ethdev: change queue release callback
[dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <sys/queue.h>
7
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <errno.h>
12 #include <stdint.h>
13 #include <stdarg.h>
14 #include <unistd.h>
15 #include <inttypes.h>
16
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_interrupts.h>
23 #include <rte_pci.h>
24 #include <rte_memory.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_malloc.h>
34 #include <rte_mbuf.h>
35 #include <rte_ether.h>
36 #include <ethdev_driver.h>
37 #include <rte_security_driver.h>
38 #include <rte_prefetch.h>
39 #include <rte_udp.h>
40 #include <rte_tcp.h>
41 #include <rte_sctp.h>
42 #include <rte_string_fns.h>
43 #include <rte_errno.h>
44 #include <rte_ip.h>
45 #include <rte_net.h>
46 #include <rte_vect.h>
47
48 #include "ixgbe_logs.h"
49 #include "base/ixgbe_api.h"
50 #include "base/ixgbe_vf.h"
51 #include "ixgbe_ethdev.h"
52 #include "base/ixgbe_dcb.h"
53 #include "base/ixgbe_common.h"
54 #include "ixgbe_rxtx.h"
55
56 #ifdef RTE_LIBRTE_IEEE1588
57 #define IXGBE_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
58 #else
59 #define IXGBE_TX_IEEE1588_TMST 0
60 #endif
61 /* Bit Mask to indicate what bits required for building TX context */
62 #define IXGBE_TX_OFFLOAD_MASK (                  \
63                 PKT_TX_OUTER_IPV6 |              \
64                 PKT_TX_OUTER_IPV4 |              \
65                 PKT_TX_IPV6 |                    \
66                 PKT_TX_IPV4 |                    \
67                 PKT_TX_VLAN_PKT |                \
68                 PKT_TX_IP_CKSUM |                \
69                 PKT_TX_L4_MASK |                 \
70                 PKT_TX_TCP_SEG |                 \
71                 PKT_TX_MACSEC |                  \
72                 PKT_TX_OUTER_IP_CKSUM |          \
73                 PKT_TX_SEC_OFFLOAD |     \
74                 IXGBE_TX_IEEE1588_TMST)
75
76 #define IXGBE_TX_OFFLOAD_NOTSUP_MASK \
77                 (PKT_TX_OFFLOAD_MASK ^ IXGBE_TX_OFFLOAD_MASK)
78
79 #if 1
80 #define RTE_PMD_USE_PREFETCH
81 #endif
82
83 #ifdef RTE_PMD_USE_PREFETCH
84 /*
85  * Prefetch a cache line into all cache levels.
86  */
87 #define rte_ixgbe_prefetch(p)   rte_prefetch0(p)
88 #else
89 #define rte_ixgbe_prefetch(p)   do {} while (0)
90 #endif
91
92 /*********************************************************************
93  *
94  *  TX functions
95  *
96  **********************************************************************/
97
98 /*
99  * Check for descriptors with their DD bit set and free mbufs.
100  * Return the total number of buffers freed.
101  */
102 static __rte_always_inline int
103 ixgbe_tx_free_bufs(struct ixgbe_tx_queue *txq)
104 {
105         struct ixgbe_tx_entry *txep;
106         uint32_t status;
107         int i, nb_free = 0;
108         struct rte_mbuf *m, *free[RTE_IXGBE_TX_MAX_FREE_BUF_SZ];
109
110         /* check DD bit on threshold descriptor */
111         status = txq->tx_ring[txq->tx_next_dd].wb.status;
112         if (!(status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD)))
113                 return 0;
114
115         /*
116          * first buffer to free from S/W ring is at index
117          * tx_next_dd - (tx_rs_thresh-1)
118          */
119         txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
120
121         for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
122                 /* free buffers one at a time */
123                 m = rte_pktmbuf_prefree_seg(txep->mbuf);
124                 txep->mbuf = NULL;
125
126                 if (unlikely(m == NULL))
127                         continue;
128
129                 if (nb_free >= RTE_IXGBE_TX_MAX_FREE_BUF_SZ ||
130                     (nb_free > 0 && m->pool != free[0]->pool)) {
131                         rte_mempool_put_bulk(free[0]->pool,
132                                              (void **)free, nb_free);
133                         nb_free = 0;
134                 }
135
136                 free[nb_free++] = m;
137         }
138
139         if (nb_free > 0)
140                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
141
142         /* buffers were freed, update counters */
143         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
144         txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
145         if (txq->tx_next_dd >= txq->nb_tx_desc)
146                 txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
147
148         return txq->tx_rs_thresh;
149 }
150
151 /* Populate 4 descriptors with data from 4 mbufs */
152 static inline void
153 tx4(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
154 {
155         uint64_t buf_dma_addr;
156         uint32_t pkt_len;
157         int i;
158
159         for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
160                 buf_dma_addr = rte_mbuf_data_iova(*pkts);
161                 pkt_len = (*pkts)->data_len;
162
163                 /* write data to descriptor */
164                 txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
165
166                 txdp->read.cmd_type_len =
167                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
168
169                 txdp->read.olinfo_status =
170                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
171
172                 rte_prefetch0(&(*pkts)->pool);
173         }
174 }
175
176 /* Populate 1 descriptor with data from 1 mbuf */
177 static inline void
178 tx1(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
179 {
180         uint64_t buf_dma_addr;
181         uint32_t pkt_len;
182
183         buf_dma_addr = rte_mbuf_data_iova(*pkts);
184         pkt_len = (*pkts)->data_len;
185
186         /* write data to descriptor */
187         txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
188         txdp->read.cmd_type_len =
189                         rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
190         txdp->read.olinfo_status =
191                         rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
192         rte_prefetch0(&(*pkts)->pool);
193 }
194
195 /*
196  * Fill H/W descriptor ring with mbuf data.
197  * Copy mbuf pointers to the S/W ring.
198  */
199 static inline void
200 ixgbe_tx_fill_hw_ring(struct ixgbe_tx_queue *txq, struct rte_mbuf **pkts,
201                       uint16_t nb_pkts)
202 {
203         volatile union ixgbe_adv_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
204         struct ixgbe_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
205         const int N_PER_LOOP = 4;
206         const int N_PER_LOOP_MASK = N_PER_LOOP-1;
207         int mainpart, leftover;
208         int i, j;
209
210         /*
211          * Process most of the packets in chunks of N pkts.  Any
212          * leftover packets will get processed one at a time.
213          */
214         mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
215         leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
216         for (i = 0; i < mainpart; i += N_PER_LOOP) {
217                 /* Copy N mbuf pointers to the S/W ring */
218                 for (j = 0; j < N_PER_LOOP; ++j) {
219                         (txep + i + j)->mbuf = *(pkts + i + j);
220                 }
221                 tx4(txdp + i, pkts + i);
222         }
223
224         if (unlikely(leftover > 0)) {
225                 for (i = 0; i < leftover; ++i) {
226                         (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
227                         tx1(txdp + mainpart + i, pkts + mainpart + i);
228                 }
229         }
230 }
231
232 static inline uint16_t
233 tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
234              uint16_t nb_pkts)
235 {
236         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
237         volatile union ixgbe_adv_tx_desc *tx_r = txq->tx_ring;
238         uint16_t n = 0;
239
240         /*
241          * Begin scanning the H/W ring for done descriptors when the
242          * number of available descriptors drops below tx_free_thresh.  For
243          * each done descriptor, free the associated buffer.
244          */
245         if (txq->nb_tx_free < txq->tx_free_thresh)
246                 ixgbe_tx_free_bufs(txq);
247
248         /* Only use descriptors that are available */
249         nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
250         if (unlikely(nb_pkts == 0))
251                 return 0;
252
253         /* Use exactly nb_pkts descriptors */
254         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
255
256         /*
257          * At this point, we know there are enough descriptors in the
258          * ring to transmit all the packets.  This assumes that each
259          * mbuf contains a single segment, and that no new offloads
260          * are expected, which would require a new context descriptor.
261          */
262
263         /*
264          * See if we're going to wrap-around. If so, handle the top
265          * of the descriptor ring first, then do the bottom.  If not,
266          * the processing looks just like the "bottom" part anyway...
267          */
268         if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
269                 n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
270                 ixgbe_tx_fill_hw_ring(txq, tx_pkts, n);
271
272                 /*
273                  * We know that the last descriptor in the ring will need to
274                  * have its RS bit set because tx_rs_thresh has to be
275                  * a divisor of the ring size
276                  */
277                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
278                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
279                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
280
281                 txq->tx_tail = 0;
282         }
283
284         /* Fill H/W descriptor ring with mbuf data */
285         ixgbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
286         txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
287
288         /*
289          * Determine if RS bit should be set
290          * This is what we actually want:
291          *   if ((txq->tx_tail - 1) >= txq->tx_next_rs)
292          * but instead of subtracting 1 and doing >=, we can just do
293          * greater than without subtracting.
294          */
295         if (txq->tx_tail > txq->tx_next_rs) {
296                 tx_r[txq->tx_next_rs].read.cmd_type_len |=
297                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
298                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
299                                                 txq->tx_rs_thresh);
300                 if (txq->tx_next_rs >= txq->nb_tx_desc)
301                         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
302         }
303
304         /*
305          * Check for wrap-around. This would only happen if we used
306          * up to the last descriptor in the ring, no more, no less.
307          */
308         if (txq->tx_tail >= txq->nb_tx_desc)
309                 txq->tx_tail = 0;
310
311         /* update tail pointer */
312         rte_wmb();
313         IXGBE_PCI_REG_WC_WRITE_RELAXED(txq->tdt_reg_addr, txq->tx_tail);
314
315         return nb_pkts;
316 }
317
318 uint16_t
319 ixgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
320                        uint16_t nb_pkts)
321 {
322         uint16_t nb_tx;
323
324         /* Try to transmit at least chunks of TX_MAX_BURST pkts */
325         if (likely(nb_pkts <= RTE_PMD_IXGBE_TX_MAX_BURST))
326                 return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
327
328         /* transmit more than the max burst, in chunks of TX_MAX_BURST */
329         nb_tx = 0;
330         while (nb_pkts) {
331                 uint16_t ret, n;
332
333                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_TX_MAX_BURST);
334                 ret = tx_xmit_pkts(tx_queue, &(tx_pkts[nb_tx]), n);
335                 nb_tx = (uint16_t)(nb_tx + ret);
336                 nb_pkts = (uint16_t)(nb_pkts - ret);
337                 if (ret < n)
338                         break;
339         }
340
341         return nb_tx;
342 }
343
344 static uint16_t
345 ixgbe_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
346                     uint16_t nb_pkts)
347 {
348         uint16_t nb_tx = 0;
349         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
350
351         while (nb_pkts) {
352                 uint16_t ret, num;
353
354                 num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
355                 ret = ixgbe_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
356                                                  num);
357                 nb_tx += ret;
358                 nb_pkts -= ret;
359                 if (ret < num)
360                         break;
361         }
362
363         return nb_tx;
364 }
365
366 static inline void
367 ixgbe_set_xmit_ctx(struct ixgbe_tx_queue *txq,
368                 volatile struct ixgbe_adv_tx_context_desc *ctx_txd,
369                 uint64_t ol_flags, union ixgbe_tx_offload tx_offload,
370                 __rte_unused uint64_t *mdata)
371 {
372         uint32_t type_tucmd_mlhl;
373         uint32_t mss_l4len_idx = 0;
374         uint32_t ctx_idx;
375         uint32_t vlan_macip_lens;
376         union ixgbe_tx_offload tx_offload_mask;
377         uint32_t seqnum_seed = 0;
378
379         ctx_idx = txq->ctx_curr;
380         tx_offload_mask.data[0] = 0;
381         tx_offload_mask.data[1] = 0;
382         type_tucmd_mlhl = 0;
383
384         /* Specify which HW CTX to upload. */
385         mss_l4len_idx |= (ctx_idx << IXGBE_ADVTXD_IDX_SHIFT);
386
387         if (ol_flags & PKT_TX_VLAN_PKT) {
388                 tx_offload_mask.vlan_tci |= ~0;
389         }
390
391         /* check if TCP segmentation required for this packet */
392         if (ol_flags & PKT_TX_TCP_SEG) {
393                 /* implies IP cksum in IPv4 */
394                 if (ol_flags & PKT_TX_IP_CKSUM)
395                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4 |
396                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
397                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
398                 else
399                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV6 |
400                                 IXGBE_ADVTXD_TUCMD_L4T_TCP |
401                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
402
403                 tx_offload_mask.l2_len |= ~0;
404                 tx_offload_mask.l3_len |= ~0;
405                 tx_offload_mask.l4_len |= ~0;
406                 tx_offload_mask.tso_segsz |= ~0;
407                 mss_l4len_idx |= tx_offload.tso_segsz << IXGBE_ADVTXD_MSS_SHIFT;
408                 mss_l4len_idx |= tx_offload.l4_len << IXGBE_ADVTXD_L4LEN_SHIFT;
409         } else { /* no TSO, check if hardware checksum is needed */
410                 if (ol_flags & PKT_TX_IP_CKSUM) {
411                         type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4;
412                         tx_offload_mask.l2_len |= ~0;
413                         tx_offload_mask.l3_len |= ~0;
414                 }
415
416                 switch (ol_flags & PKT_TX_L4_MASK) {
417                 case PKT_TX_UDP_CKSUM:
418                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP |
419                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
420                         mss_l4len_idx |= sizeof(struct rte_udp_hdr)
421                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
422                         tx_offload_mask.l2_len |= ~0;
423                         tx_offload_mask.l3_len |= ~0;
424                         break;
425                 case PKT_TX_TCP_CKSUM:
426                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP |
427                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
428                         mss_l4len_idx |= sizeof(struct rte_tcp_hdr)
429                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
430                         tx_offload_mask.l2_len |= ~0;
431                         tx_offload_mask.l3_len |= ~0;
432                         break;
433                 case PKT_TX_SCTP_CKSUM:
434                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP |
435                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
436                         mss_l4len_idx |= sizeof(struct rte_sctp_hdr)
437                                 << IXGBE_ADVTXD_L4LEN_SHIFT;
438                         tx_offload_mask.l2_len |= ~0;
439                         tx_offload_mask.l3_len |= ~0;
440                         break;
441                 default:
442                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_RSV |
443                                 IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
444                         break;
445                 }
446         }
447
448         if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
449                 tx_offload_mask.outer_l2_len |= ~0;
450                 tx_offload_mask.outer_l3_len |= ~0;
451                 tx_offload_mask.l2_len |= ~0;
452                 seqnum_seed |= tx_offload.outer_l3_len
453                                << IXGBE_ADVTXD_OUTER_IPLEN;
454                 seqnum_seed |= tx_offload.l2_len
455                                << IXGBE_ADVTXD_TUNNEL_LEN;
456         }
457 #ifdef RTE_LIB_SECURITY
458         if (ol_flags & PKT_TX_SEC_OFFLOAD) {
459                 union ixgbe_crypto_tx_desc_md *md =
460                                 (union ixgbe_crypto_tx_desc_md *)mdata;
461                 seqnum_seed |=
462                         (IXGBE_ADVTXD_IPSEC_SA_INDEX_MASK & md->sa_idx);
463                 type_tucmd_mlhl |= md->enc ?
464                                 (IXGBE_ADVTXD_TUCMD_IPSEC_TYPE_ESP |
465                                 IXGBE_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN) : 0;
466                 type_tucmd_mlhl |=
467                         (md->pad_len & IXGBE_ADVTXD_IPSEC_ESP_LEN_MASK);
468                 tx_offload_mask.sa_idx |= ~0;
469                 tx_offload_mask.sec_pad_len |= ~0;
470         }
471 #endif
472
473         txq->ctx_cache[ctx_idx].flags = ol_flags;
474         txq->ctx_cache[ctx_idx].tx_offload.data[0]  =
475                 tx_offload_mask.data[0] & tx_offload.data[0];
476         txq->ctx_cache[ctx_idx].tx_offload.data[1]  =
477                 tx_offload_mask.data[1] & tx_offload.data[1];
478         txq->ctx_cache[ctx_idx].tx_offload_mask    = tx_offload_mask;
479
480         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
481         vlan_macip_lens = tx_offload.l3_len;
482         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
483                 vlan_macip_lens |= (tx_offload.outer_l2_len <<
484                                     IXGBE_ADVTXD_MACLEN_SHIFT);
485         else
486                 vlan_macip_lens |= (tx_offload.l2_len <<
487                                     IXGBE_ADVTXD_MACLEN_SHIFT);
488         vlan_macip_lens |= ((uint32_t)tx_offload.vlan_tci << IXGBE_ADVTXD_VLAN_SHIFT);
489         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
490         ctx_txd->mss_l4len_idx   = rte_cpu_to_le_32(mss_l4len_idx);
491         ctx_txd->seqnum_seed     = seqnum_seed;
492 }
493
494 /*
495  * Check which hardware context can be used. Use the existing match
496  * or create a new context descriptor.
497  */
498 static inline uint32_t
499 what_advctx_update(struct ixgbe_tx_queue *txq, uint64_t flags,
500                    union ixgbe_tx_offload tx_offload)
501 {
502         /* If match with the current used context */
503         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
504                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
505                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
506                      & tx_offload.data[0])) &&
507                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
508                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
509                      & tx_offload.data[1]))))
510                 return txq->ctx_curr;
511
512         /* What if match with the next context  */
513         txq->ctx_curr ^= 1;
514         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
515                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
516                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
517                      & tx_offload.data[0])) &&
518                    (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
519                     (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
520                      & tx_offload.data[1]))))
521                 return txq->ctx_curr;
522
523         /* Mismatch, use the previous context */
524         return IXGBE_CTX_NUM;
525 }
526
527 static inline uint32_t
528 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
529 {
530         uint32_t tmp = 0;
531
532         if ((ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM)
533                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
534         if (ol_flags & PKT_TX_IP_CKSUM)
535                 tmp |= IXGBE_ADVTXD_POPTS_IXSM;
536         if (ol_flags & PKT_TX_TCP_SEG)
537                 tmp |= IXGBE_ADVTXD_POPTS_TXSM;
538         return tmp;
539 }
540
541 static inline uint32_t
542 tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
543 {
544         uint32_t cmdtype = 0;
545
546         if (ol_flags & PKT_TX_VLAN_PKT)
547                 cmdtype |= IXGBE_ADVTXD_DCMD_VLE;
548         if (ol_flags & PKT_TX_TCP_SEG)
549                 cmdtype |= IXGBE_ADVTXD_DCMD_TSE;
550         if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
551                 cmdtype |= (1 << IXGBE_ADVTXD_OUTERIPCS_SHIFT);
552         if (ol_flags & PKT_TX_MACSEC)
553                 cmdtype |= IXGBE_ADVTXD_MAC_LINKSEC;
554         return cmdtype;
555 }
556
557 /* Default RS bit threshold values */
558 #ifndef DEFAULT_TX_RS_THRESH
559 #define DEFAULT_TX_RS_THRESH   32
560 #endif
561 #ifndef DEFAULT_TX_FREE_THRESH
562 #define DEFAULT_TX_FREE_THRESH 32
563 #endif
564
565 /* Reset transmit descriptors after they have been used */
566 static inline int
567 ixgbe_xmit_cleanup(struct ixgbe_tx_queue *txq)
568 {
569         struct ixgbe_tx_entry *sw_ring = txq->sw_ring;
570         volatile union ixgbe_adv_tx_desc *txr = txq->tx_ring;
571         uint16_t last_desc_cleaned = txq->last_desc_cleaned;
572         uint16_t nb_tx_desc = txq->nb_tx_desc;
573         uint16_t desc_to_clean_to;
574         uint16_t nb_tx_to_clean;
575         uint32_t status;
576
577         /* Determine the last descriptor needing to be cleaned */
578         desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
579         if (desc_to_clean_to >= nb_tx_desc)
580                 desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
581
582         /* Check to make sure the last descriptor to clean is done */
583         desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
584         status = txr[desc_to_clean_to].wb.status;
585         if (!(status & rte_cpu_to_le_32(IXGBE_TXD_STAT_DD))) {
586                 PMD_TX_LOG(DEBUG,
587                            "TX descriptor %4u is not done"
588                            "(port=%d queue=%d)",
589                            desc_to_clean_to,
590                            txq->port_id, txq->queue_id);
591                 /* Failed to clean any descriptors, better luck next time */
592                 return -(1);
593         }
594
595         /* Figure out how many descriptors will be cleaned */
596         if (last_desc_cleaned > desc_to_clean_to)
597                 nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
598                                                         desc_to_clean_to);
599         else
600                 nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
601                                                 last_desc_cleaned);
602
603         PMD_TX_LOG(DEBUG,
604                    "Cleaning %4u TX descriptors: %4u to %4u "
605                    "(port=%d queue=%d)",
606                    nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
607                    txq->port_id, txq->queue_id);
608
609         /*
610          * The last descriptor to clean is done, so that means all the
611          * descriptors from the last descriptor that was cleaned
612          * up to the last descriptor with the RS bit set
613          * are done. Only reset the threshold descriptor.
614          */
615         txr[desc_to_clean_to].wb.status = 0;
616
617         /* Update the txq to reflect the last descriptor that was cleaned */
618         txq->last_desc_cleaned = desc_to_clean_to;
619         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
620
621         /* No Error */
622         return 0;
623 }
624
625 uint16_t
626 ixgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
627                 uint16_t nb_pkts)
628 {
629         struct ixgbe_tx_queue *txq;
630         struct ixgbe_tx_entry *sw_ring;
631         struct ixgbe_tx_entry *txe, *txn;
632         volatile union ixgbe_adv_tx_desc *txr;
633         volatile union ixgbe_adv_tx_desc *txd, *txp;
634         struct rte_mbuf     *tx_pkt;
635         struct rte_mbuf     *m_seg;
636         uint64_t buf_dma_addr;
637         uint32_t olinfo_status;
638         uint32_t cmd_type_len;
639         uint32_t pkt_len;
640         uint16_t slen;
641         uint64_t ol_flags;
642         uint16_t tx_id;
643         uint16_t tx_last;
644         uint16_t nb_tx;
645         uint16_t nb_used;
646         uint64_t tx_ol_req;
647         uint32_t ctx = 0;
648         uint32_t new_ctx;
649         union ixgbe_tx_offload tx_offload;
650 #ifdef RTE_LIB_SECURITY
651         uint8_t use_ipsec;
652 #endif
653
654         tx_offload.data[0] = 0;
655         tx_offload.data[1] = 0;
656         txq = tx_queue;
657         sw_ring = txq->sw_ring;
658         txr     = txq->tx_ring;
659         tx_id   = txq->tx_tail;
660         txe = &sw_ring[tx_id];
661         txp = NULL;
662
663         /* Determine if the descriptor ring needs to be cleaned. */
664         if (txq->nb_tx_free < txq->tx_free_thresh)
665                 ixgbe_xmit_cleanup(txq);
666
667         rte_prefetch0(&txe->mbuf->pool);
668
669         /* TX loop */
670         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
671                 new_ctx = 0;
672                 tx_pkt = *tx_pkts++;
673                 pkt_len = tx_pkt->pkt_len;
674
675                 /*
676                  * Determine how many (if any) context descriptors
677                  * are needed for offload functionality.
678                  */
679                 ol_flags = tx_pkt->ol_flags;
680 #ifdef RTE_LIB_SECURITY
681                 use_ipsec = txq->using_ipsec && (ol_flags & PKT_TX_SEC_OFFLOAD);
682 #endif
683
684                 /* If hardware offload required */
685                 tx_ol_req = ol_flags & IXGBE_TX_OFFLOAD_MASK;
686                 if (tx_ol_req) {
687                         tx_offload.l2_len = tx_pkt->l2_len;
688                         tx_offload.l3_len = tx_pkt->l3_len;
689                         tx_offload.l4_len = tx_pkt->l4_len;
690                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
691                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
692                         tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
693                         tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
694 #ifdef RTE_LIB_SECURITY
695                         if (use_ipsec) {
696                                 union ixgbe_crypto_tx_desc_md *ipsec_mdata =
697                                         (union ixgbe_crypto_tx_desc_md *)
698                                                 rte_security_dynfield(tx_pkt);
699                                 tx_offload.sa_idx = ipsec_mdata->sa_idx;
700                                 tx_offload.sec_pad_len = ipsec_mdata->pad_len;
701                         }
702 #endif
703
704                         /* If new context need be built or reuse the exist ctx. */
705                         ctx = what_advctx_update(txq, tx_ol_req,
706                                 tx_offload);
707                         /* Only allocate context descriptor if required*/
708                         new_ctx = (ctx == IXGBE_CTX_NUM);
709                         ctx = txq->ctx_curr;
710                 }
711
712                 /*
713                  * Keep track of how many descriptors are used this loop
714                  * This will always be the number of segments + the number of
715                  * Context descriptors required to transmit the packet
716                  */
717                 nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
718
719                 if (txp != NULL &&
720                                 nb_used + txq->nb_tx_used >= txq->tx_rs_thresh)
721                         /* set RS on the previous packet in the burst */
722                         txp->read.cmd_type_len |=
723                                 rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
724
725                 /*
726                  * The number of descriptors that must be allocated for a
727                  * packet is the number of segments of that packet, plus 1
728                  * Context Descriptor for the hardware offload, if any.
729                  * Determine the last TX descriptor to allocate in the TX ring
730                  * for the packet, starting from the current position (tx_id)
731                  * in the ring.
732                  */
733                 tx_last = (uint16_t) (tx_id + nb_used - 1);
734
735                 /* Circular ring */
736                 if (tx_last >= txq->nb_tx_desc)
737                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
738
739                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
740                            " tx_first=%u tx_last=%u",
741                            (unsigned) txq->port_id,
742                            (unsigned) txq->queue_id,
743                            (unsigned) pkt_len,
744                            (unsigned) tx_id,
745                            (unsigned) tx_last);
746
747                 /*
748                  * Make sure there are enough TX descriptors available to
749                  * transmit the entire packet.
750                  * nb_used better be less than or equal to txq->tx_rs_thresh
751                  */
752                 if (nb_used > txq->nb_tx_free) {
753                         PMD_TX_LOG(DEBUG,
754                                    "Not enough free TX descriptors "
755                                    "nb_used=%4u nb_free=%4u "
756                                    "(port=%d queue=%d)",
757                                    nb_used, txq->nb_tx_free,
758                                    txq->port_id, txq->queue_id);
759
760                         if (ixgbe_xmit_cleanup(txq) != 0) {
761                                 /* Could not clean any descriptors */
762                                 if (nb_tx == 0)
763                                         return 0;
764                                 goto end_of_tx;
765                         }
766
767                         /* nb_used better be <= txq->tx_rs_thresh */
768                         if (unlikely(nb_used > txq->tx_rs_thresh)) {
769                                 PMD_TX_LOG(DEBUG,
770                                            "The number of descriptors needed to "
771                                            "transmit the packet exceeds the "
772                                            "RS bit threshold. This will impact "
773                                            "performance."
774                                            "nb_used=%4u nb_free=%4u "
775                                            "tx_rs_thresh=%4u. "
776                                            "(port=%d queue=%d)",
777                                            nb_used, txq->nb_tx_free,
778                                            txq->tx_rs_thresh,
779                                            txq->port_id, txq->queue_id);
780                                 /*
781                                  * Loop here until there are enough TX
782                                  * descriptors or until the ring cannot be
783                                  * cleaned.
784                                  */
785                                 while (nb_used > txq->nb_tx_free) {
786                                         if (ixgbe_xmit_cleanup(txq) != 0) {
787                                                 /*
788                                                  * Could not clean any
789                                                  * descriptors
790                                                  */
791                                                 if (nb_tx == 0)
792                                                         return 0;
793                                                 goto end_of_tx;
794                                         }
795                                 }
796                         }
797                 }
798
799                 /*
800                  * By now there are enough free TX descriptors to transmit
801                  * the packet.
802                  */
803
804                 /*
805                  * Set common flags of all TX Data Descriptors.
806                  *
807                  * The following bits must be set in all Data Descriptors:
808                  *   - IXGBE_ADVTXD_DTYP_DATA
809                  *   - IXGBE_ADVTXD_DCMD_DEXT
810                  *
811                  * The following bits must be set in the first Data Descriptor
812                  * and are ignored in the other ones:
813                  *   - IXGBE_ADVTXD_DCMD_IFCS
814                  *   - IXGBE_ADVTXD_MAC_1588
815                  *   - IXGBE_ADVTXD_DCMD_VLE
816                  *
817                  * The following bits must only be set in the last Data
818                  * Descriptor:
819                  *   - IXGBE_TXD_CMD_EOP
820                  *
821                  * The following bits can be set in any Data Descriptor, but
822                  * are only set in the last Data Descriptor:
823                  *   - IXGBE_TXD_CMD_RS
824                  */
825                 cmd_type_len = IXGBE_ADVTXD_DTYP_DATA |
826                         IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
827
828 #ifdef RTE_LIBRTE_IEEE1588
829                 if (ol_flags & PKT_TX_IEEE1588_TMST)
830                         cmd_type_len |= IXGBE_ADVTXD_MAC_1588;
831 #endif
832
833                 olinfo_status = 0;
834                 if (tx_ol_req) {
835
836                         if (ol_flags & PKT_TX_TCP_SEG) {
837                                 /* when TSO is on, paylen in descriptor is the
838                                  * not the packet len but the tcp payload len */
839                                 pkt_len -= (tx_offload.l2_len +
840                                         tx_offload.l3_len + tx_offload.l4_len);
841                         }
842
843                         /*
844                          * Setup the TX Advanced Context Descriptor if required
845                          */
846                         if (new_ctx) {
847                                 volatile struct ixgbe_adv_tx_context_desc *
848                                     ctx_txd;
849
850                                 ctx_txd = (volatile struct
851                                     ixgbe_adv_tx_context_desc *)
852                                     &txr[tx_id];
853
854                                 txn = &sw_ring[txe->next_id];
855                                 rte_prefetch0(&txn->mbuf->pool);
856
857                                 if (txe->mbuf != NULL) {
858                                         rte_pktmbuf_free_seg(txe->mbuf);
859                                         txe->mbuf = NULL;
860                                 }
861
862                                 ixgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
863                                         tx_offload,
864                                         rte_security_dynfield(tx_pkt));
865
866                                 txe->last_id = tx_last;
867                                 tx_id = txe->next_id;
868                                 txe = txn;
869                         }
870
871                         /*
872                          * Setup the TX Advanced Data Descriptor,
873                          * This path will go through
874                          * whatever new/reuse the context descriptor
875                          */
876                         cmd_type_len  |= tx_desc_ol_flags_to_cmdtype(ol_flags);
877                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
878                         olinfo_status |= ctx << IXGBE_ADVTXD_IDX_SHIFT;
879                 }
880
881                 olinfo_status |= (pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
882 #ifdef RTE_LIB_SECURITY
883                 if (use_ipsec)
884                         olinfo_status |= IXGBE_ADVTXD_POPTS_IPSEC;
885 #endif
886
887                 m_seg = tx_pkt;
888                 do {
889                         txd = &txr[tx_id];
890                         txn = &sw_ring[txe->next_id];
891                         rte_prefetch0(&txn->mbuf->pool);
892
893                         if (txe->mbuf != NULL)
894                                 rte_pktmbuf_free_seg(txe->mbuf);
895                         txe->mbuf = m_seg;
896
897                         /*
898                          * Set up Transmit Data Descriptor.
899                          */
900                         slen = m_seg->data_len;
901                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
902                         txd->read.buffer_addr =
903                                 rte_cpu_to_le_64(buf_dma_addr);
904                         txd->read.cmd_type_len =
905                                 rte_cpu_to_le_32(cmd_type_len | slen);
906                         txd->read.olinfo_status =
907                                 rte_cpu_to_le_32(olinfo_status);
908                         txe->last_id = tx_last;
909                         tx_id = txe->next_id;
910                         txe = txn;
911                         m_seg = m_seg->next;
912                 } while (m_seg != NULL);
913
914                 /*
915                  * The last packet data descriptor needs End Of Packet (EOP)
916                  */
917                 cmd_type_len |= IXGBE_TXD_CMD_EOP;
918                 txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
919                 txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
920
921                 /* Set RS bit only on threshold packets' last descriptor */
922                 if (txq->nb_tx_used >= txq->tx_rs_thresh) {
923                         PMD_TX_LOG(DEBUG,
924                                    "Setting RS bit on TXD id="
925                                    "%4u (port=%d queue=%d)",
926                                    tx_last, txq->port_id, txq->queue_id);
927
928                         cmd_type_len |= IXGBE_TXD_CMD_RS;
929
930                         /* Update txq RS bit counters */
931                         txq->nb_tx_used = 0;
932                         txp = NULL;
933                 } else
934                         txp = txd;
935
936                 txd->read.cmd_type_len |= rte_cpu_to_le_32(cmd_type_len);
937         }
938
939 end_of_tx:
940         /* set RS on last packet in the burst */
941         if (txp != NULL)
942                 txp->read.cmd_type_len |= rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
943
944         rte_wmb();
945
946         /*
947          * Set the Transmit Descriptor Tail (TDT)
948          */
949         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
950                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
951                    (unsigned) tx_id, (unsigned) nb_tx);
952         IXGBE_PCI_REG_WC_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
953         txq->tx_tail = tx_id;
954
955         return nb_tx;
956 }
957
958 /*********************************************************************
959  *
960  *  TX prep functions
961  *
962  **********************************************************************/
963 uint16_t
964 ixgbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
965 {
966         int i, ret;
967         uint64_t ol_flags;
968         struct rte_mbuf *m;
969         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
970
971         for (i = 0; i < nb_pkts; i++) {
972                 m = tx_pkts[i];
973                 ol_flags = m->ol_flags;
974
975                 /**
976                  * Check if packet meets requirements for number of segments
977                  *
978                  * NOTE: for ixgbe it's always (40 - WTHRESH) for both TSO and
979                  *       non-TSO
980                  */
981
982                 if (m->nb_segs > IXGBE_TX_MAX_SEG - txq->wthresh) {
983                         rte_errno = EINVAL;
984                         return i;
985                 }
986
987                 if (ol_flags & IXGBE_TX_OFFLOAD_NOTSUP_MASK) {
988                         rte_errno = ENOTSUP;
989                         return i;
990                 }
991
992                 /* check the size of packet */
993                 if (m->pkt_len < IXGBE_TX_MIN_PKT_LEN) {
994                         rte_errno = EINVAL;
995                         return i;
996                 }
997
998 #ifdef RTE_ETHDEV_DEBUG_TX
999                 ret = rte_validate_tx_offload(m);
1000                 if (ret != 0) {
1001                         rte_errno = -ret;
1002                         return i;
1003                 }
1004 #endif
1005                 ret = rte_net_intel_cksum_prepare(m);
1006                 if (ret != 0) {
1007                         rte_errno = -ret;
1008                         return i;
1009                 }
1010         }
1011
1012         return i;
1013 }
1014
1015 /*********************************************************************
1016  *
1017  *  RX functions
1018  *
1019  **********************************************************************/
1020
1021 #define IXGBE_PACKET_TYPE_ETHER                         0X00
1022 #define IXGBE_PACKET_TYPE_IPV4                          0X01
1023 #define IXGBE_PACKET_TYPE_IPV4_TCP                      0X11
1024 #define IXGBE_PACKET_TYPE_IPV4_UDP                      0X21
1025 #define IXGBE_PACKET_TYPE_IPV4_SCTP                     0X41
1026 #define IXGBE_PACKET_TYPE_IPV4_EXT                      0X03
1027 #define IXGBE_PACKET_TYPE_IPV4_EXT_TCP                  0X13
1028 #define IXGBE_PACKET_TYPE_IPV4_EXT_UDP                  0X23
1029 #define IXGBE_PACKET_TYPE_IPV4_EXT_SCTP                 0X43
1030 #define IXGBE_PACKET_TYPE_IPV6                          0X04
1031 #define IXGBE_PACKET_TYPE_IPV6_TCP                      0X14
1032 #define IXGBE_PACKET_TYPE_IPV6_UDP                      0X24
1033 #define IXGBE_PACKET_TYPE_IPV6_SCTP                     0X44
1034 #define IXGBE_PACKET_TYPE_IPV6_EXT                      0X0C
1035 #define IXGBE_PACKET_TYPE_IPV6_EXT_TCP                  0X1C
1036 #define IXGBE_PACKET_TYPE_IPV6_EXT_UDP                  0X2C
1037 #define IXGBE_PACKET_TYPE_IPV6_EXT_SCTP                 0X4C
1038 #define IXGBE_PACKET_TYPE_IPV4_IPV6                     0X05
1039 #define IXGBE_PACKET_TYPE_IPV4_IPV6_TCP                 0X15
1040 #define IXGBE_PACKET_TYPE_IPV4_IPV6_UDP                 0X25
1041 #define IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP                0X45
1042 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6                 0X07
1043 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP             0X17
1044 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP             0X27
1045 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP            0X47
1046 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT                 0X0D
1047 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP             0X1D
1048 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP             0X2D
1049 #define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP            0X4D
1050 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT             0X0F
1051 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP         0X1F
1052 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP         0X2F
1053 #define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP        0X4F
1054
1055 #define IXGBE_PACKET_TYPE_NVGRE                   0X00
1056 #define IXGBE_PACKET_TYPE_NVGRE_IPV4              0X01
1057 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP          0X11
1058 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP          0X21
1059 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP         0X41
1060 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT          0X03
1061 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP      0X13
1062 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP      0X23
1063 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP     0X43
1064 #define IXGBE_PACKET_TYPE_NVGRE_IPV6              0X04
1065 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP          0X14
1066 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP          0X24
1067 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP         0X44
1068 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT          0X0C
1069 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP      0X1C
1070 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP      0X2C
1071 #define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP     0X4C
1072 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6         0X05
1073 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP     0X15
1074 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP     0X25
1075 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT     0X0D
1076 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP 0X1D
1077 #define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP 0X2D
1078
1079 #define IXGBE_PACKET_TYPE_VXLAN                   0X80
1080 #define IXGBE_PACKET_TYPE_VXLAN_IPV4              0X81
1081 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP          0x91
1082 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP          0xA1
1083 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP         0xC1
1084 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT          0x83
1085 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP      0X93
1086 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP      0XA3
1087 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP     0XC3
1088 #define IXGBE_PACKET_TYPE_VXLAN_IPV6              0X84
1089 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP          0X94
1090 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP          0XA4
1091 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP         0XC4
1092 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT          0X8C
1093 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP      0X9C
1094 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP      0XAC
1095 #define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP     0XCC
1096 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6         0X85
1097 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP     0X95
1098 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP     0XA5
1099 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT     0X8D
1100 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP 0X9D
1101 #define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP 0XAD
1102
1103 /**
1104  * Use 2 different table for normal packet and tunnel packet
1105  * to save the space.
1106  */
1107 const uint32_t
1108         ptype_table[IXGBE_PACKET_TYPE_MAX] __rte_cache_aligned = {
1109         [IXGBE_PACKET_TYPE_ETHER] = RTE_PTYPE_L2_ETHER,
1110         [IXGBE_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
1111                 RTE_PTYPE_L3_IPV4,
1112         [IXGBE_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1113                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
1114         [IXGBE_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1115                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
1116         [IXGBE_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1117                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
1118         [IXGBE_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1119                 RTE_PTYPE_L3_IPV4_EXT,
1120         [IXGBE_PACKET_TYPE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1121                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
1122         [IXGBE_PACKET_TYPE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1123                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
1124         [IXGBE_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1125                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
1126         [IXGBE_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
1127                 RTE_PTYPE_L3_IPV6,
1128         [IXGBE_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1129                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
1130         [IXGBE_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1131                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
1132         [IXGBE_PACKET_TYPE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1133                 RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP,
1134         [IXGBE_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1135                 RTE_PTYPE_L3_IPV6_EXT,
1136         [IXGBE_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1137                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
1138         [IXGBE_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1139                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
1140         [IXGBE_PACKET_TYPE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1141                 RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_SCTP,
1142         [IXGBE_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1143                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1144                 RTE_PTYPE_INNER_L3_IPV6,
1145         [IXGBE_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1146                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1147                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1148         [IXGBE_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1149                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1150         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1151         [IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1152                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1153                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1154         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6] = RTE_PTYPE_L2_ETHER |
1155                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1156                 RTE_PTYPE_INNER_L3_IPV6,
1157         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1158                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1159                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1160         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1161                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1162                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1163         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1164                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1165                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1166         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1167                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1168                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1169         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1170                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1171                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1172         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1173                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1174                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1175         [IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1176                 RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
1177                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1178         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1179                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1180                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1181         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1182                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1183                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1184         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1185                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1186                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1187         [IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP] =
1188                 RTE_PTYPE_L2_ETHER |
1189                 RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
1190                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1191 };
1192
1193 const uint32_t
1194         ptype_table_tn[IXGBE_PACKET_TYPE_TN_MAX] __rte_cache_aligned = {
1195         [IXGBE_PACKET_TYPE_NVGRE] = RTE_PTYPE_L2_ETHER |
1196                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1197                 RTE_PTYPE_INNER_L2_ETHER,
1198         [IXGBE_PACKET_TYPE_NVGRE_IPV4] = RTE_PTYPE_L2_ETHER |
1199                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1200                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1201         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1202                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1203                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT,
1204         [IXGBE_PACKET_TYPE_NVGRE_IPV6] = RTE_PTYPE_L2_ETHER |
1205                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1206                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6,
1207         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1208                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1209                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1210         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1211                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1212                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT,
1213         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1214                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1215                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1216         [IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1217                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1218                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1219                 RTE_PTYPE_INNER_L4_TCP,
1220         [IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1221                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1222                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1223                 RTE_PTYPE_INNER_L4_TCP,
1224         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1225                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1226                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1227         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1228                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1229                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1230                 RTE_PTYPE_INNER_L4_TCP,
1231         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP] =
1232                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1233                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1234                 RTE_PTYPE_INNER_L3_IPV4,
1235         [IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1236                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1237                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1238                 RTE_PTYPE_INNER_L4_UDP,
1239         [IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1240                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1241                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1242                 RTE_PTYPE_INNER_L4_UDP,
1243         [IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1244                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1245                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
1246                 RTE_PTYPE_INNER_L4_SCTP,
1247         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1248                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1249                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1250         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1251                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1252                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1253                 RTE_PTYPE_INNER_L4_UDP,
1254         [IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1255                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1256                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
1257                 RTE_PTYPE_INNER_L4_SCTP,
1258         [IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP] =
1259                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1260                 RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
1261                 RTE_PTYPE_INNER_L3_IPV4,
1262         [IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1263                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1264                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
1265                 RTE_PTYPE_INNER_L4_SCTP,
1266         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1267                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1268                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1269                 RTE_PTYPE_INNER_L4_SCTP,
1270         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1271                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1272                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1273                 RTE_PTYPE_INNER_L4_TCP,
1274         [IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1275                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
1276                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
1277                 RTE_PTYPE_INNER_L4_UDP,
1278
1279         [IXGBE_PACKET_TYPE_VXLAN] = RTE_PTYPE_L2_ETHER |
1280                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1281                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER,
1282         [IXGBE_PACKET_TYPE_VXLAN_IPV4] = RTE_PTYPE_L2_ETHER |
1283                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1284                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1285                 RTE_PTYPE_INNER_L3_IPV4,
1286         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
1287                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1288                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1289                 RTE_PTYPE_INNER_L3_IPV4_EXT,
1290         [IXGBE_PACKET_TYPE_VXLAN_IPV6] = RTE_PTYPE_L2_ETHER |
1291                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1292                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1293                 RTE_PTYPE_INNER_L3_IPV6,
1294         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
1295                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1296                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1297                 RTE_PTYPE_INNER_L3_IPV4,
1298         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1299                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1300                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1301                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1302         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
1303                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1304                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1305                 RTE_PTYPE_INNER_L3_IPV4,
1306         [IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
1307                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1308                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1309                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_TCP,
1310         [IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1311                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1312                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1313                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
1314         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
1315                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1316                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1317                 RTE_PTYPE_INNER_L3_IPV4,
1318         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1319                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1320                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1321                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
1322         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP] =
1323                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1324                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1325                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1326         [IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
1327                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1328                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1329                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_UDP,
1330         [IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1331                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1332                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1333                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
1334         [IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
1335                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1336                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1337                 RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
1338         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
1339                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1340                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1341                 RTE_PTYPE_INNER_L3_IPV4,
1342         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1343                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1344                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1345                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
1346         [IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1347                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1348                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1349                 RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
1350         [IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP] =
1351                 RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
1352                 RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
1353                 RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
1354         [IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
1355                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1356                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1357                 RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_SCTP,
1358         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
1359                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1360                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1361                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_SCTP,
1362         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
1363                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1364                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1365                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
1366         [IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
1367                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
1368                 RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
1369                 RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
1370 };
1371
1372 static int
1373 ixgbe_monitor_callback(const uint64_t value,
1374                 const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
1375 {
1376         const uint64_t m = rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD);
1377         /*
1378          * we expect the DD bit to be set to 1 if this descriptor was already
1379          * written to.
1380          */
1381         return (value & m) == m ? -1 : 0;
1382 }
1383
1384 int
1385 ixgbe_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
1386 {
1387         volatile union ixgbe_adv_rx_desc *rxdp;
1388         struct ixgbe_rx_queue *rxq = rx_queue;
1389         uint16_t desc;
1390
1391         desc = rxq->rx_tail;
1392         rxdp = &rxq->rx_ring[desc];
1393         /* watch for changes in status bit */
1394         pmc->addr = &rxdp->wb.upper.status_error;
1395
1396         /* comparison callback */
1397         pmc->fn = ixgbe_monitor_callback;
1398
1399         /* the registers are 32-bit */
1400         pmc->size = sizeof(uint32_t);
1401
1402         return 0;
1403 }
1404
1405 /* @note: fix ixgbe_dev_supported_ptypes_get() if any change here. */
1406 static inline uint32_t
1407 ixgbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptype_mask)
1408 {
1409
1410         if (unlikely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1411                 return RTE_PTYPE_UNKNOWN;
1412
1413         pkt_info = (pkt_info >> IXGBE_PACKET_TYPE_SHIFT) & ptype_mask;
1414
1415         /* For tunnel packet */
1416         if (pkt_info & IXGBE_PACKET_TYPE_TUNNEL_BIT) {
1417                 /* Remove the tunnel bit to save the space. */
1418                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
1419                 return ptype_table_tn[pkt_info];
1420         }
1421
1422         /**
1423          * For x550, if it's not tunnel,
1424          * tunnel type bit should be set to 0.
1425          * Reuse 82599's mask.
1426          */
1427         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
1428
1429         return ptype_table[pkt_info];
1430 }
1431
1432 static inline uint64_t
1433 ixgbe_rxd_pkt_info_to_pkt_flags(uint16_t pkt_info)
1434 {
1435         static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
1436                 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
1437                 0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
1438                 PKT_RX_RSS_HASH, 0, 0, 0,
1439                 0, 0, 0,  PKT_RX_FDIR,
1440         };
1441 #ifdef RTE_LIBRTE_IEEE1588
1442         static uint64_t ip_pkt_etqf_map[8] = {
1443                 0, 0, 0, PKT_RX_IEEE1588_PTP,
1444                 0, 0, 0, 0,
1445         };
1446
1447         if (likely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
1448                 return ip_pkt_etqf_map[(pkt_info >> 4) & 0X07] |
1449                                 ip_rss_types_map[pkt_info & 0XF];
1450         else
1451                 return ip_rss_types_map[pkt_info & 0XF];
1452 #else
1453         return ip_rss_types_map[pkt_info & 0XF];
1454 #endif
1455 }
1456
1457 static inline uint64_t
1458 rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
1459 {
1460         uint64_t pkt_flags;
1461
1462         /*
1463          * Check if VLAN present only.
1464          * Do not check whether L3/L4 rx checksum done by NIC or not,
1465          * That can be found from rte_eth_rxmode.offloads flag
1466          */
1467         pkt_flags = (rx_status & IXGBE_RXD_STAT_VP) ?  vlan_flags : 0;
1468
1469 #ifdef RTE_LIBRTE_IEEE1588
1470         if (rx_status & IXGBE_RXD_STAT_TMST)
1471                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
1472 #endif
1473         return pkt_flags;
1474 }
1475
1476 static inline uint64_t
1477 rx_desc_error_to_pkt_flags(uint32_t rx_status, uint16_t pkt_info,
1478                            uint8_t rx_udp_csum_zero_err)
1479 {
1480         uint64_t pkt_flags;
1481
1482         /*
1483          * Bit 31: IPE, IPv4 checksum error
1484          * Bit 30: L4I, L4I integrity error
1485          */
1486         static uint64_t error_to_pkt_flags_map[4] = {
1487                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
1488                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
1489                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
1490                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
1491         };
1492         pkt_flags = error_to_pkt_flags_map[(rx_status >>
1493                 IXGBE_RXDADV_ERR_CKSUM_BIT) & IXGBE_RXDADV_ERR_CKSUM_MSK];
1494
1495         /* Mask out the bad UDP checksum error if the hardware has UDP zero
1496          * checksum error issue, so that the software application will then
1497          * have to recompute the checksum itself if needed.
1498          */
1499         if ((rx_status & IXGBE_RXDADV_ERR_TCPE) &&
1500             (pkt_info & IXGBE_RXDADV_PKTTYPE_UDP) &&
1501             rx_udp_csum_zero_err)
1502                 pkt_flags &= ~PKT_RX_L4_CKSUM_BAD;
1503
1504         if ((rx_status & IXGBE_RXD_STAT_OUTERIPCS) &&
1505             (rx_status & IXGBE_RXDADV_ERR_OUTERIPER)) {
1506                 pkt_flags |= PKT_RX_OUTER_IP_CKSUM_BAD;
1507         }
1508
1509 #ifdef RTE_LIB_SECURITY
1510         if (rx_status & IXGBE_RXD_STAT_SECP) {
1511                 pkt_flags |= PKT_RX_SEC_OFFLOAD;
1512                 if (rx_status & IXGBE_RXDADV_LNKSEC_ERROR_BAD_SIG)
1513                         pkt_flags |= PKT_RX_SEC_OFFLOAD_FAILED;
1514         }
1515 #endif
1516
1517         return pkt_flags;
1518 }
1519
1520 /*
1521  * LOOK_AHEAD defines how many desc statuses to check beyond the
1522  * current descriptor.
1523  * It must be a pound define for optimal performance.
1524  * Do not change the value of LOOK_AHEAD, as the ixgbe_rx_scan_hw_ring
1525  * function only works with LOOK_AHEAD=8.
1526  */
1527 #define LOOK_AHEAD 8
1528 #if (LOOK_AHEAD != 8)
1529 #error "PMD IXGBE: LOOK_AHEAD must be 8\n"
1530 #endif
1531 static inline int
1532 ixgbe_rx_scan_hw_ring(struct ixgbe_rx_queue *rxq)
1533 {
1534         volatile union ixgbe_adv_rx_desc *rxdp;
1535         struct ixgbe_rx_entry *rxep;
1536         struct rte_mbuf *mb;
1537         uint16_t pkt_len;
1538         uint64_t pkt_flags;
1539         int nb_dd;
1540         uint32_t s[LOOK_AHEAD];
1541         uint32_t pkt_info[LOOK_AHEAD];
1542         int i, j, nb_rx = 0;
1543         uint32_t status;
1544         uint64_t vlan_flags = rxq->vlan_flags;
1545
1546         /* get references to current descriptor and S/W ring entry */
1547         rxdp = &rxq->rx_ring[rxq->rx_tail];
1548         rxep = &rxq->sw_ring[rxq->rx_tail];
1549
1550         status = rxdp->wb.upper.status_error;
1551         /* check to make sure there is at least 1 packet to receive */
1552         if (!(status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1553                 return 0;
1554
1555         /*
1556          * Scan LOOK_AHEAD descriptors at a time to determine which descriptors
1557          * reference packets that are ready to be received.
1558          */
1559         for (i = 0; i < RTE_PMD_IXGBE_RX_MAX_BURST;
1560              i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
1561                 /* Read desc statuses backwards to avoid race condition */
1562                 for (j = 0; j < LOOK_AHEAD; j++)
1563                         s[j] = rte_le_to_cpu_32(rxdp[j].wb.upper.status_error);
1564
1565                 rte_smp_rmb();
1566
1567                 /* Compute how many status bits were set */
1568                 for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
1569                                 (s[nb_dd] & IXGBE_RXDADV_STAT_DD); nb_dd++)
1570                         ;
1571
1572                 for (j = 0; j < nb_dd; j++)
1573                         pkt_info[j] = rte_le_to_cpu_32(rxdp[j].wb.lower.
1574                                                        lo_dword.data);
1575
1576                 nb_rx += nb_dd;
1577
1578                 /* Translate descriptor info to mbuf format */
1579                 for (j = 0; j < nb_dd; ++j) {
1580                         mb = rxep[j].mbuf;
1581                         pkt_len = rte_le_to_cpu_16(rxdp[j].wb.upper.length) -
1582                                   rxq->crc_len;
1583                         mb->data_len = pkt_len;
1584                         mb->pkt_len = pkt_len;
1585                         mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].wb.upper.vlan);
1586
1587                         /* convert descriptor fields to rte mbuf flags */
1588                         pkt_flags = rx_desc_status_to_pkt_flags(s[j],
1589                                 vlan_flags);
1590                         pkt_flags |= rx_desc_error_to_pkt_flags(s[j],
1591                                         (uint16_t)pkt_info[j],
1592                                         rxq->rx_udp_csum_zero_err);
1593                         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags
1594                                         ((uint16_t)pkt_info[j]);
1595                         mb->ol_flags = pkt_flags;
1596                         mb->packet_type =
1597                                 ixgbe_rxd_pkt_info_to_pkt_type
1598                                         (pkt_info[j], rxq->pkt_type_mask);
1599
1600                         if (likely(pkt_flags & PKT_RX_RSS_HASH))
1601                                 mb->hash.rss = rte_le_to_cpu_32(
1602                                     rxdp[j].wb.lower.hi_dword.rss);
1603                         else if (pkt_flags & PKT_RX_FDIR) {
1604                                 mb->hash.fdir.hash = rte_le_to_cpu_16(
1605                                     rxdp[j].wb.lower.hi_dword.csum_ip.csum) &
1606                                     IXGBE_ATR_HASH_MASK;
1607                                 mb->hash.fdir.id = rte_le_to_cpu_16(
1608                                     rxdp[j].wb.lower.hi_dword.csum_ip.ip_id);
1609                         }
1610                 }
1611
1612                 /* Move mbuf pointers from the S/W ring to the stage */
1613                 for (j = 0; j < LOOK_AHEAD; ++j) {
1614                         rxq->rx_stage[i + j] = rxep[j].mbuf;
1615                 }
1616
1617                 /* stop if all requested packets could not be received */
1618                 if (nb_dd != LOOK_AHEAD)
1619                         break;
1620         }
1621
1622         /* clear software ring entries so we can cleanup correctly */
1623         for (i = 0; i < nb_rx; ++i) {
1624                 rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
1625         }
1626
1627
1628         return nb_rx;
1629 }
1630
1631 static inline int
1632 ixgbe_rx_alloc_bufs(struct ixgbe_rx_queue *rxq, bool reset_mbuf)
1633 {
1634         volatile union ixgbe_adv_rx_desc *rxdp;
1635         struct ixgbe_rx_entry *rxep;
1636         struct rte_mbuf *mb;
1637         uint16_t alloc_idx;
1638         __le64 dma_addr;
1639         int diag, i;
1640
1641         /* allocate buffers in bulk directly into the S/W ring */
1642         alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
1643         rxep = &rxq->sw_ring[alloc_idx];
1644         diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
1645                                     rxq->rx_free_thresh);
1646         if (unlikely(diag != 0))
1647                 return -ENOMEM;
1648
1649         rxdp = &rxq->rx_ring[alloc_idx];
1650         for (i = 0; i < rxq->rx_free_thresh; ++i) {
1651                 /* populate the static rte mbuf fields */
1652                 mb = rxep[i].mbuf;
1653                 if (reset_mbuf) {
1654                         mb->port = rxq->port_id;
1655                 }
1656
1657                 rte_mbuf_refcnt_set(mb, 1);
1658                 mb->data_off = RTE_PKTMBUF_HEADROOM;
1659
1660                 /* populate the descriptors */
1661                 dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
1662                 rxdp[i].read.hdr_addr = 0;
1663                 rxdp[i].read.pkt_addr = dma_addr;
1664         }
1665
1666         /* update state of internal queue structure */
1667         rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
1668         if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
1669                 rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
1670
1671         /* no errors */
1672         return 0;
1673 }
1674
1675 static inline uint16_t
1676 ixgbe_rx_fill_from_stage(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
1677                          uint16_t nb_pkts)
1678 {
1679         struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
1680         int i;
1681
1682         /* how many packets are ready to return? */
1683         nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
1684
1685         /* copy mbuf pointers to the application's packet list */
1686         for (i = 0; i < nb_pkts; ++i)
1687                 rx_pkts[i] = stage[i];
1688
1689         /* update internal queue state */
1690         rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
1691         rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
1692
1693         return nb_pkts;
1694 }
1695
1696 static inline uint16_t
1697 rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1698              uint16_t nb_pkts)
1699 {
1700         struct ixgbe_rx_queue *rxq = (struct ixgbe_rx_queue *)rx_queue;
1701         uint16_t nb_rx = 0;
1702
1703         /* Any previously recv'd pkts will be returned from the Rx stage */
1704         if (rxq->rx_nb_avail)
1705                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1706
1707         /* Scan the H/W ring for packets to receive */
1708         nb_rx = (uint16_t)ixgbe_rx_scan_hw_ring(rxq);
1709
1710         /* update internal queue state */
1711         rxq->rx_next_avail = 0;
1712         rxq->rx_nb_avail = nb_rx;
1713         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
1714
1715         /* if required, allocate new buffers to replenish descriptors */
1716         if (rxq->rx_tail > rxq->rx_free_trigger) {
1717                 uint16_t cur_free_trigger = rxq->rx_free_trigger;
1718
1719                 if (ixgbe_rx_alloc_bufs(rxq, true) != 0) {
1720                         int i, j;
1721
1722                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1723                                    "queue_id=%u", (unsigned) rxq->port_id,
1724                                    (unsigned) rxq->queue_id);
1725
1726                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
1727                                 rxq->rx_free_thresh;
1728
1729                         /*
1730                          * Need to rewind any previous receives if we cannot
1731                          * allocate new buffers to replenish the old ones.
1732                          */
1733                         rxq->rx_nb_avail = 0;
1734                         rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
1735                         for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
1736                                 rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
1737
1738                         return 0;
1739                 }
1740
1741                 /* update tail pointer */
1742                 rte_wmb();
1743                 IXGBE_PCI_REG_WC_WRITE_RELAXED(rxq->rdt_reg_addr,
1744                                             cur_free_trigger);
1745         }
1746
1747         if (rxq->rx_tail >= rxq->nb_rx_desc)
1748                 rxq->rx_tail = 0;
1749
1750         /* received any packets this loop? */
1751         if (rxq->rx_nb_avail)
1752                 return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
1753
1754         return 0;
1755 }
1756
1757 /* split requests into chunks of size RTE_PMD_IXGBE_RX_MAX_BURST */
1758 uint16_t
1759 ixgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
1760                            uint16_t nb_pkts)
1761 {
1762         uint16_t nb_rx;
1763
1764         if (unlikely(nb_pkts == 0))
1765                 return 0;
1766
1767         if (likely(nb_pkts <= RTE_PMD_IXGBE_RX_MAX_BURST))
1768                 return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
1769
1770         /* request is relatively large, chunk it up */
1771         nb_rx = 0;
1772         while (nb_pkts) {
1773                 uint16_t ret, n;
1774
1775                 n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_RX_MAX_BURST);
1776                 ret = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
1777                 nb_rx = (uint16_t)(nb_rx + ret);
1778                 nb_pkts = (uint16_t)(nb_pkts - ret);
1779                 if (ret < n)
1780                         break;
1781         }
1782
1783         return nb_rx;
1784 }
1785
1786 uint16_t
1787 ixgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1788                 uint16_t nb_pkts)
1789 {
1790         struct ixgbe_rx_queue *rxq;
1791         volatile union ixgbe_adv_rx_desc *rx_ring;
1792         volatile union ixgbe_adv_rx_desc *rxdp;
1793         struct ixgbe_rx_entry *sw_ring;
1794         struct ixgbe_rx_entry *rxe;
1795         struct rte_mbuf *rxm;
1796         struct rte_mbuf *nmb;
1797         union ixgbe_adv_rx_desc rxd;
1798         uint64_t dma_addr;
1799         uint32_t staterr;
1800         uint32_t pkt_info;
1801         uint16_t pkt_len;
1802         uint16_t rx_id;
1803         uint16_t nb_rx;
1804         uint16_t nb_hold;
1805         uint64_t pkt_flags;
1806         uint64_t vlan_flags;
1807
1808         nb_rx = 0;
1809         nb_hold = 0;
1810         rxq = rx_queue;
1811         rx_id = rxq->rx_tail;
1812         rx_ring = rxq->rx_ring;
1813         sw_ring = rxq->sw_ring;
1814         vlan_flags = rxq->vlan_flags;
1815         while (nb_rx < nb_pkts) {
1816                 /*
1817                  * The order of operations here is important as the DD status
1818                  * bit must not be read after any other descriptor fields.
1819                  * rx_ring and rxdp are pointing to volatile data so the order
1820                  * of accesses cannot be reordered by the compiler. If they were
1821                  * not volatile, they could be reordered which could lead to
1822                  * using invalid descriptor fields when read from rxd.
1823                  */
1824                 rxdp = &rx_ring[rx_id];
1825                 staterr = rxdp->wb.upper.status_error;
1826                 if (!(staterr & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
1827                         break;
1828                 rxd = *rxdp;
1829
1830                 /*
1831                  * End of packet.
1832                  *
1833                  * If the IXGBE_RXDADV_STAT_EOP flag is not set, the RX packet
1834                  * is likely to be invalid and to be dropped by the various
1835                  * validation checks performed by the network stack.
1836                  *
1837                  * Allocate a new mbuf to replenish the RX ring descriptor.
1838                  * If the allocation fails:
1839                  *    - arrange for that RX descriptor to be the first one
1840                  *      being parsed the next time the receive function is
1841                  *      invoked [on the same queue].
1842                  *
1843                  *    - Stop parsing the RX ring and return immediately.
1844                  *
1845                  * This policy do not drop the packet received in the RX
1846                  * descriptor for which the allocation of a new mbuf failed.
1847                  * Thus, it allows that packet to be later retrieved if
1848                  * mbuf have been freed in the mean time.
1849                  * As a side effect, holding RX descriptors instead of
1850                  * systematically giving them back to the NIC may lead to
1851                  * RX ring exhaustion situations.
1852                  * However, the NIC can gracefully prevent such situations
1853                  * to happen by sending specific "back-pressure" flow control
1854                  * frames to its peer(s).
1855                  */
1856                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1857                            "ext_err_stat=0x%08x pkt_len=%u",
1858                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1859                            (unsigned) rx_id, (unsigned) staterr,
1860                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1861
1862                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1863                 if (nmb == NULL) {
1864                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1865                                    "queue_id=%u", (unsigned) rxq->port_id,
1866                                    (unsigned) rxq->queue_id);
1867                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1868                         break;
1869                 }
1870
1871                 nb_hold++;
1872                 rxe = &sw_ring[rx_id];
1873                 rx_id++;
1874                 if (rx_id == rxq->nb_rx_desc)
1875                         rx_id = 0;
1876
1877                 /* Prefetch next mbuf while processing current one. */
1878                 rte_ixgbe_prefetch(sw_ring[rx_id].mbuf);
1879
1880                 /*
1881                  * When next RX descriptor is on a cache-line boundary,
1882                  * prefetch the next 4 RX descriptors and the next 8 pointers
1883                  * to mbufs.
1884                  */
1885                 if ((rx_id & 0x3) == 0) {
1886                         rte_ixgbe_prefetch(&rx_ring[rx_id]);
1887                         rte_ixgbe_prefetch(&sw_ring[rx_id]);
1888                 }
1889
1890                 rxm = rxe->mbuf;
1891                 rxe->mbuf = nmb;
1892                 dma_addr =
1893                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1894                 rxdp->read.hdr_addr = 0;
1895                 rxdp->read.pkt_addr = dma_addr;
1896
1897                 /*
1898                  * Initialize the returned mbuf.
1899                  * 1) setup generic mbuf fields:
1900                  *    - number of segments,
1901                  *    - next segment,
1902                  *    - packet length,
1903                  *    - RX port identifier.
1904                  * 2) integrate hardware offload data, if any:
1905                  *    - RSS flag & hash,
1906                  *    - IP checksum flag,
1907                  *    - VLAN TCI, if any,
1908                  *    - error flags.
1909                  */
1910                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
1911                                       rxq->crc_len);
1912                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1913                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
1914                 rxm->nb_segs = 1;
1915                 rxm->next = NULL;
1916                 rxm->pkt_len = pkt_len;
1917                 rxm->data_len = pkt_len;
1918                 rxm->port = rxq->port_id;
1919
1920                 pkt_info = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1921                 /* Only valid if PKT_RX_VLAN set in pkt_flags */
1922                 rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
1923
1924                 pkt_flags = rx_desc_status_to_pkt_flags(staterr, vlan_flags);
1925                 pkt_flags = pkt_flags |
1926                         rx_desc_error_to_pkt_flags(staterr, (uint16_t)pkt_info,
1927                                                    rxq->rx_udp_csum_zero_err);
1928                 pkt_flags = pkt_flags |
1929                         ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
1930                 rxm->ol_flags = pkt_flags;
1931                 rxm->packet_type =
1932                         ixgbe_rxd_pkt_info_to_pkt_type(pkt_info,
1933                                                        rxq->pkt_type_mask);
1934
1935                 if (likely(pkt_flags & PKT_RX_RSS_HASH))
1936                         rxm->hash.rss = rte_le_to_cpu_32(
1937                                                 rxd.wb.lower.hi_dword.rss);
1938                 else if (pkt_flags & PKT_RX_FDIR) {
1939                         rxm->hash.fdir.hash = rte_le_to_cpu_16(
1940                                         rxd.wb.lower.hi_dword.csum_ip.csum) &
1941                                         IXGBE_ATR_HASH_MASK;
1942                         rxm->hash.fdir.id = rte_le_to_cpu_16(
1943                                         rxd.wb.lower.hi_dword.csum_ip.ip_id);
1944                 }
1945                 /*
1946                  * Store the mbuf address into the next entry of the array
1947                  * of returned packets.
1948                  */
1949                 rx_pkts[nb_rx++] = rxm;
1950         }
1951         rxq->rx_tail = rx_id;
1952
1953         /*
1954          * If the number of free RX descriptors is greater than the RX free
1955          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1956          * register.
1957          * Update the RDT with the value of the last processed RX descriptor
1958          * minus 1, to guarantee that the RDT register is never equal to the
1959          * RDH register, which creates a "full" ring situtation from the
1960          * hardware point of view...
1961          */
1962         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1963         if (nb_hold > rxq->rx_free_thresh) {
1964                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1965                            "nb_hold=%u nb_rx=%u",
1966                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1967                            (unsigned) rx_id, (unsigned) nb_hold,
1968                            (unsigned) nb_rx);
1969                 rx_id = (uint16_t) ((rx_id == 0) ?
1970                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1971                 IXGBE_PCI_REG_WC_WRITE(rxq->rdt_reg_addr, rx_id);
1972                 nb_hold = 0;
1973         }
1974         rxq->nb_rx_hold = nb_hold;
1975         return nb_rx;
1976 }
1977
1978 /**
1979  * Detect an RSC descriptor.
1980  */
1981 static inline uint32_t
1982 ixgbe_rsc_count(union ixgbe_adv_rx_desc *rx)
1983 {
1984         return (rte_le_to_cpu_32(rx->wb.lower.lo_dword.data) &
1985                 IXGBE_RXDADV_RSCCNT_MASK) >> IXGBE_RXDADV_RSCCNT_SHIFT;
1986 }
1987
1988 /**
1989  * ixgbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
1990  *
1991  * Fill the following info in the HEAD buffer of the Rx cluster:
1992  *    - RX port identifier
1993  *    - hardware offload data, if any:
1994  *      - RSS flag & hash
1995  *      - IP checksum flag
1996  *      - VLAN TCI, if any
1997  *      - error flags
1998  * @head HEAD of the packet cluster
1999  * @desc HW descriptor to get data from
2000  * @rxq Pointer to the Rx queue
2001  */
2002 static inline void
2003 ixgbe_fill_cluster_head_buf(
2004         struct rte_mbuf *head,
2005         union ixgbe_adv_rx_desc *desc,
2006         struct ixgbe_rx_queue *rxq,
2007         uint32_t staterr)
2008 {
2009         uint32_t pkt_info;
2010         uint64_t pkt_flags;
2011
2012         head->port = rxq->port_id;
2013
2014         /* The vlan_tci field is only valid when PKT_RX_VLAN is
2015          * set in the pkt_flags field.
2016          */
2017         head->vlan_tci = rte_le_to_cpu_16(desc->wb.upper.vlan);
2018         pkt_info = rte_le_to_cpu_32(desc->wb.lower.lo_dword.data);
2019         pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
2020         pkt_flags |= rx_desc_error_to_pkt_flags(staterr, (uint16_t)pkt_info,
2021                                                 rxq->rx_udp_csum_zero_err);
2022         pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
2023         head->ol_flags = pkt_flags;
2024         head->packet_type =
2025                 ixgbe_rxd_pkt_info_to_pkt_type(pkt_info, rxq->pkt_type_mask);
2026
2027         if (likely(pkt_flags & PKT_RX_RSS_HASH))
2028                 head->hash.rss = rte_le_to_cpu_32(desc->wb.lower.hi_dword.rss);
2029         else if (pkt_flags & PKT_RX_FDIR) {
2030                 head->hash.fdir.hash =
2031                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.csum)
2032                                                           & IXGBE_ATR_HASH_MASK;
2033                 head->hash.fdir.id =
2034                         rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.ip_id);
2035         }
2036 }
2037
2038 /**
2039  * ixgbe_recv_pkts_lro - receive handler for and LRO case.
2040  *
2041  * @rx_queue Rx queue handle
2042  * @rx_pkts table of received packets
2043  * @nb_pkts size of rx_pkts table
2044  * @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
2045  *
2046  * Handles the Rx HW ring completions when RSC feature is configured. Uses an
2047  * additional ring of ixgbe_rsc_entry's that will hold the relevant RSC info.
2048  *
2049  * We use the same logic as in Linux and in FreeBSD ixgbe drivers:
2050  * 1) When non-EOP RSC completion arrives:
2051  *    a) Update the HEAD of the current RSC aggregation cluster with the new
2052  *       segment's data length.
2053  *    b) Set the "next" pointer of the current segment to point to the segment
2054  *       at the NEXTP index.
2055  *    c) Pass the HEAD of RSC aggregation cluster on to the next NEXTP entry
2056  *       in the sw_rsc_ring.
2057  * 2) When EOP arrives we just update the cluster's total length and offload
2058  *    flags and deliver the cluster up to the upper layers. In our case - put it
2059  *    in the rx_pkts table.
2060  *
2061  * Returns the number of received packets/clusters (according to the "bulk
2062  * receive" interface).
2063  */
2064 static inline uint16_t
2065 ixgbe_recv_pkts_lro(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
2066                     bool bulk_alloc)
2067 {
2068         struct ixgbe_rx_queue *rxq = rx_queue;
2069         volatile union ixgbe_adv_rx_desc *rx_ring = rxq->rx_ring;
2070         struct ixgbe_rx_entry *sw_ring = rxq->sw_ring;
2071         struct ixgbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
2072         uint16_t rx_id = rxq->rx_tail;
2073         uint16_t nb_rx = 0;
2074         uint16_t nb_hold = rxq->nb_rx_hold;
2075         uint16_t prev_id = rxq->rx_tail;
2076
2077         while (nb_rx < nb_pkts) {
2078                 bool eop;
2079                 struct ixgbe_rx_entry *rxe;
2080                 struct ixgbe_scattered_rx_entry *sc_entry;
2081                 struct ixgbe_scattered_rx_entry *next_sc_entry = NULL;
2082                 struct ixgbe_rx_entry *next_rxe = NULL;
2083                 struct rte_mbuf *first_seg;
2084                 struct rte_mbuf *rxm;
2085                 struct rte_mbuf *nmb = NULL;
2086                 union ixgbe_adv_rx_desc rxd;
2087                 uint16_t data_len;
2088                 uint16_t next_id;
2089                 volatile union ixgbe_adv_rx_desc *rxdp;
2090                 uint32_t staterr;
2091
2092 next_desc:
2093                 /*
2094                  * The code in this whole file uses the volatile pointer to
2095                  * ensure the read ordering of the status and the rest of the
2096                  * descriptor fields (on the compiler level only!!!). This is so
2097                  * UGLY - why not to just use the compiler barrier instead? DPDK
2098                  * even has the rte_compiler_barrier() for that.
2099                  *
2100                  * But most importantly this is just wrong because this doesn't
2101                  * ensure memory ordering in a general case at all. For
2102                  * instance, DPDK is supposed to work on Power CPUs where
2103                  * compiler barrier may just not be enough!
2104                  *
2105                  * I tried to write only this function properly to have a
2106                  * starting point (as a part of an LRO/RSC series) but the
2107                  * compiler cursed at me when I tried to cast away the
2108                  * "volatile" from rx_ring (yes, it's volatile too!!!). So, I'm
2109                  * keeping it the way it is for now.
2110                  *
2111                  * The code in this file is broken in so many other places and
2112                  * will just not work on a big endian CPU anyway therefore the
2113                  * lines below will have to be revisited together with the rest
2114                  * of the ixgbe PMD.
2115                  *
2116                  * TODO:
2117                  *    - Get rid of "volatile" and let the compiler do its job.
2118                  *    - Use the proper memory barrier (rte_rmb()) to ensure the
2119                  *      memory ordering below.
2120                  */
2121                 rxdp = &rx_ring[rx_id];
2122                 staterr = rte_le_to_cpu_32(rxdp->wb.upper.status_error);
2123
2124                 if (!(staterr & IXGBE_RXDADV_STAT_DD))
2125                         break;
2126
2127                 rxd = *rxdp;
2128
2129                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
2130                                   "staterr=0x%x data_len=%u",
2131                            rxq->port_id, rxq->queue_id, rx_id, staterr,
2132                            rte_le_to_cpu_16(rxd.wb.upper.length));
2133
2134                 if (!bulk_alloc) {
2135                         nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
2136                         if (nmb == NULL) {
2137                                 PMD_RX_LOG(DEBUG, "RX mbuf alloc failed "
2138                                                   "port_id=%u queue_id=%u",
2139                                            rxq->port_id, rxq->queue_id);
2140
2141                                 rte_eth_devices[rxq->port_id].data->
2142                                                         rx_mbuf_alloc_failed++;
2143                                 break;
2144                         }
2145                 } else if (nb_hold > rxq->rx_free_thresh) {
2146                         uint16_t next_rdt = rxq->rx_free_trigger;
2147
2148                         if (!ixgbe_rx_alloc_bufs(rxq, false)) {
2149                                 rte_wmb();
2150                                 IXGBE_PCI_REG_WC_WRITE_RELAXED(
2151                                                         rxq->rdt_reg_addr,
2152                                                         next_rdt);
2153                                 nb_hold -= rxq->rx_free_thresh;
2154                         } else {
2155                                 PMD_RX_LOG(DEBUG, "RX bulk alloc failed "
2156                                                   "port_id=%u queue_id=%u",
2157                                            rxq->port_id, rxq->queue_id);
2158
2159                                 rte_eth_devices[rxq->port_id].data->
2160                                                         rx_mbuf_alloc_failed++;
2161                                 break;
2162                         }
2163                 }
2164
2165                 nb_hold++;
2166                 rxe = &sw_ring[rx_id];
2167                 eop = staterr & IXGBE_RXDADV_STAT_EOP;
2168
2169                 next_id = rx_id + 1;
2170                 if (next_id == rxq->nb_rx_desc)
2171                         next_id = 0;
2172
2173                 /* Prefetch next mbuf while processing current one. */
2174                 rte_ixgbe_prefetch(sw_ring[next_id].mbuf);
2175
2176                 /*
2177                  * When next RX descriptor is on a cache-line boundary,
2178                  * prefetch the next 4 RX descriptors and the next 4 pointers
2179                  * to mbufs.
2180                  */
2181                 if ((next_id & 0x3) == 0) {
2182                         rte_ixgbe_prefetch(&rx_ring[next_id]);
2183                         rte_ixgbe_prefetch(&sw_ring[next_id]);
2184                 }
2185
2186                 rxm = rxe->mbuf;
2187
2188                 if (!bulk_alloc) {
2189                         __le64 dma =
2190                           rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2191                         /*
2192                          * Update RX descriptor with the physical address of the
2193                          * new data buffer of the new allocated mbuf.
2194                          */
2195                         rxe->mbuf = nmb;
2196
2197                         rxm->data_off = RTE_PKTMBUF_HEADROOM;
2198                         rxdp->read.hdr_addr = 0;
2199                         rxdp->read.pkt_addr = dma;
2200                 } else
2201                         rxe->mbuf = NULL;
2202
2203                 /*
2204                  * Set data length & data buffer address of mbuf.
2205                  */
2206                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
2207                 rxm->data_len = data_len;
2208
2209                 if (!eop) {
2210                         uint16_t nextp_id;
2211                         /*
2212                          * Get next descriptor index:
2213                          *  - For RSC it's in the NEXTP field.
2214                          *  - For a scattered packet - it's just a following
2215                          *    descriptor.
2216                          */
2217                         if (ixgbe_rsc_count(&rxd))
2218                                 nextp_id =
2219                                         (staterr & IXGBE_RXDADV_NEXTP_MASK) >>
2220                                                        IXGBE_RXDADV_NEXTP_SHIFT;
2221                         else
2222                                 nextp_id = next_id;
2223
2224                         next_sc_entry = &sw_sc_ring[nextp_id];
2225                         next_rxe = &sw_ring[nextp_id];
2226                         rte_ixgbe_prefetch(next_rxe);
2227                 }
2228
2229                 sc_entry = &sw_sc_ring[rx_id];
2230                 first_seg = sc_entry->fbuf;
2231                 sc_entry->fbuf = NULL;
2232
2233                 /*
2234                  * If this is the first buffer of the received packet,
2235                  * set the pointer to the first mbuf of the packet and
2236                  * initialize its context.
2237                  * Otherwise, update the total length and the number of segments
2238                  * of the current scattered packet, and update the pointer to
2239                  * the last mbuf of the current packet.
2240                  */
2241                 if (first_seg == NULL) {
2242                         first_seg = rxm;
2243                         first_seg->pkt_len = data_len;
2244                         first_seg->nb_segs = 1;
2245                 } else {
2246                         first_seg->pkt_len += data_len;
2247                         first_seg->nb_segs++;
2248                 }
2249
2250                 prev_id = rx_id;
2251                 rx_id = next_id;
2252
2253                 /*
2254                  * If this is not the last buffer of the received packet, update
2255                  * the pointer to the first mbuf at the NEXTP entry in the
2256                  * sw_sc_ring and continue to parse the RX ring.
2257                  */
2258                 if (!eop && next_rxe) {
2259                         rxm->next = next_rxe->mbuf;
2260                         next_sc_entry->fbuf = first_seg;
2261                         goto next_desc;
2262                 }
2263
2264                 /* Initialize the first mbuf of the returned packet */
2265                 ixgbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
2266
2267                 /*
2268                  * Deal with the case, when HW CRC srip is disabled.
2269                  * That can't happen when LRO is enabled, but still could
2270                  * happen for scattered RX mode.
2271                  */
2272                 first_seg->pkt_len -= rxq->crc_len;
2273                 if (unlikely(rxm->data_len <= rxq->crc_len)) {
2274                         struct rte_mbuf *lp;
2275
2276                         for (lp = first_seg; lp->next != rxm; lp = lp->next)
2277                                 ;
2278
2279                         first_seg->nb_segs--;
2280                         lp->data_len -= rxq->crc_len - rxm->data_len;
2281                         lp->next = NULL;
2282                         rte_pktmbuf_free_seg(rxm);
2283                 } else
2284                         rxm->data_len -= rxq->crc_len;
2285
2286                 /* Prefetch data of first segment, if configured to do so. */
2287                 rte_packet_prefetch((char *)first_seg->buf_addr +
2288                         first_seg->data_off);
2289
2290                 /*
2291                  * Store the mbuf address into the next entry of the array
2292                  * of returned packets.
2293                  */
2294                 rx_pkts[nb_rx++] = first_seg;
2295         }
2296
2297         /*
2298          * Record index of the next RX descriptor to probe.
2299          */
2300         rxq->rx_tail = rx_id;
2301
2302         /*
2303          * If the number of free RX descriptors is greater than the RX free
2304          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
2305          * register.
2306          * Update the RDT with the value of the last processed RX descriptor
2307          * minus 1, to guarantee that the RDT register is never equal to the
2308          * RDH register, which creates a "full" ring situtation from the
2309          * hardware point of view...
2310          */
2311         if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
2312                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
2313                            "nb_hold=%u nb_rx=%u",
2314                            rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
2315
2316                 rte_wmb();
2317                 IXGBE_PCI_REG_WC_WRITE_RELAXED(rxq->rdt_reg_addr, prev_id);
2318                 nb_hold = 0;
2319         }
2320
2321         rxq->nb_rx_hold = nb_hold;
2322         return nb_rx;
2323 }
2324
2325 uint16_t
2326 ixgbe_recv_pkts_lro_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2327                                  uint16_t nb_pkts)
2328 {
2329         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, false);
2330 }
2331
2332 uint16_t
2333 ixgbe_recv_pkts_lro_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
2334                                uint16_t nb_pkts)
2335 {
2336         return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, true);
2337 }
2338
2339 /*********************************************************************
2340  *
2341  *  Queue management functions
2342  *
2343  **********************************************************************/
2344
2345 static void __rte_cold
2346 ixgbe_tx_queue_release_mbufs(struct ixgbe_tx_queue *txq)
2347 {
2348         unsigned i;
2349
2350         if (txq->sw_ring != NULL) {
2351                 for (i = 0; i < txq->nb_tx_desc; i++) {
2352                         if (txq->sw_ring[i].mbuf != NULL) {
2353                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2354                                 txq->sw_ring[i].mbuf = NULL;
2355                         }
2356                 }
2357         }
2358 }
2359
2360 static int
2361 ixgbe_tx_done_cleanup_full(struct ixgbe_tx_queue *txq, uint32_t free_cnt)
2362 {
2363         struct ixgbe_tx_entry *swr_ring = txq->sw_ring;
2364         uint16_t i, tx_last, tx_id;
2365         uint16_t nb_tx_free_last;
2366         uint16_t nb_tx_to_clean;
2367         uint32_t pkt_cnt;
2368
2369         /* Start free mbuf from the next of tx_tail */
2370         tx_last = txq->tx_tail;
2371         tx_id  = swr_ring[tx_last].next_id;
2372
2373         if (txq->nb_tx_free == 0 && ixgbe_xmit_cleanup(txq))
2374                 return 0;
2375
2376         nb_tx_to_clean = txq->nb_tx_free;
2377         nb_tx_free_last = txq->nb_tx_free;
2378         if (!free_cnt)
2379                 free_cnt = txq->nb_tx_desc;
2380
2381         /* Loop through swr_ring to count the amount of
2382          * freeable mubfs and packets.
2383          */
2384         for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2385                 for (i = 0; i < nb_tx_to_clean &&
2386                         pkt_cnt < free_cnt &&
2387                         tx_id != tx_last; i++) {
2388                         if (swr_ring[tx_id].mbuf != NULL) {
2389                                 rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2390                                 swr_ring[tx_id].mbuf = NULL;
2391
2392                                 /*
2393                                  * last segment in the packet,
2394                                  * increment packet count
2395                                  */
2396                                 pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2397                         }
2398
2399                         tx_id = swr_ring[tx_id].next_id;
2400                 }
2401
2402                 if (txq->tx_rs_thresh > txq->nb_tx_desc -
2403                         txq->nb_tx_free || tx_id == tx_last)
2404                         break;
2405
2406                 if (pkt_cnt < free_cnt) {
2407                         if (ixgbe_xmit_cleanup(txq))
2408                                 break;
2409
2410                         nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
2411                         nb_tx_free_last = txq->nb_tx_free;
2412                 }
2413         }
2414
2415         return (int)pkt_cnt;
2416 }
2417
2418 static int
2419 ixgbe_tx_done_cleanup_simple(struct ixgbe_tx_queue *txq,
2420                         uint32_t free_cnt)
2421 {
2422         int i, n, cnt;
2423
2424         if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
2425                 free_cnt = txq->nb_tx_desc;
2426
2427         cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
2428
2429         for (i = 0; i < cnt; i += n) {
2430                 if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
2431                         break;
2432
2433                 n = ixgbe_tx_free_bufs(txq);
2434
2435                 if (n == 0)
2436                         break;
2437         }
2438
2439         return i;
2440 }
2441
2442 static int
2443 ixgbe_tx_done_cleanup_vec(struct ixgbe_tx_queue *txq __rte_unused,
2444                         uint32_t free_cnt __rte_unused)
2445 {
2446         return -ENOTSUP;
2447 }
2448
2449 int
2450 ixgbe_dev_tx_done_cleanup(void *tx_queue, uint32_t free_cnt)
2451 {
2452         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
2453         if (txq->offloads == 0 &&
2454 #ifdef RTE_LIB_SECURITY
2455                         !(txq->using_ipsec) &&
2456 #endif
2457                         txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST) {
2458                 if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
2459                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128 &&
2460                                 (rte_eal_process_type() != RTE_PROC_PRIMARY ||
2461                                         txq->sw_ring_v != NULL)) {
2462                         return ixgbe_tx_done_cleanup_vec(txq, free_cnt);
2463                 } else {
2464                         return ixgbe_tx_done_cleanup_simple(txq, free_cnt);
2465                 }
2466         }
2467
2468         return ixgbe_tx_done_cleanup_full(txq, free_cnt);
2469 }
2470
2471 static void __rte_cold
2472 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
2473 {
2474         if (txq != NULL &&
2475             txq->sw_ring != NULL)
2476                 rte_free(txq->sw_ring);
2477 }
2478
2479 static void __rte_cold
2480 ixgbe_tx_queue_release(struct ixgbe_tx_queue *txq)
2481 {
2482         if (txq != NULL && txq->ops != NULL) {
2483                 txq->ops->release_mbufs(txq);
2484                 txq->ops->free_swring(txq);
2485                 rte_free(txq);
2486         }
2487 }
2488
2489 void __rte_cold
2490 ixgbe_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
2491 {
2492         ixgbe_tx_queue_release(dev->data->tx_queues[qid]);
2493 }
2494
2495 /* (Re)set dynamic ixgbe_tx_queue fields to defaults */
2496 static void __rte_cold
2497 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
2498 {
2499         static const union ixgbe_adv_tx_desc zeroed_desc = {{0}};
2500         struct ixgbe_tx_entry *txe = txq->sw_ring;
2501         uint16_t prev, i;
2502
2503         /* Zero out HW ring memory */
2504         for (i = 0; i < txq->nb_tx_desc; i++) {
2505                 txq->tx_ring[i] = zeroed_desc;
2506         }
2507
2508         /* Initialize SW ring entries */
2509         prev = (uint16_t) (txq->nb_tx_desc - 1);
2510         for (i = 0; i < txq->nb_tx_desc; i++) {
2511                 volatile union ixgbe_adv_tx_desc *txd = &txq->tx_ring[i];
2512
2513                 txd->wb.status = rte_cpu_to_le_32(IXGBE_TXD_STAT_DD);
2514                 txe[i].mbuf = NULL;
2515                 txe[i].last_id = i;
2516                 txe[prev].next_id = i;
2517                 prev = i;
2518         }
2519
2520         txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2521         txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2522
2523         txq->tx_tail = 0;
2524         txq->nb_tx_used = 0;
2525         /*
2526          * Always allow 1 descriptor to be un-allocated to avoid
2527          * a H/W race condition
2528          */
2529         txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2530         txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2531         txq->ctx_curr = 0;
2532         memset((void *)&txq->ctx_cache, 0,
2533                 IXGBE_CTX_NUM * sizeof(struct ixgbe_advctx_info));
2534 }
2535
2536 static const struct ixgbe_txq_ops def_txq_ops = {
2537         .release_mbufs = ixgbe_tx_queue_release_mbufs,
2538         .free_swring = ixgbe_tx_free_swring,
2539         .reset = ixgbe_reset_tx_queue,
2540 };
2541
2542 /* Takes an ethdev and a queue and sets up the tx function to be used based on
2543  * the queue parameters. Used in tx_queue_setup by primary process and then
2544  * in dev_init by secondary process when attaching to an existing ethdev.
2545  */
2546 void __rte_cold
2547 ixgbe_set_tx_function(struct rte_eth_dev *dev, struct ixgbe_tx_queue *txq)
2548 {
2549         /* Use a simple Tx queue (no offloads, no multi segs) if possible */
2550         if ((txq->offloads == 0) &&
2551 #ifdef RTE_LIB_SECURITY
2552                         !(txq->using_ipsec) &&
2553 #endif
2554                         (txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST)) {
2555                 PMD_INIT_LOG(DEBUG, "Using simple tx code path");
2556                 dev->tx_pkt_prepare = NULL;
2557                 if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
2558                                 rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128 &&
2559                                 (rte_eal_process_type() != RTE_PROC_PRIMARY ||
2560                                         ixgbe_txq_vec_setup(txq) == 0)) {
2561                         PMD_INIT_LOG(DEBUG, "Vector tx enabled.");
2562                         dev->tx_pkt_burst = ixgbe_xmit_pkts_vec;
2563                 } else
2564                 dev->tx_pkt_burst = ixgbe_xmit_pkts_simple;
2565         } else {
2566                 PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
2567                 PMD_INIT_LOG(DEBUG,
2568                                 " - offloads = 0x%" PRIx64,
2569                                 txq->offloads);
2570                 PMD_INIT_LOG(DEBUG,
2571                                 " - tx_rs_thresh = %lu " "[RTE_PMD_IXGBE_TX_MAX_BURST=%lu]",
2572                                 (unsigned long)txq->tx_rs_thresh,
2573                                 (unsigned long)RTE_PMD_IXGBE_TX_MAX_BURST);
2574                 dev->tx_pkt_burst = ixgbe_xmit_pkts;
2575                 dev->tx_pkt_prepare = ixgbe_prep_pkts;
2576         }
2577 }
2578
2579 uint64_t
2580 ixgbe_get_tx_queue_offloads(struct rte_eth_dev *dev)
2581 {
2582         RTE_SET_USED(dev);
2583
2584         return 0;
2585 }
2586
2587 uint64_t
2588 ixgbe_get_tx_port_offloads(struct rte_eth_dev *dev)
2589 {
2590         uint64_t tx_offload_capa;
2591         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2592
2593         tx_offload_capa =
2594                 DEV_TX_OFFLOAD_VLAN_INSERT |
2595                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2596                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2597                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2598                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2599                 DEV_TX_OFFLOAD_TCP_TSO     |
2600                 DEV_TX_OFFLOAD_MULTI_SEGS;
2601
2602         if (hw->mac.type == ixgbe_mac_82599EB ||
2603             hw->mac.type == ixgbe_mac_X540)
2604                 tx_offload_capa |= DEV_TX_OFFLOAD_MACSEC_INSERT;
2605
2606         if (hw->mac.type == ixgbe_mac_X550 ||
2607             hw->mac.type == ixgbe_mac_X550EM_x ||
2608             hw->mac.type == ixgbe_mac_X550EM_a)
2609                 tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
2610
2611 #ifdef RTE_LIB_SECURITY
2612         if (dev->security_ctx)
2613                 tx_offload_capa |= DEV_TX_OFFLOAD_SECURITY;
2614 #endif
2615         return tx_offload_capa;
2616 }
2617
2618 int __rte_cold
2619 ixgbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
2620                          uint16_t queue_idx,
2621                          uint16_t nb_desc,
2622                          unsigned int socket_id,
2623                          const struct rte_eth_txconf *tx_conf)
2624 {
2625         const struct rte_memzone *tz;
2626         struct ixgbe_tx_queue *txq;
2627         struct ixgbe_hw     *hw;
2628         uint16_t tx_rs_thresh, tx_free_thresh;
2629         uint64_t offloads;
2630
2631         PMD_INIT_FUNC_TRACE();
2632         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2633
2634         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2635
2636         /*
2637          * Validate number of transmit descriptors.
2638          * It must not exceed hardware maximum, and must be multiple
2639          * of IXGBE_ALIGN.
2640          */
2641         if (nb_desc % IXGBE_TXD_ALIGN != 0 ||
2642                         (nb_desc > IXGBE_MAX_RING_DESC) ||
2643                         (nb_desc < IXGBE_MIN_RING_DESC)) {
2644                 return -EINVAL;
2645         }
2646
2647         /*
2648          * The following two parameters control the setting of the RS bit on
2649          * transmit descriptors.
2650          * TX descriptors will have their RS bit set after txq->tx_rs_thresh
2651          * descriptors have been used.
2652          * The TX descriptor ring will be cleaned after txq->tx_free_thresh
2653          * descriptors are used or if the number of descriptors required
2654          * to transmit a packet is greater than the number of free TX
2655          * descriptors.
2656          * The following constraints must be satisfied:
2657          *  tx_rs_thresh must be greater than 0.
2658          *  tx_rs_thresh must be less than the size of the ring minus 2.
2659          *  tx_rs_thresh must be less than or equal to tx_free_thresh.
2660          *  tx_rs_thresh must be a divisor of the ring size.
2661          *  tx_free_thresh must be greater than 0.
2662          *  tx_free_thresh must be less than the size of the ring minus 3.
2663          *  tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
2664          * One descriptor in the TX ring is used as a sentinel to avoid a
2665          * H/W race condition, hence the maximum threshold constraints.
2666          * When set to zero use default values.
2667          */
2668         tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2669                         tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2670         /* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
2671         tx_rs_thresh = (DEFAULT_TX_RS_THRESH + tx_free_thresh > nb_desc) ?
2672                         nb_desc - tx_free_thresh : DEFAULT_TX_RS_THRESH;
2673         if (tx_conf->tx_rs_thresh > 0)
2674                 tx_rs_thresh = tx_conf->tx_rs_thresh;
2675         if (tx_rs_thresh + tx_free_thresh > nb_desc) {
2676                 PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
2677                              "exceed nb_desc. (tx_rs_thresh=%u "
2678                              "tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
2679                              (unsigned int)tx_rs_thresh,
2680                              (unsigned int)tx_free_thresh,
2681                              (unsigned int)nb_desc,
2682                              (int)dev->data->port_id,
2683                              (int)queue_idx);
2684                 return -(EINVAL);
2685         }
2686         if (tx_rs_thresh >= (nb_desc - 2)) {
2687                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the number "
2688                         "of TX descriptors minus 2. (tx_rs_thresh=%u "
2689                         "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2690                         (int)dev->data->port_id, (int)queue_idx);
2691                 return -(EINVAL);
2692         }
2693         if (tx_rs_thresh > DEFAULT_TX_RS_THRESH) {
2694                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less or equal than %u. "
2695                         "(tx_rs_thresh=%u port=%d queue=%d)",
2696                         DEFAULT_TX_RS_THRESH, (unsigned int)tx_rs_thresh,
2697                         (int)dev->data->port_id, (int)queue_idx);
2698                 return -(EINVAL);
2699         }
2700         if (tx_free_thresh >= (nb_desc - 3)) {
2701                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2702                              "tx_free_thresh must be less than the number of "
2703                              "TX descriptors minus 3. (tx_free_thresh=%u "
2704                              "port=%d queue=%d)",
2705                              (unsigned int)tx_free_thresh,
2706                              (int)dev->data->port_id, (int)queue_idx);
2707                 return -(EINVAL);
2708         }
2709         if (tx_rs_thresh > tx_free_thresh) {
2710                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
2711                              "tx_free_thresh. (tx_free_thresh=%u "
2712                              "tx_rs_thresh=%u port=%d queue=%d)",
2713                              (unsigned int)tx_free_thresh,
2714                              (unsigned int)tx_rs_thresh,
2715                              (int)dev->data->port_id,
2716                              (int)queue_idx);
2717                 return -(EINVAL);
2718         }
2719         if ((nb_desc % tx_rs_thresh) != 0) {
2720                 PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2721                              "number of TX descriptors. (tx_rs_thresh=%u "
2722                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2723                              (int)dev->data->port_id, (int)queue_idx);
2724                 return -(EINVAL);
2725         }
2726
2727         /*
2728          * If rs_bit_thresh is greater than 1, then TX WTHRESH should be
2729          * set to 0. If WTHRESH is greater than zero, the RS bit is ignored
2730          * by the NIC and all descriptors are written back after the NIC
2731          * accumulates WTHRESH descriptors.
2732          */
2733         if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2734                 PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2735                              "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
2736                              "port=%d queue=%d)", (unsigned int)tx_rs_thresh,
2737                              (int)dev->data->port_id, (int)queue_idx);
2738                 return -(EINVAL);
2739         }
2740
2741         /* Free memory prior to re-allocation if needed... */
2742         if (dev->data->tx_queues[queue_idx] != NULL) {
2743                 ixgbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
2744                 dev->data->tx_queues[queue_idx] = NULL;
2745         }
2746
2747         /* First allocate the tx queue data structure */
2748         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct ixgbe_tx_queue),
2749                                  RTE_CACHE_LINE_SIZE, socket_id);
2750         if (txq == NULL)
2751                 return -ENOMEM;
2752
2753         /*
2754          * Allocate TX ring hardware descriptors. A memzone large enough to
2755          * handle the maximum ring size is allocated in order to allow for
2756          * resizing in later calls to the queue setup function.
2757          */
2758         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2759                         sizeof(union ixgbe_adv_tx_desc) * IXGBE_MAX_RING_DESC,
2760                         IXGBE_ALIGN, socket_id);
2761         if (tz == NULL) {
2762                 ixgbe_tx_queue_release(txq);
2763                 return -ENOMEM;
2764         }
2765
2766         txq->nb_tx_desc = nb_desc;
2767         txq->tx_rs_thresh = tx_rs_thresh;
2768         txq->tx_free_thresh = tx_free_thresh;
2769         txq->pthresh = tx_conf->tx_thresh.pthresh;
2770         txq->hthresh = tx_conf->tx_thresh.hthresh;
2771         txq->wthresh = tx_conf->tx_thresh.wthresh;
2772         txq->queue_id = queue_idx;
2773         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
2774                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
2775         txq->port_id = dev->data->port_id;
2776         txq->offloads = offloads;
2777         txq->ops = &def_txq_ops;
2778         txq->tx_deferred_start = tx_conf->tx_deferred_start;
2779 #ifdef RTE_LIB_SECURITY
2780         txq->using_ipsec = !!(dev->data->dev_conf.txmode.offloads &
2781                         DEV_TX_OFFLOAD_SECURITY);
2782 #endif
2783
2784         /*
2785          * Modification to set VFTDT for virtual function if vf is detected
2786          */
2787         if (hw->mac.type == ixgbe_mac_82599_vf ||
2788             hw->mac.type == ixgbe_mac_X540_vf ||
2789             hw->mac.type == ixgbe_mac_X550_vf ||
2790             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
2791             hw->mac.type == ixgbe_mac_X550EM_a_vf)
2792                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_VFTDT(queue_idx));
2793         else
2794                 txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_TDT(txq->reg_idx));
2795
2796         txq->tx_ring_phys_addr = tz->iova;
2797         txq->tx_ring = (union ixgbe_adv_tx_desc *) tz->addr;
2798
2799         /* Allocate software ring */
2800         txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
2801                                 sizeof(struct ixgbe_tx_entry) * nb_desc,
2802                                 RTE_CACHE_LINE_SIZE, socket_id);
2803         if (txq->sw_ring == NULL) {
2804                 ixgbe_tx_queue_release(txq);
2805                 return -ENOMEM;
2806         }
2807         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
2808                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
2809
2810         /* set up vector or scalar TX function as appropriate */
2811         ixgbe_set_tx_function(dev, txq);
2812
2813         txq->ops->reset(txq);
2814
2815         dev->data->tx_queues[queue_idx] = txq;
2816
2817
2818         return 0;
2819 }
2820
2821 /**
2822  * ixgbe_free_sc_cluster - free the not-yet-completed scattered cluster
2823  *
2824  * The "next" pointer of the last segment of (not-yet-completed) RSC clusters
2825  * in the sw_rsc_ring is not set to NULL but rather points to the next
2826  * mbuf of this RSC aggregation (that has not been completed yet and still
2827  * resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
2828  * will just free first "nb_segs" segments of the cluster explicitly by calling
2829  * an rte_pktmbuf_free_seg().
2830  *
2831  * @m scattered cluster head
2832  */
2833 static void __rte_cold
2834 ixgbe_free_sc_cluster(struct rte_mbuf *m)
2835 {
2836         uint16_t i, nb_segs = m->nb_segs;
2837         struct rte_mbuf *next_seg;
2838
2839         for (i = 0; i < nb_segs; i++) {
2840                 next_seg = m->next;
2841                 rte_pktmbuf_free_seg(m);
2842                 m = next_seg;
2843         }
2844 }
2845
2846 static void __rte_cold
2847 ixgbe_rx_queue_release_mbufs(struct ixgbe_rx_queue *rxq)
2848 {
2849         unsigned i;
2850
2851         /* SSE Vector driver has a different way of releasing mbufs. */
2852         if (rxq->rx_using_sse) {
2853                 ixgbe_rx_queue_release_mbufs_vec(rxq);
2854                 return;
2855         }
2856
2857         if (rxq->sw_ring != NULL) {
2858                 for (i = 0; i < rxq->nb_rx_desc; i++) {
2859                         if (rxq->sw_ring[i].mbuf != NULL) {
2860                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2861                                 rxq->sw_ring[i].mbuf = NULL;
2862                         }
2863                 }
2864                 if (rxq->rx_nb_avail) {
2865                         for (i = 0; i < rxq->rx_nb_avail; ++i) {
2866                                 struct rte_mbuf *mb;
2867
2868                                 mb = rxq->rx_stage[rxq->rx_next_avail + i];
2869                                 rte_pktmbuf_free_seg(mb);
2870                         }
2871                         rxq->rx_nb_avail = 0;
2872                 }
2873         }
2874
2875         if (rxq->sw_sc_ring)
2876                 for (i = 0; i < rxq->nb_rx_desc; i++)
2877                         if (rxq->sw_sc_ring[i].fbuf) {
2878                                 ixgbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
2879                                 rxq->sw_sc_ring[i].fbuf = NULL;
2880                         }
2881 }
2882
2883 static void __rte_cold
2884 ixgbe_rx_queue_release(struct ixgbe_rx_queue *rxq)
2885 {
2886         if (rxq != NULL) {
2887                 ixgbe_rx_queue_release_mbufs(rxq);
2888                 rte_free(rxq->sw_ring);
2889                 rte_free(rxq->sw_sc_ring);
2890                 rte_free(rxq);
2891         }
2892 }
2893
2894 void __rte_cold
2895 ixgbe_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
2896 {
2897         ixgbe_rx_queue_release(dev->data->rx_queues[qid]);
2898 }
2899
2900 /*
2901  * Check if Rx Burst Bulk Alloc function can be used.
2902  * Return
2903  *        0: the preconditions are satisfied and the bulk allocation function
2904  *           can be used.
2905  *  -EINVAL: the preconditions are NOT satisfied and the default Rx burst
2906  *           function must be used.
2907  */
2908 static inline int __rte_cold
2909 check_rx_burst_bulk_alloc_preconditions(struct ixgbe_rx_queue *rxq)
2910 {
2911         int ret = 0;
2912
2913         /*
2914          * Make sure the following pre-conditions are satisfied:
2915          *   rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST
2916          *   rxq->rx_free_thresh < rxq->nb_rx_desc
2917          *   (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
2918          * Scattered packets are not supported.  This should be checked
2919          * outside of this function.
2920          */
2921         if (!(rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST)) {
2922                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2923                              "rxq->rx_free_thresh=%d, "
2924                              "RTE_PMD_IXGBE_RX_MAX_BURST=%d",
2925                              rxq->rx_free_thresh, RTE_PMD_IXGBE_RX_MAX_BURST);
2926                 ret = -EINVAL;
2927         } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
2928                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2929                              "rxq->rx_free_thresh=%d, "
2930                              "rxq->nb_rx_desc=%d",
2931                              rxq->rx_free_thresh, rxq->nb_rx_desc);
2932                 ret = -EINVAL;
2933         } else if (!((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)) {
2934                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
2935                              "rxq->nb_rx_desc=%d, "
2936                              "rxq->rx_free_thresh=%d",
2937                              rxq->nb_rx_desc, rxq->rx_free_thresh);
2938                 ret = -EINVAL;
2939         }
2940
2941         return ret;
2942 }
2943
2944 /* Reset dynamic ixgbe_rx_queue fields back to defaults */
2945 static void __rte_cold
2946 ixgbe_reset_rx_queue(struct ixgbe_adapter *adapter, struct ixgbe_rx_queue *rxq)
2947 {
2948         static const union ixgbe_adv_rx_desc zeroed_desc = {{0}};
2949         unsigned i;
2950         uint16_t len = rxq->nb_rx_desc;
2951
2952         /*
2953          * By default, the Rx queue setup function allocates enough memory for
2954          * IXGBE_MAX_RING_DESC.  The Rx Burst bulk allocation function requires
2955          * extra memory at the end of the descriptor ring to be zero'd out.
2956          */
2957         if (adapter->rx_bulk_alloc_allowed)
2958                 /* zero out extra memory */
2959                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
2960
2961         /*
2962          * Zero out HW ring memory. Zero out extra memory at the end of
2963          * the H/W ring so look-ahead logic in Rx Burst bulk alloc function
2964          * reads extra memory as zeros.
2965          */
2966         for (i = 0; i < len; i++) {
2967                 rxq->rx_ring[i] = zeroed_desc;
2968         }
2969
2970         /*
2971          * initialize extra software ring entries. Space for these extra
2972          * entries is always allocated
2973          */
2974         memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2975         for (i = rxq->nb_rx_desc; i < len; ++i) {
2976                 rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
2977         }
2978
2979         rxq->rx_nb_avail = 0;
2980         rxq->rx_next_avail = 0;
2981         rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2982         rxq->rx_tail = 0;
2983         rxq->nb_rx_hold = 0;
2984
2985         if (rxq->pkt_first_seg != NULL)
2986                 rte_pktmbuf_free(rxq->pkt_first_seg);
2987
2988         rxq->pkt_first_seg = NULL;
2989         rxq->pkt_last_seg = NULL;
2990
2991 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
2992         rxq->rxrearm_start = 0;
2993         rxq->rxrearm_nb = 0;
2994 #endif
2995 }
2996
2997 static int
2998 ixgbe_is_vf(struct rte_eth_dev *dev)
2999 {
3000         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3001
3002         switch (hw->mac.type) {
3003         case ixgbe_mac_82599_vf:
3004         case ixgbe_mac_X540_vf:
3005         case ixgbe_mac_X550_vf:
3006         case ixgbe_mac_X550EM_x_vf:
3007         case ixgbe_mac_X550EM_a_vf:
3008                 return 1;
3009         default:
3010                 return 0;
3011         }
3012 }
3013
3014 uint64_t
3015 ixgbe_get_rx_queue_offloads(struct rte_eth_dev *dev)
3016 {
3017         uint64_t offloads = 0;
3018         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3019
3020         if (hw->mac.type != ixgbe_mac_82598EB)
3021                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
3022
3023         return offloads;
3024 }
3025
3026 uint64_t
3027 ixgbe_get_rx_port_offloads(struct rte_eth_dev *dev)
3028 {
3029         uint64_t offloads;
3030         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3031
3032         offloads = DEV_RX_OFFLOAD_IPV4_CKSUM  |
3033                    DEV_RX_OFFLOAD_UDP_CKSUM   |
3034                    DEV_RX_OFFLOAD_TCP_CKSUM   |
3035                    DEV_RX_OFFLOAD_KEEP_CRC    |
3036                    DEV_RX_OFFLOAD_JUMBO_FRAME |
3037                    DEV_RX_OFFLOAD_VLAN_FILTER |
3038                    DEV_RX_OFFLOAD_SCATTER |
3039                    DEV_RX_OFFLOAD_RSS_HASH;
3040
3041         if (hw->mac.type == ixgbe_mac_82598EB)
3042                 offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
3043
3044         if (ixgbe_is_vf(dev) == 0)
3045                 offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
3046
3047         /*
3048          * RSC is only supported by 82599 and x540 PF devices in a non-SR-IOV
3049          * mode.
3050          */
3051         if ((hw->mac.type == ixgbe_mac_82599EB ||
3052              hw->mac.type == ixgbe_mac_X540 ||
3053              hw->mac.type == ixgbe_mac_X550) &&
3054             !RTE_ETH_DEV_SRIOV(dev).active)
3055                 offloads |= DEV_RX_OFFLOAD_TCP_LRO;
3056
3057         if (hw->mac.type == ixgbe_mac_82599EB ||
3058             hw->mac.type == ixgbe_mac_X540)
3059                 offloads |= DEV_RX_OFFLOAD_MACSEC_STRIP;
3060
3061         if (hw->mac.type == ixgbe_mac_X550 ||
3062             hw->mac.type == ixgbe_mac_X550EM_x ||
3063             hw->mac.type == ixgbe_mac_X550EM_a)
3064                 offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
3065
3066 #ifdef RTE_LIB_SECURITY
3067         if (dev->security_ctx)
3068                 offloads |= DEV_RX_OFFLOAD_SECURITY;
3069 #endif
3070
3071         return offloads;
3072 }
3073
3074 int __rte_cold
3075 ixgbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
3076                          uint16_t queue_idx,
3077                          uint16_t nb_desc,
3078                          unsigned int socket_id,
3079                          const struct rte_eth_rxconf *rx_conf,
3080                          struct rte_mempool *mp)
3081 {
3082         const struct rte_memzone *rz;
3083         struct ixgbe_rx_queue *rxq;
3084         struct ixgbe_hw     *hw;
3085         uint16_t len;
3086         struct ixgbe_adapter *adapter = dev->data->dev_private;
3087         uint64_t offloads;
3088
3089         PMD_INIT_FUNC_TRACE();
3090         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3091
3092         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
3093
3094         /*
3095          * Validate number of receive descriptors.
3096          * It must not exceed hardware maximum, and must be multiple
3097          * of IXGBE_ALIGN.
3098          */
3099         if (nb_desc % IXGBE_RXD_ALIGN != 0 ||
3100                         (nb_desc > IXGBE_MAX_RING_DESC) ||
3101                         (nb_desc < IXGBE_MIN_RING_DESC)) {
3102                 return -EINVAL;
3103         }
3104
3105         /* Free memory prior to re-allocation if needed... */
3106         if (dev->data->rx_queues[queue_idx] != NULL) {
3107                 ixgbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
3108                 dev->data->rx_queues[queue_idx] = NULL;
3109         }
3110
3111         /* First allocate the rx queue data structure */
3112         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct ixgbe_rx_queue),
3113                                  RTE_CACHE_LINE_SIZE, socket_id);
3114         if (rxq == NULL)
3115                 return -ENOMEM;
3116         rxq->mb_pool = mp;
3117         rxq->nb_rx_desc = nb_desc;
3118         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
3119         rxq->queue_id = queue_idx;
3120         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
3121                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
3122         rxq->port_id = dev->data->port_id;
3123         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
3124                 rxq->crc_len = RTE_ETHER_CRC_LEN;
3125         else
3126                 rxq->crc_len = 0;
3127         rxq->drop_en = rx_conf->rx_drop_en;
3128         rxq->rx_deferred_start = rx_conf->rx_deferred_start;
3129         rxq->offloads = offloads;
3130
3131         /*
3132          * The packet type in RX descriptor is different for different NICs.
3133          * Some bits are used for x550 but reserved for other NICS.
3134          * So set different masks for different NICs.
3135          */
3136         if (hw->mac.type == ixgbe_mac_X550 ||
3137             hw->mac.type == ixgbe_mac_X550EM_x ||
3138             hw->mac.type == ixgbe_mac_X550EM_a ||
3139             hw->mac.type == ixgbe_mac_X550_vf ||
3140             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
3141             hw->mac.type == ixgbe_mac_X550EM_a_vf)
3142                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_X550;
3143         else
3144                 rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_82599;
3145
3146         /*
3147          * 82599 errata, UDP frames with a 0 checksum can be marked as checksum
3148          * errors.
3149          */
3150         if (hw->mac.type == ixgbe_mac_82599EB)
3151                 rxq->rx_udp_csum_zero_err = 1;
3152
3153         /*
3154          * Allocate RX ring hardware descriptors. A memzone large enough to
3155          * handle the maximum ring size is allocated in order to allow for
3156          * resizing in later calls to the queue setup function.
3157          */
3158         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
3159                                       RX_RING_SZ, IXGBE_ALIGN, socket_id);
3160         if (rz == NULL) {
3161                 ixgbe_rx_queue_release(rxq);
3162                 return -ENOMEM;
3163         }
3164
3165         /*
3166          * Zero init all the descriptors in the ring.
3167          */
3168         memset(rz->addr, 0, RX_RING_SZ);
3169
3170         /*
3171          * Modified to setup VFRDT for Virtual Function
3172          */
3173         if (hw->mac.type == ixgbe_mac_82599_vf ||
3174             hw->mac.type == ixgbe_mac_X540_vf ||
3175             hw->mac.type == ixgbe_mac_X550_vf ||
3176             hw->mac.type == ixgbe_mac_X550EM_x_vf ||
3177             hw->mac.type == ixgbe_mac_X550EM_a_vf) {
3178                 rxq->rdt_reg_addr =
3179                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDT(queue_idx));
3180                 rxq->rdh_reg_addr =
3181                         IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDH(queue_idx));
3182         } else {
3183                 rxq->rdt_reg_addr =
3184                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDT(rxq->reg_idx));
3185                 rxq->rdh_reg_addr =
3186                         IXGBE_PCI_REG_ADDR(hw, IXGBE_RDH(rxq->reg_idx));
3187         }
3188
3189         rxq->rx_ring_phys_addr = rz->iova;
3190         rxq->rx_ring = (union ixgbe_adv_rx_desc *) rz->addr;
3191
3192         /*
3193          * Certain constraints must be met in order to use the bulk buffer
3194          * allocation Rx burst function. If any of Rx queues doesn't meet them
3195          * the feature should be disabled for the whole port.
3196          */
3197         if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
3198                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Rx Bulk Alloc "
3199                                     "preconditions - canceling the feature for "
3200                                     "the whole port[%d]",
3201                              rxq->queue_id, rxq->port_id);
3202                 adapter->rx_bulk_alloc_allowed = false;
3203         }
3204
3205         /*
3206          * Allocate software ring. Allow for space at the end of the
3207          * S/W ring to make sure look-ahead logic in bulk alloc Rx burst
3208          * function does not access an invalid memory region.
3209          */
3210         len = nb_desc;
3211         if (adapter->rx_bulk_alloc_allowed)
3212                 len += RTE_PMD_IXGBE_RX_MAX_BURST;
3213
3214         rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
3215                                           sizeof(struct ixgbe_rx_entry) * len,
3216                                           RTE_CACHE_LINE_SIZE, socket_id);
3217         if (!rxq->sw_ring) {
3218                 ixgbe_rx_queue_release(rxq);
3219                 return -ENOMEM;
3220         }
3221
3222         /*
3223          * Always allocate even if it's not going to be needed in order to
3224          * simplify the code.
3225          *
3226          * This ring is used in LRO and Scattered Rx cases and Scattered Rx may
3227          * be requested in ixgbe_dev_rx_init(), which is called later from
3228          * dev_start() flow.
3229          */
3230         rxq->sw_sc_ring =
3231                 rte_zmalloc_socket("rxq->sw_sc_ring",
3232                                    sizeof(struct ixgbe_scattered_rx_entry) * len,
3233                                    RTE_CACHE_LINE_SIZE, socket_id);
3234         if (!rxq->sw_sc_ring) {
3235                 ixgbe_rx_queue_release(rxq);
3236                 return -ENOMEM;
3237         }
3238
3239         PMD_INIT_LOG(DEBUG, "sw_ring=%p sw_sc_ring=%p hw_ring=%p "
3240                             "dma_addr=0x%"PRIx64,
3241                      rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
3242                      rxq->rx_ring_phys_addr);
3243
3244         if (!rte_is_power_of_2(nb_desc)) {
3245                 PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Vector Rx "
3246                                     "preconditions - canceling the feature for "
3247                                     "the whole port[%d]",
3248                              rxq->queue_id, rxq->port_id);
3249                 adapter->rx_vec_allowed = false;
3250         } else
3251                 ixgbe_rxq_vec_setup(rxq);
3252
3253         dev->data->rx_queues[queue_idx] = rxq;
3254
3255         ixgbe_reset_rx_queue(adapter, rxq);
3256
3257         return 0;
3258 }
3259
3260 uint32_t
3261 ixgbe_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
3262 {
3263 #define IXGBE_RXQ_SCAN_INTERVAL 4
3264         volatile union ixgbe_adv_rx_desc *rxdp;
3265         struct ixgbe_rx_queue *rxq;
3266         uint32_t desc = 0;
3267
3268         rxq = dev->data->rx_queues[rx_queue_id];
3269         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
3270
3271         while ((desc < rxq->nb_rx_desc) &&
3272                 (rxdp->wb.upper.status_error &
3273                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))) {
3274                 desc += IXGBE_RXQ_SCAN_INTERVAL;
3275                 rxdp += IXGBE_RXQ_SCAN_INTERVAL;
3276                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
3277                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
3278                                 desc - rxq->nb_rx_desc]);
3279         }
3280
3281         return desc;
3282 }
3283
3284 int
3285 ixgbe_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
3286 {
3287         volatile union ixgbe_adv_rx_desc *rxdp;
3288         struct ixgbe_rx_queue *rxq = rx_queue;
3289         uint32_t desc;
3290
3291         if (unlikely(offset >= rxq->nb_rx_desc))
3292                 return 0;
3293         desc = rxq->rx_tail + offset;
3294         if (desc >= rxq->nb_rx_desc)
3295                 desc -= rxq->nb_rx_desc;
3296
3297         rxdp = &rxq->rx_ring[desc];
3298         return !!(rxdp->wb.upper.status_error &
3299                         rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD));
3300 }
3301
3302 int
3303 ixgbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
3304 {
3305         struct ixgbe_rx_queue *rxq = rx_queue;
3306         volatile uint32_t *status;
3307         uint32_t nb_hold, desc;
3308
3309         if (unlikely(offset >= rxq->nb_rx_desc))
3310                 return -EINVAL;
3311
3312 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
3313         if (rxq->rx_using_sse)
3314                 nb_hold = rxq->rxrearm_nb;
3315         else
3316 #endif
3317                 nb_hold = rxq->nb_rx_hold;
3318         if (offset >= rxq->nb_rx_desc - nb_hold)
3319                 return RTE_ETH_RX_DESC_UNAVAIL;
3320
3321         desc = rxq->rx_tail + offset;
3322         if (desc >= rxq->nb_rx_desc)
3323                 desc -= rxq->nb_rx_desc;
3324
3325         status = &rxq->rx_ring[desc].wb.upper.status_error;
3326         if (*status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))
3327                 return RTE_ETH_RX_DESC_DONE;
3328
3329         return RTE_ETH_RX_DESC_AVAIL;
3330 }
3331
3332 int
3333 ixgbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
3334 {
3335         struct ixgbe_tx_queue *txq = tx_queue;
3336         volatile uint32_t *status;
3337         uint32_t desc;
3338
3339         if (unlikely(offset >= txq->nb_tx_desc))
3340                 return -EINVAL;
3341
3342         desc = txq->tx_tail + offset;
3343         /* go to next desc that has the RS bit */
3344         desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
3345                 txq->tx_rs_thresh;
3346         if (desc >= txq->nb_tx_desc) {
3347                 desc -= txq->nb_tx_desc;
3348                 if (desc >= txq->nb_tx_desc)
3349                         desc -= txq->nb_tx_desc;
3350         }
3351
3352         status = &txq->tx_ring[desc].wb.status;
3353         if (*status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD))
3354                 return RTE_ETH_TX_DESC_DONE;
3355
3356         return RTE_ETH_TX_DESC_FULL;
3357 }
3358
3359 /*
3360  * Set up link loopback for X540/X550 mode Tx->Rx.
3361  */
3362 static inline void __rte_cold
3363 ixgbe_setup_loopback_link_x540_x550(struct ixgbe_hw *hw, bool enable)
3364 {
3365         uint32_t macc;
3366         PMD_INIT_FUNC_TRACE();
3367
3368         u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
3369
3370         hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
3371                              IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &autoneg_reg);
3372         macc = IXGBE_READ_REG(hw, IXGBE_MACC);
3373
3374         if (enable) {
3375                 /* datasheet 15.2.1: disable AUTONEG (PHY Bit 7.0.C) */
3376                 autoneg_reg |= IXGBE_MII_AUTONEG_ENABLE;
3377                 /* datasheet 15.2.1: MACC.FLU = 1 (force link up) */
3378                 macc |= IXGBE_MACC_FLU;
3379         } else {
3380                 autoneg_reg &= ~IXGBE_MII_AUTONEG_ENABLE;
3381                 macc &= ~IXGBE_MACC_FLU;
3382         }
3383
3384         hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_CONTROL,
3385                               IXGBE_MDIO_AUTO_NEG_DEV_TYPE, autoneg_reg);
3386
3387         IXGBE_WRITE_REG(hw, IXGBE_MACC, macc);
3388 }
3389
3390 void __rte_cold
3391 ixgbe_dev_clear_queues(struct rte_eth_dev *dev)
3392 {
3393         unsigned i;
3394         struct ixgbe_adapter *adapter = dev->data->dev_private;
3395         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3396
3397         PMD_INIT_FUNC_TRACE();
3398
3399         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3400                 struct ixgbe_tx_queue *txq = dev->data->tx_queues[i];
3401
3402                 if (txq != NULL) {
3403                         txq->ops->release_mbufs(txq);
3404                         txq->ops->reset(txq);
3405                 }
3406         }
3407
3408         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3409                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
3410
3411                 if (rxq != NULL) {
3412                         ixgbe_rx_queue_release_mbufs(rxq);
3413                         ixgbe_reset_rx_queue(adapter, rxq);
3414                 }
3415         }
3416         /* If loopback mode was enabled, reconfigure the link accordingly */
3417         if (dev->data->dev_conf.lpbk_mode != 0) {
3418                 if (hw->mac.type == ixgbe_mac_X540 ||
3419                      hw->mac.type == ixgbe_mac_X550 ||
3420                      hw->mac.type == ixgbe_mac_X550EM_x ||
3421                      hw->mac.type == ixgbe_mac_X550EM_a)
3422                         ixgbe_setup_loopback_link_x540_x550(hw, false);
3423         }
3424 }
3425
3426 void
3427 ixgbe_dev_free_queues(struct rte_eth_dev *dev)
3428 {
3429         unsigned i;
3430
3431         PMD_INIT_FUNC_TRACE();
3432
3433         for (i = 0; i < dev->data->nb_rx_queues; i++) {
3434                 ixgbe_dev_rx_queue_release(dev, i);
3435                 dev->data->rx_queues[i] = NULL;
3436                 rte_eth_dma_zone_free(dev, "rx_ring", i);
3437         }
3438         dev->data->nb_rx_queues = 0;
3439
3440         for (i = 0; i < dev->data->nb_tx_queues; i++) {
3441                 ixgbe_dev_tx_queue_release(dev, i);
3442                 dev->data->tx_queues[i] = NULL;
3443                 rte_eth_dma_zone_free(dev, "tx_ring", i);
3444         }
3445         dev->data->nb_tx_queues = 0;
3446 }
3447
3448 /*********************************************************************
3449  *
3450  *  Device RX/TX init functions
3451  *
3452  **********************************************************************/
3453
3454 /**
3455  * Receive Side Scaling (RSS)
3456  * See section 7.1.2.8 in the following document:
3457  *     "Intel 82599 10 GbE Controller Datasheet" - Revision 2.1 October 2009
3458  *
3459  * Principles:
3460  * The source and destination IP addresses of the IP header and the source
3461  * and destination ports of TCP/UDP headers, if any, of received packets are
3462  * hashed against a configurable random key to compute a 32-bit RSS hash result.
3463  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
3464  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
3465  * RSS output index which is used as the RX queue index where to store the
3466  * received packets.
3467  * The following output is supplied in the RX write-back descriptor:
3468  *     - 32-bit result of the Microsoft RSS hash function,
3469  *     - 4-bit RSS type field.
3470  */
3471
3472 /*
3473  * RSS random key supplied in section 7.1.2.8.3 of the Intel 82599 datasheet.
3474  * Used as the default key.
3475  */
3476 static uint8_t rss_intel_key[40] = {
3477         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
3478         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
3479         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
3480         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
3481         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
3482 };
3483
3484 static void
3485 ixgbe_rss_disable(struct rte_eth_dev *dev)
3486 {
3487         struct ixgbe_hw *hw;
3488         uint32_t mrqc;
3489         uint32_t mrqc_reg;
3490
3491         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3492         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3493         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3494         mrqc &= ~IXGBE_MRQC_RSSEN;
3495         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3496 }
3497
3498 static void
3499 ixgbe_hw_rss_hash_set(struct ixgbe_hw *hw, struct rte_eth_rss_conf *rss_conf)
3500 {
3501         uint8_t  *hash_key;
3502         uint32_t mrqc;
3503         uint32_t rss_key;
3504         uint64_t rss_hf;
3505         uint16_t i;
3506         uint32_t mrqc_reg;
3507         uint32_t rssrk_reg;
3508
3509         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3510         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3511
3512         hash_key = rss_conf->rss_key;
3513         if (hash_key != NULL) {
3514                 /* Fill in RSS hash key */
3515                 for (i = 0; i < 10; i++) {
3516                         rss_key  = hash_key[(i * 4)];
3517                         rss_key |= hash_key[(i * 4) + 1] << 8;
3518                         rss_key |= hash_key[(i * 4) + 2] << 16;
3519                         rss_key |= hash_key[(i * 4) + 3] << 24;
3520                         IXGBE_WRITE_REG_ARRAY(hw, rssrk_reg, i, rss_key);
3521                 }
3522         }
3523
3524         /* Set configured hashing protocols in MRQC register */
3525         rss_hf = rss_conf->rss_hf;
3526         mrqc = IXGBE_MRQC_RSSEN; /* Enable RSS */
3527         if (rss_hf & ETH_RSS_IPV4)
3528                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4;
3529         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
3530                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_TCP;
3531         if (rss_hf & ETH_RSS_IPV6)
3532                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6;
3533         if (rss_hf & ETH_RSS_IPV6_EX)
3534                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX;
3535         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
3536                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_TCP;
3537         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
3538                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP;
3539         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
3540                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_UDP;
3541         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
3542                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_UDP;
3543         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
3544                 mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP;
3545         IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
3546 }
3547
3548 int
3549 ixgbe_dev_rss_hash_update(struct rte_eth_dev *dev,
3550                           struct rte_eth_rss_conf *rss_conf)
3551 {
3552         struct ixgbe_hw *hw;
3553         uint32_t mrqc;
3554         uint64_t rss_hf;
3555         uint32_t mrqc_reg;
3556
3557         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3558
3559         if (!ixgbe_rss_update_sp(hw->mac.type)) {
3560                 PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
3561                         "NIC.");
3562                 return -ENOTSUP;
3563         }
3564         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3565
3566         /*
3567          * Excerpt from section 7.1.2.8 Receive-Side Scaling (RSS):
3568          *     "RSS enabling cannot be done dynamically while it must be
3569          *      preceded by a software reset"
3570          * Before changing anything, first check that the update RSS operation
3571          * does not attempt to disable RSS, if RSS was enabled at
3572          * initialization time, or does not attempt to enable RSS, if RSS was
3573          * disabled at initialization time.
3574          */
3575         rss_hf = rss_conf->rss_hf & IXGBE_RSS_OFFLOAD_ALL;
3576         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3577         if (!(mrqc & IXGBE_MRQC_RSSEN)) { /* RSS disabled */
3578                 if (rss_hf != 0) /* Enable RSS */
3579                         return -(EINVAL);
3580                 return 0; /* Nothing to do */
3581         }
3582         /* RSS enabled */
3583         if (rss_hf == 0) /* Disable RSS */
3584                 return -(EINVAL);
3585         ixgbe_hw_rss_hash_set(hw, rss_conf);
3586         return 0;
3587 }
3588
3589 int
3590 ixgbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
3591                             struct rte_eth_rss_conf *rss_conf)
3592 {
3593         struct ixgbe_hw *hw;
3594         uint8_t *hash_key;
3595         uint32_t mrqc;
3596         uint32_t rss_key;
3597         uint64_t rss_hf;
3598         uint16_t i;
3599         uint32_t mrqc_reg;
3600         uint32_t rssrk_reg;
3601
3602         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3603         mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
3604         rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
3605         hash_key = rss_conf->rss_key;
3606         if (hash_key != NULL) {
3607                 /* Return RSS hash key */
3608                 for (i = 0; i < 10; i++) {
3609                         rss_key = IXGBE_READ_REG_ARRAY(hw, rssrk_reg, i);
3610                         hash_key[(i * 4)] = rss_key & 0x000000FF;
3611                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
3612                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
3613                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
3614                 }
3615         }
3616
3617         /* Get RSS functions configured in MRQC register */
3618         mrqc = IXGBE_READ_REG(hw, mrqc_reg);
3619         if ((mrqc & IXGBE_MRQC_RSSEN) == 0) { /* RSS is disabled */
3620                 rss_conf->rss_hf = 0;
3621                 return 0;
3622         }
3623         rss_hf = 0;
3624         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4)
3625                 rss_hf |= ETH_RSS_IPV4;
3626         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_TCP)
3627                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
3628         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6)
3629                 rss_hf |= ETH_RSS_IPV6;
3630         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX)
3631                 rss_hf |= ETH_RSS_IPV6_EX;
3632         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_TCP)
3633                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
3634         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP)
3635                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
3636         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_UDP)
3637                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
3638         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_UDP)
3639                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
3640         if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP)
3641                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
3642         rss_conf->rss_hf = rss_hf;
3643         return 0;
3644 }
3645
3646 static void
3647 ixgbe_rss_configure(struct rte_eth_dev *dev)
3648 {
3649         struct rte_eth_rss_conf rss_conf;
3650         struct ixgbe_adapter *adapter;
3651         struct ixgbe_hw *hw;
3652         uint32_t reta;
3653         uint16_t i;
3654         uint16_t j;
3655         uint16_t sp_reta_size;
3656         uint32_t reta_reg;
3657
3658         PMD_INIT_FUNC_TRACE();
3659         adapter = dev->data->dev_private;
3660         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3661
3662         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
3663
3664         /*
3665          * Fill in redirection table
3666          * The byte-swap is needed because NIC registers are in
3667          * little-endian order.
3668          */
3669         if (adapter->rss_reta_updated == 0) {
3670                 reta = 0;
3671                 for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
3672                         reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
3673
3674                         if (j == dev->data->nb_rx_queues)
3675                                 j = 0;
3676                         reta = (reta << 8) | j;
3677                         if ((i & 3) == 3)
3678                                 IXGBE_WRITE_REG(hw, reta_reg,
3679                                                 rte_bswap32(reta));
3680                 }
3681         }
3682
3683         /*
3684          * Configure the RSS key and the RSS protocols used to compute
3685          * the RSS hash of input packets.
3686          */
3687         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
3688         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
3689                 ixgbe_rss_disable(dev);
3690                 return;
3691         }
3692         if (rss_conf.rss_key == NULL)
3693                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
3694         ixgbe_hw_rss_hash_set(hw, &rss_conf);
3695 }
3696
3697 #define NUM_VFTA_REGISTERS 128
3698 #define NIC_RX_BUFFER_SIZE 0x200
3699 #define X550_RX_BUFFER_SIZE 0x180
3700
3701 static void
3702 ixgbe_vmdq_dcb_configure(struct rte_eth_dev *dev)
3703 {
3704         struct rte_eth_vmdq_dcb_conf *cfg;
3705         struct ixgbe_hw *hw;
3706         enum rte_eth_nb_pools num_pools;
3707         uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl;
3708         uint16_t pbsize;
3709         uint8_t nb_tcs; /* number of traffic classes */
3710         int i;
3711
3712         PMD_INIT_FUNC_TRACE();
3713         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3714         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3715         num_pools = cfg->nb_queue_pools;
3716         /* Check we have a valid number of pools */
3717         if (num_pools != ETH_16_POOLS && num_pools != ETH_32_POOLS) {
3718                 ixgbe_rss_disable(dev);
3719                 return;
3720         }
3721         /* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */
3722         nb_tcs = (uint8_t)(ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools);
3723
3724         /*
3725          * RXPBSIZE
3726          * split rx buffer up into sections, each for 1 traffic class
3727          */
3728         switch (hw->mac.type) {
3729         case ixgbe_mac_X550:
3730         case ixgbe_mac_X550EM_x:
3731         case ixgbe_mac_X550EM_a:
3732                 pbsize = (uint16_t)(X550_RX_BUFFER_SIZE / nb_tcs);
3733                 break;
3734         default:
3735                 pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
3736                 break;
3737         }
3738         for (i = 0; i < nb_tcs; i++) {
3739                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3740
3741                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3742                 /* clear 10 bits. */
3743                 rxpbsize |= (pbsize << IXGBE_RXPBSIZE_SHIFT); /* set value */
3744                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3745         }
3746         /* zero alloc all unused TCs */
3747         for (i = nb_tcs; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3748                 uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
3749
3750                 rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
3751                 /* clear 10 bits. */
3752                 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
3753         }
3754
3755         /* MRQC: enable vmdq and dcb */
3756         mrqc = (num_pools == ETH_16_POOLS) ?
3757                 IXGBE_MRQC_VMDQRT8TCEN : IXGBE_MRQC_VMDQRT4TCEN;
3758         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
3759
3760         /* PFVTCTL: turn on virtualisation and set the default pool */
3761         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
3762         if (cfg->enable_default_pool) {
3763                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
3764         } else {
3765                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
3766         }
3767
3768         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
3769
3770         /* RTRUP2TC: mapping user priorities to traffic classes (TCs) */
3771         queue_mapping = 0;
3772         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++)
3773                 /*
3774                  * mapping is done with 3 bits per priority,
3775                  * so shift by i*3 each time
3776                  */
3777                 queue_mapping |= ((cfg->dcb_tc[i] & 0x07) << (i * 3));
3778
3779         IXGBE_WRITE_REG(hw, IXGBE_RTRUP2TC, queue_mapping);
3780
3781         /* RTRPCS: DCB related */
3782         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, IXGBE_RMCS_RRM);
3783
3784         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
3785         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
3786         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
3787         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
3788
3789         /* VFTA - enable all vlan filters */
3790         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
3791                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
3792         }
3793
3794         /* VFRE: pool enabling for receive - 16 or 32 */
3795         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0),
3796                         num_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3797
3798         /*
3799          * MPSAR - allow pools to read specific mac addresses
3800          * In this case, all pools should be able to read from mac addr 0
3801          */
3802         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), 0xFFFFFFFF);
3803         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), 0xFFFFFFFF);
3804
3805         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
3806         for (i = 0; i < cfg->nb_pool_maps; i++) {
3807                 /* set vlan id in VF register and set the valid bit */
3808                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
3809                                 (cfg->pool_map[i].vlan_id & 0xFFF)));
3810                 /*
3811                  * Put the allowed pools in VFB reg. As we only have 16 or 32
3812                  * pools, we only need to use the first half of the register
3813                  * i.e. bits 0-31
3814                  */
3815                 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i*2), cfg->pool_map[i].pools);
3816         }
3817 }
3818
3819 /**
3820  * ixgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters
3821  * @dev: pointer to eth_dev structure
3822  * @dcb_config: pointer to ixgbe_dcb_config structure
3823  */
3824 static void
3825 ixgbe_dcb_tx_hw_config(struct rte_eth_dev *dev,
3826                        struct ixgbe_dcb_config *dcb_config)
3827 {
3828         uint32_t reg;
3829         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3830
3831         PMD_INIT_FUNC_TRACE();
3832         if (hw->mac.type != ixgbe_mac_82598EB) {
3833                 /* Disable the Tx desc arbiter so that MTQC can be changed */
3834                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3835                 reg |= IXGBE_RTTDCS_ARBDIS;
3836                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3837
3838                 /* Enable DCB for Tx with 8 TCs */
3839                 if (dcb_config->num_tcs.pg_tcs == 8) {
3840                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_8TC_8TQ;
3841                 } else {
3842                         reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_4TC_4TQ;
3843                 }
3844                 if (dcb_config->vt_mode)
3845                         reg |= IXGBE_MTQC_VT_ENA;
3846                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
3847
3848                 /* Enable the Tx desc arbiter */
3849                 reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
3850                 reg &= ~IXGBE_RTTDCS_ARBDIS;
3851                 IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
3852
3853                 /* Enable Security TX Buffer IFG for DCB */
3854                 reg = IXGBE_READ_REG(hw, IXGBE_SECTXMINIFG);
3855                 reg |= IXGBE_SECTX_DCB;
3856                 IXGBE_WRITE_REG(hw, IXGBE_SECTXMINIFG, reg);
3857         }
3858 }
3859
3860 /**
3861  * ixgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters
3862  * @dev: pointer to rte_eth_dev structure
3863  * @dcb_config: pointer to ixgbe_dcb_config structure
3864  */
3865 static void
3866 ixgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev,
3867                         struct ixgbe_dcb_config *dcb_config)
3868 {
3869         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3870                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3871         struct ixgbe_hw *hw =
3872                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3873
3874         PMD_INIT_FUNC_TRACE();
3875         if (hw->mac.type != ixgbe_mac_82598EB)
3876                 /*PF VF Transmit Enable*/
3877                 IXGBE_WRITE_REG(hw, IXGBE_VFTE(0),
3878                         vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
3879
3880         /*Configure general DCB TX parameters*/
3881         ixgbe_dcb_tx_hw_config(dev, dcb_config);
3882 }
3883
3884 static void
3885 ixgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev,
3886                         struct ixgbe_dcb_config *dcb_config)
3887 {
3888         struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
3889                         &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
3890         struct ixgbe_dcb_tc_config *tc;
3891         uint8_t i, j;
3892
3893         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3894         if (vmdq_rx_conf->nb_queue_pools == ETH_16_POOLS) {
3895                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3896                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3897         } else {
3898                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3899                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3900         }
3901
3902         /* Initialize User Priority to Traffic Class mapping */
3903         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3904                 tc = &dcb_config->tc_config[j];
3905                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3906         }
3907
3908         /* User Priority to Traffic Class mapping */
3909         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3910                 j = vmdq_rx_conf->dcb_tc[i];
3911                 tc = &dcb_config->tc_config[j];
3912                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3913                                                 (uint8_t)(1 << i);
3914         }
3915 }
3916
3917 static void
3918 ixgbe_dcb_vt_tx_config(struct rte_eth_dev *dev,
3919                         struct ixgbe_dcb_config *dcb_config)
3920 {
3921         struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3922                         &dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
3923         struct ixgbe_dcb_tc_config *tc;
3924         uint8_t i, j;
3925
3926         /* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
3927         if (vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS) {
3928                 dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
3929                 dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
3930         } else {
3931                 dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
3932                 dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
3933         }
3934
3935         /* Initialize User Priority to Traffic Class mapping */
3936         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3937                 tc = &dcb_config->tc_config[j];
3938                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3939         }
3940
3941         /* User Priority to Traffic Class mapping */
3942         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3943                 j = vmdq_tx_conf->dcb_tc[i];
3944                 tc = &dcb_config->tc_config[j];
3945                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
3946                                                 (uint8_t)(1 << i);
3947         }
3948 }
3949
3950 static void
3951 ixgbe_dcb_rx_config(struct rte_eth_dev *dev,
3952                 struct ixgbe_dcb_config *dcb_config)
3953 {
3954         struct rte_eth_dcb_rx_conf *rx_conf =
3955                         &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
3956         struct ixgbe_dcb_tc_config *tc;
3957         uint8_t i, j;
3958
3959         dcb_config->num_tcs.pg_tcs = (uint8_t)rx_conf->nb_tcs;
3960         dcb_config->num_tcs.pfc_tcs = (uint8_t)rx_conf->nb_tcs;
3961
3962         /* Initialize User Priority to Traffic Class mapping */
3963         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3964                 tc = &dcb_config->tc_config[j];
3965                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
3966         }
3967
3968         /* User Priority to Traffic Class mapping */
3969         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3970                 j = rx_conf->dcb_tc[i];
3971                 tc = &dcb_config->tc_config[j];
3972                 tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
3973                                                 (uint8_t)(1 << i);
3974         }
3975 }
3976
3977 static void
3978 ixgbe_dcb_tx_config(struct rte_eth_dev *dev,
3979                 struct ixgbe_dcb_config *dcb_config)
3980 {
3981         struct rte_eth_dcb_tx_conf *tx_conf =
3982                         &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
3983         struct ixgbe_dcb_tc_config *tc;
3984         uint8_t i, j;
3985
3986         dcb_config->num_tcs.pg_tcs = (uint8_t)tx_conf->nb_tcs;
3987         dcb_config->num_tcs.pfc_tcs = (uint8_t)tx_conf->nb_tcs;
3988
3989         /* Initialize User Priority to Traffic Class mapping */
3990         for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
3991                 tc = &dcb_config->tc_config[j];
3992                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
3993         }
3994
3995         /* User Priority to Traffic Class mapping */
3996         for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3997                 j = tx_conf->dcb_tc[i];
3998                 tc = &dcb_config->tc_config[j];
3999                 tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
4000                                                 (uint8_t)(1 << i);
4001         }
4002 }
4003
4004 /**
4005  * ixgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters
4006  * @dev: pointer to eth_dev structure
4007  * @dcb_config: pointer to ixgbe_dcb_config structure
4008  */
4009 static void
4010 ixgbe_dcb_rx_hw_config(struct rte_eth_dev *dev,
4011                        struct ixgbe_dcb_config *dcb_config)
4012 {
4013         uint32_t reg;
4014         uint32_t vlanctrl;
4015         uint8_t i;
4016         uint32_t q;
4017         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4018
4019         PMD_INIT_FUNC_TRACE();
4020         /*
4021          * Disable the arbiter before changing parameters
4022          * (always enable recycle mode; WSP)
4023          */
4024         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC | IXGBE_RTRPCS_ARBDIS;
4025         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
4026
4027         if (hw->mac.type != ixgbe_mac_82598EB) {
4028                 reg = IXGBE_READ_REG(hw, IXGBE_MRQC);
4029                 if (dcb_config->num_tcs.pg_tcs == 4) {
4030                         if (dcb_config->vt_mode)
4031                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
4032                                         IXGBE_MRQC_VMDQRT4TCEN;
4033                         else {
4034                                 /* no matter the mode is DCB or DCB_RSS, just
4035                                  * set the MRQE to RSSXTCEN. RSS is controlled
4036                                  * by RSS_FIELD
4037                                  */
4038                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
4039                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
4040                                         IXGBE_MRQC_RTRSS4TCEN;
4041                         }
4042                 }
4043                 if (dcb_config->num_tcs.pg_tcs == 8) {
4044                         if (dcb_config->vt_mode)
4045                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
4046                                         IXGBE_MRQC_VMDQRT8TCEN;
4047                         else {
4048                                 IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
4049                                 reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
4050                                         IXGBE_MRQC_RTRSS8TCEN;
4051                         }
4052                 }
4053
4054                 IXGBE_WRITE_REG(hw, IXGBE_MRQC, reg);
4055
4056                 if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4057                         /* Disable drop for all queues in VMDQ mode*/
4058                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4059                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4060                                                 (IXGBE_QDE_WRITE |
4061                                                  (q << IXGBE_QDE_IDX_SHIFT)));
4062                 } else {
4063                         /* Enable drop for all queues in SRIOV mode */
4064                         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4065                                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4066                                                 (IXGBE_QDE_WRITE |
4067                                                  (q << IXGBE_QDE_IDX_SHIFT) |
4068                                                  IXGBE_QDE_ENABLE));
4069                 }
4070         }
4071
4072         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
4073         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
4074         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
4075         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
4076
4077         /* VFTA - enable all vlan filters */
4078         for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
4079                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
4080         }
4081
4082         /*
4083          * Configure Rx packet plane (recycle mode; WSP) and
4084          * enable arbiter
4085          */
4086         reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC;
4087         IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
4088 }
4089
4090 static void
4091 ixgbe_dcb_hw_arbite_rx_config(struct ixgbe_hw *hw, uint16_t *refill,
4092                         uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
4093 {
4094         switch (hw->mac.type) {
4095         case ixgbe_mac_82598EB:
4096                 ixgbe_dcb_config_rx_arbiter_82598(hw, refill, max, tsa);
4097                 break;
4098         case ixgbe_mac_82599EB:
4099         case ixgbe_mac_X540:
4100         case ixgbe_mac_X550:
4101         case ixgbe_mac_X550EM_x:
4102         case ixgbe_mac_X550EM_a:
4103                 ixgbe_dcb_config_rx_arbiter_82599(hw, refill, max, bwg_id,
4104                                                   tsa, map);
4105                 break;
4106         default:
4107                 break;
4108         }
4109 }
4110
4111 static void
4112 ixgbe_dcb_hw_arbite_tx_config(struct ixgbe_hw *hw, uint16_t *refill, uint16_t *max,
4113                             uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
4114 {
4115         switch (hw->mac.type) {
4116         case ixgbe_mac_82598EB:
4117                 ixgbe_dcb_config_tx_desc_arbiter_82598(hw, refill, max, bwg_id, tsa);
4118                 ixgbe_dcb_config_tx_data_arbiter_82598(hw, refill, max, bwg_id, tsa);
4119                 break;
4120         case ixgbe_mac_82599EB:
4121         case ixgbe_mac_X540:
4122         case ixgbe_mac_X550:
4123         case ixgbe_mac_X550EM_x:
4124         case ixgbe_mac_X550EM_a:
4125                 ixgbe_dcb_config_tx_desc_arbiter_82599(hw, refill, max, bwg_id, tsa);
4126                 ixgbe_dcb_config_tx_data_arbiter_82599(hw, refill, max, bwg_id, tsa, map);
4127                 break;
4128         default:
4129                 break;
4130         }
4131 }
4132
4133 #define DCB_RX_CONFIG  1
4134 #define DCB_TX_CONFIG  1
4135 #define DCB_TX_PB      1024
4136 /**
4137  * ixgbe_dcb_hw_configure - Enable DCB and configure
4138  * general DCB in VT mode and non-VT mode parameters
4139  * @dev: pointer to rte_eth_dev structure
4140  * @dcb_config: pointer to ixgbe_dcb_config structure
4141  */
4142 static int
4143 ixgbe_dcb_hw_configure(struct rte_eth_dev *dev,
4144                         struct ixgbe_dcb_config *dcb_config)
4145 {
4146         int     ret = 0;
4147         uint8_t i, pfc_en, nb_tcs;
4148         uint16_t pbsize, rx_buffer_size;
4149         uint8_t config_dcb_rx = 0;
4150         uint8_t config_dcb_tx = 0;
4151         uint8_t tsa[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4152         uint8_t bwgid[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4153         uint16_t refill[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4154         uint16_t max[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4155         uint8_t map[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
4156         struct ixgbe_dcb_tc_config *tc;
4157         uint32_t max_frame = dev->data->mtu + RTE_ETHER_HDR_LEN +
4158                 RTE_ETHER_CRC_LEN;
4159         struct ixgbe_hw *hw =
4160                         IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4161         struct ixgbe_bw_conf *bw_conf =
4162                 IXGBE_DEV_PRIVATE_TO_BW_CONF(dev->data->dev_private);
4163
4164         switch (dev->data->dev_conf.rxmode.mq_mode) {
4165         case ETH_MQ_RX_VMDQ_DCB:
4166                 dcb_config->vt_mode = true;
4167                 if (hw->mac.type != ixgbe_mac_82598EB) {
4168                         config_dcb_rx = DCB_RX_CONFIG;
4169                         /*
4170                          *get dcb and VT rx configuration parameters
4171                          *from rte_eth_conf
4172                          */
4173                         ixgbe_vmdq_dcb_rx_config(dev, dcb_config);
4174                         /*Configure general VMDQ and DCB RX parameters*/
4175                         ixgbe_vmdq_dcb_configure(dev);
4176                 }
4177                 break;
4178         case ETH_MQ_RX_DCB:
4179         case ETH_MQ_RX_DCB_RSS:
4180                 dcb_config->vt_mode = false;
4181                 config_dcb_rx = DCB_RX_CONFIG;
4182                 /* Get dcb TX configuration parameters from rte_eth_conf */
4183                 ixgbe_dcb_rx_config(dev, dcb_config);
4184                 /*Configure general DCB RX parameters*/
4185                 ixgbe_dcb_rx_hw_config(dev, dcb_config);
4186                 break;
4187         default:
4188                 PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration");
4189                 break;
4190         }
4191         switch (dev->data->dev_conf.txmode.mq_mode) {
4192         case ETH_MQ_TX_VMDQ_DCB:
4193                 dcb_config->vt_mode = true;
4194                 config_dcb_tx = DCB_TX_CONFIG;
4195                 /* get DCB and VT TX configuration parameters
4196                  * from rte_eth_conf
4197                  */
4198                 ixgbe_dcb_vt_tx_config(dev, dcb_config);
4199                 /*Configure general VMDQ and DCB TX parameters*/
4200                 ixgbe_vmdq_dcb_hw_tx_config(dev, dcb_config);
4201                 break;
4202
4203         case ETH_MQ_TX_DCB:
4204                 dcb_config->vt_mode = false;
4205                 config_dcb_tx = DCB_TX_CONFIG;
4206                 /*get DCB TX configuration parameters from rte_eth_conf*/
4207                 ixgbe_dcb_tx_config(dev, dcb_config);
4208                 /*Configure general DCB TX parameters*/
4209                 ixgbe_dcb_tx_hw_config(dev, dcb_config);
4210                 break;
4211         default:
4212                 PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration");
4213                 break;
4214         }
4215
4216         nb_tcs = dcb_config->num_tcs.pfc_tcs;
4217         /* Unpack map */
4218         ixgbe_dcb_unpack_map_cee(dcb_config, IXGBE_DCB_RX_CONFIG, map);
4219         if (nb_tcs == ETH_4_TCS) {
4220                 /* Avoid un-configured priority mapping to TC0 */
4221                 uint8_t j = 4;
4222                 uint8_t mask = 0xFF;
4223
4224                 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES - 4; i++)
4225                         mask = (uint8_t)(mask & (~(1 << map[i])));
4226                 for (i = 0; mask && (i < IXGBE_DCB_MAX_TRAFFIC_CLASS); i++) {
4227                         if ((mask & 0x1) && (j < ETH_DCB_NUM_USER_PRIORITIES))
4228                                 map[j++] = i;
4229                         mask >>= 1;
4230                 }
4231                 /* Re-configure 4 TCs BW */
4232                 for (i = 0; i < nb_tcs; i++) {
4233                         tc = &dcb_config->tc_config[i];
4234                         if (bw_conf->tc_num != nb_tcs)
4235                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4236                                         (uint8_t)(100 / nb_tcs);
4237                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4238                                                 (uint8_t)(100 / nb_tcs);
4239                 }
4240                 for (; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
4241                         tc = &dcb_config->tc_config[i];
4242                         tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent = 0;
4243                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent = 0;
4244                 }
4245         } else {
4246                 /* Re-configure 8 TCs BW */
4247                 for (i = 0; i < nb_tcs; i++) {
4248                         tc = &dcb_config->tc_config[i];
4249                         if (bw_conf->tc_num != nb_tcs)
4250                                 tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
4251                                         (uint8_t)(100 / nb_tcs + (i & 1));
4252                         tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
4253                                 (uint8_t)(100 / nb_tcs + (i & 1));
4254                 }
4255         }
4256
4257         switch (hw->mac.type) {
4258         case ixgbe_mac_X550:
4259         case ixgbe_mac_X550EM_x:
4260         case ixgbe_mac_X550EM_a:
4261                 rx_buffer_size = X550_RX_BUFFER_SIZE;
4262                 break;
4263         default:
4264                 rx_buffer_size = NIC_RX_BUFFER_SIZE;
4265                 break;
4266         }
4267
4268         if (config_dcb_rx) {
4269                 /* Set RX buffer size */
4270                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4271                 uint32_t rxpbsize = pbsize << IXGBE_RXPBSIZE_SHIFT;
4272
4273                 for (i = 0; i < nb_tcs; i++) {
4274                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
4275                 }
4276                 /* zero alloc all unused TCs */
4277                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4278                         IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4279                 }
4280         }
4281         if (config_dcb_tx) {
4282                 /* Only support an equally distributed
4283                  *  Tx packet buffer strategy.
4284                  */
4285                 uint32_t txpktsize = IXGBE_TXPBSIZE_MAX / nb_tcs;
4286                 uint32_t txpbthresh = (txpktsize / DCB_TX_PB) - IXGBE_TXPKT_SIZE_MAX;
4287
4288                 for (i = 0; i < nb_tcs; i++) {
4289                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4290                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4291                 }
4292                 /* Clear unused TCs, if any, to zero buffer size*/
4293                 for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
4294                         IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4295                         IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4296                 }
4297         }
4298
4299         /*Calculates traffic class credits*/
4300         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4301                                 IXGBE_DCB_TX_CONFIG);
4302         ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
4303                                 IXGBE_DCB_RX_CONFIG);
4304
4305         if (config_dcb_rx) {
4306                 /* Unpack CEE standard containers */
4307                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_RX_CONFIG, refill);
4308                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4309                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_RX_CONFIG, bwgid);
4310                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_RX_CONFIG, tsa);
4311                 /* Configure PG(ETS) RX */
4312                 ixgbe_dcb_hw_arbite_rx_config(hw, refill, max, bwgid, tsa, map);
4313         }
4314
4315         if (config_dcb_tx) {
4316                 /* Unpack CEE standard containers */
4317                 ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_TX_CONFIG, refill);
4318                 ixgbe_dcb_unpack_max_cee(dcb_config, max);
4319                 ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_TX_CONFIG, bwgid);
4320                 ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_TX_CONFIG, tsa);
4321                 /* Configure PG(ETS) TX */
4322                 ixgbe_dcb_hw_arbite_tx_config(hw, refill, max, bwgid, tsa, map);
4323         }
4324
4325         /*Configure queue statistics registers*/
4326         ixgbe_dcb_config_tc_stats_82599(hw, dcb_config);
4327
4328         /* Check if the PFC is supported */
4329         if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) {
4330                 pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
4331                 for (i = 0; i < nb_tcs; i++) {
4332                         /*
4333                         * If the TC count is 8,and the default high_water is 48,
4334                         * the low_water is 16 as default.
4335                         */
4336                         hw->fc.high_water[i] = (pbsize * 3) / 4;
4337                         hw->fc.low_water[i] = pbsize / 4;
4338                         /* Enable pfc for this TC */
4339                         tc = &dcb_config->tc_config[i];
4340                         tc->pfc = ixgbe_dcb_pfc_enabled;
4341                 }
4342                 ixgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en);
4343                 if (dcb_config->num_tcs.pfc_tcs == ETH_4_TCS)
4344                         pfc_en &= 0x0F;
4345                 ret = ixgbe_dcb_config_pfc(hw, pfc_en, map);
4346         }
4347
4348         return ret;
4349 }
4350
4351 /**
4352  * ixgbe_configure_dcb - Configure DCB  Hardware
4353  * @dev: pointer to rte_eth_dev
4354  */
4355 void ixgbe_configure_dcb(struct rte_eth_dev *dev)
4356 {
4357         struct ixgbe_dcb_config *dcb_cfg =
4358                         IXGBE_DEV_PRIVATE_TO_DCB_CFG(dev->data->dev_private);
4359         struct rte_eth_conf *dev_conf = &(dev->data->dev_conf);
4360
4361         PMD_INIT_FUNC_TRACE();
4362
4363         /* check support mq_mode for DCB */
4364         if ((dev_conf->rxmode.mq_mode != ETH_MQ_RX_VMDQ_DCB) &&
4365             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB) &&
4366             (dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB_RSS))
4367                 return;
4368
4369         if (dev->data->nb_rx_queues > ETH_DCB_NUM_QUEUES)
4370                 return;
4371
4372         /** Configure DCB hardware **/
4373         ixgbe_dcb_hw_configure(dev, dcb_cfg);
4374 }
4375
4376 /*
4377  * VMDq only support for 10 GbE NIC.
4378  */
4379 static void
4380 ixgbe_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
4381 {
4382         struct rte_eth_vmdq_rx_conf *cfg;
4383         struct ixgbe_hw *hw;
4384         enum rte_eth_nb_pools num_pools;
4385         uint32_t mrqc, vt_ctl, vlanctrl;
4386         uint32_t vmolr = 0;
4387         int i;
4388
4389         PMD_INIT_FUNC_TRACE();
4390         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4391         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
4392         num_pools = cfg->nb_queue_pools;
4393
4394         ixgbe_rss_disable(dev);
4395
4396         /* MRQC: enable vmdq */
4397         mrqc = IXGBE_MRQC_VMDQEN;
4398         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4399
4400         /* PFVTCTL: turn on virtualisation and set the default pool */
4401         vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
4402         if (cfg->enable_default_pool)
4403                 vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
4404         else
4405                 vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
4406
4407         IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
4408
4409         for (i = 0; i < (int)num_pools; i++) {
4410                 vmolr = ixgbe_convert_vm_rx_mask_to_val(cfg->rx_mode, vmolr);
4411                 IXGBE_WRITE_REG(hw, IXGBE_VMOLR(i), vmolr);
4412         }
4413
4414         /* VLNCTRL: enable vlan filtering and allow all vlan tags through */
4415         vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
4416         vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
4417         IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
4418
4419         /* VFTA - enable all vlan filters */
4420         for (i = 0; i < NUM_VFTA_REGISTERS; i++)
4421                 IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), UINT32_MAX);
4422
4423         /* VFRE: pool enabling for receive - 64 */
4424         IXGBE_WRITE_REG(hw, IXGBE_VFRE(0), UINT32_MAX);
4425         if (num_pools == ETH_64_POOLS)
4426                 IXGBE_WRITE_REG(hw, IXGBE_VFRE(1), UINT32_MAX);
4427
4428         /*
4429          * MPSAR - allow pools to read specific mac addresses
4430          * In this case, all pools should be able to read from mac addr 0
4431          */
4432         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), UINT32_MAX);
4433         IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), UINT32_MAX);
4434
4435         /* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
4436         for (i = 0; i < cfg->nb_pool_maps; i++) {
4437                 /* set vlan id in VF register and set the valid bit */
4438                 IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
4439                                 (cfg->pool_map[i].vlan_id & IXGBE_RXD_VLAN_ID_MASK)));
4440                 /*
4441                  * Put the allowed pools in VFB reg. As we only have 16 or 64
4442                  * pools, we only need to use the first half of the register
4443                  * i.e. bits 0-31
4444                  */
4445                 if (((cfg->pool_map[i].pools >> 32) & UINT32_MAX) == 0)
4446                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i * 2),
4447                                         (cfg->pool_map[i].pools & UINT32_MAX));
4448                 else
4449                         IXGBE_WRITE_REG(hw, IXGBE_VLVFB((i * 2 + 1)),
4450                                         ((cfg->pool_map[i].pools >> 32) & UINT32_MAX));
4451
4452         }
4453
4454         /* PFDMA Tx General Switch Control Enables VMDQ loopback */
4455         if (cfg->enable_loop_back) {
4456                 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, IXGBE_PFDTXGSWC_VT_LBEN);
4457                 for (i = 0; i < RTE_IXGBE_VMTXSW_REGISTER_COUNT; i++)
4458                         IXGBE_WRITE_REG(hw, IXGBE_VMTXSW(i), UINT32_MAX);
4459         }
4460
4461         IXGBE_WRITE_FLUSH(hw);
4462 }
4463
4464 /*
4465  * ixgbe_dcb_config_tx_hw_config - Configure general VMDq TX parameters
4466  * @hw: pointer to hardware structure
4467  */
4468 static void
4469 ixgbe_vmdq_tx_hw_configure(struct ixgbe_hw *hw)
4470 {
4471         uint32_t reg;
4472         uint32_t q;
4473
4474         PMD_INIT_FUNC_TRACE();
4475         /*PF VF Transmit Enable*/
4476         IXGBE_WRITE_REG(hw, IXGBE_VFTE(0), UINT32_MAX);
4477         IXGBE_WRITE_REG(hw, IXGBE_VFTE(1), UINT32_MAX);
4478
4479         /* Disable the Tx desc arbiter so that MTQC can be changed */
4480         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4481         reg |= IXGBE_RTTDCS_ARBDIS;
4482         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4483
4484         reg = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4485         IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
4486
4487         /* Disable drop for all queues */
4488         for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
4489                 IXGBE_WRITE_REG(hw, IXGBE_QDE,
4490                   (IXGBE_QDE_WRITE | (q << IXGBE_QDE_IDX_SHIFT)));
4491
4492         /* Enable the Tx desc arbiter */
4493         reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4494         reg &= ~IXGBE_RTTDCS_ARBDIS;
4495         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
4496
4497         IXGBE_WRITE_FLUSH(hw);
4498 }
4499
4500 static int __rte_cold
4501 ixgbe_alloc_rx_queue_mbufs(struct ixgbe_rx_queue *rxq)
4502 {
4503         struct ixgbe_rx_entry *rxe = rxq->sw_ring;
4504         uint64_t dma_addr;
4505         unsigned int i;
4506
4507         /* Initialize software ring entries */
4508         for (i = 0; i < rxq->nb_rx_desc; i++) {
4509                 volatile union ixgbe_adv_rx_desc *rxd;
4510                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
4511
4512                 if (mbuf == NULL) {
4513                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
4514                                      (unsigned) rxq->queue_id);
4515                         return -ENOMEM;
4516                 }
4517
4518                 mbuf->data_off = RTE_PKTMBUF_HEADROOM;
4519                 mbuf->port = rxq->port_id;
4520
4521                 dma_addr =
4522                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
4523                 rxd = &rxq->rx_ring[i];
4524                 rxd->read.hdr_addr = 0;
4525                 rxd->read.pkt_addr = dma_addr;
4526                 rxe[i].mbuf = mbuf;
4527         }
4528
4529         return 0;
4530 }
4531
4532 static int
4533 ixgbe_config_vf_rss(struct rte_eth_dev *dev)
4534 {
4535         struct ixgbe_hw *hw;
4536         uint32_t mrqc;
4537
4538         ixgbe_rss_configure(dev);
4539
4540         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4541
4542         /* MRQC: enable VF RSS */
4543         mrqc = IXGBE_READ_REG(hw, IXGBE_MRQC);
4544         mrqc &= ~IXGBE_MRQC_MRQE_MASK;
4545         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4546         case ETH_64_POOLS:
4547                 mrqc |= IXGBE_MRQC_VMDQRSS64EN;
4548                 break;
4549
4550         case ETH_32_POOLS:
4551                 mrqc |= IXGBE_MRQC_VMDQRSS32EN;
4552                 break;
4553
4554         default:
4555                 PMD_INIT_LOG(ERR, "Invalid pool number in IOV mode with VMDQ RSS");
4556                 return -EINVAL;
4557         }
4558
4559         IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
4560
4561         return 0;
4562 }
4563
4564 static int
4565 ixgbe_config_vf_default(struct rte_eth_dev *dev)
4566 {
4567         struct ixgbe_hw *hw =
4568                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4569
4570         switch (RTE_ETH_DEV_SRIOV(dev).active) {
4571         case ETH_64_POOLS:
4572                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4573                         IXGBE_MRQC_VMDQEN);
4574                 break;
4575
4576         case ETH_32_POOLS:
4577                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4578                         IXGBE_MRQC_VMDQRT4TCEN);
4579                 break;
4580
4581         case ETH_16_POOLS:
4582                 IXGBE_WRITE_REG(hw, IXGBE_MRQC,
4583                         IXGBE_MRQC_VMDQRT8TCEN);
4584                 break;
4585         default:
4586                 PMD_INIT_LOG(ERR,
4587                         "invalid pool number in IOV mode");
4588                 break;
4589         }
4590         return 0;
4591 }
4592
4593 static int
4594 ixgbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
4595 {
4596         struct ixgbe_hw *hw =
4597                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4598
4599         if (hw->mac.type == ixgbe_mac_82598EB)
4600                 return 0;
4601
4602         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4603                 /*
4604                  * SRIOV inactive scheme
4605                  * any DCB/RSS w/o VMDq multi-queue setting
4606                  */
4607                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4608                 case ETH_MQ_RX_RSS:
4609                 case ETH_MQ_RX_DCB_RSS:
4610                 case ETH_MQ_RX_VMDQ_RSS:
4611                         ixgbe_rss_configure(dev);
4612                         break;
4613
4614                 case ETH_MQ_RX_VMDQ_DCB:
4615                         ixgbe_vmdq_dcb_configure(dev);
4616                         break;
4617
4618                 case ETH_MQ_RX_VMDQ_ONLY:
4619                         ixgbe_vmdq_rx_hw_configure(dev);
4620                         break;
4621
4622                 case ETH_MQ_RX_NONE:
4623                 default:
4624                         /* if mq_mode is none, disable rss mode.*/
4625                         ixgbe_rss_disable(dev);
4626                         break;
4627                 }
4628         } else {
4629                 /* SRIOV active scheme
4630                  * Support RSS together with SRIOV.
4631                  */
4632                 switch (dev->data->dev_conf.rxmode.mq_mode) {
4633                 case ETH_MQ_RX_RSS:
4634                 case ETH_MQ_RX_VMDQ_RSS:
4635                         ixgbe_config_vf_rss(dev);
4636                         break;
4637                 case ETH_MQ_RX_VMDQ_DCB:
4638                 case ETH_MQ_RX_DCB:
4639                 /* In SRIOV, the configuration is the same as VMDq case */
4640                         ixgbe_vmdq_dcb_configure(dev);
4641                         break;
4642                 /* DCB/RSS together with SRIOV is not supported */
4643                 case ETH_MQ_RX_VMDQ_DCB_RSS:
4644                 case ETH_MQ_RX_DCB_RSS:
4645                         PMD_INIT_LOG(ERR,
4646                                 "Could not support DCB/RSS with VMDq & SRIOV");
4647                         return -1;
4648                 default:
4649                         ixgbe_config_vf_default(dev);
4650                         break;
4651                 }
4652         }
4653
4654         return 0;
4655 }
4656
4657 static int
4658 ixgbe_dev_mq_tx_configure(struct rte_eth_dev *dev)
4659 {
4660         struct ixgbe_hw *hw =
4661                 IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4662         uint32_t mtqc;
4663         uint32_t rttdcs;
4664
4665         if (hw->mac.type == ixgbe_mac_82598EB)
4666                 return 0;
4667
4668         /* disable arbiter before setting MTQC */
4669         rttdcs = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
4670         rttdcs |= IXGBE_RTTDCS_ARBDIS;
4671         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4672
4673         if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
4674                 /*
4675                  * SRIOV inactive scheme
4676                  * any DCB w/o VMDq multi-queue setting
4677                  */
4678                 if (dev->data->dev_conf.txmode.mq_mode == ETH_MQ_TX_VMDQ_ONLY)
4679                         ixgbe_vmdq_tx_hw_configure(hw);
4680                 else {
4681                         mtqc = IXGBE_MTQC_64Q_1PB;
4682                         IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4683                 }
4684         } else {
4685                 switch (RTE_ETH_DEV_SRIOV(dev).active) {
4686
4687                 /*
4688                  * SRIOV active scheme
4689                  * FIXME if support DCB together with VMDq & SRIOV
4690                  */
4691                 case ETH_64_POOLS:
4692                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
4693                         break;
4694                 case ETH_32_POOLS:
4695                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_32VF;
4696                         break;
4697                 case ETH_16_POOLS:
4698                         mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_RT_ENA |
4699                                 IXGBE_MTQC_8TC_8TQ;
4700                         break;
4701                 default:
4702                         mtqc = IXGBE_MTQC_64Q_1PB;
4703                         PMD_INIT_LOG(ERR, "invalid pool number in IOV mode");
4704                 }
4705                 IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
4706         }
4707
4708         /* re-enable arbiter */
4709         rttdcs &= ~IXGBE_RTTDCS_ARBDIS;
4710         IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
4711
4712         return 0;
4713 }
4714
4715 /**
4716  * ixgbe_get_rscctl_maxdesc - Calculate the RSCCTL[n].MAXDESC for PF
4717  *
4718  * Return the RSCCTL[n].MAXDESC for 82599 and x540 PF devices according to the
4719  * spec rev. 3.0 chapter 8.2.3.8.13.
4720  *
4721  * @pool Memory pool of the Rx queue
4722  */
4723 static inline uint32_t
4724 ixgbe_get_rscctl_maxdesc(struct rte_mempool *pool)
4725 {
4726         struct rte_pktmbuf_pool_private *mp_priv = rte_mempool_get_priv(pool);
4727
4728         /* MAXDESC * SRRCTL.BSIZEPKT must not exceed 64 KB minus one */
4729         uint16_t maxdesc =
4730                 RTE_IPV4_MAX_PKT_LEN /
4731                         (mp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM);
4732
4733         if (maxdesc >= 16)
4734                 return IXGBE_RSCCTL_MAXDESC_16;
4735         else if (maxdesc >= 8)
4736                 return IXGBE_RSCCTL_MAXDESC_8;
4737         else if (maxdesc >= 4)
4738                 return IXGBE_RSCCTL_MAXDESC_4;
4739         else
4740                 return IXGBE_RSCCTL_MAXDESC_1;
4741 }
4742
4743 /**
4744  * ixgbe_set_ivar - Setup the correct IVAR register for a particular MSIX
4745  * interrupt
4746  *
4747  * (Taken from FreeBSD tree)
4748  * (yes this is all very magic and confusing :)
4749  *
4750  * @dev port handle
4751  * @entry the register array entry
4752  * @vector the MSIX vector for this queue
4753  * @type RX/TX/MISC
4754  */
4755 static void
4756 ixgbe_set_ivar(struct rte_eth_dev *dev, u8 entry, u8 vector, s8 type)
4757 {
4758         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4759         u32 ivar, index;
4760
4761         vector |= IXGBE_IVAR_ALLOC_VAL;
4762
4763         switch (hw->mac.type) {
4764
4765         case ixgbe_mac_82598EB:
4766                 if (type == -1)
4767                         entry = IXGBE_IVAR_OTHER_CAUSES_INDEX;
4768                 else
4769                         entry += (type * 64);
4770                 index = (entry >> 2) & 0x1F;
4771                 ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(index));
4772                 ivar &= ~(0xFF << (8 * (entry & 0x3)));
4773                 ivar |= (vector << (8 * (entry & 0x3)));
4774                 IXGBE_WRITE_REG(hw, IXGBE_IVAR(index), ivar);
4775                 break;
4776
4777         case ixgbe_mac_82599EB:
4778         case ixgbe_mac_X540:
4779                 if (type == -1) { /* MISC IVAR */
4780                         index = (entry & 1) * 8;
4781                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR_MISC);
4782                         ivar &= ~(0xFF << index);
4783                         ivar |= (vector << index);
4784                         IXGBE_WRITE_REG(hw, IXGBE_IVAR_MISC, ivar);
4785                 } else {        /* RX/TX IVARS */
4786                         index = (16 * (entry & 1)) + (8 * type);
4787                         ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(entry >> 1));
4788                         ivar &= ~(0xFF << index);
4789                         ivar |= (vector << index);
4790                         IXGBE_WRITE_REG(hw, IXGBE_IVAR(entry >> 1), ivar);
4791                 }
4792
4793                 break;
4794
4795         default:
4796                 break;
4797         }
4798 }
4799
4800 void __rte_cold
4801 ixgbe_set_rx_function(struct rte_eth_dev *dev)
4802 {
4803         uint16_t i, rx_using_sse;
4804         struct ixgbe_adapter *adapter = dev->data->dev_private;
4805
4806         /*
4807          * In order to allow Vector Rx there are a few configuration
4808          * conditions to be met and Rx Bulk Allocation should be allowed.
4809          */
4810         if (ixgbe_rx_vec_dev_conf_condition_check(dev) ||
4811             !adapter->rx_bulk_alloc_allowed ||
4812                         rte_vect_get_max_simd_bitwidth() < RTE_VECT_SIMD_128) {
4813                 PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet Vector Rx "
4814                                     "preconditions",
4815                              dev->data->port_id);
4816
4817                 adapter->rx_vec_allowed = false;
4818         }
4819
4820         /*
4821          * Initialize the appropriate LRO callback.
4822          *
4823          * If all queues satisfy the bulk allocation preconditions
4824          * (hw->rx_bulk_alloc_allowed is TRUE) then we may use bulk allocation.
4825          * Otherwise use a single allocation version.
4826          */
4827         if (dev->data->lro) {
4828                 if (adapter->rx_bulk_alloc_allowed) {
4829                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a bulk "
4830                                            "allocation version");
4831                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4832                 } else {
4833                         PMD_INIT_LOG(DEBUG, "LRO is requested. Using a single "
4834                                            "allocation version");
4835                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4836                 }
4837         } else if (dev->data->scattered_rx) {
4838                 /*
4839                  * Set the non-LRO scattered callback: there are Vector and
4840                  * single allocation versions.
4841                  */
4842                 if (adapter->rx_vec_allowed) {
4843                         PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
4844                                             "callback (port=%d).",
4845                                      dev->data->port_id);
4846
4847                         dev->rx_pkt_burst = ixgbe_recv_scattered_pkts_vec;
4848                 } else if (adapter->rx_bulk_alloc_allowed) {
4849                         PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
4850                                            "allocation callback (port=%d).",
4851                                      dev->data->port_id);
4852                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
4853                 } else {
4854                         PMD_INIT_LOG(DEBUG, "Using Regualr (non-vector, "
4855                                             "single allocation) "
4856                                             "Scattered Rx callback "
4857                                             "(port=%d).",
4858                                      dev->data->port_id);
4859
4860                         dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
4861                 }
4862         /*
4863          * Below we set "simple" callbacks according to port/queues parameters.
4864          * If parameters allow we are going to choose between the following
4865          * callbacks:
4866          *    - Vector
4867          *    - Bulk Allocation
4868          *    - Single buffer allocation (the simplest one)
4869          */
4870         } else if (adapter->rx_vec_allowed) {
4871                 PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
4872                                     "burst size no less than %d (port=%d).",
4873                              RTE_IXGBE_DESCS_PER_LOOP,
4874                              dev->data->port_id);
4875
4876                 dev->rx_pkt_burst = ixgbe_recv_pkts_vec;
4877         } else if (adapter->rx_bulk_alloc_allowed) {
4878                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
4879                                     "satisfied. Rx Burst Bulk Alloc function "
4880                                     "will be used on port=%d.",
4881                              dev->data->port_id);
4882
4883                 dev->rx_pkt_burst = ixgbe_recv_pkts_bulk_alloc;
4884         } else {
4885                 PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
4886                                     "satisfied, or Scattered Rx is requested "
4887                                     "(port=%d).",
4888                              dev->data->port_id);
4889
4890                 dev->rx_pkt_burst = ixgbe_recv_pkts;
4891         }
4892
4893         /* Propagate information about RX function choice through all queues. */
4894
4895         rx_using_sse =
4896                 (dev->rx_pkt_burst == ixgbe_recv_scattered_pkts_vec ||
4897                 dev->rx_pkt_burst == ixgbe_recv_pkts_vec);
4898
4899         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4900                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4901
4902                 rxq->rx_using_sse = rx_using_sse;
4903 #ifdef RTE_LIB_SECURITY
4904                 rxq->using_ipsec = !!(dev->data->dev_conf.rxmode.offloads &
4905                                 DEV_RX_OFFLOAD_SECURITY);
4906 #endif
4907         }
4908 }
4909
4910 /**
4911  * ixgbe_set_rsc - configure RSC related port HW registers
4912  *
4913  * Configures the port's RSC related registers according to the 4.6.7.2 chapter
4914  * of 82599 Spec (x540 configuration is virtually the same).
4915  *
4916  * @dev port handle
4917  *
4918  * Returns 0 in case of success or a non-zero error code
4919  */
4920 static int
4921 ixgbe_set_rsc(struct rte_eth_dev *dev)
4922 {
4923         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
4924         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4925         struct rte_eth_dev_info dev_info = { 0 };
4926         bool rsc_capable = false;
4927         uint16_t i;
4928         uint32_t rdrxctl;
4929         uint32_t rfctl;
4930
4931         /* Sanity check */
4932         dev->dev_ops->dev_infos_get(dev, &dev_info);
4933         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO)
4934                 rsc_capable = true;
4935
4936         if (!rsc_capable && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4937                 PMD_INIT_LOG(CRIT, "LRO is requested on HW that doesn't "
4938                                    "support it");
4939                 return -EINVAL;
4940         }
4941
4942         /* RSC global configuration (chapter 4.6.7.2.1 of 82599 Spec) */
4943
4944         if ((rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC) &&
4945              (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO)) {
4946                 /*
4947                  * According to chapter of 4.6.7.2.1 of the Spec Rev.
4948                  * 3.0 RSC configuration requires HW CRC stripping being
4949                  * enabled. If user requested both HW CRC stripping off
4950                  * and RSC on - return an error.
4951                  */
4952                 PMD_INIT_LOG(CRIT, "LRO can't be enabled when HW CRC "
4953                                     "is disabled");
4954                 return -EINVAL;
4955         }
4956
4957         /* RFCTL configuration  */
4958         rfctl = IXGBE_READ_REG(hw, IXGBE_RFCTL);
4959         if ((rsc_capable) && (rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4960                 rfctl &= ~IXGBE_RFCTL_RSC_DIS;
4961         else
4962                 rfctl |= IXGBE_RFCTL_RSC_DIS;
4963         /* disable NFS filtering */
4964         rfctl |= IXGBE_RFCTL_NFSW_DIS | IXGBE_RFCTL_NFSR_DIS;
4965         IXGBE_WRITE_REG(hw, IXGBE_RFCTL, rfctl);
4966
4967         /* If LRO hasn't been requested - we are done here. */
4968         if (!(rx_conf->offloads & DEV_RX_OFFLOAD_TCP_LRO))
4969                 return 0;
4970
4971         /* Set RDRXCTL.RSCACKC bit */
4972         rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
4973         rdrxctl |= IXGBE_RDRXCTL_RSCACKC;
4974         IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
4975
4976         /* Per-queue RSC configuration (chapter 4.6.7.2.2 of 82599 Spec) */
4977         for (i = 0; i < dev->data->nb_rx_queues; i++) {
4978                 struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
4979                 uint32_t srrctl =
4980                         IXGBE_READ_REG(hw, IXGBE_SRRCTL(rxq->reg_idx));
4981                 uint32_t rscctl =
4982                         IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxq->reg_idx));
4983                 uint32_t psrtype =
4984                         IXGBE_READ_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx));
4985                 uint32_t eitr =
4986                         IXGBE_READ_REG(hw, IXGBE_EITR(rxq->reg_idx));
4987
4988                 /*
4989                  * ixgbe PMD doesn't support header-split at the moment.
4990                  *
4991                  * Following the 4.6.7.2.1 chapter of the 82599/x540
4992                  * Spec if RSC is enabled the SRRCTL[n].BSIZEHEADER
4993                  * should be configured even if header split is not
4994                  * enabled. We will configure it 128 bytes following the
4995                  * recommendation in the spec.
4996                  */
4997                 srrctl &= ~IXGBE_SRRCTL_BSIZEHDR_MASK;
4998                 srrctl |= (128 << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
4999                                             IXGBE_SRRCTL_BSIZEHDR_MASK;
5000
5001                 /*
5002                  * TODO: Consider setting the Receive Descriptor Minimum
5003                  * Threshold Size for an RSC case. This is not an obviously
5004                  * beneficiary option but the one worth considering...
5005                  */
5006
5007                 rscctl |= IXGBE_RSCCTL_RSCEN;
5008                 rscctl |= ixgbe_get_rscctl_maxdesc(rxq->mb_pool);
5009                 psrtype |= IXGBE_PSRTYPE_TCPHDR;
5010
5011                 /*
5012                  * RSC: Set ITR interval corresponding to 2K ints/s.
5013                  *
5014                  * Full-sized RSC aggregations for a 10Gb/s link will
5015                  * arrive at about 20K aggregation/s rate.
5016                  *
5017                  * 2K inst/s rate will make only 10% of the
5018                  * aggregations to be closed due to the interrupt timer
5019                  * expiration for a streaming at wire-speed case.
5020                  *
5021                  * For a sparse streaming case this setting will yield
5022                  * at most 500us latency for a single RSC aggregation.
5023                  */
5024                 eitr &= ~IXGBE_EITR_ITR_INT_MASK;
5025                 eitr |= IXGBE_EITR_INTERVAL_US(IXGBE_QUEUE_ITR_INTERVAL_DEFAULT);
5026                 eitr |= IXGBE_EITR_CNT_WDIS;
5027
5028                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
5029                 IXGBE_WRITE_REG(hw, IXGBE_RSCCTL(rxq->reg_idx), rscctl);
5030                 IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx), psrtype);
5031                 IXGBE_WRITE_REG(hw, IXGBE_EITR(rxq->reg_idx), eitr);
5032
5033                 /*
5034                  * RSC requires the mapping of the queue to the
5035                  * interrupt vector.
5036                  */
5037                 ixgbe_set_ivar(dev, rxq->reg_idx, i, 0);
5038         }
5039
5040         dev->data->lro = 1;
5041
5042         PMD_INIT_LOG(DEBUG, "enabling LRO mode");
5043
5044         return 0;
5045 }
5046
5047 /*
5048  * Initializes Receive Unit.
5049  */
5050 int __rte_cold
5051 ixgbe_dev_rx_init(struct rte_eth_dev *dev)
5052 {
5053         struct ixgbe_hw     *hw;
5054         struct ixgbe_rx_queue *rxq;
5055         uint64_t bus_addr;
5056         uint32_t rxctrl;
5057         uint32_t fctrl;
5058         uint32_t hlreg0;
5059         uint32_t maxfrs;
5060         uint32_t srrctl;
5061         uint32_t rdrxctl;
5062         uint32_t rxcsum;
5063         uint16_t buf_size;
5064         uint16_t i;
5065         struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
5066         int rc;
5067
5068         PMD_INIT_FUNC_TRACE();
5069         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5070
5071         /*
5072          * Make sure receives are disabled while setting
5073          * up the RX context (registers, descriptor rings, etc.).
5074          */
5075         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5076         IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl & ~IXGBE_RXCTRL_RXEN);
5077
5078         /* Enable receipt of broadcasted frames */
5079         fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
5080         fctrl |= IXGBE_FCTRL_BAM;
5081         fctrl |= IXGBE_FCTRL_DPF;
5082         fctrl |= IXGBE_FCTRL_PMCF;
5083         IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
5084
5085         /*
5086          * Configure CRC stripping, if any.
5087          */
5088         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
5089         if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
5090                 hlreg0 &= ~IXGBE_HLREG0_RXCRCSTRP;
5091         else
5092                 hlreg0 |= IXGBE_HLREG0_RXCRCSTRP;
5093
5094         /*
5095          * Configure jumbo frame support, if any.
5096          */
5097         if (rx_conf->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
5098                 hlreg0 |= IXGBE_HLREG0_JUMBOEN;
5099                 maxfrs = IXGBE_READ_REG(hw, IXGBE_MAXFRS);
5100                 maxfrs &= 0x0000FFFF;
5101                 maxfrs |= (rx_conf->max_rx_pkt_len << 16);
5102                 IXGBE_WRITE_REG(hw, IXGBE_MAXFRS, maxfrs);
5103         } else
5104                 hlreg0 &= ~IXGBE_HLREG0_JUMBOEN;
5105
5106         /*
5107          * If loopback mode is configured, set LPBK bit.
5108          */
5109         if (dev->data->dev_conf.lpbk_mode != 0) {
5110                 rc = ixgbe_check_supported_loopback_mode(dev);
5111                 if (rc < 0) {
5112                         PMD_INIT_LOG(ERR, "Unsupported loopback mode");
5113                         return rc;
5114                 }
5115                 hlreg0 |= IXGBE_HLREG0_LPBK;
5116         } else {
5117                 hlreg0 &= ~IXGBE_HLREG0_LPBK;
5118         }
5119
5120         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
5121
5122         /*
5123          * Assume no header split and no VLAN strip support
5124          * on any Rx queue first .
5125          */
5126         rx_conf->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
5127         /* Setup RX queues */
5128         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5129                 rxq = dev->data->rx_queues[i];
5130
5131                 /*
5132                  * Reset crc_len in case it was changed after queue setup by a
5133                  * call to configure.
5134                  */
5135                 if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
5136                         rxq->crc_len = RTE_ETHER_CRC_LEN;
5137                 else
5138                         rxq->crc_len = 0;
5139
5140                 /* Setup the Base and Length of the Rx Descriptor Rings */
5141                 bus_addr = rxq->rx_ring_phys_addr;
5142                 IXGBE_WRITE_REG(hw, IXGBE_RDBAL(rxq->reg_idx),
5143                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5144                 IXGBE_WRITE_REG(hw, IXGBE_RDBAH(rxq->reg_idx),
5145                                 (uint32_t)(bus_addr >> 32));
5146                 IXGBE_WRITE_REG(hw, IXGBE_RDLEN(rxq->reg_idx),
5147                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
5148                 IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
5149                 IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), 0);
5150
5151                 /* Configure the SRRCTL register */
5152                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
5153
5154                 /* Set if packets are dropped when no descriptors available */
5155                 if (rxq->drop_en)
5156                         srrctl |= IXGBE_SRRCTL_DROP_EN;
5157
5158                 /*
5159                  * Configure the RX buffer size in the BSIZEPACKET field of
5160                  * the SRRCTL register of the queue.
5161                  * The value is in 1 KB resolution. Valid values can be from
5162                  * 1 KB to 16 KB.
5163                  */
5164                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
5165                         RTE_PKTMBUF_HEADROOM);
5166                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
5167                            IXGBE_SRRCTL_BSIZEPKT_MASK);
5168
5169                 IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
5170
5171                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5172                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5173
5174                 /* It adds dual VLAN length for supporting dual VLAN */
5175                 if (dev->data->dev_conf.rxmode.max_rx_pkt_len +
5176                                             2 * IXGBE_VLAN_TAG_SIZE > buf_size)
5177                         dev->data->scattered_rx = 1;
5178                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
5179                         rx_conf->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
5180         }
5181
5182         if (rx_conf->offloads & DEV_RX_OFFLOAD_SCATTER)
5183                 dev->data->scattered_rx = 1;
5184
5185         /*
5186          * Device configured with multiple RX queues.
5187          */
5188         ixgbe_dev_mq_rx_configure(dev);
5189
5190         /*
5191          * Setup the Checksum Register.
5192          * Disable Full-Packet Checksum which is mutually exclusive with RSS.
5193          * Enable IP/L4 checkum computation by hardware if requested to do so.
5194          */
5195         rxcsum = IXGBE_READ_REG(hw, IXGBE_RXCSUM);
5196         rxcsum |= IXGBE_RXCSUM_PCSD;
5197         if (rx_conf->offloads & DEV_RX_OFFLOAD_CHECKSUM)
5198                 rxcsum |= IXGBE_RXCSUM_IPPCSE;
5199         else
5200                 rxcsum &= ~IXGBE_RXCSUM_IPPCSE;
5201
5202         IXGBE_WRITE_REG(hw, IXGBE_RXCSUM, rxcsum);
5203
5204         if (hw->mac.type == ixgbe_mac_82599EB ||
5205             hw->mac.type == ixgbe_mac_X540) {
5206                 rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
5207                 if (rx_conf->offloads & DEV_RX_OFFLOAD_KEEP_CRC)
5208                         rdrxctl &= ~IXGBE_RDRXCTL_CRCSTRIP;
5209                 else
5210                         rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP;
5211                 rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE;
5212                 IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
5213         }
5214
5215         rc = ixgbe_set_rsc(dev);
5216         if (rc)
5217                 return rc;
5218
5219         ixgbe_set_rx_function(dev);
5220
5221         return 0;
5222 }
5223
5224 /*
5225  * Initializes Transmit Unit.
5226  */
5227 void __rte_cold
5228 ixgbe_dev_tx_init(struct rte_eth_dev *dev)
5229 {
5230         struct ixgbe_hw     *hw;
5231         struct ixgbe_tx_queue *txq;
5232         uint64_t bus_addr;
5233         uint32_t hlreg0;
5234         uint32_t txctrl;
5235         uint16_t i;
5236
5237         PMD_INIT_FUNC_TRACE();
5238         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5239
5240         /* Enable TX CRC (checksum offload requirement) and hw padding
5241          * (TSO requirement)
5242          */
5243         hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
5244         hlreg0 |= (IXGBE_HLREG0_TXCRCEN | IXGBE_HLREG0_TXPADEN);
5245         IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
5246
5247         /* Setup the Base and Length of the Tx Descriptor Rings */
5248         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5249                 txq = dev->data->tx_queues[i];
5250
5251                 bus_addr = txq->tx_ring_phys_addr;
5252                 IXGBE_WRITE_REG(hw, IXGBE_TDBAL(txq->reg_idx),
5253                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5254                 IXGBE_WRITE_REG(hw, IXGBE_TDBAH(txq->reg_idx),
5255                                 (uint32_t)(bus_addr >> 32));
5256                 IXGBE_WRITE_REG(hw, IXGBE_TDLEN(txq->reg_idx),
5257                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5258                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5259                 IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5260                 IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5261
5262                 /*
5263                  * Disable Tx Head Writeback RO bit, since this hoses
5264                  * bookkeeping if things aren't delivered in order.
5265                  */
5266                 switch (hw->mac.type) {
5267                 case ixgbe_mac_82598EB:
5268                         txctrl = IXGBE_READ_REG(hw,
5269                                                 IXGBE_DCA_TXCTRL(txq->reg_idx));
5270                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5271                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL(txq->reg_idx),
5272                                         txctrl);
5273                         break;
5274
5275                 case ixgbe_mac_82599EB:
5276                 case ixgbe_mac_X540:
5277                 case ixgbe_mac_X550:
5278                 case ixgbe_mac_X550EM_x:
5279                 case ixgbe_mac_X550EM_a:
5280                 default:
5281                         txctrl = IXGBE_READ_REG(hw,
5282                                                 IXGBE_DCA_TXCTRL_82599(txq->reg_idx));
5283                         txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5284                         IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(txq->reg_idx),
5285                                         txctrl);
5286                         break;
5287                 }
5288         }
5289
5290         /* Device configured with multiple TX queues. */
5291         ixgbe_dev_mq_tx_configure(dev);
5292 }
5293
5294 /*
5295  * Check if requested loopback mode is supported
5296  */
5297 int
5298 ixgbe_check_supported_loopback_mode(struct rte_eth_dev *dev)
5299 {
5300         struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5301
5302         if (dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_TX_RX)
5303                 if (hw->mac.type == ixgbe_mac_82599EB ||
5304                      hw->mac.type == ixgbe_mac_X540 ||
5305                      hw->mac.type == ixgbe_mac_X550 ||
5306                      hw->mac.type == ixgbe_mac_X550EM_x ||
5307                      hw->mac.type == ixgbe_mac_X550EM_a)
5308                         return 0;
5309
5310         return -ENOTSUP;
5311 }
5312
5313 /*
5314  * Set up link for 82599 loopback mode Tx->Rx.
5315  */
5316 static inline void __rte_cold
5317 ixgbe_setup_loopback_link_82599(struct ixgbe_hw *hw)
5318 {
5319         PMD_INIT_FUNC_TRACE();
5320
5321         if (ixgbe_verify_lesm_fw_enabled_82599(hw)) {
5322                 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM) !=
5323                                 IXGBE_SUCCESS) {
5324                         PMD_INIT_LOG(ERR, "Could not enable loopback mode");
5325                         /* ignore error */
5326                         return;
5327                 }
5328         }
5329
5330         /* Restart link */
5331         IXGBE_WRITE_REG(hw,
5332                         IXGBE_AUTOC,
5333                         IXGBE_AUTOC_LMS_10G_LINK_NO_AN | IXGBE_AUTOC_FLU);
5334         ixgbe_reset_pipeline_82599(hw);
5335
5336         hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
5337         msec_delay(50);
5338 }
5339
5340
5341 /*
5342  * Start Transmit and Receive Units.
5343  */
5344 int __rte_cold
5345 ixgbe_dev_rxtx_start(struct rte_eth_dev *dev)
5346 {
5347         struct ixgbe_hw     *hw;
5348         struct ixgbe_tx_queue *txq;
5349         struct ixgbe_rx_queue *rxq;
5350         uint32_t txdctl;
5351         uint32_t dmatxctl;
5352         uint32_t rxctrl;
5353         uint16_t i;
5354         int ret = 0;
5355
5356         PMD_INIT_FUNC_TRACE();
5357         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5358
5359         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5360                 txq = dev->data->tx_queues[i];
5361                 /* Setup Transmit Threshold Registers */
5362                 txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5363                 txdctl |= txq->pthresh & 0x7F;
5364                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5365                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5366                 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5367         }
5368
5369         if (hw->mac.type != ixgbe_mac_82598EB) {
5370                 dmatxctl = IXGBE_READ_REG(hw, IXGBE_DMATXCTL);
5371                 dmatxctl |= IXGBE_DMATXCTL_TE;
5372                 IXGBE_WRITE_REG(hw, IXGBE_DMATXCTL, dmatxctl);
5373         }
5374
5375         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5376                 txq = dev->data->tx_queues[i];
5377                 if (!txq->tx_deferred_start) {
5378                         ret = ixgbe_dev_tx_queue_start(dev, i);
5379                         if (ret < 0)
5380                                 return ret;
5381                 }
5382         }
5383
5384         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5385                 rxq = dev->data->rx_queues[i];
5386                 if (!rxq->rx_deferred_start) {
5387                         ret = ixgbe_dev_rx_queue_start(dev, i);
5388                         if (ret < 0)
5389                                 return ret;
5390                 }
5391         }
5392
5393         /* Enable Receive engine */
5394         rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5395         if (hw->mac.type == ixgbe_mac_82598EB)
5396                 rxctrl |= IXGBE_RXCTRL_DMBYPS;
5397         rxctrl |= IXGBE_RXCTRL_RXEN;
5398         hw->mac.ops.enable_rx_dma(hw, rxctrl);
5399
5400         /* If loopback mode is enabled, set up the link accordingly */
5401         if (dev->data->dev_conf.lpbk_mode != 0) {
5402                 if (hw->mac.type == ixgbe_mac_82599EB)
5403                         ixgbe_setup_loopback_link_82599(hw);
5404                 else if (hw->mac.type == ixgbe_mac_X540 ||
5405                      hw->mac.type == ixgbe_mac_X550 ||
5406                      hw->mac.type == ixgbe_mac_X550EM_x ||
5407                      hw->mac.type == ixgbe_mac_X550EM_a)
5408                         ixgbe_setup_loopback_link_x540_x550(hw, true);
5409         }
5410
5411 #ifdef RTE_LIB_SECURITY
5412         if ((dev->data->dev_conf.rxmode.offloads &
5413                         DEV_RX_OFFLOAD_SECURITY) ||
5414                 (dev->data->dev_conf.txmode.offloads &
5415                         DEV_TX_OFFLOAD_SECURITY)) {
5416                 ret = ixgbe_crypto_enable_ipsec(dev);
5417                 if (ret != 0) {
5418                         PMD_DRV_LOG(ERR,
5419                                     "ixgbe_crypto_enable_ipsec fails with %d.",
5420                                     ret);
5421                         return ret;
5422                 }
5423         }
5424 #endif
5425
5426         return 0;
5427 }
5428
5429 /*
5430  * Start Receive Units for specified queue.
5431  */
5432 int __rte_cold
5433 ixgbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5434 {
5435         struct ixgbe_hw     *hw;
5436         struct ixgbe_rx_queue *rxq;
5437         uint32_t rxdctl;
5438         int poll_ms;
5439
5440         PMD_INIT_FUNC_TRACE();
5441         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5442
5443         rxq = dev->data->rx_queues[rx_queue_id];
5444
5445         /* Allocate buffers for descriptor rings */
5446         if (ixgbe_alloc_rx_queue_mbufs(rxq) != 0) {
5447                 PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
5448                              rx_queue_id);
5449                 return -1;
5450         }
5451         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5452         rxdctl |= IXGBE_RXDCTL_ENABLE;
5453         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5454
5455         /* Wait until RX Enable ready */
5456         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5457         do {
5458                 rte_delay_ms(1);
5459                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5460         } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5461         if (!poll_ms)
5462                 PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", rx_queue_id);
5463         rte_wmb();
5464         IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
5465         IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
5466         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5467
5468         return 0;
5469 }
5470
5471 /*
5472  * Stop Receive Units for specified queue.
5473  */
5474 int __rte_cold
5475 ixgbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
5476 {
5477         struct ixgbe_hw     *hw;
5478         struct ixgbe_adapter *adapter = dev->data->dev_private;
5479         struct ixgbe_rx_queue *rxq;
5480         uint32_t rxdctl;
5481         int poll_ms;
5482
5483         PMD_INIT_FUNC_TRACE();
5484         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5485
5486         rxq = dev->data->rx_queues[rx_queue_id];
5487
5488         rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5489         rxdctl &= ~IXGBE_RXDCTL_ENABLE;
5490         IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
5491
5492         /* Wait until RX Enable bit clear */
5493         poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5494         do {
5495                 rte_delay_ms(1);
5496                 rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
5497         } while (--poll_ms && (rxdctl & IXGBE_RXDCTL_ENABLE));
5498         if (!poll_ms)
5499                 PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d", rx_queue_id);
5500
5501         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5502
5503         ixgbe_rx_queue_release_mbufs(rxq);
5504         ixgbe_reset_rx_queue(adapter, rxq);
5505         dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5506
5507         return 0;
5508 }
5509
5510
5511 /*
5512  * Start Transmit Units for specified queue.
5513  */
5514 int __rte_cold
5515 ixgbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5516 {
5517         struct ixgbe_hw     *hw;
5518         struct ixgbe_tx_queue *txq;
5519         uint32_t txdctl;
5520         int poll_ms;
5521
5522         PMD_INIT_FUNC_TRACE();
5523         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5524
5525         txq = dev->data->tx_queues[tx_queue_id];
5526         IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
5527         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5528         txdctl |= IXGBE_TXDCTL_ENABLE;
5529         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5530
5531         /* Wait until TX Enable ready */
5532         if (hw->mac.type == ixgbe_mac_82599EB) {
5533                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5534                 do {
5535                         rte_delay_ms(1);
5536                         txdctl = IXGBE_READ_REG(hw,
5537                                 IXGBE_TXDCTL(txq->reg_idx));
5538                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5539                 if (!poll_ms)
5540                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d",
5541                                 tx_queue_id);
5542         }
5543         rte_wmb();
5544         IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
5545         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
5546
5547         return 0;
5548 }
5549
5550 /*
5551  * Stop Transmit Units for specified queue.
5552  */
5553 int __rte_cold
5554 ixgbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
5555 {
5556         struct ixgbe_hw     *hw;
5557         struct ixgbe_tx_queue *txq;
5558         uint32_t txdctl;
5559         uint32_t txtdh, txtdt;
5560         int poll_ms;
5561
5562         PMD_INIT_FUNC_TRACE();
5563         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5564
5565         txq = dev->data->tx_queues[tx_queue_id];
5566
5567         /* Wait until TX queue is empty */
5568         if (hw->mac.type == ixgbe_mac_82599EB) {
5569                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5570                 do {
5571                         rte_delay_us(RTE_IXGBE_WAIT_100_US);
5572                         txtdh = IXGBE_READ_REG(hw,
5573                                                IXGBE_TDH(txq->reg_idx));
5574                         txtdt = IXGBE_READ_REG(hw,
5575                                                IXGBE_TDT(txq->reg_idx));
5576                 } while (--poll_ms && (txtdh != txtdt));
5577                 if (!poll_ms)
5578                         PMD_INIT_LOG(ERR,
5579                                 "Tx Queue %d is not empty when stopping.",
5580                                 tx_queue_id);
5581         }
5582
5583         txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
5584         txdctl &= ~IXGBE_TXDCTL_ENABLE;
5585         IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
5586
5587         /* Wait until TX Enable bit clear */
5588         if (hw->mac.type == ixgbe_mac_82599EB) {
5589                 poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
5590                 do {
5591                         rte_delay_ms(1);
5592                         txdctl = IXGBE_READ_REG(hw,
5593                                                 IXGBE_TXDCTL(txq->reg_idx));
5594                 } while (--poll_ms && (txdctl & IXGBE_TXDCTL_ENABLE));
5595                 if (!poll_ms)
5596                         PMD_INIT_LOG(ERR, "Could not disable Tx Queue %d",
5597                                 tx_queue_id);
5598         }
5599
5600         if (txq->ops != NULL) {
5601                 txq->ops->release_mbufs(txq);
5602                 txq->ops->reset(txq);
5603         }
5604         dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
5605
5606         return 0;
5607 }
5608
5609 void
5610 ixgbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5611         struct rte_eth_rxq_info *qinfo)
5612 {
5613         struct ixgbe_rx_queue *rxq;
5614
5615         rxq = dev->data->rx_queues[queue_id];
5616
5617         qinfo->mp = rxq->mb_pool;
5618         qinfo->scattered_rx = dev->data->scattered_rx;
5619         qinfo->nb_desc = rxq->nb_rx_desc;
5620
5621         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
5622         qinfo->conf.rx_drop_en = rxq->drop_en;
5623         qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
5624         qinfo->conf.offloads = rxq->offloads;
5625 }
5626
5627 void
5628 ixgbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
5629         struct rte_eth_txq_info *qinfo)
5630 {
5631         struct ixgbe_tx_queue *txq;
5632
5633         txq = dev->data->tx_queues[queue_id];
5634
5635         qinfo->nb_desc = txq->nb_tx_desc;
5636
5637         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
5638         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
5639         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
5640
5641         qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
5642         qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
5643         qinfo->conf.offloads = txq->offloads;
5644         qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
5645 }
5646
5647 /*
5648  * [VF] Initializes Receive Unit.
5649  */
5650 int __rte_cold
5651 ixgbevf_dev_rx_init(struct rte_eth_dev *dev)
5652 {
5653         struct ixgbe_hw     *hw;
5654         struct ixgbe_rx_queue *rxq;
5655         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
5656         uint64_t bus_addr;
5657         uint32_t srrctl, psrtype = 0;
5658         uint16_t buf_size;
5659         uint16_t i;
5660         int ret;
5661
5662         PMD_INIT_FUNC_TRACE();
5663         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5664
5665         if (rte_is_power_of_2(dev->data->nb_rx_queues) == 0) {
5666                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5667                         "it should be power of 2");
5668                 return -1;
5669         }
5670
5671         if (dev->data->nb_rx_queues > hw->mac.max_rx_queues) {
5672                 PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
5673                         "it should be equal to or less than %d",
5674                         hw->mac.max_rx_queues);
5675                 return -1;
5676         }
5677
5678         /*
5679          * When the VF driver issues a IXGBE_VF_RESET request, the PF driver
5680          * disables the VF receipt of packets if the PF MTU is > 1500.
5681          * This is done to deal with 82599 limitations that imposes
5682          * the PF and all VFs to share the same MTU.
5683          * Then, the PF driver enables again the VF receipt of packet when
5684          * the VF driver issues a IXGBE_VF_SET_LPE request.
5685          * In the meantime, the VF device cannot be used, even if the VF driver
5686          * and the Guest VM network stack are ready to accept packets with a
5687          * size up to the PF MTU.
5688          * As a work-around to this PF behaviour, force the call to
5689          * ixgbevf_rlpml_set_vf even if jumbo frames are not used. This way,
5690          * VF packets received can work in all cases.
5691          */
5692         if (ixgbevf_rlpml_set_vf(hw,
5693             (uint16_t)dev->data->dev_conf.rxmode.max_rx_pkt_len)) {
5694                 PMD_INIT_LOG(ERR, "Set max packet length to %d failed.",
5695                              dev->data->dev_conf.rxmode.max_rx_pkt_len);
5696                 return -EINVAL;
5697         }
5698
5699         /*
5700          * Assume no header split and no VLAN strip support
5701          * on any Rx queue first .
5702          */
5703         rxmode->offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
5704         /* Setup RX queues */
5705         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5706                 rxq = dev->data->rx_queues[i];
5707
5708                 /* Allocate buffers for descriptor rings */
5709                 ret = ixgbe_alloc_rx_queue_mbufs(rxq);
5710                 if (ret)
5711                         return ret;
5712
5713                 /* Setup the Base and Length of the Rx Descriptor Rings */
5714                 bus_addr = rxq->rx_ring_phys_addr;
5715
5716                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(i),
5717                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5718                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(i),
5719                                 (uint32_t)(bus_addr >> 32));
5720                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(i),
5721                                 rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
5722                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(i), 0);
5723                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), 0);
5724
5725
5726                 /* Configure the SRRCTL register */
5727                 srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
5728
5729                 /* Set if packets are dropped when no descriptors available */
5730                 if (rxq->drop_en)
5731                         srrctl |= IXGBE_SRRCTL_DROP_EN;
5732
5733                 /*
5734                  * Configure the RX buffer size in the BSIZEPACKET field of
5735                  * the SRRCTL register of the queue.
5736                  * The value is in 1 KB resolution. Valid values can be from
5737                  * 1 KB to 16 KB.
5738                  */
5739                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
5740                         RTE_PKTMBUF_HEADROOM);
5741                 srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
5742                            IXGBE_SRRCTL_BSIZEPKT_MASK);
5743
5744                 /*
5745                  * VF modification to write virtual function SRRCTL register
5746                  */
5747                 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(i), srrctl);
5748
5749                 buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
5750                                        IXGBE_SRRCTL_BSIZEPKT_SHIFT);
5751
5752                 if (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER ||
5753                     /* It adds dual VLAN length for supporting dual VLAN */
5754                     (rxmode->max_rx_pkt_len +
5755                                 2 * IXGBE_VLAN_TAG_SIZE) > buf_size) {
5756                         if (!dev->data->scattered_rx)
5757                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
5758                         dev->data->scattered_rx = 1;
5759                 }
5760
5761                 if (rxq->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
5762                         rxmode->offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
5763         }
5764
5765         /* Set RQPL for VF RSS according to max Rx queue */
5766         psrtype |= (dev->data->nb_rx_queues >> 1) <<
5767                 IXGBE_PSRTYPE_RQPL_SHIFT;
5768         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
5769
5770         ixgbe_set_rx_function(dev);
5771
5772         return 0;
5773 }
5774
5775 /*
5776  * [VF] Initializes Transmit Unit.
5777  */
5778 void __rte_cold
5779 ixgbevf_dev_tx_init(struct rte_eth_dev *dev)
5780 {
5781         struct ixgbe_hw     *hw;
5782         struct ixgbe_tx_queue *txq;
5783         uint64_t bus_addr;
5784         uint32_t txctrl;
5785         uint16_t i;
5786
5787         PMD_INIT_FUNC_TRACE();
5788         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5789
5790         /* Setup the Base and Length of the Tx Descriptor Rings */
5791         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5792                 txq = dev->data->tx_queues[i];
5793                 bus_addr = txq->tx_ring_phys_addr;
5794                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(i),
5795                                 (uint32_t)(bus_addr & 0x00000000ffffffffULL));
5796                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(i),
5797                                 (uint32_t)(bus_addr >> 32));
5798                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(i),
5799                                 txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
5800                 /* Setup the HW Tx Head and TX Tail descriptor pointers */
5801                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(i), 0);
5802                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(i), 0);
5803
5804                 /*
5805                  * Disable Tx Head Writeback RO bit, since this hoses
5806                  * bookkeeping if things aren't delivered in order.
5807                  */
5808                 txctrl = IXGBE_READ_REG(hw,
5809                                 IXGBE_VFDCA_TXCTRL(i));
5810                 txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
5811                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(i),
5812                                 txctrl);
5813         }
5814 }
5815
5816 /*
5817  * [VF] Start Transmit and Receive Units.
5818  */
5819 void __rte_cold
5820 ixgbevf_dev_rxtx_start(struct rte_eth_dev *dev)
5821 {
5822         struct ixgbe_hw     *hw;
5823         struct ixgbe_tx_queue *txq;
5824         struct ixgbe_rx_queue *rxq;
5825         uint32_t txdctl;
5826         uint32_t rxdctl;
5827         uint16_t i;
5828         int poll_ms;
5829
5830         PMD_INIT_FUNC_TRACE();
5831         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5832
5833         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5834                 txq = dev->data->tx_queues[i];
5835                 /* Setup Transmit Threshold Registers */
5836                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5837                 txdctl |= txq->pthresh & 0x7F;
5838                 txdctl |= ((txq->hthresh & 0x7F) << 8);
5839                 txdctl |= ((txq->wthresh & 0x7F) << 16);
5840                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5841         }
5842
5843         for (i = 0; i < dev->data->nb_tx_queues; i++) {
5844
5845                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5846                 txdctl |= IXGBE_TXDCTL_ENABLE;
5847                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
5848
5849                 poll_ms = 10;
5850                 /* Wait until TX Enable ready */
5851                 do {
5852                         rte_delay_ms(1);
5853                         txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
5854                 } while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
5855                 if (!poll_ms)
5856                         PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d", i);
5857         }
5858         for (i = 0; i < dev->data->nb_rx_queues; i++) {
5859
5860                 rxq = dev->data->rx_queues[i];
5861
5862                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5863                 rxdctl |= IXGBE_RXDCTL_ENABLE;
5864                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(i), rxdctl);
5865
5866                 /* Wait until RX Enable ready */
5867                 poll_ms = 10;
5868                 do {
5869                         rte_delay_ms(1);
5870                         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
5871                 } while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
5872                 if (!poll_ms)
5873                         PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", i);
5874                 rte_wmb();
5875                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), rxq->nb_rx_desc - 1);
5876
5877         }
5878 }
5879
5880 int
5881 ixgbe_rss_conf_init(struct ixgbe_rte_flow_rss_conf *out,
5882                     const struct rte_flow_action_rss *in)
5883 {
5884         if (in->key_len > RTE_DIM(out->key) ||
5885             in->queue_num > RTE_DIM(out->queue))
5886                 return -EINVAL;
5887         out->conf = (struct rte_flow_action_rss){
5888                 .func = in->func,
5889                 .level = in->level,
5890                 .types = in->types,
5891                 .key_len = in->key_len,
5892                 .queue_num = in->queue_num,
5893                 .key = memcpy(out->key, in->key, in->key_len),
5894                 .queue = memcpy(out->queue, in->queue,
5895                                 sizeof(*in->queue) * in->queue_num),
5896         };
5897         return 0;
5898 }
5899
5900 int
5901 ixgbe_action_rss_same(const struct rte_flow_action_rss *comp,
5902                       const struct rte_flow_action_rss *with)
5903 {
5904         return (comp->func == with->func &&
5905                 comp->level == with->level &&
5906                 comp->types == with->types &&
5907                 comp->key_len == with->key_len &&
5908                 comp->queue_num == with->queue_num &&
5909                 !memcmp(comp->key, with->key, with->key_len) &&
5910                 !memcmp(comp->queue, with->queue,
5911                         sizeof(*with->queue) * with->queue_num));
5912 }
5913
5914 int
5915 ixgbe_config_rss_filter(struct rte_eth_dev *dev,
5916                 struct ixgbe_rte_flow_rss_conf *conf, bool add)
5917 {
5918         struct ixgbe_hw *hw;
5919         uint32_t reta;
5920         uint16_t i;
5921         uint16_t j;
5922         uint16_t sp_reta_size;
5923         uint32_t reta_reg;
5924         struct rte_eth_rss_conf rss_conf = {
5925                 .rss_key = conf->conf.key_len ?
5926                         (void *)(uintptr_t)conf->conf.key : NULL,
5927                 .rss_key_len = conf->conf.key_len,
5928                 .rss_hf = conf->conf.types,
5929         };
5930         struct ixgbe_filter_info *filter_info =
5931                 IXGBE_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5932
5933         PMD_INIT_FUNC_TRACE();
5934         hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5935
5936         sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
5937
5938         if (!add) {
5939                 if (ixgbe_action_rss_same(&filter_info->rss_info.conf,
5940                                           &conf->conf)) {
5941                         ixgbe_rss_disable(dev);
5942                         memset(&filter_info->rss_info, 0,
5943                                 sizeof(struct ixgbe_rte_flow_rss_conf));
5944                         return 0;
5945                 }
5946                 return -EINVAL;
5947         }
5948
5949         if (filter_info->rss_info.conf.queue_num)
5950                 return -EINVAL;
5951         /* Fill in redirection table
5952          * The byte-swap is needed because NIC registers are in
5953          * little-endian order.
5954          */
5955         reta = 0;
5956         for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
5957                 reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
5958
5959                 if (j == conf->conf.queue_num)
5960                         j = 0;
5961                 reta = (reta << 8) | conf->conf.queue[j];
5962                 if ((i & 3) == 3)
5963                         IXGBE_WRITE_REG(hw, reta_reg,
5964                                         rte_bswap32(reta));
5965         }
5966
5967         /* Configure the RSS key and the RSS protocols used to compute
5968          * the RSS hash of input packets.
5969          */
5970         if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
5971                 ixgbe_rss_disable(dev);
5972                 return 0;
5973         }
5974         if (rss_conf.rss_key == NULL)
5975                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
5976         ixgbe_hw_rss_hash_set(hw, &rss_conf);
5977
5978         if (ixgbe_rss_conf_init(&filter_info->rss_info, &conf->conf))
5979                 return -EINVAL;
5980
5981         return 0;
5982 }
5983
5984 /* Stubs needed for linkage when RTE_ARCH_PPC_64 is set */
5985 #if defined(RTE_ARCH_PPC_64)
5986 int
5987 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
5988 {
5989         return -1;
5990 }
5991
5992 uint16_t
5993 ixgbe_recv_pkts_vec(
5994         void __rte_unused *rx_queue,
5995         struct rte_mbuf __rte_unused **rx_pkts,
5996         uint16_t __rte_unused nb_pkts)
5997 {
5998         return 0;
5999 }
6000
6001 uint16_t
6002 ixgbe_recv_scattered_pkts_vec(
6003         void __rte_unused *rx_queue,
6004         struct rte_mbuf __rte_unused **rx_pkts,
6005         uint16_t __rte_unused nb_pkts)
6006 {
6007         return 0;
6008 }
6009
6010 int
6011 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue __rte_unused *rxq)
6012 {
6013         return -1;
6014 }
6015
6016 uint16_t
6017 ixgbe_xmit_fixed_burst_vec(void __rte_unused *tx_queue,
6018                 struct rte_mbuf __rte_unused **tx_pkts,
6019                 uint16_t __rte_unused nb_pkts)
6020 {
6021         return 0;
6022 }
6023
6024 int
6025 ixgbe_txq_vec_setup(struct ixgbe_tx_queue __rte_unused *txq)
6026 {
6027         return -1;
6028 }
6029
6030 void
6031 ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue __rte_unused *rxq)
6032 {
6033         return;
6034 }
6035 #endif