net/ixgbe: fix vector Rx
[dpdk.git] / drivers / net / ixgbe / ixgbe_rxtx_vec_sse.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2015 Intel Corporation
3  */
4
5 #include <stdint.h>
6 #include <rte_ethdev_driver.h>
7 #include <rte_malloc.h>
8
9 #include "ixgbe_ethdev.h"
10 #include "ixgbe_rxtx.h"
11 #include "ixgbe_rxtx_vec_common.h"
12
13 #include <tmmintrin.h>
14
15 #ifndef __INTEL_COMPILER
16 #pragma GCC diagnostic ignored "-Wcast-qual"
17 #endif
18
19 static inline void
20 ixgbe_rxq_rearm(struct ixgbe_rx_queue *rxq)
21 {
22         int i;
23         uint16_t rx_id;
24         volatile union ixgbe_adv_rx_desc *rxdp;
25         struct ixgbe_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
26         struct rte_mbuf *mb0, *mb1;
27         __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
28                         RTE_PKTMBUF_HEADROOM);
29         __m128i dma_addr0, dma_addr1;
30
31         const __m128i hba_msk = _mm_set_epi64x(0, UINT64_MAX);
32
33         rxdp = rxq->rx_ring + rxq->rxrearm_start;
34
35         /* Pull 'n' more MBUFs into the software ring */
36         if (rte_mempool_get_bulk(rxq->mb_pool,
37                                  (void *)rxep,
38                                  RTE_IXGBE_RXQ_REARM_THRESH) < 0) {
39                 if (rxq->rxrearm_nb + RTE_IXGBE_RXQ_REARM_THRESH >=
40                     rxq->nb_rx_desc) {
41                         dma_addr0 = _mm_setzero_si128();
42                         for (i = 0; i < RTE_IXGBE_DESCS_PER_LOOP; i++) {
43                                 rxep[i].mbuf = &rxq->fake_mbuf;
44                                 _mm_store_si128((__m128i *)&rxdp[i].read,
45                                                 dma_addr0);
46                         }
47                 }
48                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
49                         RTE_IXGBE_RXQ_REARM_THRESH;
50                 return;
51         }
52
53         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
54         for (i = 0; i < RTE_IXGBE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
55                 __m128i vaddr0, vaddr1;
56
57                 mb0 = rxep[0].mbuf;
58                 mb1 = rxep[1].mbuf;
59
60                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
61                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
62                                 offsetof(struct rte_mbuf, buf_addr) + 8);
63                 vaddr0 = _mm_loadu_si128((__m128i *)&(mb0->buf_addr));
64                 vaddr1 = _mm_loadu_si128((__m128i *)&(mb1->buf_addr));
65
66                 /* convert pa to dma_addr hdr/data */
67                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
68                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
69
70                 /* add headroom to pa values */
71                 dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
72                 dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
73
74                 /* set Header Buffer Address to zero */
75                 dma_addr0 =  _mm_and_si128(dma_addr0, hba_msk);
76                 dma_addr1 =  _mm_and_si128(dma_addr1, hba_msk);
77
78                 /* flush desc with pa dma_addr */
79                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
80                 _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
81         }
82
83         rxq->rxrearm_start += RTE_IXGBE_RXQ_REARM_THRESH;
84         if (rxq->rxrearm_start >= rxq->nb_rx_desc)
85                 rxq->rxrearm_start = 0;
86
87         rxq->rxrearm_nb -= RTE_IXGBE_RXQ_REARM_THRESH;
88
89         rx_id = (uint16_t) ((rxq->rxrearm_start == 0) ?
90                              (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
91
92         /* Update the tail pointer on the NIC */
93         IXGBE_PCI_REG_WC_WRITE(rxq->rdt_reg_addr, rx_id);
94 }
95
96 #ifdef RTE_LIB_SECURITY
97 static inline void
98 desc_to_olflags_v_ipsec(__m128i descs[4], struct rte_mbuf **rx_pkts)
99 {
100         __m128i sterr, rearm, tmp_e, tmp_p;
101         uint32_t *rearm0 = (uint32_t *)rx_pkts[0]->rearm_data + 2;
102         uint32_t *rearm1 = (uint32_t *)rx_pkts[1]->rearm_data + 2;
103         uint32_t *rearm2 = (uint32_t *)rx_pkts[2]->rearm_data + 2;
104         uint32_t *rearm3 = (uint32_t *)rx_pkts[3]->rearm_data + 2;
105         const __m128i ipsec_sterr_msk =
106                         _mm_set1_epi32(IXGBE_RXDADV_IPSEC_STATUS_SECP |
107                                        IXGBE_RXDADV_IPSEC_ERROR_AUTH_FAILED);
108         const __m128i ipsec_proc_msk  =
109                         _mm_set1_epi32(IXGBE_RXDADV_IPSEC_STATUS_SECP);
110         const __m128i ipsec_err_flag  =
111                         _mm_set1_epi32(PKT_RX_SEC_OFFLOAD_FAILED |
112                                        PKT_RX_SEC_OFFLOAD);
113         const __m128i ipsec_proc_flag = _mm_set1_epi32(PKT_RX_SEC_OFFLOAD);
114
115         rearm = _mm_set_epi32(*rearm3, *rearm2, *rearm1, *rearm0);
116         sterr = _mm_set_epi32(_mm_extract_epi32(descs[3], 2),
117                               _mm_extract_epi32(descs[2], 2),
118                               _mm_extract_epi32(descs[1], 2),
119                               _mm_extract_epi32(descs[0], 2));
120         sterr = _mm_and_si128(sterr, ipsec_sterr_msk);
121         tmp_e = _mm_cmpeq_epi32(sterr, ipsec_sterr_msk);
122         tmp_p = _mm_cmpeq_epi32(sterr, ipsec_proc_msk);
123         sterr = _mm_or_si128(_mm_and_si128(tmp_e, ipsec_err_flag),
124                                 _mm_and_si128(tmp_p, ipsec_proc_flag));
125         rearm = _mm_or_si128(rearm, sterr);
126         *rearm0 = _mm_extract_epi32(rearm, 0);
127         *rearm1 = _mm_extract_epi32(rearm, 1);
128         *rearm2 = _mm_extract_epi32(rearm, 2);
129         *rearm3 = _mm_extract_epi32(rearm, 3);
130 }
131 #endif
132
133 static inline void
134 desc_to_olflags_v(__m128i descs[4], __m128i mbuf_init, uint8_t vlan_flags,
135         struct rte_mbuf **rx_pkts)
136 {
137         __m128i ptype0, ptype1, vtag0, vtag1, csum;
138         __m128i rearm0, rearm1, rearm2, rearm3;
139
140         /* mask everything except rss type */
141         const __m128i rsstype_msk = _mm_set_epi16(
142                         0x0000, 0x0000, 0x0000, 0x0000,
143                         0x000F, 0x000F, 0x000F, 0x000F);
144
145         /* mask the lower byte of ol_flags */
146         const __m128i ol_flags_msk = _mm_set_epi16(
147                         0x0000, 0x0000, 0x0000, 0x0000,
148                         0x00FF, 0x00FF, 0x00FF, 0x00FF);
149
150         /* map rss type to rss hash flag */
151         const __m128i rss_flags = _mm_set_epi8(PKT_RX_FDIR, 0, 0, 0,
152                         0, 0, 0, PKT_RX_RSS_HASH,
153                         PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0,
154                         PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0);
155
156         /* mask everything except vlan present and l4/ip csum error */
157         const __m128i vlan_csum_msk = _mm_set_epi16(
158                 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
159                 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
160                 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
161                 (IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 16,
162                 IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP,
163                 IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP);
164         /* map vlan present (0x8), IPE (0x2), L4E (0x1) to ol_flags */
165         const __m128i vlan_csum_map_lo = _mm_set_epi8(
166                 0, 0, 0, 0,
167                 vlan_flags | PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
168                 vlan_flags | PKT_RX_IP_CKSUM_BAD,
169                 vlan_flags | PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
170                 vlan_flags | PKT_RX_IP_CKSUM_GOOD,
171                 0, 0, 0, 0,
172                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
173                 PKT_RX_IP_CKSUM_BAD,
174                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
175                 PKT_RX_IP_CKSUM_GOOD);
176
177         const __m128i vlan_csum_map_hi = _mm_set_epi8(
178                 0, 0, 0, 0,
179                 0, PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
180                 PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t),
181                 0, 0, 0, 0,
182                 0, PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
183                 PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t));
184
185         ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
186         ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
187         vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
188         vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
189
190         ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
191         ptype0 = _mm_and_si128(ptype0, rsstype_msk);
192         ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
193
194         vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
195         vtag1 = _mm_and_si128(vtag1, vlan_csum_msk);
196
197         /* csum bits are in the most significant, to use shuffle we need to
198          * shift them. Change mask to 0xc000 to 0x0003.
199          */
200         csum = _mm_srli_epi16(vtag1, 14);
201
202         /* now or the most significant 64 bits containing the checksum
203          * flags with the vlan present flags.
204          */
205         csum = _mm_srli_si128(csum, 8);
206         vtag1 = _mm_or_si128(csum, vtag1);
207
208         /* convert VP, IPE, L4E to ol_flags */
209         vtag0 = _mm_shuffle_epi8(vlan_csum_map_hi, vtag1);
210         vtag0 = _mm_slli_epi16(vtag0, sizeof(uint8_t));
211
212         vtag1 = _mm_shuffle_epi8(vlan_csum_map_lo, vtag1);
213         vtag1 = _mm_and_si128(vtag1, ol_flags_msk);
214         vtag1 = _mm_or_si128(vtag0, vtag1);
215
216         vtag1 = _mm_or_si128(ptype0, vtag1);
217
218         /*
219          * At this point, we have the 4 sets of flags in the low 64-bits
220          * of vtag1 (4x16).
221          * We want to extract these, and merge them with the mbuf init data
222          * so we can do a single 16-byte write to the mbuf to set the flags
223          * and all the other initialization fields. Extracting the
224          * appropriate flags means that we have to do a shift and blend for
225          * each mbuf before we do the write.
226          */
227         rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 8), 0x10);
228         rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 6), 0x10);
229         rearm2 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 4), 0x10);
230         rearm3 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vtag1, 2), 0x10);
231
232         /* write the rearm data and the olflags in one write */
233         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
234                         offsetof(struct rte_mbuf, rearm_data) + 8);
235         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
236                         RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
237         _mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
238         _mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
239         _mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
240         _mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
241 }
242
243 static inline uint32_t get_packet_type(int index,
244                                        uint32_t pkt_info,
245                                        uint32_t etqf_check,
246                                        uint32_t tunnel_check)
247 {
248         if (etqf_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP)))
249                 return RTE_PTYPE_UNKNOWN;
250
251         if (tunnel_check & (0x02 << (index * RTE_IXGBE_DESCS_PER_LOOP))) {
252                 pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
253                 return ptype_table_tn[pkt_info];
254         }
255
256         pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
257         return ptype_table[pkt_info];
258 }
259
260 static inline void
261 desc_to_ptype_v(__m128i descs[4], uint16_t pkt_type_mask,
262                 struct rte_mbuf **rx_pkts)
263 {
264         __m128i etqf_mask = _mm_set_epi64x(0x800000008000LL, 0x800000008000LL);
265         __m128i ptype_mask = _mm_set_epi32(
266                 pkt_type_mask, pkt_type_mask, pkt_type_mask, pkt_type_mask);
267         __m128i tunnel_mask =
268                 _mm_set_epi64x(0x100000001000LL, 0x100000001000LL);
269
270         uint32_t etqf_check, tunnel_check, pkt_info;
271
272         __m128i ptype0 = _mm_unpacklo_epi32(descs[0], descs[2]);
273         __m128i ptype1 = _mm_unpacklo_epi32(descs[1], descs[3]);
274
275         /* interleave low 32 bits,
276          * now we have 4 ptypes in a XMM register
277          */
278         ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
279
280         /* create a etqf bitmask based on the etqf bit. */
281         etqf_check = _mm_movemask_epi8(_mm_and_si128(ptype0, etqf_mask));
282
283         /* shift left by IXGBE_PACKET_TYPE_SHIFT, and apply ptype mask */
284         ptype0 = _mm_and_si128(_mm_srli_epi32(ptype0, IXGBE_PACKET_TYPE_SHIFT),
285                                ptype_mask);
286
287         /* create a tunnel bitmask based on the tunnel bit */
288         tunnel_check = _mm_movemask_epi8(
289                 _mm_slli_epi32(_mm_and_si128(ptype0, tunnel_mask), 0x3));
290
291         pkt_info = _mm_extract_epi32(ptype0, 0);
292         rx_pkts[0]->packet_type =
293                 get_packet_type(0, pkt_info, etqf_check, tunnel_check);
294         pkt_info = _mm_extract_epi32(ptype0, 1);
295         rx_pkts[1]->packet_type =
296                 get_packet_type(1, pkt_info, etqf_check, tunnel_check);
297         pkt_info = _mm_extract_epi32(ptype0, 2);
298         rx_pkts[2]->packet_type =
299                 get_packet_type(2, pkt_info, etqf_check, tunnel_check);
300         pkt_info = _mm_extract_epi32(ptype0, 3);
301         rx_pkts[3]->packet_type =
302                 get_packet_type(3, pkt_info, etqf_check, tunnel_check);
303 }
304
305 /**
306  * vPMD raw receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
307  *
308  * Notice:
309  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
310  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
311  */
312 static inline uint16_t
313 _recv_raw_pkts_vec(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
314                 uint16_t nb_pkts, uint8_t *split_packet)
315 {
316         volatile union ixgbe_adv_rx_desc *rxdp;
317         struct ixgbe_rx_entry *sw_ring;
318         uint16_t nb_pkts_recd;
319 #ifdef RTE_LIB_SECURITY
320         uint8_t use_ipsec = rxq->using_ipsec;
321 #endif
322         int pos;
323         uint64_t var;
324         __m128i shuf_msk;
325         __m128i crc_adjust = _mm_set_epi16(
326                                 0, 0, 0,    /* ignore non-length fields */
327                                 -rxq->crc_len, /* sub crc on data_len */
328                                 0,          /* ignore high-16bits of pkt_len */
329                                 -rxq->crc_len, /* sub crc on pkt_len */
330                                 0, 0            /* ignore pkt_type field */
331                         );
332         /*
333          * compile-time check the above crc_adjust layout is correct.
334          * NOTE: the first field (lowest address) is given last in set_epi16
335          * call above.
336          */
337         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
338                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
339         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
340                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
341         __m128i dd_check, eop_check;
342         __m128i mbuf_init;
343         uint8_t vlan_flags;
344
345         /* nb_pkts has to be floor-aligned to RTE_IXGBE_DESCS_PER_LOOP */
346         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_IXGBE_DESCS_PER_LOOP);
347
348         /* Just the act of getting into the function from the application is
349          * going to cost about 7 cycles
350          */
351         rxdp = rxq->rx_ring + rxq->rx_tail;
352
353         rte_prefetch0(rxdp);
354
355         /* See if we need to rearm the RX queue - gives the prefetch a bit
356          * of time to act
357          */
358         if (rxq->rxrearm_nb > RTE_IXGBE_RXQ_REARM_THRESH)
359                 ixgbe_rxq_rearm(rxq);
360
361         /* Before we start moving massive data around, check to see if
362          * there is actually a packet available
363          */
364         if (!(rxdp->wb.upper.status_error &
365                                 rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
366                 return 0;
367
368         /* 4 packets DD mask */
369         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
370
371         /* 4 packets EOP mask */
372         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
373
374         /* mask to shuffle from desc. to mbuf */
375         shuf_msk = _mm_set_epi8(
376                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
377                 15, 14,      /* octet 14~15, low 16 bits vlan_macip */
378                 13, 12,      /* octet 12~13, 16 bits data_len */
379                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
380                 13, 12,      /* octet 12~13, low 16 bits pkt_len */
381                 0xFF, 0xFF,  /* skip 32 bit pkt_type */
382                 0xFF, 0xFF
383                 );
384         /*
385          * Compile-time verify the shuffle mask
386          * NOTE: some field positions already verified above, but duplicated
387          * here for completeness in case of future modifications.
388          */
389         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
390                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
391         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
392                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
393         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
394                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
395         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
396                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
397
398         mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
399
400         /* Cache is empty -> need to scan the buffer rings, but first move
401          * the next 'n' mbufs into the cache
402          */
403         sw_ring = &rxq->sw_ring[rxq->rx_tail];
404
405         /* ensure these 2 flags are in the lower 8 bits */
406         RTE_BUILD_BUG_ON((PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED) > UINT8_MAX);
407         vlan_flags = rxq->vlan_flags & UINT8_MAX;
408
409         /* A. load 4 packet in one loop
410          * [A*. mask out 4 unused dirty field in desc]
411          * B. copy 4 mbuf point from swring to rx_pkts
412          * C. calc the number of DD bits among the 4 packets
413          * [C*. extract the end-of-packet bit, if requested]
414          * D. fill info. from desc to mbuf
415          */
416         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
417                         pos += RTE_IXGBE_DESCS_PER_LOOP,
418                         rxdp += RTE_IXGBE_DESCS_PER_LOOP) {
419                 __m128i descs[RTE_IXGBE_DESCS_PER_LOOP];
420                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
421                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
422                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
423                 __m128i mbp1;
424 #if defined(RTE_ARCH_X86_64)
425                 __m128i mbp2;
426 #endif
427
428                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
429                 mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
430
431                 /* Read desc statuses backwards to avoid race condition */
432                 /* A.1 load 4 pkts desc */
433                 descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
434                 rte_compiler_barrier();
435
436                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
437                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
438
439 #if defined(RTE_ARCH_X86_64)
440                 /* B.1 load 2 64 bit mbuf points */
441                 mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos+2]);
442 #endif
443
444                 descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
445                 rte_compiler_barrier();
446                 /* B.1 load 2 mbuf point */
447                 descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
448                 rte_compiler_barrier();
449                 descs[0] = _mm_loadu_si128((__m128i *)(rxdp));
450
451 #if defined(RTE_ARCH_X86_64)
452                 /* B.2 copy 2 mbuf point into rx_pkts  */
453                 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
454 #endif
455
456                 if (split_packet) {
457                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
458                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
459                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
460                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
461                 }
462
463                 /* avoid compiler reorder optimization */
464                 rte_compiler_barrier();
465
466                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
467                 pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
468                 pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
469
470                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
471                 pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
472                 pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
473
474                 /* C.1 4=>2 filter staterr info only */
475                 sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
476                 /* C.1 4=>2 filter staterr info only */
477                 sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);
478
479                 /* set ol_flags with vlan packet type */
480                 desc_to_olflags_v(descs, mbuf_init, vlan_flags, &rx_pkts[pos]);
481
482 #ifdef RTE_LIB_SECURITY
483                 if (unlikely(use_ipsec))
484                         desc_to_olflags_v_ipsec(descs, &rx_pkts[pos]);
485 #endif
486
487                 /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
488                 pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
489                 pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
490
491                 /* C.2 get 4 pkts staterr value  */
492                 zero = _mm_xor_si128(dd_check, dd_check);
493                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
494
495                 /* D.3 copy final 3,4 data to rx_pkts */
496                 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
497                                 pkt_mb4);
498                 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
499                                 pkt_mb3);
500
501                 /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
502                 pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);
503                 pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
504
505                 /* C* extract and record EOP bit */
506                 if (split_packet) {
507                         __m128i eop_shuf_mask = _mm_set_epi8(
508                                         0xFF, 0xFF, 0xFF, 0xFF,
509                                         0xFF, 0xFF, 0xFF, 0xFF,
510                                         0xFF, 0xFF, 0xFF, 0xFF,
511                                         0x04, 0x0C, 0x00, 0x08
512                                         );
513
514                         /* and with mask to extract bits, flipping 1-0 */
515                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
516                         /* the staterr values are not in order, as the count
517                          * count of dd bits doesn't care. However, for end of
518                          * packet tracking, we do care, so shuffle. This also
519                          * compresses the 32-bit values to 8-bit
520                          */
521                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
522                         /* store the resulting 32-bit value */
523                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
524                         split_packet += RTE_IXGBE_DESCS_PER_LOOP;
525                 }
526
527                 /* C.3 calc available number of desc */
528                 staterr = _mm_and_si128(staterr, dd_check);
529                 staterr = _mm_packs_epi32(staterr, zero);
530
531                 /* D.3 copy final 1,2 data to rx_pkts */
532                 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
533                                 pkt_mb2);
534                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
535                                 pkt_mb1);
536
537                 desc_to_ptype_v(descs, rxq->pkt_type_mask, &rx_pkts[pos]);
538
539                 /* C.4 calc avaialbe number of desc */
540                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
541                 nb_pkts_recd += var;
542                 if (likely(var != RTE_IXGBE_DESCS_PER_LOOP))
543                         break;
544         }
545
546         /* Update our internal tail pointer */
547         rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
548         rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
549         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
550
551         return nb_pkts_recd;
552 }
553
554 /**
555  * vPMD receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
556  *
557  * Notice:
558  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
559  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
560  */
561 uint16_t
562 ixgbe_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
563                 uint16_t nb_pkts)
564 {
565         return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
566 }
567
568 /**
569  * vPMD receive routine that reassembles scattered packets
570  *
571  * Notice:
572  * - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
573  * - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
574  */
575 static uint16_t
576 ixgbe_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
577                                uint16_t nb_pkts)
578 {
579         struct ixgbe_rx_queue *rxq = rx_queue;
580         uint8_t split_flags[RTE_IXGBE_MAX_RX_BURST] = {0};
581
582         /* get some new buffers */
583         uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
584                         split_flags);
585         if (nb_bufs == 0)
586                 return 0;
587
588         /* happy day case, full burst + no packets to be joined */
589         const uint64_t *split_fl64 = (uint64_t *)split_flags;
590         if (rxq->pkt_first_seg == NULL &&
591                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
592                         split_fl64[2] == 0 && split_fl64[3] == 0)
593                 return nb_bufs;
594
595         /* reassemble any packets that need reassembly*/
596         unsigned i = 0;
597         if (rxq->pkt_first_seg == NULL) {
598                 /* find the first split flag, and only reassemble then*/
599                 while (i < nb_bufs && !split_flags[i])
600                         i++;
601                 if (i == nb_bufs)
602                         return nb_bufs;
603                 rxq->pkt_first_seg = rx_pkts[i];
604         }
605         return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
606                 &split_flags[i]);
607 }
608
609 /**
610  * vPMD receive routine that reassembles scattered packets.
611  */
612 uint16_t
613 ixgbe_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
614                               uint16_t nb_pkts)
615 {
616         uint16_t retval = 0;
617
618         while (nb_pkts > RTE_IXGBE_MAX_RX_BURST) {
619                 uint16_t burst;
620
621                 burst = ixgbe_recv_scattered_burst_vec(rx_queue,
622                                                        rx_pkts + retval,
623                                                        RTE_IXGBE_MAX_RX_BURST);
624                 retval += burst;
625                 nb_pkts -= burst;
626                 if (burst < RTE_IXGBE_MAX_RX_BURST)
627                         return retval;
628         }
629
630         return retval + ixgbe_recv_scattered_burst_vec(rx_queue,
631                                                        rx_pkts + retval,
632                                                        nb_pkts);
633 }
634
635 static inline void
636 vtx1(volatile union ixgbe_adv_tx_desc *txdp,
637                 struct rte_mbuf *pkt, uint64_t flags)
638 {
639         __m128i descriptor = _mm_set_epi64x((uint64_t)pkt->pkt_len << 46 |
640                         flags | pkt->data_len,
641                         pkt->buf_iova + pkt->data_off);
642         _mm_store_si128((__m128i *)&txdp->read, descriptor);
643 }
644
645 static inline void
646 vtx(volatile union ixgbe_adv_tx_desc *txdp,
647                 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
648 {
649         int i;
650
651         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
652                 vtx1(txdp, *pkt, flags);
653 }
654
655 uint16_t
656 ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
657                            uint16_t nb_pkts)
658 {
659         struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
660         volatile union ixgbe_adv_tx_desc *txdp;
661         struct ixgbe_tx_entry_v *txep;
662         uint16_t n, nb_commit, tx_id;
663         uint64_t flags = DCMD_DTYP_FLAGS;
664         uint64_t rs = IXGBE_ADVTXD_DCMD_RS|DCMD_DTYP_FLAGS;
665         int i;
666
667         /* cross rx_thresh boundary is not allowed */
668         nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
669
670         if (txq->nb_tx_free < txq->tx_free_thresh)
671                 ixgbe_tx_free_bufs(txq);
672
673         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
674         if (unlikely(nb_pkts == 0))
675                 return 0;
676
677         tx_id = txq->tx_tail;
678         txdp = &txq->tx_ring[tx_id];
679         txep = &txq->sw_ring_v[tx_id];
680
681         txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
682
683         n = (uint16_t)(txq->nb_tx_desc - tx_id);
684         if (nb_commit >= n) {
685
686                 tx_backlog_entry(txep, tx_pkts, n);
687
688                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
689                         vtx1(txdp, *tx_pkts, flags);
690
691                 vtx1(txdp, *tx_pkts++, rs);
692
693                 nb_commit = (uint16_t)(nb_commit - n);
694
695                 tx_id = 0;
696                 txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
697
698                 /* avoid reach the end of ring */
699                 txdp = &(txq->tx_ring[tx_id]);
700                 txep = &txq->sw_ring_v[tx_id];
701         }
702
703         tx_backlog_entry(txep, tx_pkts, nb_commit);
704
705         vtx(txdp, tx_pkts, nb_commit, flags);
706
707         tx_id = (uint16_t)(tx_id + nb_commit);
708         if (tx_id > txq->tx_next_rs) {
709                 txq->tx_ring[txq->tx_next_rs].read.cmd_type_len |=
710                         rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
711                 txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
712                         txq->tx_rs_thresh);
713         }
714
715         txq->tx_tail = tx_id;
716
717         IXGBE_PCI_REG_WC_WRITE(txq->tdt_reg_addr, txq->tx_tail);
718
719         return nb_pkts;
720 }
721
722 static void __rte_cold
723 ixgbe_tx_queue_release_mbufs_vec(struct ixgbe_tx_queue *txq)
724 {
725         _ixgbe_tx_queue_release_mbufs_vec(txq);
726 }
727
728 void __rte_cold
729 ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue *rxq)
730 {
731         _ixgbe_rx_queue_release_mbufs_vec(rxq);
732 }
733
734 static void __rte_cold
735 ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
736 {
737         _ixgbe_tx_free_swring_vec(txq);
738 }
739
740 static void __rte_cold
741 ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
742 {
743         _ixgbe_reset_tx_queue_vec(txq);
744 }
745
746 static const struct ixgbe_txq_ops vec_txq_ops = {
747         .release_mbufs = ixgbe_tx_queue_release_mbufs_vec,
748         .free_swring = ixgbe_tx_free_swring,
749         .reset = ixgbe_reset_tx_queue,
750 };
751
752 int __rte_cold
753 ixgbe_rxq_vec_setup(struct ixgbe_rx_queue *rxq)
754 {
755         return ixgbe_rxq_vec_setup_default(rxq);
756 }
757
758 int __rte_cold
759 ixgbe_txq_vec_setup(struct ixgbe_tx_queue *txq)
760 {
761         return ixgbe_txq_vec_setup_default(txq, &vec_txq_ops);
762 }
763
764 int __rte_cold
765 ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
766 {
767         return ixgbe_rx_vec_dev_conf_condition_check_default(dev);
768 }