net/mlx4: remove Tx completion elements counter
[dpdk.git] / drivers / net / mlx4 / mlx4_rxtx.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2017 6WIND S.A.
5  *   Copyright 2017 Mellanox
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /**
35  * @file
36  * Data plane functions for mlx4 driver.
37  */
38
39 #include <assert.h>
40 #include <stdint.h>
41 #include <string.h>
42
43 /* Verbs headers do not support -pedantic. */
44 #ifdef PEDANTIC
45 #pragma GCC diagnostic ignored "-Wpedantic"
46 #endif
47 #include <infiniband/verbs.h>
48 #ifdef PEDANTIC
49 #pragma GCC diagnostic error "-Wpedantic"
50 #endif
51
52 #include <rte_branch_prediction.h>
53 #include <rte_common.h>
54 #include <rte_io.h>
55 #include <rte_mbuf.h>
56 #include <rte_mempool.h>
57 #include <rte_prefetch.h>
58
59 #include "mlx4.h"
60 #include "mlx4_prm.h"
61 #include "mlx4_rxtx.h"
62 #include "mlx4_utils.h"
63
64 /**
65  * Pointer-value pair structure used in tx_post_send for saving the first
66  * DWORD (32 byte) of a TXBB.
67  */
68 struct pv {
69         volatile struct mlx4_wqe_data_seg *dseg;
70         uint32_t val;
71 };
72
73 /** A table to translate Rx completion flags to packet type. */
74 uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
75         /*
76          * The index to the array should have:
77          *  bit[7] - MLX4_CQE_L2_TUNNEL
78          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
79          *  bit[5] - MLX4_CQE_STATUS_UDP
80          *  bit[4] - MLX4_CQE_STATUS_TCP
81          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
82          *  bit[2] - MLX4_CQE_STATUS_IPV6
83          *  bit[1] - MLX4_CQE_STATUS_IPV4F
84          *  bit[0] - MLX4_CQE_STATUS_IPV4
85          * giving a total of up to 256 entries.
86          */
87         [0x00] = RTE_PTYPE_L2_ETHER,
88         [0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
89         [0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
90                      RTE_PTYPE_L4_FRAG,
91         [0x03] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
92                      RTE_PTYPE_L4_FRAG,
93         [0x04] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
94         [0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT,
95         [0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
96                      RTE_PTYPE_L4_FRAG,
97         [0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
98                      RTE_PTYPE_L4_TCP,
99         [0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
100                      RTE_PTYPE_L4_TCP,
101         [0x14] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
102                      RTE_PTYPE_L4_TCP,
103         [0x18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
104                      RTE_PTYPE_L4_TCP,
105         [0x19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
106                      RTE_PTYPE_L4_TCP,
107         [0x1a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
108                      RTE_PTYPE_L4_TCP,
109         [0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
110                      RTE_PTYPE_L4_UDP,
111         [0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
112                      RTE_PTYPE_L4_UDP,
113         [0x24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
114                      RTE_PTYPE_L4_UDP,
115         [0x28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
116                      RTE_PTYPE_L4_UDP,
117         [0x29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
118                      RTE_PTYPE_L4_UDP,
119         [0x2a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT |
120                      RTE_PTYPE_L4_UDP,
121         /* Tunneled - L3 IPV6 */
122         [0x80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
123         [0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
124                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
125         [0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
126                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
127                      RTE_PTYPE_INNER_L4_FRAG,
128         [0x83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
129                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
130                      RTE_PTYPE_INNER_L4_FRAG,
131         [0x84] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
132                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
133         [0x88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
134                      RTE_PTYPE_INNER_L3_IPV4_EXT,
135         [0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
136                      RTE_PTYPE_INNER_L3_IPV4_EXT,
137         [0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
138                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG,
139         /* Tunneled - L3 IPV6, TCP */
140         [0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
142                      RTE_PTYPE_INNER_L4_TCP,
143         [0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
145                      RTE_PTYPE_INNER_L4_FRAG |
146                      RTE_PTYPE_INNER_L4_TCP,
147         [0x93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
149                      RTE_PTYPE_INNER_L4_FRAG |
150                      RTE_PTYPE_INNER_L4_TCP,
151         [0x94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
152                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
153                      RTE_PTYPE_INNER_L4_TCP,
154         [0x98] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
155                      RTE_PTYPE_INNER_L3_IPV4_EXT |
156                      RTE_PTYPE_INNER_L4_TCP,
157         [0x99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
158                      RTE_PTYPE_INNER_L3_IPV4_EXT |
159                      RTE_PTYPE_INNER_L4_TCP,
160         [0x9a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
162                      RTE_PTYPE_INNER_L4_TCP,
163         /* Tunneled - L3 IPV6, UDP */
164         [0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
165                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
166                      RTE_PTYPE_INNER_L4_UDP,
167         [0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
168                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L4_FRAG |
170                      RTE_PTYPE_INNER_L4_UDP,
171         [0xa3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
172                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L4_FRAG |
174                      RTE_PTYPE_INNER_L4_UDP,
175         [0xa4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
177                      RTE_PTYPE_INNER_L4_UDP,
178         [0xa8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L3_IPV4_EXT |
180                      RTE_PTYPE_INNER_L4_UDP,
181         [0xa9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L3_IPV4_EXT |
183                      RTE_PTYPE_INNER_L4_UDP,
184         [0xaa] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
186                      RTE_PTYPE_INNER_L4_UDP,
187         /* Tunneled - L3 IPV4 */
188         [0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
189         [0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
190                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
191         [0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
192                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
193                      RTE_PTYPE_INNER_L4_FRAG,
194         [0xc3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
195                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
196                      RTE_PTYPE_INNER_L4_FRAG,
197         [0xc4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
199         [0xc8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
200                      RTE_PTYPE_INNER_L3_IPV4_EXT,
201         [0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
202                      RTE_PTYPE_INNER_L3_IPV4_EXT,
203         [0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
204                      RTE_PTYPE_INNER_L3_IPV4_EXT |
205                      RTE_PTYPE_INNER_L4_FRAG,
206         /* Tunneled - L3 IPV4, TCP */
207         [0xd0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
208                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
209                      RTE_PTYPE_INNER_L4_TCP,
210         [0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
211                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
212                      RTE_PTYPE_INNER_L4_TCP,
213         [0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
214                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
215                      RTE_PTYPE_INNER_L4_FRAG |
216                      RTE_PTYPE_INNER_L4_TCP,
217         [0xd3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
218                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
219                      RTE_PTYPE_INNER_L4_FRAG |
220                      RTE_PTYPE_INNER_L4_TCP,
221         [0xd4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
222                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
223                      RTE_PTYPE_INNER_L4_TCP,
224         [0xd8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
225                      RTE_PTYPE_INNER_L3_IPV4_EXT |
226                      RTE_PTYPE_INNER_L4_TCP,
227         [0xd9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
228                      RTE_PTYPE_INNER_L3_IPV4_EXT |
229                      RTE_PTYPE_INNER_L4_TCP,
230         [0xda] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
231                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
232                      RTE_PTYPE_INNER_L4_TCP,
233         /* Tunneled - L3 IPV4, UDP */
234         [0xe0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
235                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
236                      RTE_PTYPE_INNER_L4_UDP,
237         [0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
238                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
239                      RTE_PTYPE_INNER_L4_UDP,
240         [0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
241                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
242                      RTE_PTYPE_INNER_L4_FRAG |
243                      RTE_PTYPE_INNER_L4_UDP,
244         [0xe3] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
245                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
246                      RTE_PTYPE_INNER_L4_FRAG |
247                      RTE_PTYPE_INNER_L4_UDP,
248         [0xe4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
249                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
250                      RTE_PTYPE_INNER_L4_UDP,
251         [0xe8] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
252                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
253         [0xe9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
254                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
255         [0xea] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
256                      RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_FRAG |
257                      RTE_PTYPE_INNER_L4_UDP,
258 };
259
260 /**
261  * Stamp TXBB burst so it won't be reused by the HW.
262  *
263  * Routine is used when freeing WQE used by the chip or when failing
264  * building an WQ entry has failed leaving partial information on the queue.
265  *
266  * @param sq
267  *   Pointer to the SQ structure.
268  * @param start
269  *   Pointer to the first TXBB to stamp.
270  * @param end
271  *   Pointer to the followed end TXBB to stamp.
272  *
273  * @return
274  *   Stamping burst size in byte units.
275  */
276 static uint32_t
277 mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, volatile uint32_t *start,
278                          volatile uint32_t *end)
279 {
280         uint32_t stamp = sq->stamp;
281         int32_t size = (intptr_t)end - (intptr_t)start;
282
283         assert(start != end);
284         /* Hold SQ ring wrap around. */
285         if (size < 0) {
286                 size = (int32_t)sq->size + size;
287                 do {
288                         *start = stamp;
289                         start += MLX4_SQ_STAMP_DWORDS;
290                 } while (start != (volatile uint32_t *)sq->eob);
291                 start = (volatile uint32_t *)sq->buf;
292                 /* Flip invalid stamping ownership. */
293                 stamp ^= RTE_BE32(0x1 << MLX4_SQ_OWNER_BIT);
294                 sq->stamp = stamp;
295                 if (start == end)
296                         return size;
297         }
298         do {
299                 *start = stamp;
300                 start += MLX4_SQ_STAMP_DWORDS;
301         } while (start != end);
302         return (uint32_t)size;
303 }
304
305 /**
306  * Manage Tx completions.
307  *
308  * When sending a burst, mlx4_tx_burst() posts several WRs.
309  * To improve performance, a completion event is only required once every
310  * MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
311  * for other WRs, but this information would not be used anyway.
312  *
313  * @param txq
314  *   Pointer to Tx queue structure.
315  * @param elts_m
316  *   Tx elements number mask.
317  * @param sq
318  *   Pointer to the SQ structure.
319  */
320 static void
321 mlx4_txq_complete(struct txq *txq, const unsigned int elts_m,
322                   struct mlx4_sq *sq)
323 {
324         unsigned int elts_tail = txq->elts_tail;
325         struct mlx4_cq *cq = &txq->mcq;
326         volatile struct mlx4_cqe *cqe;
327         uint32_t completed;
328         uint32_t cons_index = cq->cons_index;
329         volatile uint32_t *first_txbb;
330
331         /*
332          * Traverse over all CQ entries reported and handle each WQ entry
333          * reported by them.
334          */
335         do {
336                 cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cons_index);
337                 if (unlikely(!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
338                     !!(cons_index & cq->cqe_cnt)))
339                         break;
340 #ifndef NDEBUG
341                 /*
342                  * Make sure we read the CQE after we read the ownership bit.
343                  */
344                 rte_io_rmb();
345                 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
346                              MLX4_CQE_OPCODE_ERROR)) {
347                         volatile struct mlx4_err_cqe *cqe_err =
348                                 (volatile struct mlx4_err_cqe *)cqe;
349                         ERROR("%p CQE error - vendor syndrome: 0x%x"
350                               " syndrome: 0x%x\n",
351                               (void *)txq, cqe_err->vendor_err,
352                               cqe_err->syndrome);
353                         break;
354                 }
355 #endif /* NDEBUG */
356                 cons_index++;
357         } while (1);
358         completed = (cons_index - cq->cons_index) * txq->elts_comp_cd_init;
359         if (unlikely(!completed))
360                 return;
361         /* First stamping address is the end of the last one. */
362         first_txbb = (&(*txq->elts)[elts_tail & elts_m])->eocb;
363         elts_tail += completed;
364         /* The new tail element holds the end address. */
365         sq->remain_size += mlx4_txq_stamp_freed_wqe(sq, first_txbb,
366                 (&(*txq->elts)[elts_tail & elts_m])->eocb);
367         /* Update CQ consumer index. */
368         cq->cons_index = cons_index;
369         *cq->set_ci_db = rte_cpu_to_be_32(cons_index & MLX4_CQ_DB_CI_MASK);
370         txq->elts_tail = elts_tail;
371 }
372
373 /**
374  * Get memory pool (MP) from mbuf. If mbuf is indirect, the pool from which
375  * the cloned mbuf is allocated is returned instead.
376  *
377  * @param buf
378  *   Pointer to mbuf.
379  *
380  * @return
381  *   Memory pool where data is located for given mbuf.
382  */
383 static struct rte_mempool *
384 mlx4_txq_mb2mp(struct rte_mbuf *buf)
385 {
386         if (unlikely(RTE_MBUF_INDIRECT(buf)))
387                 return rte_mbuf_from_indirect(buf)->pool;
388         return buf->pool;
389 }
390
391 /**
392  * Write Tx data segment to the SQ.
393  *
394  * @param dseg
395  *   Pointer to data segment in SQ.
396  * @param lkey
397  *   Memory region lkey.
398  * @param addr
399  *   Data address.
400  * @param byte_count
401  *   Big endian bytes count of the data to send.
402  */
403 static inline void
404 mlx4_fill_tx_data_seg(volatile struct mlx4_wqe_data_seg *dseg,
405                        uint32_t lkey, uintptr_t addr, rte_be32_t  byte_count)
406 {
407         dseg->addr = rte_cpu_to_be_64(addr);
408         dseg->lkey = rte_cpu_to_be_32(lkey);
409 #if RTE_CACHE_LINE_SIZE < 64
410         /*
411          * Need a barrier here before writing the byte_count
412          * fields to make sure that all the data is visible
413          * before the byte_count field is set.
414          * Otherwise, if the segment begins a new cacheline,
415          * the HCA prefetcher could grab the 64-byte chunk and
416          * get a valid (!= 0xffffffff) byte count but stale
417          * data, and end up sending the wrong data.
418          */
419         rte_io_wmb();
420 #endif /* RTE_CACHE_LINE_SIZE */
421         dseg->byte_count = byte_count;
422 }
423
424 /**
425  * Write data segments of multi-segment packet.
426  *
427  * @param buf
428  *   Pointer to the first packet mbuf.
429  * @param txq
430  *   Pointer to Tx queue structure.
431  * @param ctrl
432  *   Pointer to the WQE control segment.
433  *
434  * @return
435  *   Pointer to the next WQE control segment on success, NULL otherwise.
436  */
437 static volatile struct mlx4_wqe_ctrl_seg *
438 mlx4_tx_burst_segs(struct rte_mbuf *buf, struct txq *txq,
439                    volatile struct mlx4_wqe_ctrl_seg *ctrl)
440 {
441         struct pv *pv = (struct pv *)txq->bounce_buf;
442         struct mlx4_sq *sq = &txq->msq;
443         struct rte_mbuf *sbuf = buf;
444         uint32_t lkey;
445         int pv_counter = 0;
446         int nb_segs = buf->nb_segs;
447         uint32_t wqe_size;
448         volatile struct mlx4_wqe_data_seg *dseg =
449                 (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
450
451         ctrl->fence_size = 1 + nb_segs;
452         wqe_size = RTE_ALIGN((uint32_t)(ctrl->fence_size << MLX4_SEG_SHIFT),
453                              MLX4_TXBB_SIZE);
454         /* Validate WQE size and WQE space in the send queue. */
455         if (sq->remain_size < wqe_size ||
456             wqe_size > MLX4_MAX_WQE_SIZE)
457                 return NULL;
458         /*
459          * Fill the data segments with buffer information.
460          * First WQE TXBB head segment is always control segment,
461          * so jump to tail TXBB data segments code for the first
462          * WQE data segments filling.
463          */
464         goto txbb_tail_segs;
465 txbb_head_seg:
466         /* Memory region key (big endian) for this memory pool. */
467         lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
468         if (unlikely(lkey == (uint32_t)-1)) {
469                 DEBUG("%p: unable to get MP <-> MR association",
470                       (void *)txq);
471                 return NULL;
472         }
473         /* Handle WQE wraparound. */
474         if (dseg >=
475                 (volatile struct mlx4_wqe_data_seg *)sq->eob)
476                 dseg = (volatile struct mlx4_wqe_data_seg *)
477                         sq->buf;
478         dseg->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(sbuf, uintptr_t));
479         dseg->lkey = rte_cpu_to_be_32(lkey);
480         /*
481          * This data segment starts at the beginning of a new
482          * TXBB, so we need to postpone its byte_count writing
483          * for later.
484          */
485         pv[pv_counter].dseg = dseg;
486         /*
487          * Zero length segment is treated as inline segment
488          * with zero data.
489          */
490         pv[pv_counter++].val = rte_cpu_to_be_32(sbuf->data_len ?
491                                                 sbuf->data_len : 0x80000000);
492         sbuf = sbuf->next;
493         dseg++;
494         nb_segs--;
495 txbb_tail_segs:
496         /* Jump to default if there are more than two segments remaining. */
497         switch (nb_segs) {
498         default:
499                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
500                 if (unlikely(lkey == (uint32_t)-1)) {
501                         DEBUG("%p: unable to get MP <-> MR association",
502                               (void *)txq);
503                         return NULL;
504                 }
505                 mlx4_fill_tx_data_seg(dseg, lkey,
506                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
507                                       rte_cpu_to_be_32(sbuf->data_len ?
508                                                        sbuf->data_len :
509                                                        0x80000000));
510                 sbuf = sbuf->next;
511                 dseg++;
512                 nb_segs--;
513                 /* fallthrough */
514         case 2:
515                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
516                 if (unlikely(lkey == (uint32_t)-1)) {
517                         DEBUG("%p: unable to get MP <-> MR association",
518                               (void *)txq);
519                         return NULL;
520                 }
521                 mlx4_fill_tx_data_seg(dseg, lkey,
522                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
523                                       rte_cpu_to_be_32(sbuf->data_len ?
524                                                        sbuf->data_len :
525                                                        0x80000000));
526                 sbuf = sbuf->next;
527                 dseg++;
528                 nb_segs--;
529                 /* fallthrough */
530         case 1:
531                 lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(sbuf));
532                 if (unlikely(lkey == (uint32_t)-1)) {
533                         DEBUG("%p: unable to get MP <-> MR association",
534                               (void *)txq);
535                         return NULL;
536                 }
537                 mlx4_fill_tx_data_seg(dseg, lkey,
538                                       rte_pktmbuf_mtod(sbuf, uintptr_t),
539                                       rte_cpu_to_be_32(sbuf->data_len ?
540                                                        sbuf->data_len :
541                                                        0x80000000));
542                 nb_segs--;
543                 if (nb_segs) {
544                         sbuf = sbuf->next;
545                         dseg++;
546                         goto txbb_head_seg;
547                 }
548                 /* fallthrough */
549         case 0:
550                 break;
551         }
552         /* Write the first DWORD of each TXBB save earlier. */
553         if (pv_counter) {
554                 /* Need a barrier here before writing the byte_count. */
555                 rte_io_wmb();
556                 for (--pv_counter; pv_counter  >= 0; pv_counter--)
557                         pv[pv_counter].dseg->byte_count = pv[pv_counter].val;
558         }
559         sq->remain_size -= wqe_size;
560         /* Align next WQE address to the next TXBB. */
561         return (volatile struct mlx4_wqe_ctrl_seg *)
562                 ((volatile uint8_t *)ctrl + wqe_size);
563 }
564
565 /**
566  * DPDK callback for Tx.
567  *
568  * @param dpdk_txq
569  *   Generic pointer to Tx queue structure.
570  * @param[in] pkts
571  *   Packets to transmit.
572  * @param pkts_n
573  *   Number of packets in array.
574  *
575  * @return
576  *   Number of packets successfully transmitted (<= pkts_n).
577  */
578 uint16_t
579 mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
580 {
581         struct txq *txq = (struct txq *)dpdk_txq;
582         unsigned int elts_head = txq->elts_head;
583         const unsigned int elts_n = txq->elts_n;
584         const unsigned int elts_m = elts_n - 1;
585         unsigned int bytes_sent = 0;
586         unsigned int i;
587         unsigned int max = elts_head - txq->elts_tail;
588         struct mlx4_sq *sq = &txq->msq;
589         volatile struct mlx4_wqe_ctrl_seg *ctrl;
590         struct txq_elt *elt;
591
592         assert(txq->elts_comp_cd != 0);
593         if (likely(max >= txq->elts_comp_cd_init))
594                 mlx4_txq_complete(txq, elts_m, sq);
595         max = elts_n - max;
596         assert(max >= 1);
597         assert(max <= elts_n);
598         /* Always leave one free entry in the ring. */
599         --max;
600         if (max > pkts_n)
601                 max = pkts_n;
602         elt = &(*txq->elts)[elts_head & elts_m];
603         /* First Tx burst element saves the next WQE control segment. */
604         ctrl = elt->wqe;
605         for (i = 0; (i != max); ++i) {
606                 struct rte_mbuf *buf = pkts[i];
607                 struct txq_elt *elt_next = &(*txq->elts)[++elts_head & elts_m];
608                 uint32_t owner_opcode = sq->owner_opcode;
609                 volatile struct mlx4_wqe_data_seg *dseg =
610                                 (volatile struct mlx4_wqe_data_seg *)(ctrl + 1);
611                 volatile struct mlx4_wqe_ctrl_seg *ctrl_next;
612                 union {
613                         uint32_t flags;
614                         uint16_t flags16[2];
615                 } srcrb;
616                 uint32_t lkey;
617
618                 /* Clean up old buffer. */
619                 if (likely(elt->buf != NULL)) {
620                         struct rte_mbuf *tmp = elt->buf;
621
622 #ifndef NDEBUG
623                         /* Poisoning. */
624                         memset(&elt->buf, 0x66, sizeof(struct rte_mbuf *));
625 #endif
626                         /* Faster than rte_pktmbuf_free(). */
627                         do {
628                                 struct rte_mbuf *next = tmp->next;
629
630                                 rte_pktmbuf_free_seg(tmp);
631                                 tmp = next;
632                         } while (tmp != NULL);
633                 }
634                 RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
635                 if (buf->nb_segs == 1) {
636                         /* Validate WQE space in the send queue. */
637                         if (sq->remain_size < MLX4_TXBB_SIZE) {
638                                 elt->buf = NULL;
639                                 break;
640                         }
641                         lkey = mlx4_txq_mp2mr(txq, mlx4_txq_mb2mp(buf));
642                         if (unlikely(lkey == (uint32_t)-1)) {
643                                 /* MR does not exist. */
644                                 DEBUG("%p: unable to get MP <-> MR association",
645                                       (void *)txq);
646                                 elt->buf = NULL;
647                                 break;
648                         }
649                         mlx4_fill_tx_data_seg(dseg++, lkey,
650                                               rte_pktmbuf_mtod(buf, uintptr_t),
651                                               rte_cpu_to_be_32(buf->data_len));
652                         /* Set WQE size in 16-byte units. */
653                         ctrl->fence_size = 0x2;
654                         sq->remain_size -= MLX4_TXBB_SIZE;
655                         /* Align next WQE address to the next TXBB. */
656                         ctrl_next = ctrl + 0x4;
657                 } else {
658                         ctrl_next = mlx4_tx_burst_segs(buf, txq, ctrl);
659                         if (!ctrl_next) {
660                                 elt->buf = NULL;
661                                 break;
662                         }
663                 }
664                 /* Hold SQ ring wrap around. */
665                 if ((volatile uint8_t *)ctrl_next >= sq->eob) {
666                         ctrl_next = (volatile struct mlx4_wqe_ctrl_seg *)
667                                 ((volatile uint8_t *)ctrl_next - sq->size);
668                         /* Flip HW valid ownership. */
669                         sq->owner_opcode ^= 0x1 << MLX4_SQ_OWNER_BIT;
670                 }
671                 /*
672                  * For raw Ethernet, the SOLICIT flag is used to indicate
673                  * that no ICRC should be calculated.
674                  */
675                 if (--txq->elts_comp_cd == 0) {
676                         /* Save the completion burst end address. */
677                         elt_next->eocb = (volatile uint32_t *)ctrl_next;
678                         txq->elts_comp_cd = txq->elts_comp_cd_init;
679                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
680                                                MLX4_WQE_CTRL_CQ_UPDATE);
681                 } else {
682                         srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT);
683                 }
684                 /* Enable HW checksum offload if requested */
685                 if (txq->csum &&
686                     (buf->ol_flags &
687                      (PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))) {
688                         const uint64_t is_tunneled = (buf->ol_flags &
689                                                       (PKT_TX_TUNNEL_GRE |
690                                                        PKT_TX_TUNNEL_VXLAN));
691
692                         if (is_tunneled && txq->csum_l2tun) {
693                                 owner_opcode |= MLX4_WQE_CTRL_IIP_HDR_CSUM |
694                                                 MLX4_WQE_CTRL_IL4_HDR_CSUM;
695                                 if (buf->ol_flags & PKT_TX_OUTER_IP_CKSUM)
696                                         srcrb.flags |=
697                                             RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM);
698                         } else {
699                                 srcrb.flags |=
700                                         RTE_BE32(MLX4_WQE_CTRL_IP_HDR_CSUM |
701                                                 MLX4_WQE_CTRL_TCP_UDP_CSUM);
702                         }
703                 }
704                 if (txq->lb) {
705                         /*
706                          * Copy destination MAC address to the WQE, this allows
707                          * loopback in eSwitch, so that VFs and PF can
708                          * communicate with each other.
709                          */
710                         srcrb.flags16[0] = *(rte_pktmbuf_mtod(buf, uint16_t *));
711                         ctrl->imm = *(rte_pktmbuf_mtod_offset(buf, uint32_t *,
712                                               sizeof(uint16_t)));
713                 } else {
714                         ctrl->imm = 0;
715                 }
716                 ctrl->srcrb_flags = srcrb.flags;
717                 /*
718                  * Make sure descriptor is fully written before
719                  * setting ownership bit (because HW can start
720                  * executing as soon as we do).
721                  */
722                 rte_io_wmb();
723                 ctrl->owner_opcode = rte_cpu_to_be_32(owner_opcode);
724                 elt->buf = buf;
725                 bytes_sent += buf->pkt_len;
726                 ctrl = ctrl_next;
727                 elt = elt_next;
728         }
729         /* Take a shortcut if nothing must be sent. */
730         if (unlikely(i == 0))
731                 return 0;
732         /* Save WQE address of the next Tx burst element. */
733         elt->wqe = ctrl;
734         /* Increment send statistics counters. */
735         txq->stats.opackets += i;
736         txq->stats.obytes += bytes_sent;
737         /* Make sure that descriptors are written before doorbell record. */
738         rte_wmb();
739         /* Ring QP doorbell. */
740         rte_write32(txq->msq.doorbell_qpn, txq->msq.db);
741         txq->elts_head += i;
742         return i;
743 }
744
745 /**
746  * Translate Rx completion flags to packet type.
747  *
748  * @param[in] cqe
749  *   Pointer to CQE.
750  *
751  * @return
752  *   Packet type for struct rte_mbuf.
753  */
754 static inline uint32_t
755 rxq_cq_to_pkt_type(volatile struct mlx4_cqe *cqe,
756                    uint32_t l2tun_offload)
757 {
758         uint8_t idx = 0;
759         uint32_t pinfo = rte_be_to_cpu_32(cqe->vlan_my_qpn);
760         uint32_t status = rte_be_to_cpu_32(cqe->status);
761
762         /*
763          * The index to the array should have:
764          *  bit[7] - MLX4_CQE_L2_TUNNEL
765          *  bit[6] - MLX4_CQE_L2_TUNNEL_IPV4
766          */
767         if (l2tun_offload && (pinfo & MLX4_CQE_L2_TUNNEL))
768                 idx |= ((pinfo & MLX4_CQE_L2_TUNNEL) >> 20) |
769                        ((pinfo & MLX4_CQE_L2_TUNNEL_IPV4) >> 19);
770         /*
771          * The index to the array should have:
772          *  bit[5] - MLX4_CQE_STATUS_UDP
773          *  bit[4] - MLX4_CQE_STATUS_TCP
774          *  bit[3] - MLX4_CQE_STATUS_IPV4OPT
775          *  bit[2] - MLX4_CQE_STATUS_IPV6
776          *  bit[1] - MLX4_CQE_STATUS_IPV4F
777          *  bit[0] - MLX4_CQE_STATUS_IPV4
778          * giving a total of up to 256 entries.
779          */
780         idx |= ((status & MLX4_CQE_STATUS_PTYPE_MASK) >> 22);
781         return mlx4_ptype_table[idx];
782 }
783
784 /**
785  * Translate Rx completion flags to offload flags.
786  *
787  * @param flags
788  *   Rx completion flags returned by mlx4_cqe_flags().
789  * @param csum
790  *   Whether Rx checksums are enabled.
791  * @param csum_l2tun
792  *   Whether Rx L2 tunnel checksums are enabled.
793  *
794  * @return
795  *   Offload flags (ol_flags) in mbuf format.
796  */
797 static inline uint32_t
798 rxq_cq_to_ol_flags(uint32_t flags, int csum, int csum_l2tun)
799 {
800         uint32_t ol_flags = 0;
801
802         if (csum)
803                 ol_flags |=
804                         mlx4_transpose(flags,
805                                        MLX4_CQE_STATUS_IP_HDR_CSUM_OK,
806                                        PKT_RX_IP_CKSUM_GOOD) |
807                         mlx4_transpose(flags,
808                                        MLX4_CQE_STATUS_TCP_UDP_CSUM_OK,
809                                        PKT_RX_L4_CKSUM_GOOD);
810         if ((flags & MLX4_CQE_L2_TUNNEL) && csum_l2tun)
811                 ol_flags |=
812                         mlx4_transpose(flags,
813                                        MLX4_CQE_L2_TUNNEL_IPOK,
814                                        PKT_RX_IP_CKSUM_GOOD) |
815                         mlx4_transpose(flags,
816                                        MLX4_CQE_L2_TUNNEL_L4_CSUM,
817                                        PKT_RX_L4_CKSUM_GOOD);
818         return ol_flags;
819 }
820
821 /**
822  * Extract checksum information from CQE flags.
823  *
824  * @param cqe
825  *   Pointer to CQE structure.
826  * @param csum
827  *   Whether Rx checksums are enabled.
828  * @param csum_l2tun
829  *   Whether Rx L2 tunnel checksums are enabled.
830  *
831  * @return
832  *   CQE checksum information.
833  */
834 static inline uint32_t
835 mlx4_cqe_flags(volatile struct mlx4_cqe *cqe, int csum, int csum_l2tun)
836 {
837         uint32_t flags = 0;
838
839         /*
840          * The relevant bits are in different locations on their
841          * CQE fields therefore we can join them in one 32bit
842          * variable.
843          */
844         if (csum)
845                 flags = (rte_be_to_cpu_32(cqe->status) &
846                          MLX4_CQE_STATUS_IPV4_CSUM_OK);
847         if (csum_l2tun)
848                 flags |= (rte_be_to_cpu_32(cqe->vlan_my_qpn) &
849                           (MLX4_CQE_L2_TUNNEL |
850                            MLX4_CQE_L2_TUNNEL_IPOK |
851                            MLX4_CQE_L2_TUNNEL_L4_CSUM |
852                            MLX4_CQE_L2_TUNNEL_IPV4));
853         return flags;
854 }
855
856 /**
857  * Poll one CQE from CQ.
858  *
859  * @param rxq
860  *   Pointer to the receive queue structure.
861  * @param[out] out
862  *   Just polled CQE.
863  *
864  * @return
865  *   Number of bytes of the CQE, 0 in case there is no completion.
866  */
867 static unsigned int
868 mlx4_cq_poll_one(struct rxq *rxq, volatile struct mlx4_cqe **out)
869 {
870         int ret = 0;
871         volatile struct mlx4_cqe *cqe = NULL;
872         struct mlx4_cq *cq = &rxq->mcq;
873
874         cqe = (volatile struct mlx4_cqe *)mlx4_get_cqe(cq, cq->cons_index);
875         if (!!(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK) ^
876             !!(cq->cons_index & cq->cqe_cnt))
877                 goto out;
878         /*
879          * Make sure we read CQ entry contents after we've checked the
880          * ownership bit.
881          */
882         rte_rmb();
883         assert(!(cqe->owner_sr_opcode & MLX4_CQE_IS_SEND_MASK));
884         assert((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) !=
885                MLX4_CQE_OPCODE_ERROR);
886         ret = rte_be_to_cpu_32(cqe->byte_cnt);
887         ++cq->cons_index;
888 out:
889         *out = cqe;
890         return ret;
891 }
892
893 /**
894  * DPDK callback for Rx with scattered packets support.
895  *
896  * @param dpdk_rxq
897  *   Generic pointer to Rx queue structure.
898  * @param[out] pkts
899  *   Array to store received packets.
900  * @param pkts_n
901  *   Maximum number of packets in array.
902  *
903  * @return
904  *   Number of packets successfully received (<= pkts_n).
905  */
906 uint16_t
907 mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
908 {
909         struct rxq *rxq = dpdk_rxq;
910         const uint32_t wr_cnt = (1 << rxq->elts_n) - 1;
911         const uint16_t sges_n = rxq->sges_n;
912         struct rte_mbuf *pkt = NULL;
913         struct rte_mbuf *seg = NULL;
914         unsigned int i = 0;
915         uint32_t rq_ci = rxq->rq_ci << sges_n;
916         int len = 0;
917
918         while (pkts_n) {
919                 volatile struct mlx4_cqe *cqe;
920                 uint32_t idx = rq_ci & wr_cnt;
921                 struct rte_mbuf *rep = (*rxq->elts)[idx];
922                 volatile struct mlx4_wqe_data_seg *scat = &(*rxq->wqes)[idx];
923
924                 /* Update the 'next' pointer of the previous segment. */
925                 if (pkt)
926                         seg->next = rep;
927                 seg = rep;
928                 rte_prefetch0(seg);
929                 rte_prefetch0(scat);
930                 rep = rte_mbuf_raw_alloc(rxq->mp);
931                 if (unlikely(rep == NULL)) {
932                         ++rxq->stats.rx_nombuf;
933                         if (!pkt) {
934                                 /*
935                                  * No buffers before we even started,
936                                  * bail out silently.
937                                  */
938                                 break;
939                         }
940                         while (pkt != seg) {
941                                 assert(pkt != (*rxq->elts)[idx]);
942                                 rep = pkt->next;
943                                 pkt->next = NULL;
944                                 pkt->nb_segs = 1;
945                                 rte_mbuf_raw_free(pkt);
946                                 pkt = rep;
947                         }
948                         break;
949                 }
950                 if (!pkt) {
951                         /* Looking for the new packet. */
952                         len = mlx4_cq_poll_one(rxq, &cqe);
953                         if (!len) {
954                                 rte_mbuf_raw_free(rep);
955                                 break;
956                         }
957                         if (unlikely(len < 0)) {
958                                 /* Rx error, packet is likely too large. */
959                                 rte_mbuf_raw_free(rep);
960                                 ++rxq->stats.idropped;
961                                 goto skip;
962                         }
963                         pkt = seg;
964                         /* Update packet information. */
965                         pkt->packet_type =
966                                 rxq_cq_to_pkt_type(cqe, rxq->l2tun_offload);
967                         pkt->ol_flags = PKT_RX_RSS_HASH;
968                         pkt->hash.rss = cqe->immed_rss_invalid;
969                         pkt->pkt_len = len;
970                         if (rxq->csum | rxq->csum_l2tun) {
971                                 uint32_t flags =
972                                         mlx4_cqe_flags(cqe,
973                                                        rxq->csum,
974                                                        rxq->csum_l2tun);
975
976                                 pkt->ol_flags =
977                                         rxq_cq_to_ol_flags(flags,
978                                                            rxq->csum,
979                                                            rxq->csum_l2tun);
980                         }
981                 }
982                 rep->nb_segs = 1;
983                 rep->port = rxq->port_id;
984                 rep->data_len = seg->data_len;
985                 rep->data_off = seg->data_off;
986                 (*rxq->elts)[idx] = rep;
987                 /*
988                  * Fill NIC descriptor with the new buffer. The lkey and size
989                  * of the buffers are already known, only the buffer address
990                  * changes.
991                  */
992                 scat->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
993                 if (len > seg->data_len) {
994                         len -= seg->data_len;
995                         ++pkt->nb_segs;
996                         ++rq_ci;
997                         continue;
998                 }
999                 /* The last segment. */
1000                 seg->data_len = len;
1001                 /* Increment bytes counter. */
1002                 rxq->stats.ibytes += pkt->pkt_len;
1003                 /* Return packet. */
1004                 *(pkts++) = pkt;
1005                 pkt = NULL;
1006                 --pkts_n;
1007                 ++i;
1008 skip:
1009                 /* Align consumer index to the next stride. */
1010                 rq_ci >>= sges_n;
1011                 ++rq_ci;
1012                 rq_ci <<= sges_n;
1013         }
1014         if (unlikely(i == 0 && (rq_ci >> sges_n) == rxq->rq_ci))
1015                 return 0;
1016         /* Update the consumer index. */
1017         rxq->rq_ci = rq_ci >> sges_n;
1018         rte_wmb();
1019         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1020         *rxq->mcq.set_ci_db =
1021                 rte_cpu_to_be_32(rxq->mcq.cons_index & MLX4_CQ_DB_CI_MASK);
1022         /* Increment packets counter. */
1023         rxq->stats.ipackets += i;
1024         return i;
1025 }
1026
1027 /**
1028  * Dummy DPDK callback for Tx.
1029  *
1030  * This function is used to temporarily replace the real callback during
1031  * unsafe control operations on the queue, or in case of error.
1032  *
1033  * @param dpdk_txq
1034  *   Generic pointer to Tx queue structure.
1035  * @param[in] pkts
1036  *   Packets to transmit.
1037  * @param pkts_n
1038  *   Number of packets in array.
1039  *
1040  * @return
1041  *   Number of packets successfully transmitted (<= pkts_n).
1042  */
1043 uint16_t
1044 mlx4_tx_burst_removed(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1045 {
1046         (void)dpdk_txq;
1047         (void)pkts;
1048         (void)pkts_n;
1049         return 0;
1050 }
1051
1052 /**
1053  * Dummy DPDK callback for Rx.
1054  *
1055  * This function is used to temporarily replace the real callback during
1056  * unsafe control operations on the queue, or in case of error.
1057  *
1058  * @param dpdk_rxq
1059  *   Generic pointer to Rx queue structure.
1060  * @param[out] pkts
1061  *   Array to store received packets.
1062  * @param pkts_n
1063  *   Maximum number of packets in array.
1064  *
1065  * @return
1066  *   Number of packets successfully received (<= pkts_n).
1067  */
1068 uint16_t
1069 mlx4_rx_burst_removed(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1070 {
1071         (void)dpdk_rxq;
1072         (void)pkts;
1073         (void)pkts_n;
1074         return 0;
1075 }