of 82599 Spec) */
4771
4772         if ((rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC) &&
4773              (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4774                 /*
4775                  * According to chapter of 4.6.7.2.1 of the Spec Rev.
4776                  * 3.0 RSC configuration requires HW CRC stripping being
4777                  * enabled. If user requested both HW CRC stripping off
4778                  * and RSC on - return an error.
4779                  */
4780                 PMD_INIT_LOG(CRIT, "LRO can't be enabled when HW CRC "
4781                                     "is disabled");
4782                 return -EINVAL;
4783         }
4784
4785         /* RFCTL configuration  */
4786         rfctl = IXGBE_READ_REG(hw, IXGBE_RFCTL);
4787         if ((rsc_capable) && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4788                 /*
4789                  * Since NFS packets coalescing is not supported - clear
4790                  * RFCTL.NFSW_DIS and RFCTL.NFSR_DIS when RSC is
4791                  * enabled.
4792                  */
4793                 rfctl &= ~(IXGBE_RFCTL_RSC_DIS | IXGBE_RFCTL_NFSW_DIS |
4794                            IXGBE_RFCTL_NFSR_DIS);
4795         else
4796                 rfctl |= IXGBE_RFCTL_RSC_DIS;
4797         IXGBE_WRITE_REG(hw, IXGBE_RFCTL, rfctl);
4798
4799         /* If LRO hasn't been requested - we are done here. */
4800         if (!(rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4801                 return 0;
4802
4803         /* Set RDRXCTL.RSCACKC bit */
4804         rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
4805         rdrxctl |= IXGBE_RDRXCTL_RSCACKC;
4806         IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
4807
4808         /* Per-queue RSC configuration (chapter 4.6.7.2.2 of 82599 Spec) */
4809         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4810                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4811                 uint32_t srrctl =
4812                         IXGBE_READ_REG(hw, IXGBE_SRRCTL(rxq->reg_idx));
4813                 uint32_t rscctl =
4814                         IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxq->reg_idx));
4815                 uint32_t psrtype =
4816                         IXGBE_READ_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx));
4817                 uint32_t eitr =
4818                         IXGBE_READ_REG(hw, IXGBE_EITR(rxq->reg_idx));
4819
4820                 /*
4821                  * ixgbe PMD doesn't support header-split at the moment.
4822                  *
4823                  * Following the 4.6.7.2.1 chapter of the 82599/x540
4824                  * Spec if RSC is enabled the SRRCTL[n].BSIZEHEADER
4825                  * should be configured even if header split is not
4826                  * enabled. We will configure it 128 bytes following the
4827                  * recommendation in the spec.
4828                  */
4829                 srrctl &= ~IXGBE_SRRCTL_BSIZEHDR_MASK;
4830                 srrctl |= (128 << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
4831                                             IXGBE_SRRCTL_BSIZEHDR_MASK;
4832
4833                 /*
4834                  * TODO: Consider setting the Receive Descriptor Minimum
4835                  * Threshold Size for an RSC case. This is not an obviously
4836                  * beneficiary option but the one worth considering...
4837                  */
4838
4839                 rscctl |= IXGBE_RSCCTL_RSCEN;
4840                 rscctl |= ixgbe_get_rscctl_maxdesc(rxq->mb_pool);
4841                 psrtype |= IXGBE_PSRTYPE_TCPHDR;
4842
4843                 /*
4844                  * RSC: Set ITR interval corresponding to 2K ints/s.
4845                  *
4846                  * Full-sized RSC aggregations for a 10Gb/s link will
4847                  * arrive at about 20K aggregation/s rate.
4848                  *
4849                  * 2K inst/s rate will make only 10% of the
4850                  * aggregations to be closed due to the interrupt timer
4851                  * expiration for a streaming at wire-speed case.
4852                  *
4853                  * For a sparse streaming case this setting will yield
4854                  * at most 500us latency for a single RSC aggregation.
4855                  */
4856                 eitr &= ~IXGBE_EITR_ITR_INT_MASK;
4857                 eitr |= IXGBE_EITR_INTERVAL_US(IXGBE_QUEUE_ITR_INTERVAL_DEFAULT);
4858                 eitr |= IXGBE_EITR_CNT_WDIS;
4859
4860                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
4861                 IXGBE_WRITE_REG(hw, IXGBE_RSCCTL(rxq->reg_idx), rscctl);
4862                 IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx), psrtype);
4863                 IXGBE_WRITE_REG(hw, IXGBE_EITR(rxq->reg_idx), eitr);
4864
4865                 /*
4866                  * RSC requires the mapping of the queue to the
4867                  * interrupt vector.
4868                  */
4869                 ixgbe_set_ivar(dev, rxq->reg_idx, i, 0);
4870         }
4871
4872         dev->data->lro = 1;
4873
4874         PMD_INIT_LOG(DEBUG, "enabling LRO mode");
4875
4876         return 0;
4877 }
4878
4879 /*
4880  * Initializes Receive Unit.
4881  */
4882 int __attribute__((cold))
4883 ixgbe_dev_rx_init(struct rte_eth_dev *dev)
4884 {
4885         struct ixgbe_hw     *hw;
4886         struct ixgbe_rx_queue *rxq;
4887         uint64_t bus_addr;
4888         uint32_t rxctrl;
4889         uint32_t fctrl;
4890         uint32_t hlreg0;
4891         uint32_t maxfrs;
4892         uint32_t srrctl;
4893         uint32_t rdrxctl;
4894         uint32_t rxcsum;
4895         uint16_t buf_size;
4896         uint16_t i;
4897         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4898         int rc;
4899
4900         PMD_INIT_FUNC_TRACE();
4901         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4902
4903         /*
4904          * Make sure receives are disabled while setting
4905          * up the RX context (registers, descriptor rings, etc.).
4906          */
4907         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4908         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl & ~IXGBE_RXCTRL_RXEN);
4909
4910         /* Enable receipt of broadcasted frames */
4911         fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
4912         fctrl |= IXGBE_FCTRL_BAM;
4913         fctrl |= IXGBE_FCTRL_DPF;
4914         fctrl |= IXGBE_FCTRL_PMCF;
4915         IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
4916
4917         /*
4918          * Configure CRC stripping, if any.
4919          */
4920         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4921         if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4922                 hlreg0 &= ~IXGBE_HLREG0_RXCRCSTRP;
4923         else
4924                 hlreg0 |= IXGBE_HLREG0_RXCRCSTRP;
4925
4926         /*
4927          * Configure jumbo frame support, if any.
4928          */
4929         if (rx_conf->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
4930                 hlreg0 |= IXGBE_HLREG0_JUMBOEN;
4931                 maxfrs = IXGBE_READ_REG(hw, IXGBE_MAXFRS);
4932                 maxfrs &= 0x0000FFFF;
4933                 maxfrs |= (rx_conf->max_rx_pkt_len << 16);
4934                 IXGBE_WRITE_REG(hw, IXGBE_MAXFRS, maxfrs);
4935         } else
4936                 hlreg0 &= ~IXGBE_HLREG0_JUMBOEN;
4937
4938         /*
4939          * If loopback mode is configured, set LPBK bit.
4940          */
4941         if (dev->data->dev_conf.lpbk_mode != 0) {
4942                 rc = ixgbe_check_supported_loopback_mode(dev);
4943                 if (rc < 0) {
4944                         PMD_INIT_LOG(ERR, "Unsupported loopback mode");
4945                         return rc;
4946                 }
4947                 hlreg0 |= IXGBE_HLREG0_LPBK;
4948         } else {
4949                 hlreg0 &= ~IXGBE_HLREG0_LPBK;
4950         }
4951
4952         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4953
4954         /*
4955          * Assume no header split and no VLAN strip support
4956          * on any Rx queue first .
4957          */
4958         rx_conf->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
4959         /* Setup RX queues */
4960         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4961                 rxq = dev->data->rx_queues[i];
4962
4963                 /*
4964                  * Reset crc_len in case it was changed after queue setup by a
4965                  * call to configure.
4966                  */
4967                 if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4968                         rxq->crc_len = RTE_ETHER_CRC_LEN;
4969                 else
4970                         rxq->crc_len = 0;
4971
4972                 /* Setup the Base and Length of the Rx Descriptor Rings */
4973                 bus_addr = rxq->rx_ring_phys_addr;
4974                 IXGBE_WRITE_REG(hw, IXGBE_RDBAL(rxq->reg_idx),
4975                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
4976                 IXGBE_WRITE_REG(hw, IXGBE_RDBAH(rxq->reg_idx),
4977                                 (uint32_t)(bus_addr >> 32));
4978                 IXGBE_WRITE_REG(hw, IXGBE_RDLEN(rxq->reg_idx),
4979                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
4980                 IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
4981                 IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), 0);
4982
4983                 /* Configure the SRRCTL register */
4984                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
4985
4986                 /* Set if packets are dropped when no descriptors available */
4987                 if (rxq->drop_en)
4988                         srrctl |= IXGBE_SRRCTL_DROP_EN;
4989
4990                 /*
4991                  * Configure the RX buffer size in the BSIZEPACKET field of
4992                  * the SRRCTL register of the queue.
4993                  * The value is in 1 KB resolution. Valid values can be from
4994                  * 1 KB to 16 KB.
4995                  */
4996                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
4997                         RTE_PKTMBUF_HEADROOM);
4998                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
4999                            IXGBE_SRRCTL_BSIZEPKT_MASK);
5000
5001                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
5002
5003                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5004                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5005
5006                 /* It adds dual VLAN length for supporting dual VLAN */
5007                 if (dev->data->dev_conf.rxmode.max_rx_pkt_len +
5008                                             2 * IXGBE_VLAN_TAG_SIZE > buf_size)
5009                         dev->data->scattered_rx = 1;
5010                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
5011                         rx_conf->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
5012         }
5013
5014         if (rx_conf->offloads & DEV_RX_OFFLOAD_SCATTER)
5015                 dev->data->scattered_rx = 1;
5016
5017         /*
5018          * Device configured with multiple RX queues.
5019          */
5020         ixgbe_dev_mq_rx_configure(dev);
5021
5022         /*
5023          * Setup the Checksum Register.
5024          * Disable Full-Packet Checksum which is mutually exclusive with RSS.
5025          * Enable IP/L4 checkum computation by hardware if requested to do so.
5026          */
5027         rxcsum = IXGBE_READ_REG(hw, IXGBE_RXCSUM);
5028         rxcsum |= IXGBE_RXCSUM_PCSD;
5029         if (rx_conf->offloads & DEV_RX_OFFLOAD_CHECKSUM)
5030                 rxcsum |= IXGBE_RXCSUM_IPPCSE;
5031         else
5032                 rxcsum &= ~IXGBE_RXCSUM_IPPCSE;
5033
5034         IXGBE_WRITE_REG(hw, IXGBE_RXCSUM, rxcsum);
5035
5036         if (hw->mac.type == ixgbe_mac_82599EB ||
5037             hw->mac.type == ixgbe_mac_X540) {
5038                 rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
5039                 if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
5040                         rdrxctl &= ~IXGBE_RDRXCTL_CRCSTRIP;
5041                 else
5042                         rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP;
5043                 rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE;
5044                 IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
5045         }
5046
5047         rc = ixgbe_set_rsc(dev);
5048         if (rc)
5049                 return rc;
5050
5051         ixgbe_set_rx_function(dev);
5052
5053         return 0;
5054 }
5055
5056 /*
5057  * Initializes Transmit Unit.
5058  */
5059 void __attribute__((cold))
5060 ixgbe_dev_tx_init(struct rte_eth_dev *dev)
5061 {
5062         struct ixgbe_hw     *hw;
5063         struct ixgbe_tx_queue *txq;
5064         uint64_t bus_addr;
5065         uint32_t hlreg0;
5066         uint32_t txctrl;
5067         uint16_t i;
5068
5069         PMD_INIT_FUNC_TRACE();
5070         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5071
5072         /* Enable TX CRC (checksum offload requirement) and hw padding
5073          * (TSO requirement)
5074          */
5075         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
5076         hlreg0 |= (IXGBE_HLREG0_TXCRCEN | IXGBE_HLREG0_TXPADEN);
5077         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
5078
5079         /* Setup the Base and Length of the Tx Descriptor Rings */
5080         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5081                 txq = dev->data->tx_queues[i];
5082
5083                 bus_addr = txq->tx_ring_phys_addr;
5084                 IXGBE_WRITE_REG(hw, IXGBE_TDBAL(txq->reg_idx),
5085                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5086                 IXGBE_WRITE_REG(hw, IXGBE_TDBAH(txq->reg_idx),
5087                                 (uint32_t)(bus_addr >> 32));
5088                 IXGBE_WRITE_REG(hw, IXGBE_TDLEN(txq->reg_idx),
5089                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5090                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5091                 IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5092                 IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5093
5094                 /*
5095                  * Disable Tx Head Writeback RO bit, since this hoses
5096                  * bookkeeping if things aren't delivered in order.
5097                  */
5098                 switch (hw->mac.type) {
5099                 case ixgbe_mac_82598EB:
5100                         txctrl = IXGBE_READ_REG(hw,
5101                                                 IXGBE_DCA_TXCTRL(txq->reg_idx));
5102                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5103                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL(txq->reg_idx),
5104                                         txctrl);
5105                         break;
5106
5107                 case ixgbe_mac_82599EB:
5108                 case ixgbe_mac_X540:
5109                 case ixgbe_mac_X550:
5110                 case ixgbe_mac_X550EM_x:
5111                 case ixgbe_mac_X550EM_a:
5112                 default:
5113                         txctrl = IXGBE_READ_REG(hw,
5114                                                 IXGBE_DCA_TXCTRL_82599(txq->reg_idx));
5115                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5116                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(txq->reg_idx),
5117                                         txctrl);
5118                         break;
5119                 }
5120         }
5121
5122         /* Device configured with multiple TX queues. */
5123         ixgbe_dev_mq_tx_configure(dev);
5124 }
5125
5126 /*
5127  * Check if requested loopback mode is supported
5128  */
5129 int
5130 ixgbe_check_supported_loopback_mode(struct rte_eth_dev *dev)
5131 {
5132         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5133
5134         if (dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_TX_RX)
5135                 if (hw->mac.type == ixgbe_mac_82599EB ||
5136                      hw->mac.type == ixgbe_mac_X540 ||
5137                      hw->mac.type == ixgbe_mac_X550 ||
5138                      hw->mac.type == ixgbe_mac_X550EM_x ||
5139                      hw->mac.type == ixgbe_mac_X550EM_a)
5140                         return 0;
5141
5142         return -ENOTSUP;
5143 }
5144
5145 /*
5146  * Set up link for 82599 loopback mode Tx->Rx.
5147  */
5148 static inline void __attribute__((cold))
5149 ixgbe_setup_loopback_link_82599(struct ixgbe_hw *hw)
5150 {
5151         PMD_INIT_FUNC_TRACE();
5152
5153         if (ixgbe_verify_lesm_fw_enabled_82599(hw)) {
5154                 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM) !=
5155                                 IXGBE_SUCCESS) {
5156                         PMD_INIT_LOG(ERR, "Could not enable loopback mode");
5157                         /* ignore error */
5158                         return;
5159                 }
5160         }
5161
5162         /* Restart link */
5163         IXGBE_WRITE_REG(hw,
5164                         IXGBE_AUTOC,
5165                         IXGBE_AUTOC_LMS_10G_LINK_NO_AN | IXGBE_AUTOC_FLU);
5166         ixgbe_reset_pipeline_82599(hw);
5167
5168         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
5169         msec_delay(50);
5170 }
5171
5172
5173 /*
5174  * Start Transmit and Receive Units.
5175  */
5176 int __attribute__((cold))
5177 ixgbe_dev_rxtx_start(struct rte_eth_dev *dev)
5178 {
5179         struct ixgbe_hw     *hw;
5180         struct ixgbe_tx_queue *txq;
5181         struct ixgbe_rx_queue *rxq;
5182         uint32_t txdctl;
5183         uint32_t dmatxctl;
5184         uint32_t rxctrl;
5185         uint16_t i;
5186         int ret = 0;
5187
5188         PMD_INIT_FUNC_TRACE();
5189         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5190
5191         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5192                 txq = dev->data->tx_queues[i];
5193                 /* Setup Transmit Threshold Registers */
5194                 txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5195                 txdctl |= txq->pthresh & 0x7F;
5196                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5197                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5198                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5199         }
5200
5201         if (hw->mac.type != ixgbe_mac_82598EB) {
5202                 dmatxctl = IXGBE_READ_REG(hw, IXGBE_DMATXCTL);
5203                 dmatxctl |= IXGBE_DMATXCTL_TE;
5204                 IXGBE_WRITE_REG(hw, IXGBE_DMATXCTL, dmatxctl);
5205         }
5206
5207         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5208                 txq = dev->data->tx_queues[i];
5209                 if (!txq->tx_deferred_start) {
5210                         ret = ixgbe_dev_tx_queue_start(dev, i);
5211                         if (ret < 0)
5212                                 return ret;
5213                 }
5214         }
5215
5216         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5217                 rxq = dev->data->rx_queues[i];
5218                 if (!rxq->rx_deferred_start) {
5219                         ret = ixgbe_dev_rx_queue_start(dev, i);
5220                         if (ret < 0)
5221                                 return ret;
5222                 }
5223         }
5224
5225         /* Enable Receive engine */
5226         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5227         if (hw->mac.type == ixgbe_mac_82598EB)
5228                 rxctrl |= IXGBE_RXCTRL_DMBYPS;
5229         rxctrl |= IXGBE_RXCTRL_RXEN;
5230         hw->mac.ops.enable_rx_dma(hw, rxctrl);
5231
5232         /* If loopback mode is enabled, set up the link accordingly */
5233         if (dev->data->dev_conf.lpbk_mode != 0) {
5234                 if (hw->mac.type == ixgbe_mac_82599EB)
5235                         ixgbe_setup_loopback_link_82599(hw);
5236                 else if (hw->mac.type == ixgbe_mac_X540 ||
5237                      hw->mac.type == ixgbe_mac_X550 ||
5238                      hw->mac.type == ixgbe_mac_X550EM_x ||
5239                      hw->mac.type == ixgbe_mac_X550EM_a)
5240                         ixgbe_setup_loopback_link_x540_x550(hw, true);
5241         }
5242
5243 #ifdef RTE_LIBRTE_SECURITY
5244         if ((dev->data->dev_conf.rxmode.offloads &
5245                         DEV_RX_OFFLOAD_SECURITY) ||
5246                 (dev->data->dev_conf.txmode.offloads &
5247                         DEV_TX_OFFLOAD_SECURITY)) {
5248                 ret = ixgbe_crypto_enable_ipsec(dev);
5249                 if (ret != 0) {
5250                         PMD_DRV_LOG(ERR,
5251                                     "ixgbe_crypto_enable_ipsec fails with %d.",
5252                                     ret);
5253                         return ret;
5254                 }
5255         }
5256 #endif
5257
5258         return 0;
5259 }
5260
5261 /*
5262  * Start Receive Units for specified queue.
5263  */
5264 int __attribute__((cold))
5265 ixgbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5266 {
5267         struct ixgbe_hw     *hw;
5268         struct ixgbe_rx_queue *rxq;
5269         uint32_t rxdctl;
5270         int poll_ms;
5271
5272         PMD_INIT_FUNC_TRACE();
5273         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5274
5275         rxq = dev->data->rx_queues[rx_queue_id];
5276
5277         /* Allocate buffers for descriptor rings */
5278         if (ixgbe_alloc_rx_queue_mbufs(rxq) != 0) {
5279                 PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
5280                              rx_queue_id);
5281                 return -1;
5282         }
5283         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5284         rxdctl |= IXGBE_RXDCTL_ENABLE;
5285         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5286
5287         /* Wait until RX Enable ready */
5288         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5289         do {
5290                 rte_delay_ms(1);
5291                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5292         } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5293         if (!poll_ms)
5294                 PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", rx_queue_id);
5295         rte_wmb();
5296         IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
5297         IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
5298         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5299
5300         return 0;
5301 }
5302
5303 /*
5304  * Stop Receive Units for specified queue.
5305  */
5306 int __attribute__((cold))
5307 ixgbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5308 {
5309         struct ixgbe_hw     *hw;
5310         struct ixgbe_adapter *adapter = dev->data->dev_private;
5311         struct ixgbe_rx_queue *rxq;
5312         uint32_t rxdctl;
5313         int poll_ms;
5314
5315         PMD_INIT_FUNC_TRACE();
5316         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5317
5318         rxq = dev->data->rx_queues[rx_queue_id];
5319
5320         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5321         rxdctl &= ~IXGBE_RXDCTL_ENABLE;
5322         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5323
5324         /* Wait until RX Enable bit clear */
5325         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5326         do {
5327                 rte_delay_ms(1);
5328                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5329         } while (--poll_ms && (rxdctl & IXGBE_RXDCTL_ENABLE));
5330         if (!poll_ms)
5331                 PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d", rx_queue_id);
5332
5333         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5334
5335         ixgbe_rx_queue_release_mbufs(rxq);
5336         ixgbe_reset_rx_queue(adapter, rxq);
5337         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5338
5339         return 0;
5340 }
5341
5342
5343 /*
5344  * Start Transmit Units for specified queue.
5345  */
5346 int __attribute__((cold))
5347 ixgbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5348 {
5349         struct ixgbe_hw     *hw;
5350         struct ixgbe_tx_queue *txq;
5351         uint32_t txdctl;
5352         int poll_ms;
5353
5354         PMD_INIT_FUNC_TRACE();
5355         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5356
5357         txq = dev->data->tx_queues[tx_queue_id];
5358         IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5359         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5360         txdctl |= IXGBE_TXDCTL_ENABLE;
5361         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5362
5363         /* Wait until TX Enable ready */
5364         if (hw->mac.type == ixgbe_mac_82599EB) {
5365                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5366                 do {
5367                         rte_delay_ms(1);
5368                         txdctl = IXGBE_READ_REG(hw,
5369                                 IXGBE_TXDCTL(txq->reg_idx));
5370                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5371                 if (!poll_ms)
5372                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d",
5373                                 tx_queue_id);
5374         }
5375         rte_wmb();
5376         IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5377         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5378
5379         return 0;
5380 }
5381
5382 /*
5383  * Stop Transmit Units for specified queue.
5384  */
5385 int __attribute__((cold))
5386 ixgbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5387 {
5388         struct ixgbe_hw     *hw;
5389         struct ixgbe_tx_queue *txq;
5390         uint32_t txdctl;
5391         uint32_t txtdh, txtdt;
5392         int poll_ms;
5393
5394         PMD_INIT_FUNC_TRACE();
5395         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5396
5397         txq = dev->data->tx_queues[tx_queue_id];
5398
5399         /* Wait until TX queue is empty */
5400         if (hw->mac.type == ixgbe_mac_82599EB) {
5401                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5402                 do {
5403                         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5404                         txtdh = IXGBE_READ_REG(hw,
5405                                                IXGBE_TDH(txq->reg_idx));
5406                         txtdt = IXGBE_READ_REG(hw,
5407                                                IXGBE_TDT(txq->reg_idx));
5408                 } while (--poll_ms && (txtdh != txtdt));
5409                 if (!poll_ms)
5410                         PMD_INIT_LOG(ERR,
5411                                 "Tx Queue %d is not empty when stopping.",
5412                                 tx_queue_id);
5413         }
5414
5415         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5416         txdctl &= ~IXGBE_TXDCTL_ENABLE;
5417         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5418
5419         /* Wait until TX Enable bit clear */
5420         if (hw->mac.type == ixgbe_mac_82599EB) {
5421                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5422                 do {
5423                         rte_delay_ms(1);
5424                         txdctl = IXGBE_READ_REG(hw,
5425                                                 IXGBE_TXDCTL(txq->reg_idx));
5426                 } while (--poll_ms && (txdctl & IXGBE_TXDCTL_ENABLE));
5427                 if (!poll_ms)
5428                         PMD_INIT_LOG(ERR, "Could not disable Tx Queue %d",
5429                                 tx_queue_id);
5430         }
5431
5432         if (txq->ops != NULL) {
5433                 txq->ops->release_mbufs(txq);
5434                 txq->ops->reset(txq);
5435         }
5436         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5437
5438         return 0;
5439 }
5440
5441 void
5442 ixgbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5443         struct rte_eth_rxq_info *qinfo)
5444 {
5445         struct ixgbe_rx_queue *rxq;
5446
5447         rxq = dev->data->rx_queues[queue_id];
5448
5449         qinfo->mp = rxq->mb_pool;
5450         qinfo->scattered_rx = dev->data->scattered_rx;
5451         qinfo->nb_desc = rxq->nb_rx_desc;
5452
5453         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
5454         qinfo->conf.rx_drop_en = rxq->drop_en;
5455         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
5456         qinfo->conf.offloads = rxq->offloads;
5457 }
5458
5459 void
5460 ixgbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5461         struct rte_eth_txq_info *qinfo)
5462 {
5463         struct ixgbe_tx_queue *txq;
5464
5465         txq = dev->data->tx_queues[queue_id];
5466
5467         qinfo->nb_desc = txq->nb_tx_desc;
5468
5469         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
5470         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
5471         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
5472
5473         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
5474         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
5475         qinfo->conf.offloads = txq->offloads;
5476         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
5477 }
5478
5479 /*
5480  * [VF] Initializes Receive Unit.
5481  */
5482 int __attribute__((cold))
5483 ixgbevf_dev_rx_init(struct rte_eth_dev *dev)
5484 {
5485         struct ixgbe_hw     *hw;
5486         struct ixgbe_rx_queue *rxq;
5487         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
5488         uint64_t bus_addr;
5489         uint32_t srrctl, psrtype = 0;
5490         uint16_t buf_size;
5491         uint16_t i;
5492         int ret;
5493
5494         PMD_INIT_FUNC_TRACE();
5495         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5496
5497         if (rte_is_power_of_2(dev->data->nb_rx_queues) == 0) {
5498                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5499                         "it should be power of 2");
5500                 return -1;
5501         }
5502
5503         if (dev->data->nb_rx_queues > hw->mac.max_rx_queues) {
5504                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5505                         "it should be equal to or less than %d",
5506                         hw->mac.max_rx_queues);
5507                 return -1;
5508         }
5509
5510         /*
5511          * When the VF driver issues a IXGBE_VF_RESET request, the PF driver
5512          * disables the VF receipt of packets if the PF MTU is > 1500.
5513          * This is done to deal with 82599 limitations that imposes
5514          * the PF and all VFs to share the same MTU.
5515          * Then, the PF driver enables again the VF receipt of packet when
5516          * the VF driver issues a IXGBE_VF_SET_LPE request.
5517          * In the meantime, the VF device cannot be used, even if the VF driver
5518          * and the Guest VM network stack are ready to accept packets with a
5519          * size up to the PF MTU.
5520          * As a work-around to this PF behaviour, force the call to
5521          * ixgbevf_rlpml_set_vf even if jumbo frames are not used. This way,
5522          * VF packets received can work in all cases.
5523          */
5524         ixgbevf_rlpml_set_vf(hw,
5525                 (uint16_t)dev->data->dev_conf.rxmode.max_rx_pkt_len);
5526
5527         /*
5528          * Assume no header split and no VLAN strip support
5529          * on any Rx queue first .
5530          */
5531         rxmode->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
5532         /* Setup RX queues */
5533         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5534                 rxq = dev->data->rx_queues[i];
5535
5536                 /* Allocate buffers for descriptor rings */
5537                 ret = ixgbe_alloc_rx_queue_mbufs(rxq);
5538                 if (ret)
5539                         return ret;
5540
5541                 /* Setup the Base and Length of the Rx Descriptor Rings */
5542                 bus_addr = rxq->rx_ring_phys_addr;
5543
5544                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(i),
5545                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5546                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(i),
5547                                 (uint32_t)(bus_addr >> 32));
5548                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(i),
5549                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
5550                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(i), 0);
5551                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), 0);
5552
5553
5554                 /* Configure the SRRCTL register */
5555                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
5556
5557                 /* Set if packets are dropped when no descriptors available */
5558                 if (rxq->drop_en)
5559                         srrctl |= IXGBE_SRRCTL_DROP_EN;
5560
5561                 /*
5562                  * Configure the RX buffer size in the BSIZEPACKET field of
5563                  * the SRRCTL register of the queue.
5564                  * The value is in 1 KB resolution. Valid values can be from
5565                  * 1 KB to 16 KB.
5566                  */
5567                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
5568                         RTE_PKTMBUF_HEADROOM);
5569                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
5570                            IXGBE_SRRCTL_BSIZEPKT_MASK);
5571
5572                 /*
5573                  * VF modification to write virtual function SRRCTL register
5574                  */
5575                 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(i), srrctl);
5576
5577                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5578                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5579
5580                 if (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ||
5581                     /* It adds dual VLAN length for supporting dual VLAN */
5582                     (rxmode->max_rx_pkt_len +
5583                                 2 * IXGBE_VLAN_TAG_SIZE) > buf_size) {
5584                         if (!dev->data->scattered_rx)
5585                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
5586                         dev->data->scattered_rx = 1;
5587                 }
5588
5589                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
5590                         rxmode->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
5591         }
5592
5593         /* Set RQPL for VF RSS according to max Rx queue */
5594         psrtype |= (dev->data->nb_rx_queues >> 1) <<
5595                 IXGBE_PSRTYPE_RQPL_SHIFT;
5596         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
5597
5598         ixgbe_set_rx_function(dev);
5599
5600         return 0;
5601 }
5602
5603 /*
5604  * [VF] Initializes Transmit Unit.
5605  */
5606 void __attribute__((cold))
5607 ixgbevf_dev_tx_init(struct rte_eth_dev *dev)
5608 {
5609         struct ixgbe_hw     *hw;
5610         struct ixgbe_tx_queue *txq;
5611         uint64_t bus_addr;
5612         uint32_t txctrl;
5613         uint16_t i;
5614
5615         PMD_INIT_FUNC_TRACE();
5616         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5617
5618         /* Setup the Base and Length of the Tx Descriptor Rings */
5619         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5620                 txq = dev->data->tx_queues[i];
5621                 bus_addr = txq->tx_ring_phys_addr;
5622                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(i),
5623                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5624                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(i),
5625                                 (uint32_t)(bus_addr >> 32));
5626                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(i),
5627                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5628                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5629                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(i), 0);
5630                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(i), 0);
5631
5632                 /*
5633                  * Disable Tx Head Writeback RO bit, since this hoses
5634                  * bookkeeping if things aren't delivered in order.
5635                  */
5636                 txctrl = IXGBE_READ_REG(hw,
5637                                 IXGBE_VFDCA_TXCTRL(i));
5638                 txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5639                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(i),
5640                                 txctrl);
5641         }
5642 }
5643
5644 /*
5645  * [VF] Start Transmit and Receive Units.
5646  */
5647 void __attribute__((cold))
5648 ixgbevf_dev_rxtx_start(struct rte_eth_dev *dev)
5649 {
5650         struct ixgbe_hw     *hw;
5651         struct ixgbe_tx_queue *txq;
5652         struct ixgbe_rx_queue *rxq;
5653         uint32_t txdctl;
5654         uint32_t rxdctl;
5655         uint16_t i;
5656         int poll_ms;
5657
5658         PMD_INIT_FUNC_TRACE();
5659         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5660
5661         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5662                 txq = dev->data->tx_queues[i];
5663                 /* Setup Transmit Threshold Registers */
5664                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5665                 txdctl |= txq->pthresh & 0x7F;
5666                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5667                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5668                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5669         }
5670
5671         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5672
5673                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5674                 txdctl |= IXGBE_TXDCTL_ENABLE;
5675                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5676
5677                 poll_ms = 10;
5678                 /* Wait until TX Enable ready */
5679                 do {
5680                         rte_delay_ms(1);
5681                         txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5682                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5683                 if (!poll_ms)
5684                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d", i);
5685         }
5686         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5687
5688                 rxq = dev->data->rx_queues[i];
5689
5690                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5691                 rxdctl |= IXGBE_RXDCTL_ENABLE;
5692                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(i), rxdctl);
5693
5694                 /* Wait until RX Enable ready */
5695                 poll_ms = 10;
5696                 do {
5697                         rte_delay_ms(1);
5698                         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5699                 } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5700                 if (!poll_ms)
5701                         PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", i);
5702                 rte_wmb();
5703                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), rxq->nb_rx_desc - 1);
5704
5705         }
5706 }
5707
5708 int
5709 ixgbe_rss_conf_init(struct ixgbe_rte_flow_rss_conf *out,
5710                     const struct rte_flow_action_rss *in)
5711 {
5712         if (in->key_len > RTE_DIM(out->key) ||
5713             in->queue_num > RTE_DIM(out->queue))
5714                 return -EINVAL;
5715         out->conf = (struct rte_flow_action_rss){
5716                 .func = in->func,
5717                 .level = in->level,
5718                 .types = in->types,
5719                 .key_len = in->key_len,
5720                 .queue_num = in->queue_num,
5721                 .key = memcpy(out->key, in->key, in->key_len),
5722                 .queue = memcpy(out->queue, in->queue,
5723                                 sizeof(*in->queue) * in->queue_num),
5724         };
5725         return 0;
5726 }
5727
5728 int
5729 ixgbe_action_rss_same(const struct rte_flow_action_rss *comp,
5730                       const struct rte_flow_action_rss *with)
5731 {
5732         return (comp->func == with->func &&
5733                 comp->level == with->level &&
5734                 comp->types == with->types &&
5735                 comp->key_len == with->key_len &&
5736                 comp->queue_num == with->queue_num &&
5737                 !memcmp(comp->key, with->key, with->key_len) &&
5738                 !memcmp(comp->queue, with->queue,
5739                         sizeof(*with->queue) * with->queue_num));
5740 }
5741
5742 int
5743 ixgbe_config_rss_filter(struct rte_eth_dev *dev,
5744                 struct ixgbe_rte_flow_rss_conf *conf, bool add)
5745 {
5746         struct ixgbe_hw *hw;
5747         uint32_t reta;
5748         uint16_t i;
5749         uint16_t j;
5750         uint16_t sp_reta_size;
5751         uint32_t reta_reg;
5752         struct rte_eth_rss_conf rss_conf = {
5753                 .rss_key = conf->conf.key_len ?
5754                         (void *)(uintptr_t)conf->conf.key : NULL,
5755                 .rss_key_len = conf->conf.key_len,
5756                 .rss_hf = conf->conf.types,
5757         };
5758         struct ixgbe_filter_info *filter_info =
5759                 IXGBE_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5760
5761         PMD_INIT_FUNC_TRACE();
5762         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5763
5764         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
5765
5766         if (!add) {
5767                 if (ixgbe_action_rss_same(&filter_info->rss_info.conf,
5768                                           &conf->conf)) {
5769                         ixgbe_rss_disable(dev);
5770                         memset(&filter_info->rss_info, 0,
5771                                 sizeof(struct ixgbe_rte_flow_rss_conf));
5772                         return 0;
5773                 }
5774                 return -EINVAL;
5775         }
5776
5777         if (filter_info->rss_info.conf.queue_num)
5778                 return -EINVAL;
5779         /* Fill in redirection table
5780          * The byte-swap is needed because NIC registers are in
5781          * little-endian order.
5782          */
5783         reta = 0;
5784         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
5785                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
5786
5787                 if (j == conf->conf.queue_num)
5788                         j = 0;
5789                 reta = (reta << 8) | conf->conf.queue[j];
5790                 if ((i & 3) == 3)
5791                         IXGBE_WRITE_REG(hw, reta_reg,
5792                                         rte_bswap32(reta));
5793         }
5794
5795         /* Configure the RSS key and the RSS protocols used to compute
5796          * the RSS hash of input packets.
5797          */
5798         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
5799                 ixgbe_rss_disable(dev);
5800                 return 0;
5801         }
5802         if (rss_conf.rss_key == NULL)
5803                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
5804         ixgbe_hw_rss_hash_set(hw, &rss_conf);
5805
5806         if (ixgbe_rss_conf_init(&filter_info->rss_info, &conf->conf))
5807                 return -EINVAL;
5808
5809         return 0;
5810 }
5811
5812 /* Stubs needed for linkage when CONFIG_RTE_IXGBE_INC_VECTOR is set to 'n' */
5813 __rte_weak int
5814 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
5815 {
5816         return -1;
5817 }
5818
5819 __rte_weak uint16_t
5820 ixgbe_recv_pkts_vec(
5821         void __rte_unused *rx_queue,
5822         struct rte_mbuf __rte_unused **rx_pkts,
5823         uint16_t __rte_unused nb_pkts)
5824 {
5825         return 0;
5826 }
5827
5828 __rte_weak uint16_t
5829 ixgbe_recv_scattered_pkts_vec(
5830         void __rte_unused *rx_queue,
5831         struct rte_mbuf __rte_unused **rx_pkts,
5832         uint16_t __rte_unused nb_pkts)
5833 {
5834         return 0;
5835 }
5836
5837 __rte_weak int
5838 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue __rte_unused *rxq)
5839 {
5840         return -1;
5841 }