251da41c06d84e647210caa86aabc21e503282e9
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops;
46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
47
48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
49
50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
51         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
53         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
54 #endif
55         [MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops,
56         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
57         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
58 };
59
60 enum mlx5_expansion {
61         MLX5_EXPANSION_ROOT,
62         MLX5_EXPANSION_ROOT_OUTER,
63         MLX5_EXPANSION_ROOT_ETH_VLAN,
64         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_ETH,
66         MLX5_EXPANSION_OUTER_ETH_VLAN,
67         MLX5_EXPANSION_OUTER_VLAN,
68         MLX5_EXPANSION_OUTER_IPV4,
69         MLX5_EXPANSION_OUTER_IPV4_UDP,
70         MLX5_EXPANSION_OUTER_IPV4_TCP,
71         MLX5_EXPANSION_OUTER_IPV6,
72         MLX5_EXPANSION_OUTER_IPV6_UDP,
73         MLX5_EXPANSION_OUTER_IPV6_TCP,
74         MLX5_EXPANSION_VXLAN,
75         MLX5_EXPANSION_VXLAN_GPE,
76         MLX5_EXPANSION_GRE,
77         MLX5_EXPANSION_MPLS,
78         MLX5_EXPANSION_ETH,
79         MLX5_EXPANSION_ETH_VLAN,
80         MLX5_EXPANSION_VLAN,
81         MLX5_EXPANSION_IPV4,
82         MLX5_EXPANSION_IPV4_UDP,
83         MLX5_EXPANSION_IPV4_TCP,
84         MLX5_EXPANSION_IPV6,
85         MLX5_EXPANSION_IPV6_UDP,
86         MLX5_EXPANSION_IPV6_TCP,
87 };
88
89 /** Supported expansion of items. */
90 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
91         [MLX5_EXPANSION_ROOT] = {
92                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
93                                                  MLX5_EXPANSION_IPV4,
94                                                  MLX5_EXPANSION_IPV6),
95                 .type = RTE_FLOW_ITEM_TYPE_END,
96         },
97         [MLX5_EXPANSION_ROOT_OUTER] = {
98                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
99                                                  MLX5_EXPANSION_OUTER_IPV4,
100                                                  MLX5_EXPANSION_OUTER_IPV6),
101                 .type = RTE_FLOW_ITEM_TYPE_END,
102         },
103         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
104                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
105                 .type = RTE_FLOW_ITEM_TYPE_END,
106         },
107         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
108                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
109                 .type = RTE_FLOW_ITEM_TYPE_END,
110         },
111         [MLX5_EXPANSION_OUTER_ETH] = {
112                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
113                                                  MLX5_EXPANSION_OUTER_IPV6,
114                                                  MLX5_EXPANSION_MPLS),
115                 .type = RTE_FLOW_ITEM_TYPE_ETH,
116                 .rss_types = 0,
117         },
118         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
119                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
120                 .type = RTE_FLOW_ITEM_TYPE_ETH,
121                 .rss_types = 0,
122         },
123         [MLX5_EXPANSION_OUTER_VLAN] = {
124                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
125                                                  MLX5_EXPANSION_OUTER_IPV6),
126                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
127         },
128         [MLX5_EXPANSION_OUTER_IPV4] = {
129                 .next = RTE_FLOW_EXPAND_RSS_NEXT
130                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
131                          MLX5_EXPANSION_OUTER_IPV4_TCP,
132                          MLX5_EXPANSION_GRE),
133                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
134                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135                         ETH_RSS_NONFRAG_IPV4_OTHER,
136         },
137         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139                                                  MLX5_EXPANSION_VXLAN_GPE),
140                 .type = RTE_FLOW_ITEM_TYPE_UDP,
141                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142         },
143         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144                 .type = RTE_FLOW_ITEM_TYPE_TCP,
145                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146         },
147         [MLX5_EXPANSION_OUTER_IPV6] = {
148                 .next = RTE_FLOW_EXPAND_RSS_NEXT
149                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
150                          MLX5_EXPANSION_OUTER_IPV6_TCP),
151                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
152                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
153                         ETH_RSS_NONFRAG_IPV6_OTHER,
154         },
155         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
156                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
157                                                  MLX5_EXPANSION_VXLAN_GPE),
158                 .type = RTE_FLOW_ITEM_TYPE_UDP,
159                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
160         },
161         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
162                 .type = RTE_FLOW_ITEM_TYPE_TCP,
163                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
164         },
165         [MLX5_EXPANSION_VXLAN] = {
166                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
167                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
168         },
169         [MLX5_EXPANSION_VXLAN_GPE] = {
170                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
171                                                  MLX5_EXPANSION_IPV4,
172                                                  MLX5_EXPANSION_IPV6),
173                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
174         },
175         [MLX5_EXPANSION_GRE] = {
176                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
177                 .type = RTE_FLOW_ITEM_TYPE_GRE,
178         },
179         [MLX5_EXPANSION_MPLS] = {
180                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
181                                                  MLX5_EXPANSION_IPV6),
182                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
183         },
184         [MLX5_EXPANSION_ETH] = {
185                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
186                                                  MLX5_EXPANSION_IPV6),
187                 .type = RTE_FLOW_ITEM_TYPE_ETH,
188         },
189         [MLX5_EXPANSION_ETH_VLAN] = {
190                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
191                 .type = RTE_FLOW_ITEM_TYPE_ETH,
192         },
193         [MLX5_EXPANSION_VLAN] = {
194                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
195                                                  MLX5_EXPANSION_IPV6),
196                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
197         },
198         [MLX5_EXPANSION_IPV4] = {
199                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
200                                                  MLX5_EXPANSION_IPV4_TCP),
201                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
202                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
203                         ETH_RSS_NONFRAG_IPV4_OTHER,
204         },
205         [MLX5_EXPANSION_IPV4_UDP] = {
206                 .type = RTE_FLOW_ITEM_TYPE_UDP,
207                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
208         },
209         [MLX5_EXPANSION_IPV4_TCP] = {
210                 .type = RTE_FLOW_ITEM_TYPE_TCP,
211                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
212         },
213         [MLX5_EXPANSION_IPV6] = {
214                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
215                                                  MLX5_EXPANSION_IPV6_TCP),
216                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
217                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
218                         ETH_RSS_NONFRAG_IPV6_OTHER,
219         },
220         [MLX5_EXPANSION_IPV6_UDP] = {
221                 .type = RTE_FLOW_ITEM_TYPE_UDP,
222                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
223         },
224         [MLX5_EXPANSION_IPV6_TCP] = {
225                 .type = RTE_FLOW_ITEM_TYPE_TCP,
226                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
227         },
228 };
229
230 static const struct rte_flow_ops mlx5_flow_ops = {
231         .validate = mlx5_flow_validate,
232         .create = mlx5_flow_create,
233         .destroy = mlx5_flow_destroy,
234         .flush = mlx5_flow_flush,
235         .isolate = mlx5_flow_isolate,
236         .query = mlx5_flow_query,
237 };
238
239 /* Convert FDIR request to Generic flow. */
240 struct mlx5_fdir {
241         struct rte_flow_attr attr;
242         struct rte_flow_item items[4];
243         struct rte_flow_item_eth l2;
244         struct rte_flow_item_eth l2_mask;
245         union {
246                 struct rte_flow_item_ipv4 ipv4;
247                 struct rte_flow_item_ipv6 ipv6;
248         } l3;
249         union {
250                 struct rte_flow_item_ipv4 ipv4;
251                 struct rte_flow_item_ipv6 ipv6;
252         } l3_mask;
253         union {
254                 struct rte_flow_item_udp udp;
255                 struct rte_flow_item_tcp tcp;
256         } l4;
257         union {
258                 struct rte_flow_item_udp udp;
259                 struct rte_flow_item_tcp tcp;
260         } l4_mask;
261         struct rte_flow_action actions[2];
262         struct rte_flow_action_queue queue;
263 };
264
265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
267         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
268 };
269
270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
272         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
273         { 9, 10, 11 }, { 12, 13, 14 },
274 };
275
276 /* Tunnel information. */
277 struct mlx5_flow_tunnel_info {
278         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
279         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
280 };
281
282 static struct mlx5_flow_tunnel_info tunnels_info[] = {
283         {
284                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
285                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
286         },
287         {
288                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
289                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
290         },
291         {
292                 .tunnel = MLX5_FLOW_LAYER_GRE,
293                 .ptype = RTE_PTYPE_TUNNEL_GRE,
294         },
295         {
296                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
297                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
298         },
299         {
300                 .tunnel = MLX5_FLOW_LAYER_MPLS,
301                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
302         },
303 };
304
305 /**
306  * Discover the maximum number of priority available.
307  *
308  * @param[in] dev
309  *   Pointer to the Ethernet device structure.
310  *
311  * @return
312  *   number of supported flow priority on success, a negative errno
313  *   value otherwise and rte_errno is set.
314  */
315 int
316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
317 {
318         struct mlx5_priv *priv = dev->data->dev_private;
319         struct {
320                 struct ibv_flow_attr attr;
321                 struct ibv_flow_spec_eth eth;
322                 struct ibv_flow_spec_action_drop drop;
323         } flow_attr = {
324                 .attr = {
325                         .num_of_specs = 2,
326                         .port = (uint8_t)priv->ibv_port,
327                 },
328                 .eth = {
329                         .type = IBV_FLOW_SPEC_ETH,
330                         .size = sizeof(struct ibv_flow_spec_eth),
331                 },
332                 .drop = {
333                         .size = sizeof(struct ibv_flow_spec_action_drop),
334                         .type = IBV_FLOW_SPEC_ACTION_DROP,
335                 },
336         };
337         struct ibv_flow *flow;
338         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
339         uint16_t vprio[] = { 8, 16 };
340         int i;
341         int priority = 0;
342
343         if (!drop) {
344                 rte_errno = ENOTSUP;
345                 return -rte_errno;
346         }
347         for (i = 0; i != RTE_DIM(vprio); i++) {
348                 flow_attr.attr.priority = vprio[i] - 1;
349                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
350                 if (!flow)
351                         break;
352                 claim_zero(mlx5_glue->destroy_flow(flow));
353                 priority = vprio[i];
354         }
355         mlx5_hrxq_drop_release(dev);
356         switch (priority) {
357         case 8:
358                 priority = RTE_DIM(priority_map_3);
359                 break;
360         case 16:
361                 priority = RTE_DIM(priority_map_5);
362                 break;
363         default:
364                 rte_errno = ENOTSUP;
365                 DRV_LOG(ERR,
366                         "port %u verbs maximum priority: %d expected 8/16",
367                         dev->data->port_id, priority);
368                 return -rte_errno;
369         }
370         DRV_LOG(INFO, "port %u flow maximum priority: %d",
371                 dev->data->port_id, priority);
372         return priority;
373 }
374
375 /**
376  * Adjust flow priority based on the highest layer and the request priority.
377  *
378  * @param[in] dev
379  *   Pointer to the Ethernet device structure.
380  * @param[in] priority
381  *   The rule base priority.
382  * @param[in] subpriority
383  *   The priority based on the items.
384  *
385  * @return
386  *   The new priority.
387  */
388 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
389                                    uint32_t subpriority)
390 {
391         uint32_t res = 0;
392         struct mlx5_priv *priv = dev->data->dev_private;
393
394         switch (priv->config.flow_prio) {
395         case RTE_DIM(priority_map_3):
396                 res = priority_map_3[priority][subpriority];
397                 break;
398         case RTE_DIM(priority_map_5):
399                 res = priority_map_5[priority][subpriority];
400                 break;
401         }
402         return  res;
403 }
404
405 /**
406  * Verify the @p item specifications (spec, last, mask) are compatible with the
407  * NIC capabilities.
408  *
409  * @param[in] item
410  *   Item specification.
411  * @param[in] mask
412  *   @p item->mask or flow default bit-masks.
413  * @param[in] nic_mask
414  *   Bit-masks covering supported fields by the NIC to compare with user mask.
415  * @param[in] size
416  *   Bit-masks size in bytes.
417  * @param[out] error
418  *   Pointer to error structure.
419  *
420  * @return
421  *   0 on success, a negative errno value otherwise and rte_errno is set.
422  */
423 int
424 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
425                           const uint8_t *mask,
426                           const uint8_t *nic_mask,
427                           unsigned int size,
428                           struct rte_flow_error *error)
429 {
430         unsigned int i;
431
432         assert(nic_mask);
433         for (i = 0; i < size; ++i)
434                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
435                         return rte_flow_error_set(error, ENOTSUP,
436                                                   RTE_FLOW_ERROR_TYPE_ITEM,
437                                                   item,
438                                                   "mask enables non supported"
439                                                   " bits");
440         if (!item->spec && (item->mask || item->last))
441                 return rte_flow_error_set(error, EINVAL,
442                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
443                                           "mask/last without a spec is not"
444                                           " supported");
445         if (item->spec && item->last) {
446                 uint8_t spec[size];
447                 uint8_t last[size];
448                 unsigned int i;
449                 int ret;
450
451                 for (i = 0; i < size; ++i) {
452                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
453                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
454                 }
455                 ret = memcmp(spec, last, size);
456                 if (ret != 0)
457                         return rte_flow_error_set(error, EINVAL,
458                                                   RTE_FLOW_ERROR_TYPE_ITEM,
459                                                   item,
460                                                   "range is not valid");
461         }
462         return 0;
463 }
464
465 /**
466  * Adjust the hash fields according to the @p flow information.
467  *
468  * @param[in] dev_flow.
469  *   Pointer to the mlx5_flow.
470  * @param[in] tunnel
471  *   1 when the hash field is for a tunnel item.
472  * @param[in] layer_types
473  *   ETH_RSS_* types.
474  * @param[in] hash_fields
475  *   Item hash fields.
476  *
477  * @return
478  *   The hash fileds that should be used.
479  */
480 uint64_t
481 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
482                             int tunnel __rte_unused, uint64_t layer_types,
483                             uint64_t hash_fields)
484 {
485         struct rte_flow *flow = dev_flow->flow;
486 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
487         int rss_request_inner = flow->rss.level >= 2;
488
489         /* Check RSS hash level for tunnel. */
490         if (tunnel && rss_request_inner)
491                 hash_fields |= IBV_RX_HASH_INNER;
492         else if (tunnel || rss_request_inner)
493                 return 0;
494 #endif
495         /* Check if requested layer matches RSS hash fields. */
496         if (!(flow->rss.types & layer_types))
497                 return 0;
498         return hash_fields;
499 }
500
501 /**
502  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
503  * if several tunnel rules are used on this queue, the tunnel ptype will be
504  * cleared.
505  *
506  * @param rxq_ctrl
507  *   Rx queue to update.
508  */
509 static void
510 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
511 {
512         unsigned int i;
513         uint32_t tunnel_ptype = 0;
514
515         /* Look up for the ptype to use. */
516         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
517                 if (!rxq_ctrl->flow_tunnels_n[i])
518                         continue;
519                 if (!tunnel_ptype) {
520                         tunnel_ptype = tunnels_info[i].ptype;
521                 } else {
522                         tunnel_ptype = 0;
523                         break;
524                 }
525         }
526         rxq_ctrl->rxq.tunnel = tunnel_ptype;
527 }
528
529 /**
530  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
531  * flow.
532  *
533  * @param[in] dev
534  *   Pointer to the Ethernet device structure.
535  * @param[in] dev_flow
536  *   Pointer to device flow structure.
537  */
538 static void
539 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
540 {
541         struct mlx5_priv *priv = dev->data->dev_private;
542         struct rte_flow *flow = dev_flow->flow;
543         const int mark = !!(flow->actions &
544                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
545         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
546         unsigned int i;
547
548         for (i = 0; i != flow->rss.queue_num; ++i) {
549                 int idx = (*flow->queue)[i];
550                 struct mlx5_rxq_ctrl *rxq_ctrl =
551                         container_of((*priv->rxqs)[idx],
552                                      struct mlx5_rxq_ctrl, rxq);
553
554                 if (mark) {
555                         rxq_ctrl->rxq.mark = 1;
556                         rxq_ctrl->flow_mark_n++;
557                 }
558                 if (tunnel) {
559                         unsigned int j;
560
561                         /* Increase the counter matching the flow. */
562                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
563                                 if ((tunnels_info[j].tunnel &
564                                      dev_flow->layers) ==
565                                     tunnels_info[j].tunnel) {
566                                         rxq_ctrl->flow_tunnels_n[j]++;
567                                         break;
568                                 }
569                         }
570                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
571                 }
572         }
573 }
574
575 /**
576  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
577  *
578  * @param[in] dev
579  *   Pointer to the Ethernet device structure.
580  * @param[in] flow
581  *   Pointer to flow structure.
582  */
583 static void
584 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
585 {
586         struct mlx5_flow *dev_flow;
587
588         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
589                 flow_drv_rxq_flags_set(dev, dev_flow);
590 }
591
592 /**
593  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
594  * device flow if no other flow uses it with the same kind of request.
595  *
596  * @param dev
597  *   Pointer to Ethernet device.
598  * @param[in] dev_flow
599  *   Pointer to the device flow.
600  */
601 static void
602 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
603 {
604         struct mlx5_priv *priv = dev->data->dev_private;
605         struct rte_flow *flow = dev_flow->flow;
606         const int mark = !!(flow->actions &
607                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
608         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
609         unsigned int i;
610
611         assert(dev->data->dev_started);
612         for (i = 0; i != flow->rss.queue_num; ++i) {
613                 int idx = (*flow->queue)[i];
614                 struct mlx5_rxq_ctrl *rxq_ctrl =
615                         container_of((*priv->rxqs)[idx],
616                                      struct mlx5_rxq_ctrl, rxq);
617
618                 if (mark) {
619                         rxq_ctrl->flow_mark_n--;
620                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
621                 }
622                 if (tunnel) {
623                         unsigned int j;
624
625                         /* Decrease the counter matching the flow. */
626                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
627                                 if ((tunnels_info[j].tunnel &
628                                      dev_flow->layers) ==
629                                     tunnels_info[j].tunnel) {
630                                         rxq_ctrl->flow_tunnels_n[j]--;
631                                         break;
632                                 }
633                         }
634                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
635                 }
636         }
637 }
638
639 /**
640  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
641  * @p flow if no other flow uses it with the same kind of request.
642  *
643  * @param dev
644  *   Pointer to Ethernet device.
645  * @param[in] flow
646  *   Pointer to the flow.
647  */
648 static void
649 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
650 {
651         struct mlx5_flow *dev_flow;
652
653         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
654                 flow_drv_rxq_flags_trim(dev, dev_flow);
655 }
656
657 /**
658  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
659  *
660  * @param dev
661  *   Pointer to Ethernet device.
662  */
663 static void
664 flow_rxq_flags_clear(struct rte_eth_dev *dev)
665 {
666         struct mlx5_priv *priv = dev->data->dev_private;
667         unsigned int i;
668
669         for (i = 0; i != priv->rxqs_n; ++i) {
670                 struct mlx5_rxq_ctrl *rxq_ctrl;
671                 unsigned int j;
672
673                 if (!(*priv->rxqs)[i])
674                         continue;
675                 rxq_ctrl = container_of((*priv->rxqs)[i],
676                                         struct mlx5_rxq_ctrl, rxq);
677                 rxq_ctrl->flow_mark_n = 0;
678                 rxq_ctrl->rxq.mark = 0;
679                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
680                         rxq_ctrl->flow_tunnels_n[j] = 0;
681                 rxq_ctrl->rxq.tunnel = 0;
682         }
683 }
684
685 /*
686  * Validate the flag action.
687  *
688  * @param[in] action_flags
689  *   Bit-fields that holds the actions detected until now.
690  * @param[in] attr
691  *   Attributes of flow that includes this action.
692  * @param[out] error
693  *   Pointer to error structure.
694  *
695  * @return
696  *   0 on success, a negative errno value otherwise and rte_errno is set.
697  */
698 int
699 mlx5_flow_validate_action_flag(uint64_t action_flags,
700                                const struct rte_flow_attr *attr,
701                                struct rte_flow_error *error)
702 {
703
704         if (action_flags & MLX5_FLOW_ACTION_DROP)
705                 return rte_flow_error_set(error, EINVAL,
706                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
707                                           "can't drop and flag in same flow");
708         if (action_flags & MLX5_FLOW_ACTION_MARK)
709                 return rte_flow_error_set(error, EINVAL,
710                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
711                                           "can't mark and flag in same flow");
712         if (action_flags & MLX5_FLOW_ACTION_FLAG)
713                 return rte_flow_error_set(error, EINVAL,
714                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
715                                           "can't have 2 flag"
716                                           " actions in same flow");
717         if (attr->egress)
718                 return rte_flow_error_set(error, ENOTSUP,
719                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
720                                           "flag action not supported for "
721                                           "egress");
722         return 0;
723 }
724
725 /*
726  * Validate the mark action.
727  *
728  * @param[in] action
729  *   Pointer to the queue action.
730  * @param[in] action_flags
731  *   Bit-fields that holds the actions detected until now.
732  * @param[in] attr
733  *   Attributes of flow that includes this action.
734  * @param[out] error
735  *   Pointer to error structure.
736  *
737  * @return
738  *   0 on success, a negative errno value otherwise and rte_errno is set.
739  */
740 int
741 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
742                                uint64_t action_flags,
743                                const struct rte_flow_attr *attr,
744                                struct rte_flow_error *error)
745 {
746         const struct rte_flow_action_mark *mark = action->conf;
747
748         if (!mark)
749                 return rte_flow_error_set(error, EINVAL,
750                                           RTE_FLOW_ERROR_TYPE_ACTION,
751                                           action,
752                                           "configuration cannot be null");
753         if (mark->id >= MLX5_FLOW_MARK_MAX)
754                 return rte_flow_error_set(error, EINVAL,
755                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
756                                           &mark->id,
757                                           "mark id must in 0 <= id < "
758                                           RTE_STR(MLX5_FLOW_MARK_MAX));
759         if (action_flags & MLX5_FLOW_ACTION_DROP)
760                 return rte_flow_error_set(error, EINVAL,
761                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
762                                           "can't drop and mark in same flow");
763         if (action_flags & MLX5_FLOW_ACTION_FLAG)
764                 return rte_flow_error_set(error, EINVAL,
765                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
766                                           "can't flag and mark in same flow");
767         if (action_flags & MLX5_FLOW_ACTION_MARK)
768                 return rte_flow_error_set(error, EINVAL,
769                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
770                                           "can't have 2 mark actions in same"
771                                           " flow");
772         if (attr->egress)
773                 return rte_flow_error_set(error, ENOTSUP,
774                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
775                                           "mark action not supported for "
776                                           "egress");
777         return 0;
778 }
779
780 /*
781  * Validate the drop action.
782  *
783  * @param[in] action_flags
784  *   Bit-fields that holds the actions detected until now.
785  * @param[in] attr
786  *   Attributes of flow that includes this action.
787  * @param[out] error
788  *   Pointer to error structure.
789  *
790  * @return
791  *   0 on success, a negative errno value otherwise and rte_errno is set.
792  */
793 int
794 mlx5_flow_validate_action_drop(uint64_t action_flags,
795                                const struct rte_flow_attr *attr,
796                                struct rte_flow_error *error)
797 {
798         if (action_flags & MLX5_FLOW_ACTION_FLAG)
799                 return rte_flow_error_set(error, EINVAL,
800                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
801                                           "can't drop and flag in same flow");
802         if (action_flags & MLX5_FLOW_ACTION_MARK)
803                 return rte_flow_error_set(error, EINVAL,
804                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
805                                           "can't drop and mark in same flow");
806         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
807                 return rte_flow_error_set(error, EINVAL,
808                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
809                                           "can't have 2 fate actions in"
810                                           " same flow");
811         if (attr->egress)
812                 return rte_flow_error_set(error, ENOTSUP,
813                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
814                                           "drop action not supported for "
815                                           "egress");
816         return 0;
817 }
818
819 /*
820  * Validate the queue action.
821  *
822  * @param[in] action
823  *   Pointer to the queue action.
824  * @param[in] action_flags
825  *   Bit-fields that holds the actions detected until now.
826  * @param[in] dev
827  *   Pointer to the Ethernet device structure.
828  * @param[in] attr
829  *   Attributes of flow that includes this action.
830  * @param[out] error
831  *   Pointer to error structure.
832  *
833  * @return
834  *   0 on success, a negative errno value otherwise and rte_errno is set.
835  */
836 int
837 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
838                                 uint64_t action_flags,
839                                 struct rte_eth_dev *dev,
840                                 const struct rte_flow_attr *attr,
841                                 struct rte_flow_error *error)
842 {
843         struct mlx5_priv *priv = dev->data->dev_private;
844         const struct rte_flow_action_queue *queue = action->conf;
845
846         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
847                 return rte_flow_error_set(error, EINVAL,
848                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
849                                           "can't have 2 fate actions in"
850                                           " same flow");
851         if (!priv->rxqs_n)
852                 return rte_flow_error_set(error, EINVAL,
853                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
854                                           NULL, "No Rx queues configured");
855         if (queue->index >= priv->rxqs_n)
856                 return rte_flow_error_set(error, EINVAL,
857                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
858                                           &queue->index,
859                                           "queue index out of range");
860         if (!(*priv->rxqs)[queue->index])
861                 return rte_flow_error_set(error, EINVAL,
862                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
863                                           &queue->index,
864                                           "queue is not configured");
865         if (attr->egress)
866                 return rte_flow_error_set(error, ENOTSUP,
867                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
868                                           "queue action not supported for "
869                                           "egress");
870         return 0;
871 }
872
873 /*
874  * Validate the rss action.
875  *
876  * @param[in] action
877  *   Pointer to the queue action.
878  * @param[in] action_flags
879  *   Bit-fields that holds the actions detected until now.
880  * @param[in] dev
881  *   Pointer to the Ethernet device structure.
882  * @param[in] attr
883  *   Attributes of flow that includes this action.
884  * @param[in] item_flags
885  *   Items that were detected.
886  * @param[out] error
887  *   Pointer to error structure.
888  *
889  * @return
890  *   0 on success, a negative errno value otherwise and rte_errno is set.
891  */
892 int
893 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
894                               uint64_t action_flags,
895                               struct rte_eth_dev *dev,
896                               const struct rte_flow_attr *attr,
897                               uint64_t item_flags,
898                               struct rte_flow_error *error)
899 {
900         struct mlx5_priv *priv = dev->data->dev_private;
901         const struct rte_flow_action_rss *rss = action->conf;
902         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
903         unsigned int i;
904
905         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
906                 return rte_flow_error_set(error, EINVAL,
907                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
908                                           "can't have 2 fate actions"
909                                           " in same flow");
910         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
911             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
912                 return rte_flow_error_set(error, ENOTSUP,
913                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
914                                           &rss->func,
915                                           "RSS hash function not supported");
916 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
917         if (rss->level > 2)
918 #else
919         if (rss->level > 1)
920 #endif
921                 return rte_flow_error_set(error, ENOTSUP,
922                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
923                                           &rss->level,
924                                           "tunnel RSS is not supported");
925         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
926         if (rss->key_len == 0 && rss->key != NULL)
927                 return rte_flow_error_set(error, ENOTSUP,
928                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
929                                           &rss->key_len,
930                                           "RSS hash key length 0");
931         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
932                 return rte_flow_error_set(error, ENOTSUP,
933                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
934                                           &rss->key_len,
935                                           "RSS hash key too small");
936         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
937                 return rte_flow_error_set(error, ENOTSUP,
938                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
939                                           &rss->key_len,
940                                           "RSS hash key too large");
941         if (rss->queue_num > priv->config.ind_table_max_size)
942                 return rte_flow_error_set(error, ENOTSUP,
943                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
944                                           &rss->queue_num,
945                                           "number of queues too large");
946         if (rss->types & MLX5_RSS_HF_MASK)
947                 return rte_flow_error_set(error, ENOTSUP,
948                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
949                                           &rss->types,
950                                           "some RSS protocols are not"
951                                           " supported");
952         if (!priv->rxqs_n)
953                 return rte_flow_error_set(error, EINVAL,
954                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
955                                           NULL, "No Rx queues configured");
956         if (!rss->queue_num)
957                 return rte_flow_error_set(error, EINVAL,
958                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
959                                           NULL, "No queues configured");
960         for (i = 0; i != rss->queue_num; ++i) {
961                 if (!(*priv->rxqs)[rss->queue[i]])
962                         return rte_flow_error_set
963                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
964                                  &rss->queue[i], "queue is not configured");
965         }
966         if (attr->egress)
967                 return rte_flow_error_set(error, ENOTSUP,
968                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
969                                           "rss action not supported for "
970                                           "egress");
971         if (rss->level > 1 &&  !tunnel)
972                 return rte_flow_error_set(error, EINVAL,
973                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
974                                           "inner RSS is not supported for "
975                                           "non-tunnel flows");
976         return 0;
977 }
978
979 /*
980  * Validate the count action.
981  *
982  * @param[in] dev
983  *   Pointer to the Ethernet device structure.
984  * @param[in] attr
985  *   Attributes of flow that includes this action.
986  * @param[out] error
987  *   Pointer to error structure.
988  *
989  * @return
990  *   0 on success, a negative errno value otherwise and rte_errno is set.
991  */
992 int
993 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
994                                 const struct rte_flow_attr *attr,
995                                 struct rte_flow_error *error)
996 {
997         if (attr->egress)
998                 return rte_flow_error_set(error, ENOTSUP,
999                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1000                                           "count action not supported for "
1001                                           "egress");
1002         return 0;
1003 }
1004
1005 /**
1006  * Verify the @p attributes will be correctly understood by the NIC and store
1007  * them in the @p flow if everything is correct.
1008  *
1009  * @param[in] dev
1010  *   Pointer to the Ethernet device structure.
1011  * @param[in] attributes
1012  *   Pointer to flow attributes
1013  * @param[out] error
1014  *   Pointer to error structure.
1015  *
1016  * @return
1017  *   0 on success, a negative errno value otherwise and rte_errno is set.
1018  */
1019 int
1020 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1021                               const struct rte_flow_attr *attributes,
1022                               struct rte_flow_error *error)
1023 {
1024         struct mlx5_priv *priv = dev->data->dev_private;
1025         uint32_t priority_max = priv->config.flow_prio - 1;
1026
1027         if (attributes->group)
1028                 return rte_flow_error_set(error, ENOTSUP,
1029                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1030                                           NULL, "groups is not supported");
1031         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1032             attributes->priority >= priority_max)
1033                 return rte_flow_error_set(error, ENOTSUP,
1034                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1035                                           NULL, "priority out of range");
1036         if (attributes->egress)
1037                 return rte_flow_error_set(error, ENOTSUP,
1038                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1039                                           "egress is not supported");
1040         if (attributes->transfer)
1041                 return rte_flow_error_set(error, ENOTSUP,
1042                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1043                                           NULL, "transfer is not supported");
1044         if (!attributes->ingress)
1045                 return rte_flow_error_set(error, EINVAL,
1046                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1047                                           NULL,
1048                                           "ingress attribute is mandatory");
1049         return 0;
1050 }
1051
1052 /**
1053  * Validate Ethernet item.
1054  *
1055  * @param[in] item
1056  *   Item specification.
1057  * @param[in] item_flags
1058  *   Bit-fields that holds the items detected until now.
1059  * @param[out] error
1060  *   Pointer to error structure.
1061  *
1062  * @return
1063  *   0 on success, a negative errno value otherwise and rte_errno is set.
1064  */
1065 int
1066 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1067                             uint64_t item_flags,
1068                             struct rte_flow_error *error)
1069 {
1070         const struct rte_flow_item_eth *mask = item->mask;
1071         const struct rte_flow_item_eth nic_mask = {
1072                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1073                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1074                 .type = RTE_BE16(0xffff),
1075         };
1076         int ret;
1077         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1078         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1079                                        MLX5_FLOW_LAYER_OUTER_L2;
1080
1081         if (item_flags & ethm)
1082                 return rte_flow_error_set(error, ENOTSUP,
1083                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1084                                           "multiple L2 layers not supported");
1085         if (!mask)
1086                 mask = &rte_flow_item_eth_mask;
1087         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1088                                         (const uint8_t *)&nic_mask,
1089                                         sizeof(struct rte_flow_item_eth),
1090                                         error);
1091         return ret;
1092 }
1093
1094 /**
1095  * Validate VLAN item.
1096  *
1097  * @param[in] item
1098  *   Item specification.
1099  * @param[in] item_flags
1100  *   Bit-fields that holds the items detected until now.
1101  * @param[out] error
1102  *   Pointer to error structure.
1103  *
1104  * @return
1105  *   0 on success, a negative errno value otherwise and rte_errno is set.
1106  */
1107 int
1108 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1109                              uint64_t item_flags,
1110                              struct rte_flow_error *error)
1111 {
1112         const struct rte_flow_item_vlan *spec = item->spec;
1113         const struct rte_flow_item_vlan *mask = item->mask;
1114         const struct rte_flow_item_vlan nic_mask = {
1115                 .tci = RTE_BE16(0x0fff),
1116                 .inner_type = RTE_BE16(0xffff),
1117         };
1118         uint16_t vlan_tag = 0;
1119         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1120         int ret;
1121         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1122                                         MLX5_FLOW_LAYER_INNER_L4) :
1123                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1124                                         MLX5_FLOW_LAYER_OUTER_L4);
1125         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1126                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1127
1128         if (item_flags & vlanm)
1129                 return rte_flow_error_set(error, EINVAL,
1130                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1131                                           "multiple VLAN layers not supported");
1132         else if ((item_flags & l34m) != 0)
1133                 return rte_flow_error_set(error, EINVAL,
1134                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1135                                           "L2 layer cannot follow L3/L4 layer");
1136         if (!mask)
1137                 mask = &rte_flow_item_vlan_mask;
1138         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1139                                         (const uint8_t *)&nic_mask,
1140                                         sizeof(struct rte_flow_item_vlan),
1141                                         error);
1142         if (ret)
1143                 return ret;
1144         if (spec) {
1145                 vlan_tag = spec->tci;
1146                 vlan_tag &= mask->tci;
1147         }
1148         /*
1149          * From verbs perspective an empty VLAN is equivalent
1150          * to a packet without VLAN layer.
1151          */
1152         if (!vlan_tag)
1153                 return rte_flow_error_set(error, EINVAL,
1154                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1155                                           item->spec,
1156                                           "VLAN cannot be empty");
1157         return 0;
1158 }
1159
1160 /**
1161  * Validate IPV4 item.
1162  *
1163  * @param[in] item
1164  *   Item specification.
1165  * @param[in] item_flags
1166  *   Bit-fields that holds the items detected until now.
1167  * @param[in] acc_mask
1168  *   Acceptable mask, if NULL default internal default mask
1169  *   will be used to check whether item fields are supported.
1170  * @param[out] error
1171  *   Pointer to error structure.
1172  *
1173  * @return
1174  *   0 on success, a negative errno value otherwise and rte_errno is set.
1175  */
1176 int
1177 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1178                              uint64_t item_flags,
1179                              const struct rte_flow_item_ipv4 *acc_mask,
1180                              struct rte_flow_error *error)
1181 {
1182         const struct rte_flow_item_ipv4 *mask = item->mask;
1183         const struct rte_flow_item_ipv4 nic_mask = {
1184                 .hdr = {
1185                         .src_addr = RTE_BE32(0xffffffff),
1186                         .dst_addr = RTE_BE32(0xffffffff),
1187                         .type_of_service = 0xff,
1188                         .next_proto_id = 0xff,
1189                 },
1190         };
1191         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1192         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1193                                       MLX5_FLOW_LAYER_OUTER_L3;
1194         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1195                                       MLX5_FLOW_LAYER_OUTER_L4;
1196         int ret;
1197
1198         if (item_flags & l3m)
1199                 return rte_flow_error_set(error, ENOTSUP,
1200                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1201                                           "multiple L3 layers not supported");
1202         else if (item_flags & l4m)
1203                 return rte_flow_error_set(error, EINVAL,
1204                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1205                                           "L3 cannot follow an L4 layer.");
1206         if (!mask)
1207                 mask = &rte_flow_item_ipv4_mask;
1208         else if (mask->hdr.next_proto_id != 0 &&
1209                  mask->hdr.next_proto_id != 0xff)
1210                 return rte_flow_error_set(error, EINVAL,
1211                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1212                                           "partial mask is not supported"
1213                                           " for protocol");
1214         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1215                                         acc_mask ? (const uint8_t *)acc_mask
1216                                                  : (const uint8_t *)&nic_mask,
1217                                         sizeof(struct rte_flow_item_ipv4),
1218                                         error);
1219         if (ret < 0)
1220                 return ret;
1221         return 0;
1222 }
1223
1224 /**
1225  * Validate IPV6 item.
1226  *
1227  * @param[in] item
1228  *   Item specification.
1229  * @param[in] item_flags
1230  *   Bit-fields that holds the items detected until now.
1231  * @param[in] acc_mask
1232  *   Acceptable mask, if NULL default internal default mask
1233  *   will be used to check whether item fields are supported.
1234  * @param[out] error
1235  *   Pointer to error structure.
1236  *
1237  * @return
1238  *   0 on success, a negative errno value otherwise and rte_errno is set.
1239  */
1240 int
1241 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1242                              uint64_t item_flags,
1243                              const struct rte_flow_item_ipv6 *acc_mask,
1244                              struct rte_flow_error *error)
1245 {
1246         const struct rte_flow_item_ipv6 *mask = item->mask;
1247         const struct rte_flow_item_ipv6 nic_mask = {
1248                 .hdr = {
1249                         .src_addr =
1250                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1251                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1252                         .dst_addr =
1253                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1254                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1255                         .vtc_flow = RTE_BE32(0xffffffff),
1256                         .proto = 0xff,
1257                         .hop_limits = 0xff,
1258                 },
1259         };
1260         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1261         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1262                                       MLX5_FLOW_LAYER_OUTER_L3;
1263         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1264                                       MLX5_FLOW_LAYER_OUTER_L4;
1265         int ret;
1266
1267         if (item_flags & l3m)
1268                 return rte_flow_error_set(error, ENOTSUP,
1269                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1270                                           "multiple L3 layers not supported");
1271         else if (item_flags & l4m)
1272                 return rte_flow_error_set(error, EINVAL,
1273                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1274                                           "L3 cannot follow an L4 layer.");
1275         if (!mask)
1276                 mask = &rte_flow_item_ipv6_mask;
1277         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1278                                         acc_mask ? (const uint8_t *)acc_mask
1279                                                  : (const uint8_t *)&nic_mask,
1280                                         sizeof(struct rte_flow_item_ipv6),
1281                                         error);
1282         if (ret < 0)
1283                 return ret;
1284         return 0;
1285 }
1286
1287 /**
1288  * Validate UDP item.
1289  *
1290  * @param[in] item
1291  *   Item specification.
1292  * @param[in] item_flags
1293  *   Bit-fields that holds the items detected until now.
1294  * @param[in] target_protocol
1295  *   The next protocol in the previous item.
1296  * @param[in] flow_mask
1297  *   mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask.
1298  * @param[out] error
1299  *   Pointer to error structure.
1300  *
1301  * @return
1302  *   0 on success, a negative errno value otherwise and rte_errno is set.
1303  */
1304 int
1305 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1306                             uint64_t item_flags,
1307                             uint8_t target_protocol,
1308                             struct rte_flow_error *error)
1309 {
1310         const struct rte_flow_item_udp *mask = item->mask;
1311         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1312         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1313                                       MLX5_FLOW_LAYER_OUTER_L3;
1314         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1315                                       MLX5_FLOW_LAYER_OUTER_L4;
1316         int ret;
1317
1318         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1319                 return rte_flow_error_set(error, EINVAL,
1320                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1321                                           "protocol filtering not compatible"
1322                                           " with UDP layer");
1323         if (!(item_flags & l3m))
1324                 return rte_flow_error_set(error, EINVAL,
1325                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1326                                           "L3 is mandatory to filter on L4");
1327         if (item_flags & l4m)
1328                 return rte_flow_error_set(error, EINVAL,
1329                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1330                                           "multiple L4 layers not supported");
1331         if (!mask)
1332                 mask = &rte_flow_item_udp_mask;
1333         ret = mlx5_flow_item_acceptable
1334                 (item, (const uint8_t *)mask,
1335                  (const uint8_t *)&rte_flow_item_udp_mask,
1336                  sizeof(struct rte_flow_item_udp), error);
1337         if (ret < 0)
1338                 return ret;
1339         return 0;
1340 }
1341
1342 /**
1343  * Validate TCP item.
1344  *
1345  * @param[in] item
1346  *   Item specification.
1347  * @param[in] item_flags
1348  *   Bit-fields that holds the items detected until now.
1349  * @param[in] target_protocol
1350  *   The next protocol in the previous item.
1351  * @param[out] error
1352  *   Pointer to error structure.
1353  *
1354  * @return
1355  *   0 on success, a negative errno value otherwise and rte_errno is set.
1356  */
1357 int
1358 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1359                             uint64_t item_flags,
1360                             uint8_t target_protocol,
1361                             const struct rte_flow_item_tcp *flow_mask,
1362                             struct rte_flow_error *error)
1363 {
1364         const struct rte_flow_item_tcp *mask = item->mask;
1365         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1366         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1367                                       MLX5_FLOW_LAYER_OUTER_L3;
1368         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1369                                       MLX5_FLOW_LAYER_OUTER_L4;
1370         int ret;
1371
1372         assert(flow_mask);
1373         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1374                 return rte_flow_error_set(error, EINVAL,
1375                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1376                                           "protocol filtering not compatible"
1377                                           " with TCP layer");
1378         if (!(item_flags & l3m))
1379                 return rte_flow_error_set(error, EINVAL,
1380                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1381                                           "L3 is mandatory to filter on L4");
1382         if (item_flags & l4m)
1383                 return rte_flow_error_set(error, EINVAL,
1384                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1385                                           "multiple L4 layers not supported");
1386         if (!mask)
1387                 mask = &rte_flow_item_tcp_mask;
1388         ret = mlx5_flow_item_acceptable
1389                 (item, (const uint8_t *)mask,
1390                  (const uint8_t *)flow_mask,
1391                  sizeof(struct rte_flow_item_tcp), error);
1392         if (ret < 0)
1393                 return ret;
1394         return 0;
1395 }
1396
1397 /**
1398  * Validate VXLAN item.
1399  *
1400  * @param[in] item
1401  *   Item specification.
1402  * @param[in] item_flags
1403  *   Bit-fields that holds the items detected until now.
1404  * @param[in] target_protocol
1405  *   The next protocol in the previous item.
1406  * @param[out] error
1407  *   Pointer to error structure.
1408  *
1409  * @return
1410  *   0 on success, a negative errno value otherwise and rte_errno is set.
1411  */
1412 int
1413 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1414                               uint64_t item_flags,
1415                               struct rte_flow_error *error)
1416 {
1417         const struct rte_flow_item_vxlan *spec = item->spec;
1418         const struct rte_flow_item_vxlan *mask = item->mask;
1419         int ret;
1420         union vni {
1421                 uint32_t vlan_id;
1422                 uint8_t vni[4];
1423         } id = { .vlan_id = 0, };
1424         uint32_t vlan_id = 0;
1425
1426
1427         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1428                 return rte_flow_error_set(error, ENOTSUP,
1429                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1430                                           "multiple tunnel layers not"
1431                                           " supported");
1432         /*
1433          * Verify only UDPv4 is present as defined in
1434          * https://tools.ietf.org/html/rfc7348
1435          */
1436         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1437                 return rte_flow_error_set(error, EINVAL,
1438                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1439                                           "no outer UDP layer found");
1440         if (!mask)
1441                 mask = &rte_flow_item_vxlan_mask;
1442         ret = mlx5_flow_item_acceptable
1443                 (item, (const uint8_t *)mask,
1444                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1445                  sizeof(struct rte_flow_item_vxlan),
1446                  error);
1447         if (ret < 0)
1448                 return ret;
1449         if (spec) {
1450                 memcpy(&id.vni[1], spec->vni, 3);
1451                 vlan_id = id.vlan_id;
1452                 memcpy(&id.vni[1], mask->vni, 3);
1453                 vlan_id &= id.vlan_id;
1454         }
1455         /*
1456          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1457          * only this layer is defined in the Verbs specification it is
1458          * interpreted as wildcard and all packets will match this
1459          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1460          * udp), all packets matching the layers before will also
1461          * match this rule.  To avoid such situation, VNI 0 is
1462          * currently refused.
1463          */
1464         if (!vlan_id)
1465                 return rte_flow_error_set(error, ENOTSUP,
1466                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1467                                           "VXLAN vni cannot be 0");
1468         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1469                 return rte_flow_error_set(error, ENOTSUP,
1470                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1471                                           "VXLAN tunnel must be fully defined");
1472         return 0;
1473 }
1474
1475 /**
1476  * Validate VXLAN_GPE item.
1477  *
1478  * @param[in] item
1479  *   Item specification.
1480  * @param[in] item_flags
1481  *   Bit-fields that holds the items detected until now.
1482  * @param[in] priv
1483  *   Pointer to the private data structure.
1484  * @param[in] target_protocol
1485  *   The next protocol in the previous item.
1486  * @param[out] error
1487  *   Pointer to error structure.
1488  *
1489  * @return
1490  *   0 on success, a negative errno value otherwise and rte_errno is set.
1491  */
1492 int
1493 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1494                                   uint64_t item_flags,
1495                                   struct rte_eth_dev *dev,
1496                                   struct rte_flow_error *error)
1497 {
1498         struct mlx5_priv *priv = dev->data->dev_private;
1499         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1500         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1501         int ret;
1502         union vni {
1503                 uint32_t vlan_id;
1504                 uint8_t vni[4];
1505         } id = { .vlan_id = 0, };
1506         uint32_t vlan_id = 0;
1507
1508         if (!priv->config.l3_vxlan_en)
1509                 return rte_flow_error_set(error, ENOTSUP,
1510                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1511                                           "L3 VXLAN is not enabled by device"
1512                                           " parameter and/or not configured in"
1513                                           " firmware");
1514         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1515                 return rte_flow_error_set(error, ENOTSUP,
1516                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1517                                           "multiple tunnel layers not"
1518                                           " supported");
1519         /*
1520          * Verify only UDPv4 is present as defined in
1521          * https://tools.ietf.org/html/rfc7348
1522          */
1523         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1524                 return rte_flow_error_set(error, EINVAL,
1525                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1526                                           "no outer UDP layer found");
1527         if (!mask)
1528                 mask = &rte_flow_item_vxlan_gpe_mask;
1529         ret = mlx5_flow_item_acceptable
1530                 (item, (const uint8_t *)mask,
1531                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1532                  sizeof(struct rte_flow_item_vxlan_gpe),
1533                  error);
1534         if (ret < 0)
1535                 return ret;
1536         if (spec) {
1537                 if (spec->protocol)
1538                         return rte_flow_error_set(error, ENOTSUP,
1539                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1540                                                   item,
1541                                                   "VxLAN-GPE protocol"
1542                                                   " not supported");
1543                 memcpy(&id.vni[1], spec->vni, 3);
1544                 vlan_id = id.vlan_id;
1545                 memcpy(&id.vni[1], mask->vni, 3);
1546                 vlan_id &= id.vlan_id;
1547         }
1548         /*
1549          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1550          * layer is defined in the Verbs specification it is interpreted as
1551          * wildcard and all packets will match this rule, if it follows a full
1552          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1553          * before will also match this rule.  To avoid such situation, VNI 0
1554          * is currently refused.
1555          */
1556         if (!vlan_id)
1557                 return rte_flow_error_set(error, ENOTSUP,
1558                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1559                                           "VXLAN-GPE vni cannot be 0");
1560         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1561                 return rte_flow_error_set(error, ENOTSUP,
1562                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1563                                           "VXLAN-GPE tunnel must be fully"
1564                                           " defined");
1565         return 0;
1566 }
1567
1568 /**
1569  * Validate GRE item.
1570  *
1571  * @param[in] item
1572  *   Item specification.
1573  * @param[in] item_flags
1574  *   Bit flags to mark detected items.
1575  * @param[in] target_protocol
1576  *   The next protocol in the previous item.
1577  * @param[out] error
1578  *   Pointer to error structure.
1579  *
1580  * @return
1581  *   0 on success, a negative errno value otherwise and rte_errno is set.
1582  */
1583 int
1584 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1585                             uint64_t item_flags,
1586                             uint8_t target_protocol,
1587                             struct rte_flow_error *error)
1588 {
1589         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1590         const struct rte_flow_item_gre *mask = item->mask;
1591         int ret;
1592
1593         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1594                 return rte_flow_error_set(error, EINVAL,
1595                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1596                                           "protocol filtering not compatible"
1597                                           " with this GRE layer");
1598         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1599                 return rte_flow_error_set(error, ENOTSUP,
1600                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1601                                           "multiple tunnel layers not"
1602                                           " supported");
1603         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1604                 return rte_flow_error_set(error, ENOTSUP,
1605                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1606                                           "L3 Layer is missing");
1607         if (!mask)
1608                 mask = &rte_flow_item_gre_mask;
1609         ret = mlx5_flow_item_acceptable
1610                 (item, (const uint8_t *)mask,
1611                  (const uint8_t *)&rte_flow_item_gre_mask,
1612                  sizeof(struct rte_flow_item_gre), error);
1613         if (ret < 0)
1614                 return ret;
1615 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1616         if (spec && (spec->protocol & mask->protocol))
1617                 return rte_flow_error_set(error, ENOTSUP,
1618                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1619                                           "without MPLS support the"
1620                                           " specification cannot be used for"
1621                                           " filtering");
1622 #endif
1623         return 0;
1624 }
1625
1626 /**
1627  * Validate MPLS item.
1628  *
1629  * @param[in] dev
1630  *   Pointer to the rte_eth_dev structure.
1631  * @param[in] item
1632  *   Item specification.
1633  * @param[in] item_flags
1634  *   Bit-fields that holds the items detected until now.
1635  * @param[in] prev_layer
1636  *   The protocol layer indicated in previous item.
1637  * @param[out] error
1638  *   Pointer to error structure.
1639  *
1640  * @return
1641  *   0 on success, a negative errno value otherwise and rte_errno is set.
1642  */
1643 int
1644 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1645                              const struct rte_flow_item *item __rte_unused,
1646                              uint64_t item_flags __rte_unused,
1647                              uint64_t prev_layer __rte_unused,
1648                              struct rte_flow_error *error)
1649 {
1650 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1651         const struct rte_flow_item_mpls *mask = item->mask;
1652         struct mlx5_priv *priv = dev->data->dev_private;
1653         int ret;
1654
1655         if (!priv->config.mpls_en)
1656                 return rte_flow_error_set(error, ENOTSUP,
1657                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1658                                           "MPLS not supported or"
1659                                           " disabled in firmware"
1660                                           " configuration.");
1661         /* MPLS over IP, UDP, GRE is allowed */
1662         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1663                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
1664                             MLX5_FLOW_LAYER_GRE)))
1665                 return rte_flow_error_set(error, EINVAL,
1666                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1667                                           "protocol filtering not compatible"
1668                                           " with MPLS layer");
1669         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1670         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1671             !(item_flags & MLX5_FLOW_LAYER_GRE))
1672                 return rte_flow_error_set(error, ENOTSUP,
1673                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1674                                           "multiple tunnel layers not"
1675                                           " supported");
1676         if (!mask)
1677                 mask = &rte_flow_item_mpls_mask;
1678         ret = mlx5_flow_item_acceptable
1679                 (item, (const uint8_t *)mask,
1680                  (const uint8_t *)&rte_flow_item_mpls_mask,
1681                  sizeof(struct rte_flow_item_mpls), error);
1682         if (ret < 0)
1683                 return ret;
1684         return 0;
1685 #endif
1686         return rte_flow_error_set(error, ENOTSUP,
1687                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
1688                                   "MPLS is not supported by Verbs, please"
1689                                   " update.");
1690 }
1691
1692 static int
1693 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1694                    const struct rte_flow_attr *attr __rte_unused,
1695                    const struct rte_flow_item items[] __rte_unused,
1696                    const struct rte_flow_action actions[] __rte_unused,
1697                    struct rte_flow_error *error)
1698 {
1699         return rte_flow_error_set(error, ENOTSUP,
1700                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1701 }
1702
1703 static struct mlx5_flow *
1704 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1705                   const struct rte_flow_item items[] __rte_unused,
1706                   const struct rte_flow_action actions[] __rte_unused,
1707                   struct rte_flow_error *error)
1708 {
1709         rte_flow_error_set(error, ENOTSUP,
1710                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1711         return NULL;
1712 }
1713
1714 static int
1715 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1716                     struct mlx5_flow *dev_flow __rte_unused,
1717                     const struct rte_flow_attr *attr __rte_unused,
1718                     const struct rte_flow_item items[] __rte_unused,
1719                     const struct rte_flow_action actions[] __rte_unused,
1720                     struct rte_flow_error *error)
1721 {
1722         return rte_flow_error_set(error, ENOTSUP,
1723                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1724 }
1725
1726 static int
1727 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1728                 struct rte_flow *flow __rte_unused,
1729                 struct rte_flow_error *error)
1730 {
1731         return rte_flow_error_set(error, ENOTSUP,
1732                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1733 }
1734
1735 static void
1736 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1737                  struct rte_flow *flow __rte_unused)
1738 {
1739 }
1740
1741 static void
1742 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1743                   struct rte_flow *flow __rte_unused)
1744 {
1745 }
1746
1747 static int
1748 flow_null_query(struct rte_eth_dev *dev __rte_unused,
1749                 struct rte_flow *flow __rte_unused,
1750                 const struct rte_flow_action *actions __rte_unused,
1751                 void *data __rte_unused,
1752                 struct rte_flow_error *error)
1753 {
1754         return rte_flow_error_set(error, ENOTSUP,
1755                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1756 }
1757
1758 /* Void driver to protect from null pointer reference. */
1759 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1760         .validate = flow_null_validate,
1761         .prepare = flow_null_prepare,
1762         .translate = flow_null_translate,
1763         .apply = flow_null_apply,
1764         .remove = flow_null_remove,
1765         .destroy = flow_null_destroy,
1766         .query = flow_null_query,
1767 };
1768
1769 /**
1770  * Select flow driver type according to flow attributes and device
1771  * configuration.
1772  *
1773  * @param[in] dev
1774  *   Pointer to the dev structure.
1775  * @param[in] attr
1776  *   Pointer to the flow attributes.
1777  *
1778  * @return
1779  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
1780  */
1781 static enum mlx5_flow_drv_type
1782 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
1783 {
1784         struct mlx5_priv *priv = dev->data->dev_private;
1785         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1786
1787         if (attr->transfer && !priv->config.dv_esw_en)
1788                 type = MLX5_FLOW_TYPE_TCF;
1789         else
1790                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
1791                                                  MLX5_FLOW_TYPE_VERBS;
1792         return type;
1793 }
1794
1795 #define flow_get_drv_ops(type) flow_drv_ops[type]
1796
1797 /**
1798  * Flow driver validation API. This abstracts calling driver specific functions.
1799  * The type of flow driver is determined according to flow attributes.
1800  *
1801  * @param[in] dev
1802  *   Pointer to the dev structure.
1803  * @param[in] attr
1804  *   Pointer to the flow attributes.
1805  * @param[in] items
1806  *   Pointer to the list of items.
1807  * @param[in] actions
1808  *   Pointer to the list of actions.
1809  * @param[out] error
1810  *   Pointer to the error structure.
1811  *
1812  * @return
1813  *   0 on success, a negative errno value otherwise and rte_errno is set.
1814  */
1815 static inline int
1816 flow_drv_validate(struct rte_eth_dev *dev,
1817                   const struct rte_flow_attr *attr,
1818                   const struct rte_flow_item items[],
1819                   const struct rte_flow_action actions[],
1820                   struct rte_flow_error *error)
1821 {
1822         const struct mlx5_flow_driver_ops *fops;
1823         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1824
1825         fops = flow_get_drv_ops(type);
1826         return fops->validate(dev, attr, items, actions, error);
1827 }
1828
1829 /**
1830  * Flow driver preparation API. This abstracts calling driver specific
1831  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1832  * calculates the size of memory required for device flow, allocates the memory,
1833  * initializes the device flow and returns the pointer.
1834  *
1835  * @note
1836  *   This function initializes device flow structure such as dv, tcf or verbs in
1837  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
1838  *   rest. For example, adding returning device flow to flow->dev_flow list and
1839  *   setting backward reference to the flow should be done out of this function.
1840  *   layers field is not filled either.
1841  *
1842  * @param[in] attr
1843  *   Pointer to the flow attributes.
1844  * @param[in] items
1845  *   Pointer to the list of items.
1846  * @param[in] actions
1847  *   Pointer to the list of actions.
1848  * @param[out] error
1849  *   Pointer to the error structure.
1850  *
1851  * @return
1852  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
1853  */
1854 static inline struct mlx5_flow *
1855 flow_drv_prepare(const struct rte_flow *flow,
1856                  const struct rte_flow_attr *attr,
1857                  const struct rte_flow_item items[],
1858                  const struct rte_flow_action actions[],
1859                  struct rte_flow_error *error)
1860 {
1861         const struct mlx5_flow_driver_ops *fops;
1862         enum mlx5_flow_drv_type type = flow->drv_type;
1863
1864         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1865         fops = flow_get_drv_ops(type);
1866         return fops->prepare(attr, items, actions, error);
1867 }
1868
1869 /**
1870  * Flow driver translation API. This abstracts calling driver specific
1871  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1872  * translates a generic flow into a driver flow. flow_drv_prepare() must
1873  * precede.
1874  *
1875  * @note
1876  *   dev_flow->layers could be filled as a result of parsing during translation
1877  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
1878  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
1879  *   flow->actions could be overwritten even though all the expanded dev_flows
1880  *   have the same actions.
1881  *
1882  * @param[in] dev
1883  *   Pointer to the rte dev structure.
1884  * @param[in, out] dev_flow
1885  *   Pointer to the mlx5 flow.
1886  * @param[in] attr
1887  *   Pointer to the flow attributes.
1888  * @param[in] items
1889  *   Pointer to the list of items.
1890  * @param[in] actions
1891  *   Pointer to the list of actions.
1892  * @param[out] error
1893  *   Pointer to the error structure.
1894  *
1895  * @return
1896  *   0 on success, a negative errno value otherwise and rte_errno is set.
1897  */
1898 static inline int
1899 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1900                    const struct rte_flow_attr *attr,
1901                    const struct rte_flow_item items[],
1902                    const struct rte_flow_action actions[],
1903                    struct rte_flow_error *error)
1904 {
1905         const struct mlx5_flow_driver_ops *fops;
1906         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1907
1908         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1909         fops = flow_get_drv_ops(type);
1910         return fops->translate(dev, dev_flow, attr, items, actions, error);
1911 }
1912
1913 /**
1914  * Flow driver apply API. This abstracts calling driver specific functions.
1915  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1916  * translated driver flows on to device. flow_drv_translate() must precede.
1917  *
1918  * @param[in] dev
1919  *   Pointer to Ethernet device structure.
1920  * @param[in, out] flow
1921  *   Pointer to flow structure.
1922  * @param[out] error
1923  *   Pointer to error structure.
1924  *
1925  * @return
1926  *   0 on success, a negative errno value otherwise and rte_errno is set.
1927  */
1928 static inline int
1929 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1930                struct rte_flow_error *error)
1931 {
1932         const struct mlx5_flow_driver_ops *fops;
1933         enum mlx5_flow_drv_type type = flow->drv_type;
1934
1935         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1936         fops = flow_get_drv_ops(type);
1937         return fops->apply(dev, flow, error);
1938 }
1939
1940 /**
1941  * Flow driver remove API. This abstracts calling driver specific functions.
1942  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1943  * on device. All the resources of the flow should be freed by calling
1944  * flow_drv_destroy().
1945  *
1946  * @param[in] dev
1947  *   Pointer to Ethernet device.
1948  * @param[in, out] flow
1949  *   Pointer to flow structure.
1950  */
1951 static inline void
1952 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1953 {
1954         const struct mlx5_flow_driver_ops *fops;
1955         enum mlx5_flow_drv_type type = flow->drv_type;
1956
1957         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1958         fops = flow_get_drv_ops(type);
1959         fops->remove(dev, flow);
1960 }
1961
1962 /**
1963  * Flow driver destroy API. This abstracts calling driver specific functions.
1964  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1965  * on device and releases resources of the flow.
1966  *
1967  * @param[in] dev
1968  *   Pointer to Ethernet device.
1969  * @param[in, out] flow
1970  *   Pointer to flow structure.
1971  */
1972 static inline void
1973 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1974 {
1975         const struct mlx5_flow_driver_ops *fops;
1976         enum mlx5_flow_drv_type type = flow->drv_type;
1977
1978         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1979         fops = flow_get_drv_ops(type);
1980         fops->destroy(dev, flow);
1981 }
1982
1983 /**
1984  * Validate a flow supported by the NIC.
1985  *
1986  * @see rte_flow_validate()
1987  * @see rte_flow_ops
1988  */
1989 int
1990 mlx5_flow_validate(struct rte_eth_dev *dev,
1991                    const struct rte_flow_attr *attr,
1992                    const struct rte_flow_item items[],
1993                    const struct rte_flow_action actions[],
1994                    struct rte_flow_error *error)
1995 {
1996         int ret;
1997
1998         ret = flow_drv_validate(dev, attr, items, actions, error);
1999         if (ret < 0)
2000                 return ret;
2001         return 0;
2002 }
2003
2004 /**
2005  * Get RSS action from the action list.
2006  *
2007  * @param[in] actions
2008  *   Pointer to the list of actions.
2009  *
2010  * @return
2011  *   Pointer to the RSS action if exist, else return NULL.
2012  */
2013 static const struct rte_flow_action_rss*
2014 flow_get_rss_action(const struct rte_flow_action actions[])
2015 {
2016         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2017                 switch (actions->type) {
2018                 case RTE_FLOW_ACTION_TYPE_RSS:
2019                         return (const struct rte_flow_action_rss *)
2020                                actions->conf;
2021                 default:
2022                         break;
2023                 }
2024         }
2025         return NULL;
2026 }
2027
2028 static unsigned int
2029 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2030 {
2031         const struct rte_flow_item *item;
2032         unsigned int has_vlan = 0;
2033
2034         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2035                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2036                         has_vlan = 1;
2037                         break;
2038                 }
2039         }
2040         if (has_vlan)
2041                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2042                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2043         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2044                                MLX5_EXPANSION_ROOT_OUTER;
2045 }
2046
2047 /**
2048  * Create a flow and add it to @p list.
2049  *
2050  * @param dev
2051  *   Pointer to Ethernet device.
2052  * @param list
2053  *   Pointer to a TAILQ flow list.
2054  * @param[in] attr
2055  *   Flow rule attributes.
2056  * @param[in] items
2057  *   Pattern specification (list terminated by the END pattern item).
2058  * @param[in] actions
2059  *   Associated actions (list terminated by the END action).
2060  * @param[out] error
2061  *   Perform verbose error reporting if not NULL.
2062  *
2063  * @return
2064  *   A flow on success, NULL otherwise and rte_errno is set.
2065  */
2066 static struct rte_flow *
2067 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2068                  const struct rte_flow_attr *attr,
2069                  const struct rte_flow_item items[],
2070                  const struct rte_flow_action actions[],
2071                  struct rte_flow_error *error)
2072 {
2073         struct rte_flow *flow = NULL;
2074         struct mlx5_flow *dev_flow;
2075         const struct rte_flow_action_rss *rss;
2076         union {
2077                 struct rte_flow_expand_rss buf;
2078                 uint8_t buffer[2048];
2079         } expand_buffer;
2080         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2081         int ret;
2082         uint32_t i;
2083         uint32_t flow_size;
2084
2085         ret = flow_drv_validate(dev, attr, items, actions, error);
2086         if (ret < 0)
2087                 return NULL;
2088         flow_size = sizeof(struct rte_flow);
2089         rss = flow_get_rss_action(actions);
2090         if (rss)
2091                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2092                                             sizeof(void *));
2093         else
2094                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2095         flow = rte_calloc(__func__, 1, flow_size, 0);
2096         flow->drv_type = flow_get_drv_type(dev, attr);
2097         flow->ingress = attr->ingress;
2098         flow->transfer = attr->transfer;
2099         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2100                flow->drv_type < MLX5_FLOW_TYPE_MAX);
2101         flow->queue = (void *)(flow + 1);
2102         LIST_INIT(&flow->dev_flows);
2103         if (rss && rss->types) {
2104                 unsigned int graph_root;
2105
2106                 graph_root = find_graph_root(items, rss->level);
2107                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2108                                           items, rss->types,
2109                                           mlx5_support_expansion,
2110                                           graph_root);
2111                 assert(ret > 0 &&
2112                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2113         } else {
2114                 buf->entries = 1;
2115                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2116         }
2117         for (i = 0; i < buf->entries; ++i) {
2118                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2119                                             actions, error);
2120                 if (!dev_flow)
2121                         goto error;
2122                 dev_flow->flow = flow;
2123                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2124                 ret = flow_drv_translate(dev, dev_flow, attr,
2125                                          buf->entry[i].pattern,
2126                                          actions, error);
2127                 if (ret < 0)
2128                         goto error;
2129         }
2130         if (dev->data->dev_started) {
2131                 ret = flow_drv_apply(dev, flow, error);
2132                 if (ret < 0)
2133                         goto error;
2134         }
2135         TAILQ_INSERT_TAIL(list, flow, next);
2136         flow_rxq_flags_set(dev, flow);
2137         return flow;
2138 error:
2139         ret = rte_errno; /* Save rte_errno before cleanup. */
2140         assert(flow);
2141         flow_drv_destroy(dev, flow);
2142         rte_free(flow);
2143         rte_errno = ret; /* Restore rte_errno. */
2144         return NULL;
2145 }
2146
2147 /**
2148  * Create a flow.
2149  *
2150  * @see rte_flow_create()
2151  * @see rte_flow_ops
2152  */
2153 struct rte_flow *
2154 mlx5_flow_create(struct rte_eth_dev *dev,
2155                  const struct rte_flow_attr *attr,
2156                  const struct rte_flow_item items[],
2157                  const struct rte_flow_action actions[],
2158                  struct rte_flow_error *error)
2159 {
2160         struct mlx5_priv *priv = dev->data->dev_private;
2161
2162         return flow_list_create(dev, &priv->flows,
2163                                 attr, items, actions, error);
2164 }
2165
2166 /**
2167  * Destroy a flow in a list.
2168  *
2169  * @param dev
2170  *   Pointer to Ethernet device.
2171  * @param list
2172  *   Pointer to a TAILQ flow list.
2173  * @param[in] flow
2174  *   Flow to destroy.
2175  */
2176 static void
2177 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2178                   struct rte_flow *flow)
2179 {
2180         /*
2181          * Update RX queue flags only if port is started, otherwise it is
2182          * already clean.
2183          */
2184         if (dev->data->dev_started)
2185                 flow_rxq_flags_trim(dev, flow);
2186         flow_drv_destroy(dev, flow);
2187         TAILQ_REMOVE(list, flow, next);
2188         rte_free(flow->fdir);
2189         rte_free(flow);
2190 }
2191
2192 /**
2193  * Destroy all flows.
2194  *
2195  * @param dev
2196  *   Pointer to Ethernet device.
2197  * @param list
2198  *   Pointer to a TAILQ flow list.
2199  */
2200 void
2201 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2202 {
2203         while (!TAILQ_EMPTY(list)) {
2204                 struct rte_flow *flow;
2205
2206                 flow = TAILQ_FIRST(list);
2207                 flow_list_destroy(dev, list, flow);
2208         }
2209 }
2210
2211 /**
2212  * Remove all flows.
2213  *
2214  * @param dev
2215  *   Pointer to Ethernet device.
2216  * @param list
2217  *   Pointer to a TAILQ flow list.
2218  */
2219 void
2220 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2221 {
2222         struct rte_flow *flow;
2223
2224         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2225                 flow_drv_remove(dev, flow);
2226         flow_rxq_flags_clear(dev);
2227 }
2228
2229 /**
2230  * Add all flows.
2231  *
2232  * @param dev
2233  *   Pointer to Ethernet device.
2234  * @param list
2235  *   Pointer to a TAILQ flow list.
2236  *
2237  * @return
2238  *   0 on success, a negative errno value otherwise and rte_errno is set.
2239  */
2240 int
2241 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2242 {
2243         struct rte_flow *flow;
2244         struct rte_flow_error error;
2245         int ret = 0;
2246
2247         TAILQ_FOREACH(flow, list, next) {
2248                 ret = flow_drv_apply(dev, flow, &error);
2249                 if (ret < 0)
2250                         goto error;
2251                 flow_rxq_flags_set(dev, flow);
2252         }
2253         return 0;
2254 error:
2255         ret = rte_errno; /* Save rte_errno before cleanup. */
2256         mlx5_flow_stop(dev, list);
2257         rte_errno = ret; /* Restore rte_errno. */
2258         return -rte_errno;
2259 }
2260
2261 /**
2262  * Verify the flow list is empty
2263  *
2264  * @param dev
2265  *  Pointer to Ethernet device.
2266  *
2267  * @return the number of flows not released.
2268  */
2269 int
2270 mlx5_flow_verify(struct rte_eth_dev *dev)
2271 {
2272         struct mlx5_priv *priv = dev->data->dev_private;
2273         struct rte_flow *flow;
2274         int ret = 0;
2275
2276         TAILQ_FOREACH(flow, &priv->flows, next) {
2277                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
2278                         dev->data->port_id, (void *)flow);
2279                 ++ret;
2280         }
2281         return ret;
2282 }
2283
2284 /**
2285  * Enable a control flow configured from the control plane.
2286  *
2287  * @param dev
2288  *   Pointer to Ethernet device.
2289  * @param eth_spec
2290  *   An Ethernet flow spec to apply.
2291  * @param eth_mask
2292  *   An Ethernet flow mask to apply.
2293  * @param vlan_spec
2294  *   A VLAN flow spec to apply.
2295  * @param vlan_mask
2296  *   A VLAN flow mask to apply.
2297  *
2298  * @return
2299  *   0 on success, a negative errno value otherwise and rte_errno is set.
2300  */
2301 int
2302 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2303                     struct rte_flow_item_eth *eth_spec,
2304                     struct rte_flow_item_eth *eth_mask,
2305                     struct rte_flow_item_vlan *vlan_spec,
2306                     struct rte_flow_item_vlan *vlan_mask)
2307 {
2308         struct mlx5_priv *priv = dev->data->dev_private;
2309         const struct rte_flow_attr attr = {
2310                 .ingress = 1,
2311                 .priority = MLX5_FLOW_PRIO_RSVD,
2312         };
2313         struct rte_flow_item items[] = {
2314                 {
2315                         .type = RTE_FLOW_ITEM_TYPE_ETH,
2316                         .spec = eth_spec,
2317                         .last = NULL,
2318                         .mask = eth_mask,
2319                 },
2320                 {
2321                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2322                                               RTE_FLOW_ITEM_TYPE_END,
2323                         .spec = vlan_spec,
2324                         .last = NULL,
2325                         .mask = vlan_mask,
2326                 },
2327                 {
2328                         .type = RTE_FLOW_ITEM_TYPE_END,
2329                 },
2330         };
2331         uint16_t queue[priv->reta_idx_n];
2332         struct rte_flow_action_rss action_rss = {
2333                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2334                 .level = 0,
2335                 .types = priv->rss_conf.rss_hf,
2336                 .key_len = priv->rss_conf.rss_key_len,
2337                 .queue_num = priv->reta_idx_n,
2338                 .key = priv->rss_conf.rss_key,
2339                 .queue = queue,
2340         };
2341         struct rte_flow_action actions[] = {
2342                 {
2343                         .type = RTE_FLOW_ACTION_TYPE_RSS,
2344                         .conf = &action_rss,
2345                 },
2346                 {
2347                         .type = RTE_FLOW_ACTION_TYPE_END,
2348                 },
2349         };
2350         struct rte_flow *flow;
2351         struct rte_flow_error error;
2352         unsigned int i;
2353
2354         if (!priv->reta_idx_n || !priv->rxqs_n) {
2355                 return 0;
2356         }
2357         for (i = 0; i != priv->reta_idx_n; ++i)
2358                 queue[i] = (*priv->reta_idx)[i];
2359         flow = flow_list_create(dev, &priv->ctrl_flows,
2360                                 &attr, items, actions, &error);
2361         if (!flow)
2362                 return -rte_errno;
2363         return 0;
2364 }
2365
2366 /**
2367  * Enable a flow control configured from the control plane.
2368  *
2369  * @param dev
2370  *   Pointer to Ethernet device.
2371  * @param eth_spec
2372  *   An Ethernet flow spec to apply.
2373  * @param eth_mask
2374  *   An Ethernet flow mask to apply.
2375  *
2376  * @return
2377  *   0 on success, a negative errno value otherwise and rte_errno is set.
2378  */
2379 int
2380 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2381                struct rte_flow_item_eth *eth_spec,
2382                struct rte_flow_item_eth *eth_mask)
2383 {
2384         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2385 }
2386
2387 /**
2388  * Destroy a flow.
2389  *
2390  * @see rte_flow_destroy()
2391  * @see rte_flow_ops
2392  */
2393 int
2394 mlx5_flow_destroy(struct rte_eth_dev *dev,
2395                   struct rte_flow *flow,
2396                   struct rte_flow_error *error __rte_unused)
2397 {
2398         struct mlx5_priv *priv = dev->data->dev_private;
2399
2400         flow_list_destroy(dev, &priv->flows, flow);
2401         return 0;
2402 }
2403
2404 /**
2405  * Destroy all flows.
2406  *
2407  * @see rte_flow_flush()
2408  * @see rte_flow_ops
2409  */
2410 int
2411 mlx5_flow_flush(struct rte_eth_dev *dev,
2412                 struct rte_flow_error *error __rte_unused)
2413 {
2414         struct mlx5_priv *priv = dev->data->dev_private;
2415
2416         mlx5_flow_list_flush(dev, &priv->flows);
2417         return 0;
2418 }
2419
2420 /**
2421  * Isolated mode.
2422  *
2423  * @see rte_flow_isolate()
2424  * @see rte_flow_ops
2425  */
2426 int
2427 mlx5_flow_isolate(struct rte_eth_dev *dev,
2428                   int enable,
2429                   struct rte_flow_error *error)
2430 {
2431         struct mlx5_priv *priv = dev->data->dev_private;
2432
2433         if (dev->data->dev_started) {
2434                 rte_flow_error_set(error, EBUSY,
2435                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2436                                    NULL,
2437                                    "port must be stopped first");
2438                 return -rte_errno;
2439         }
2440         priv->isolated = !!enable;
2441         if (enable)
2442                 dev->dev_ops = &mlx5_dev_ops_isolate;
2443         else
2444                 dev->dev_ops = &mlx5_dev_ops;
2445         return 0;
2446 }
2447
2448 /**
2449  * Query a flow.
2450  *
2451  * @see rte_flow_query()
2452  * @see rte_flow_ops
2453  */
2454 static int
2455 flow_drv_query(struct rte_eth_dev *dev,
2456                struct rte_flow *flow,
2457                const struct rte_flow_action *actions,
2458                void *data,
2459                struct rte_flow_error *error)
2460 {
2461         const struct mlx5_flow_driver_ops *fops;
2462         enum mlx5_flow_drv_type ftype = flow->drv_type;
2463
2464         assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2465         fops = flow_get_drv_ops(ftype);
2466
2467         return fops->query(dev, flow, actions, data, error);
2468 }
2469
2470 /**
2471  * Query a flow.
2472  *
2473  * @see rte_flow_query()
2474  * @see rte_flow_ops
2475  */
2476 int
2477 mlx5_flow_query(struct rte_eth_dev *dev,
2478                 struct rte_flow *flow,
2479                 const struct rte_flow_action *actions,
2480                 void *data,
2481                 struct rte_flow_error *error)
2482 {
2483         int ret;
2484
2485         ret = flow_drv_query(dev, flow, actions, data, error);
2486         if (ret < 0)
2487                 return ret;
2488         return 0;
2489 }
2490
2491 /**
2492  * Convert a flow director filter to a generic flow.
2493  *
2494  * @param dev
2495  *   Pointer to Ethernet device.
2496  * @param fdir_filter
2497  *   Flow director filter to add.
2498  * @param attributes
2499  *   Generic flow parameters structure.
2500  *
2501  * @return
2502  *   0 on success, a negative errno value otherwise and rte_errno is set.
2503  */
2504 static int
2505 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2506                          const struct rte_eth_fdir_filter *fdir_filter,
2507                          struct mlx5_fdir *attributes)
2508 {
2509         struct mlx5_priv *priv = dev->data->dev_private;
2510         const struct rte_eth_fdir_input *input = &fdir_filter->input;
2511         const struct rte_eth_fdir_masks *mask =
2512                 &dev->data->dev_conf.fdir_conf.mask;
2513
2514         /* Validate queue number. */
2515         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2516                 DRV_LOG(ERR, "port %u invalid queue number %d",
2517                         dev->data->port_id, fdir_filter->action.rx_queue);
2518                 rte_errno = EINVAL;
2519                 return -rte_errno;
2520         }
2521         attributes->attr.ingress = 1;
2522         attributes->items[0] = (struct rte_flow_item) {
2523                 .type = RTE_FLOW_ITEM_TYPE_ETH,
2524                 .spec = &attributes->l2,
2525                 .mask = &attributes->l2_mask,
2526         };
2527         switch (fdir_filter->action.behavior) {
2528         case RTE_ETH_FDIR_ACCEPT:
2529                 attributes->actions[0] = (struct rte_flow_action){
2530                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
2531                         .conf = &attributes->queue,
2532                 };
2533                 break;
2534         case RTE_ETH_FDIR_REJECT:
2535                 attributes->actions[0] = (struct rte_flow_action){
2536                         .type = RTE_FLOW_ACTION_TYPE_DROP,
2537                 };
2538                 break;
2539         default:
2540                 DRV_LOG(ERR, "port %u invalid behavior %d",
2541                         dev->data->port_id,
2542                         fdir_filter->action.behavior);
2543                 rte_errno = ENOTSUP;
2544                 return -rte_errno;
2545         }
2546         attributes->queue.index = fdir_filter->action.rx_queue;
2547         /* Handle L3. */
2548         switch (fdir_filter->input.flow_type) {
2549         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2550         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2551         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2552                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
2553                         .src_addr = input->flow.ip4_flow.src_ip,
2554                         .dst_addr = input->flow.ip4_flow.dst_ip,
2555                         .time_to_live = input->flow.ip4_flow.ttl,
2556                         .type_of_service = input->flow.ip4_flow.tos,
2557                 };
2558                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
2559                         .src_addr = mask->ipv4_mask.src_ip,
2560                         .dst_addr = mask->ipv4_mask.dst_ip,
2561                         .time_to_live = mask->ipv4_mask.ttl,
2562                         .type_of_service = mask->ipv4_mask.tos,
2563                         .next_proto_id = mask->ipv4_mask.proto,
2564                 };
2565                 attributes->items[1] = (struct rte_flow_item){
2566                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
2567                         .spec = &attributes->l3,
2568                         .mask = &attributes->l3_mask,
2569                 };
2570                 break;
2571         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2572         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2573         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2574                 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
2575                         .hop_limits = input->flow.ipv6_flow.hop_limits,
2576                         .proto = input->flow.ipv6_flow.proto,
2577                 };
2578
2579                 memcpy(attributes->l3.ipv6.hdr.src_addr,
2580                        input->flow.ipv6_flow.src_ip,
2581                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2582                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
2583                        input->flow.ipv6_flow.dst_ip,
2584                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2585                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2586                        mask->ipv6_mask.src_ip,
2587                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2588                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2589                        mask->ipv6_mask.dst_ip,
2590                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2591                 attributes->items[1] = (struct rte_flow_item){
2592                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
2593                         .spec = &attributes->l3,
2594                         .mask = &attributes->l3_mask,
2595                 };
2596                 break;
2597         default:
2598                 DRV_LOG(ERR, "port %u invalid flow type%d",
2599                         dev->data->port_id, fdir_filter->input.flow_type);
2600                 rte_errno = ENOTSUP;
2601                 return -rte_errno;
2602         }
2603         /* Handle L4. */
2604         switch (fdir_filter->input.flow_type) {
2605         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2606                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
2607                         .src_port = input->flow.udp4_flow.src_port,
2608                         .dst_port = input->flow.udp4_flow.dst_port,
2609                 };
2610                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2611                         .src_port = mask->src_port_mask,
2612                         .dst_port = mask->dst_port_mask,
2613                 };
2614                 attributes->items[2] = (struct rte_flow_item){
2615                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2616                         .spec = &attributes->l4,
2617                         .mask = &attributes->l4_mask,
2618                 };
2619                 break;
2620         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2621                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2622                         .src_port = input->flow.tcp4_flow.src_port,
2623                         .dst_port = input->flow.tcp4_flow.dst_port,
2624                 };
2625                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2626                         .src_port = mask->src_port_mask,
2627                         .dst_port = mask->dst_port_mask,
2628                 };
2629                 attributes->items[2] = (struct rte_flow_item){
2630                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2631                         .spec = &attributes->l4,
2632                         .mask = &attributes->l4_mask,
2633                 };
2634                 break;
2635         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2636                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
2637                         .src_port = input->flow.udp6_flow.src_port,
2638                         .dst_port = input->flow.udp6_flow.dst_port,
2639                 };
2640                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2641                         .src_port = mask->src_port_mask,
2642                         .dst_port = mask->dst_port_mask,
2643                 };
2644                 attributes->items[2] = (struct rte_flow_item){
2645                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2646                         .spec = &attributes->l4,
2647                         .mask = &attributes->l4_mask,
2648                 };
2649                 break;
2650         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2651                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2652                         .src_port = input->flow.tcp6_flow.src_port,
2653                         .dst_port = input->flow.tcp6_flow.dst_port,
2654                 };
2655                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2656                         .src_port = mask->src_port_mask,
2657                         .dst_port = mask->dst_port_mask,
2658                 };
2659                 attributes->items[2] = (struct rte_flow_item){
2660                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2661                         .spec = &attributes->l4,
2662                         .mask = &attributes->l4_mask,
2663                 };
2664                 break;
2665         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2666         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2667                 break;
2668         default:
2669                 DRV_LOG(ERR, "port %u invalid flow type%d",
2670                         dev->data->port_id, fdir_filter->input.flow_type);
2671                 rte_errno = ENOTSUP;
2672                 return -rte_errno;
2673         }
2674         return 0;
2675 }
2676
2677 #define FLOW_FDIR_CMP(f1, f2, fld) \
2678         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2679
2680 /**
2681  * Compare two FDIR flows. If items and actions are identical, the two flows are
2682  * regarded as same.
2683  *
2684  * @param dev
2685  *   Pointer to Ethernet device.
2686  * @param f1
2687  *   FDIR flow to compare.
2688  * @param f2
2689  *   FDIR flow to compare.
2690  *
2691  * @return
2692  *   Zero on match, 1 otherwise.
2693  */
2694 static int
2695 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2696 {
2697         if (FLOW_FDIR_CMP(f1, f2, attr) ||
2698             FLOW_FDIR_CMP(f1, f2, l2) ||
2699             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2700             FLOW_FDIR_CMP(f1, f2, l3) ||
2701             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2702             FLOW_FDIR_CMP(f1, f2, l4) ||
2703             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2704             FLOW_FDIR_CMP(f1, f2, actions[0].type))
2705                 return 1;
2706         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2707             FLOW_FDIR_CMP(f1, f2, queue))
2708                 return 1;
2709         return 0;
2710 }
2711
2712 /**
2713  * Search device flow list to find out a matched FDIR flow.
2714  *
2715  * @param dev
2716  *   Pointer to Ethernet device.
2717  * @param fdir_flow
2718  *   FDIR flow to lookup.
2719  *
2720  * @return
2721  *   Pointer of flow if found, NULL otherwise.
2722  */
2723 static struct rte_flow *
2724 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
2725 {
2726         struct mlx5_priv *priv = dev->data->dev_private;
2727         struct rte_flow *flow = NULL;
2728
2729         assert(fdir_flow);
2730         TAILQ_FOREACH(flow, &priv->flows, next) {
2731                 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
2732                         DRV_LOG(DEBUG, "port %u found FDIR flow %p",
2733                                 dev->data->port_id, (void *)flow);
2734                         break;
2735                 }
2736         }
2737         return flow;
2738 }
2739
2740 /**
2741  * Add new flow director filter and store it in list.
2742  *
2743  * @param dev
2744  *   Pointer to Ethernet device.
2745  * @param fdir_filter
2746  *   Flow director filter to add.
2747  *
2748  * @return
2749  *   0 on success, a negative errno value otherwise and rte_errno is set.
2750  */
2751 static int
2752 flow_fdir_filter_add(struct rte_eth_dev *dev,
2753                      const struct rte_eth_fdir_filter *fdir_filter)
2754 {
2755         struct mlx5_priv *priv = dev->data->dev_private;
2756         struct mlx5_fdir *fdir_flow;
2757         struct rte_flow *flow;
2758         int ret;
2759
2760         fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
2761         if (!fdir_flow) {
2762                 rte_errno = ENOMEM;
2763                 return -rte_errno;
2764         }
2765         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
2766         if (ret)
2767                 goto error;
2768         flow = flow_fdir_filter_lookup(dev, fdir_flow);
2769         if (flow) {
2770                 rte_errno = EEXIST;
2771                 goto error;
2772         }
2773         flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
2774                                 fdir_flow->items, fdir_flow->actions, NULL);
2775         if (!flow)
2776                 goto error;
2777         assert(!flow->fdir);
2778         flow->fdir = fdir_flow;
2779         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
2780                 dev->data->port_id, (void *)flow);
2781         return 0;
2782 error:
2783         rte_free(fdir_flow);
2784         return -rte_errno;
2785 }
2786
2787 /**
2788  * Delete specific filter.
2789  *
2790  * @param dev
2791  *   Pointer to Ethernet device.
2792  * @param fdir_filter
2793  *   Filter to be deleted.
2794  *
2795  * @return
2796  *   0 on success, a negative errno value otherwise and rte_errno is set.
2797  */
2798 static int
2799 flow_fdir_filter_delete(struct rte_eth_dev *dev,
2800                         const struct rte_eth_fdir_filter *fdir_filter)
2801 {
2802         struct mlx5_priv *priv = dev->data->dev_private;
2803         struct rte_flow *flow;
2804         struct mlx5_fdir fdir_flow = {
2805                 .attr.group = 0,
2806         };
2807         int ret;
2808
2809         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
2810         if (ret)
2811                 return -rte_errno;
2812         flow = flow_fdir_filter_lookup(dev, &fdir_flow);
2813         if (!flow) {
2814                 rte_errno = ENOENT;
2815                 return -rte_errno;
2816         }
2817         flow_list_destroy(dev, &priv->flows, flow);
2818         DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
2819                 dev->data->port_id, (void *)flow);
2820         return 0;
2821 }
2822
2823 /**
2824  * Update queue for specific filter.
2825  *
2826  * @param dev
2827  *   Pointer to Ethernet device.
2828  * @param fdir_filter
2829  *   Filter to be updated.
2830  *
2831  * @return
2832  *   0 on success, a negative errno value otherwise and rte_errno is set.
2833  */
2834 static int
2835 flow_fdir_filter_update(struct rte_eth_dev *dev,
2836                         const struct rte_eth_fdir_filter *fdir_filter)
2837 {
2838         int ret;
2839
2840         ret = flow_fdir_filter_delete(dev, fdir_filter);
2841         if (ret)
2842                 return ret;
2843         return flow_fdir_filter_add(dev, fdir_filter);
2844 }
2845
2846 /**
2847  * Flush all filters.
2848  *
2849  * @param dev
2850  *   Pointer to Ethernet device.
2851  */
2852 static void
2853 flow_fdir_filter_flush(struct rte_eth_dev *dev)
2854 {
2855         struct mlx5_priv *priv = dev->data->dev_private;
2856
2857         mlx5_flow_list_flush(dev, &priv->flows);
2858 }
2859
2860 /**
2861  * Get flow director information.
2862  *
2863  * @param dev
2864  *   Pointer to Ethernet device.
2865  * @param[out] fdir_info
2866  *   Resulting flow director information.
2867  */
2868 static void
2869 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2870 {
2871         struct rte_eth_fdir_masks *mask =
2872                 &dev->data->dev_conf.fdir_conf.mask;
2873
2874         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2875         fdir_info->guarant_spc = 0;
2876         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2877         fdir_info->max_flexpayload = 0;
2878         fdir_info->flow_types_mask[0] = 0;
2879         fdir_info->flex_payload_unit = 0;
2880         fdir_info->max_flex_payload_segment_num = 0;
2881         fdir_info->flex_payload_limit = 0;
2882         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2883 }
2884
2885 /**
2886  * Deal with flow director operations.
2887  *
2888  * @param dev
2889  *   Pointer to Ethernet device.
2890  * @param filter_op
2891  *   Operation to perform.
2892  * @param arg
2893  *   Pointer to operation-specific structure.
2894  *
2895  * @return
2896  *   0 on success, a negative errno value otherwise and rte_errno is set.
2897  */
2898 static int
2899 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2900                     void *arg)
2901 {
2902         enum rte_fdir_mode fdir_mode =
2903                 dev->data->dev_conf.fdir_conf.mode;
2904
2905         if (filter_op == RTE_ETH_FILTER_NOP)
2906                 return 0;
2907         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2908             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2909                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
2910                         dev->data->port_id, fdir_mode);
2911                 rte_errno = EINVAL;
2912                 return -rte_errno;
2913         }
2914         switch (filter_op) {
2915         case RTE_ETH_FILTER_ADD:
2916                 return flow_fdir_filter_add(dev, arg);
2917         case RTE_ETH_FILTER_UPDATE:
2918                 return flow_fdir_filter_update(dev, arg);
2919         case RTE_ETH_FILTER_DELETE:
2920                 return flow_fdir_filter_delete(dev, arg);
2921         case RTE_ETH_FILTER_FLUSH:
2922                 flow_fdir_filter_flush(dev);
2923                 break;
2924         case RTE_ETH_FILTER_INFO:
2925                 flow_fdir_info_get(dev, arg);
2926                 break;
2927         default:
2928                 DRV_LOG(DEBUG, "port %u unknown operation %u",
2929                         dev->data->port_id, filter_op);
2930                 rte_errno = EINVAL;
2931                 return -rte_errno;
2932         }
2933         return 0;
2934 }
2935
2936 /**
2937  * Manage filter operations.
2938  *
2939  * @param dev
2940  *   Pointer to Ethernet device structure.
2941  * @param filter_type
2942  *   Filter type.
2943  * @param filter_op
2944  *   Operation to perform.
2945  * @param arg
2946  *   Pointer to operation-specific structure.
2947  *
2948  * @return
2949  *   0 on success, a negative errno value otherwise and rte_errno is set.
2950  */
2951 int
2952 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2953                      enum rte_filter_type filter_type,
2954                      enum rte_filter_op filter_op,
2955                      void *arg)
2956 {
2957         switch (filter_type) {
2958         case RTE_ETH_FILTER_GENERIC:
2959                 if (filter_op != RTE_ETH_FILTER_GET) {
2960                         rte_errno = EINVAL;
2961                         return -rte_errno;
2962                 }
2963                 *(const void **)arg = &mlx5_flow_ops;
2964                 return 0;
2965         case RTE_ETH_FILTER_FDIR:
2966                 return flow_fdir_ctrl_func(dev, filter_op, arg);
2967         default:
2968                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
2969                         dev->data->port_id, filter_type);
2970                 rte_errno = ENOTSUP;
2971                 return -rte_errno;
2972         }
2973         return 0;
2974 }