net/ixgbe: fix vector Rx
[dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx_vec_neon.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <rte_ethdev_driver.h>
7 #include <rte_malloc.h>
8 #include <rte_vect.h>
9
10 #include "ixgbe_ethdev.h"
11 #include "ixgbe_rxtx.h"
12 #include "ixgbe_rxtx_vec_common.h"
13
14 #pragma GCC diagnostic ignored "-Wcast-qual"
15
16 static inline void
17 ixgbe_rxq_rearm(struct ixgbe_rx_queue *rxq)
18 {
19         int i;
20         uint16_t rx_id;
21         volatile union ixgbe_adv_rx_desc *rxdp;
22         struct ixgbe_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
23         struct rte_mbuf *mb0, *mb1;
24         uint64x2_t dma_addr0, dma_addr1;
25         uint64x2_t zero = vdupq_n_u64(0);
26         uint64_t paddr;
27         uint8x8_t p;
28
29         rxdp = rxq->rx_ring + rxq->rxrearm_start;
30
31         /* Pull 'n' more MBUFs into the software ring */
32         if (unlikely(rte_mempool_get_bulk(rxq->mb_pool,
33                                           (void *)rxep,
34                                           RTE_IXGBE_RXQ_REARM_THRESH) < 0)) {
35                 if (rxq->rxrearm_nb + RTE_IXGBE_RXQ_REARM_THRESH >=
36                     rxq->nb_rx_desc) {
37                         for (i = 0; i < RTE_IXGBE_DESCS_PER_LOOP; i++) {
38                                 rxep[i].mbuf = &rxq->fake_mbuf;
39                                 vst1q_u64((uint64_t *)&rxdp[i].read,
40                                           zero);
41                         }
42                 }
43                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
44                         RTE_IXGBE_RXQ_REARM_THRESH;
45                 return;
46         }
47
48         p = vld1_u8((uint8_t *)&rxq->mbuf_initializer);
49
50         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
51         for (i = 0; i < RTE_IXGBE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
52                 mb0 = rxep[0].mbuf;
53                 mb1 = rxep[1].mbuf;
54
55                 /*
56                  * Flush mbuf with pkt template.
57                  * Data to be rearmed is 6 bytes long.
58                  */
59                 vst1_u8((uint8_t *)&mb0->rearm_data, p);
60                 paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM;
61                 dma_addr0 = vsetq_lane_u64(paddr, zero, 0);
62                 /* flush desc with pa dma_addr */
63                 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr0);
64
65                 vst1_u8((uint8_t *)&mb1->rearm_data, p);
66                 paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM;
67                 dma_addr1 = vsetq_lane_u64(paddr, zero, 0);
68                 vst1q_u64((uint64_t *)&rxdp++->read, dma_addr1);
69         }
70
71         rxq->rxrearm_start += RTE_IXGBE_RXQ_REARM_THRESH;
72         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
73                 rxq->rxrearm_start = 0;
74
75         rxq->rxrearm_nb -= RTE_IXGBE_RXQ_REARM_THRESH;
76
77         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
78                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
79
80         /* Update the tail pointer on the NIC */
81         IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
82 }
83
84 #define VTAG_SHIFT     (3)
85
86 static inline void
87 desc_to_olflags_v(uint8x16x2_t sterr_tmp1, uint8x16x2_t sterr_tmp2,
88                   uint8x16_t staterr, struct rte_mbuf **rx_pkts)
89 {
90         uint8x16_t ptype;
91         uint8x16_t vtag;
92
93         union {
94                 uint8_t e[4];
95                 uint32_t word;
96         } vol;
97
98         const uint8x16_t pkttype_msk = {
99                         PKT_RX_VLAN, PKT_RX_VLAN,
100                         PKT_RX_VLAN, PKT_RX_VLAN,
101                         0x00, 0x00, 0x00, 0x00,
102                         0x00, 0x00, 0x00, 0x00,
103                         0x00, 0x00, 0x00, 0x00};
104
105         const uint8x16_t rsstype_msk = {
106                         0x0F, 0x0F, 0x0F, 0x0F,
107                         0x00, 0x00, 0x00, 0x00,
108                         0x00, 0x00, 0x00, 0x00,
109                         0x00, 0x00, 0x00, 0x00};
110
111         const uint8x16_t rss_flags = {
112                         0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
113                         0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
114                         PKT_RX_RSS_HASH, 0, 0, 0,
115                         0, 0, 0, PKT_RX_FDIR};
116
117         ptype = vzipq_u8(sterr_tmp1.val[0], sterr_tmp2.val[0]).val[0];
118         ptype = vandq_u8(ptype, rsstype_msk);
119         ptype = vqtbl1q_u8(rss_flags, ptype);
120
121         vtag = vshrq_n_u8(staterr, VTAG_SHIFT);
122         vtag = vandq_u8(vtag, pkttype_msk);
123         vtag = vorrq_u8(ptype, vtag);
124
125         vol.word = vgetq_lane_u32(vreinterpretq_u32_u8(vtag), 0);
126
127         rx_pkts[0]->ol_flags = vol.e[0];
128         rx_pkts[1]->ol_flags = vol.e[1];
129         rx_pkts[2]->ol_flags = vol.e[2];
130         rx_pkts[3]->ol_flags = vol.e[3];
131 }
132
133 #define IXGBE_VPMD_DESC_EOP_MASK        0x02020202
134 #define IXGBE_UINT8_BIT                 (CHAR_BIT * sizeof(uint8_t))
135
136 static inline uint32_t
137 get_packet_type(uint32_t pkt_info,
138                 uint32_t etqf_check,
139                 uint32_t tunnel_check)
140 {
141         if (etqf_check)
142                 return RTE_PTYPE_UNKNOWN;
143
144         if (tunnel_check) {
145                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
146                 return ptype_table_tn[pkt_info];
147         }
148
149         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
150         return ptype_table[pkt_info];
151 }
152
153 static inline void
154 desc_to_ptype_v(uint64x2_t descs[4], uint16_t pkt_type_mask,
155                 struct rte_mbuf **rx_pkts)
156 {
157         uint32x4_t etqf_check, tunnel_check;
158         uint32x4_t etqf_mask = vdupq_n_u32(0x8000);
159         uint32x4_t tunnel_mask = vdupq_n_u32(0x10000);
160         uint32x4_t ptype_mask = vdupq_n_u32((uint32_t)pkt_type_mask);
161         uint32x4_t ptype0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
162                                 vreinterpretq_u32_u64(descs[2])).val[0];
163         uint32x4_t ptype1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
164                                 vreinterpretq_u32_u64(descs[3])).val[0];
165
166         /* interleave low 32 bits,
167          * now we have 4 ptypes in a NEON register
168          */
169         ptype0 = vzipq_u32(ptype0, ptype1).val[0];
170
171         /* mask etqf bits */
172         etqf_check = vandq_u32(ptype0, etqf_mask);
173         /* mask tunnel bits */
174         tunnel_check = vandq_u32(ptype0, tunnel_mask);
175
176         /* shift right by IXGBE_PACKET_TYPE_SHIFT, and apply ptype mask */
177         ptype0 = vandq_u32(vshrq_n_u32(ptype0, IXGBE_PACKET_TYPE_SHIFT),
178                         ptype_mask);
179
180         rx_pkts[0]->packet_type =
181                 get_packet_type(vgetq_lane_u32(ptype0, 0),
182                                 vgetq_lane_u32(etqf_check, 0),
183                                 vgetq_lane_u32(tunnel_check, 0));
184         rx_pkts[1]->packet_type =
185                 get_packet_type(vgetq_lane_u32(ptype0, 1),
186                                 vgetq_lane_u32(etqf_check, 1),
187                                 vgetq_lane_u32(tunnel_check, 1));
188         rx_pkts[2]->packet_type =
189                 get_packet_type(vgetq_lane_u32(ptype0, 2),
190                                 vgetq_lane_u32(etqf_check, 2),
191                                 vgetq_lane_u32(tunnel_check, 2));
192         rx_pkts[3]->packet_type =
193                 get_packet_type(vgetq_lane_u32(ptype0, 3),
194                                 vgetq_lane_u32(etqf_check, 3),
195                                 vgetq_lane_u32(tunnel_check, 3));
196 }
197
198 /**
199  * vPMD raw receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
200  *
201  * Notice:
202  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
203  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
204  */
205 static inline uint16_t
206 _recv_raw_pkts_vec(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
207                    uint16_t nb_pkts, uint8_t *split_packet)
208 {
209         volatile union ixgbe_adv_rx_desc *rxdp;
210         struct ixgbe_rx_entry *sw_ring;
211         uint16_t nb_pkts_recd;
212         int pos;
213         uint8x16_t shuf_msk = {
214                 0xFF, 0xFF,
215                 0xFF, 0xFF,  /* skip 32 bits pkt_type */
216                 12, 13,      /* octet 12~13, low 16 bits pkt_len */
217                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
218                 12, 13,      /* octet 12~13, 16 bits data_len */
219                 14, 15,      /* octet 14~15, low 16 bits vlan_macip */
220                 4, 5, 6, 7  /* octet 4~7, 32bits rss */
221                 };
222         uint16x8_t crc_adjust = {0, 0, rxq->crc_len, 0,
223                                  rxq->crc_len, 0, 0, 0};
224
225         /* nb_pkts has to be floor-aligned to RTE_IXGBE_DESCS_PER_LOOP */
226         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_IXGBE_DESCS_PER_LOOP);
227
228         /* Just the act of getting into the function from the application is
229          * going to cost about 7 cycles
230          */
231         rxdp = rxq->rx_ring + rxq->rx_tail;
232
233         rte_prefetch_non_temporal(rxdp);
234
235         /* See if we need to rearm the RX queue - gives the prefetch a bit
236          * of time to act
237          */
238         if (rxq->rxrearm_nb > RTE_IXGBE_RXQ_REARM_THRESH)
239                 ixgbe_rxq_rearm(rxq);
240
241         /* Before we start moving massive data around, check to see if
242          * there is actually a packet available
243          */
244         if (!(rxdp->wb.upper.status_error &
245                                 rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
246                 return 0;
247
248         /* Cache is empty -> need to scan the buffer rings, but first move
249          * the next 'n' mbufs into the cache
250          */
251         sw_ring = &rxq->sw_ring[rxq->rx_tail];
252
253         /* A. load 4 packet in one loop
254          * B. copy 4 mbuf point from swring to rx_pkts
255          * C. calc the number of DD bits among the 4 packets
256          * [C*. extract the end-of-packet bit, if requested]
257          * D. fill info. from desc to mbuf
258          */
259         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
260                         pos += RTE_IXGBE_DESCS_PER_LOOP,
261                         rxdp += RTE_IXGBE_DESCS_PER_LOOP) {
262                 uint64x2_t descs[RTE_IXGBE_DESCS_PER_LOOP];
263                 uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
264                 uint8x16x2_t sterr_tmp1, sterr_tmp2;
265                 uint64x2_t mbp1, mbp2;
266                 uint8x16_t staterr;
267                 uint16x8_t tmp;
268                 uint32_t stat;
269
270                 /* B.1 load 2 mbuf point */
271                 mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]);
272
273                 /* B.2 copy 2 mbuf point into rx_pkts  */
274                 vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1);
275
276                 /* B.1 load 2 mbuf point */
277                 mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]);
278
279                 /* A. load 4 pkts descs */
280                 descs[0] =  vld1q_u64((uint64_t *)(rxdp));
281                 descs[1] =  vld1q_u64((uint64_t *)(rxdp + 1));
282                 descs[2] =  vld1q_u64((uint64_t *)(rxdp + 2));
283                 descs[3] =  vld1q_u64((uint64_t *)(rxdp + 3));
284
285                 /* B.2 copy 2 mbuf point into rx_pkts  */
286                 vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2);
287
288                 if (split_packet) {
289                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
290                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
291                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
292                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
293                 }
294
295                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
296                 pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk);
297                 pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk);
298
299                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
300                 pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk);
301                 pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk);
302
303                 /* C.1 4=>2 filter staterr info only */
304                 sterr_tmp2 = vzipq_u8(vreinterpretq_u8_u64(descs[1]),
305                                       vreinterpretq_u8_u64(descs[3]));
306                 /* C.1 4=>2 filter staterr info only */
307                 sterr_tmp1 = vzipq_u8(vreinterpretq_u8_u64(descs[0]),
308                                       vreinterpretq_u8_u64(descs[2]));
309
310                 /* C.2 get 4 pkts staterr value  */
311                 staterr = vzipq_u8(sterr_tmp1.val[1], sterr_tmp2.val[1]).val[0];
312
313                 /* set ol_flags with vlan packet type */
314                 desc_to_olflags_v(sterr_tmp1, sterr_tmp2, staterr,
315                                   &rx_pkts[pos]);
316
317                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
318                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust);
319                 pkt_mb4 = vreinterpretq_u8_u16(tmp);
320                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust);
321                 pkt_mb3 = vreinterpretq_u8_u16(tmp);
322
323                 /* D.3 copy final 3,4 data to rx_pkts */
324                 vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
325                          pkt_mb4);
326                 vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
327                          pkt_mb3);
328
329                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
330                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust);
331                 pkt_mb2 = vreinterpretq_u8_u16(tmp);
332                 tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust);
333                 pkt_mb1 = vreinterpretq_u8_u16(tmp);
334
335                 /* C* extract and record EOP bit */
336                 if (split_packet) {
337                         stat = vgetq_lane_u32(vreinterpretq_u32_u8(staterr), 0);
338                         /* and with mask to extract bits, flipping 1-0 */
339                         *(int *)split_packet = ~stat & IXGBE_VPMD_DESC_EOP_MASK;
340
341                         split_packet += RTE_IXGBE_DESCS_PER_LOOP;
342                 }
343
344                 /* C.4 expand DD bit to saturate UINT8 */
345                 staterr = vshlq_n_u8(staterr, IXGBE_UINT8_BIT - 1);
346                 staterr = vreinterpretq_u8_s8
347                                 (vshrq_n_s8(vreinterpretq_s8_u8(staterr),
348                                         IXGBE_UINT8_BIT - 1));
349                 stat = ~vgetq_lane_u32(vreinterpretq_u32_u8(staterr), 0);
350
351                 rte_prefetch_non_temporal(rxdp + RTE_IXGBE_DESCS_PER_LOOP);
352
353                 /* D.3 copy final 1,2 data to rx_pkts */
354                 vst1q_u8((uint8_t *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
355                          pkt_mb2);
356                 vst1q_u8((uint8_t *)&rx_pkts[pos]->rx_descriptor_fields1,
357                          pkt_mb1);
358
359                 desc_to_ptype_v(descs, rxq->pkt_type_mask, &rx_pkts[pos]);
360
361                 /* C.5 calc available number of desc */
362                 if (unlikely(stat == 0)) {
363                         nb_pkts_recd += RTE_IXGBE_DESCS_PER_LOOP;
364                 } else {
365                         nb_pkts_recd += __builtin_ctz(stat) / IXGBE_UINT8_BIT;
366                         break;
367                 }
368         }
369
370         /* Update our internal tail pointer */
371         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
372         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
373         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
374
375         return nb_pkts_recd;
376 }
377
378 /**
379  * vPMD receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
380  *
381  * Notice:
382  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
383  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
384  * - don't support ol_flags for rss and csum err
385  */
386 uint16_t
387 ixgbe_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
388                 uint16_t nb_pkts)
389 {
390         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
391 }
392
393 /**
394  * vPMD receive routine that reassembles scattered packets
395  *
396  * Notice:
397  * - don't support ol_flags for rss and csum err
398  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
399  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
400  */
401 static uint16_t
402 ixgbe_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
403                                uint16_t nb_pkts)
404 {
405         struct ixgbe_rx_queue *rxq = rx_queue;
406         uint8_t split_flags[RTE_IXGBE_MAX_RX_BURST] = {0};
407
408         /* get some new buffers */
409         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
410                         split_flags);
411         if (nb_bufs == 0)
412                 return 0;
413
414         /* happy day case, full burst + no packets to be joined */
415         const uint64_t *split_fl64 = (uint64_t *)split_flags;
416         if (rxq->pkt_first_seg == NULL &&
417                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
418                         split_fl64[2] == 0 && split_fl64[3] == 0)
419                 return nb_bufs;
420
421         /* reassemble any packets that need reassembly*/
422         unsigned int i = 0;
423         if (rxq->pkt_first_seg == NULL) {
424                 /* find the first split flag, and only reassemble then*/
425                 while (i < nb_bufs && !split_flags[i])
426                         i++;
427                 if (i == nb_bufs)
428                         return nb_bufs;
429                 rxq->pkt_first_seg = rx_pkts[i];
430         }
431         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
432                 &split_flags[i]);
433 }
434
435 /**
436  * vPMD receive routine that reassembles scattered packets.
437  */
438 uint16_t
439 ixgbe_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
440                               uint16_t nb_pkts)
441 {
442         uint16_t retval = 0;
443
444         while (nb_pkts > RTE_IXGBE_MAX_RX_BURST) {
445                 uint16_t burst;
446
447                 burst = ixgbe_recv_scattered_burst_vec(rx_queue,
448                                                        rx_pkts + retval,
449                                                        RTE_IXGBE_MAX_RX_BURST);
450                 retval += burst;
451                 nb_pkts -= burst;
452                 if (burst < RTE_IXGBE_MAX_RX_BURST)
453                         return retval;
454         }
455
456         return retval + ixgbe_recv_scattered_burst_vec(rx_queue,
457                                                        rx_pkts + retval,
458                                                        nb_pkts);
459 }
460
461 static inline void
462 vtx1(volatile union ixgbe_adv_tx_desc *txdp,
463                 struct rte_mbuf *pkt, uint64_t flags)
464 {
465         uint64x2_t descriptor = {
466                         pkt->buf_iova + pkt->data_off,
467                         (uint64_t)pkt->pkt_len << 46 | flags | pkt->data_len};
468
469         vst1q_u64((uint64_t *)&txdp->read, descriptor);
470 }
471
472 static inline void
473 vtx(volatile union ixgbe_adv_tx_desc *txdp,
474                 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
475 {
476         int i;
477
478         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
479                 vtx1(txdp, *pkt, flags);
480 }
481
482 uint16_t
483 ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
484                            uint16_t nb_pkts)
485 {
486         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
487         volatile union ixgbe_adv_tx_desc *txdp;
488         struct ixgbe_tx_entry_v *txep;
489         uint16_t n, nb_commit, tx_id;
490         uint64_t flags = DCMD_DTYP_FLAGS;
491         uint64_t rs = IXGBE_ADVTXD_DCMD_RS | DCMD_DTYP_FLAGS;
492         int i;
493
494         /* cross rx_thresh boundary is not allowed */
495         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
496
497         if (txq->nb_tx_free < txq->tx_free_thresh)
498                 ixgbe_tx_free_bufs(txq);
499
500         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
501         if (unlikely(nb_pkts == 0))
502                 return 0;
503
504         tx_id = txq->tx_tail;
505         txdp = &txq->tx_ring[tx_id];
506         txep = &txq->sw_ring_v[tx_id];
507
508         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
509
510         n = (uint16_t)(txq->nb_tx_desc - tx_id);
511         if (nb_commit >= n) {
512                 tx_backlog_entry(txep, tx_pkts, n);
513
514                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
515                         vtx1(txdp, *tx_pkts, flags);
516
517                 vtx1(txdp, *tx_pkts++, rs);
518
519                 nb_commit = (uint16_t)(nb_commit - n);
520
521                 tx_id = 0;
522                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
523
524                 /* avoid reach the end of ring */
525                 txdp = &txq->tx_ring[tx_id];
526                 txep = &txq->sw_ring_v[tx_id];
527         }
528
529         tx_backlog_entry(txep, tx_pkts, nb_commit);
530
531         vtx(txdp, tx_pkts, nb_commit, flags);
532
533         tx_id = (uint16_t)(tx_id + nb_commit);
534         if (tx_id > txq->tx_next_rs) {
535                 txq->tx_ring[txq->tx_next_rs].read.cmd_type_len |=
536                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
537                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
538                         txq->tx_rs_thresh);
539         }
540
541         txq->tx_tail = tx_id;
542
543         IXGBE_PCI_REG_WRITE(txq->tdt_reg_addr, txq->tx_tail);
544
545         return nb_pkts;
546 }
547
548 static void __rte_cold
549 ixgbe_tx_queue_release_mbufs_vec(struct ixgbe_tx_queue *txq)
550 {
551         _ixgbe_tx_queue_release_mbufs_vec(txq);
552 }
553
554 void __rte_cold
555 ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue *rxq)
556 {
557         _ixgbe_rx_queue_release_mbufs_vec(rxq);
558 }
559
560 static void __rte_cold
561 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
562 {
563         _ixgbe_tx_free_swring_vec(txq);
564 }
565
566 static void __rte_cold
567 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
568 {
569         _ixgbe_reset_tx_queue_vec(txq);
570 }
571
572 static const struct ixgbe_txq_ops vec_txq_ops = {
573         .release_mbufs = ixgbe_tx_queue_release_mbufs_vec,
574         .free_swring = ixgbe_tx_free_swring,
575         .reset = ixgbe_reset_tx_queue,
576 };
577
578 int __rte_cold
579 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue *rxq)
580 {
581         return ixgbe_rxq_vec_setup_default(rxq);
582 }
583
584 int __rte_cold
585 ixgbe_txq_vec_setup(struct ixgbe_tx_queue *txq)
586 {
587         return ixgbe_txq_vec_setup_default(txq, &vec_txq_ops);
588 }
589
590 int __rte_cold
591 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
592 {
593         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
594
595         /* no csum error report support */
596         if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
597                 return -1;
598
599         return ixgbe_rx_vec_dev_conf_condition_check_default(dev);
600 }