eal: use callbacks for power monitoring comparison
[dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <sys/queue.h>
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdarg.h>
14 #include <unistd.h>
15 #include <inttypes.h>
16
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_interrupts.h>
23 #include <rte_pci.h>
24 #include <rte_memory.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_malloc.h>
34 #include <rte_mbuf.h>
35 #include <rte_ether.h>
36 #include <ethdev_driver.h>
37 #include <rte_security_driver.h>
38 #include <rte_prefetch.h>
39 #include <rte_udp.h>
40 #include <rte_tcp.h>
41 #include <rte_sctp.h>
42 #include <rte_string_fns.h>
43 #include <rte_errno.h>
44 #include <rte_ip.h>
45 #include <rte_net.h>
46 #include <rte_vect.h>
47
48 #include "ixgbe_logs.h"
49 #include "base/ixgbe_api.h"
50 #include "base/ixgbe_vf.h"
51 #include "ixgbe_ethdev.h"
52 #include "base/ixgbe_dcb.h"
53 #include "base/ixgbe_common.h"
54 #include "ixgbe_rxtx.h"
55
56 #ifdef RTE_LIBRTE_IEEE1588
57 #define IXGBE_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
58 #else
59 #define IXGBE_TX_IEEE1588_TMST 0
60 #endif
61 /* Bit Mask to indicate what bits required for building TX context */
62 #define IXGBE_TX_OFFLOAD_MASK (                  \
63                 PKT_TX_OUTER_IPV6 |              \
64                 PKT_TX_OUTER_IPV4 |              \
65                 PKT_TX_IPV6 |                    \
66                 PKT_TX_IPV4 |                    \
67                 PKT_TX_VLAN_PKT |                \
68                 PKT_TX_IP_CKSUM |                \
69                 PKT_TX_L4_MASK |                 \
70                 PKT_TX_TCP_SEG |                 \
71                 PKT_TX_MACSEC |                  \
72                 PKT_TX_OUTER_IP_CKSUM |          \
73                 PKT_TX_SEC_OFFLOAD |     \
74                 IXGBE_TX_IEEE1588_TMST)
75
76 #define IXGBE_TX_OFFLOAD_NOTSUP_MASK \
77                 (PKT_TX_OFFLOAD_MASK ^ IXGBE_TX_OFFLOAD_MASK)
78
79 #if 1
80 #define RTE_PMD_USE_PREFETCH
81 #endif
82
83 #ifdef RTE_PMD_USE_PREFETCH
84 /*
85  * Prefetch a cache line into all cache levels.
86  */
87 #define rte_ixgbe_prefetch(p)   rte_prefetch0(p)
88 #else
89 #define rte_ixgbe_prefetch(p)   do {} while (0)
90 #endif
91
92 /*********************************************************************
93  *
94  *  TX functions
95  *
96  **********************************************************************/
97
98 /*
99  * Check for descriptors with their DD bit set and free mbufs.
100  * Return the total number of buffers freed.
101  */
102 static __rte_always_inline int
103 ixgbe_tx_free_bufs(struct ixgbe_tx_queue *txq)
104 {
105         struct ixgbe_tx_entry *txep;
106         uint32_t status;
107         int i, nb_free = 0;
108         struct rte_mbuf *m, *free[RTE_IXGBE_TX_MAX_FREE_BUF_SZ];
109
110         /* check DD bit on threshold descriptor */
111         status = txq->tx_ring[txq->tx_next_dd].wb.status;
112         if (!(status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD)))
113                 return 0;
114
115         /*
116          * first buffer to free from S/W ring is at index
117          * tx_next_dd - (tx_rs_thresh-1)
118          */
119         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
120
121         for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
122                 /* free buffers one at a time */
123                 m = rte_pktmbuf_prefree_seg(txep->mbuf);
124                 txep->mbuf = NULL;
125
126                 if (unlikely(m == NULL))
127                         continue;
128
129                 if (nb_free >= RTE_IXGBE_TX_MAX_FREE_BUF_SZ ||
130                     (nb_free > 0 && m->pool != free[0]->pool)) {
131                         rte_mempool_put_bulk(free[0]->pool,
132                                              (void **)free, nb_free);
133                         nb_free = 0;
134                 }
135
136                 free[nb_free++] = m;
137         }
138
139         if (nb_free > 0)
140                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
141
142         /* buffers were freed, update counters */
143         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
144         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
145         if (txq->tx_next_dd >= txq->nb_tx_desc)
146                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
147
148         return txq->tx_rs_thresh;
149 }
150
151 /* Populate 4 descriptors with data from 4 mbufs */
152 static inline void
153 tx4(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
154 {
155         uint64_t buf_dma_addr;
156         uint32_t pkt_len;
157         int i;
158
159         for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
160                 buf_dma_addr = rte_mbuf_data_iova(*pkts);
161                 pkt_len = (*pkts)->data_len;
162
163                 /* write data to descriptor */
164                 txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
165
166                 txdp->read.cmd_type_len =
167                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
168
169                 txdp->read.olinfo_status =
170                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
171
172                 rte_prefetch0(&(*pkts)->pool);
173         }
174 }
175
176 /* Populate 1 descriptor with data from 1 mbuf */
177 static inline void
178 tx1(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
179 {
180         uint64_t buf_dma_addr;
181         uint32_t pkt_len;
182
183         buf_dma_addr = rte_mbuf_data_iova(*pkts);
184         pkt_len = (*pkts)->data_len;
185
186         /* write data to descriptor */
187         txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
188         txdp->read.cmd_type_len =
189                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
190         txdp->read.olinfo_status =
191                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
192         rte_prefetch0(&(*pkts)->pool);
193 }
194
195 /*
196  * Fill H/W descriptor ring with mbuf data.
197  * Copy mbuf pointers to the S/W ring.
198  */
199 static inline void
200 ixgbe_tx_fill_hw_ring(struct ixgbe_tx_queue *txq, struct rte_mbuf **pkts,
201                       uint16_t nb_pkts)
202 {
203         volatile union ixgbe_adv_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
204         struct ixgbe_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
205         const int N_PER_LOOP = 4;
206         const int N_PER_LOOP_MASK = N_PER_LOOP-1;
207         int mainpart, leftover;
208         int i, j;
209
210         /*
211          * Process most of the packets in chunks of N pkts.  Any
212          * leftover packets will get processed one at a time.
213          */
214         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
215         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
216         for (i = 0; i < mainpart; i += N_PER_LOOP) {
217                 /* Copy N mbuf pointers to the S/W ring */
218                 for (j = 0; j < N_PER_LOOP; ++j) {
219                         (txep + i + j)->mbuf = *(pkts + i + j);
220                 }
221                 tx4(txdp + i, pkts + i);
222         }
223
224         if (unlikely(leftover > 0)) {
225                 for (i = 0; i < leftover; ++i) {
226                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
227                         tx1(txdp + mainpart + i, pkts + mainpart + i);
228                 }
229         }
230 }
231
232 static inline uint16_t
233 tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
234              uint16_t nb_pkts)
235 {
236         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
237         volatile union ixgbe_adv_tx_desc *tx_r = txq->tx_ring;
238         uint16_t n = 0;
239
240         /*
241          * Begin scanning the H/W ring for done descriptors when the
242          * number of available descriptors drops below tx_free_thresh.  For
243          * each done descriptor, free the associated buffer.
244          */
245         if (txq->nb_tx_free < txq->tx_free_thresh)
246                 ixgbe_tx_free_bufs(txq);
247
248         /* Only use descriptors that are available */
249         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
250         if (unlikely(nb_pkts == 0))
251                 return 0;
252
253         /* Use exactly nb_pkts descriptors */
254         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
255
256         /*
257          * At this point, we know there are enough descriptors in the
258          * ring to transmit all the packets.  This assumes that each
259          * mbuf contains a single segment, and that no new offloads
260          * are expected, which would require a new context descriptor.
261          */
262
263         /*
264          * See if we're going to wrap-around. If so, handle the top
265          * of the descriptor ring first, then do the bottom.  If not,
266          * the processing looks just like the "bottom" part anyway...
267          */
268         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
269                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
270                 ixgbe_tx_fill_hw_ring(txq, tx_pkts, n);
271
272                 /*
273                  * We know that the last descriptor in the ring will need to
274                  * have its RS bit set because tx_rs_thresh has to be
275                  * a divisor of the ring size
276                  */
277                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
278                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
279                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
280
281                 txq->tx_tail = 0;
282         }
283
284         /* Fill H/W descriptor ring with mbuf data */
285         ixgbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
286         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
287
288         /*
289          * Determine if RS bit should be set
290          * This is what we actually want:
291          *   if ((txq->tx_tail - 1) >= txq->tx_next_rs)
292          * but instead of subtracting 1 and doing >=, we can just do
293          * greater than without subtracting.
294          */
295         if (txq->tx_tail > txq->tx_next_rs) {
296                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
297                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
298                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
299                                                 txq->tx_rs_thresh);
300                 if (txq->tx_next_rs >= txq->nb_tx_desc)
301                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
302         }
303
304         /*
305          * Check for wrap-around. This would only happen if we used
306          * up to the last descriptor in the ring, no more, no less.
307          */
308         if (txq->tx_tail >= txq->nb_tx_desc)
309                 txq->tx_tail = 0;
310
311         /* update tail pointer */
312         rte_wmb();
313         IXGBE_PCI_REG_WC_WRITE_RELAXED(txq->tdt_reg_addr, txq->tx_tail);
314
315         return nb_pkts;
316 }
317
318 uint16_t
319 ixgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
320                        uint16_t nb_pkts)
321 {
322         uint16_t nb_tx;
323
324         /* Try to transmit at least chunks of TX_MAX_BURST pkts */
325         if (likely(nb_pkts <= RTE_PMD_IXGBE_TX_MAX_BURST))
326                 return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
327
328         /* transmit more than the max burst, in chunks of TX_MAX_BURST */
329         nb_tx = 0;
330         while (nb_pkts) {
331                 uint16_t ret, n;
332
333                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_TX_MAX_BURST);
334                 ret = tx_xmit_pkts(tx_queue, &(tx_pkts[nb_tx]), n);
335                 nb_tx = (uint16_t)(nb_tx + ret);
336                 nb_pkts = (uint16_t)(nb_pkts - ret);
337                 if (ret < n)
338                         break;
339         }
340
341         return nb_tx;
342 }
343
344 static uint16_t
345 ixgbe_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
346                     uint16_t nb_pkts)
347 {
348         uint16_t nb_tx = 0;
349         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
350
351         while (nb_pkts) {
352                 uint16_t ret, num;
353
354                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
355                 ret = ixgbe_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
356                                                  num);
357                 nb_tx += ret;
358                 nb_pkts -= ret;
359                 if (ret < num)
360                         break;
361         }
362
363         return nb_tx;
364 }
365
366 static inline void
367 ixgbe_set_xmit_ctx(struct ixgbe_tx_queue *txq,
368                 volatile struct ixgbe_adv_tx_context_desc *ctx_txd,
369                 uint64_t ol_flags, union ixgbe_tx_offload tx_offload,
370                 __rte_unused uint64_t *mdata)
371 {
372         uint32_t type_tucmd_mlhl;
373         uint32_t mss_l4len_idx = 0;
374         uint32_t ctx_idx;
375         uint32_t vlan_macip_lens;
376         union ixgbe_tx_offload tx_offload_mask;
377         uint32_t seqnum_seed = 0;
378
379         ctx_idx = txq->ctx_curr;
380         tx_offload_mask.data[0] = 0;
381         tx_offload_mask.data[1] = 0;
382         type_tucmd_mlhl = 0;
383
384         /* Specify which HW CTX to upload. */
385         mss_l4len_idx |= (ctx_idx << IXGBE_ADVTXD_IDX_SHIFT);
386
387         if (ol_flags & PKT_TX_VLAN_PKT) {
388                 tx_offload_mask.vlan_tci |= ~0;
389         }
390
391         /* check if TCP segmentation required for this packet */
392         if (ol_flags & PKT_TX_TCP_SEG) {
393                 /* implies IP cksum in IPv4 */
394                 if (ol_flags & PKT_TX_IP_CKSUM)
395                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4 |
396                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
397                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
398                 else
399                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV6 |
400                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
401                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
402
403                 tx_offload_mask.l2_len |= ~0;
404                 tx_offload_mask.l3_len |= ~0;
405                 tx_offload_mask.l4_len |= ~0;
406                 tx_offload_mask.tso_segsz |= ~0;
407                 mss_l4len_idx |= tx_offload.tso_segsz << IXGBE_ADVTXD_MSS_SHIFT;
408                 mss_l4len_idx |= tx_offload.l4_len << IXGBE_ADVTXD_L4LEN_SHIFT;
409         } else { /* no TSO, check if hardware checksum is needed */
410                 if (ol_flags & PKT_TX_IP_CKSUM) {
411                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4;
412                         tx_offload_mask.l2_len |= ~0;
413                         tx_offload_mask.l3_len |= ~0;
414                 }
415
416                 switch (ol_flags & PKT_TX_L4_MASK) {
417                 case PKT_TX_UDP_CKSUM:
418                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP |
419                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
420                         mss_l4len_idx |= sizeof(struct rte_udp_hdr)
421                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
422                         tx_offload_mask.l2_len |= ~0;
423                         tx_offload_mask.l3_len |= ~0;
424                         break;
425                 case PKT_TX_TCP_CKSUM:
426                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP |
427                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
428                         mss_l4len_idx |= sizeof(struct rte_tcp_hdr)
429                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
430                         tx_offload_mask.l2_len |= ~0;
431                         tx_offload_mask.l3_len |= ~0;
432                         break;
433                 case PKT_TX_SCTP_CKSUM:
434                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP |
435                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
436                         mss_l4len_idx |= sizeof(struct rte_sctp_hdr)
437                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
438                         tx_offload_mask.l2_len |= ~0;
439                         tx_offload_mask.l3_len |= ~0;
440                         break;
441                 default:
442                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_RSV |
443                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
444                         break;
445                 }
446         }
447
448         if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
449                 tx_offload_mask.outer_l2_len |= ~0;
450                 tx_offload_mask.outer_l3_len |= ~0;
451                 tx_offload_mask.l2_len |= ~0;
452                 seqnum_seed |= tx_offload.outer_l3_len
453                                << IXGBE_ADVTXD_OUTER_IPLEN;
454                 seqnum_seed |= tx_offload.l2_len
455                                << IXGBE_ADVTXD_TUNNEL_LEN;
456         }
457 #ifdef RTE_LIB_SECURITY
458         if (ol_flags & PKT_TX_SEC_OFFLOAD) {
459                 union ixgbe_crypto_tx_desc_md *md =
460                                 (union ixgbe_crypto_tx_desc_md *)mdata;
461                 seqnum_seed |=
462                         (IXGBE_ADVTXD_IPSEC_SA_INDEX_MASK & md->sa_idx);
463                 type_tucmd_mlhl |= md->enc ?
464                                 (IXGBE_ADVTXD_TUCMD_IPSEC_TYPE_ESP |
465                                 IXGBE_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN) : 0;
466                 type_tucmd_mlhl |=
467                         (md->pad_len & IXGBE_ADVTXD_IPSEC_ESP_LEN_MASK);
468                 tx_offload_mask.sa_idx |= ~0;
469                 tx_offload_mask.sec_pad_len |= ~0;
470         }
471 #endif
472
473         txq->ctx_cache[ctx_idx].flags = ol_flags;
474         txq->ctx_cache[ctx_idx].tx_offload.data[0]  =
475                 tx_offload_mask.data[0] & tx_offload.data[0];
476         txq->ctx_cache[ctx_idx].tx_offload.data[1]  =
477                 tx_offload_mask.data[1] & tx_offload.data[1];
478         txq->ctx_cache[ctx_idx].tx_offload_mask    = tx_offload_mask;
479
480         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
481         vlan_macip_lens = tx_offload.l3_len;
482         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
483                 vlan_macip_lens |= (tx_offload.outer_l2_len <<
484                                     IXGBE_ADVTXD_MACLEN_SHIFT);
485         else
486                 vlan_macip_lens |= (tx_offload.l2_len <<
487                                     IXGBE_ADVTXD_MACLEN_SHIFT);
488         vlan_macip_lens |= ((uint32_t)tx_offload.vlan_tci << IXGBE_ADVTXD_VLAN_SHIFT);
489         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
490         ctx_txd->mss_l4len_idx   = rte_cpu_to_le_32(mss_l4len_idx);
491         ctx_txd->seqnum_seed     = seqnum_seed;
492 }
493
494 /*
495  * Check which hardware context can be used. Use the existing match
496  * or create a new context descriptor.
497  */
498 static inline uint32_t
499 what_advctx_update(struct ixgbe_tx_queue *txq, uint64_t flags,
500                    union ixgbe_tx_offload tx_offload)
501 {
502         /* If match with the current used context */
503         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
504                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
505                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
506                      & tx_offload.data[0])) &&
507                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
508                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
509                      & tx_offload.data[1]))))
510                 return txq->ctx_curr;
511
512         /* What if match with the next context  */
513         txq->ctx_curr ^= 1;
514         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
515                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
516                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
517                      & tx_offload.data[0])) &&
518                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
519                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
520                      & tx_offload.data[1]))))
521                 return txq->ctx_curr;
522
523         /* Mismatch, use the previous context */
524         return IXGBE_CTX_NUM;
525 }
526
527 static inline uint32_t
528 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
529 {
530         uint32_t tmp = 0;
531
532         if ((ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM)
533                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
534         if (ol_flags & PKT_TX_IP_CKSUM)
535                 tmp |= IXGBE_ADVTXD_POPTS_IXSM;
536         if (ol_flags & PKT_TX_TCP_SEG)
537                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
538         return tmp;
539 }
540
541 static inline uint32_t
542 tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
543 {
544         uint32_t cmdtype = 0;
545
546         if (ol_flags & PKT_TX_VLAN_PKT)
547                 cmdtype |= IXGBE_ADVTXD_DCMD_VLE;
548         if (ol_flags & PKT_TX_TCP_SEG)
549                 cmdtype |= IXGBE_ADVTXD_DCMD_TSE;
550         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
551                 cmdtype |= (1 << IXGBE_ADVTXD_OUTERIPCS_SHIFT);
552         if (ol_flags & PKT_TX_MACSEC)
553                 cmdtype |= IXGBE_ADVTXD_MAC_LINKSEC;
554         return cmdtype;
555 }
556
557 /* Default RS bit threshold values */
558 #ifndef DEFAULT_TX_RS_THRESH
559 #define DEFAULT_TX_RS_THRESH   32
560 #endif
561 #ifndef DEFAULT_TX_FREE_THRESH
562 #define DEFAULT_TX_FREE_THRESH 32
563 #endif
564
565 /* Reset transmit descriptors after they have been used */
566 static inline int
567 ixgbe_xmit_cleanup(struct ixgbe_tx_queue *txq)
568 {
569         struct ixgbe_tx_entry *sw_ring = txq->sw_ring;
570         volatile union ixgbe_adv_tx_desc *txr = txq->tx_ring;
571         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
572         uint16_t nb_tx_desc = txq->nb_tx_desc;
573         uint16_t desc_to_clean_to;
574         uint16_t nb_tx_to_clean;
575         uint32_t status;
576
577         /* Determine the last descriptor needing to be cleaned */
578         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
579         if (desc_to_clean_to >= nb_tx_desc)
580                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
581
582         /* Check to make sure the last descriptor to clean is done */
583         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
584         status = txr[desc_to_clean_to].wb.status;
585         if (!(status & rte_cpu_to_le_32(IXGBE_TXD_STAT_DD))) {
586                 PMD_TX_LOG(DEBUG,
587                            "TX descriptor %4u is not done"
588                            "(port=%d queue=%d)",
589                            desc_to_clean_to,
590                            txq->port_id, txq->queue_id);
591                 /* Failed to clean any descriptors, better luck next time */
592                 return -(1);
593         }
594
595         /* Figure out how many descriptors will be cleaned */
596         if (last_desc_cleaned > desc_to_clean_to)
597                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
598                                                         desc_to_clean_to);
599         else
600                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
601                                                 last_desc_cleaned);
602
603         PMD_TX_LOG(DEBUG,
604                    "Cleaning %4u TX descriptors: %4u to %4u "
605                    "(port=%d queue=%d)",
606                    nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
607                    txq->port_id, txq->queue_id);
608
609         /*
610          * The last descriptor to clean is done, so that means all the
611          * descriptors from the last descriptor that was cleaned
612          * up to the last descriptor with the RS bit set
613          * are done. Only reset the threshold descriptor.
614          */
615         txr[desc_to_clean_to].wb.status = 0;
616
617         /* Update the txq to reflect the last descriptor that was cleaned */
618         txq->last_desc_cleaned = desc_to_clean_to;
619         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
620
621         /* No Error */
622         return 0;
623 }
624
625 uint16_t
626 ixgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
627                 uint16_t nb_pkts)
628 {
629         struct ixgbe_tx_queue *txq;
630         struct ixgbe_tx_entry *sw_ring;
631         struct ixgbe_tx_entry *txe, *txn;
632         volatile union ixgbe_adv_tx_desc *txr;
633         volatile union ixgbe_adv_tx_desc *txd, *txp;
634         struct rte_mbuf     *tx_pkt;
635         struct rte_mbuf     *m_seg;
636         uint64_t buf_dma_addr;
637         uint32_t olinfo_status;
638         uint32_t cmd_type_len;
639         uint32_t pkt_len;
640         uint16_t slen;
641         uint64_t ol_flags;
642         uint16_t tx_id;
643         uint16_t tx_last;
644         uint16_t nb_tx;
645         uint16_t nb_used;
646         uint64_t tx_ol_req;
647         uint32_t ctx = 0;
648         uint32_t new_ctx;
649         union ixgbe_tx_offload tx_offload;
650 #ifdef RTE_LIB_SECURITY
651         uint8_t use_ipsec;
652 #endif
653
654         tx_offload.data[0] = 0;
655         tx_offload.data[1] = 0;
656         txq = tx_queue;
657         sw_ring = txq->sw_ring;
658         txr     = txq->tx_ring;
659         tx_id   = txq->tx_tail;
660         txe = &sw_ring[tx_id];
661         txp = NULL;
662
663         /* Determine if the descriptor ring needs to be cleaned. */
664         if (txq->nb_tx_free < txq->tx_free_thresh)
665                 ixgbe_xmit_cleanup(txq);
666
667         rte_prefetch0(&txe->mbuf->pool);
668
669         /* TX loop */
670         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
671                 new_ctx = 0;
672                 tx_pkt = *tx_pkts++;
673                 pkt_len = tx_pkt->pkt_len;
674
675                 /*
676                  * Determine how many (if any) context descriptors
677                  * are needed for offload functionality.
678                  */
679                 ol_flags = tx_pkt->ol_flags;
680 #ifdef RTE_LIB_SECURITY
681                 use_ipsec = txq->using_ipsec && (ol_flags & PKT_TX_SEC_OFFLOAD);
682 #endif
683
684                 /* If hardware offload required */
685                 tx_ol_req = ol_flags & IXGBE_TX_OFFLOAD_MASK;
686                 if (tx_ol_req) {
687                         tx_offload.l2_len = tx_pkt->l2_len;
688                         tx_offload.l3_len = tx_pkt->l3_len;
689                         tx_offload.l4_len = tx_pkt->l4_len;
690                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
691                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
692                         tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
693                         tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
694 #ifdef RTE_LIB_SECURITY
695                         if (use_ipsec) {
696                                 union ixgbe_crypto_tx_desc_md *ipsec_mdata =
697                                         (union ixgbe_crypto_tx_desc_md *)
698                                                 rte_security_dynfield(tx_pkt);
699                                 tx_offload.sa_idx = ipsec_mdata->sa_idx;
700                                 tx_offload.sec_pad_len = ipsec_mdata->pad_len;
701                         }
702 #endif
703
704                         /* If new context need be built or reuse the exist ctx. */
705                         ctx = what_advctx_update(txq, tx_ol_req,
706                                 tx_offload);
707                         /* Only allocate context descriptor if required*/
708                         new_ctx = (ctx == IXGBE_CTX_NUM);
709                         ctx = txq->ctx_curr;
710                 }
711
712                 /*
713                  * Keep track of how many descriptors are used this loop
714                  * This will always be the number of segments + the number of
715                  * Context descriptors required to transmit the packet
716                  */
717                 nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
718
719                 if (txp != NULL &&
720                                 nb_used + txq->nb_tx_used >= txq->tx_rs_thresh)
721                         /* set RS on the previous packet in the burst */
722                         txp->read.cmd_type_len |=
723                                 rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
724
725                 /*
726                  * The number of descriptors that must be allocated for a
727                  * packet is the number of segments of that packet, plus 1
728                  * Context Descriptor for the hardware offload, if any.
729                  * Determine the last TX descriptor to allocate in the TX ring
730                  * for the packet, starting from the current position (tx_id)
731                  * in the ring.
732                  */
733                 tx_last = (uint16_t) (tx_id + nb_used - 1);
734
735                 /* Circular ring */
736                 if (tx_last >= txq->nb_tx_desc)
737                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
738
739                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
740                            " tx_first=%u tx_last=%u",
741                            (unsigned) txq->port_id,
742                            (unsigned) txq->queue_id,
743                            (unsigned) pkt_len,
744                            (unsigned) tx_id,
745                            (unsigned) tx_last);
746
747                 /*
748                  * Make sure there are enough TX descriptors available to
749                  * transmit the entire packet.
750                  * nb_used better be less than or equal to txq->tx_rs_thresh
751                  */
752                 if (nb_used > txq->nb_tx_free) {
753                         PMD_TX_LOG(DEBUG,
754                                    "Not enough free TX descriptors "
755                                    "nb_used=%4u nb_free=%4u "
756                                    "(port=%d queue=%d)",
757                                    nb_used, txq->nb_tx_free,
758                                    txq->port_id, txq->queue_id);
759
760                         if (ixgbe_xmit_cleanup(txq) != 0) {
761                                 /* Could not clean any descriptors */
762                                 if (nb_tx == 0)
763                                         return 0;
764                                 goto end_of_tx;
765                         }
766
767                         /* nb_used better be <= txq->tx_rs_thresh */
768                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
769                                 PMD_TX_LOG(DEBUG,
770                                            "The number of descriptors needed to "
771                                            "transmit the packet exceeds the "
772                                            "RS bit threshold. This will impact "
773                                            "performance."
774                                            "nb_used=%4u nb_free=%4u "
775                                            "tx_rs_thresh=%4u. "
776                                            "(port=%d queue=%d)",
777                                            nb_used, txq->nb_tx_free,
778                                            txq->tx_rs_thresh,
779                                            txq->port_id, txq->queue_id);
780                                 /*
781                                  * Loop here until there are enough TX
782                                  * descriptors or until the ring cannot be
783                                  * cleaned.
784                                  */
785                                 while (nb_used > txq->nb_tx_free) {
786                                         if (ixgbe_xmit_cleanup(txq) != 0) {
787                                                 /*
788                                                  * Could not clean any
789                                                  * descriptors
790                                                  */
791                                                 if (nb_tx == 0)
792                                                         return 0;
793                                                 goto end_of_tx;
794                                         }
795                                 }
796                         }
797                 }
798
799                 /*
800                  * By now there are enough free TX descriptors to transmit
801                  * the packet.
802                  */
803
804                 /*
805                  * Set common flags of all TX Data Descriptors.
806                  *
807                  * The following bits must be set in all Data Descriptors:
808                  *   - IXGBE_ADVTXD_DTYP_DATA
809                  *   - IXGBE_ADVTXD_DCMD_DEXT
810                  *
811                  * The following bits must be set in the first Data Descriptor
812                  * and are ignored in the other ones:
813                  *   - IXGBE_ADVTXD_DCMD_IFCS
814                  *   - IXGBE_ADVTXD_MAC_1588
815                  *   - IXGBE_ADVTXD_DCMD_VLE
816                  *
817                  * The following bits must only be set in the last Data
818                  * Descriptor:
819                  *   - IXGBE_TXD_CMD_EOP
820                  *
821                  * The following bits can be set in any Data Descriptor, but
822                  * are only set in the last Data Descriptor:
823                  *   - IXGBE_TXD_CMD_RS
824                  */
825                 cmd_type_len = IXGBE_ADVTXD_DTYP_DATA |
826                         IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
827
828 #ifdef RTE_LIBRTE_IEEE1588
829                 if (ol_flags & PKT_TX_IEEE1588_TMST)
830                         cmd_type_len |= IXGBE_ADVTXD_MAC_1588;
831 #endif
832
833                 olinfo_status = 0;
834                 if (tx_ol_req) {
835
836                         if (ol_flags & PKT_TX_TCP_SEG) {
837                                 /* when TSO is on, paylen in descriptor is the
838                                  * not the packet len but the tcp payload len */
839                                 pkt_len -= (tx_offload.l2_len +
840                                         tx_offload.l3_len + tx_offload.l4_len);
841                         }
842
843                         /*
844                          * Setup the TX Advanced Context Descriptor if required
845                          */
846                         if (new_ctx) {
847                                 volatile struct ixgbe_adv_tx_context_desc *
848                                     ctx_txd;
849
850                                 ctx_txd = (volatile struct
851                                     ixgbe_adv_tx_context_desc *)
852                                     &txr[tx_id];
853
854                                 txn = &sw_ring[txe->next_id];
855                                 rte_prefetch0(&txn->mbuf->pool);
856
857                                 if (txe->mbuf != NULL) {
858                                         rte_pktmbuf_free_seg(txe->mbuf);
859                                         txe->mbuf = NULL;
860                                 }
861
862                                 ixgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
863                                         tx_offload,
864                                         rte_security_dynfield(tx_pkt));
865
866                                 txe->last_id = tx_last;
867                                 tx_id = txe->next_id;
868                                 txe = txn;
869                         }
870
871                         /*
872                          * Setup the TX Advanced Data Descriptor,
873                          * This path will go through
874                          * whatever new/reuse the context descriptor
875                          */
876                         cmd_type_len  |= tx_desc_ol_flags_to_cmdtype(ol_flags);
877                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
878                         olinfo_status |= ctx << IXGBE_ADVTXD_IDX_SHIFT;
879                 }
880
881                 olinfo_status |= (pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
882 #ifdef RTE_LIB_SECURITY
883                 if (use_ipsec)
884                         olinfo_status |= IXGBE_ADVTXD_POPTS_IPSEC;
885 #endif
886
887                 m_seg = tx_pkt;
888                 do {
889                         txd = &txr[tx_id];
890                         txn = &sw_ring[txe->next_id];
891                         rte_prefetch0(&txn->mbuf->pool);
892
893                         if (txe->mbuf != NULL)
894                                 rte_pktmbuf_free_seg(txe->mbuf);
895                         txe->mbuf = m_seg;
896
897                         /*
898                          * Set up Transmit Data Descriptor.
899                          */
900                         slen = m_seg->data_len;
901                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
902                         txd->read.buffer_addr =
903                                 rte_cpu_to_le_64(buf_dma_addr);
904                         txd->read.cmd_type_len =
905                                 rte_cpu_to_le_32(cmd_type_len | slen);
906                         txd->read.olinfo_status =
907                                 rte_cpu_to_le_32(olinfo_status);
908                         txe->last_id = tx_last;
909                         tx_id = txe->next_id;
910                         txe = txn;
911                         m_seg = m_seg->next;
912                 } while (m_seg != NULL);
913
914                 /*
915                  * The last packet data descriptor needs End Of Packet (EOP)
916                  */
917                 cmd_type_len |= IXGBE_TXD_CMD_EOP;
918                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
919                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
920
921                 /* Set RS bit only on threshold packets' last descriptor */
922                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
923                         PMD_TX_LOG(DEBUG,
924                                    "Setting RS bit on TXD id="
925                                    "%4u (port=%d queue=%d)",
926                                    tx_last, txq->port_id, txq->queue_id);
927
928                         cmd_type_len |= IXGBE_TXD_CMD_RS;
929
930                         /* Update txq RS bit counters */
931                         txq->nb_tx_used = 0;
932                         txp = NULL;
933                 } else
934                         txp = txd;
935
936                 txd->read.cmd_type_len |= rte_cpu_to_le_32(cmd_type_len);
937         }
938
939 end_of_tx:
940         /* set RS on last packet in the burst */
941         if (txp != NULL)
942                 txp->read.cmd_type_len |= rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
943
944         rte_wmb();
945
946         /*
947          * Set the Transmit Descriptor Tail (TDT)
948          */
949         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
950                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
951                    (unsigned) tx_id, (unsigned) nb_tx);
952         IXGBE_PCI_REG_WC_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
953         txq->tx_tail = tx_id;
954
955         return nb_tx;
956 }
957
958 /*********************************************************************
959  *
960  *  TX prep functions
961  *
962  **********************************************************************/
963 uint16_t
964 ixgbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
965 {
966         int i, ret;
967         uint64_t ol_flags;
968         struct rte_mbuf *m;
969         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
970
971         for (i = 0; i < nb_pkts; i++) {
972                 m = tx_pkts[i];
973                 ol_flags = m->ol_flags;
974
975                 /**
976                  * Check if packet meets requirements for number of segments
977                  *
978                  * NOTE: for ixgbe it's always (40 - WTHRESH) for both TSO and
979                  *       non-TSO
980                  */
981
982                 if (m->nb_segs > IXGBE_TX_MAX_SEG - txq->wthresh) {
983                         rte_errno = EINVAL;
984                         return i;
985                 }
986
987                 if (ol_flags & IXGBE_TX_OFFLOAD_NOTSUP_MASK) {
988                         rte_errno = ENOTSUP;
989                         return i;
990                 }
991
992                 /* check the size of packet */
993                 if (m->pkt_len < IXGBE_TX_MIN_PKT_LEN) {
994                         rte_errno = EINVAL;
995                         return i;
996                 }
997
998 #ifdef RTE_ETHDEV_DEBUG_TX
999                 ret = rte_validate_tx_offload(m);
1000                 if (ret != 0) {
1001                         rte_errno = -ret;
1002                         return i;
1003                 }
1004 #endif
1005                 ret = rte_net_intel_cksum_prepare(m);
1006                 if (ret != 0) {
1007                         rte_errno = -ret;
1008                         return i;
1009                 }
1010         }
1011
1012         return i;
1013 }
1014
1015 /*********************************************************************
1016  *
1017  *  RX functions
1018  *
1019  **********************************************************************/
1020
1021 #define IXGBE_PACKET_TYPE_ETHER                         0X00
1022 #define IXGBE_PACKET_TYPE_IPV4                          0X01
1023 #define IXGBE_PACKET_TYPE_IPV4_TCP                      0X11
1024 #define IXGBE_PACKET_TYPE_IPV4_UDP                      0X21
1025 #define IXGBE_PACKET_TYPE_IPV4_SCTP                     0X41
1026 #define IXGBE_PACKET_TYPE_IPV4_EXT                      0X03
1027 #define IXGBE_PACKET_TYPE_IPV4_EXT_TCP                  0X13
1028 #define IXGBE_PACKET_TYPE_IPV4_EXT_UDP                  0X23
1029 #define IXGBE_PACKET_TYPE_IPV4_EXT_SCTP                 0X43
1030 #define IXGBE_PACKET_TYPE_IPV6                          0X04
1031 #define IXGBE_PACKET_TYPE_IPV6_TCP                      0X14
1032 #define IXGBE_PACKET_TYPE_IPV6_UDP                      0X24
1033 #define IXGBE_PACKET_TYPE_IPV6_SCTP                     0X44
1034 #define IXGBE_PACKET_TYPE_IPV6_EXT                      0X0C
1035 #define IXGBE_PACKET_TYPE_IPV6_EXT_TCP                  0X1C
1036 #define IXGBE_PACKET_TYPE_IPV6_EXT_UDP                  0X2C
1037 #define IXGBE_PACKET_TYPE_IPV6_EXT_SCTP                 0X4C
1038 #define IXGBE_PACKET_TYPE_IPV4_IPV6                     0X05
1039 #define IXGBE_PACKET_TYPE_IPV4_IPV6_TCP                 0X15
1040 #define IXGBE_PACKET_TYPE_IPV4_IPV6_UDP                 0X25
1041 #define IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP                0X45
1042 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6                 0X07
1043 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP             0X17
1044 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP             0X27
1045 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP            0X47
1046 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT                 0X0D
1047 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP             0X1D
1048 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP             0X2D
1049 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP            0X4D
1050 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT             0X0F
1051 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP         0X1F
1052 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP         0X2F
1053 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP        0X4F
1054
1055 #define IXGBE_PACKET_TYPE_NVGRE                   0X00
1056 #define IXGBE_PACKET_TYPE_NVGRE_IPV4              0X01
1057 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP          0X11
1058 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP          0X21
1059 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP         0X41
1060 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT          0X03
1061 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP      0X13
1062 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP      0X23
1063 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP     0X43
1064 #define IXGBE_PACKET_TYPE_NVGRE_IPV6              0X04
1065 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP          0X14
1066 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP          0X24
1067 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP         0X44
1068 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT          0X0C
1069 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP      0X1C
1070 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP      0X2C
1071 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP     0X4C
1072 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6         0X05
1073 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP     0X15
1074 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP     0X25
1075 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT     0X0D
1076 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP 0X1D
1077 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP 0X2D
1078
1079 #define IXGBE_PACKET_TYPE_VXLAN                   0X80
1080 #define IXGBE_PACKET_TYPE_VXLAN_IPV4              0X81
1081 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP          0x91
1082 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP          0xA1
1083 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP         0xC1
1084 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT          0x83
1085 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP      0X93
1086 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP      0XA3
1087 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP     0XC3
1088 #define IXGBE_PACKET_TYPE_VXLAN_IPV6              0X84
1089 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP          0X94
1090 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP          0XA4
1091 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP         0XC4
1092 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT          0X8C
1093 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP      0X9C
1094 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP      0XAC
1095 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP     0XCC
1096 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6         0X85
1097 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP     0X95
1098 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP     0XA5
1099 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT     0X8D
1100 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP 0X9D
1101 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP 0XAD
1102
1103 /**
1104  * Use 2 different table for normal packet and tunnel packet
1105  * to save the space.
1106  */
1107 const uint32_t
1108         ptype_table[IXGBE_PACKET_TYPE_MAX] __rte_cache_aligned = {
1109         [IXGBE_PACKET_TYPE_ETHER] = RTE_PTYPE_L2_ETHER,
1110         [IXGBE_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
1111                 RTE_PTYPE_L3_IPV4,
1112         [IXGBE_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1113                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
1114         [IXGBE_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1115                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
1116         [IXGBE_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1117                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
1118         [IXGBE_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1119                 RTE_PTYPE_L3_IPV4_EXT,
1120         [IXGBE_PACKET_TYPE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1121                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
1122         [IXGBE_PACKET_TYPE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1123                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
1124         [IXGBE_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1125                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
1126         [IXGBE_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
1127                 RTE_PTYPE_L3_IPV6,
1128         [IXGBE_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1129                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
1130         [IXGBE_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1131                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
1132         [IXGBE_PACKET_TYPE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1133                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP,
1134         [IXGBE_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1135                 RTE_PTYPE_L3_IPV6_EXT,
1136         [IXGBE_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1137                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
1138         [IXGBE_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1139                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
1140         [IXGBE_PACKET_TYPE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1141                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_SCTP,
1142         [IXGBE_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1143                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1144                 RTE_PTYPE_INNER_L3_IPV6,
1145         [IXGBE_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1146                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1147                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1148         [IXGBE_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1149                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1150         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1151         [IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1152                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1153                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1154         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6] = RTE_PTYPE_L2_ETHER |
1155                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1156                 RTE_PTYPE_INNER_L3_IPV6,
1157         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1158                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1159                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1160         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1161                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1162                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1163         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1164                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1165                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1166         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1167                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1168                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1169         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1170                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1171                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1172         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1173                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1174                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1175         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1176                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1177                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1178         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1179                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1180                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1181         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1182                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1183                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1184         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1185                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1186                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1187         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP] =
1188                 RTE_PTYPE_L2_ETHER |
1189                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1190                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1191 };
1192
1193 const uint32_t
1194         ptype_table_tn[IXGBE_PACKET_TYPE_TN_MAX] __rte_cache_aligned = {
1195         [IXGBE_PACKET_TYPE_NVGRE] = RTE_PTYPE_L2_ETHER |
1196                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1197                 RTE_PTYPE_INNER_L2_ETHER,
1198         [IXGBE_PACKET_TYPE_NVGRE_IPV4] = RTE_PTYPE_L2_ETHER |
1199                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1200                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1201         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1202                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1203                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT,
1204         [IXGBE_PACKET_TYPE_NVGRE_IPV6] = RTE_PTYPE_L2_ETHER |
1205                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1206                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6,
1207         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1208                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1209                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1210         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1211                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1212                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT,
1213         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1214                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1215                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1216         [IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1217                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1218                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1219                 RTE_PTYPE_INNER_L4_TCP,
1220         [IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1221                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1222                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1223                 RTE_PTYPE_INNER_L4_TCP,
1224         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1225                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1226                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1227         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1228                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1229                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1230                 RTE_PTYPE_INNER_L4_TCP,
1231         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP] =
1232                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1233                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1234                 RTE_PTYPE_INNER_L3_IPV4,
1235         [IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1236                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1237                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1238                 RTE_PTYPE_INNER_L4_UDP,
1239         [IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1240                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1241                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1242                 RTE_PTYPE_INNER_L4_UDP,
1243         [IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1244                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1245                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1246                 RTE_PTYPE_INNER_L4_SCTP,
1247         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1248                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1249                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1250         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1251                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1252                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1253                 RTE_PTYPE_INNER_L4_UDP,
1254         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1255                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1256                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1257                 RTE_PTYPE_INNER_L4_SCTP,
1258         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP] =
1259                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1260                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1261                 RTE_PTYPE_INNER_L3_IPV4,
1262         [IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1263                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1264                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1265                 RTE_PTYPE_INNER_L4_SCTP,
1266         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1267                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1268                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1269                 RTE_PTYPE_INNER_L4_SCTP,
1270         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1271                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1272                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1273                 RTE_PTYPE_INNER_L4_TCP,
1274         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1275                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1276                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1277                 RTE_PTYPE_INNER_L4_UDP,
1278
1279         [IXGBE_PACKET_TYPE_VXLAN] = RTE_PTYPE_L2_ETHER |
1280                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1281                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER,
1282         [IXGBE_PACKET_TYPE_VXLAN_IPV4] = RTE_PTYPE_L2_ETHER |
1283                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1284                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1285                 RTE_PTYPE_INNER_L3_IPV4,
1286         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1287                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1288                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1289                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1290         [IXGBE_PACKET_TYPE_VXLAN_IPV6] = RTE_PTYPE_L2_ETHER |
1291                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1292                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1293                 RTE_PTYPE_INNER_L3_IPV6,
1294         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1295                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1296                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1297                 RTE_PTYPE_INNER_L3_IPV4,
1298         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1299                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1300                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1301                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1302         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1303                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1304                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1305                 RTE_PTYPE_INNER_L3_IPV4,
1306         [IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1307                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1308                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1309                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_TCP,
1310         [IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1311                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1312                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1313                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1314         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1315                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1316                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1317                 RTE_PTYPE_INNER_L3_IPV4,
1318         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1319                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1320                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1321                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1322         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP] =
1323                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1324                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1325                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1326         [IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1327                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1328                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1329                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_UDP,
1330         [IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1331                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1332                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1333                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1334         [IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1335                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1336                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1337                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1338         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1339                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1340                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1341                 RTE_PTYPE_INNER_L3_IPV4,
1342         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1343                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1344                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1345                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1346         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1347                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1348                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1349                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1350         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP] =
1351                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1352                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1353                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1354         [IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1355                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1356                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1357                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_SCTP,
1358         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1359                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1360                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1361                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_SCTP,
1362         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1363                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1364                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1365                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
1366         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1367                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1368                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1369                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
1370 };
1371
1372 static int
1373 ixgbe_monitor_callback(const uint64_t value,
1374                 const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
1375 {
1376         const uint64_t m = rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD);
1377         /*
1378          * we expect the DD bit to be set to 1 if this descriptor was already
1379          * written to.
1380          */
1381         return (value & m) == m ? -1 : 0;
1382 }
1383
1384 int
1385 ixgbe_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
1386 {
1387         volatile union ixgbe_adv_rx_desc *rxdp;
1388         struct ixgbe_rx_queue *rxq = rx_queue;
1389         uint16_t desc;
1390
1391         desc = rxq->rx_tail;
1392         rxdp = &rxq->rx_ring[desc];
1393         /* watch for changes in status bit */
1394         pmc->addr = &rxdp->wb.upper.status_error;
1395
1396         /* comparison callback */
1397         pmc->fn = ixgbe_monitor_callback;
1398
1399         /* the registers are 32-bit */
1400         pmc->size = sizeof(uint32_t);
1401
1402         return 0;
1403 }
1404
1405 /* @note: fix ixgbe_dev_supported_ptypes_get() if any change here. */
1406 static inline uint32_t
1407 ixgbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptype_mask)
1408 {
1409
1410         if (unlikely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1411                 return RTE_PTYPE_UNKNOWN;
1412
1413         pkt_info = (pkt_info >> IXGBE_PACKET_TYPE_SHIFT) & ptype_mask;
1414
1415         /* For tunnel packet */
1416         if (pkt_info & IXGBE_PACKET_TYPE_TUNNEL_BIT) {
1417                 /* Remove the tunnel bit to save the space. */
1418                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
1419                 return ptype_table_tn[pkt_info];
1420         }
1421
1422         /**
1423          * For x550, if it's not tunnel,
1424          * tunnel type bit should be set to 0.
1425          * Reuse 82599's mask.
1426          */
1427         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
1428
1429         return ptype_table[pkt_info];
1430 }
1431
1432 static inline uint64_t
1433 ixgbe_rxd_pkt_info_to_pkt_flags(uint16_t pkt_info)
1434 {
1435         static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
1436                 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
1437                 0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
1438                 PKT_RX_RSS_HASH, 0, 0, 0,
1439                 0, 0, 0,  PKT_RX_FDIR,
1440         };
1441 #ifdef RTE_LIBRTE_IEEE1588
1442         static uint64_t ip_pkt_etqf_map[8] = {
1443                 0, 0, 0, PKT_RX_IEEE1588_PTP,
1444                 0, 0, 0, 0,
1445         };
1446
1447         if (likely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1448                 return ip_pkt_etqf_map[(pkt_info >> 4) & 0X07] |
1449                                 ip_rss_types_map[pkt_info & 0XF];
1450         else
1451                 return ip_rss_types_map[pkt_info & 0XF];
1452 #else
1453         return ip_rss_types_map[pkt_info & 0XF];
1454 #endif
1455 }
1456
1457 static inline uint64_t
1458 rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
1459 {
1460         uint64_t pkt_flags;
1461
1462         /*
1463          * Check if VLAN present only.
1464          * Do not check whether L3/L4 rx checksum done by NIC or not,
1465          * That can be found from rte_eth_rxmode.offloads flag
1466          */
1467         pkt_flags = (rx_status & IXGBE_RXD_STAT_VP) ?  vlan_flags : 0;
1468
1469 #ifdef RTE_LIBRTE_IEEE1588
1470         if (rx_status & IXGBE_RXD_STAT_TMST)
1471                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
1472 #endif
1473         return pkt_flags;
1474 }
1475
1476 static inline uint64_t
1477 rx_desc_error_to_pkt_flags(uint32_t rx_status, uint16_t pkt_info,
1478                            uint8_t rx_udp_csum_zero_err)
1479 {
1480         uint64_t pkt_flags;
1481
1482         /*
1483          * Bit 31: IPE, IPv4 checksum error
1484          * Bit 30: L4I, L4I integrity error
1485          */
1486         static uint64_t error_to_pkt_flags_map[4] = {
1487                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
1488                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
1489                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
1490                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
1491         };
1492         pkt_flags = error_to_pkt_flags_map[(rx_status >>
1493                 IXGBE_RXDADV_ERR_CKSUM_BIT) & IXGBE_RXDADV_ERR_CKSUM_MSK];
1494
1495         /* Mask out the bad UDP checksum error if the hardware has UDP zero
1496          * checksum error issue, so that the software application will then
1497          * have to recompute the checksum itself if needed.
1498          */
1499         if ((rx_status & IXGBE_RXDADV_ERR_TCPE) &&
1500             (pkt_info & IXGBE_RXDADV_PKTTYPE_UDP) &&
1501             rx_udp_csum_zero_err)
1502                 pkt_flags &= ~PKT_RX_L4_CKSUM_BAD;
1503
1504         if ((rx_status & IXGBE_RXD_STAT_OUTERIPCS) &&
1505             (rx_status & IXGBE_RXDADV_ERR_OUTERIPER)) {
1506                 pkt_flags |= PKT_RX_OUTER_IP_CKSUM_BAD;
1507         }
1508
1509 #ifdef RTE_LIB_SECURITY
1510         if (rx_status & IXGBE_RXD_STAT_SECP) {
1511                 pkt_flags |= PKT_RX_SEC_OFFLOAD;
1512                 if (rx_status & IXGBE_RXDADV_LNKSEC_ERROR_BAD_SIG)
1513                         pkt_flags |= PKT_RX_SEC_OFFLOAD_FAILED;
1514         }
1515 #endif
1516
1517         return pkt_flags;
1518 }
1519
1520 /*
1521  * LOOK_AHEAD defines how many desc statuses to check beyond the
1522  * current descriptor.
1523  * It must be a pound define for optimal performance.
1524  * Do not change the value of LOOK_AHEAD, as the ixgbe_rx_scan_hw_ring
1525  * function only works with LOOK_AHEAD=8.
1526  */
1527 #define LOOK_AHEAD 8
1528 #if (LOOK_AHEAD != 8)
1529 #error "PMD IXGBE: LOOK_AHEAD must be 8\n"
1530 #endif
1531 static inline int
1532 ixgbe_rx_scan_hw_ring(struct ixgbe_rx_queue *rxq)
1533 {
1534         volatile union ixgbe_adv_rx_desc *rxdp;
1535         struct ixgbe_rx_entry *rxep;
1536         struct rte_mbuf *mb;
1537         uint16_t pkt_len;
1538         uint64_t pkt_flags;
1539         int nb_dd;
1540         uint32_t s[LOOK_AHEAD];
1541         uint32_t pkt_info[LOOK_AHEAD];
1542         int i, j, nb_rx = 0;
1543         uint32_t status;
1544         uint64_t vlan_flags = rxq->vlan_flags;
1545
1546         /* get references to current descriptor and S/W ring entry */
1547         rxdp = &rxq->rx_ring[rxq->rx_tail];
1548         rxep = &rxq->sw_ring[rxq->rx_tail];
1549
1550         status = rxdp->wb.upper.status_error;
1551         /* check to make sure there is at least 1 packet to receive */
1552         if (!(status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1553                 return 0;
1554
1555         /*
1556          * Scan LOOK_AHEAD descriptors at a time to determine which descriptors
1557          * reference packets that are ready to be received.
1558          */
1559         for (i = 0; i < RTE_PMD_IXGBE_RX_MAX_BURST;
1560              i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
1561                 /* Read desc statuses backwards to avoid race condition */
1562                 for (j = 0; j < LOOK_AHEAD; j++)
1563                         s[j] = rte_le_to_cpu_32(rxdp[j].wb.upper.status_error);
1564
1565                 rte_smp_rmb();
1566
1567                 /* Compute how many status bits were set */
1568                 for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
1569                                 (s[nb_dd] & IXGBE_RXDADV_STAT_DD); nb_dd++)
1570                         ;
1571
1572                 for (j = 0; j < nb_dd; j++)
1573                         pkt_info[j] = rte_le_to_cpu_32(rxdp[j].wb.lower.
1574                                                        lo_dword.data);
1575
1576                 nb_rx += nb_dd;
1577
1578                 /* Translate descriptor info to mbuf format */
1579                 for (j = 0; j < nb_dd; ++j) {
1580                         mb = rxep[j].mbuf;
1581                         pkt_len = rte_le_to_cpu_16(rxdp[j].wb.upper.length) -
1582                                   rxq->crc_len;
1583                         mb->data_len = pkt_len;
1584                         mb->pkt_len = pkt_len;
1585                         mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].wb.upper.vlan);
1586
1587                         /* convert descriptor fields to rte mbuf flags */
1588                         pkt_flags = rx_desc_status_to_pkt_flags(s[j],
1589                                 vlan_flags);
1590                         pkt_flags |= rx_desc_error_to_pkt_flags(s[j],
1591                                         (uint16_t)pkt_info[j],
1592                                         rxq->rx_udp_csum_zero_err);
1593                         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags
1594                                         ((uint16_t)pkt_info[j]);
1595                         mb->ol_flags = pkt_flags;
1596                         mb->packet_type =
1597                                 ixgbe_rxd_pkt_info_to_pkt_type
1598                                         (pkt_info[j], rxq->pkt_type_mask);
1599
1600                         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1601                                 mb->hash.rss = rte_le_to_cpu_32(
1602                                     rxdp[j].wb.lower.hi_dword.rss);
1603                         else if (pkt_flags & PKT_RX_FDIR) {
1604                                 mb->hash.fdir.hash = rte_le_to_cpu_16(
1605                                     rxdp[j].wb.lower.hi_dword.csum_ip.csum) &
1606                                     IXGBE_ATR_HASH_MASK;
1607                                 mb->hash.fdir.id = rte_le_to_cpu_16(
1608                                     rxdp[j].wb.lower.hi_dword.csum_ip.ip_id);
1609                         }
1610                 }
1611
1612                 /* Move mbuf pointers from the S/W ring to the stage */
1613                 for (j = 0; j < LOOK_AHEAD; ++j) {
1614                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1615                 }
1616
1617                 /* stop if all requested packets could not be received */
1618                 if (nb_dd != LOOK_AHEAD)
1619                         break;
1620         }
1621
1622         /* clear software ring entries so we can cleanup correctly */
1623         for (i = 0; i < nb_rx; ++i) {
1624                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1625         }
1626
1627
1628         return nb_rx;
1629 }
1630
1631 static inline int
1632 ixgbe_rx_alloc_bufs(struct ixgbe_rx_queue *rxq, bool reset_mbuf)
1633 {
1634         volatile union ixgbe_adv_rx_desc *rxdp;
1635         struct ixgbe_rx_entry *rxep;
1636         struct rte_mbuf *mb;
1637         uint16_t alloc_idx;
1638         __le64 dma_addr;
1639         int diag, i;
1640
1641         /* allocate buffers in bulk directly into the S/W ring */
1642         alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
1643         rxep = &rxq->sw_ring[alloc_idx];
1644         diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
1645                                     rxq->rx_free_thresh);
1646         if (unlikely(diag != 0))
1647                 return -ENOMEM;
1648
1649         rxdp = &rxq->rx_ring[alloc_idx];
1650         for (i = 0; i < rxq->rx_free_thresh; ++i) {
1651                 /* populate the static rte mbuf fields */
1652                 mb = rxep[i].mbuf;
1653                 if (reset_mbuf) {
1654                         mb->port = rxq->port_id;
1655                 }
1656
1657                 rte_mbuf_refcnt_set(mb, 1);
1658                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1659
1660                 /* populate the descriptors */
1661                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1662                 rxdp[i].read.hdr_addr = 0;
1663                 rxdp[i].read.pkt_addr = dma_addr;
1664         }
1665
1666         /* update state of internal queue structure */
1667         rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
1668         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1669                 rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
1670
1671         /* no errors */
1672         return 0;
1673 }
1674
1675 static inline uint16_t
1676 ixgbe_rx_fill_from_stage(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
1677                          uint16_t nb_pkts)
1678 {
1679         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1680         int i;
1681
1682         /* how many packets are ready to return? */
1683         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1684
1685         /* copy mbuf pointers to the application's packet list */
1686         for (i = 0; i < nb_pkts; ++i)
1687                 rx_pkts[i] = stage[i];
1688
1689         /* update internal queue state */
1690         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1691         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1692
1693         return nb_pkts;
1694 }
1695
1696 static inline uint16_t
1697 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1698              uint16_t nb_pkts)
1699 {
1700         struct ixgbe_rx_queue *rxq = (struct ixgbe_rx_queue *)rx_queue;
1701         uint16_t nb_rx = 0;
1702
1703         /* Any previously recv'd pkts will be returned from the Rx stage */
1704         if (rxq->rx_nb_avail)
1705                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1706
1707         /* Scan the H/W ring for packets to receive */
1708         nb_rx = (uint16_t)ixgbe_rx_scan_hw_ring(rxq);
1709
1710         /* update internal queue state */
1711         rxq->rx_next_avail = 0;
1712         rxq->rx_nb_avail = nb_rx;
1713         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1714
1715         /* if required, allocate new buffers to replenish descriptors */
1716         if (rxq->rx_tail > rxq->rx_free_trigger) {
1717                 uint16_t cur_free_trigger = rxq->rx_free_trigger;
1718
1719                 if (ixgbe_rx_alloc_bufs(rxq, true) != 0) {
1720                         int i, j;
1721
1722                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1723                                    "queue_id=%u", (unsigned) rxq->port_id,
1724                                    (unsigned) rxq->queue_id);
1725
1726                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
1727                                 rxq->rx_free_thresh;
1728
1729                         /*
1730                          * Need to rewind any previous receives if we cannot
1731                          * allocate new buffers to replenish the old ones.
1732                          */
1733                         rxq->rx_nb_avail = 0;
1734                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1735                         for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
1736                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1737
1738                         return 0;
1739                 }
1740
1741                 /* update tail pointer */
1742                 rte_wmb();
1743                 IXGBE_PCI_REG_WC_WRITE_RELAXED(rxq->rdt_reg_addr,
1744                                             cur_free_trigger);
1745         }
1746
1747         if (rxq->rx_tail >= rxq->nb_rx_desc)
1748                 rxq->rx_tail = 0;
1749
1750         /* received any packets this loop? */
1751         if (rxq->rx_nb_avail)
1752                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1753
1754         return 0;
1755 }
1756
1757 /* split requests into chunks of size RTE_PMD_IXGBE_RX_MAX_BURST */
1758 uint16_t
1759 ixgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
1760                            uint16_t nb_pkts)
1761 {
1762         uint16_t nb_rx;
1763
1764         if (unlikely(nb_pkts == 0))
1765                 return 0;
1766
1767         if (likely(nb_pkts <= RTE_PMD_IXGBE_RX_MAX_BURST))
1768                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1769
1770         /* request is relatively large, chunk it up */
1771         nb_rx = 0;
1772         while (nb_pkts) {
1773                 uint16_t ret, n;
1774
1775                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_RX_MAX_BURST);
1776                 ret = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1777                 nb_rx = (uint16_t)(nb_rx + ret);
1778                 nb_pkts = (uint16_t)(nb_pkts - ret);
1779                 if (ret < n)
1780                         break;
1781         }
1782
1783         return nb_rx;
1784 }
1785
1786 uint16_t
1787 ixgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1788                 uint16_t nb_pkts)
1789 {
1790         struct ixgbe_rx_queue *rxq;
1791         volatile union ixgbe_adv_rx_desc *rx_ring;
1792         volatile union ixgbe_adv_rx_desc *rxdp;
1793         struct ixgbe_rx_entry *sw_ring;
1794         struct ixgbe_rx_entry *rxe;
1795         struct rte_mbuf *rxm;
1796         struct rte_mbuf *nmb;
1797         union ixgbe_adv_rx_desc rxd;
1798         uint64_t dma_addr;
1799         uint32_t staterr;
1800         uint32_t pkt_info;
1801         uint16_t pkt_len;
1802         uint16_t rx_id;
1803         uint16_t nb_rx;
1804         uint16_t nb_hold;
1805         uint64_t pkt_flags;
1806         uint64_t vlan_flags;
1807
1808         nb_rx = 0;
1809         nb_hold = 0;
1810         rxq = rx_queue;
1811         rx_id = rxq->rx_tail;
1812         rx_ring = rxq->rx_ring;
1813         sw_ring = rxq->sw_ring;
1814         vlan_flags = rxq->vlan_flags;
1815         while (nb_rx < nb_pkts) {
1816                 /*
1817                  * The order of operations here is important as the DD status
1818                  * bit must not be read after any other descriptor fields.
1819                  * rx_ring and rxdp are pointing to volatile data so the order
1820                  * of accesses cannot be reordered by the compiler. If they were
1821                  * not volatile, they could be reordered which could lead to
1822                  * using invalid descriptor fields when read from rxd.
1823                  */
1824                 rxdp = &rx_ring[rx_id];
1825                 staterr = rxdp->wb.upper.status_error;
1826                 if (!(staterr & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1827                         break;
1828                 rxd = *rxdp;
1829
1830                 /*
1831                  * End of packet.
1832                  *
1833                  * If the IXGBE_RXDADV_STAT_EOP flag is not set, the RX packet
1834                  * is likely to be invalid and to be dropped by the various
1835                  * validation checks performed by the network stack.
1836                  *
1837                  * Allocate a new mbuf to replenish the RX ring descriptor.
1838                  * If the allocation fails:
1839                  *    - arrange for that RX descriptor to be the first one
1840                  *      being parsed the next time the receive function is
1841                  *      invoked [on the same queue].
1842                  *
1843                  *    - Stop parsing the RX ring and return immediately.
1844                  *
1845                  * This policy do not drop the packet received in the RX
1846                  * descriptor for which the allocation of a new mbuf failed.
1847                  * Thus, it allows that packet to be later retrieved if
1848                  * mbuf have been freed in the mean time.
1849                  * As a side effect, holding RX descriptors instead of
1850                  * systematically giving them back to the NIC may lead to
1851                  * RX ring exhaustion situations.
1852                  * However, the NIC can gracefully prevent such situations
1853                  * to happen by sending specific "back-pressure" flow control
1854                  * frames to its peer(s).
1855                  */
1856                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1857                            "ext_err_stat=0x%08x pkt_len=%u",
1858                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1859                            (unsigned) rx_id, (unsigned) staterr,
1860                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1861
1862                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1863                 if (nmb == NULL) {
1864                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1865                                    "queue_id=%u", (unsigned) rxq->port_id,
1866                                    (unsigned) rxq->queue_id);
1867                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1868                         break;
1869                 }
1870
1871                 nb_hold++;
1872                 rxe = &sw_ring[rx_id];
1873                 rx_id++;
1874                 if (rx_id == rxq->nb_rx_desc)
1875                         rx_id = 0;
1876
1877                 /* Prefetch next mbuf while processing current one. */
1878                 rte_ixgbe_prefetch(sw_ring[rx_id].mbuf);
1879
1880                 /*
1881                  * When next RX descriptor is on a cache-line boundary,
1882                  * prefetch the next 4 RX descriptors and the next 8 pointers
1883                  * to mbufs.
1884                  */
1885                 if ((rx_id & 0x3) == 0) {
1886                         rte_ixgbe_prefetch(&rx_ring[rx_id]);
1887                         rte_ixgbe_prefetch(&sw_ring[rx_id]);
1888                 }
1889
1890                 rxm = rxe->mbuf;
1891                 rxe->mbuf = nmb;
1892                 dma_addr =
1893                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1894                 rxdp->read.hdr_addr = 0;
1895                 rxdp->read.pkt_addr = dma_addr;
1896
1897                 /*
1898                  * Initialize the returned mbuf.
1899                  * 1) setup generic mbuf fields:
1900                  *    - number of segments,
1901                  *    - next segment,
1902                  *    - packet length,
1903                  *    - RX port identifier.
1904                  * 2) integrate hardware offload data, if any:
1905                  *    - RSS flag & hash,
1906                  *    - IP checksum flag,
1907                  *    - VLAN TCI, if any,
1908                  *    - error flags.
1909                  */
1910                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
1911                                       rxq->crc_len);
1912                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1913                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
1914                 rxm->nb_segs = 1;
1915                 rxm->next = NULL;
1916                 rxm->pkt_len = pkt_len;
1917                 rxm->data_len = pkt_len;
1918                 rxm->port = rxq->port_id;
1919
1920                 pkt_info = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1921                 /* Only valid if PKT_RX_VLAN set in pkt_flags */
1922                 rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
1923
1924                 pkt_flags = rx_desc_status_to_pkt_flags(staterr, vlan_flags);
1925                 pkt_flags = pkt_flags |
1926                         rx_desc_error_to_pkt_flags(staterr, (uint16_t)pkt_info,
1927                                                    rxq->rx_udp_csum_zero_err);
1928                 pkt_flags = pkt_flags |
1929                         ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1930                 rxm->ol_flags = pkt_flags;
1931                 rxm->packet_type =
1932                         ixgbe_rxd_pkt_info_to_pkt_type(pkt_info,
1933                                                        rxq->pkt_type_mask);
1934
1935                 if (likely(pkt_flags & PKT_RX_RSS_HASH))
1936                         rxm->hash.rss = rte_le_to_cpu_32(
1937                                                 rxd.wb.lower.hi_dword.rss);
1938                 else if (pkt_flags & PKT_RX_FDIR) {
1939                         rxm->hash.fdir.hash = rte_le_to_cpu_16(
1940                                         rxd.wb.lower.hi_dword.csum_ip.csum) &
1941                                         IXGBE_ATR_HASH_MASK;
1942                         rxm->hash.fdir.id = rte_le_to_cpu_16(
1943                                         rxd.wb.lower.hi_dword.csum_ip.ip_id);
1944                 }
1945                 /*
1946                  * Store the mbuf address into the next entry of the array
1947                  * of returned packets.
1948                  */
1949                 rx_pkts[nb_rx++] = rxm;
1950         }
1951         rxq->rx_tail = rx_id;
1952
1953         /*
1954          * If the number of free RX descriptors is greater than the RX free
1955          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1956          * register.
1957          * Update the RDT with the value of the last processed RX descriptor
1958          * minus 1, to guarantee that the RDT register is never equal to the
1959          * RDH register, which creates a "full" ring situtation from the
1960          * hardware point of view...
1961          */
1962         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1963         if (nb_hold > rxq->rx_free_thresh) {
1964                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1965                            "nb_hold=%u nb_rx=%u",
1966                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1967                            (unsigned) rx_id, (unsigned) nb_hold,
1968                            (unsigned) nb_rx);
1969                 rx_id = (uint16_t) ((rx_id == 0) ?
1970                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1971                 IXGBE_PCI_REG_WC_WRITE(rxq->rdt_reg_addr, rx_id);
1972                 nb_hold = 0;
1973         }
1974         rxq->nb_rx_hold = nb_hold;
1975         return nb_rx;
1976 }
1977
1978 /**
1979  * Detect an RSC descriptor.
1980  */
1981 static inline uint32_t
1982 ixgbe_rsc_count(union ixgbe_adv_rx_desc *rx)
1983 {
1984         return (rte_le_to_cpu_32(rx->wb.lower.lo_dword.data) &
1985                 IXGBE_RXDADV_RSCCNT_MASK) >> IXGBE_RXDADV_RSCCNT_SHIFT;
1986 }
1987
1988 /**
1989  * ixgbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
1990  *
1991  * Fill the following info in the HEAD buffer of the Rx cluster:
1992  *    - RX port identifier
1993  *    - hardware offload data, if any:
1994  *      - RSS flag & hash
1995  *      - IP checksum flag
1996  *      - VLAN TCI, if any
1997  *      - error flags
1998  * @head HEAD of the packet cluster
1999  * @desc HW descriptor to get data from
2000  * @rxq Pointer to the Rx queue
2001  */
2002 static inline void
2003 ixgbe_fill_cluster_head_buf(
2004         struct rte_mbuf *head,
2005         union ixgbe_adv_rx_desc *desc,
2006         struct ixgbe_rx_queue *rxq,
2007         uint32_t staterr)
2008 {
2009         uint32_t pkt_info;
2010         uint64_t pkt_flags;
2011
2012         head->port = rxq->port_id;
2013
2014         /* The vlan_tci field is only valid when PKT_RX_VLAN is
2015          * set in the pkt_flags field.
2016          */
2017         head->vlan_tci = rte_le_to_cpu_16(desc->wb.upper.vlan);
2018         pkt_info = rte_le_to_cpu_32(desc->wb.lower.lo_dword.data);
2019         pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
2020         pkt_flags |= rx_desc_error_to_pkt_flags(staterr, (uint16_t)pkt_info,
2021                                                 rxq->rx_udp_csum_zero_err);
2022         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
2023         head->ol_flags = pkt_flags;
2024         head->packet_type =
2025                 ixgbe_rxd_pkt_info_to_pkt_type(pkt_info, rxq->pkt_type_mask);
2026
2027         if (likely(pkt_flags & PKT_RX_RSS_HASH))
2028                 head->hash.rss = rte_le_to_cpu_32(desc->wb.lower.hi_dword.rss);
2029         else if (pkt_flags & PKT_RX_FDIR) {
2030                 head->hash.fdir.hash =
2031                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.csum)
2032                                                           & IXGBE_ATR_HASH_MASK;
2033                 head->hash.fdir.id =
2034                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.ip_id);
2035         }
2036 }
2037
2038 /**
2039  * ixgbe_recv_pkts_lro - receive handler for and LRO case.
2040  *
2041  * @rx_queue Rx queue handle
2042  * @rx_pkts table of received packets
2043  * @nb_pkts size of rx_pkts table
2044  * @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
2045  *
2046  * Handles the Rx HW ring completions when RSC feature is configured. Uses an
2047  * additional ring of ixgbe_rsc_entry's that will hold the relevant RSC info.
2048  *
2049  * We use the same logic as in Linux and in FreeBSD ixgbe drivers:
2050  * 1) When non-EOP RSC completion arrives:
2051  *    a) Update the HEAD of the current RSC aggregation cluster with the new
2052  *       segment's data length.
2053  *    b) Set the "next" pointer of the current segment to point to the segment
2054  *       at the NEXTP index.
2055  *    c) Pass the HEAD of RSC aggregation cluster on to the next NEXTP entry
2056  *       in the sw_rsc_ring.
2057  * 2) When EOP arrives we just update the cluster's total length and offload
2058  *    flags and deliver the cluster up to the upper layers. In our case - put it
2059  *    in the rx_pkts table.
2060  *
2061  * Returns the number of received packets/clusters (according to the "bulk
2062  * receive" interface).
2063  */
2064 static inline uint16_t
2065 ixgbe_recv_pkts_lro(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
2066                     bool bulk_alloc)
2067 {
2068         struct ixgbe_rx_queue *rxq = rx_queue;
2069         volatile union ixgbe_adv_rx_desc *rx_ring = rxq->rx_ring;
2070         struct ixgbe_rx_entry *sw_ring = rxq->sw_ring;
2071         struct ixgbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
2072         uint16_t rx_id = rxq->rx_tail;
2073         uint16_t nb_rx = 0;
2074         uint16_t nb_hold = rxq->nb_rx_hold;
2075         uint16_t prev_id = rxq->rx_tail;
2076
2077         while (nb_rx < nb_pkts) {
2078                 bool eop;
2079                 struct ixgbe_rx_entry *rxe;
2080                 struct ixgbe_scattered_rx_entry *sc_entry;
2081                 struct ixgbe_scattered_rx_entry *next_sc_entry = NULL;
2082                 struct ixgbe_rx_entry *next_rxe = NULL;
2083                 struct rte_mbuf *first_seg;
2084                 struct rte_mbuf *rxm;
2085                 struct rte_mbuf *nmb = NULL;
2086                 union ixgbe_adv_rx_desc rxd;
2087                 uint16_t data_len;
2088                 uint16_t next_id;
2089                 volatile union ixgbe_adv_rx_desc *rxdp;
2090                 uint32_t staterr;
2091
2092 next_desc:
2093                 /*
2094                  * The code in this whole file uses the volatile pointer to
2095                  * ensure the read ordering of the status and the rest of the
2096                  * descriptor fields (on the compiler level only!!!). This is so
2097                  * UGLY - why not to just use the compiler barrier instead? DPDK
2098                  * even has the rte_compiler_barrier() for that.
2099                  *
2100                  * But most importantly this is just wrong because this doesn't
2101                  * ensure memory ordering in a general case at all. For
2102                  * instance, DPDK is supposed to work on Power CPUs where
2103                  * compiler barrier may just not be enough!
2104                  *
2105                  * I tried to write only this function properly to have a
2106                  * starting point (as a part of an LRO/RSC series) but the
2107                  * compiler cursed at me when I tried to cast away the
2108                  * "volatile" from rx_ring (yes, it's volatile too!!!). So, I'm
2109                  * keeping it the way it is for now.
2110                  *
2111                  * The code in this file is broken in so many other places and
2112                  * will just not work on a big endian CPU anyway therefore the
2113                  * lines below will have to be revisited together with the rest
2114                  * of the ixgbe PMD.
2115                  *
2116                  * TODO:
2117                  *    - Get rid of "volatile" and let the compiler do its job.
2118                  *    - Use the proper memory barrier (rte_rmb()) to ensure the
2119                  *      memory ordering below.
2120                  */
2121                 rxdp = &rx_ring[rx_id];
2122                 staterr = rte_le_to_cpu_32(rxdp->wb.upper.status_error);
2123
2124                 if (!(staterr & IXGBE_RXDADV_STAT_DD))
2125                         break;
2126
2127                 rxd = *rxdp;
2128
2129                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
2130                                   "staterr=0x%x data_len=%u",
2131                            rxq->port_id, rxq->queue_id, rx_id, staterr,
2132                            rte_le_to_cpu_16(rxd.wb.upper.length));
2133
2134                 if (!bulk_alloc) {
2135                         nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
2136                         if (nmb == NULL) {
2137                                 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed "
2138                                                   "port_id=%u queue_id=%u",
2139                                            rxq->port_id, rxq->queue_id);
2140
2141                                 rte_eth_devices[rxq->port_id].data->
2142                                                         rx_mbuf_alloc_failed++;
2143                                 break;
2144                         }
2145                 } else if (nb_hold > rxq->rx_free_thresh) {
2146                         uint16_t next_rdt = rxq->rx_free_trigger;
2147
2148                         if (!ixgbe_rx_alloc_bufs(rxq, false)) {
2149                                 rte_wmb();
2150                                 IXGBE_PCI_REG_WC_WRITE_RELAXED(
2151                                                         rxq->rdt_reg_addr,
2152                                                         next_rdt);
2153                                 nb_hold -= rxq->rx_free_thresh;
2154                         } else {
2155                                 PMD_RX_LOG(DEBUG, "RX bulk alloc failed "
2156                                                   "port_id=%u queue_id=%u",
2157                                            rxq->port_id, rxq->queue_id);
2158
2159                                 rte_eth_devices[rxq->port_id].data->
2160                                                         rx_mbuf_alloc_failed++;
2161                                 break;
2162                         }
2163                 }
2164
2165                 nb_hold++;
2166                 rxe = &sw_ring[rx_id];
2167                 eop = staterr & IXGBE_RXDADV_STAT_EOP;
2168
2169                 next_id = rx_id + 1;
2170                 if (next_id == rxq->nb_rx_desc)
2171                         next_id = 0;
2172
2173                 /* Prefetch next mbuf while processing current one. */
2174                 rte_ixgbe_prefetch(sw_ring[next_id].mbuf);
2175
2176                 /*
2177                  * When next RX descriptor is on a cache-line boundary,
2178                  * prefetch the next 4 RX descriptors and the next 4 pointers
2179                  * to mbufs.
2180                  */
2181                 if ((next_id & 0x3) == 0) {
2182                         rte_ixgbe_prefetch(&rx_ring[next_id]);
2183                         rte_ixgbe_prefetch(&sw_ring[next_id]);
2184                 }
2185
2186                 rxm = rxe->mbuf;
2187
2188                 if (!bulk_alloc) {
2189                         __le64 dma =
2190                           rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2191                         /*
2192                          * Update RX descriptor with the physical address of the
2193                          * new data buffer of the new allocated mbuf.
2194                          */
2195                         rxe->mbuf = nmb;
2196
2197                         rxm->data_off = RTE_PKTMBUF_HEADROOM;
2198                         rxdp->read.hdr_addr = 0;
2199                         rxdp->read.pkt_addr = dma;
2200                 } else
2201                         rxe->mbuf = NULL;
2202
2203                 /*
2204                  * Set data length & data buffer address of mbuf.
2205                  */
2206                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
2207                 rxm->data_len = data_len;
2208
2209                 if (!eop) {
2210                         uint16_t nextp_id;
2211                         /*
2212                          * Get next descriptor index:
2213                          *  - For RSC it's in the NEXTP field.
2214                          *  - For a scattered packet - it's just a following
2215                          *    descriptor.
2216                          */
2217                         if (ixgbe_rsc_count(&rxd))
2218                                 nextp_id =
2219                                         (staterr & IXGBE_RXDADV_NEXTP_MASK) >>
2220                                                        IXGBE_RXDADV_NEXTP_SHIFT;
2221                         else
2222                                 nextp_id = next_id;
2223
2224                         next_sc_entry = &sw_sc_ring[nextp_id];
2225                         next_rxe = &sw_ring[nextp_id];
2226                         rte_ixgbe_prefetch(next_rxe);
2227                 }
2228
2229                 sc_entry = &sw_sc_ring[rx_id];
2230                 first_seg = sc_entry->fbuf;
2231                 sc_entry->fbuf = NULL;
2232
2233                 /*
2234                  * If this is the first buffer of the received packet,
2235                  * set the pointer to the first mbuf of the packet and
2236                  * initialize its context.
2237                  * Otherwise, update the total length and the number of segments
2238                  * of the current scattered packet, and update the pointer to
2239                  * the last mbuf of the current packet.
2240                  */
2241                 if (first_seg == NULL) {
2242                         first_seg = rxm;
2243                         first_seg->pkt_len = data_len;
2244                         first_seg->nb_segs = 1;
2245                 } else {
2246                         first_seg->pkt_len += data_len;
2247                         first_seg->nb_segs++;
2248                 }
2249
2250                 prev_id = rx_id;
2251                 rx_id = next_id;
2252
2253                 /*
2254                  * If this is not the last buffer of the received packet, update
2255                  * the pointer to the first mbuf at the NEXTP entry in the
2256                  * sw_sc_ring and continue to parse the RX ring.
2257                  */
2258                 if (!eop && next_rxe) {
2259                         rxm->next = next_rxe->mbuf;
2260                         next_sc_entry->fbuf = first_seg;
2261                         goto next_desc;
2262                 }
2263
2264                 /* Initialize the first mbuf of the returned packet */
2265                 ixgbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
2266
2267                 /*
2268                  * Deal with the case, when HW CRC srip is disabled.
2269                  * That can't happen when LRO is enabled, but still could
2270                  * happen for scattered RX mode.
2271                  */
2272                 first_seg->pkt_len -= rxq->crc_len;
2273                 if (unlikely(rxm->data_len <= rxq->crc_len)) {
2274                         struct rte_mbuf *lp;
2275
2276                         for (lp = first_seg; lp->next != rxm; lp = lp->next)
2277                                 ;
2278
2279                         first_seg->nb_segs--;
2280                         lp->data_len -= rxq->crc_len - rxm->data_len;
2281                         lp->next = NULL;
2282                         rte_pktmbuf_free_seg(rxm);
2283                 } else
2284                         rxm->data_len -= rxq->crc_len;
2285
2286                 /* Prefetch data of first segment, if configured to do so. */
2287                 rte_packet_prefetch((char *)first_seg->buf_addr +
2288                         first_seg->data_off);
2289
2290                 /*
2291                  * Store the mbuf address into the next entry of the array
2292                  * of returned packets.
2293                  */
2294                 rx_pkts[nb_rx++] = first_seg;
2295         }
2296
2297         /*
2298          * Record index of the next RX descriptor to probe.
2299          */
2300         rxq->rx_tail = rx_id;
2301
2302         /*
2303          * If the number of free RX descriptors is greater than the RX free
2304          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
2305          * register.
2306          * Update the RDT with the value of the last processed RX descriptor
2307          * minus 1, to guarantee that the RDT register is never equal to the
2308          * RDH register, which creates a "full" ring situtation from the
2309          * hardware point of view...
2310          */
2311         if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
2312                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
2313                            "nb_hold=%u nb_rx=%u",
2314                            rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
2315
2316                 rte_wmb();
2317                 IXGBE_PCI_REG_WC_WRITE_RELAXED(rxq->rdt_reg_addr, prev_id);
2318                 nb_hold = 0;
2319         }
2320
2321         rxq->nb_rx_hold = nb_hold;
2322         return nb_rx;
2323 }
2324
2325 uint16_t
2326 ixgbe_recv_pkts_lro_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2327                                  uint16_t nb_pkts)
2328 {
2329         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, false);
2330 }
2331
2332 uint16_t
2333 ixgbe_recv_pkts_lro_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2334                                uint16_t nb_pkts)
2335 {
2336         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, true);
2337 }
2338
2339 /*********************************************************************
2340  *
2341  *  Queue management functions
2342  *
2343  **********************************************************************/
2344
2345 static void __rte_cold
2346 ixgbe_tx_queue_release_mbufs(struct ixgbe_tx_queue *txq)
2347 {
2348         unsigned i;
2349
2350         if (txq->sw_ring != NULL) {
2351                 for (i = 0; i < txq->nb_tx_desc; i++) {
2352                         if (txq->sw_ring[i].mbuf != NULL) {
2353                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2354                                 txq->sw_ring[i].mbuf = NULL;
2355                         }
2356                 }
2357         }
2358 }
2359
2360 static int
2361 ixgbe_tx_done_cleanup_full(struct ixgbe_tx_queue *txq, uint32_t free_cnt)
2362 {
2363         struct ixgbe_tx_entry *swr_ring = txq->sw_ring;
2364         uint16_t i, tx_last, tx_id;
2365         uint16_t nb_tx_free_last;
2366         uint16_t nb_tx_to_clean;
2367         uint32_t pkt_cnt;
2368
2369         /* Start free mbuf from the next of tx_tail */
2370         tx_last = txq->tx_tail;
2371         tx_id  = swr_ring[tx_last].next_id;
2372
2373         if (txq->nb_tx_free == 0 && ixgbe_xmit_cleanup(txq))
2374                 return 0;
2375
2376         nb_tx_to_clean = txq->nb_tx_free;
2377         nb_tx_free_last = txq->nb_tx_free;
2378         if (!free_cnt)
2379                 free_cnt = txq->nb_tx_desc;
2380
2381         /* Loop through swr_ring to count the amount of
2382          * freeable mubfs and packets.
2383          */
2384         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2385                 for (i = 0; i < nb_tx_to_clean &&
2386                         pkt_cnt < free_cnt &&
2387                         tx_id != tx_last; i++) {
2388                         if (swr_ring[tx_id].mbuf != NULL) {
2389                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2390                                 swr_ring[tx_id].mbuf = NULL;
2391
2392                                 /*
2393                                  * last segment in the packet,
2394                                  * increment packet count
2395                                  */
2396                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2397                         }
2398
2399                         tx_id = swr_ring[tx_id].next_id;
2400                 }
2401
2402                 if (txq->tx_rs_thresh > txq->nb_tx_desc -
2403                         txq->nb_tx_free || tx_id == tx_last)
2404                         break;
2405
2406                 if (pkt_cnt < free_cnt) {
2407                         if (ixgbe_xmit_cleanup(txq))
2408                                 break;
2409
2410                         nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
2411                         nb_tx_free_last = txq->nb_tx_free;
2412                 }
2413         }
2414
2415         return (int)pkt_cnt;
2416 }
2417
2418 static int
2419 ixgbe_tx_done_cleanup_simple(struct ixgbe_tx_queue *txq,
2420                         uint32_t free_cnt)
2421 {
2422         int i, n, cnt;
2423
2424         if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
2425                 free_cnt = txq->nb_tx_desc;
2426
2427         cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
2428
2429         for (i = 0; i < cnt; i += n) {
2430                 if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
2431                         break;
2432
2433                 n = ixgbe_tx_free_bufs(txq);
2434
2435                 if (n == 0)
2436                         break;
2437         }
2438
2439         return i;
2440 }
2441
2442 static int
2443 ixgbe_tx_done_cleanup_vec(struct ixgbe_tx_queue *txq __rte_unused,
2444                         uint32_t free_cnt __rte_unused)
2445 {
2446         return -ENOTSUP;
2447 }
2448
2449 int
2450 ixgbe_dev_tx_done_cleanup(void *tx_queue, uint32_t free_cnt)
2451 {
2452         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
2453         if (txq->offloads == 0 &&
2454 #ifdef RTE_LIB_SECURITY
2455                         !(txq->using_ipsec) &&
2456 #endif
2457                         txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST) {
2458                 if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
2459                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128 &&
2460                                 (rte_eal_process_type() != RTE_PROC_PRIMARY ||
2461                                         txq->sw_ring_v != NULL)) {
2462                         return ixgbe_tx_done_cleanup_vec(txq, free_cnt);
2463                 } else {
2464                         return ixgbe_tx_done_cleanup_simple(txq, free_cnt);
2465                 }
2466         }
2467
2468         return ixgbe_tx_done_cleanup_full(txq, free_cnt);
2469 }
2470
2471 static void __rte_cold
2472 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
2473 {
2474         if (txq != NULL &&
2475             txq->sw_ring != NULL)
2476                 rte_free(txq->sw_ring);
2477 }
2478
2479 static void __rte_cold
2480 ixgbe_tx_queue_release(struct ixgbe_tx_queue *txq)
2481 {
2482         if (txq != NULL && txq->ops != NULL) {
2483                 txq->ops->release_mbufs(txq);
2484                 txq->ops->free_swring(txq);
2485                 rte_free(txq);
2486         }
2487 }
2488
2489 void __rte_cold
2490 ixgbe_dev_tx_queue_release(void *txq)
2491 {
2492         ixgbe_tx_queue_release(txq);
2493 }
2494
2495 /* (Re)set dynamic ixgbe_tx_queue fields to defaults */
2496 static void __rte_cold
2497 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
2498 {
2499         static const union ixgbe_adv_tx_desc zeroed_desc = {{0}};
2500         struct ixgbe_tx_entry *txe = txq->sw_ring;
2501         uint16_t prev, i;
2502
2503         /* Zero out HW ring memory */
2504         for (i = 0; i < txq->nb_tx_desc; i++) {
2505                 txq->tx_ring[i] = zeroed_desc;
2506         }
2507
2508         /* Initialize SW ring entries */
2509         prev = (uint16_t) (txq->nb_tx_desc - 1);
2510         for (i = 0; i < txq->nb_tx_desc; i++) {
2511                 volatile union ixgbe_adv_tx_desc *txd = &txq->tx_ring[i];
2512
2513                 txd->wb.status = rte_cpu_to_le_32(IXGBE_TXD_STAT_DD);
2514                 txe[i].mbuf = NULL;
2515                 txe[i].last_id = i;
2516                 txe[prev].next_id = i;
2517                 prev = i;
2518         }
2519
2520         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2521         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2522
2523         txq->tx_tail = 0;
2524         txq->nb_tx_used = 0;
2525         /*
2526          * Always allow 1 descriptor to be un-allocated to avoid
2527          * a H/W race condition
2528          */
2529         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2530         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2531         txq->ctx_curr = 0;
2532         memset((void *)&txq->ctx_cache, 0,
2533                 IXGBE_CTX_NUM * sizeof(struct ixgbe_advctx_info));
2534 }
2535
2536 static const struct ixgbe_txq_ops def_txq_ops = {
2537         .release_mbufs = ixgbe_tx_queue_release_mbufs,
2538         .free_swring = ixgbe_tx_free_swring,
2539         .reset = ixgbe_reset_tx_queue,
2540 };
2541
2542 /* Takes an ethdev and a queue and sets up the tx function to be used based on
2543  * the queue parameters. Used in tx_queue_setup by primary process and then
2544  * in dev_init by secondary process when attaching to an existing ethdev.
2545  */
2546 void __rte_cold
2547 ixgbe_set_tx_function(struct rte_eth_dev *dev, struct ixgbe_tx_queue *txq)
2548 {
2549         /* Use a simple Tx queue (no offloads, no multi segs) if possible */
2550         if ((txq->offloads == 0) &&
2551 #ifdef RTE_LIB_SECURITY
2552                         !(txq->using_ipsec) &&
2553 #endif
2554                         (txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST)) {
2555                 PMD_INIT_LOG(DEBUG, "Using simple tx code path");
2556                 dev->tx_pkt_prepare = NULL;
2557                 if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
2558                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128 &&
2559                                 (rte_eal_process_type() != RTE_PROC_PRIMARY ||
2560                                         ixgbe_txq_vec_setup(txq) == 0)) {
2561                         PMD_INIT_LOG(DEBUG, "Vector tx enabled.");
2562                         dev->tx_pkt_burst = ixgbe_xmit_pkts_vec;
2563                 } else
2564                 dev->tx_pkt_burst = ixgbe_xmit_pkts_simple;
2565         } else {
2566                 PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
2567                 PMD_INIT_LOG(DEBUG,
2568                                 " - offloads = 0x%" PRIx64,
2569                                 txq->offloads);
2570                 PMD_INIT_LOG(DEBUG,
2571                                 " - tx_rs_thresh = %lu " "[RTE_PMD_IXGBE_TX_MAX_BURST=%lu]",
2572                                 (unsigned long)txq->tx_rs_thresh,
2573                                 (unsigned long)RTE_PMD_IXGBE_TX_MAX_BURST);
2574                 dev->tx_pkt_burst = ixgbe_xmit_pkts;
2575                 dev->tx_pkt_prepare = ixgbe_prep_pkts;
2576         }
2577 }
2578
2579 uint64_t
2580 ixgbe_get_tx_queue_offloads(struct rte_eth_dev *dev)
2581 {
2582         RTE_SET_USED(dev);
2583
2584         return 0;
2585 }
2586
2587 uint64_t
2588 ixgbe_get_tx_port_offloads(struct rte_eth_dev *dev)
2589 {
2590         uint64_t tx_offload_capa;
2591         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2592
2593         tx_offload_capa =
2594                 DEV_TX_OFFLOAD_VLAN_INSERT |
2595                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2596                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2597                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2598                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2599                 DEV_TX_OFFLOAD_TCP_TSO     |
2600                 DEV_TX_OFFLOAD_MULTI_SEGS;
2601
2602         if (hw->mac.type == ixgbe_mac_82599EB ||
2603             hw->mac.type == ixgbe_mac_X540)
2604                 tx_offload_capa |= DEV_TX_OFFLOAD_MACSEC_INSERT;
2605
2606         if (hw->mac.type == ixgbe_mac_X550 ||
2607             hw->mac.type == ixgbe_mac_X550EM_x ||
2608             hw->mac.type == ixgbe_mac_X550EM_a)
2609                 tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
2610
2611 #ifdef RTE_LIB_SECURITY
2612         if (dev->security_ctx)
2613                 tx_offload_capa |= DEV_TX_OFFLOAD_SECURITY;
2614 #endif
2615         return tx_offload_capa;
2616 }
2617
2618 int __rte_cold
2619 ixgbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
2620                          uint16_t queue_idx,
2621                          uint16_t nb_desc,
2622                          unsigned int socket_id,
2623                          const struct rte_eth_txconf *tx_conf)
2624 {
2625         const struct rte_memzone *tz;
2626         struct ixgbe_tx_queue *txq;
2627         struct ixgbe_hw     *hw;
2628         uint16_t tx_rs_thresh, tx_free_thresh;
2629         uint64_t offloads;
2630
2631         PMD_INIT_FUNC_TRACE();
2632         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2633
2634         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2635
2636         /*
2637          * Validate number of transmit descriptors.
2638          * It must not exceed hardware maximum, and must be multiple
2639          * of IXGBE_ALIGN.
2640          */
2641         if (nb_desc % IXGBE_TXD_ALIGN != 0 ||
2642                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2643                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2644                 return -EINVAL;
2645         }
2646
2647         /*
2648          * The following two parameters control the setting of the RS bit on
2649          * transmit descriptors.
2650          * TX descriptors will have their RS bit set after txq->tx_rs_thresh
2651          * descriptors have been used.
2652          * The TX descriptor ring will be cleaned after txq->tx_free_thresh
2653          * descriptors are used or if the number of descriptors required
2654          * to transmit a packet is greater than the number of free TX
2655          * descriptors.
2656          * The following constraints must be satisfied:
2657          *  tx_rs_thresh must be greater than 0.
2658          *  tx_rs_thresh must be less than the size of the ring minus 2.
2659          *  tx_rs_thresh must be less than or equal to tx_free_thresh.
2660          *  tx_rs_thresh must be a divisor of the ring size.
2661          *  tx_free_thresh must be greater than 0.
2662          *  tx_free_thresh must be less than the size of the ring minus 3.
2663          *  tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
2664          * One descriptor in the TX ring is used as a sentinel to avoid a
2665          * H/W race condition, hence the maximum threshold constraints.
2666          * When set to zero use default values.
2667          */
2668         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2669                         tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2670         /* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
2671         tx_rs_thresh = (DEFAULT_TX_RS_THRESH + tx_free_thresh > nb_desc) ?
2672                         nb_desc - tx_free_thresh : DEFAULT_TX_RS_THRESH;
2673         if (tx_conf->tx_rs_thresh > 0)
2674                 tx_rs_thresh = tx_conf->tx_rs_thresh;
2675         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
2676                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
2677                              "exceed nb_desc. (tx_rs_thresh=%u "
2678                              "tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
2679                              (unsigned int)tx_rs_thresh,
2680                              (unsigned int)tx_free_thresh,
2681                              (unsigned int)nb_desc,
2682                              (int)dev->data->port_id,
2683                              (int)queue_idx);
2684                 return -(EINVAL);
2685         }
2686         if (tx_rs_thresh >= (nb_desc - 2)) {
2687                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the number "
2688                         "of TX descriptors minus 2. (tx_rs_thresh=%u "
2689                         "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2690                         (int)dev->data->port_id, (int)queue_idx);
2691                 return -(EINVAL);
2692         }
2693         if (tx_rs_thresh > DEFAULT_TX_RS_THRESH) {
2694                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less or equal than %u. "
2695                         "(tx_rs_thresh=%u port=%d queue=%d)",
2696                         DEFAULT_TX_RS_THRESH, (unsigned int)tx_rs_thresh,
2697                         (int)dev->data->port_id, (int)queue_idx);
2698                 return -(EINVAL);
2699         }
2700         if (tx_free_thresh >= (nb_desc - 3)) {
2701                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2702                              "tx_free_thresh must be less than the number of "
2703                              "TX descriptors minus 3. (tx_free_thresh=%u "
2704                              "port=%d queue=%d)",
2705                              (unsigned int)tx_free_thresh,
2706                              (int)dev->data->port_id, (int)queue_idx);
2707                 return -(EINVAL);
2708         }
2709         if (tx_rs_thresh > tx_free_thresh) {
2710                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
2711                              "tx_free_thresh. (tx_free_thresh=%u "
2712                              "tx_rs_thresh=%u port=%d queue=%d)",
2713                              (unsigned int)tx_free_thresh,
2714                              (unsigned int)tx_rs_thresh,
2715                              (int)dev->data->port_id,
2716                              (int)queue_idx);
2717                 return -(EINVAL);
2718         }
2719         if ((nb_desc % tx_rs_thresh) != 0) {
2720                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2721                              "number of TX descriptors. (tx_rs_thresh=%u "
2722                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2723                              (int)dev->data->port_id, (int)queue_idx);
2724                 return -(EINVAL);
2725         }
2726
2727         /*
2728          * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
2729          * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
2730          * by the NIC and all descriptors are written back after the NIC
2731          * accumulates WTHRESH descriptors.
2732          */
2733         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2734                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2735                              "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
2736                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2737                              (int)dev->data->port_id, (int)queue_idx);
2738                 return -(EINVAL);
2739         }
2740
2741         /* Free memory prior to re-allocation if needed... */
2742         if (dev->data->tx_queues[queue_idx] != NULL) {
2743                 ixgbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
2744                 dev->data->tx_queues[queue_idx] = NULL;
2745         }
2746
2747         /* First allocate the tx queue data structure */
2748         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct ixgbe_tx_queue),
2749                                  RTE_CACHE_LINE_SIZE, socket_id);
2750         if (txq == NULL)
2751                 return -ENOMEM;
2752
2753         /*
2754          * Allocate TX ring hardware descriptors. A memzone large enough to
2755          * handle the maximum ring size is allocated in order to allow for
2756          * resizing in later calls to the queue setup function.
2757          */
2758         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2759                         sizeof(union ixgbe_adv_tx_desc) * IXGBE_MAX_RING_DESC,
2760                         IXGBE_ALIGN, socket_id);
2761         if (tz == NULL) {
2762                 ixgbe_tx_queue_release(txq);
2763                 return -ENOMEM;
2764         }
2765
2766         txq->nb_tx_desc = nb_desc;
2767         txq->tx_rs_thresh = tx_rs_thresh;
2768         txq->tx_free_thresh = tx_free_thresh;
2769         txq->pthresh = tx_conf->tx_thresh.pthresh;
2770         txq->hthresh = tx_conf->tx_thresh.hthresh;
2771         txq->wthresh = tx_conf->tx_thresh.wthresh;
2772         txq->queue_id = queue_idx;
2773         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2774                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2775         txq->port_id = dev->data->port_id;
2776         txq->offloads = offloads;
2777         txq->ops = &def_txq_ops;
2778         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2779 #ifdef RTE_LIB_SECURITY
2780         txq->using_ipsec = !!(dev->data->dev_conf.txmode.offloads &
2781                         DEV_TX_OFFLOAD_SECURITY);
2782 #endif
2783
2784         /*
2785          * Modification to set VFTDT for virtual function if vf is detected
2786          */
2787         if (hw->mac.type == ixgbe_mac_82599_vf ||
2788             hw->mac.type == ixgbe_mac_X540_vf ||
2789             hw->mac.type == ixgbe_mac_X550_vf ||
2790             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2791             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2792                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_VFTDT(queue_idx));
2793         else
2794                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_TDT(txq->reg_idx));
2795
2796         txq->tx_ring_phys_addr = tz->iova;
2797         txq->tx_ring = (union ixgbe_adv_tx_desc *) tz->addr;
2798
2799         /* Allocate software ring */
2800         txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
2801                                 sizeof(struct ixgbe_tx_entry) * nb_desc,
2802                                 RTE_CACHE_LINE_SIZE, socket_id);
2803         if (txq->sw_ring == NULL) {
2804                 ixgbe_tx_queue_release(txq);
2805                 return -ENOMEM;
2806         }
2807         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
2808                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
2809
2810         /* set up vector or scalar TX function as appropriate */
2811         ixgbe_set_tx_function(dev, txq);
2812
2813         txq->ops->reset(txq);
2814
2815         dev->data->tx_queues[queue_idx] = txq;
2816
2817
2818         return 0;
2819 }
2820
2821 /**
2822  * ixgbe_free_sc_cluster - free the not-yet-completed scattered cluster
2823  *
2824  * The "next" pointer of the last segment of (not-yet-completed) RSC clusters
2825  * in the sw_rsc_ring is not set to NULL but rather points to the next
2826  * mbuf of this RSC aggregation (that has not been completed yet and still
2827  * resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
2828  * will just free first "nb_segs" segments of the cluster explicitly by calling
2829  * an rte_pktmbuf_free_seg().
2830  *
2831  * @m scattered cluster head
2832  */
2833 static void __rte_cold
2834 ixgbe_free_sc_cluster(struct rte_mbuf *m)
2835 {
2836         uint16_t i, nb_segs = m->nb_segs;
2837         struct rte_mbuf *next_seg;
2838
2839         for (i = 0; i < nb_segs; i++) {
2840                 next_seg = m->next;
2841                 rte_pktmbuf_free_seg(m);
2842                 m = next_seg;
2843         }
2844 }
2845
2846 static void __rte_cold
2847 ixgbe_rx_queue_release_mbufs(struct ixgbe_rx_queue *rxq)
2848 {
2849         unsigned i;
2850
2851         /* SSE Vector driver has a different way of releasing mbufs. */
2852         if (rxq->rx_using_sse) {
2853                 ixgbe_rx_queue_release_mbufs_vec(rxq);
2854                 return;
2855         }
2856
2857         if (rxq->sw_ring != NULL) {
2858                 for (i = 0; i < rxq->nb_rx_desc; i++) {
2859                         if (rxq->sw_ring[i].mbuf != NULL) {
2860                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2861                                 rxq->sw_ring[i].mbuf = NULL;
2862                         }
2863                 }
2864                 if (rxq->rx_nb_avail) {
2865                         for (i = 0; i < rxq->rx_nb_avail; ++i) {
2866                                 struct rte_mbuf *mb;
2867
2868                                 mb = rxq->rx_stage[rxq->rx_next_avail + i];
2869                                 rte_pktmbuf_free_seg(mb);
2870                         }
2871                         rxq->rx_nb_avail = 0;
2872                 }
2873         }
2874
2875         if (rxq->sw_sc_ring)
2876                 for (i = 0; i < rxq->nb_rx_desc; i++)
2877                         if (rxq->sw_sc_ring[i].fbuf) {
2878                                 ixgbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
2879                                 rxq->sw_sc_ring[i].fbuf = NULL;
2880                         }
2881 }
2882
2883 static void __rte_cold
2884 ixgbe_rx_queue_release(struct ixgbe_rx_queue *rxq)
2885 {
2886         if (rxq != NULL) {
2887                 ixgbe_rx_queue_release_mbufs(rxq);
2888                 rte_free(rxq->sw_ring);
2889                 rte_free(rxq->sw_sc_ring);
2890                 rte_free(rxq);
2891         }
2892 }
2893
2894 void __rte_cold
2895 ixgbe_dev_rx_queue_release(void *rxq)
2896 {
2897         ixgbe_rx_queue_release(rxq);
2898 }
2899
2900 /*
2901  * Check if Rx Burst Bulk Alloc function can be used.
2902  * Return
2903  *        0: the preconditions are satisfied and the bulk allocation function
2904  *           can be used.
2905  *  -EINVAL: the preconditions are NOT satisfied and the default Rx burst
2906  *           function must be used.
2907  */
2908 static inline int __rte_cold
2909 check_rx_burst_bulk_alloc_preconditions(struct ixgbe_rx_queue *rxq)
2910 {
2911         int ret = 0;
2912
2913         /*
2914          * Make sure the following pre-conditions are satisfied:
2915          *   rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST
2916          *   rxq->rx_free_thresh < rxq->nb_rx_desc
2917          *   (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
2918          * Scattered packets are not supported.  This should be checked
2919          * outside of this function.
2920          */
2921         if (!(rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST)) {
2922                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2923                              "rxq->rx_free_thresh=%d, "
2924                              "RTE_PMD_IXGBE_RX_MAX_BURST=%d",
2925                              rxq->rx_free_thresh, RTE_PMD_IXGBE_RX_MAX_BURST);
2926                 ret = -EINVAL;
2927         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
2928                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2929                              "rxq->rx_free_thresh=%d, "
2930                              "rxq->nb_rx_desc=%d",
2931                              rxq->rx_free_thresh, rxq->nb_rx_desc);
2932                 ret = -EINVAL;
2933         } else if (!((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)) {
2934                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2935                              "rxq->nb_rx_desc=%d, "
2936                              "rxq->rx_free_thresh=%d",
2937                              rxq->nb_rx_desc, rxq->rx_free_thresh);
2938                 ret = -EINVAL;
2939         }
2940
2941         return ret;
2942 }
2943
2944 /* Reset dynamic ixgbe_rx_queue fields back to defaults */
2945 static void __rte_cold
2946 ixgbe_reset_rx_queue(struct ixgbe_adapter *adapter, struct ixgbe_rx_queue *rxq)
2947 {
2948         static const union ixgbe_adv_rx_desc zeroed_desc = {{0}};
2949         unsigned i;
2950         uint16_t len = rxq->nb_rx_desc;
2951
2952         /*
2953          * By default, the Rx queue setup function allocates enough memory for
2954          * IXGBE_MAX_RING_DESC.  The Rx Burst bulk allocation function requires
2955          * extra memory at the end of the descriptor ring to be zero'd out.
2956          */
2957         if (adapter->rx_bulk_alloc_allowed)
2958                 /* zero out extra memory */
2959                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
2960
2961         /*
2962          * Zero out HW ring memory. Zero out extra memory at the end of
2963          * the H/W ring so look-ahead logic in Rx Burst bulk alloc function
2964          * reads extra memory as zeros.
2965          */
2966         for (i = 0; i < len; i++) {
2967                 rxq->rx_ring[i] = zeroed_desc;
2968         }
2969
2970         /*
2971          * initialize extra software ring entries. Space for these extra
2972          * entries is always allocated
2973          */
2974         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2975         for (i = rxq->nb_rx_desc; i < len; ++i) {
2976                 rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
2977         }
2978
2979         rxq->rx_nb_avail = 0;
2980         rxq->rx_next_avail = 0;
2981         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2982         rxq->rx_tail = 0;
2983         rxq->nb_rx_hold = 0;
2984         rxq->pkt_first_seg = NULL;
2985         rxq->pkt_last_seg = NULL;
2986
2987 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
2988         rxq->rxrearm_start = 0;
2989         rxq->rxrearm_nb = 0;
2990 #endif
2991 }
2992
2993 static int
2994 ixgbe_is_vf(struct rte_eth_dev *dev)
2995 {
2996         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2997
2998         switch (hw->mac.type) {
2999         case ixgbe_mac_82599_vf:
3000         case ixgbe_mac_X540_vf:
3001         case ixgbe_mac_X550_vf:
3002         case ixgbe_mac_X550EM_x_vf:
3003         case ixgbe_mac_X550EM_a_vf:
3004                 return 1;
3005         default:
3006                 return 0;
3007         }
3008 }
3009
3010 uint64_t
3011 ixgbe_get_rx_queue_offloads(struct rte_eth_dev *dev)
3012 {
3013         uint64_t offloads = 0;
3014         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3015
3016         if (hw->mac.type != ixgbe_mac_82598EB)
3017                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
3018
3019         return offloads;
3020 }
3021
3022 uint64_t
3023 ixgbe_get_rx_port_offloads(struct rte_eth_dev *dev)
3024 {
3025         uint64_t offloads;
3026         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3027
3028         offloads = DEV_RX_OFFLOAD_IPV4_CKSUM  |
3029                    DEV_RX_OFFLOAD_UDP_CKSUM   |
3030                    DEV_RX_OFFLOAD_TCP_CKSUM   |
3031                    DEV_RX_OFFLOAD_KEEP_CRC    |
3032                    DEV_RX_OFFLOAD_JUMBO_FRAME |
3033                    DEV_RX_OFFLOAD_VLAN_FILTER |
3034                    DEV_RX_OFFLOAD_SCATTER |
3035                    DEV_RX_OFFLOAD_RSS_HASH;
3036
3037         if (hw->mac.type == ixgbe_mac_82598EB)
3038                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
3039
3040         if (ixgbe_is_vf(dev) == 0)
3041                 offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
3042
3043         /*
3044          * RSC is only supported by 82599 and x540 PF devices in a non-SR-IOV
3045          * mode.
3046          */
3047         if ((hw->mac.type == ixgbe_mac_82599EB ||
3048              hw->mac.type == ixgbe_mac_X540 ||
3049              hw->mac.type == ixgbe_mac_X550) &&
3050             !RTE_ETH_DEV_SRIOV(dev).active)
3051                 offloads |= DEV_RX_OFFLOAD_TCP_LRO;
3052
3053         if (hw->mac.type == ixgbe_mac_82599EB ||
3054             hw->mac.type == ixgbe_mac_X540)
3055                 offloads |= DEV_RX_OFFLOAD_MACSEC_STRIP;
3056
3057         if (hw->mac.type == ixgbe_mac_X550 ||
3058             hw->mac.type == ixgbe_mac_X550EM_x ||
3059             hw->mac.type == ixgbe_mac_X550EM_a)
3060                 offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
3061
3062 #ifdef RTE_LIB_SECURITY
3063         if (dev->security_ctx)
3064                 offloads |= DEV_RX_OFFLOAD_SECURITY;
3065 #endif
3066
3067         return offloads;
3068 }
3069
3070 int __rte_cold
3071 ixgbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
3072                          uint16_t queue_idx,
3073                          uint16_t nb_desc,
3074                          unsigned int socket_id,
3075                          const struct rte_eth_rxconf *rx_conf,
3076                          struct rte_mempool *mp)
3077 {
3078         const struct rte_memzone *rz;
3079         struct ixgbe_rx_queue *rxq;
3080         struct ixgbe_hw     *hw;
3081         uint16_t len;
3082         struct ixgbe_adapter *adapter = dev->data->dev_private;
3083         uint64_t offloads;
3084
3085         PMD_INIT_FUNC_TRACE();
3086         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3087
3088         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
3089
3090         /*
3091          * Validate number of receive descriptors.
3092          * It must not exceed hardware maximum, and must be multiple
3093          * of IXGBE_ALIGN.
3094          */
3095         if (nb_desc % IXGBE_RXD_ALIGN != 0 ||
3096                         (nb_desc > IXGBE_MAX_RING_DESC) ||
3097                         (nb_desc < IXGBE_MIN_RING_DESC)) {
3098                 return -EINVAL;
3099         }
3100
3101         /* Free memory prior to re-allocation if needed... */
3102         if (dev->data->rx_queues[queue_idx] != NULL) {
3103                 ixgbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
3104                 dev->data->rx_queues[queue_idx] = NULL;
3105         }
3106
3107         /* First allocate the rx queue data structure */
3108         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct ixgbe_rx_queue),
3109                                  RTE_CACHE_LINE_SIZE, socket_id);
3110         if (rxq == NULL)
3111                 return -ENOMEM;
3112         rxq->mb_pool = mp;
3113         rxq->nb_rx_desc = nb_desc;
3114         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
3115         rxq->queue_id = queue_idx;
3116         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
3117                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
3118         rxq->port_id = dev->data->port_id;
3119         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
3120                 rxq->crc_len = RTE_ETHER_CRC_LEN;
3121         else
3122                 rxq->crc_len = 0;
3123         rxq->drop_en = rx_conf->rx_drop_en;
3124         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
3125         rxq->offloads = offloads;
3126
3127         /*
3128          * The packet type in RX descriptor is different for different NICs.
3129          * Some bits are used for x550 but reserved for other NICS.
3130          * So set different masks for different NICs.
3131          */
3132         if (hw->mac.type == ixgbe_mac_X550 ||
3133             hw->mac.type == ixgbe_mac_X550EM_x ||
3134             hw->mac.type == ixgbe_mac_X550EM_a ||
3135             hw->mac.type == ixgbe_mac_X550_vf ||
3136             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
3137             hw->mac.type == ixgbe_mac_X550EM_a_vf)
3138                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_X550;
3139         else
3140                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_82599;
3141
3142         /*
3143          * 82599 errata, UDP frames with a 0 checksum can be marked as checksum
3144          * errors.
3145          */
3146         if (hw->mac.type == ixgbe_mac_82599EB)
3147                 rxq->rx_udp_csum_zero_err = 1;
3148
3149         /*
3150          * Allocate RX ring hardware descriptors. A memzone large enough to
3151          * handle the maximum ring size is allocated in order to allow for
3152          * resizing in later calls to the queue setup function.
3153          */
3154         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
3155                                       RX_RING_SZ, IXGBE_ALIGN, socket_id);
3156         if (rz == NULL) {
3157                 ixgbe_rx_queue_release(rxq);
3158                 return -ENOMEM;
3159         }
3160
3161         /*
3162          * Zero init all the descriptors in the ring.
3163          */
3164         memset(rz->addr, 0, RX_RING_SZ);
3165
3166         /*
3167          * Modified to setup VFRDT for Virtual Function
3168          */
3169         if (hw->mac.type == ixgbe_mac_82599_vf ||
3170             hw->mac.type == ixgbe_mac_X540_vf ||
3171             hw->mac.type == ixgbe_mac_X550_vf ||
3172             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
3173             hw->mac.type == ixgbe_mac_X550EM_a_vf) {
3174                 rxq->rdt_reg_addr =
3175                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDT(queue_idx));
3176                 rxq->rdh_reg_addr =
3177                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDH(queue_idx));
3178         } else {
3179                 rxq->rdt_reg_addr =
3180                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDT(rxq->reg_idx));
3181                 rxq->rdh_reg_addr =
3182                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDH(rxq->reg_idx));
3183         }
3184
3185         rxq->rx_ring_phys_addr = rz->iova;
3186         rxq->rx_ring = (union ixgbe_adv_rx_desc *) rz->addr;
3187
3188         /*
3189          * Certain constraints must be met in order to use the bulk buffer
3190          * allocation Rx burst function. If any of Rx queues doesn't meet them
3191          * the feature should be disabled for the whole port.
3192          */
3193         if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
3194                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Rx Bulk Alloc "
3195                                     "preconditions - canceling the feature for "
3196                                     "the whole port[%d]",
3197                              rxq->queue_id, rxq->port_id);
3198                 adapter->rx_bulk_alloc_allowed = false;
3199         }
3200
3201         /*
3202          * Allocate software ring. Allow for space at the end of the
3203          * S/W ring to make sure look-ahead logic in bulk alloc Rx burst
3204          * function does not access an invalid memory region.
3205          */
3206         len = nb_desc;
3207         if (adapter->rx_bulk_alloc_allowed)
3208                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
3209
3210         rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
3211                                           sizeof(struct ixgbe_rx_entry) * len,
3212                                           RTE_CACHE_LINE_SIZE, socket_id);
3213         if (!rxq->sw_ring) {
3214                 ixgbe_rx_queue_release(rxq);
3215                 return -ENOMEM;
3216         }
3217
3218         /*
3219          * Always allocate even if it's not going to be needed in order to
3220          * simplify the code.
3221          *
3222          * This ring is used in LRO and Scattered Rx cases and Scattered Rx may
3223          * be requested in ixgbe_dev_rx_init(), which is called later from
3224          * dev_start() flow.
3225          */
3226         rxq->sw_sc_ring =
3227                 rte_zmalloc_socket("rxq->sw_sc_ring",
3228                                    sizeof(struct ixgbe_scattered_rx_entry) * len,
3229                                    RTE_CACHE_LINE_SIZE, socket_id);
3230         if (!rxq->sw_sc_ring) {
3231                 ixgbe_rx_queue_release(rxq);
3232                 return -ENOMEM;
3233         }
3234
3235         PMD_INIT_LOG(DEBUG, "sw_ring=%p sw_sc_ring=%p hw_ring=%p "
3236                             "dma_addr=0x%"PRIx64,
3237                      rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
3238                      rxq->rx_ring_phys_addr);
3239
3240         if (!rte_is_power_of_2(nb_desc)) {
3241                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Vector Rx "
3242                                     "preconditions - canceling the feature for "
3243                                     "the whole port[%d]",
3244                              rxq->queue_id, rxq->port_id);
3245                 adapter->rx_vec_allowed = false;
3246         } else
3247                 ixgbe_rxq_vec_setup(rxq);
3248
3249         dev->data->rx_queues[queue_idx] = rxq;
3250
3251         ixgbe_reset_rx_queue(adapter, rxq);
3252
3253         return 0;
3254 }
3255
3256 uint32_t
3257 ixgbe_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
3258 {
3259 #define IXGBE_RXQ_SCAN_INTERVAL 4
3260         volatile union ixgbe_adv_rx_desc *rxdp;
3261         struct ixgbe_rx_queue *rxq;
3262         uint32_t desc = 0;
3263
3264         rxq = dev->data->rx_queues[rx_queue_id];
3265         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
3266
3267         while ((desc < rxq->nb_rx_desc) &&
3268                 (rxdp->wb.upper.status_error &
3269                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))) {
3270                 desc += IXGBE_RXQ_SCAN_INTERVAL;
3271                 rxdp += IXGBE_RXQ_SCAN_INTERVAL;
3272                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
3273                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
3274                                 desc - rxq->nb_rx_desc]);
3275         }
3276
3277         return desc;
3278 }
3279
3280 int
3281 ixgbe_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
3282 {
3283         volatile union ixgbe_adv_rx_desc *rxdp;
3284         struct ixgbe_rx_queue *rxq = rx_queue;
3285         uint32_t desc;
3286
3287         if (unlikely(offset >= rxq->nb_rx_desc))
3288                 return 0;
3289         desc = rxq->rx_tail + offset;
3290         if (desc >= rxq->nb_rx_desc)
3291                 desc -= rxq->nb_rx_desc;
3292
3293         rxdp = &rxq->rx_ring[desc];
3294         return !!(rxdp->wb.upper.status_error &
3295                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD));
3296 }
3297
3298 int
3299 ixgbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
3300 {
3301         struct ixgbe_rx_queue *rxq = rx_queue;
3302         volatile uint32_t *status;
3303         uint32_t nb_hold, desc;
3304
3305         if (unlikely(offset >= rxq->nb_rx_desc))
3306                 return -EINVAL;
3307
3308 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
3309         if (rxq->rx_using_sse)
3310                 nb_hold = rxq->rxrearm_nb;
3311         else
3312 #endif
3313                 nb_hold = rxq->nb_rx_hold;
3314         if (offset >= rxq->nb_rx_desc - nb_hold)
3315                 return RTE_ETH_RX_DESC_UNAVAIL;
3316
3317         desc = rxq->rx_tail + offset;
3318         if (desc >= rxq->nb_rx_desc)
3319                 desc -= rxq->nb_rx_desc;
3320
3321         status = &rxq->rx_ring[desc].wb.upper.status_error;
3322         if (*status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))
3323                 return RTE_ETH_RX_DESC_DONE;
3324
3325         return RTE_ETH_RX_DESC_AVAIL;
3326 }
3327
3328 int
3329 ixgbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
3330 {
3331         struct ixgbe_tx_queue *txq = tx_queue;
3332         volatile uint32_t *status;
3333         uint32_t desc;
3334
3335         if (unlikely(offset >= txq->nb_tx_desc))
3336                 return -EINVAL;
3337
3338         desc = txq->tx_tail + offset;
3339         /* go to next desc that has the RS bit */
3340         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
3341                 txq->tx_rs_thresh;
3342         if (desc >= txq->nb_tx_desc) {
3343                 desc -= txq->nb_tx_desc;
3344                 if (desc >= txq->nb_tx_desc)
3345                         desc -= txq->nb_tx_desc;
3346         }
3347
3348         status = &txq->tx_ring[desc].wb.status;
3349         if (*status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD))
3350                 return RTE_ETH_TX_DESC_DONE;
3351
3352         return RTE_ETH_TX_DESC_FULL;
3353 }
3354
3355 /*
3356  * Set up link loopback for X540/X550 mode Tx->Rx.
3357  */
3358 static inline void __rte_cold
3359 ixgbe_setup_loopback_link_x540_x550(struct ixgbe_hw *hw, bool enable)
3360 {
3361         uint32_t macc;
3362         PMD_INIT_FUNC_TRACE();
3363
3364         u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
3365
3366         hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
3367                              IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg);
3368         macc = IXGBE_READ_REG(hw, IXGBE_MACC);
3369
3370         if (enable) {
3371                 /* datasheet 15.2.1: disable AUTONEG (PHY Bit 7.0.C) */
3372                 autoneg_reg |= IXGBE_MII_AUTONEG_ENABLE;
3373                 /* datasheet 15.2.1: MACC.FLU = 1 (force link up) */
3374                 macc |= IXGBE_MACC_FLU;
3375         } else {
3376                 autoneg_reg &= ~IXGBE_MII_AUTONEG_ENABLE;
3377                 macc &= ~IXGBE_MACC_FLU;
3378         }
3379
3380         hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
3381                               IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg);
3382
3383         IXGBE_WRITE_REG(hw, IXGBE_MACC, macc);
3384 }
3385
3386 void __rte_cold
3387 ixgbe_dev_clear_queues(struct rte_eth_dev *dev)
3388 {
3389         unsigned i;
3390         struct ixgbe_adapter *adapter = dev->data->dev_private;
3391         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3392
3393         PMD_INIT_FUNC_TRACE();
3394
3395         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3396                 struct ixgbe_tx_queue *txq = dev->data->tx_queues[i];
3397
3398                 if (txq != NULL) {
3399                         txq->ops->release_mbufs(txq);
3400                         txq->ops->reset(txq);
3401                 }
3402         }
3403
3404         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3405                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
3406
3407                 if (rxq != NULL) {
3408                         ixgbe_rx_queue_release_mbufs(rxq);
3409                         ixgbe_reset_rx_queue(adapter, rxq);
3410                 }
3411         }
3412         /* If loopback mode was enabled, reconfigure the link accordingly */
3413         if (dev->data->dev_conf.lpbk_mode != 0) {
3414                 if (hw->mac.type == ixgbe_mac_X540 ||
3415                      hw->mac.type == ixgbe_mac_X550 ||
3416                      hw->mac.type == ixgbe_mac_X550EM_x ||
3417                      hw->mac.type == ixgbe_mac_X550EM_a)
3418                         ixgbe_setup_loopback_link_x540_x550(hw, false);
3419         }
3420 }
3421
3422 void
3423 ixgbe_dev_free_queues(struct rte_eth_dev *dev)
3424 {
3425         unsigned i;
3426
3427         PMD_INIT_FUNC_TRACE();
3428
3429         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3430                 ixgbe_dev_rx_queue_release(dev->data->rx_queues[i]);
3431                 dev->data->rx_queues[i] = NULL;
3432                 rte_eth_dma_zone_free(dev, "rx_ring", i);
3433         }
3434         dev->data->nb_rx_queues = 0;
3435
3436         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3437                 ixgbe_dev_tx_queue_release(dev->data->tx_queues[i]);
3438                 dev->data->tx_queues[i] = NULL;
3439                 rte_eth_dma_zone_free(dev, "tx_ring", i);
3440         }
3441         dev->data->nb_tx_queues = 0;
3442 }
3443
3444 /*********************************************************************
3445  *
3446  *  Device RX/TX init functions
3447  *
3448  **********************************************************************/
3449
3450 /**
3451  * Receive Side Scaling (RSS)
3452  * See section 7.1.2.8 in the following document:
3453  *     "Intel 82599 10 GbE Controller Datasheet" - Revision 2.1 October 2009
3454  *
3455  * Principles:
3456  * The source and destination IP addresses of the IP header and the source
3457  * and destination ports of TCP/UDP headers, if any, of received packets are
3458  * hashed against a configurable random key to compute a 32-bit RSS hash result.
3459  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
3460  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
3461  * RSS output index which is used as the RX queue index where to store the
3462  * received packets.
3463  * The following output is supplied in the RX write-back descriptor:
3464  *     - 32-bit result of the Microsoft RSS hash function,
3465  *     - 4-bit RSS type field.
3466  */
3467
3468 /*
3469  * RSS random key supplied in section 7.1.2.8.3 of the Intel 82599 datasheet.
3470  * Used as the default key.
3471  */
3472 static uint8_t rss_intel_key[40] = {
3473         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
3474         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
3475         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
3476         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
3477         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
3478 };
3479
3480 static void
3481 ixgbe_rss_disable(struct rte_eth_dev *dev)
3482 {
3483         struct ixgbe_hw *hw;
3484         uint32_t mrqc;
3485         uint32_t mrqc_reg;
3486
3487         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3488         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3489         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3490         mrqc &= ~IXGBE_MRQC_RSSEN;
3491         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3492 }
3493
3494 static void
3495 ixgbe_hw_rss_hash_set(struct ixgbe_hw *hw, struct rte_eth_rss_conf *rss_conf)
3496 {
3497         uint8_t  *hash_key;
3498         uint32_t mrqc;
3499         uint32_t rss_key;
3500         uint64_t rss_hf;
3501         uint16_t i;
3502         uint32_t mrqc_reg;
3503         uint32_t rssrk_reg;
3504
3505         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3506         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3507
3508         hash_key = rss_conf->rss_key;
3509         if (hash_key != NULL) {
3510                 /* Fill in RSS hash key */
3511                 for (i = 0; i < 10; i++) {
3512                         rss_key  = hash_key[(i * 4)];
3513                         rss_key |= hash_key[(i * 4) + 1] << 8;
3514                         rss_key |= hash_key[(i * 4) + 2] << 16;
3515                         rss_key |= hash_key[(i * 4) + 3] << 24;
3516                         IXGBE_WRITE_REG_ARRAY(hw, rssrk_reg, i, rss_key);
3517                 }
3518         }
3519
3520         /* Set configured hashing protocols in MRQC register */
3521         rss_hf = rss_conf->rss_hf;
3522         mrqc = IXGBE_MRQC_RSSEN; /* Enable RSS */
3523         if (rss_hf & ETH_RSS_IPV4)
3524                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4;
3525         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
3526                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_TCP;
3527         if (rss_hf & ETH_RSS_IPV6)
3528                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6;
3529         if (rss_hf & ETH_RSS_IPV6_EX)
3530                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX;
3531         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
3532                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_TCP;
3533         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
3534                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP;
3535         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
3536                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_UDP;
3537         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
3538                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_UDP;
3539         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
3540                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP;
3541         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3542 }
3543
3544 int
3545 ixgbe_dev_rss_hash_update(struct rte_eth_dev *dev,
3546                           struct rte_eth_rss_conf *rss_conf)
3547 {
3548         struct ixgbe_hw *hw;
3549         uint32_t mrqc;
3550         uint64_t rss_hf;
3551         uint32_t mrqc_reg;
3552
3553         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3554
3555         if (!ixgbe_rss_update_sp(hw->mac.type)) {
3556                 PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
3557                         "NIC.");
3558                 return -ENOTSUP;
3559         }
3560         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3561
3562         /*
3563          * Excerpt from section 7.1.2.8 Receive-Side Scaling (RSS):
3564          *     "RSS enabling cannot be done dynamically while it must be
3565          *      preceded by a software reset"
3566          * Before changing anything, first check that the update RSS operation
3567          * does not attempt to disable RSS, if RSS was enabled at
3568          * initialization time, or does not attempt to enable RSS, if RSS was
3569          * disabled at initialization time.
3570          */
3571         rss_hf = rss_conf->rss_hf & IXGBE_RSS_OFFLOAD_ALL;
3572         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3573         if (!(mrqc & IXGBE_MRQC_RSSEN)) { /* RSS disabled */
3574                 if (rss_hf != 0) /* Enable RSS */
3575                         return -(EINVAL);
3576                 return 0; /* Nothing to do */
3577         }
3578         /* RSS enabled */
3579         if (rss_hf == 0) /* Disable RSS */
3580                 return -(EINVAL);
3581         ixgbe_hw_rss_hash_set(hw, rss_conf);
3582         return 0;
3583 }
3584
3585 int
3586 ixgbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
3587                             struct rte_eth_rss_conf *rss_conf)
3588 {
3589         struct ixgbe_hw *hw;
3590         uint8_t *hash_key;
3591         uint32_t mrqc;
3592         uint32_t rss_key;
3593         uint64_t rss_hf;
3594         uint16_t i;
3595         uint32_t mrqc_reg;
3596         uint32_t rssrk_reg;
3597
3598         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3599         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3600         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3601         hash_key = rss_conf->rss_key;
3602         if (hash_key != NULL) {
3603                 /* Return RSS hash key */
3604                 for (i = 0; i < 10; i++) {
3605                         rss_key = IXGBE_READ_REG_ARRAY(hw, rssrk_reg, i);
3606                         hash_key[(i * 4)] = rss_key & 0x000000FF;
3607                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
3608                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
3609                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
3610                 }
3611         }
3612
3613         /* Get RSS functions configured in MRQC register */
3614         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3615         if ((mrqc & IXGBE_MRQC_RSSEN) == 0) { /* RSS is disabled */
3616                 rss_conf->rss_hf = 0;
3617                 return 0;
3618         }
3619         rss_hf = 0;
3620         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4)
3621                 rss_hf |= ETH_RSS_IPV4;
3622         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_TCP)
3623                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
3624         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6)
3625                 rss_hf |= ETH_RSS_IPV6;
3626         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX)
3627                 rss_hf |= ETH_RSS_IPV6_EX;
3628         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_TCP)
3629                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
3630         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP)
3631                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
3632         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_UDP)
3633                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
3634         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_UDP)
3635                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
3636         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP)
3637                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
3638         rss_conf->rss_hf = rss_hf;
3639         return 0;
3640 }
3641
3642 static void
3643 ixgbe_rss_configure(struct rte_eth_dev *dev)
3644 {
3645         struct rte_eth_rss_conf rss_conf;
3646         struct ixgbe_adapter *adapter;
3647         struct ixgbe_hw *hw;
3648         uint32_t reta;
3649         uint16_t i;
3650         uint16_t j;
3651         uint16_t sp_reta_size;
3652         uint32_t reta_reg;
3653
3654         PMD_INIT_FUNC_TRACE();
3655         adapter = dev->data->dev_private;
3656         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3657
3658         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
3659
3660         /*
3661          * Fill in redirection table
3662          * The byte-swap is needed because NIC registers are in
3663          * little-endian order.
3664          */
3665         if (adapter->rss_reta_updated == 0) {
3666                 reta = 0;
3667                 for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
3668                         reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
3669
3670                         if (j == dev->data->nb_rx_queues)
3671                                 j = 0;
3672                         reta = (reta << 8) | j;
3673                         if ((i & 3) == 3)
3674                                 IXGBE_WRITE_REG(hw, reta_reg,
3675                                                 rte_bswap32(reta));
3676                 }
3677         }
3678
3679         /*
3680          * Configure the RSS key and the RSS protocols used to compute
3681          * the RSS hash of input packets.
3682          */
3683         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
3684         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
3685                 ixgbe_rss_disable(dev);
3686                 return;
3687         }
3688         if (rss_conf.rss_key == NULL)
3689                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
3690         ixgbe_hw_rss_hash_set(hw, &rss_conf);
3691 }
3692
3693 #define NUM_VFTA_REGISTERS 128
3694 #define NIC_RX_BUFFER_SIZE 0x200
3695 #define X550_RX_BUFFER_SIZE 0x180
3696
3697 static void
3698 ixgbe_vmdq_dcb_configure(struct rte_eth_dev *dev)
3699 {
3700         struct rte_eth_vmdq_dcb_conf *cfg;
3701         struct ixgbe_hw *hw;
3702         enum rte_eth_nb_pools num_pools;
3703         uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl;
3704         uint16_t pbsize;
3705         uint8_t nb_tcs; /* number of traffic classes */
3706         int i;
3707
3708         PMD_INIT_FUNC_TRACE();
3709         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3710         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3711         num_pools = cfg->nb_queue_pools;
3712         /* Check we have a valid number of pools */
3713         if (num_pools != ETH_16_POOLS && num_pools != ETH_32_POOLS) {
3714                 ixgbe_rss_disable(dev);
3715                 return;
3716         }
3717         /* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */
3718         nb_tcs = (uint8_t)(ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools);
3719
3720         /*
3721          * RXPBSIZE
3722          * split rx buffer up into sections, each for 1 traffic class
3723          */
3724         switch (hw->mac.type) {
3725         case ixgbe_mac_X550:
3726         case ixgbe_mac_X550EM_x:
3727         case ixgbe_mac_X550EM_a:
3728                 pbsize = (uint16_t)(X550_RX_BUFFER_SIZE / nb_tcs);
3729                 break;
3730         default:
3731                 pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
3732                 break;
3733         }
3734         for (i = 0; i < nb_tcs; i++) {
3735                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3736
3737                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3738                 /* clear 10 bits. */
3739                 rxpbsize |= (pbsize << IXGBE_RXPBSIZE_SHIFT); /* set value */
3740                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3741         }
3742         /* zero alloc all unused TCs */
3743         for (i = nb_tcs; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3744                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3745
3746                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3747                 /* clear 10 bits. */
3748                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3749         }
3750
3751         /* MRQC: enable vmdq and dcb */
3752         mrqc = (num_pools == ETH_16_POOLS) ?
3753                 IXGBE_MRQC_VMDQRT8TCEN : IXGBE_MRQC_VMDQRT4TCEN;
3754         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
3755
3756         /* PFVTCTL: turn on virtualisation and set the default pool */
3757         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
3758         if (cfg->enable_default_pool) {
3759                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
3760         } else {
3761                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
3762         }
3763
3764         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
3765
3766         /* RTRUP2TC: mapping user priorities to traffic classes (TCs) */
3767         queue_mapping = 0;
3768         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++)
3769                 /*
3770                  * mapping is done with 3 bits per priority,
3771                  * so shift by i*3 each time
3772                  */
3773                 queue_mapping |= ((cfg->dcb_tc[i] & 0x07) << (i * 3));
3774
3775         IXGBE_WRITE_REG(hw, IXGBE_RTRUP2TC, queue_mapping);
3776
3777         /* RTRPCS: DCB related */
3778         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, IXGBE_RMCS_RRM);
3779
3780         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3781         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3782         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3783         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3784
3785         /* VFTA - enable all vlan filters */
3786         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3787                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3788         }
3789
3790         /* VFRE: pool enabling for receive - 16 or 32 */
3791         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0),
3792                         num_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3793
3794         /*
3795          * MPSAR - allow pools to read specific mac addresses
3796          * In this case, all pools should be able to read from mac addr 0
3797          */
3798         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), 0xFFFFFFFF);
3799         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), 0xFFFFFFFF);
3800
3801         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
3802         for (i = 0; i < cfg->nb_pool_maps; i++) {
3803                 /* set vlan id in VF register and set the valid bit */
3804                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
3805                                 (cfg->pool_map[i].vlan_id & 0xFFF)));
3806                 /*
3807                  * Put the allowed pools in VFB reg. As we only have 16 or 32
3808                  * pools, we only need to use the first half of the register
3809                  * i.e. bits 0-31
3810                  */
3811                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i*2), cfg->pool_map[i].pools);
3812         }
3813 }
3814
3815 /**
3816  * ixgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters
3817  * @dev: pointer to eth_dev structure
3818  * @dcb_config: pointer to ixgbe_dcb_config structure
3819  */
3820 static void
3821 ixgbe_dcb_tx_hw_config(struct rte_eth_dev *dev,
3822                        struct ixgbe_dcb_config *dcb_config)
3823 {
3824         uint32_t reg;
3825         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3826
3827         PMD_INIT_FUNC_TRACE();
3828         if (hw->mac.type != ixgbe_mac_82598EB) {
3829                 /* Disable the Tx desc arbiter so that MTQC can be changed */
3830                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3831                 reg |= IXGBE_RTTDCS_ARBDIS;
3832                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3833
3834                 /* Enable DCB for Tx with 8 TCs */
3835                 if (dcb_config->num_tcs.pg_tcs == 8) {
3836                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_8TC_8TQ;
3837                 } else {
3838                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_4TC_4TQ;
3839                 }
3840                 if (dcb_config->vt_mode)
3841                         reg |= IXGBE_MTQC_VT_ENA;
3842                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
3843
3844                 /* Enable the Tx desc arbiter */
3845                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3846                 reg &= ~IXGBE_RTTDCS_ARBDIS;
3847                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3848
3849                 /* Enable Security TX Buffer IFG for DCB */
3850                 reg = IXGBE_READ_REG(hw, IXGBE_SECTXMINIFG);
3851                 reg |= IXGBE_SECTX_DCB;
3852                 IXGBE_WRITE_REG(hw, IXGBE_SECTXMINIFG, reg);
3853         }
3854 }
3855
3856 /**
3857  * ixgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters
3858  * @dev: pointer to rte_eth_dev structure
3859  * @dcb_config: pointer to ixgbe_dcb_config structure
3860  */
3861 static void
3862 ixgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev,
3863                         struct ixgbe_dcb_config *dcb_config)
3864 {
3865         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3866                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3867         struct ixgbe_hw *hw =
3868                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3869
3870         PMD_INIT_FUNC_TRACE();
3871         if (hw->mac.type != ixgbe_mac_82598EB)
3872                 /*PF VF Transmit Enable*/
3873                 IXGBE_WRITE_REG(hw, IXGBE_VFTE(0),
3874                         vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3875
3876         /*Configure general DCB TX parameters*/
3877         ixgbe_dcb_tx_hw_config(dev, dcb_config);
3878 }
3879
3880 static void
3881 ixgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev,
3882                         struct ixgbe_dcb_config *dcb_config)
3883 {
3884         struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
3885                         &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3886         struct ixgbe_dcb_tc_config *tc;
3887         uint8_t i, j;
3888
3889         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3890         if (vmdq_rx_conf->nb_queue_pools == ETH_16_POOLS) {
3891                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3892                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3893         } else {
3894                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3895                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3896         }
3897
3898         /* Initialize User Priority to Traffic Class mapping */
3899         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3900                 tc = &dcb_config->tc_config[j];
3901                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3902         }
3903
3904         /* User Priority to Traffic Class mapping */
3905         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3906                 j = vmdq_rx_conf->dcb_tc[i];
3907                 tc = &dcb_config->tc_config[j];
3908                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3909                                                 (uint8_t)(1 << i);
3910         }
3911 }
3912
3913 static void
3914 ixgbe_dcb_vt_tx_config(struct rte_eth_dev *dev,
3915                         struct ixgbe_dcb_config *dcb_config)
3916 {
3917         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3918                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3919         struct ixgbe_dcb_tc_config *tc;
3920         uint8_t i, j;
3921
3922         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3923         if (vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS) {
3924                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3925                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3926         } else {
3927                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3928                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3929         }
3930
3931         /* Initialize User Priority to Traffic Class mapping */
3932         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3933                 tc = &dcb_config->tc_config[j];
3934                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3935         }
3936
3937         /* User Priority to Traffic Class mapping */
3938         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3939                 j = vmdq_tx_conf->dcb_tc[i];
3940                 tc = &dcb_config->tc_config[j];
3941                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3942                                                 (uint8_t)(1 << i);
3943         }
3944 }
3945
3946 static void
3947 ixgbe_dcb_rx_config(struct rte_eth_dev *dev,
3948                 struct ixgbe_dcb_config *dcb_config)
3949 {
3950         struct rte_eth_dcb_rx_conf *rx_conf =
3951                         &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
3952         struct ixgbe_dcb_tc_config *tc;
3953         uint8_t i, j;
3954
3955         dcb_config->num_tcs.pg_tcs = (uint8_t)rx_conf->nb_tcs;
3956         dcb_config->num_tcs.pfc_tcs = (uint8_t)rx_conf->nb_tcs;
3957
3958         /* Initialize User Priority to Traffic Class mapping */
3959         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3960                 tc = &dcb_config->tc_config[j];
3961                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3962         }
3963
3964         /* User Priority to Traffic Class mapping */
3965         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3966                 j = rx_conf->dcb_tc[i];
3967                 tc = &dcb_config->tc_config[j];
3968                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3969                                                 (uint8_t)(1 << i);
3970         }
3971 }
3972
3973 static void
3974 ixgbe_dcb_tx_config(struct rte_eth_dev *dev,
3975                 struct ixgbe_dcb_config *dcb_config)
3976 {
3977         struct rte_eth_dcb_tx_conf *tx_conf =
3978                         &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
3979         struct ixgbe_dcb_tc_config *tc;
3980         uint8_t i, j;
3981
3982         dcb_config->num_tcs.pg_tcs = (uint8_t)tx_conf->nb_tcs;
3983         dcb_config->num_tcs.pfc_tcs = (uint8_t)tx_conf->nb_tcs;
3984
3985         /* Initialize User Priority to Traffic Class mapping */
3986         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3987                 tc = &dcb_config->tc_config[j];
3988                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3989         }
3990
3991         /* User Priority to Traffic Class mapping */
3992         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3993                 j = tx_conf->dcb_tc[i];
3994                 tc = &dcb_config->tc_config[j];
3995                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3996                                                 (uint8_t)(1 << i);
3997         }
3998 }
3999
4000 /**
4001  * ixgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters
4002  * @dev: pointer to eth_dev structure
4003  * @dcb_config: pointer to ixgbe_dcb_config structure
4004  */
4005 static void
4006 ixgbe_dcb_rx_hw_config(struct rte_eth_dev *dev,
4007                        struct ixgbe_dcb_config *dcb_config)
4008 {
4009         uint32_t reg;
4010         uint32_t vlanctrl;
4011         uint8_t i;
4012         uint32_t q;
4013         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4014
4015         PMD_INIT_FUNC_TRACE();
4016         /*
4017          * Disable the arbiter before changing parameters
4018          * (always enable recycle mode; WSP)
4019          */
4020         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC | IXGBE_RTRPCS_ARBDIS;
4021         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
4022
4023         if (hw->mac.type != ixgbe_mac_82598EB) {
4024                 reg = IXGBE_READ_REG(hw, IXGBE_MRQC);
4025                 if (dcb_config->num_tcs.pg_tcs == 4) {
4026                         if (dcb_config->vt_mode)
4027                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
4028                                         IXGBE_MRQC_VMDQRT4TCEN;
4029                         else {
4030                                 /* no matter the mode is DCB or DCB_RSS, just
4031                                  * set the MRQE to RSSXTCEN. RSS is controlled
4032                                  * by RSS_FIELD
4033                                  */
4034                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
4035                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
4036                                         IXGBE_MRQC_RTRSS4TCEN;
4037                         }
4038                 }
4039                 if (dcb_config->num_tcs.pg_tcs == 8) {
4040                         if (dcb_config->vt_mode)
4041                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
4042                                         IXGBE_MRQC_VMDQRT8TCEN;
4043                         else {
4044                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
4045                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
4046                                         IXGBE_MRQC_RTRSS8TCEN;
4047                         }
4048                 }
4049
4050                 IXGBE_WRITE_REG(hw, IXGBE_MRQC, reg);
4051
4052                 if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4053                         /* Disable drop for all queues in VMDQ mode*/
4054                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4055                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4056                                                 (IXGBE_QDE_WRITE |
4057                                                  (q << IXGBE_QDE_IDX_SHIFT)));
4058                 } else {
4059                         /* Enable drop for all queues in SRIOV mode */
4060                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4061                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4062                                                 (IXGBE_QDE_WRITE |
4063                                                  (q << IXGBE_QDE_IDX_SHIFT) |
4064                                                  IXGBE_QDE_ENABLE));
4065                 }
4066         }
4067
4068         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
4069         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
4070         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
4071         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
4072
4073         /* VFTA - enable all vlan filters */
4074         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
4075                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
4076         }
4077
4078         /*
4079          * Configure Rx packet plane (recycle mode; WSP) and
4080          * enable arbiter
4081          */
4082         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC;
4083         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
4084 }
4085
4086 static void
4087 ixgbe_dcb_hw_arbite_rx_config(struct ixgbe_hw *hw, uint16_t *refill,
4088                         uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
4089 {
4090         switch (hw->mac.type) {
4091         case ixgbe_mac_82598EB:
4092                 ixgbe_dcb_config_rx_arbiter_82598(hw, refill, max, tsa);
4093                 break;
4094         case ixgbe_mac_82599EB:
4095         case ixgbe_mac_X540:
4096         case ixgbe_mac_X550:
4097         case ixgbe_mac_X550EM_x:
4098         case ixgbe_mac_X550EM_a:
4099                 ixgbe_dcb_config_rx_arbiter_82599(hw, refill, max, bwg_id,
4100                                                   tsa, map);
4101                 break;
4102         default:
4103                 break;
4104         }
4105 }
4106
4107 static void
4108 ixgbe_dcb_hw_arbite_tx_config(struct ixgbe_hw *hw, uint16_t *refill, uint16_t *max,
4109                             uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
4110 {
4111         switch (hw->mac.type) {
4112         case ixgbe_mac_82598EB:
4113                 ixgbe_dcb_config_tx_desc_arbiter_82598(hw, refill, max, bwg_id, tsa);
4114                 ixgbe_dcb_config_tx_data_arbiter_82598(hw, refill, max, bwg_id, tsa);
4115                 break;
4116         case ixgbe_mac_82599EB:
4117         case ixgbe_mac_X540:
4118         case ixgbe_mac_X550:
4119         case ixgbe_mac_X550EM_x:
4120         case ixgbe_mac_X550EM_a:
4121                 ixgbe_dcb_config_tx_desc_arbiter_82599(hw, refill, max, bwg_id, tsa);
4122                 ixgbe_dcb_config_tx_data_arbiter_82599(hw, refill, max, bwg_id, tsa, map);
4123                 break;
4124         default:
4125                 break;
4126         }
4127 }
4128
4129 #define DCB_RX_CONFIG  1
4130 #define DCB_TX_CONFIG  1
4131 #define DCB_TX_PB      1024
4132 /**
4133  * ixgbe_dcb_hw_configure - Enable DCB and configure
4134  * general DCB in VT mode and non-VT mode parameters
4135  * @dev: pointer to rte_eth_dev structure
4136  * @dcb_config: pointer to ixgbe_dcb_config structure
4137  */
4138 static int
4139 ixgbe_dcb_hw_configure(struct rte_eth_dev *dev,
4140                         struct ixgbe_dcb_config *dcb_config)
4141 {
4142         int     ret = 0;
4143         uint8_t i, pfc_en, nb_tcs;
4144         uint16_t pbsize, rx_buffer_size;
4145         uint8_t config_dcb_rx = 0;
4146         uint8_t config_dcb_tx = 0;
4147         uint8_t tsa[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4148         uint8_t bwgid[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4149         uint16_t refill[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4150         uint16_t max[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4151         uint8_t map[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4152         struct ixgbe_dcb_tc_config *tc;
4153         uint32_t max_frame = dev->data->mtu + RTE_ETHER_HDR_LEN +
4154                 RTE_ETHER_CRC_LEN;
4155         struct ixgbe_hw *hw =
4156                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4157         struct ixgbe_bw_conf *bw_conf =
4158                 IXGBE_DEV_PRIVATE_TO_BW_CONF(dev->data->dev_private);
4159
4160         switch (dev->data->dev_conf.rxmode.mq_mode) {
4161         case ETH_MQ_RX_VMDQ_DCB:
4162                 dcb_config->vt_mode = true;
4163                 if (hw->mac.type != ixgbe_mac_82598EB) {
4164                         config_dcb_rx = DCB_RX_CONFIG;
4165                         /*
4166                          *get dcb and VT rx configuration parameters
4167                          *from rte_eth_conf
4168                          */
4169                         ixgbe_vmdq_dcb_rx_config(dev, dcb_config);
4170                         /*Configure general VMDQ and DCB RX parameters*/
4171                         ixgbe_vmdq_dcb_configure(dev);
4172                 }
4173                 break;
4174         case ETH_MQ_RX_DCB:
4175         case ETH_MQ_RX_DCB_RSS:
4176                 dcb_config->vt_mode = false;
4177                 config_dcb_rx = DCB_RX_CONFIG;
4178                 /* Get dcb TX configuration parameters from rte_eth_conf */
4179                 ixgbe_dcb_rx_config(dev, dcb_config);
4180                 /*Configure general DCB RX parameters*/
4181                 ixgbe_dcb_rx_hw_config(dev, dcb_config);
4182                 break;
4183         default:
4184                 PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration");
4185                 break;
4186         }
4187         switch (dev->data->dev_conf.txmode.mq_mode) {
4188         case ETH_MQ_TX_VMDQ_DCB:
4189                 dcb_config->vt_mode = true;
4190                 config_dcb_tx = DCB_TX_CONFIG;
4191                 /* get DCB and VT TX configuration parameters
4192                  * from rte_eth_conf
4193                  */
4194                 ixgbe_dcb_vt_tx_config(dev, dcb_config);
4195                 /*Configure general VMDQ and DCB TX parameters*/
4196                 ixgbe_vmdq_dcb_hw_tx_config(dev, dcb_config);
4197                 break;
4198
4199         case ETH_MQ_TX_DCB:
4200                 dcb_config->vt_mode = false;
4201                 config_dcb_tx = DCB_TX_CONFIG;
4202                 /*get DCB TX configuration parameters from rte_eth_conf*/
4203                 ixgbe_dcb_tx_config(dev, dcb_config);
4204                 /*Configure general DCB TX parameters*/
4205                 ixgbe_dcb_tx_hw_config(dev, dcb_config);
4206                 break;
4207         default:
4208                 PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration");
4209                 break;
4210         }
4211
4212         nb_tcs = dcb_config->num_tcs.pfc_tcs;
4213         /* Unpack map */
4214         ixgbe_dcb_unpack_map_cee(dcb_config, IXGBE_DCB_RX_CONFIG, map);
4215         if (nb_tcs == ETH_4_TCS) {
4216                 /* Avoid un-configured priority mapping to TC0 */
4217                 uint8_t j = 4;
4218                 uint8_t mask = 0xFF;
4219
4220                 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES - 4; i++)
4221                         mask = (uint8_t)(mask & (~(1 << map[i])));
4222                 for (i = 0; mask && (i < IXGBE_DCB_MAX_TRAFFIC_CLASS); i++) {
4223                         if ((mask & 0x1) && (j < ETH_DCB_NUM_USER_PRIORITIES))
4224                                 map[j++] = i;
4225                         mask >>= 1;
4226                 }
4227                 /* Re-configure 4 TCs BW */
4228                 for (i = 0; i < nb_tcs; i++) {
4229                         tc = &dcb_config->tc_config[i];
4230                         if (bw_conf->tc_num != nb_tcs)
4231                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4232                                         (uint8_t)(100 / nb_tcs);
4233                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4234                                                 (uint8_t)(100 / nb_tcs);
4235                 }
4236                 for (; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
4237                         tc = &dcb_config->tc_config[i];
4238                         tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent = 0;
4239                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent = 0;
4240                 }
4241         } else {
4242                 /* Re-configure 8 TCs BW */
4243                 for (i = 0; i < nb_tcs; i++) {
4244                         tc = &dcb_config->tc_config[i];
4245                         if (bw_conf->tc_num != nb_tcs)
4246                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4247                                         (uint8_t)(100 / nb_tcs + (i & 1));
4248                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4249                                 (uint8_t)(100 / nb_tcs + (i & 1));
4250                 }
4251         }
4252
4253         switch (hw->mac.type) {
4254         case ixgbe_mac_X550:
4255         case ixgbe_mac_X550EM_x:
4256         case ixgbe_mac_X550EM_a:
4257                 rx_buffer_size = X550_RX_BUFFER_SIZE;
4258                 break;
4259         default:
4260                 rx_buffer_size = NIC_RX_BUFFER_SIZE;
4261                 break;
4262         }
4263
4264         if (config_dcb_rx) {
4265                 /* Set RX buffer size */
4266                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4267                 uint32_t rxpbsize = pbsize << IXGBE_RXPBSIZE_SHIFT;
4268
4269                 for (i = 0; i < nb_tcs; i++) {
4270                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
4271                 }
4272                 /* zero alloc all unused TCs */
4273                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4274                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4275                 }
4276         }
4277         if (config_dcb_tx) {
4278                 /* Only support an equally distributed
4279                  *  Tx packet buffer strategy.
4280                  */
4281                 uint32_t txpktsize = IXGBE_TXPBSIZE_MAX / nb_tcs;
4282                 uint32_t txpbthresh = (txpktsize / DCB_TX_PB) - IXGBE_TXPKT_SIZE_MAX;
4283
4284                 for (i = 0; i < nb_tcs; i++) {
4285                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4286                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4287                 }
4288                 /* Clear unused TCs, if any, to zero buffer size*/
4289                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4290                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4291                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4292                 }
4293         }
4294
4295         /*Calculates traffic class credits*/
4296         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4297                                 IXGBE_DCB_TX_CONFIG);
4298         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4299                                 IXGBE_DCB_RX_CONFIG);
4300
4301         if (config_dcb_rx) {
4302                 /* Unpack CEE standard containers */
4303                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_RX_CONFIG, refill);
4304                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4305                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_RX_CONFIG, bwgid);
4306                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_RX_CONFIG, tsa);
4307                 /* Configure PG(ETS) RX */
4308                 ixgbe_dcb_hw_arbite_rx_config(hw, refill, max, bwgid, tsa, map);
4309         }
4310
4311         if (config_dcb_tx) {
4312                 /* Unpack CEE standard containers */
4313                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_TX_CONFIG, refill);
4314                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4315                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_TX_CONFIG, bwgid);
4316                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_TX_CONFIG, tsa);
4317                 /* Configure PG(ETS) TX */
4318                 ixgbe_dcb_hw_arbite_tx_config(hw, refill, max, bwgid, tsa, map);
4319         }
4320
4321         /*Configure queue statistics registers*/
4322         ixgbe_dcb_config_tc_stats_82599(hw, dcb_config);
4323
4324         /* Check if the PFC is supported */
4325         if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) {
4326                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4327                 for (i = 0; i < nb_tcs; i++) {
4328                         /*
4329                         * If the TC count is 8,and the default high_water is 48,
4330                         * the low_water is 16 as default.
4331                         */
4332                         hw->fc.high_water[i] = (pbsize * 3) / 4;
4333                         hw->fc.low_water[i] = pbsize / 4;
4334                         /* Enable pfc for this TC */
4335                         tc = &dcb_config->tc_config[i];
4336                         tc->pfc = ixgbe_dcb_pfc_enabled;
4337                 }
4338                 ixgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en);
4339                 if (dcb_config->num_tcs.pfc_tcs == ETH_4_TCS)
4340                         pfc_en &= 0x0F;
4341                 ret = ixgbe_dcb_config_pfc(hw, pfc_en, map);
4342         }
4343
4344         return ret;
4345 }
4346
4347 /**
4348  * ixgbe_configure_dcb - Configure DCB  Hardware
4349  * @dev: pointer to rte_eth_dev
4350  */
4351 void ixgbe_configure_dcb(struct rte_eth_dev *dev)
4352 {
4353         struct ixgbe_dcb_config *dcb_cfg =
4354                         IXGBE_DEV_PRIVATE_TO_DCB_CFG(dev->data->dev_private);
4355         struct rte_eth_conf *dev_conf = &(dev->data->dev_conf);
4356
4357         PMD_INIT_FUNC_TRACE();
4358
4359         /* check support mq_mode for DCB */
4360         if ((dev_conf->rxmode.mq_mode != ETH_MQ_RX_VMDQ_DCB) &&
4361             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB) &&
4362             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB_RSS))
4363                 return;
4364
4365         if (dev->data->nb_rx_queues > ETH_DCB_NUM_QUEUES)
4366                 return;
4367
4368         /** Configure DCB hardware **/
4369         ixgbe_dcb_hw_configure(dev, dcb_cfg);
4370 }
4371
4372 /*
4373  * VMDq only support for 10 GbE NIC.
4374  */
4375 static void
4376 ixgbe_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
4377 {
4378         struct rte_eth_vmdq_rx_conf *cfg;
4379         struct ixgbe_hw *hw;
4380         enum rte_eth_nb_pools num_pools;
4381         uint32_t mrqc, vt_ctl, vlanctrl;
4382         uint32_t vmolr = 0;
4383         int i;
4384
4385         PMD_INIT_FUNC_TRACE();
4386         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4387         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
4388         num_pools = cfg->nb_queue_pools;
4389
4390         ixgbe_rss_disable(dev);
4391
4392         /* MRQC: enable vmdq */
4393         mrqc = IXGBE_MRQC_VMDQEN;
4394         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4395
4396         /* PFVTCTL: turn on virtualisation and set the default pool */
4397         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
4398         if (cfg->enable_default_pool)
4399                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
4400         else
4401                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
4402
4403         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
4404
4405         for (i = 0; i < (int)num_pools; i++) {
4406                 vmolr = ixgbe_convert_vm_rx_mask_to_val(cfg->rx_mode, vmolr);
4407                 IXGBE_WRITE_REG(hw, IXGBE_VMOLR(i), vmolr);
4408         }
4409
4410         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
4411         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
4412         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
4413         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
4414
4415         /* VFTA - enable all vlan filters */
4416         for (i = 0; i < NUM_VFTA_REGISTERS; i++)
4417                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), UINT32_MAX);
4418
4419         /* VFRE: pool enabling for receive - 64 */
4420         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0), UINT32_MAX);
4421         if (num_pools == ETH_64_POOLS)
4422                 IXGBE_WRITE_REG(hw, IXGBE_VFRE(1), UINT32_MAX);
4423
4424         /*
4425          * MPSAR - allow pools to read specific mac addresses
4426          * In this case, all pools should be able to read from mac addr 0
4427          */
4428         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), UINT32_MAX);
4429         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), UINT32_MAX);
4430
4431         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
4432         for (i = 0; i < cfg->nb_pool_maps; i++) {
4433                 /* set vlan id in VF register and set the valid bit */
4434                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
4435                                 (cfg->pool_map[i].vlan_id & IXGBE_RXD_VLAN_ID_MASK)));
4436                 /*
4437                  * Put the allowed pools in VFB reg. As we only have 16 or 64
4438                  * pools, we only need to use the first half of the register
4439                  * i.e. bits 0-31
4440                  */
4441                 if (((cfg->pool_map[i].pools >> 32) & UINT32_MAX) == 0)
4442                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i * 2),
4443                                         (cfg->pool_map[i].pools & UINT32_MAX));
4444                 else
4445                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB((i * 2 + 1)),
4446                                         ((cfg->pool_map[i].pools >> 32) & UINT32_MAX));
4447
4448         }
4449
4450         /* PFDMA Tx General Switch Control Enables VMDQ loopback */
4451         if (cfg->enable_loop_back) {
4452                 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, IXGBE_PFDTXGSWC_VT_LBEN);
4453                 for (i = 0; i < RTE_IXGBE_VMTXSW_REGISTER_COUNT; i++)
4454                         IXGBE_WRITE_REG(hw, IXGBE_VMTXSW(i), UINT32_MAX);
4455         }
4456
4457         IXGBE_WRITE_FLUSH(hw);
4458 }
4459
4460 /*
4461  * ixgbe_dcb_config_tx_hw_config - Configure general VMDq TX parameters
4462  * @hw: pointer to hardware structure
4463  */
4464 static void
4465 ixgbe_vmdq_tx_hw_configure(struct ixgbe_hw *hw)
4466 {
4467         uint32_t reg;
4468         uint32_t q;
4469
4470         PMD_INIT_FUNC_TRACE();
4471         /*PF VF Transmit Enable*/
4472         IXGBE_WRITE_REG(hw, IXGBE_VFTE(0), UINT32_MAX);
4473         IXGBE_WRITE_REG(hw, IXGBE_VFTE(1), UINT32_MAX);
4474
4475         /* Disable the Tx desc arbiter so that MTQC can be changed */
4476         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4477         reg |= IXGBE_RTTDCS_ARBDIS;
4478         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4479
4480         reg = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4481         IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
4482
4483         /* Disable drop for all queues */
4484         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4485                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4486                   (IXGBE_QDE_WRITE | (q << IXGBE_QDE_IDX_SHIFT)));
4487
4488         /* Enable the Tx desc arbiter */
4489         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4490         reg &= ~IXGBE_RTTDCS_ARBDIS;
4491         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4492
4493         IXGBE_WRITE_FLUSH(hw);
4494 }
4495
4496 static int __rte_cold
4497 ixgbe_alloc_rx_queue_mbufs(struct ixgbe_rx_queue *rxq)
4498 {
4499         struct ixgbe_rx_entry *rxe = rxq->sw_ring;
4500         uint64_t dma_addr;
4501         unsigned int i;
4502
4503         /* Initialize software ring entries */
4504         for (i = 0; i < rxq->nb_rx_desc; i++) {
4505                 volatile union ixgbe_adv_rx_desc *rxd;
4506                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
4507
4508                 if (mbuf == NULL) {
4509                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
4510                                      (unsigned) rxq->queue_id);
4511                         return -ENOMEM;
4512                 }
4513
4514                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
4515                 mbuf->port = rxq->port_id;
4516
4517                 dma_addr =
4518                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
4519                 rxd = &rxq->rx_ring[i];
4520                 rxd->read.hdr_addr = 0;
4521                 rxd->read.pkt_addr = dma_addr;
4522                 rxe[i].mbuf = mbuf;
4523         }
4524
4525         return 0;
4526 }
4527
4528 static int
4529 ixgbe_config_vf_rss(struct rte_eth_dev *dev)
4530 {
4531         struct ixgbe_hw *hw;
4532         uint32_t mrqc;
4533
4534         ixgbe_rss_configure(dev);
4535
4536         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4537
4538         /* MRQC: enable VF RSS */
4539         mrqc = IXGBE_READ_REG(hw, IXGBE_MRQC);
4540         mrqc &= ~IXGBE_MRQC_MRQE_MASK;
4541         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4542         case ETH_64_POOLS:
4543                 mrqc |= IXGBE_MRQC_VMDQRSS64EN;
4544                 break;
4545
4546         case ETH_32_POOLS:
4547                 mrqc |= IXGBE_MRQC_VMDQRSS32EN;
4548                 break;
4549
4550         default:
4551                 PMD_INIT_LOG(ERR, "Invalid pool number in IOV mode with VMDQ RSS");
4552                 return -EINVAL;
4553         }
4554
4555         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4556
4557         return 0;
4558 }
4559
4560 static int
4561 ixgbe_config_vf_default(struct rte_eth_dev *dev)
4562 {
4563         struct ixgbe_hw *hw =
4564                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4565
4566         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4567         case ETH_64_POOLS:
4568                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4569                         IXGBE_MRQC_VMDQEN);
4570                 break;
4571
4572         case ETH_32_POOLS:
4573                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4574                         IXGBE_MRQC_VMDQRT4TCEN);
4575                 break;
4576
4577         case ETH_16_POOLS:
4578                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4579                         IXGBE_MRQC_VMDQRT8TCEN);
4580                 break;
4581         default:
4582                 PMD_INIT_LOG(ERR,
4583                         "invalid pool number in IOV mode");
4584                 break;
4585         }
4586         return 0;
4587 }
4588
4589 static int
4590 ixgbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
4591 {
4592         struct ixgbe_hw *hw =
4593                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4594
4595         if (hw->mac.type == ixgbe_mac_82598EB)
4596                 return 0;
4597
4598         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4599                 /*
4600                  * SRIOV inactive scheme
4601                  * any DCB/RSS w/o VMDq multi-queue setting
4602                  */
4603                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4604                 case ETH_MQ_RX_RSS:
4605                 case ETH_MQ_RX_DCB_RSS:
4606                 case ETH_MQ_RX_VMDQ_RSS:
4607                         ixgbe_rss_configure(dev);
4608                         break;
4609
4610                 case ETH_MQ_RX_VMDQ_DCB:
4611                         ixgbe_vmdq_dcb_configure(dev);
4612                         break;
4613
4614                 case ETH_MQ_RX_VMDQ_ONLY:
4615                         ixgbe_vmdq_rx_hw_configure(dev);
4616                         break;
4617
4618                 case ETH_MQ_RX_NONE:
4619                 default:
4620                         /* if mq_mode is none, disable rss mode.*/
4621                         ixgbe_rss_disable(dev);
4622                         break;
4623                 }
4624         } else {
4625                 /* SRIOV active scheme
4626                  * Support RSS together with SRIOV.
4627                  */
4628                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4629                 case ETH_MQ_RX_RSS:
4630                 case ETH_MQ_RX_VMDQ_RSS:
4631                         ixgbe_config_vf_rss(dev);
4632                         break;
4633                 case ETH_MQ_RX_VMDQ_DCB:
4634                 case ETH_MQ_RX_DCB:
4635                 /* In SRIOV, the configuration is the same as VMDq case */
4636                         ixgbe_vmdq_dcb_configure(dev);
4637                         break;
4638                 /* DCB/RSS together with SRIOV is not supported */
4639                 case ETH_MQ_RX_VMDQ_DCB_RSS:
4640                 case ETH_MQ_RX_DCB_RSS:
4641                         PMD_INIT_LOG(ERR,
4642                                 "Could not support DCB/RSS with VMDq & SRIOV");
4643                         return -1;
4644                 default:
4645                         ixgbe_config_vf_default(dev);
4646                         break;
4647                 }
4648         }
4649
4650         return 0;
4651 }
4652
4653 static int
4654 ixgbe_dev_mq_tx_configure(struct rte_eth_dev *dev)
4655 {
4656         struct ixgbe_hw *hw =
4657                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4658         uint32_t mtqc;
4659         uint32_t rttdcs;
4660
4661         if (hw->mac.type == ixgbe_mac_82598EB)
4662                 return 0;
4663
4664         /* disable arbiter before setting MTQC */
4665         rttdcs = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4666         rttdcs |= IXGBE_RTTDCS_ARBDIS;
4667         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4668
4669         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4670                 /*
4671                  * SRIOV inactive scheme
4672                  * any DCB w/o VMDq multi-queue setting
4673                  */
4674                 if (dev->data->dev_conf.txmode.mq_mode == ETH_MQ_TX_VMDQ_ONLY)
4675                         ixgbe_vmdq_tx_hw_configure(hw);
4676                 else {
4677                         mtqc = IXGBE_MTQC_64Q_1PB;
4678                         IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4679                 }
4680         } else {
4681                 switch (RTE_ETH_DEV_SRIOV(dev).active) {
4682
4683                 /*
4684                  * SRIOV active scheme
4685                  * FIXME if support DCB together with VMDq & SRIOV
4686                  */
4687                 case ETH_64_POOLS:
4688                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4689                         break;
4690                 case ETH_32_POOLS:
4691                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_32VF;
4692                         break;
4693                 case ETH_16_POOLS:
4694                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_RT_ENA |
4695                                 IXGBE_MTQC_8TC_8TQ;
4696                         break;
4697                 default:
4698                         mtqc = IXGBE_MTQC_64Q_1PB;
4699                         PMD_INIT_LOG(ERR, "invalid pool number in IOV mode");
4700                 }
4701                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4702         }
4703
4704         /* re-enable arbiter */
4705         rttdcs &= ~IXGBE_RTTDCS_ARBDIS;
4706         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4707
4708         return 0;
4709 }
4710
4711 /**
4712  * ixgbe_get_rscctl_maxdesc - Calculate the RSCCTL[n].MAXDESC for PF
4713  *
4714  * Return the RSCCTL[n].MAXDESC for 82599 and x540 PF devices according to the
4715  * spec rev. 3.0 chapter 8.2.3.8.13.
4716  *
4717  * @pool Memory pool of the Rx queue
4718  */
4719 static inline uint32_t
4720 ixgbe_get_rscctl_maxdesc(struct rte_mempool *pool)
4721 {
4722         struct rte_pktmbuf_pool_private *mp_priv = rte_mempool_get_priv(pool);
4723
4724         /* MAXDESC * SRRCTL.BSIZEPKT must not exceed 64 KB minus one */
4725         uint16_t maxdesc =
4726                 RTE_IPV4_MAX_PKT_LEN /
4727                         (mp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM);
4728
4729         if (maxdesc >= 16)
4730                 return IXGBE_RSCCTL_MAXDESC_16;
4731         else if (maxdesc >= 8)
4732                 return IXGBE_RSCCTL_MAXDESC_8;
4733         else if (maxdesc >= 4)
4734                 return IXGBE_RSCCTL_MAXDESC_4;
4735         else
4736                 return IXGBE_RSCCTL_MAXDESC_1;
4737 }
4738
4739 /**
4740  * ixgbe_set_ivar - Setup the correct IVAR register for a particular MSIX
4741  * interrupt
4742  *
4743  * (Taken from FreeBSD tree)
4744  * (yes this is all very magic and confusing :)
4745  *
4746  * @dev port handle
4747  * @entry the register array entry
4748  * @vector the MSIX vector for this queue
4749  * @type RX/TX/MISC
4750  */
4751 static void
4752 ixgbe_set_ivar(struct rte_eth_dev *dev, u8 entry, u8 vector, s8 type)
4753 {
4754         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4755         u32 ivar, index;
4756
4757         vector |= IXGBE_IVAR_ALLOC_VAL;
4758
4759         switch (hw->mac.type) {
4760
4761         case ixgbe_mac_82598EB:
4762                 if (type == -1)
4763                         entry = IXGBE_IVAR_OTHER_CAUSES_INDEX;
4764                 else
4765                         entry += (type * 64);
4766                 index = (entry >> 2) & 0x1F;
4767                 ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(index));
4768                 ivar &= ~(0xFF << (8 * (entry & 0x3)));
4769                 ivar |= (vector << (8 * (entry & 0x3)));
4770                 IXGBE_WRITE_REG(hw, IXGBE_IVAR(index), ivar);
4771                 break;
4772
4773         case ixgbe_mac_82599EB:
4774         case ixgbe_mac_X540:
4775                 if (type == -1) { /* MISC IVAR */
4776                         index = (entry & 1) * 8;
4777                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR_MISC);
4778                         ivar &= ~(0xFF << index);
4779                         ivar |= (vector << index);
4780                         IXGBE_WRITE_REG(hw, IXGBE_IVAR_MISC, ivar);
4781                 } else {        /* RX/TX IVARS */
4782                         index = (16 * (entry & 1)) + (8 * type);
4783                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(entry >> 1));
4784                         ivar &= ~(0xFF << index);
4785                         ivar |= (vector << index);
4786                         IXGBE_WRITE_REG(hw, IXGBE_IVAR(entry >> 1), ivar);
4787                 }
4788
4789                 break;
4790
4791         default:
4792                 break;
4793         }
4794 }
4795
4796 void __rte_cold
4797 ixgbe_set_rx_function(struct rte_eth_dev *dev)
4798 {
4799         uint16_t i, rx_using_sse;
4800         struct ixgbe_adapter *adapter = dev->data->dev_private;
4801
4802         /*
4803          * In order to allow Vector Rx there are a few configuration
4804          * conditions to be met and Rx Bulk Allocation should be allowed.
4805          */
4806         if (ixgbe_rx_vec_dev_conf_condition_check(dev) ||
4807             !adapter->rx_bulk_alloc_allowed ||
4808                         rte_vect_get_max_simd_bitwidth() < RTE_VECT_SIMD_128) {
4809                 PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet Vector Rx "
4810                                     "preconditions",
4811                              dev->data->port_id);
4812
4813                 adapter->rx_vec_allowed = false;
4814         }
4815
4816         /*
4817          * Initialize the appropriate LRO callback.
4818          *
4819          * If all queues satisfy the bulk allocation preconditions
4820          * (hw->rx_bulk_alloc_allowed is TRUE) then we may use bulk allocation.
4821          * Otherwise use a single allocation version.
4822          */
4823         if (dev->data->lro) {
4824                 if (adapter->rx_bulk_alloc_allowed) {
4825                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a bulk "
4826                                            "allocation version");
4827                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4828                 } else {
4829                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a single "
4830                                            "allocation version");
4831                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4832                 }
4833         } else if (dev->data->scattered_rx) {
4834                 /*
4835                  * Set the non-LRO scattered callback: there are Vector and
4836                  * single allocation versions.
4837                  */
4838                 if (adapter->rx_vec_allowed) {
4839                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
4840                                             "callback (port=%d).",
4841                                      dev->data->port_id);
4842
4843                         dev->rx_pkt_burst = ixgbe_recv_scattered_pkts_vec;
4844                 } else if (adapter->rx_bulk_alloc_allowed) {
4845                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
4846                                            "allocation callback (port=%d).",
4847                                      dev->data->port_id);
4848                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4849                 } else {
4850                         PMD_INIT_LOG(DEBUG, "Using Regualr (non-vector, "
4851                                             "single allocation) "
4852                                             "Scattered Rx callback "
4853                                             "(port=%d).",
4854                                      dev->data->port_id);
4855
4856                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4857                 }
4858         /*
4859          * Below we set "simple" callbacks according to port/queues parameters.
4860          * If parameters allow we are going to choose between the following
4861          * callbacks:
4862          *    - Vector
4863          *    - Bulk Allocation
4864          *    - Single buffer allocation (the simplest one)
4865          */
4866         } else if (adapter->rx_vec_allowed) {
4867                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
4868                                     "burst size no less than %d (port=%d).",
4869                              RTE_IXGBE_DESCS_PER_LOOP,
4870                              dev->data->port_id);
4871
4872                 dev->rx_pkt_burst = ixgbe_recv_pkts_vec;
4873         } else if (adapter->rx_bulk_alloc_allowed) {
4874                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
4875                                     "satisfied. Rx Burst Bulk Alloc function "
4876                                     "will be used on port=%d.",
4877                              dev->data->port_id);
4878
4879                 dev->rx_pkt_burst = ixgbe_recv_pkts_bulk_alloc;
4880         } else {
4881                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
4882                                     "satisfied, or Scattered Rx is requested "
4883                                     "(port=%d).",
4884                              dev->data->port_id);
4885
4886                 dev->rx_pkt_burst = ixgbe_recv_pkts;
4887         }
4888
4889         /* Propagate information about RX function choice through all queues. */
4890
4891         rx_using_sse =
4892                 (dev->rx_pkt_burst == ixgbe_recv_scattered_pkts_vec ||
4893                 dev->rx_pkt_burst == ixgbe_recv_pkts_vec);
4894
4895         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4896                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4897
4898                 rxq->rx_using_sse = rx_using_sse;
4899 #ifdef RTE_LIB_SECURITY
4900                 rxq->using_ipsec = !!(dev->data->dev_conf.rxmode.offloads &
4901                                 DEV_RX_OFFLOAD_SECURITY);
4902 #endif
4903         }
4904 }
4905
4906 /**
4907  * ixgbe_set_rsc - configure RSC related port HW registers
4908  *
4909  * Configures the port's RSC related registers according to the 4.6.7.2 chapter
4910  * of 82599 Spec (x540 configuration is virtually the same).
4911  *
4912  * @dev port handle
4913  *
4914  * Returns 0 in case of success or a non-zero error code
4915  */
4916 static int
4917 ixgbe_set_rsc(struct rte_eth_dev *dev)
4918 {
4919         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4920         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4921         struct rte_eth_dev_info dev_info = { 0 };
4922         bool rsc_capable = false;
4923         uint16_t i;
4924         uint32_t rdrxctl;
4925         uint32_t rfctl;
4926
4927         /* Sanity check */
4928         dev->dev_ops->dev_infos_get(dev, &dev_info);
4929         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO)
4930                 rsc_capable = true;
4931
4932         if (!rsc_capable && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4933                 PMD_INIT_LOG(CRIT, "LRO is requested on HW that doesn't "
4934                                    "support it");
4935                 return -EINVAL;
4936         }
4937
4938         /* RSC global configuration (chapter 4.6.7.2.1 of 82599 Spec) */
4939
4940         if ((rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC) &&
4941              (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4942                 /*
4943                  * According to chapter of 4.6.7.2.1 of the Spec Rev.
4944                  * 3.0 RSC configuration requires HW CRC stripping being
4945                  * enabled. If user requested both HW CRC stripping off
4946                  * and RSC on - return an error.
4947                  */
4948                 PMD_INIT_LOG(CRIT, "LRO can't be enabled when HW CRC "
4949                                     "is disabled");
4950                 return -EINVAL;
4951         }
4952
4953         /* RFCTL configuration  */
4954         rfctl = IXGBE_READ_REG(hw, IXGBE_RFCTL);
4955         if ((rsc_capable) && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4956                 rfctl &= ~IXGBE_RFCTL_RSC_DIS;
4957         else
4958                 rfctl |= IXGBE_RFCTL_RSC_DIS;
4959         /* disable NFS filtering */
4960         rfctl |= IXGBE_RFCTL_NFSW_DIS | IXGBE_RFCTL_NFSR_DIS;
4961         IXGBE_WRITE_REG(hw, IXGBE_RFCTL, rfctl);
4962
4963         /* If LRO hasn't been requested - we are done here. */
4964         if (!(rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4965                 return 0;
4966
4967         /* Set RDRXCTL.RSCACKC bit */
4968         rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
4969         rdrxctl |= IXGBE_RDRXCTL_RSCACKC;
4970         IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
4971
4972         /* Per-queue RSC configuration (chapter 4.6.7.2.2 of 82599 Spec) */
4973         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4974                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4975                 uint32_t srrctl =
4976                         IXGBE_READ_REG(hw, IXGBE_SRRCTL(rxq->reg_idx));
4977                 uint32_t rscctl =
4978                         IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxq->reg_idx));
4979                 uint32_t psrtype =
4980                         IXGBE_READ_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx));
4981                 uint32_t eitr =
4982                         IXGBE_READ_REG(hw, IXGBE_EITR(rxq->reg_idx));
4983
4984                 /*
4985                  * ixgbe PMD doesn't support header-split at the moment.
4986                  *
4987                  * Following the 4.6.7.2.1 chapter of the 82599/x540
4988                  * Spec if RSC is enabled the SRRCTL[n].BSIZEHEADER
4989                  * should be configured even if header split is not
4990                  * enabled. We will configure it 128 bytes following the
4991                  * recommendation in the spec.
4992                  */
4993                 srrctl &= ~IXGBE_SRRCTL_BSIZEHDR_MASK;
4994                 srrctl |= (128 << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
4995                                             IXGBE_SRRCTL_BSIZEHDR_MASK;
4996
4997                 /*
4998                  * TODO: Consider setting the Receive Descriptor Minimum
4999                  * Threshold Size for an RSC case. This is not an obviously
5000                  * beneficiary option but the one worth considering...
5001                  */
5002
5003                 rscctl |= IXGBE_RSCCTL_RSCEN;
5004                 rscctl |= ixgbe_get_rscctl_maxdesc(rxq->mb_pool);
5005                 psrtype |= IXGBE_PSRTYPE_TCPHDR;
5006
5007                 /*
5008                  * RSC: Set ITR interval corresponding to 2K ints/s.
5009                  *
5010                  * Full-sized RSC aggregations for a 10Gb/s link will
5011                  * arrive at about 20K aggregation/s rate.
5012                  *
5013                  * 2K inst/s rate will make only 10% of the
5014                  * aggregations to be closed due to the interrupt timer
5015                  * expiration for a streaming at wire-speed case.
5016                  *
5017                  * For a sparse streaming case this setting will yield
5018                  * at most 500us latency for a single RSC aggregation.
5019                  */
5020                 eitr &= ~IXGBE_EITR_ITR_INT_MASK;
5021                 eitr |= IXGBE_EITR_INTERVAL_US(IXGBE_QUEUE_ITR_INTERVAL_DEFAULT);
5022                 eitr |= IXGBE_EITR_CNT_WDIS;
5023
5024                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
5025                 IXGBE_WRITE_REG(hw, IXGBE_RSCCTL(rxq->reg_idx), rscctl);
5026                 IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx), psrtype);
5027                 IXGBE_WRITE_REG(hw, IXGBE_EITR(rxq->reg_idx), eitr);
5028
5029                 /*
5030                  * RSC requires the mapping of the queue to the
5031                  * interrupt vector.
5032                  */
5033                 ixgbe_set_ivar(dev, rxq->reg_idx, i, 0);
5034         }
5035
5036         dev->data->lro = 1;
5037
5038         PMD_INIT_LOG(DEBUG, "enabling LRO mode");
5039
5040         return 0;
5041 }
5042
5043 /*
5044  * Initializes Receive Unit.
5045  */
5046 int __rte_cold
5047 ixgbe_dev_rx_init(struct rte_eth_dev *dev)
5048 {
5049         struct ixgbe_hw     *hw;
5050         struct ixgbe_rx_queue *rxq;
5051         uint64_t bus_addr;
5052         uint32_t rxctrl;
5053         uint32_t fctrl;
5054         uint32_t hlreg0;
5055         uint32_t maxfrs;
5056         uint32_t srrctl;
5057         uint32_t rdrxctl;
5058         uint32_t rxcsum;
5059         uint16_t buf_size;
5060         uint16_t i;
5061         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
5062         int rc;
5063
5064         PMD_INIT_FUNC_TRACE();
5065         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5066
5067         /*
5068          * Make sure receives are disabled while setting
5069          * up the RX context (registers, descriptor rings, etc.).
5070          */
5071         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5072         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl & ~IXGBE_RXCTRL_RXEN);
5073
5074         /* Enable receipt of broadcasted frames */
5075         fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
5076         fctrl |= IXGBE_FCTRL_BAM;
5077         fctrl |= IXGBE_FCTRL_DPF;
5078         fctrl |= IXGBE_FCTRL_PMCF;
5079         IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
5080
5081         /*
5082          * Configure CRC stripping, if any.
5083          */
5084         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
5085         if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
5086                 hlreg0 &= ~IXGBE_HLREG0_RXCRCSTRP;
5087         else
5088                 hlreg0 |= IXGBE_HLREG0_RXCRCSTRP;
5089
5090         /*
5091          * Configure jumbo frame support, if any.
5092          */
5093         if (rx_conf->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
5094                 hlreg0 |= IXGBE_HLREG0_JUMBOEN;
5095                 maxfrs = IXGBE_READ_REG(hw, IXGBE_MAXFRS);
5096                 maxfrs &= 0x0000FFFF;
5097                 maxfrs |= (rx_conf->max_rx_pkt_len << 16);
5098                 IXGBE_WRITE_REG(hw, IXGBE_MAXFRS, maxfrs);
5099         } else
5100                 hlreg0 &= ~IXGBE_HLREG0_JUMBOEN;
5101
5102         /*
5103          * If loopback mode is configured, set LPBK bit.
5104          */
5105         if (dev->data->dev_conf.lpbk_mode != 0) {
5106                 rc = ixgbe_check_supported_loopback_mode(dev);
5107                 if (rc < 0) {
5108                         PMD_INIT_LOG(ERR, "Unsupported loopback mode");
5109                         return rc;
5110                 }
5111                 hlreg0 |= IXGBE_HLREG0_LPBK;
5112         } else {
5113                 hlreg0 &= ~IXGBE_HLREG0_LPBK;
5114         }
5115
5116         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
5117
5118         /*
5119          * Assume no header split and no VLAN strip support
5120          * on any Rx queue first .
5121          */
5122         rx_conf->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
5123         /* Setup RX queues */
5124         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5125                 rxq = dev->data->rx_queues[i];
5126
5127                 /*
5128                  * Reset crc_len in case it was changed after queue setup by a
5129                  * call to configure.
5130                  */
5131                 if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
5132                         rxq->crc_len = RTE_ETHER_CRC_LEN;
5133                 else
5134                         rxq->crc_len = 0;
5135
5136                 /* Setup the Base and Length of the Rx Descriptor Rings */
5137                 bus_addr = rxq->rx_ring_phys_addr;
5138                 IXGBE_WRITE_REG(hw, IXGBE_RDBAL(rxq->reg_idx),
5139                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5140                 IXGBE_WRITE_REG(hw, IXGBE_RDBAH(rxq->reg_idx),
5141                                 (uint32_t)(bus_addr >> 32));
5142                 IXGBE_WRITE_REG(hw, IXGBE_RDLEN(rxq->reg_idx),
5143                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
5144                 IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
5145                 IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), 0);
5146
5147                 /* Configure the SRRCTL register */
5148                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
5149
5150                 /* Set if packets are dropped when no descriptors available */
5151                 if (rxq->drop_en)
5152                         srrctl |= IXGBE_SRRCTL_DROP_EN;
5153
5154                 /*
5155                  * Configure the RX buffer size in the BSIZEPACKET field of
5156                  * the SRRCTL register of the queue.
5157                  * The value is in 1 KB resolution. Valid values can be from
5158                  * 1 KB to 16 KB.
5159                  */
5160                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
5161                         RTE_PKTMBUF_HEADROOM);
5162                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
5163                            IXGBE_SRRCTL_BSIZEPKT_MASK);
5164
5165                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
5166
5167                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5168                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5169
5170                 /* It adds dual VLAN length for supporting dual VLAN */
5171                 if (dev->data->dev_conf.rxmode.max_rx_pkt_len +
5172                                             2 * IXGBE_VLAN_TAG_SIZE > buf_size)
5173                         dev->data->scattered_rx = 1;
5174                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
5175                         rx_conf->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
5176         }
5177
5178         if (rx_conf->offloads & DEV_RX_OFFLOAD_SCATTER)
5179                 dev->data->scattered_rx = 1;
5180
5181         /*
5182          * Device configured with multiple RX queues.
5183          */
5184         ixgbe_dev_mq_rx_configure(dev);
5185
5186         /*
5187          * Setup the Checksum Register.
5188          * Disable Full-Packet Checksum which is mutually exclusive with RSS.
5189          * Enable IP/L4 checkum computation by hardware if requested to do so.
5190          */
5191         rxcsum = IXGBE_READ_REG(hw, IXGBE_RXCSUM);
5192         rxcsum |= IXGBE_RXCSUM_PCSD;
5193         if (rx_conf->offloads & DEV_RX_OFFLOAD_CHECKSUM)
5194                 rxcsum |= IXGBE_RXCSUM_IPPCSE;
5195         else
5196                 rxcsum &= ~IXGBE_RXCSUM_IPPCSE;
5197
5198         IXGBE_WRITE_REG(hw, IXGBE_RXCSUM, rxcsum);
5199
5200         if (hw->mac.type == ixgbe_mac_82599EB ||
5201             hw->mac.type == ixgbe_mac_X540) {
5202                 rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
5203                 if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
5204                         rdrxctl &= ~IXGBE_RDRXCTL_CRCSTRIP;
5205                 else
5206                         rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP;
5207                 rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE;
5208                 IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
5209         }
5210
5211         rc = ixgbe_set_rsc(dev);
5212         if (rc)
5213                 return rc;
5214
5215         ixgbe_set_rx_function(dev);
5216
5217         return 0;
5218 }
5219
5220 /*
5221  * Initializes Transmit Unit.
5222  */
5223 void __rte_cold
5224 ixgbe_dev_tx_init(struct rte_eth_dev *dev)
5225 {
5226         struct ixgbe_hw     *hw;
5227         struct ixgbe_tx_queue *txq;
5228         uint64_t bus_addr;
5229         uint32_t hlreg0;
5230         uint32_t txctrl;
5231         uint16_t i;
5232
5233         PMD_INIT_FUNC_TRACE();
5234         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5235
5236         /* Enable TX CRC (checksum offload requirement) and hw padding
5237          * (TSO requirement)
5238          */
5239         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
5240         hlreg0 |= (IXGBE_HLREG0_TXCRCEN | IXGBE_HLREG0_TXPADEN);
5241         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
5242
5243         /* Setup the Base and Length of the Tx Descriptor Rings */
5244         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5245                 txq = dev->data->tx_queues[i];
5246
5247                 bus_addr = txq->tx_ring_phys_addr;
5248                 IXGBE_WRITE_REG(hw, IXGBE_TDBAL(txq->reg_idx),
5249                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5250                 IXGBE_WRITE_REG(hw, IXGBE_TDBAH(txq->reg_idx),
5251                                 (uint32_t)(bus_addr >> 32));
5252                 IXGBE_WRITE_REG(hw, IXGBE_TDLEN(txq->reg_idx),
5253                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5254                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5255                 IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5256                 IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5257
5258                 /*
5259                  * Disable Tx Head Writeback RO bit, since this hoses
5260                  * bookkeeping if things aren't delivered in order.
5261                  */
5262                 switch (hw->mac.type) {
5263                 case ixgbe_mac_82598EB:
5264                         txctrl = IXGBE_READ_REG(hw,
5265                                                 IXGBE_DCA_TXCTRL(txq->reg_idx));
5266                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5267                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL(txq->reg_idx),
5268                                         txctrl);
5269                         break;
5270
5271                 case ixgbe_mac_82599EB:
5272                 case ixgbe_mac_X540:
5273                 case ixgbe_mac_X550:
5274                 case ixgbe_mac_X550EM_x:
5275                 case ixgbe_mac_X550EM_a:
5276                 default:
5277                         txctrl = IXGBE_READ_REG(hw,
5278                                                 IXGBE_DCA_TXCTRL_82599(txq->reg_idx));
5279                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5280                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(txq->reg_idx),
5281                                         txctrl);
5282                         break;
5283                 }
5284         }
5285
5286         /* Device configured with multiple TX queues. */
5287         ixgbe_dev_mq_tx_configure(dev);
5288 }
5289
5290 /*
5291  * Check if requested loopback mode is supported
5292  */
5293 int
5294 ixgbe_check_supported_loopback_mode(struct rte_eth_dev *dev)
5295 {
5296         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5297
5298         if (dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_TX_RX)
5299                 if (hw->mac.type == ixgbe_mac_82599EB ||
5300                      hw->mac.type == ixgbe_mac_X540 ||
5301                      hw->mac.type == ixgbe_mac_X550 ||
5302                      hw->mac.type == ixgbe_mac_X550EM_x ||
5303                      hw->mac.type == ixgbe_mac_X550EM_a)
5304                         return 0;
5305
5306         return -ENOTSUP;
5307 }
5308
5309 /*
5310  * Set up link for 82599 loopback mode Tx->Rx.
5311  */
5312 static inline void __rte_cold
5313 ixgbe_setup_loopback_link_82599(struct ixgbe_hw *hw)
5314 {
5315         PMD_INIT_FUNC_TRACE();
5316
5317         if (ixgbe_verify_lesm_fw_enabled_82599(hw)) {
5318                 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM) !=
5319                                 IXGBE_SUCCESS) {
5320                         PMD_INIT_LOG(ERR, "Could not enable loopback mode");
5321                         /* ignore error */
5322                         return;
5323                 }
5324         }
5325
5326         /* Restart link */
5327         IXGBE_WRITE_REG(hw,
5328                         IXGBE_AUTOC,
5329                         IXGBE_AUTOC_LMS_10G_LINK_NO_AN | IXGBE_AUTOC_FLU);
5330         ixgbe_reset_pipeline_82599(hw);
5331
5332         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
5333         msec_delay(50);
5334 }
5335
5336
5337 /*
5338  * Start Transmit and Receive Units.
5339  */
5340 int __rte_cold
5341 ixgbe_dev_rxtx_start(struct rte_eth_dev *dev)
5342 {
5343         struct ixgbe_hw     *hw;
5344         struct ixgbe_tx_queue *txq;
5345         struct ixgbe_rx_queue *rxq;
5346         uint32_t txdctl;
5347         uint32_t dmatxctl;
5348         uint32_t rxctrl;
5349         uint16_t i;
5350         int ret = 0;
5351
5352         PMD_INIT_FUNC_TRACE();
5353         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5354
5355         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5356                 txq = dev->data->tx_queues[i];
5357                 /* Setup Transmit Threshold Registers */
5358                 txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5359                 txdctl |= txq->pthresh & 0x7F;
5360                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5361                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5362                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5363         }
5364
5365         if (hw->mac.type != ixgbe_mac_82598EB) {
5366                 dmatxctl = IXGBE_READ_REG(hw, IXGBE_DMATXCTL);
5367                 dmatxctl |= IXGBE_DMATXCTL_TE;
5368                 IXGBE_WRITE_REG(hw, IXGBE_DMATXCTL, dmatxctl);
5369         }
5370
5371         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5372                 txq = dev->data->tx_queues[i];
5373                 if (!txq->tx_deferred_start) {
5374                         ret = ixgbe_dev_tx_queue_start(dev, i);
5375                         if (ret < 0)
5376                                 return ret;
5377                 }
5378         }
5379
5380         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5381                 rxq = dev->data->rx_queues[i];
5382                 if (!rxq->rx_deferred_start) {
5383                         ret = ixgbe_dev_rx_queue_start(dev, i);
5384                         if (ret < 0)
5385                                 return ret;
5386                 }
5387         }
5388
5389         /* Enable Receive engine */
5390         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5391         if (hw->mac.type == ixgbe_mac_82598EB)
5392                 rxctrl |= IXGBE_RXCTRL_DMBYPS;
5393         rxctrl |= IXGBE_RXCTRL_RXEN;
5394         hw->mac.ops.enable_rx_dma(hw, rxctrl);
5395
5396         /* If loopback mode is enabled, set up the link accordingly */
5397         if (dev->data->dev_conf.lpbk_mode != 0) {
5398                 if (hw->mac.type == ixgbe_mac_82599EB)
5399                         ixgbe_setup_loopback_link_82599(hw);
5400                 else if (hw->mac.type == ixgbe_mac_X540 ||
5401                      hw->mac.type == ixgbe_mac_X550 ||
5402                      hw->mac.type == ixgbe_mac_X550EM_x ||
5403                      hw->mac.type == ixgbe_mac_X550EM_a)
5404                         ixgbe_setup_loopback_link_x540_x550(hw, true);
5405         }
5406
5407 #ifdef RTE_LIB_SECURITY
5408         if ((dev->data->dev_conf.rxmode.offloads &
5409                         DEV_RX_OFFLOAD_SECURITY) ||
5410                 (dev->data->dev_conf.txmode.offloads &
5411                         DEV_TX_OFFLOAD_SECURITY)) {
5412                 ret = ixgbe_crypto_enable_ipsec(dev);
5413                 if (ret != 0) {
5414                         PMD_DRV_LOG(ERR,
5415                                     "ixgbe_crypto_enable_ipsec fails with %d.",
5416                                     ret);
5417                         return ret;
5418                 }
5419         }
5420 #endif
5421
5422         return 0;
5423 }
5424
5425 /*
5426  * Start Receive Units for specified queue.
5427  */
5428 int __rte_cold
5429 ixgbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5430 {
5431         struct ixgbe_hw     *hw;
5432         struct ixgbe_rx_queue *rxq;
5433         uint32_t rxdctl;
5434         int poll_ms;
5435
5436         PMD_INIT_FUNC_TRACE();
5437         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5438
5439         rxq = dev->data->rx_queues[rx_queue_id];
5440
5441         /* Allocate buffers for descriptor rings */
5442         if (ixgbe_alloc_rx_queue_mbufs(rxq) != 0) {
5443                 PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
5444                              rx_queue_id);
5445                 return -1;
5446         }
5447         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5448         rxdctl |= IXGBE_RXDCTL_ENABLE;
5449         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5450
5451         /* Wait until RX Enable ready */
5452         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5453         do {
5454                 rte_delay_ms(1);
5455                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5456         } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5457         if (!poll_ms)
5458                 PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", rx_queue_id);
5459         rte_wmb();
5460         IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
5461         IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
5462         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5463
5464         return 0;
5465 }
5466
5467 /*
5468  * Stop Receive Units for specified queue.
5469  */
5470 int __rte_cold
5471 ixgbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5472 {
5473         struct ixgbe_hw     *hw;
5474         struct ixgbe_adapter *adapter = dev->data->dev_private;
5475         struct ixgbe_rx_queue *rxq;
5476         uint32_t rxdctl;
5477         int poll_ms;
5478
5479         PMD_INIT_FUNC_TRACE();
5480         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5481
5482         rxq = dev->data->rx_queues[rx_queue_id];
5483
5484         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5485         rxdctl &= ~IXGBE_RXDCTL_ENABLE;
5486         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5487
5488         /* Wait until RX Enable bit clear */
5489         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5490         do {
5491                 rte_delay_ms(1);
5492                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5493         } while (--poll_ms && (rxdctl & IXGBE_RXDCTL_ENABLE));
5494         if (!poll_ms)
5495                 PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d", rx_queue_id);
5496
5497         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5498
5499         ixgbe_rx_queue_release_mbufs(rxq);
5500         ixgbe_reset_rx_queue(adapter, rxq);
5501         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5502
5503         return 0;
5504 }
5505
5506
5507 /*
5508  * Start Transmit Units for specified queue.
5509  */
5510 int __rte_cold
5511 ixgbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5512 {
5513         struct ixgbe_hw     *hw;
5514         struct ixgbe_tx_queue *txq;
5515         uint32_t txdctl;
5516         int poll_ms;
5517
5518         PMD_INIT_FUNC_TRACE();
5519         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5520
5521         txq = dev->data->tx_queues[tx_queue_id];
5522         IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5523         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5524         txdctl |= IXGBE_TXDCTL_ENABLE;
5525         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5526
5527         /* Wait until TX Enable ready */
5528         if (hw->mac.type == ixgbe_mac_82599EB) {
5529                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5530                 do {
5531                         rte_delay_ms(1);
5532                         txdctl = IXGBE_READ_REG(hw,
5533                                 IXGBE_TXDCTL(txq->reg_idx));
5534                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5535                 if (!poll_ms)
5536                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d",
5537                                 tx_queue_id);
5538         }
5539         rte_wmb();
5540         IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5541         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5542
5543         return 0;
5544 }
5545
5546 /*
5547  * Stop Transmit Units for specified queue.
5548  */
5549 int __rte_cold
5550 ixgbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5551 {
5552         struct ixgbe_hw     *hw;
5553         struct ixgbe_tx_queue *txq;
5554         uint32_t txdctl;
5555         uint32_t txtdh, txtdt;
5556         int poll_ms;
5557
5558         PMD_INIT_FUNC_TRACE();
5559         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5560
5561         txq = dev->data->tx_queues[tx_queue_id];
5562
5563         /* Wait until TX queue is empty */
5564         if (hw->mac.type == ixgbe_mac_82599EB) {
5565                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5566                 do {
5567                         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5568                         txtdh = IXGBE_READ_REG(hw,
5569                                                IXGBE_TDH(txq->reg_idx));
5570                         txtdt = IXGBE_READ_REG(hw,
5571                                                IXGBE_TDT(txq->reg_idx));
5572                 } while (--poll_ms && (txtdh != txtdt));
5573                 if (!poll_ms)
5574                         PMD_INIT_LOG(ERR,
5575                                 "Tx Queue %d is not empty when stopping.",
5576                                 tx_queue_id);
5577         }
5578
5579         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5580         txdctl &= ~IXGBE_TXDCTL_ENABLE;
5581         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5582
5583         /* Wait until TX Enable bit clear */
5584         if (hw->mac.type == ixgbe_mac_82599EB) {
5585                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5586                 do {
5587                         rte_delay_ms(1);
5588                         txdctl = IXGBE_READ_REG(hw,
5589                                                 IXGBE_TXDCTL(txq->reg_idx));
5590                 } while (--poll_ms && (txdctl & IXGBE_TXDCTL_ENABLE));
5591                 if (!poll_ms)
5592                         PMD_INIT_LOG(ERR, "Could not disable Tx Queue %d",
5593                                 tx_queue_id);
5594         }
5595
5596         if (txq->ops != NULL) {
5597                 txq->ops->release_mbufs(txq);
5598                 txq->ops->reset(txq);
5599         }
5600         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5601
5602         return 0;
5603 }
5604
5605 void
5606 ixgbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5607         struct rte_eth_rxq_info *qinfo)
5608 {
5609         struct ixgbe_rx_queue *rxq;
5610
5611         rxq = dev->data->rx_queues[queue_id];
5612
5613         qinfo->mp = rxq->mb_pool;
5614         qinfo->scattered_rx = dev->data->scattered_rx;
5615         qinfo->nb_desc = rxq->nb_rx_desc;
5616
5617         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
5618         qinfo->conf.rx_drop_en = rxq->drop_en;
5619         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
5620         qinfo->conf.offloads = rxq->offloads;
5621 }
5622
5623 void
5624 ixgbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5625         struct rte_eth_txq_info *qinfo)
5626 {
5627         struct ixgbe_tx_queue *txq;
5628
5629         txq = dev->data->tx_queues[queue_id];
5630
5631         qinfo->nb_desc = txq->nb_tx_desc;
5632
5633         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
5634         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
5635         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
5636
5637         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
5638         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
5639         qinfo->conf.offloads = txq->offloads;
5640         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
5641 }
5642
5643 /*
5644  * [VF] Initializes Receive Unit.
5645  */
5646 int __rte_cold
5647 ixgbevf_dev_rx_init(struct rte_eth_dev *dev)
5648 {
5649         struct ixgbe_hw     *hw;
5650         struct ixgbe_rx_queue *rxq;
5651         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
5652         uint64_t bus_addr;
5653         uint32_t srrctl, psrtype = 0;
5654         uint16_t buf_size;
5655         uint16_t i;
5656         int ret;
5657
5658         PMD_INIT_FUNC_TRACE();
5659         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5660
5661         if (rte_is_power_of_2(dev->data->nb_rx_queues) == 0) {
5662                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5663                         "it should be power of 2");
5664                 return -1;
5665         }
5666
5667         if (dev->data->nb_rx_queues > hw->mac.max_rx_queues) {
5668                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5669                         "it should be equal to or less than %d",
5670                         hw->mac.max_rx_queues);
5671                 return -1;
5672         }
5673
5674         /*
5675          * When the VF driver issues a IXGBE_VF_RESET request, the PF driver
5676          * disables the VF receipt of packets if the PF MTU is > 1500.
5677          * This is done to deal with 82599 limitations that imposes
5678          * the PF and all VFs to share the same MTU.
5679          * Then, the PF driver enables again the VF receipt of packet when
5680          * the VF driver issues a IXGBE_VF_SET_LPE request.
5681          * In the meantime, the VF device cannot be used, even if the VF driver
5682          * and the Guest VM network stack are ready to accept packets with a
5683          * size up to the PF MTU.
5684          * As a work-around to this PF behaviour, force the call to
5685          * ixgbevf_rlpml_set_vf even if jumbo frames are not used. This way,
5686          * VF packets received can work in all cases.
5687          */
5688         if (ixgbevf_rlpml_set_vf(hw,
5689             (uint16_t)dev->data->dev_conf.rxmode.max_rx_pkt_len)) {
5690                 PMD_INIT_LOG(ERR, "Set max packet length to %d failed.",
5691                              dev->data->dev_conf.rxmode.max_rx_pkt_len);
5692                 return -EINVAL;
5693         }
5694
5695         /*
5696          * Assume no header split and no VLAN strip support
5697          * on any Rx queue first .
5698          */
5699         rxmode->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
5700         /* Setup RX queues */
5701         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5702                 rxq = dev->data->rx_queues[i];
5703
5704                 /* Allocate buffers for descriptor rings */
5705                 ret = ixgbe_alloc_rx_queue_mbufs(rxq);
5706                 if (ret)
5707                         return ret;
5708
5709                 /* Setup the Base and Length of the Rx Descriptor Rings */
5710                 bus_addr = rxq->rx_ring_phys_addr;
5711
5712                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(i),
5713                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5714                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(i),
5715                                 (uint32_t)(bus_addr >> 32));
5716                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(i),
5717                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
5718                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(i), 0);
5719                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), 0);
5720
5721
5722                 /* Configure the SRRCTL register */
5723                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
5724
5725                 /* Set if packets are dropped when no descriptors available */
5726                 if (rxq->drop_en)
5727                         srrctl |= IXGBE_SRRCTL_DROP_EN;
5728
5729                 /*
5730                  * Configure the RX buffer size in the BSIZEPACKET field of
5731                  * the SRRCTL register of the queue.
5732                  * The value is in 1 KB resolution. Valid values can be from
5733                  * 1 KB to 16 KB.
5734                  */
5735                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
5736                         RTE_PKTMBUF_HEADROOM);
5737                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
5738                            IXGBE_SRRCTL_BSIZEPKT_MASK);
5739
5740                 /*
5741                  * VF modification to write virtual function SRRCTL register
5742                  */
5743                 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(i), srrctl);
5744
5745                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5746                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5747
5748                 if (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ||
5749                     /* It adds dual VLAN length for supporting dual VLAN */
5750                     (rxmode->max_rx_pkt_len +
5751                                 2 * IXGBE_VLAN_TAG_SIZE) > buf_size) {
5752                         if (!dev->data->scattered_rx)
5753                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
5754                         dev->data->scattered_rx = 1;
5755                 }
5756
5757                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
5758                         rxmode->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
5759         }
5760
5761         /* Set RQPL for VF RSS according to max Rx queue */
5762         psrtype |= (dev->data->nb_rx_queues >> 1) <<
5763                 IXGBE_PSRTYPE_RQPL_SHIFT;
5764         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
5765
5766         ixgbe_set_rx_function(dev);
5767
5768         return 0;
5769 }
5770
5771 /*
5772  * [VF] Initializes Transmit Unit.
5773  */
5774 void __rte_cold
5775 ixgbevf_dev_tx_init(struct rte_eth_dev *dev)
5776 {
5777         struct ixgbe_hw     *hw;
5778         struct ixgbe_tx_queue *txq;
5779         uint64_t bus_addr;
5780         uint32_t txctrl;
5781         uint16_t i;
5782
5783         PMD_INIT_FUNC_TRACE();
5784         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5785
5786         /* Setup the Base and Length of the Tx Descriptor Rings */
5787         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5788                 txq = dev->data->tx_queues[i];
5789                 bus_addr = txq->tx_ring_phys_addr;
5790                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(i),
5791                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5792                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(i),
5793                                 (uint32_t)(bus_addr >> 32));
5794                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(i),
5795                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5796                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5797                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(i), 0);
5798                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(i), 0);
5799
5800                 /*
5801                  * Disable Tx Head Writeback RO bit, since this hoses
5802                  * bookkeeping if things aren't delivered in order.
5803                  */
5804                 txctrl = IXGBE_READ_REG(hw,
5805                                 IXGBE_VFDCA_TXCTRL(i));
5806                 txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5807                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(i),
5808                                 txctrl);
5809         }
5810 }
5811
5812 /*
5813  * [VF] Start Transmit and Receive Units.
5814  */
5815 void __rte_cold
5816 ixgbevf_dev_rxtx_start(struct rte_eth_dev *dev)
5817 {
5818         struct ixgbe_hw     *hw;
5819         struct ixgbe_tx_queue *txq;
5820         struct ixgbe_rx_queue *rxq;
5821         uint32_t txdctl;
5822         uint32_t rxdctl;
5823         uint16_t i;
5824         int poll_ms;
5825
5826         PMD_INIT_FUNC_TRACE();
5827         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5828
5829         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5830                 txq = dev->data->tx_queues[i];
5831                 /* Setup Transmit Threshold Registers */
5832                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5833                 txdctl |= txq->pthresh & 0x7F;
5834                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5835                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5836                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5837         }
5838
5839         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5840
5841                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5842                 txdctl |= IXGBE_TXDCTL_ENABLE;
5843                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5844
5845                 poll_ms = 10;
5846                 /* Wait until TX Enable ready */
5847                 do {
5848                         rte_delay_ms(1);
5849                         txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5850                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5851                 if (!poll_ms)
5852                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d", i);
5853         }
5854         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5855
5856                 rxq = dev->data->rx_queues[i];
5857
5858                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5859                 rxdctl |= IXGBE_RXDCTL_ENABLE;
5860                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(i), rxdctl);
5861
5862                 /* Wait until RX Enable ready */
5863                 poll_ms = 10;
5864                 do {
5865                         rte_delay_ms(1);
5866                         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5867                 } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5868                 if (!poll_ms)
5869                         PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", i);
5870                 rte_wmb();
5871                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), rxq->nb_rx_desc - 1);
5872
5873         }
5874 }
5875
5876 int
5877 ixgbe_rss_conf_init(struct ixgbe_rte_flow_rss_conf *out,
5878                     const struct rte_flow_action_rss *in)
5879 {
5880         if (in->key_len > RTE_DIM(out->key) ||
5881             in->queue_num > RTE_DIM(out->queue))
5882                 return -EINVAL;
5883         out->conf = (struct rte_flow_action_rss){
5884                 .func = in->func,
5885                 .level = in->level,
5886                 .types = in->types,
5887                 .key_len = in->key_len,
5888                 .queue_num = in->queue_num,
5889                 .key = memcpy(out->key, in->key, in->key_len),
5890                 .queue = memcpy(out->queue, in->queue,
5891                                 sizeof(*in->queue) * in->queue_num),
5892         };
5893         return 0;
5894 }
5895
5896 int
5897 ixgbe_action_rss_same(const struct rte_flow_action_rss *comp,
5898                       const struct rte_flow_action_rss *with)
5899 {
5900         return (comp->func == with->func &&
5901                 comp->level == with->level &&
5902                 comp->types == with->types &&
5903                 comp->key_len == with->key_len &&
5904                 comp->queue_num == with->queue_num &&
5905                 !memcmp(comp->key, with->key, with->key_len) &&
5906                 !memcmp(comp->queue, with->queue,
5907                         sizeof(*with->queue) * with->queue_num));
5908 }
5909
5910 int
5911 ixgbe_config_rss_filter(struct rte_eth_dev *dev,
5912                 struct ixgbe_rte_flow_rss_conf *conf, bool add)
5913 {
5914         struct ixgbe_hw *hw;
5915         uint32_t reta;
5916         uint16_t i;
5917         uint16_t j;
5918         uint16_t sp_reta_size;
5919         uint32_t reta_reg;
5920         struct rte_eth_rss_conf rss_conf = {
5921                 .rss_key = conf->conf.key_len ?
5922                         (void *)(uintptr_t)conf->conf.key : NULL,
5923                 .rss_key_len = conf->conf.key_len,
5924                 .rss_hf = conf->conf.types,
5925         };
5926         struct ixgbe_filter_info *filter_info =
5927                 IXGBE_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5928
5929         PMD_INIT_FUNC_TRACE();
5930         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5931
5932         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
5933
5934         if (!add) {
5935                 if (ixgbe_action_rss_same(&filter_info->rss_info.conf,
5936                                           &conf->conf)) {
5937                         ixgbe_rss_disable(dev);
5938                         memset(&filter_info->rss_info, 0,
5939                                 sizeof(struct ixgbe_rte_flow_rss_conf));
5940                         return 0;
5941                 }
5942                 return -EINVAL;
5943         }
5944
5945         if (filter_info->rss_info.conf.queue_num)
5946                 return -EINVAL;
5947         /* Fill in redirection table
5948          * The byte-swap is needed because NIC registers are in
5949          * little-endian order.
5950          */
5951         reta = 0;
5952         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
5953                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
5954
5955                 if (j == conf->conf.queue_num)
5956                         j = 0;
5957                 reta = (reta << 8) | conf->conf.queue[j];
5958                 if ((i & 3) == 3)
5959                         IXGBE_WRITE_REG(hw, reta_reg,
5960                                         rte_bswap32(reta));
5961         }
5962
5963         /* Configure the RSS key and the RSS protocols used to compute
5964          * the RSS hash of input packets.
5965          */
5966         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
5967                 ixgbe_rss_disable(dev);
5968                 return 0;
5969         }
5970         if (rss_conf.rss_key == NULL)
5971                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
5972         ixgbe_hw_rss_hash_set(hw, &rss_conf);
5973
5974         if (ixgbe_rss_conf_init(&filter_info->rss_info, &conf->conf))
5975                 return -EINVAL;
5976
5977         return 0;
5978 }
5979
5980 /* Stubs needed for linkage when RTE_ARCH_PPC_64 is set */
5981 #if defined(RTE_ARCH_PPC_64)
5982 int
5983 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
5984 {
5985         return -1;
5986 }
5987
5988 uint16_t
5989 ixgbe_recv_pkts_vec(
5990         void __rte_unused *rx_queue,
5991         struct rte_mbuf __rte_unused **rx_pkts,
5992         uint16_t __rte_unused nb_pkts)
5993 {
5994         return 0;
5995 }
5996
5997 uint16_t
5998 ixgbe_recv_scattered_pkts_vec(
5999         void __rte_unused *rx_queue,
6000         struct rte_mbuf __rte_unused **rx_pkts,
6001         uint16_t __rte_unused nb_pkts)
6002 {
6003         return 0;
6004 }
6005
6006 int
6007 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue __rte_unused *rxq)
6008 {
6009         return -1;
6010 }
6011
6012 uint16_t
6013 ixgbe_xmit_fixed_burst_vec(void __rte_unused *tx_queue,
6014                 struct rte_mbuf __rte_unused **tx_pkts,
6015                 uint16_t __rte_unused nb_pkts)
6016 {
6017         return 0;
6018 }
6019
6020 int
6021 ixgbe_txq_vec_setup(struct ixgbe_tx_queue __rte_unused *txq)
6022 {
6023         return -1;
6024 }
6025
6026 void
6027 ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue __rte_unused *rxq)
6028 {
6029         return;
6030 }
6031 #endif