net/mlx5: fix RSS flow configuration crash
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <sys/queue.h>
7 #include <stdalign.h>
8 #include <stdint.h>
9 #include <string.h>
10
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #ifdef PEDANTIC
18 #pragma GCC diagnostic error "-Wpedantic"
19 #endif
20
21 #include <rte_common.h>
22 #include <rte_ether.h>
23 #include <rte_eth_ctrl.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_prm.h"
33 #include "mlx5_glue.h"
34
35 /* Dev ops structure defined in mlx5.c */
36 extern const struct eth_dev_ops mlx5_dev_ops;
37 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
38
39 /* Pattern outer Layer bits. */
40 #define MLX5_FLOW_LAYER_OUTER_L2 (1u << 0)
41 #define MLX5_FLOW_LAYER_OUTER_L3_IPV4 (1u << 1)
42 #define MLX5_FLOW_LAYER_OUTER_L3_IPV6 (1u << 2)
43 #define MLX5_FLOW_LAYER_OUTER_L4_UDP (1u << 3)
44 #define MLX5_FLOW_LAYER_OUTER_L4_TCP (1u << 4)
45 #define MLX5_FLOW_LAYER_OUTER_VLAN (1u << 5)
46
47 /* Pattern inner Layer bits. */
48 #define MLX5_FLOW_LAYER_INNER_L2 (1u << 6)
49 #define MLX5_FLOW_LAYER_INNER_L3_IPV4 (1u << 7)
50 #define MLX5_FLOW_LAYER_INNER_L3_IPV6 (1u << 8)
51 #define MLX5_FLOW_LAYER_INNER_L4_UDP (1u << 9)
52 #define MLX5_FLOW_LAYER_INNER_L4_TCP (1u << 10)
53 #define MLX5_FLOW_LAYER_INNER_VLAN (1u << 11)
54
55 /* Pattern tunnel Layer bits. */
56 #define MLX5_FLOW_LAYER_VXLAN (1u << 12)
57 #define MLX5_FLOW_LAYER_VXLAN_GPE (1u << 13)
58 #define MLX5_FLOW_LAYER_GRE (1u << 14)
59 #define MLX5_FLOW_LAYER_MPLS (1u << 15)
60
61 /* Outer Masks. */
62 #define MLX5_FLOW_LAYER_OUTER_L3 \
63         (MLX5_FLOW_LAYER_OUTER_L3_IPV4 | MLX5_FLOW_LAYER_OUTER_L3_IPV6)
64 #define MLX5_FLOW_LAYER_OUTER_L4 \
65         (MLX5_FLOW_LAYER_OUTER_L4_UDP | MLX5_FLOW_LAYER_OUTER_L4_TCP)
66 #define MLX5_FLOW_LAYER_OUTER \
67         (MLX5_FLOW_LAYER_OUTER_L2 | MLX5_FLOW_LAYER_OUTER_L3 | \
68          MLX5_FLOW_LAYER_OUTER_L4)
69
70 /* Tunnel Masks. */
71 #define MLX5_FLOW_LAYER_TUNNEL \
72         (MLX5_FLOW_LAYER_VXLAN | MLX5_FLOW_LAYER_VXLAN_GPE | \
73          MLX5_FLOW_LAYER_GRE | MLX5_FLOW_LAYER_MPLS)
74
75 /* Inner Masks. */
76 #define MLX5_FLOW_LAYER_INNER_L3 \
77         (MLX5_FLOW_LAYER_INNER_L3_IPV4 | MLX5_FLOW_LAYER_INNER_L3_IPV6)
78 #define MLX5_FLOW_LAYER_INNER_L4 \
79         (MLX5_FLOW_LAYER_INNER_L4_UDP | MLX5_FLOW_LAYER_INNER_L4_TCP)
80 #define MLX5_FLOW_LAYER_INNER \
81         (MLX5_FLOW_LAYER_INNER_L2 | MLX5_FLOW_LAYER_INNER_L3 | \
82          MLX5_FLOW_LAYER_INNER_L4)
83
84 /* Actions that modify the fate of matching traffic. */
85 #define MLX5_FLOW_FATE_DROP (1u << 0)
86 #define MLX5_FLOW_FATE_QUEUE (1u << 1)
87 #define MLX5_FLOW_FATE_RSS (1u << 2)
88
89 /* Modify a packet. */
90 #define MLX5_FLOW_MOD_FLAG (1u << 0)
91 #define MLX5_FLOW_MOD_MARK (1u << 1)
92 #define MLX5_FLOW_MOD_COUNT (1u << 2)
93
94 /* possible L3 layers protocols filtering. */
95 #define MLX5_IP_PROTOCOL_TCP 6
96 #define MLX5_IP_PROTOCOL_UDP 17
97 #define MLX5_IP_PROTOCOL_GRE 47
98 #define MLX5_IP_PROTOCOL_MPLS 147
99
100 /* Priority reserved for default flows. */
101 #define MLX5_FLOW_PRIO_RSVD ((uint32_t)-1)
102
103 enum mlx5_expansion {
104         MLX5_EXPANSION_ROOT,
105         MLX5_EXPANSION_ROOT_OUTER,
106         MLX5_EXPANSION_ROOT_ETH_VLAN,
107         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
108         MLX5_EXPANSION_OUTER_ETH,
109         MLX5_EXPANSION_OUTER_ETH_VLAN,
110         MLX5_EXPANSION_OUTER_VLAN,
111         MLX5_EXPANSION_OUTER_IPV4,
112         MLX5_EXPANSION_OUTER_IPV4_UDP,
113         MLX5_EXPANSION_OUTER_IPV4_TCP,
114         MLX5_EXPANSION_OUTER_IPV6,
115         MLX5_EXPANSION_OUTER_IPV6_UDP,
116         MLX5_EXPANSION_OUTER_IPV6_TCP,
117         MLX5_EXPANSION_VXLAN,
118         MLX5_EXPANSION_VXLAN_GPE,
119         MLX5_EXPANSION_GRE,
120         MLX5_EXPANSION_MPLS,
121         MLX5_EXPANSION_ETH,
122         MLX5_EXPANSION_ETH_VLAN,
123         MLX5_EXPANSION_VLAN,
124         MLX5_EXPANSION_IPV4,
125         MLX5_EXPANSION_IPV4_UDP,
126         MLX5_EXPANSION_IPV4_TCP,
127         MLX5_EXPANSION_IPV6,
128         MLX5_EXPANSION_IPV6_UDP,
129         MLX5_EXPANSION_IPV6_TCP,
130 };
131
132 /** Supported expansion of items. */
133 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
134         [MLX5_EXPANSION_ROOT] = {
135                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
136                                                  MLX5_EXPANSION_IPV4,
137                                                  MLX5_EXPANSION_IPV6),
138                 .type = RTE_FLOW_ITEM_TYPE_END,
139         },
140         [MLX5_EXPANSION_ROOT_OUTER] = {
141                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
142                                                  MLX5_EXPANSION_OUTER_IPV4,
143                                                  MLX5_EXPANSION_OUTER_IPV6),
144                 .type = RTE_FLOW_ITEM_TYPE_END,
145         },
146         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
147                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
148                 .type = RTE_FLOW_ITEM_TYPE_END,
149         },
150         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
151                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
152                 .type = RTE_FLOW_ITEM_TYPE_END,
153         },
154         [MLX5_EXPANSION_OUTER_ETH] = {
155                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
156                                                  MLX5_EXPANSION_OUTER_IPV6,
157                                                  MLX5_EXPANSION_MPLS),
158                 .type = RTE_FLOW_ITEM_TYPE_ETH,
159                 .rss_types = 0,
160         },
161         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
162                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
163                 .type = RTE_FLOW_ITEM_TYPE_ETH,
164                 .rss_types = 0,
165         },
166         [MLX5_EXPANSION_OUTER_VLAN] = {
167                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
168                                                  MLX5_EXPANSION_OUTER_IPV6),
169                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
170         },
171         [MLX5_EXPANSION_OUTER_IPV4] = {
172                 .next = RTE_FLOW_EXPAND_RSS_NEXT
173                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
174                          MLX5_EXPANSION_OUTER_IPV4_TCP,
175                          MLX5_EXPANSION_GRE),
176                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
177                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
178                         ETH_RSS_NONFRAG_IPV4_OTHER,
179         },
180         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
181                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
182                                                  MLX5_EXPANSION_VXLAN_GPE),
183                 .type = RTE_FLOW_ITEM_TYPE_UDP,
184                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
185         },
186         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
187                 .type = RTE_FLOW_ITEM_TYPE_TCP,
188                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
189         },
190         [MLX5_EXPANSION_OUTER_IPV6] = {
191                 .next = RTE_FLOW_EXPAND_RSS_NEXT
192                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
193                          MLX5_EXPANSION_OUTER_IPV6_TCP),
194                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
195                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
196                         ETH_RSS_NONFRAG_IPV6_OTHER,
197         },
198         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
199                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
200                                                  MLX5_EXPANSION_VXLAN_GPE),
201                 .type = RTE_FLOW_ITEM_TYPE_UDP,
202                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
203         },
204         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
205                 .type = RTE_FLOW_ITEM_TYPE_TCP,
206                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
207         },
208         [MLX5_EXPANSION_VXLAN] = {
209                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
210                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
211         },
212         [MLX5_EXPANSION_VXLAN_GPE] = {
213                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
214                                                  MLX5_EXPANSION_IPV4,
215                                                  MLX5_EXPANSION_IPV6),
216                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
217         },
218         [MLX5_EXPANSION_GRE] = {
219                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
220                 .type = RTE_FLOW_ITEM_TYPE_GRE,
221         },
222         [MLX5_EXPANSION_MPLS] = {
223                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
224                                                  MLX5_EXPANSION_IPV6),
225                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
226         },
227         [MLX5_EXPANSION_ETH] = {
228                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
229                                                  MLX5_EXPANSION_IPV6),
230                 .type = RTE_FLOW_ITEM_TYPE_ETH,
231         },
232         [MLX5_EXPANSION_ETH_VLAN] = {
233                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
234                 .type = RTE_FLOW_ITEM_TYPE_ETH,
235         },
236         [MLX5_EXPANSION_VLAN] = {
237                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
238                                                  MLX5_EXPANSION_IPV6),
239                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
240         },
241         [MLX5_EXPANSION_IPV4] = {
242                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
243                                                  MLX5_EXPANSION_IPV4_TCP),
244                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
245                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
246                         ETH_RSS_NONFRAG_IPV4_OTHER,
247         },
248         [MLX5_EXPANSION_IPV4_UDP] = {
249                 .type = RTE_FLOW_ITEM_TYPE_UDP,
250                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
251         },
252         [MLX5_EXPANSION_IPV4_TCP] = {
253                 .type = RTE_FLOW_ITEM_TYPE_TCP,
254                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
255         },
256         [MLX5_EXPANSION_IPV6] = {
257                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
258                                                  MLX5_EXPANSION_IPV6_TCP),
259                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
260                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
261                         ETH_RSS_NONFRAG_IPV6_OTHER,
262         },
263         [MLX5_EXPANSION_IPV6_UDP] = {
264                 .type = RTE_FLOW_ITEM_TYPE_UDP,
265                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
266         },
267         [MLX5_EXPANSION_IPV6_TCP] = {
268                 .type = RTE_FLOW_ITEM_TYPE_TCP,
269                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
270         },
271 };
272
273 /** Handles information leading to a drop fate. */
274 struct mlx5_flow_verbs {
275         LIST_ENTRY(mlx5_flow_verbs) next;
276         unsigned int size; /**< Size of the attribute. */
277         struct {
278                 struct ibv_flow_attr *attr;
279                 /**< Pointer to the Specification buffer. */
280                 uint8_t *specs; /**< Pointer to the specifications. */
281         };
282         struct ibv_flow *flow; /**< Verbs flow pointer. */
283         struct mlx5_hrxq *hrxq; /**< Hash Rx queue object. */
284         uint64_t hash_fields; /**< Verbs hash Rx queue hash fields. */
285 };
286
287 /* Counters information. */
288 struct mlx5_flow_counter {
289         LIST_ENTRY(mlx5_flow_counter) next; /**< Pointer to the next counter. */
290         uint32_t shared:1; /**< Share counter ID with other flow rules. */
291         uint32_t ref_cnt:31; /**< Reference counter. */
292         uint32_t id; /**< Counter ID. */
293         struct ibv_counter_set *cs; /**< Holds the counters for the rule. */
294         uint64_t hits; /**< Number of packets matched by the rule. */
295         uint64_t bytes; /**< Number of bytes matched by the rule. */
296 };
297
298 /* Flow structure. */
299 struct rte_flow {
300         TAILQ_ENTRY(rte_flow) next; /**< Pointer to the next flow structure. */
301         struct rte_flow_attr attributes; /**< User flow attribute. */
302         uint32_t l3_protocol_en:1; /**< Protocol filtering requested. */
303         uint32_t layers;
304         /**< Bit-fields of present layers see MLX5_FLOW_LAYER_*. */
305         uint32_t modifier;
306         /**< Bit-fields of present modifier see MLX5_FLOW_MOD_*. */
307         uint32_t fate;
308         /**< Bit-fields of present fate see MLX5_FLOW_FATE_*. */
309         uint8_t l3_protocol; /**< valid when l3_protocol_en is set. */
310         LIST_HEAD(verbs, mlx5_flow_verbs) verbs; /**< Verbs flows list. */
311         struct mlx5_flow_verbs *cur_verbs;
312         /**< Current Verbs flow structure being filled. */
313         struct mlx5_flow_counter *counter; /**< Holds Verbs flow counter. */
314         struct rte_flow_action_rss rss;/**< RSS context. */
315         uint8_t key[MLX5_RSS_HASH_KEY_LEN]; /**< RSS hash key. */
316         uint16_t (*queue)[]; /**< Destination queues to redirect traffic to. */
317         void *nl_flow; /**< Netlink flow buffer if relevant. */
318 };
319
320 static const struct rte_flow_ops mlx5_flow_ops = {
321         .validate = mlx5_flow_validate,
322         .create = mlx5_flow_create,
323         .destroy = mlx5_flow_destroy,
324         .flush = mlx5_flow_flush,
325         .isolate = mlx5_flow_isolate,
326         .query = mlx5_flow_query,
327 };
328
329 /* Convert FDIR request to Generic flow. */
330 struct mlx5_fdir {
331         struct rte_flow_attr attr;
332         struct rte_flow_action actions[2];
333         struct rte_flow_item items[4];
334         struct rte_flow_item_eth l2;
335         struct rte_flow_item_eth l2_mask;
336         union {
337                 struct rte_flow_item_ipv4 ipv4;
338                 struct rte_flow_item_ipv6 ipv6;
339         } l3;
340         union {
341                 struct rte_flow_item_ipv4 ipv4;
342                 struct rte_flow_item_ipv6 ipv6;
343         } l3_mask;
344         union {
345                 struct rte_flow_item_udp udp;
346                 struct rte_flow_item_tcp tcp;
347         } l4;
348         union {
349                 struct rte_flow_item_udp udp;
350                 struct rte_flow_item_tcp tcp;
351         } l4_mask;
352         struct rte_flow_action_queue queue;
353 };
354
355 /* Verbs specification header. */
356 struct ibv_spec_header {
357         enum ibv_flow_spec_type type;
358         uint16_t size;
359 };
360
361 /*
362  * Number of sub priorities.
363  * For each kind of pattern matching i.e. L2, L3, L4 to have a correct
364  * matching on the NIC (firmware dependent) L4 most have the higher priority
365  * followed by L3 and ending with L2.
366  */
367 #define MLX5_PRIORITY_MAP_L2 2
368 #define MLX5_PRIORITY_MAP_L3 1
369 #define MLX5_PRIORITY_MAP_L4 0
370 #define MLX5_PRIORITY_MAP_MAX 3
371
372 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
373 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
374         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
375 };
376
377 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
378 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
379         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
380         { 9, 10, 11 }, { 12, 13, 14 },
381 };
382
383 /* Tunnel information. */
384 struct mlx5_flow_tunnel_info {
385         uint32_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
386         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
387 };
388
389 static struct mlx5_flow_tunnel_info tunnels_info[] = {
390         {
391                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
392                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
393         },
394         {
395                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
396                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
397         },
398         {
399                 .tunnel = MLX5_FLOW_LAYER_GRE,
400                 .ptype = RTE_PTYPE_TUNNEL_GRE,
401         },
402         {
403                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
404                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE | RTE_PTYPE_L4_UDP,
405         },
406         {
407                 .tunnel = MLX5_FLOW_LAYER_MPLS,
408                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
409         },
410 };
411
412 /**
413  * Discover the maximum number of priority available.
414  *
415  * @param[in] dev
416  *   Pointer to Ethernet device.
417  *
418  * @return
419  *   number of supported flow priority on success, a negative errno
420  *   value otherwise and rte_errno is set.
421  */
422 int
423 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
424 {
425         struct {
426                 struct ibv_flow_attr attr;
427                 struct ibv_flow_spec_eth eth;
428                 struct ibv_flow_spec_action_drop drop;
429         } flow_attr = {
430                 .attr = {
431                         .num_of_specs = 2,
432                 },
433                 .eth = {
434                         .type = IBV_FLOW_SPEC_ETH,
435                         .size = sizeof(struct ibv_flow_spec_eth),
436                 },
437                 .drop = {
438                         .size = sizeof(struct ibv_flow_spec_action_drop),
439                         .type = IBV_FLOW_SPEC_ACTION_DROP,
440                 },
441         };
442         struct ibv_flow *flow;
443         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
444         uint16_t vprio[] = { 8, 16 };
445         int i;
446         int priority = 0;
447
448         if (!drop) {
449                 rte_errno = ENOTSUP;
450                 return -rte_errno;
451         }
452         for (i = 0; i != RTE_DIM(vprio); i++) {
453                 flow_attr.attr.priority = vprio[i] - 1;
454                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
455                 if (!flow)
456                         break;
457                 claim_zero(mlx5_glue->destroy_flow(flow));
458                 priority = vprio[i];
459         }
460         switch (priority) {
461         case 8:
462                 priority = RTE_DIM(priority_map_3);
463                 break;
464         case 16:
465                 priority = RTE_DIM(priority_map_5);
466                 break;
467         default:
468                 rte_errno = ENOTSUP;
469                 DRV_LOG(ERR,
470                         "port %u verbs maximum priority: %d expected 8/16",
471                         dev->data->port_id, vprio[i]);
472                 return -rte_errno;
473         }
474         mlx5_hrxq_drop_release(dev);
475         DRV_LOG(INFO, "port %u flow maximum priority: %d",
476                 dev->data->port_id, priority);
477         return priority;
478 }
479
480 /**
481  * Adjust flow priority.
482  *
483  * @param dev
484  *   Pointer to Ethernet device.
485  * @param flow
486  *   Pointer to an rte flow.
487  */
488 static void
489 mlx5_flow_adjust_priority(struct rte_eth_dev *dev, struct rte_flow *flow)
490 {
491         struct priv *priv = dev->data->dev_private;
492         uint32_t priority = flow->attributes.priority;
493         uint32_t subpriority = flow->cur_verbs->attr->priority;
494
495         switch (priv->config.flow_prio) {
496         case RTE_DIM(priority_map_3):
497                 priority = priority_map_3[priority][subpriority];
498                 break;
499         case RTE_DIM(priority_map_5):
500                 priority = priority_map_5[priority][subpriority];
501                 break;
502         }
503         flow->cur_verbs->attr->priority = priority;
504 }
505
506 /**
507  * Get a flow counter.
508  *
509  * @param[in] dev
510  *   Pointer to Ethernet device.
511  * @param[in] shared
512  *   Indicate if this counter is shared with other flows.
513  * @param[in] id
514  *   Counter identifier.
515  *
516  * @return
517  *   A pointer to the counter, NULL otherwise and rte_errno is set.
518  */
519 static struct mlx5_flow_counter *
520 mlx5_flow_counter_new(struct rte_eth_dev *dev, uint32_t shared, uint32_t id)
521 {
522         struct priv *priv = dev->data->dev_private;
523         struct mlx5_flow_counter *cnt;
524
525         LIST_FOREACH(cnt, &priv->flow_counters, next) {
526                 if (!cnt->shared || cnt->shared != shared)
527                         continue;
528                 if (cnt->id != id)
529                         continue;
530                 cnt->ref_cnt++;
531                 return cnt;
532         }
533 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT
534
535         struct mlx5_flow_counter tmpl = {
536                 .shared = shared,
537                 .id = id,
538                 .cs = mlx5_glue->create_counter_set
539                         (priv->ctx,
540                          &(struct ibv_counter_set_init_attr){
541                                  .counter_set_id = id,
542                          }),
543                 .hits = 0,
544                 .bytes = 0,
545         };
546
547         if (!tmpl.cs) {
548                 rte_errno = errno;
549                 return NULL;
550         }
551         cnt = rte_calloc(__func__, 1, sizeof(*cnt), 0);
552         if (!cnt) {
553                 rte_errno = ENOMEM;
554                 return NULL;
555         }
556         *cnt = tmpl;
557         LIST_INSERT_HEAD(&priv->flow_counters, cnt, next);
558         return cnt;
559 #endif
560         rte_errno = ENOTSUP;
561         return NULL;
562 }
563
564 /**
565  * Release a flow counter.
566  *
567  * @param[in] counter
568  *   Pointer to the counter handler.
569  */
570 static void
571 mlx5_flow_counter_release(struct mlx5_flow_counter *counter)
572 {
573         if (--counter->ref_cnt == 0) {
574                 claim_zero(mlx5_glue->destroy_counter_set(counter->cs));
575                 LIST_REMOVE(counter, next);
576                 rte_free(counter);
577         }
578 }
579
580 /**
581  * Verify the @p attributes will be correctly understood by the NIC and store
582  * them in the @p flow if everything is correct.
583  *
584  * @param[in] dev
585  *   Pointer to Ethernet device.
586  * @param[in] attributes
587  *   Pointer to flow attributes
588  * @param[in, out] flow
589  *   Pointer to the rte_flow structure.
590  * @param[out] error
591  *   Pointer to error structure.
592  *
593  * @return
594  *   0 on success, a negative errno value otherwise and rte_errno is set.
595  */
596 static int
597 mlx5_flow_attributes(struct rte_eth_dev *dev,
598                      const struct rte_flow_attr *attributes,
599                      struct rte_flow *flow,
600                      struct rte_flow_error *error)
601 {
602         uint32_t priority_max =
603                 ((struct priv *)dev->data->dev_private)->config.flow_prio - 1;
604
605         if (attributes->group)
606                 return rte_flow_error_set(error, ENOTSUP,
607                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
608                                           NULL,
609                                           "groups is not supported");
610         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
611             attributes->priority >= priority_max)
612                 return rte_flow_error_set(error, ENOTSUP,
613                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
614                                           NULL,
615                                           "priority out of range");
616         if (attributes->egress)
617                 return rte_flow_error_set(error, ENOTSUP,
618                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
619                                           NULL,
620                                           "egress is not supported");
621         if (attributes->transfer)
622                 return rte_flow_error_set(error, ENOTSUP,
623                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
624                                           NULL,
625                                           "transfer is not supported");
626         if (!attributes->ingress)
627                 return rte_flow_error_set(error, ENOTSUP,
628                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
629                                           NULL,
630                                           "ingress attribute is mandatory");
631         flow->attributes = *attributes;
632         if (attributes->priority == MLX5_FLOW_PRIO_RSVD)
633                 flow->attributes.priority = priority_max;
634         return 0;
635 }
636
637 /**
638  * Verify the @p item specifications (spec, last, mask) are compatible with the
639  * NIC capabilities.
640  *
641  * @param[in] item
642  *   Item specification.
643  * @param[in] mask
644  *   @p item->mask or flow default bit-masks.
645  * @param[in] nic_mask
646  *   Bit-masks covering supported fields by the NIC to compare with user mask.
647  * @param[in] size
648  *   Bit-masks size in bytes.
649  * @param[out] error
650  *   Pointer to error structure.
651  *
652  * @return
653  *   0 on success, a negative errno value otherwise and rte_errno is set.
654  */
655 static int
656 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
657                           const uint8_t *mask,
658                           const uint8_t *nic_mask,
659                           unsigned int size,
660                           struct rte_flow_error *error)
661 {
662         unsigned int i;
663
664         assert(nic_mask);
665         for (i = 0; i < size; ++i)
666                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
667                         return rte_flow_error_set(error, ENOTSUP,
668                                                   RTE_FLOW_ERROR_TYPE_ITEM,
669                                                   item,
670                                                   "mask enables non supported"
671                                                   " bits");
672         if (!item->spec && (item->mask || item->last))
673                 return rte_flow_error_set(error, EINVAL,
674                                           RTE_FLOW_ERROR_TYPE_ITEM,
675                                           item,
676                                           "mask/last without a spec is not"
677                                           " supported");
678         if (item->spec && item->last) {
679                 uint8_t spec[size];
680                 uint8_t last[size];
681                 unsigned int i;
682                 int ret;
683
684                 for (i = 0; i < size; ++i) {
685                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
686                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
687                 }
688                 ret = memcmp(spec, last, size);
689                 if (ret != 0)
690                         return rte_flow_error_set(error, ENOTSUP,
691                                                   RTE_FLOW_ERROR_TYPE_ITEM,
692                                                   item,
693                                                   "range is not supported");
694         }
695         return 0;
696 }
697
698 /**
699  * Add a verbs item specification into @p flow.
700  *
701  * @param[in, out] flow
702  *   Pointer to flow structure.
703  * @param[in] src
704  *   Create specification.
705  * @param[in] size
706  *   Size in bytes of the specification to copy.
707  */
708 static void
709 mlx5_flow_spec_verbs_add(struct rte_flow *flow, void *src, unsigned int size)
710 {
711         struct mlx5_flow_verbs *verbs = flow->cur_verbs;
712
713         if (verbs->specs) {
714                 void *dst;
715
716                 dst = (void *)(verbs->specs + verbs->size);
717                 memcpy(dst, src, size);
718                 ++verbs->attr->num_of_specs;
719         }
720         verbs->size += size;
721 }
722
723 /**
724  * Adjust verbs hash fields according to the @p flow information.
725  *
726  * @param[in, out] flow.
727  *   Pointer to flow structure.
728  * @param[in] tunnel
729  *   1 when the hash field is for a tunnel item.
730  * @param[in] layer_types
731  *   ETH_RSS_* types.
732  * @param[in] hash_fields
733  *   Item hash fields.
734  */
735 static void
736 mlx5_flow_verbs_hashfields_adjust(struct rte_flow *flow,
737                                   int tunnel __rte_unused,
738                                   uint32_t layer_types, uint64_t hash_fields)
739 {
740 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
741         hash_fields |= (tunnel ? IBV_RX_HASH_INNER : 0);
742         if (flow->rss.level == 2 && !tunnel)
743                 hash_fields = 0;
744         else if (flow->rss.level < 2 && tunnel)
745                 hash_fields = 0;
746 #endif
747         if (!(flow->rss.types & layer_types))
748                 hash_fields = 0;
749         flow->cur_verbs->hash_fields |= hash_fields;
750 }
751
752 /**
753  * Convert the @p item into a Verbs specification after ensuring the NIC
754  * will understand and process it correctly.
755  * If the necessary size for the conversion is greater than the @p flow_size,
756  * nothing is written in @p flow, the validation is still performed.
757  *
758  * @param[in] item
759  *   Item specification.
760  * @param[in, out] flow
761  *   Pointer to flow structure.
762  * @param[in] flow_size
763  *   Size in bytes of the available space in @p flow, if too small, nothing is
764  *   written.
765  * @param[out] error
766  *   Pointer to error structure.
767  *
768  * @return
769  *   On success the number of bytes consumed/necessary, if the returned value
770  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
771  *   otherwise another call with this returned memory size should be done.
772  *   On error, a negative errno value is returned and rte_errno is set.
773  */
774 static int
775 mlx5_flow_item_eth(const struct rte_flow_item *item, struct rte_flow *flow,
776                    const size_t flow_size, struct rte_flow_error *error)
777 {
778         const struct rte_flow_item_eth *spec = item->spec;
779         const struct rte_flow_item_eth *mask = item->mask;
780         const struct rte_flow_item_eth nic_mask = {
781                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
782                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
783                 .type = RTE_BE16(0xffff),
784         };
785         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
786         const unsigned int size = sizeof(struct ibv_flow_spec_eth);
787         struct ibv_flow_spec_eth eth = {
788                 .type = IBV_FLOW_SPEC_ETH | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
789                 .size = size,
790         };
791         int ret;
792
793         if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
794                             MLX5_FLOW_LAYER_OUTER_L2))
795                 return rte_flow_error_set(error, ENOTSUP,
796                                           RTE_FLOW_ERROR_TYPE_ITEM,
797                                           item,
798                                           "L2 layers already configured");
799         if (!mask)
800                 mask = &rte_flow_item_eth_mask;
801         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
802                                         (const uint8_t *)&nic_mask,
803                                         sizeof(struct rte_flow_item_eth),
804                                         error);
805         if (ret)
806                 return ret;
807         flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
808                 MLX5_FLOW_LAYER_OUTER_L2;
809         if (size > flow_size)
810                 return size;
811         if (spec) {
812                 unsigned int i;
813
814                 memcpy(&eth.val.dst_mac, spec->dst.addr_bytes, ETHER_ADDR_LEN);
815                 memcpy(&eth.val.src_mac, spec->src.addr_bytes, ETHER_ADDR_LEN);
816                 eth.val.ether_type = spec->type;
817                 memcpy(&eth.mask.dst_mac, mask->dst.addr_bytes, ETHER_ADDR_LEN);
818                 memcpy(&eth.mask.src_mac, mask->src.addr_bytes, ETHER_ADDR_LEN);
819                 eth.mask.ether_type = mask->type;
820                 /* Remove unwanted bits from values. */
821                 for (i = 0; i < ETHER_ADDR_LEN; ++i) {
822                         eth.val.dst_mac[i] &= eth.mask.dst_mac[i];
823                         eth.val.src_mac[i] &= eth.mask.src_mac[i];
824                 }
825                 eth.val.ether_type &= eth.mask.ether_type;
826         }
827         flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
828         mlx5_flow_spec_verbs_add(flow, &eth, size);
829         return size;
830 }
831
832 /**
833  * Update the VLAN tag in the Verbs Ethernet specification.
834  *
835  * @param[in, out] attr
836  *   Pointer to Verbs attributes structure.
837  * @param[in] eth
838  *   Verbs structure containing the VLAN information to copy.
839  */
840 static void
841 mlx5_flow_item_vlan_update(struct ibv_flow_attr *attr,
842                            struct ibv_flow_spec_eth *eth)
843 {
844         unsigned int i;
845         const enum ibv_flow_spec_type search = eth->type;
846         struct ibv_spec_header *hdr = (struct ibv_spec_header *)
847                 ((uint8_t *)attr + sizeof(struct ibv_flow_attr));
848
849         for (i = 0; i != attr->num_of_specs; ++i) {
850                 if (hdr->type == search) {
851                         struct ibv_flow_spec_eth *e =
852                                 (struct ibv_flow_spec_eth *)hdr;
853
854                         e->val.vlan_tag = eth->val.vlan_tag;
855                         e->mask.vlan_tag = eth->mask.vlan_tag;
856                         e->val.ether_type = eth->val.ether_type;
857                         e->mask.ether_type = eth->mask.ether_type;
858                         break;
859                 }
860                 hdr = (struct ibv_spec_header *)((uint8_t *)hdr + hdr->size);
861         }
862 }
863
864 /**
865  * Convert the @p item into @p flow (or by updating the already present
866  * Ethernet Verbs) specification after ensuring the NIC will understand and
867  * process it correctly.
868  * If the necessary size for the conversion is greater than the @p flow_size,
869  * nothing is written in @p flow, the validation is still performed.
870  *
871  * @param[in] item
872  *   Item specification.
873  * @param[in, out] flow
874  *   Pointer to flow structure.
875  * @param[in] flow_size
876  *   Size in bytes of the available space in @p flow, if too small, nothing is
877  *   written.
878  * @param[out] error
879  *   Pointer to error structure.
880  *
881  * @return
882  *   On success the number of bytes consumed/necessary, if the returned value
883  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
884  *   otherwise another call with this returned memory size should be done.
885  *   On error, a negative errno value is returned and rte_errno is set.
886  */
887 static int
888 mlx5_flow_item_vlan(const struct rte_flow_item *item, struct rte_flow *flow,
889                     const size_t flow_size, struct rte_flow_error *error)
890 {
891         const struct rte_flow_item_vlan *spec = item->spec;
892         const struct rte_flow_item_vlan *mask = item->mask;
893         const struct rte_flow_item_vlan nic_mask = {
894                 .tci = RTE_BE16(0x0fff),
895                 .inner_type = RTE_BE16(0xffff),
896         };
897         unsigned int size = sizeof(struct ibv_flow_spec_eth);
898         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
899         struct ibv_flow_spec_eth eth = {
900                 .type = IBV_FLOW_SPEC_ETH | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
901                 .size = size,
902         };
903         int ret;
904         const uint32_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
905                                         MLX5_FLOW_LAYER_INNER_L4) :
906                 (MLX5_FLOW_LAYER_OUTER_L3 | MLX5_FLOW_LAYER_OUTER_L4);
907         const uint32_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
908                 MLX5_FLOW_LAYER_OUTER_VLAN;
909         const uint32_t l2m = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
910                 MLX5_FLOW_LAYER_OUTER_L2;
911
912         if (flow->layers & vlanm)
913                 return rte_flow_error_set(error, ENOTSUP,
914                                           RTE_FLOW_ERROR_TYPE_ITEM,
915                                           item,
916                                           "VLAN layer already configured");
917         else if ((flow->layers & l34m) != 0)
918                 return rte_flow_error_set(error, ENOTSUP,
919                                           RTE_FLOW_ERROR_TYPE_ITEM,
920                                           item,
921                                           "L2 layer cannot follow L3/L4 layer");
922         if (!mask)
923                 mask = &rte_flow_item_vlan_mask;
924         ret = mlx5_flow_item_acceptable
925                 (item, (const uint8_t *)mask,
926                  (const uint8_t *)&nic_mask,
927                  sizeof(struct rte_flow_item_vlan), error);
928         if (ret)
929                 return ret;
930         if (spec) {
931                 eth.val.vlan_tag = spec->tci;
932                 eth.mask.vlan_tag = mask->tci;
933                 eth.val.vlan_tag &= eth.mask.vlan_tag;
934                 eth.val.ether_type = spec->inner_type;
935                 eth.mask.ether_type = mask->inner_type;
936                 eth.val.ether_type &= eth.mask.ether_type;
937         }
938         /*
939          * From verbs perspective an empty VLAN is equivalent
940          * to a packet without VLAN layer.
941          */
942         if (!eth.mask.vlan_tag)
943                 return rte_flow_error_set(error, EINVAL,
944                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
945                                           item->spec,
946                                           "VLAN cannot be empty");
947         if (!(flow->layers & l2m)) {
948                 if (size <= flow_size) {
949                         flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
950                         mlx5_flow_spec_verbs_add(flow, &eth, size);
951                 }
952         } else {
953                 if (flow->cur_verbs)
954                         mlx5_flow_item_vlan_update(flow->cur_verbs->attr,
955                                                    &eth);
956                 size = 0; /* Only an update is done in eth specification. */
957         }
958         flow->layers |= tunnel ?
959                 (MLX5_FLOW_LAYER_INNER_L2 | MLX5_FLOW_LAYER_INNER_VLAN) :
960                 (MLX5_FLOW_LAYER_OUTER_L2 | MLX5_FLOW_LAYER_OUTER_VLAN);
961         return size;
962 }
963
964 /**
965  * Convert the @p item into a Verbs specification after ensuring the NIC
966  * will understand and process it correctly.
967  * If the necessary size for the conversion is greater than the @p flow_size,
968  * nothing is written in @p flow, the validation is still performed.
969  *
970  * @param[in] item
971  *   Item specification.
972  * @param[in, out] flow
973  *   Pointer to flow structure.
974  * @param[in] flow_size
975  *   Size in bytes of the available space in @p flow, if too small, nothing is
976  *   written.
977  * @param[out] error
978  *   Pointer to error structure.
979  *
980  * @return
981  *   On success the number of bytes consumed/necessary, if the returned value
982  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
983  *   otherwise another call with this returned memory size should be done.
984  *   On error, a negative errno value is returned and rte_errno is set.
985  */
986 static int
987 mlx5_flow_item_ipv4(const struct rte_flow_item *item, struct rte_flow *flow,
988                     const size_t flow_size, struct rte_flow_error *error)
989 {
990         const struct rte_flow_item_ipv4 *spec = item->spec;
991         const struct rte_flow_item_ipv4 *mask = item->mask;
992         const struct rte_flow_item_ipv4 nic_mask = {
993                 .hdr = {
994                         .src_addr = RTE_BE32(0xffffffff),
995                         .dst_addr = RTE_BE32(0xffffffff),
996                         .type_of_service = 0xff,
997                         .next_proto_id = 0xff,
998                 },
999         };
1000         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
1001         unsigned int size = sizeof(struct ibv_flow_spec_ipv4_ext);
1002         struct ibv_flow_spec_ipv4_ext ipv4 = {
1003                 .type = IBV_FLOW_SPEC_IPV4_EXT |
1004                         (tunnel ? IBV_FLOW_SPEC_INNER : 0),
1005                 .size = size,
1006         };
1007         int ret;
1008
1009         if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1010                             MLX5_FLOW_LAYER_OUTER_L3))
1011                 return rte_flow_error_set(error, ENOTSUP,
1012                                           RTE_FLOW_ERROR_TYPE_ITEM,
1013                                           item,
1014                                           "multiple L3 layers not supported");
1015         else if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1016                                  MLX5_FLOW_LAYER_OUTER_L4))
1017                 return rte_flow_error_set(error, ENOTSUP,
1018                                           RTE_FLOW_ERROR_TYPE_ITEM,
1019                                           item,
1020                                           "L3 cannot follow an L4 layer.");
1021         if (!mask)
1022                 mask = &rte_flow_item_ipv4_mask;
1023         ret = mlx5_flow_item_acceptable
1024                 (item, (const uint8_t *)mask,
1025                  (const uint8_t *)&nic_mask,
1026                  sizeof(struct rte_flow_item_ipv4), error);
1027         if (ret < 0)
1028                 return ret;
1029         flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1030                 MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1031         if (spec) {
1032                 ipv4.val = (struct ibv_flow_ipv4_ext_filter){
1033                         .src_ip = spec->hdr.src_addr,
1034                         .dst_ip = spec->hdr.dst_addr,
1035                         .proto = spec->hdr.next_proto_id,
1036                         .tos = spec->hdr.type_of_service,
1037                 };
1038                 ipv4.mask = (struct ibv_flow_ipv4_ext_filter){
1039                         .src_ip = mask->hdr.src_addr,
1040                         .dst_ip = mask->hdr.dst_addr,
1041                         .proto = mask->hdr.next_proto_id,
1042                         .tos = mask->hdr.type_of_service,
1043                 };
1044                 /* Remove unwanted bits from values. */
1045                 ipv4.val.src_ip &= ipv4.mask.src_ip;
1046                 ipv4.val.dst_ip &= ipv4.mask.dst_ip;
1047                 ipv4.val.proto &= ipv4.mask.proto;
1048                 ipv4.val.tos &= ipv4.mask.tos;
1049         }
1050         flow->l3_protocol_en = !!ipv4.mask.proto;
1051         flow->l3_protocol = ipv4.val.proto;
1052         if (size <= flow_size) {
1053                 mlx5_flow_verbs_hashfields_adjust
1054                         (flow, tunnel,
1055                          (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
1056                           ETH_RSS_NONFRAG_IPV4_OTHER),
1057                          (IBV_RX_HASH_SRC_IPV4 | IBV_RX_HASH_DST_IPV4));
1058                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L3;
1059                 mlx5_flow_spec_verbs_add(flow, &ipv4, size);
1060         }
1061         return size;
1062 }
1063
1064 /**
1065  * Convert the @p item into a Verbs specification after ensuring the NIC
1066  * will understand and process it correctly.
1067  * If the necessary size for the conversion is greater than the @p flow_size,
1068  * nothing is written in @p flow, the validation is still performed.
1069  *
1070  * @param[in] item
1071  *   Item specification.
1072  * @param[in, out] flow
1073  *   Pointer to flow structure.
1074  * @param[in] flow_size
1075  *   Size in bytes of the available space in @p flow, if too small, nothing is
1076  *   written.
1077  * @param[out] error
1078  *   Pointer to error structure.
1079  *
1080  * @return
1081  *   On success the number of bytes consumed/necessary, if the returned value
1082  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
1083  *   otherwise another call with this returned memory size should be done.
1084  *   On error, a negative errno value is returned and rte_errno is set.
1085  */
1086 static int
1087 mlx5_flow_item_ipv6(const struct rte_flow_item *item, struct rte_flow *flow,
1088                     const size_t flow_size, struct rte_flow_error *error)
1089 {
1090         const struct rte_flow_item_ipv6 *spec = item->spec;
1091         const struct rte_flow_item_ipv6 *mask = item->mask;
1092         const struct rte_flow_item_ipv6 nic_mask = {
1093                 .hdr = {
1094                         .src_addr =
1095                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1096                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1097                         .dst_addr =
1098                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1099                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1100                         .vtc_flow = RTE_BE32(0xffffffff),
1101                         .proto = 0xff,
1102                         .hop_limits = 0xff,
1103                 },
1104         };
1105         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
1106         unsigned int size = sizeof(struct ibv_flow_spec_ipv6);
1107         struct ibv_flow_spec_ipv6 ipv6 = {
1108                 .type = IBV_FLOW_SPEC_IPV6 | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
1109                 .size = size,
1110         };
1111         int ret;
1112
1113         if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1114                             MLX5_FLOW_LAYER_OUTER_L3))
1115                 return rte_flow_error_set(error, ENOTSUP,
1116                                           RTE_FLOW_ERROR_TYPE_ITEM,
1117                                           item,
1118                                           "multiple L3 layers not supported");
1119         else if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1120                                  MLX5_FLOW_LAYER_OUTER_L4))
1121                 return rte_flow_error_set(error, ENOTSUP,
1122                                           RTE_FLOW_ERROR_TYPE_ITEM,
1123                                           item,
1124                                           "L3 cannot follow an L4 layer.");
1125         /*
1126          * IPv6 is not recognised by the NIC inside a GRE tunnel.
1127          * Such support has to be disabled as the rule will be
1128          * accepted.  Issue reproduced with Mellanox OFED 4.3-3.0.2.1 and
1129          * Mellanox OFED 4.4-1.0.0.0.
1130          */
1131         if (tunnel && flow->layers & MLX5_FLOW_LAYER_GRE)
1132                 return rte_flow_error_set(error, ENOTSUP,
1133                                           RTE_FLOW_ERROR_TYPE_ITEM,
1134                                           item,
1135                                           "IPv6 inside a GRE tunnel is"
1136                                           " not recognised.");
1137         if (!mask)
1138                 mask = &rte_flow_item_ipv6_mask;
1139         ret = mlx5_flow_item_acceptable
1140                 (item, (const uint8_t *)mask,
1141                  (const uint8_t *)&nic_mask,
1142                  sizeof(struct rte_flow_item_ipv6), error);
1143         if (ret < 0)
1144                 return ret;
1145         flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1146                 MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1147         if (spec) {
1148                 unsigned int i;
1149                 uint32_t vtc_flow_val;
1150                 uint32_t vtc_flow_mask;
1151
1152                 memcpy(&ipv6.val.src_ip, spec->hdr.src_addr,
1153                        RTE_DIM(ipv6.val.src_ip));
1154                 memcpy(&ipv6.val.dst_ip, spec->hdr.dst_addr,
1155                        RTE_DIM(ipv6.val.dst_ip));
1156                 memcpy(&ipv6.mask.src_ip, mask->hdr.src_addr,
1157                        RTE_DIM(ipv6.mask.src_ip));
1158                 memcpy(&ipv6.mask.dst_ip, mask->hdr.dst_addr,
1159                        RTE_DIM(ipv6.mask.dst_ip));
1160                 vtc_flow_val = rte_be_to_cpu_32(spec->hdr.vtc_flow);
1161                 vtc_flow_mask = rte_be_to_cpu_32(mask->hdr.vtc_flow);
1162                 ipv6.val.flow_label =
1163                         rte_cpu_to_be_32((vtc_flow_val & IPV6_HDR_FL_MASK) >>
1164                                          IPV6_HDR_FL_SHIFT);
1165                 ipv6.val.traffic_class = (vtc_flow_val & IPV6_HDR_TC_MASK) >>
1166                                          IPV6_HDR_TC_SHIFT;
1167                 ipv6.val.next_hdr = spec->hdr.proto;
1168                 ipv6.val.hop_limit = spec->hdr.hop_limits;
1169                 ipv6.mask.flow_label =
1170                         rte_cpu_to_be_32((vtc_flow_mask & IPV6_HDR_FL_MASK) >>
1171                                          IPV6_HDR_FL_SHIFT);
1172                 ipv6.mask.traffic_class = (vtc_flow_mask & IPV6_HDR_TC_MASK) >>
1173                                           IPV6_HDR_TC_SHIFT;
1174                 ipv6.mask.next_hdr = mask->hdr.proto;
1175                 ipv6.mask.hop_limit = mask->hdr.hop_limits;
1176                 /* Remove unwanted bits from values. */
1177                 for (i = 0; i < RTE_DIM(ipv6.val.src_ip); ++i) {
1178                         ipv6.val.src_ip[i] &= ipv6.mask.src_ip[i];
1179                         ipv6.val.dst_ip[i] &= ipv6.mask.dst_ip[i];
1180                 }
1181                 ipv6.val.flow_label &= ipv6.mask.flow_label;
1182                 ipv6.val.traffic_class &= ipv6.mask.traffic_class;
1183                 ipv6.val.next_hdr &= ipv6.mask.next_hdr;
1184                 ipv6.val.hop_limit &= ipv6.mask.hop_limit;
1185         }
1186         flow->l3_protocol_en = !!ipv6.mask.next_hdr;
1187         flow->l3_protocol = ipv6.val.next_hdr;
1188         if (size <= flow_size) {
1189                 mlx5_flow_verbs_hashfields_adjust
1190                         (flow, tunnel,
1191                          (ETH_RSS_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER),
1192                          (IBV_RX_HASH_SRC_IPV6 | IBV_RX_HASH_DST_IPV6));
1193                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L3;
1194                 mlx5_flow_spec_verbs_add(flow, &ipv6, size);
1195         }
1196         return size;
1197 }
1198
1199 /**
1200  * Convert the @p item into a Verbs specification after ensuring the NIC
1201  * will understand and process it correctly.
1202  * If the necessary size for the conversion is greater than the @p flow_size,
1203  * nothing is written in @p flow, the validation is still performed.
1204  *
1205  * @param[in] item
1206  *   Item specification.
1207  * @param[in, out] flow
1208  *   Pointer to flow structure.
1209  * @param[in] flow_size
1210  *   Size in bytes of the available space in @p flow, if too small, nothing is
1211  *   written.
1212  * @param[out] error
1213  *   Pointer to error structure.
1214  *
1215  * @return
1216  *   On success the number of bytes consumed/necessary, if the returned value
1217  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
1218  *   otherwise another call with this returned memory size should be done.
1219  *   On error, a negative errno value is returned and rte_errno is set.
1220  */
1221 static int
1222 mlx5_flow_item_udp(const struct rte_flow_item *item, struct rte_flow *flow,
1223                    const size_t flow_size, struct rte_flow_error *error)
1224 {
1225         const struct rte_flow_item_udp *spec = item->spec;
1226         const struct rte_flow_item_udp *mask = item->mask;
1227         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
1228         unsigned int size = sizeof(struct ibv_flow_spec_tcp_udp);
1229         struct ibv_flow_spec_tcp_udp udp = {
1230                 .type = IBV_FLOW_SPEC_UDP | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
1231                 .size = size,
1232         };
1233         int ret;
1234
1235         if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_UDP)
1236                 return rte_flow_error_set(error, ENOTSUP,
1237                                           RTE_FLOW_ERROR_TYPE_ITEM,
1238                                           item,
1239                                           "protocol filtering not compatible"
1240                                           " with UDP layer");
1241         if (!(flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1242                               MLX5_FLOW_LAYER_OUTER_L3)))
1243                 return rte_flow_error_set(error, ENOTSUP,
1244                                           RTE_FLOW_ERROR_TYPE_ITEM,
1245                                           item,
1246                                           "L3 is mandatory to filter"
1247                                           " on L4");
1248         if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1249                             MLX5_FLOW_LAYER_OUTER_L4))
1250                 return rte_flow_error_set(error, ENOTSUP,
1251                                           RTE_FLOW_ERROR_TYPE_ITEM,
1252                                           item,
1253                                           "L4 layer is already"
1254                                           " present");
1255         if (!mask)
1256                 mask = &rte_flow_item_udp_mask;
1257         ret = mlx5_flow_item_acceptable
1258                 (item, (const uint8_t *)mask,
1259                  (const uint8_t *)&rte_flow_item_udp_mask,
1260                  sizeof(struct rte_flow_item_udp), error);
1261         if (ret < 0)
1262                 return ret;
1263         flow->layers |= tunnel ? MLX5_FLOW_LAYER_INNER_L4_UDP :
1264                 MLX5_FLOW_LAYER_OUTER_L4_UDP;
1265         if (spec) {
1266                 udp.val.dst_port = spec->hdr.dst_port;
1267                 udp.val.src_port = spec->hdr.src_port;
1268                 udp.mask.dst_port = mask->hdr.dst_port;
1269                 udp.mask.src_port = mask->hdr.src_port;
1270                 /* Remove unwanted bits from values. */
1271                 udp.val.src_port &= udp.mask.src_port;
1272                 udp.val.dst_port &= udp.mask.dst_port;
1273         }
1274         if (size <= flow_size) {
1275                 mlx5_flow_verbs_hashfields_adjust(flow, tunnel, ETH_RSS_UDP,
1276                                                   (IBV_RX_HASH_SRC_PORT_UDP |
1277                                                    IBV_RX_HASH_DST_PORT_UDP));
1278                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L4;
1279                 mlx5_flow_spec_verbs_add(flow, &udp, size);
1280         }
1281         return size;
1282 }
1283
1284 /**
1285  * Convert the @p item into a Verbs specification after ensuring the NIC
1286  * will understand and process it correctly.
1287  * If the necessary size for the conversion is greater than the @p flow_size,
1288  * nothing is written in @p flow, the validation is still performed.
1289  *
1290  * @param[in] item
1291  *   Item specification.
1292  * @param[in, out] flow
1293  *   Pointer to flow structure.
1294  * @param[in] flow_size
1295  *   Size in bytes of the available space in @p flow, if too small, nothing is
1296  *   written.
1297  * @param[out] error
1298  *   Pointer to error structure.
1299  *
1300  * @return
1301  *   On success the number of bytes consumed/necessary, if the returned value
1302  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
1303  *   otherwise another call with this returned memory size should be done.
1304  *   On error, a negative errno value is returned and rte_errno is set.
1305  */
1306 static int
1307 mlx5_flow_item_tcp(const struct rte_flow_item *item, struct rte_flow *flow,
1308                    const size_t flow_size, struct rte_flow_error *error)
1309 {
1310         const struct rte_flow_item_tcp *spec = item->spec;
1311         const struct rte_flow_item_tcp *mask = item->mask;
1312         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
1313         unsigned int size = sizeof(struct ibv_flow_spec_tcp_udp);
1314         struct ibv_flow_spec_tcp_udp tcp = {
1315                 .type = IBV_FLOW_SPEC_TCP | (tunnel ? IBV_FLOW_SPEC_INNER : 0),
1316                 .size = size,
1317         };
1318         int ret;
1319
1320         if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_TCP)
1321                 return rte_flow_error_set(error, ENOTSUP,
1322                                           RTE_FLOW_ERROR_TYPE_ITEM,
1323                                           item,
1324                                           "protocol filtering not compatible"
1325                                           " with TCP layer");
1326         if (!(flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1327                               MLX5_FLOW_LAYER_OUTER_L3)))
1328                 return rte_flow_error_set(error, ENOTSUP,
1329                                           RTE_FLOW_ERROR_TYPE_ITEM,
1330                                           item,
1331                                           "L3 is mandatory to filter on L4");
1332         if (flow->layers & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1333                             MLX5_FLOW_LAYER_OUTER_L4))
1334                 return rte_flow_error_set(error, ENOTSUP,
1335                                           RTE_FLOW_ERROR_TYPE_ITEM,
1336                                           item,
1337                                           "L4 layer is already present");
1338         if (!mask)
1339                 mask = &rte_flow_item_tcp_mask;
1340         ret = mlx5_flow_item_acceptable
1341                 (item, (const uint8_t *)mask,
1342                  (const uint8_t *)&rte_flow_item_tcp_mask,
1343                  sizeof(struct rte_flow_item_tcp), error);
1344         if (ret < 0)
1345                 return ret;
1346         flow->layers |=  tunnel ? MLX5_FLOW_LAYER_INNER_L4_TCP :
1347                 MLX5_FLOW_LAYER_OUTER_L4_TCP;
1348         if (spec) {
1349                 tcp.val.dst_port = spec->hdr.dst_port;
1350                 tcp.val.src_port = spec->hdr.src_port;
1351                 tcp.mask.dst_port = mask->hdr.dst_port;
1352                 tcp.mask.src_port = mask->hdr.src_port;
1353                 /* Remove unwanted bits from values. */
1354                 tcp.val.src_port &= tcp.mask.src_port;
1355                 tcp.val.dst_port &= tcp.mask.dst_port;
1356         }
1357         if (size <= flow_size) {
1358                 mlx5_flow_verbs_hashfields_adjust(flow, tunnel, ETH_RSS_TCP,
1359                                                   (IBV_RX_HASH_SRC_PORT_TCP |
1360                                                    IBV_RX_HASH_DST_PORT_TCP));
1361                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L4;
1362                 mlx5_flow_spec_verbs_add(flow, &tcp, size);
1363         }
1364         return size;
1365 }
1366
1367 /**
1368  * Convert the @p item into a Verbs specification after ensuring the NIC
1369  * will understand and process it correctly.
1370  * If the necessary size for the conversion is greater than the @p flow_size,
1371  * nothing is written in @p flow, the validation is still performed.
1372  *
1373  * @param[in] item
1374  *   Item specification.
1375  * @param[in, out] flow
1376  *   Pointer to flow structure.
1377  * @param[in] flow_size
1378  *   Size in bytes of the available space in @p flow, if too small, nothing is
1379  *   written.
1380  * @param[out] error
1381  *   Pointer to error structure.
1382  *
1383  * @return
1384  *   On success the number of bytes consumed/necessary, if the returned value
1385  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
1386  *   otherwise another call with this returned memory size should be done.
1387  *   On error, a negative errno value is returned and rte_errno is set.
1388  */
1389 static int
1390 mlx5_flow_item_vxlan(const struct rte_flow_item *item, struct rte_flow *flow,
1391                      const size_t flow_size, struct rte_flow_error *error)
1392 {
1393         const struct rte_flow_item_vxlan *spec = item->spec;
1394         const struct rte_flow_item_vxlan *mask = item->mask;
1395         unsigned int size = sizeof(struct ibv_flow_spec_tunnel);
1396         struct ibv_flow_spec_tunnel vxlan = {
1397                 .type = IBV_FLOW_SPEC_VXLAN_TUNNEL,
1398                 .size = size,
1399         };
1400         int ret;
1401         union vni {
1402                 uint32_t vlan_id;
1403                 uint8_t vni[4];
1404         } id = { .vlan_id = 0, };
1405
1406         if (flow->layers & MLX5_FLOW_LAYER_TUNNEL)
1407                 return rte_flow_error_set(error, ENOTSUP,
1408                                           RTE_FLOW_ERROR_TYPE_ITEM,
1409                                           item,
1410                                           "a tunnel is already present");
1411         /*
1412          * Verify only UDPv4 is present as defined in
1413          * https://tools.ietf.org/html/rfc7348
1414          */
1415         if (!(flow->layers & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1416                 return rte_flow_error_set(error, ENOTSUP,
1417                                           RTE_FLOW_ERROR_TYPE_ITEM,
1418                                           item,
1419                                           "no outer UDP layer found");
1420         if (!mask)
1421                 mask = &rte_flow_item_vxlan_mask;
1422         ret = mlx5_flow_item_acceptable
1423                 (item, (const uint8_t *)mask,
1424                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1425                  sizeof(struct rte_flow_item_vxlan), error);
1426         if (ret < 0)
1427                 return ret;
1428         if (spec) {
1429                 memcpy(&id.vni[1], spec->vni, 3);
1430                 vxlan.val.tunnel_id = id.vlan_id;
1431                 memcpy(&id.vni[1], mask->vni, 3);
1432                 vxlan.mask.tunnel_id = id.vlan_id;
1433                 /* Remove unwanted bits from values. */
1434                 vxlan.val.tunnel_id &= vxlan.mask.tunnel_id;
1435         }
1436         /*
1437          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1438          * only this layer is defined in the Verbs specification it is
1439          * interpreted as wildcard and all packets will match this
1440          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1441          * udp), all packets matching the layers before will also
1442          * match this rule.  To avoid such situation, VNI 0 is
1443          * currently refused.
1444          */
1445         if (!vxlan.val.tunnel_id)
1446                 return rte_flow_error_set(error, EINVAL,
1447                                           RTE_FLOW_ERROR_TYPE_ITEM,
1448                                           item,
1449                                           "VXLAN vni cannot be 0");
1450         if (!(flow->layers & MLX5_FLOW_LAYER_OUTER))
1451                 return rte_flow_error_set(error, EINVAL,
1452                                           RTE_FLOW_ERROR_TYPE_ITEM,
1453                                           item,
1454                                           "VXLAN tunnel must be fully defined");
1455         if (size <= flow_size) {
1456                 mlx5_flow_spec_verbs_add(flow, &vxlan, size);
1457                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
1458         }
1459         flow->layers |= MLX5_FLOW_LAYER_VXLAN;
1460         return size;
1461 }
1462
1463 /**
1464  * Convert the @p item into a Verbs specification after ensuring the NIC
1465  * will understand and process it correctly.
1466  * If the necessary size for the conversion is greater than the @p flow_size,
1467  * nothing is written in @p flow, the validation is still performed.
1468  *
1469  * @param dev
1470  *   Pointer to Ethernet device.
1471  * @param[in] item
1472  *   Item specification.
1473  * @param[in, out] flow
1474  *   Pointer to flow structure.
1475  * @param[in] flow_size
1476  *   Size in bytes of the available space in @p flow, if too small, nothing is
1477  *   written.
1478  * @param[out] error
1479  *   Pointer to error structure.
1480  *
1481  * @return
1482  *   On success the number of bytes consumed/necessary, if the returned value
1483  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
1484  *   otherwise another call with this returned memory size should be done.
1485  *   On error, a negative errno value is returned and rte_errno is set.
1486  */
1487 static int
1488 mlx5_flow_item_vxlan_gpe(struct rte_eth_dev *dev,
1489                          const struct rte_flow_item *item,
1490                          struct rte_flow *flow, const size_t flow_size,
1491                          struct rte_flow_error *error)
1492 {
1493         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1494         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1495         unsigned int size = sizeof(struct ibv_flow_spec_tunnel);
1496         struct ibv_flow_spec_tunnel vxlan_gpe = {
1497                 .type = IBV_FLOW_SPEC_VXLAN_TUNNEL,
1498                 .size = size,
1499         };
1500         int ret;
1501         union vni {
1502                 uint32_t vlan_id;
1503                 uint8_t vni[4];
1504         } id = { .vlan_id = 0, };
1505
1506         if (!((struct priv *)dev->data->dev_private)->config.l3_vxlan_en)
1507                 return rte_flow_error_set(error, ENOTSUP,
1508                                           RTE_FLOW_ERROR_TYPE_ITEM,
1509                                           item,
1510                                           "L3 VXLAN is not enabled by device"
1511                                           " parameter and/or not configured in"
1512                                           " firmware");
1513         if (flow->layers & MLX5_FLOW_LAYER_TUNNEL)
1514                 return rte_flow_error_set(error, ENOTSUP,
1515                                           RTE_FLOW_ERROR_TYPE_ITEM,
1516                                           item,
1517                                           "a tunnel is already present");
1518         /*
1519          * Verify only UDPv4 is present as defined in
1520          * https://tools.ietf.org/html/rfc7348
1521          */
1522         if (!(flow->layers & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1523                 return rte_flow_error_set(error, ENOTSUP,
1524                                           RTE_FLOW_ERROR_TYPE_ITEM,
1525                                           item,
1526                                           "no outer UDP layer found");
1527         if (!mask)
1528                 mask = &rte_flow_item_vxlan_gpe_mask;
1529         ret = mlx5_flow_item_acceptable
1530                 (item, (const uint8_t *)mask,
1531                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1532                  sizeof(struct rte_flow_item_vxlan_gpe), error);
1533         if (ret < 0)
1534                 return ret;
1535         if (spec) {
1536                 memcpy(&id.vni[1], spec->vni, 3);
1537                 vxlan_gpe.val.tunnel_id = id.vlan_id;
1538                 memcpy(&id.vni[1], mask->vni, 3);
1539                 vxlan_gpe.mask.tunnel_id = id.vlan_id;
1540                 if (spec->protocol)
1541                         return rte_flow_error_set
1542                                 (error, EINVAL,
1543                                  RTE_FLOW_ERROR_TYPE_ITEM,
1544                                  item,
1545                                  "VxLAN-GPE protocol not supported");
1546                 /* Remove unwanted bits from values. */
1547                 vxlan_gpe.val.tunnel_id &= vxlan_gpe.mask.tunnel_id;
1548         }
1549         /*
1550          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1551          * layer is defined in the Verbs specification it is interpreted as
1552          * wildcard and all packets will match this rule, if it follows a full
1553          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1554          * before will also match this rule.  To avoid such situation, VNI 0
1555          * is currently refused.
1556          */
1557         if (!vxlan_gpe.val.tunnel_id)
1558                 return rte_flow_error_set(error, EINVAL,
1559                                           RTE_FLOW_ERROR_TYPE_ITEM,
1560                                           item,
1561                                           "VXLAN-GPE vni cannot be 0");
1562         if (!(flow->layers & MLX5_FLOW_LAYER_OUTER))
1563                 return rte_flow_error_set(error, EINVAL,
1564                                           RTE_FLOW_ERROR_TYPE_ITEM,
1565                                           item,
1566                                           "VXLAN-GPE tunnel must be fully"
1567                                           " defined");
1568         if (size <= flow_size) {
1569                 mlx5_flow_spec_verbs_add(flow, &vxlan_gpe, size);
1570                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
1571         }
1572         flow->layers |= MLX5_FLOW_LAYER_VXLAN_GPE;
1573         return size;
1574 }
1575
1576 /**
1577  * Update the protocol in Verbs IPv4/IPv6 spec.
1578  *
1579  * @param[in, out] attr
1580  *   Pointer to Verbs attributes structure.
1581  * @param[in] search
1582  *   Specification type to search in order to update the IP protocol.
1583  * @param[in] protocol
1584  *   Protocol value to set if none is present in the specification.
1585  */
1586 static void
1587 mlx5_flow_item_gre_ip_protocol_update(struct ibv_flow_attr *attr,
1588                                       enum ibv_flow_spec_type search,
1589                                       uint8_t protocol)
1590 {
1591         unsigned int i;
1592         struct ibv_spec_header *hdr = (struct ibv_spec_header *)
1593                 ((uint8_t *)attr + sizeof(struct ibv_flow_attr));
1594
1595         if (!attr)
1596                 return;
1597         for (i = 0; i != attr->num_of_specs; ++i) {
1598                 if (hdr->type == search) {
1599                         union {
1600                                 struct ibv_flow_spec_ipv4_ext *ipv4;
1601                                 struct ibv_flow_spec_ipv6 *ipv6;
1602                         } ip;
1603
1604                         switch (search) {
1605                         case IBV_FLOW_SPEC_IPV4_EXT:
1606                                 ip.ipv4 = (struct ibv_flow_spec_ipv4_ext *)hdr;
1607                                 if (!ip.ipv4->val.proto) {
1608                                         ip.ipv4->val.proto = protocol;
1609                                         ip.ipv4->mask.proto = 0xff;
1610                                 }
1611                                 break;
1612                         case IBV_FLOW_SPEC_IPV6:
1613                                 ip.ipv6 = (struct ibv_flow_spec_ipv6 *)hdr;
1614                                 if (!ip.ipv6->val.next_hdr) {
1615                                         ip.ipv6->val.next_hdr = protocol;
1616                                         ip.ipv6->mask.next_hdr = 0xff;
1617                                 }
1618                                 break;
1619                         default:
1620                                 break;
1621                         }
1622                         break;
1623                 }
1624                 hdr = (struct ibv_spec_header *)((uint8_t *)hdr + hdr->size);
1625         }
1626 }
1627
1628 /**
1629  * Convert the @p item into a Verbs specification after ensuring the NIC
1630  * will understand and process it correctly.
1631  * It will also update the previous L3 layer with the protocol value matching
1632  * the GRE.
1633  * If the necessary size for the conversion is greater than the @p flow_size,
1634  * nothing is written in @p flow, the validation is still performed.
1635  *
1636  * @param dev
1637  *   Pointer to Ethernet device.
1638  * @param[in] item
1639  *   Item specification.
1640  * @param[in, out] flow
1641  *   Pointer to flow structure.
1642  * @param[in] flow_size
1643  *   Size in bytes of the available space in @p flow, if too small, nothing is
1644  *   written.
1645  * @param[out] error
1646  *   Pointer to error structure.
1647  *
1648  * @return
1649  *   On success the number of bytes consumed/necessary, if the returned value
1650  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
1651  *   otherwise another call with this returned memory size should be done.
1652  *   On error, a negative errno value is returned and rte_errno is set.
1653  */
1654 static int
1655 mlx5_flow_item_gre(const struct rte_flow_item *item,
1656                    struct rte_flow *flow, const size_t flow_size,
1657                    struct rte_flow_error *error)
1658 {
1659         struct mlx5_flow_verbs *verbs = flow->cur_verbs;
1660         const struct rte_flow_item_gre *spec = item->spec;
1661         const struct rte_flow_item_gre *mask = item->mask;
1662 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1663         unsigned int size = sizeof(struct ibv_flow_spec_gre);
1664         struct ibv_flow_spec_gre tunnel = {
1665                 .type = IBV_FLOW_SPEC_GRE,
1666                 .size = size,
1667         };
1668 #else
1669         unsigned int size = sizeof(struct ibv_flow_spec_tunnel);
1670         struct ibv_flow_spec_tunnel tunnel = {
1671                 .type = IBV_FLOW_SPEC_VXLAN_TUNNEL,
1672                 .size = size,
1673         };
1674 #endif
1675         int ret;
1676
1677         if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_GRE)
1678                 return rte_flow_error_set(error, ENOTSUP,
1679                                           RTE_FLOW_ERROR_TYPE_ITEM,
1680                                           item,
1681                                           "protocol filtering not compatible"
1682                                           " with this GRE layer");
1683         if (flow->layers & MLX5_FLOW_LAYER_TUNNEL)
1684                 return rte_flow_error_set(error, ENOTSUP,
1685                                           RTE_FLOW_ERROR_TYPE_ITEM,
1686                                           item,
1687                                           "a tunnel is already present");
1688         if (!(flow->layers & MLX5_FLOW_LAYER_OUTER_L3))
1689                 return rte_flow_error_set(error, ENOTSUP,
1690                                           RTE_FLOW_ERROR_TYPE_ITEM,
1691                                           item,
1692                                           "L3 Layer is missing");
1693         if (!mask)
1694                 mask = &rte_flow_item_gre_mask;
1695         ret = mlx5_flow_item_acceptable
1696                 (item, (const uint8_t *)mask,
1697                  (const uint8_t *)&rte_flow_item_gre_mask,
1698                  sizeof(struct rte_flow_item_gre), error);
1699         if (ret < 0)
1700                 return ret;
1701 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1702         if (spec) {
1703                 tunnel.val.c_ks_res0_ver = spec->c_rsvd0_ver;
1704                 tunnel.val.protocol = spec->protocol;
1705                 tunnel.mask.c_ks_res0_ver = mask->c_rsvd0_ver;
1706                 tunnel.mask.protocol = mask->protocol;
1707                 /* Remove unwanted bits from values. */
1708                 tunnel.val.c_ks_res0_ver &= tunnel.mask.c_ks_res0_ver;
1709                 tunnel.val.protocol &= tunnel.mask.protocol;
1710                 tunnel.val.key &= tunnel.mask.key;
1711         }
1712 #else
1713         if (spec && (spec->protocol & mask->protocol))
1714                 return rte_flow_error_set(error, ENOTSUP,
1715                                           RTE_FLOW_ERROR_TYPE_ITEM,
1716                                           item,
1717                                           "without MPLS support the"
1718                                           " specification cannot be used for"
1719                                           " filtering");
1720 #endif /* !HAVE_IBV_DEVICE_MPLS_SUPPORT */
1721         if (size <= flow_size) {
1722                 if (flow->layers & MLX5_FLOW_LAYER_OUTER_L3_IPV4)
1723                         mlx5_flow_item_gre_ip_protocol_update
1724                                 (verbs->attr, IBV_FLOW_SPEC_IPV4_EXT,
1725                                  MLX5_IP_PROTOCOL_GRE);
1726                 else
1727                         mlx5_flow_item_gre_ip_protocol_update
1728                                 (verbs->attr, IBV_FLOW_SPEC_IPV6,
1729                                  MLX5_IP_PROTOCOL_GRE);
1730                 mlx5_flow_spec_verbs_add(flow, &tunnel, size);
1731                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
1732         }
1733         flow->layers |= MLX5_FLOW_LAYER_GRE;
1734         return size;
1735 }
1736
1737 /**
1738  * Convert the @p item into a Verbs specification after ensuring the NIC
1739  * will understand and process it correctly.
1740  * If the necessary size for the conversion is greater than the @p flow_size,
1741  * nothing is written in @p flow, the validation is still performed.
1742  *
1743  * @param[in] item
1744  *   Item specification.
1745  * @param[in, out] flow
1746  *   Pointer to flow structure.
1747  * @param[in] flow_size
1748  *   Size in bytes of the available space in @p flow, if too small, nothing is
1749  *   written.
1750  * @param[out] error
1751  *   Pointer to error structure.
1752  *
1753  * @return
1754  *   On success the number of bytes consumed/necessary, if the returned value
1755  *   is lesser or equal to @p flow_size, the @p item has fully been converted,
1756  *   otherwise another call with this returned memory size should be done.
1757  *   On error, a negative errno value is returned and rte_errno is set.
1758  */
1759 static int
1760 mlx5_flow_item_mpls(const struct rte_flow_item *item __rte_unused,
1761                     struct rte_flow *flow __rte_unused,
1762                     const size_t flow_size __rte_unused,
1763                     struct rte_flow_error *error)
1764 {
1765 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1766         const struct rte_flow_item_mpls *spec = item->spec;
1767         const struct rte_flow_item_mpls *mask = item->mask;
1768         unsigned int size = sizeof(struct ibv_flow_spec_mpls);
1769         struct ibv_flow_spec_mpls mpls = {
1770                 .type = IBV_FLOW_SPEC_MPLS,
1771                 .size = size,
1772         };
1773         int ret;
1774
1775         if (flow->l3_protocol_en && flow->l3_protocol != MLX5_IP_PROTOCOL_MPLS)
1776                 return rte_flow_error_set(error, ENOTSUP,
1777                                           RTE_FLOW_ERROR_TYPE_ITEM,
1778                                           item,
1779                                           "protocol filtering not compatible"
1780                                           " with MPLS layer");
1781         if (flow->layers & MLX5_FLOW_LAYER_TUNNEL)
1782                 return rte_flow_error_set(error, ENOTSUP,
1783                                           RTE_FLOW_ERROR_TYPE_ITEM,
1784                                           item,
1785                                           "a tunnel is already"
1786                                           " present");
1787         if (!mask)
1788                 mask = &rte_flow_item_mpls_mask;
1789         ret = mlx5_flow_item_acceptable
1790                 (item, (const uint8_t *)mask,
1791                  (const uint8_t *)&rte_flow_item_mpls_mask,
1792                  sizeof(struct rte_flow_item_mpls), error);
1793         if (ret < 0)
1794                 return ret;
1795         if (spec) {
1796                 memcpy(&mpls.val.label, spec, sizeof(mpls.val.label));
1797                 memcpy(&mpls.mask.label, mask, sizeof(mpls.mask.label));
1798                 /* Remove unwanted bits from values.  */
1799                 mpls.val.label &= mpls.mask.label;
1800         }
1801         if (size <= flow_size) {
1802                 mlx5_flow_spec_verbs_add(flow, &mpls, size);
1803                 flow->cur_verbs->attr->priority = MLX5_PRIORITY_MAP_L2;
1804         }
1805         flow->layers |= MLX5_FLOW_LAYER_MPLS;
1806         return size;
1807 #endif /* !HAVE_IBV_DEVICE_MPLS_SUPPORT */
1808         return rte_flow_error_set(error, ENOTSUP,
1809                                   RTE_FLOW_ERROR_TYPE_ITEM,
1810                                   item,
1811                                   "MPLS is not supported by Verbs, please"
1812                                   " update.");
1813 }
1814
1815 /**
1816  * Convert the @p pattern into a Verbs specifications after ensuring the NIC
1817  * will understand and process it correctly.
1818  * The conversion is performed item per item, each of them is written into
1819  * the @p flow if its size is lesser or equal to @p flow_size.
1820  * Validation and memory consumption computation are still performed until the
1821  * end of @p pattern, unless an error is encountered.
1822  *
1823  * @param[in] pattern
1824  *   Flow pattern.
1825  * @param[in, out] flow
1826  *   Pointer to the rte_flow structure.
1827  * @param[in] flow_size
1828  *   Size in bytes of the available space in @p flow, if too small some
1829  *   garbage may be present.
1830  * @param[out] error
1831  *   Pointer to error structure.
1832  *
1833  * @return
1834  *   On success the number of bytes consumed/necessary, if the returned value
1835  *   is lesser or equal to @p flow_size, the @pattern  has fully been
1836  *   converted, otherwise another call with this returned memory size should
1837  *   be done.
1838  *   On error, a negative errno value is returned and rte_errno is set.
1839  */
1840 static int
1841 mlx5_flow_items(struct rte_eth_dev *dev,
1842                 const struct rte_flow_item pattern[],
1843                 struct rte_flow *flow, const size_t flow_size,
1844                 struct rte_flow_error *error)
1845 {
1846         int remain = flow_size;
1847         size_t size = 0;
1848
1849         for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
1850                 int ret = 0;
1851
1852                 switch (pattern->type) {
1853                 case RTE_FLOW_ITEM_TYPE_VOID:
1854                         break;
1855                 case RTE_FLOW_ITEM_TYPE_ETH:
1856                         ret = mlx5_flow_item_eth(pattern, flow, remain, error);
1857                         break;
1858                 case RTE_FLOW_ITEM_TYPE_VLAN:
1859                         ret = mlx5_flow_item_vlan(pattern, flow, remain, error);
1860                         break;
1861                 case RTE_FLOW_ITEM_TYPE_IPV4:
1862                         ret = mlx5_flow_item_ipv4(pattern, flow, remain, error);
1863                         break;
1864                 case RTE_FLOW_ITEM_TYPE_IPV6:
1865                         ret = mlx5_flow_item_ipv6(pattern, flow, remain, error);
1866                         break;
1867                 case RTE_FLOW_ITEM_TYPE_UDP:
1868                         ret = mlx5_flow_item_udp(pattern, flow, remain, error);
1869                         break;
1870                 case RTE_FLOW_ITEM_TYPE_TCP:
1871                         ret = mlx5_flow_item_tcp(pattern, flow, remain, error);
1872                         break;
1873                 case RTE_FLOW_ITEM_TYPE_VXLAN:
1874                         ret = mlx5_flow_item_vxlan(pattern, flow, remain,
1875                                                    error);
1876                         break;
1877                 case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
1878                         ret = mlx5_flow_item_vxlan_gpe(dev, pattern, flow,
1879                                                        remain, error);
1880                         break;
1881                 case RTE_FLOW_ITEM_TYPE_GRE:
1882                         ret = mlx5_flow_item_gre(pattern, flow, remain, error);
1883                         break;
1884                 case RTE_FLOW_ITEM_TYPE_MPLS:
1885                         ret = mlx5_flow_item_mpls(pattern, flow, remain, error);
1886                         break;
1887                 default:
1888                         return rte_flow_error_set(error, ENOTSUP,
1889                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1890                                                   pattern,
1891                                                   "item not supported");
1892                 }
1893                 if (ret < 0)
1894                         return ret;
1895                 if (remain > ret)
1896                         remain -= ret;
1897                 else
1898                         remain = 0;
1899                 size += ret;
1900         }
1901         if (!flow->layers) {
1902                 const struct rte_flow_item item = {
1903                         .type = RTE_FLOW_ITEM_TYPE_ETH,
1904                 };
1905
1906                 return mlx5_flow_item_eth(&item, flow, flow_size, error);
1907         }
1908         return size;
1909 }
1910
1911 /**
1912  * Convert the @p action into a Verbs specification after ensuring the NIC
1913  * will understand and process it correctly.
1914  * If the necessary size for the conversion is greater than the @p flow_size,
1915  * nothing is written in @p flow, the validation is still performed.
1916  *
1917  * @param[in] action
1918  *   Action configuration.
1919  * @param[in, out] flow
1920  *   Pointer to flow structure.
1921  * @param[in] flow_size
1922  *   Size in bytes of the available space in @p flow, if too small, nothing is
1923  *   written.
1924  * @param[out] error
1925  *   Pointer to error structure.
1926  *
1927  * @return
1928  *   On success the number of bytes consumed/necessary, if the returned value
1929  *   is lesser or equal to @p flow_size, the @p action has fully been
1930  *   converted, otherwise another call with this returned memory size should
1931  *   be done.
1932  *   On error, a negative errno value is returned and rte_errno is set.
1933  */
1934 static int
1935 mlx5_flow_action_drop(const struct rte_flow_action *action,
1936                       struct rte_flow *flow, const size_t flow_size,
1937                       struct rte_flow_error *error)
1938 {
1939         unsigned int size = sizeof(struct ibv_flow_spec_action_drop);
1940         struct ibv_flow_spec_action_drop drop = {
1941                         .type = IBV_FLOW_SPEC_ACTION_DROP,
1942                         .size = size,
1943         };
1944
1945         if (flow->fate)
1946                 return rte_flow_error_set(error, ENOTSUP,
1947                                           RTE_FLOW_ERROR_TYPE_ACTION,
1948                                           action,
1949                                           "multiple fate actions are not"
1950                                           " supported");
1951         if (flow->modifier & (MLX5_FLOW_MOD_FLAG | MLX5_FLOW_MOD_MARK))
1952                 return rte_flow_error_set(error, ENOTSUP,
1953                                           RTE_FLOW_ERROR_TYPE_ACTION,
1954                                           action,
1955                                           "drop is not compatible with"
1956                                           " flag/mark action");
1957         if (size < flow_size)
1958                 mlx5_flow_spec_verbs_add(flow, &drop, size);
1959         flow->fate |= MLX5_FLOW_FATE_DROP;
1960         return size;
1961 }
1962
1963 /**
1964  * Convert the @p action into @p flow after ensuring the NIC will understand
1965  * and process it correctly.
1966  *
1967  * @param[in] dev
1968  *   Pointer to Ethernet device structure.
1969  * @param[in] action
1970  *   Action configuration.
1971  * @param[in, out] flow
1972  *   Pointer to flow structure.
1973  * @param[out] error
1974  *   Pointer to error structure.
1975  *
1976  * @return
1977  *   0 on success, a negative errno value otherwise and rte_errno is set.
1978  */
1979 static int
1980 mlx5_flow_action_queue(struct rte_eth_dev *dev,
1981                        const struct rte_flow_action *action,
1982                        struct rte_flow *flow,
1983                        struct rte_flow_error *error)
1984 {
1985         struct priv *priv = dev->data->dev_private;
1986         const struct rte_flow_action_queue *queue = action->conf;
1987
1988         if (flow->fate)
1989                 return rte_flow_error_set(error, ENOTSUP,
1990                                           RTE_FLOW_ERROR_TYPE_ACTION,
1991                                           action,
1992                                           "multiple fate actions are not"
1993                                           " supported");
1994         if (queue->index >= priv->rxqs_n)
1995                 return rte_flow_error_set(error, EINVAL,
1996                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1997                                           &queue->index,
1998                                           "queue index out of range");
1999         if (!(*priv->rxqs)[queue->index])
2000                 return rte_flow_error_set(error, EINVAL,
2001                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2002                                           &queue->index,
2003                                           "queue is not configured");
2004         if (flow->queue)
2005                 (*flow->queue)[0] = queue->index;
2006         flow->rss.queue_num = 1;
2007         flow->fate |= MLX5_FLOW_FATE_QUEUE;
2008         return 0;
2009 }
2010
2011 /**
2012  * Ensure the @p action will be understood and used correctly by the  NIC.
2013  *
2014  * @param dev
2015  *   Pointer to Ethernet device structure.
2016  * @param action[in]
2017  *   Pointer to flow actions array.
2018  * @param flow[in, out]
2019  *   Pointer to the rte_flow structure.
2020  * @param error[in, out]
2021  *   Pointer to error structure.
2022  *
2023  * @return
2024  *   On success @p flow->queue array and @p flow->rss are filled and valid.
2025  *   On error, a negative errno value is returned and rte_errno is set.
2026  */
2027 static int
2028 mlx5_flow_action_rss(struct rte_eth_dev *dev,
2029                      const struct rte_flow_action *action,
2030                      struct rte_flow *flow,
2031                      struct rte_flow_error *error)
2032 {
2033         struct priv *priv = dev->data->dev_private;
2034         const struct rte_flow_action_rss *rss = action->conf;
2035         unsigned int i;
2036
2037         if (flow->fate)
2038                 return rte_flow_error_set(error, ENOTSUP,
2039                                           RTE_FLOW_ERROR_TYPE_ACTION,
2040                                           action,
2041                                           "multiple fate actions are not"
2042                                           " supported");
2043         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
2044             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
2045                 return rte_flow_error_set(error, ENOTSUP,
2046                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2047                                           &rss->func,
2048                                           "RSS hash function not supported");
2049 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
2050         if (rss->level > 2)
2051 #else
2052         if (rss->level > 1)
2053 #endif
2054                 return rte_flow_error_set(error, ENOTSUP,
2055                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2056                                           &rss->level,
2057                                           "tunnel RSS is not supported");
2058         if (rss->key_len < MLX5_RSS_HASH_KEY_LEN)
2059                 return rte_flow_error_set(error, ENOTSUP,
2060                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2061                                           &rss->key_len,
2062                                           "RSS hash key too small");
2063         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
2064                 return rte_flow_error_set(error, ENOTSUP,
2065                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2066                                           &rss->key_len,
2067                                           "RSS hash key too large");
2068         if (!rss->queue_num)
2069                 return rte_flow_error_set(error, ENOTSUP,
2070                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2071                                           rss,
2072                                           "no queues were provided for RSS");
2073         if (rss->queue_num > priv->config.ind_table_max_size)
2074                 return rte_flow_error_set(error, ENOTSUP,
2075                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2076                                           &rss->queue_num,
2077                                           "number of queues too large");
2078         if (rss->types & MLX5_RSS_HF_MASK)
2079                 return rte_flow_error_set(error, ENOTSUP,
2080                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2081                                           &rss->types,
2082                                           "some RSS protocols are not"
2083                                           " supported");
2084         for (i = 0; i != rss->queue_num; ++i) {
2085                 if (rss->queue[i] >= priv->rxqs_n)
2086                         return rte_flow_error_set
2087                                 (error, EINVAL,
2088                                  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2089                                  rss,
2090                                  "queue index out of range");
2091                 if (!(*priv->rxqs)[rss->queue[i]])
2092                         return rte_flow_error_set
2093                                 (error, EINVAL,
2094                                  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2095                                  &rss->queue[i],
2096                                  "queue is not configured");
2097         }
2098         if (flow->queue)
2099                 memcpy((*flow->queue), rss->queue,
2100                        rss->queue_num * sizeof(uint16_t));
2101         flow->rss.queue_num = rss->queue_num;
2102         memcpy(flow->key, rss->key, MLX5_RSS_HASH_KEY_LEN);
2103         flow->rss.types = rss->types;
2104         flow->rss.level = rss->level;
2105         flow->fate |= MLX5_FLOW_FATE_RSS;
2106         return 0;
2107 }
2108
2109 /**
2110  * Convert the @p action into a Verbs specification after ensuring the NIC
2111  * will understand and process it correctly.
2112  * If the necessary size for the conversion is greater than the @p flow_size,
2113  * nothing is written in @p flow, the validation is still performed.
2114  *
2115  * @param[in] action
2116  *   Action configuration.
2117  * @param[in, out] flow
2118  *   Pointer to flow structure.
2119  * @param[in] flow_size
2120  *   Size in bytes of the available space in @p flow, if too small, nothing is
2121  *   written.
2122  * @param[out] error
2123  *   Pointer to error structure.
2124  *
2125  * @return
2126  *   On success the number of bytes consumed/necessary, if the returned value
2127  *   is lesser or equal to @p flow_size, the @p action has fully been
2128  *   converted, otherwise another call with this returned memory size should
2129  *   be done.
2130  *   On error, a negative errno value is returned and rte_errno is set.
2131  */
2132 static int
2133 mlx5_flow_action_flag(const struct rte_flow_action *action,
2134                       struct rte_flow *flow, const size_t flow_size,
2135                       struct rte_flow_error *error)
2136 {
2137         unsigned int size = sizeof(struct ibv_flow_spec_action_tag);
2138         struct ibv_flow_spec_action_tag tag = {
2139                 .type = IBV_FLOW_SPEC_ACTION_TAG,
2140                 .size = size,
2141                 .tag_id = mlx5_flow_mark_set(MLX5_FLOW_MARK_DEFAULT),
2142         };
2143         struct mlx5_flow_verbs *verbs = flow->cur_verbs;
2144
2145         if (flow->modifier & MLX5_FLOW_MOD_FLAG)
2146                 return rte_flow_error_set(error, ENOTSUP,
2147                                           RTE_FLOW_ERROR_TYPE_ACTION,
2148                                           action,
2149                                           "flag action already present");
2150         if (flow->fate & MLX5_FLOW_FATE_DROP)
2151                 return rte_flow_error_set(error, ENOTSUP,
2152                                           RTE_FLOW_ERROR_TYPE_ACTION,
2153                                           action,
2154                                           "flag is not compatible with drop"
2155                                           " action");
2156         if (flow->modifier & MLX5_FLOW_MOD_MARK)
2157                 size = 0;
2158         else if (size <= flow_size && verbs)
2159                 mlx5_flow_spec_verbs_add(flow, &tag, size);
2160         flow->modifier |= MLX5_FLOW_MOD_FLAG;
2161         return size;
2162 }
2163
2164 /**
2165  * Update verbs specification to modify the flag to mark.
2166  *
2167  * @param[in, out] verbs
2168  *   Pointer to the mlx5_flow_verbs structure.
2169  * @param[in] mark_id
2170  *   Mark identifier to replace the flag.
2171  */
2172 static void
2173 mlx5_flow_verbs_mark_update(struct mlx5_flow_verbs *verbs, uint32_t mark_id)
2174 {
2175         struct ibv_spec_header *hdr;
2176         int i;
2177
2178         if (!verbs)
2179                 return;
2180         /* Update Verbs specification. */
2181         hdr = (struct ibv_spec_header *)verbs->specs;
2182         if (!hdr)
2183                 return;
2184         for (i = 0; i != verbs->attr->num_of_specs; ++i) {
2185                 if (hdr->type == IBV_FLOW_SPEC_ACTION_TAG) {
2186                         struct ibv_flow_spec_action_tag *t =
2187                                 (struct ibv_flow_spec_action_tag *)hdr;
2188
2189                         t->tag_id = mlx5_flow_mark_set(mark_id);
2190                 }
2191                 hdr = (struct ibv_spec_header *)((uintptr_t)hdr + hdr->size);
2192         }
2193 }
2194
2195 /**
2196  * Convert the @p action into @p flow (or by updating the already present
2197  * Flag Verbs specification) after ensuring the NIC will understand and
2198  * process it correctly.
2199  * If the necessary size for the conversion is greater than the @p flow_size,
2200  * nothing is written in @p flow, the validation is still performed.
2201  *
2202  * @param[in] action
2203  *   Action configuration.
2204  * @param[in, out] flow
2205  *   Pointer to flow structure.
2206  * @param[in] flow_size
2207  *   Size in bytes of the available space in @p flow, if too small, nothing is
2208  *   written.
2209  * @param[out] error
2210  *   Pointer to error structure.
2211  *
2212  * @return
2213  *   On success the number of bytes consumed/necessary, if the returned value
2214  *   is lesser or equal to @p flow_size, the @p action has fully been
2215  *   converted, otherwise another call with this returned memory size should
2216  *   be done.
2217  *   On error, a negative errno value is returned and rte_errno is set.
2218  */
2219 static int
2220 mlx5_flow_action_mark(const struct rte_flow_action *action,
2221                       struct rte_flow *flow, const size_t flow_size,
2222                       struct rte_flow_error *error)
2223 {
2224         const struct rte_flow_action_mark *mark = action->conf;
2225         unsigned int size = sizeof(struct ibv_flow_spec_action_tag);
2226         struct ibv_flow_spec_action_tag tag = {
2227                 .type = IBV_FLOW_SPEC_ACTION_TAG,
2228                 .size = size,
2229         };
2230         struct mlx5_flow_verbs *verbs = flow->cur_verbs;
2231
2232         if (!mark)
2233                 return rte_flow_error_set(error, EINVAL,
2234                                           RTE_FLOW_ERROR_TYPE_ACTION,
2235                                           action,
2236                                           "configuration cannot be null");
2237         if (mark->id >= MLX5_FLOW_MARK_MAX)
2238                 return rte_flow_error_set(error, EINVAL,
2239                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
2240                                           &mark->id,
2241                                           "mark id must in 0 <= id < "
2242                                           RTE_STR(MLX5_FLOW_MARK_MAX));
2243         if (flow->modifier & MLX5_FLOW_MOD_MARK)
2244                 return rte_flow_error_set(error, ENOTSUP,
2245                                           RTE_FLOW_ERROR_TYPE_ACTION,
2246                                           action,
2247                                           "mark action already present");
2248         if (flow->fate & MLX5_FLOW_FATE_DROP)
2249                 return rte_flow_error_set(error, ENOTSUP,
2250                                           RTE_FLOW_ERROR_TYPE_ACTION,
2251                                           action,
2252                                           "mark is not compatible with drop"
2253                                           " action");
2254         if (flow->modifier & MLX5_FLOW_MOD_FLAG) {
2255                 mlx5_flow_verbs_mark_update(verbs, mark->id);
2256                 size = 0;
2257         } else if (size <= flow_size) {
2258                 tag.tag_id = mlx5_flow_mark_set(mark->id);
2259                 mlx5_flow_spec_verbs_add(flow, &tag, size);
2260         }
2261         flow->modifier |= MLX5_FLOW_MOD_MARK;
2262         return size;
2263 }
2264
2265 /**
2266  * Convert the @p action into a Verbs specification after ensuring the NIC
2267  * will understand and process it correctly.
2268  * If the necessary size for the conversion is greater than the @p flow_size,
2269  * nothing is written in @p flow, the validation is still performed.
2270  *
2271  * @param action[in]
2272  *   Action configuration.
2273  * @param flow[in, out]
2274  *   Pointer to flow structure.
2275  * @param flow_size[in]
2276  *   Size in bytes of the available space in @p flow, if too small, nothing is
2277  *   written.
2278  * @param error[int, out]
2279  *   Pointer to error structure.
2280  *
2281  * @return
2282  *   On success the number of bytes consumed/necessary, if the returned value
2283  *   is lesser or equal to @p flow_size, the @p action has fully been
2284  *   converted, otherwise another call with this returned memory size should
2285  *   be done.
2286  *   On error, a negative errno value is returned and rte_errno is set.
2287  */
2288 static int
2289 mlx5_flow_action_count(struct rte_eth_dev *dev,
2290                        const struct rte_flow_action *action,
2291                        struct rte_flow *flow,
2292                        const size_t flow_size __rte_unused,
2293                        struct rte_flow_error *error)
2294 {
2295         const struct rte_flow_action_count *count = action->conf;
2296 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT
2297         unsigned int size = sizeof(struct ibv_flow_spec_counter_action);
2298         struct ibv_flow_spec_counter_action counter = {
2299                 .type = IBV_FLOW_SPEC_ACTION_COUNT,
2300                 .size = size,
2301         };
2302 #endif
2303
2304         if (!flow->counter) {
2305                 flow->counter = mlx5_flow_counter_new(dev, count->shared,
2306                                                       count->id);
2307                 if (!flow->counter)
2308                         return rte_flow_error_set(error, ENOTSUP,
2309                                                   RTE_FLOW_ERROR_TYPE_ACTION,
2310                                                   action,
2311                                                   "cannot get counter"
2312                                                   " context.");
2313         }
2314         if (!((struct priv *)dev->data->dev_private)->config.flow_counter_en)
2315                 return rte_flow_error_set(error, ENOTSUP,
2316                                           RTE_FLOW_ERROR_TYPE_ACTION,
2317                                           action,
2318                                           "flow counters are not supported.");
2319         flow->modifier |= MLX5_FLOW_MOD_COUNT;
2320 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT
2321         counter.counter_set_handle = flow->counter->cs->handle;
2322         if (size <= flow_size)
2323                 mlx5_flow_spec_verbs_add(flow, &counter, size);
2324         return size;
2325 #endif
2326         return 0;
2327 }
2328
2329 /**
2330  * Convert the @p action into @p flow after ensuring the NIC will understand
2331  * and process it correctly.
2332  * The conversion is performed action per action, each of them is written into
2333  * the @p flow if its size is lesser or equal to @p flow_size.
2334  * Validation and memory consumption computation are still performed until the
2335  * end of @p action, unless an error is encountered.
2336  *
2337  * @param[in] dev
2338  *   Pointer to Ethernet device structure.
2339  * @param[in] actions
2340  *   Pointer to flow actions array.
2341  * @param[in, out] flow
2342  *   Pointer to the rte_flow structure.
2343  * @param[in] flow_size
2344  *   Size in bytes of the available space in @p flow, if too small some
2345  *   garbage may be present.
2346  * @param[out] error
2347  *   Pointer to error structure.
2348  *
2349  * @return
2350  *   On success the number of bytes consumed/necessary, if the returned value
2351  *   is lesser or equal to @p flow_size, the @p actions has fully been
2352  *   converted, otherwise another call with this returned memory size should
2353  *   be done.
2354  *   On error, a negative errno value is returned and rte_errno is set.
2355  */
2356 static int
2357 mlx5_flow_actions(struct rte_eth_dev *dev,
2358                   const struct rte_flow_action actions[],
2359                   struct rte_flow *flow, const size_t flow_size,
2360                   struct rte_flow_error *error)
2361 {
2362         size_t size = 0;
2363         int remain = flow_size;
2364         int ret = 0;
2365
2366         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2367                 switch (actions->type) {
2368                 case RTE_FLOW_ACTION_TYPE_VOID:
2369                         break;
2370                 case RTE_FLOW_ACTION_TYPE_FLAG:
2371                         ret = mlx5_flow_action_flag(actions, flow, remain,
2372                                                     error);
2373                         break;
2374                 case RTE_FLOW_ACTION_TYPE_MARK:
2375                         ret = mlx5_flow_action_mark(actions, flow, remain,
2376                                                     error);
2377                         break;
2378                 case RTE_FLOW_ACTION_TYPE_DROP:
2379                         ret = mlx5_flow_action_drop(actions, flow, remain,
2380                                                     error);
2381                         break;
2382                 case RTE_FLOW_ACTION_TYPE_QUEUE:
2383                         ret = mlx5_flow_action_queue(dev, actions, flow, error);
2384                         break;
2385                 case RTE_FLOW_ACTION_TYPE_RSS:
2386                         ret = mlx5_flow_action_rss(dev, actions, flow, error);
2387                         break;
2388                 case RTE_FLOW_ACTION_TYPE_COUNT:
2389                         ret = mlx5_flow_action_count(dev, actions, flow, remain,
2390                                                      error);
2391                         break;
2392                 default:
2393                         return rte_flow_error_set(error, ENOTSUP,
2394                                                   RTE_FLOW_ERROR_TYPE_ACTION,
2395                                                   actions,
2396                                                   "action not supported");
2397                 }
2398                 if (ret < 0)
2399                         return ret;
2400                 if (remain > ret)
2401                         remain -= ret;
2402                 else
2403                         remain = 0;
2404                 size += ret;
2405         }
2406         if (!flow->fate)
2407                 return rte_flow_error_set(error, ENOTSUP,
2408                                           RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2409                                           NULL,
2410                                           "no fate action found");
2411         return size;
2412 }
2413
2414 /**
2415  * Validate flow rule and fill flow structure accordingly.
2416  *
2417  * @param dev
2418  *   Pointer to Ethernet device.
2419  * @param[out] flow
2420  *   Pointer to flow structure.
2421  * @param flow_size
2422  *   Size of allocated space for @p flow.
2423  * @param[in] attr
2424  *   Flow rule attributes.
2425  * @param[in] pattern
2426  *   Pattern specification (list terminated by the END pattern item).
2427  * @param[in] actions
2428  *   Associated actions (list terminated by the END action).
2429  * @param[out] error
2430  *   Perform verbose error reporting if not NULL.
2431  *
2432  * @return
2433  *   A positive value representing the size of the flow object in bytes
2434  *   regardless of @p flow_size on success, a negative errno value otherwise
2435  *   and rte_errno is set.
2436  */
2437 static int
2438 mlx5_flow_merge_switch(struct rte_eth_dev *dev,
2439                        struct rte_flow *flow,
2440                        size_t flow_size,
2441                        const struct rte_flow_attr *attr,
2442                        const struct rte_flow_item pattern[],
2443                        const struct rte_flow_action actions[],
2444                        struct rte_flow_error *error)
2445 {
2446         unsigned int n = mlx5_dev_to_port_id(dev->device, NULL, 0);
2447         uint16_t port_id[!n + n];
2448         struct mlx5_nl_flow_ptoi ptoi[!n + n + 1];
2449         size_t off = RTE_ALIGN_CEIL(sizeof(*flow), alignof(max_align_t));
2450         unsigned int i;
2451         unsigned int own = 0;
2452         int ret;
2453
2454         /* At least one port is needed when no switch domain is present. */
2455         if (!n) {
2456                 n = 1;
2457                 port_id[0] = dev->data->port_id;
2458         } else {
2459                 n = RTE_MIN(mlx5_dev_to_port_id(dev->device, port_id, n), n);
2460         }
2461         for (i = 0; i != n; ++i) {
2462                 struct rte_eth_dev_info dev_info;
2463
2464                 rte_eth_dev_info_get(port_id[i], &dev_info);
2465                 if (port_id[i] == dev->data->port_id)
2466                         own = i;
2467                 ptoi[i].port_id = port_id[i];
2468                 ptoi[i].ifindex = dev_info.if_index;
2469         }
2470         /* Ensure first entry of ptoi[] is the current device. */
2471         if (own) {
2472                 ptoi[n] = ptoi[0];
2473                 ptoi[0] = ptoi[own];
2474                 ptoi[own] = ptoi[n];
2475         }
2476         /* An entry with zero ifindex terminates ptoi[]. */
2477         ptoi[n].port_id = 0;
2478         ptoi[n].ifindex = 0;
2479         if (flow_size < off)
2480                 flow_size = 0;
2481         ret = mlx5_nl_flow_transpose((uint8_t *)flow + off,
2482                                      flow_size ? flow_size - off : 0,
2483                                      ptoi, attr, pattern, actions, error);
2484         if (ret < 0)
2485                 return ret;
2486         if (flow_size) {
2487                 *flow = (struct rte_flow){
2488                         .attributes = *attr,
2489                         .nl_flow = (uint8_t *)flow + off,
2490                 };
2491                 /*
2492                  * Generate a reasonably unique handle based on the address
2493                  * of the target buffer.
2494                  *
2495                  * This is straightforward on 32-bit systems where the flow
2496                  * pointer can be used directly. Otherwise, its least
2497                  * significant part is taken after shifting it by the
2498                  * previous power of two of the pointed buffer size.
2499                  */
2500                 if (sizeof(flow) <= 4)
2501                         mlx5_nl_flow_brand(flow->nl_flow, (uintptr_t)flow);
2502                 else
2503                         mlx5_nl_flow_brand
2504                                 (flow->nl_flow,
2505                                  (uintptr_t)flow >>
2506                                  rte_log2_u32(rte_align32prevpow2(flow_size)));
2507         }
2508         return off + ret;
2509 }
2510
2511 static unsigned int
2512 mlx5_find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2513 {
2514         const struct rte_flow_item *item;
2515         unsigned int has_vlan = 0;
2516
2517         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2518                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2519                         has_vlan = 1;
2520                         break;
2521                 }
2522         }
2523         if (has_vlan)
2524                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2525                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2526         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2527                                MLX5_EXPANSION_ROOT_OUTER;
2528 }
2529
2530 /**
2531  * Convert the @p attributes, @p pattern, @p action, into an flow for the NIC
2532  * after ensuring the NIC will understand and process it correctly.
2533  * The conversion is only performed item/action per item/action, each of
2534  * them is written into the @p flow if its size is lesser or equal to @p
2535  * flow_size.
2536  * Validation and memory consumption computation are still performed until the
2537  * end, unless an error is encountered.
2538  *
2539  * @param[in] dev
2540  *   Pointer to Ethernet device.
2541  * @param[in, out] flow
2542  *   Pointer to flow structure.
2543  * @param[in] flow_size
2544  *   Size in bytes of the available space in @p flow, if too small some
2545  *   garbage may be present.
2546  * @param[in] attributes
2547  *   Flow rule attributes.
2548  * @param[in] pattern
2549  *   Pattern specification (list terminated by the END pattern item).
2550  * @param[in] actions
2551  *   Associated actions (list terminated by the END action).
2552  * @param[out] error
2553  *   Perform verbose error reporting if not NULL.
2554  *
2555  * @return
2556  *   On success the number of bytes consumed/necessary, if the returned value
2557  *   is lesser or equal to @p flow_size, the flow has fully been converted and
2558  *   can be applied, otherwise another call with this returned memory size
2559  *   should be done.
2560  *   On error, a negative errno value is returned and rte_errno is set.
2561  */
2562 static int
2563 mlx5_flow_merge(struct rte_eth_dev *dev, struct rte_flow *flow,
2564                 const size_t flow_size,
2565                 const struct rte_flow_attr *attributes,
2566                 const struct rte_flow_item pattern[],
2567                 const struct rte_flow_action actions[],
2568                 struct rte_flow_error *error)
2569 {
2570         struct rte_flow local_flow = { .layers = 0, };
2571         size_t size = sizeof(*flow);
2572         union {
2573                 struct rte_flow_expand_rss buf;
2574                 uint8_t buffer[2048];
2575         } expand_buffer;
2576         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2577         struct mlx5_flow_verbs *original_verbs = NULL;
2578         size_t original_verbs_size = 0;
2579         uint32_t original_layers = 0;
2580         int expanded_pattern_idx = 0;
2581         int ret;
2582         uint32_t i;
2583
2584         if (attributes->transfer)
2585                 return mlx5_flow_merge_switch(dev, flow, flow_size,
2586                                               attributes, pattern,
2587                                               actions, error);
2588         if (size > flow_size)
2589                 flow = &local_flow;
2590         ret = mlx5_flow_attributes(dev, attributes, flow, error);
2591         if (ret < 0)
2592                 return ret;
2593         ret = mlx5_flow_actions(dev, actions, &local_flow, 0, error);
2594         if (ret < 0)
2595                 return ret;
2596         if (local_flow.rss.types) {
2597                 unsigned int graph_root;
2598
2599                 graph_root = mlx5_find_graph_root(pattern,
2600                                                   local_flow.rss.level);
2601                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2602                                           pattern, local_flow.rss.types,
2603                                           mlx5_support_expansion,
2604                                           graph_root);
2605                 assert(ret > 0 &&
2606                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2607         } else {
2608                 buf->entries = 1;
2609                 buf->entry[0].pattern = (void *)(uintptr_t)pattern;
2610         }
2611         size += RTE_ALIGN_CEIL(local_flow.rss.queue_num * sizeof(uint16_t),
2612                                sizeof(void *));
2613         if (size <= flow_size)
2614                 flow->queue = (void *)(flow + 1);
2615         LIST_INIT(&flow->verbs);
2616         flow->layers = 0;
2617         flow->modifier = 0;
2618         flow->fate = 0;
2619         for (i = 0; i != buf->entries; ++i) {
2620                 size_t off = size;
2621                 size_t off2;
2622
2623                 flow->layers = original_layers;
2624                 size += sizeof(struct ibv_flow_attr) +
2625                         sizeof(struct mlx5_flow_verbs);
2626                 off2 = size;
2627                 if (size < flow_size) {
2628                         flow->cur_verbs = (void *)((uintptr_t)flow + off);
2629                         flow->cur_verbs->attr = (void *)(flow->cur_verbs + 1);
2630                         flow->cur_verbs->specs =
2631                                 (void *)(flow->cur_verbs->attr + 1);
2632                 }
2633                 /* First iteration convert the pattern into Verbs. */
2634                 if (i == 0) {
2635                         /* Actions don't need to be converted several time. */
2636                         ret = mlx5_flow_actions(dev, actions, flow,
2637                                                 (size < flow_size) ?
2638                                                 flow_size - size : 0,
2639                                                 error);
2640                         if (ret < 0)
2641                                 return ret;
2642                         size += ret;
2643                 } else {
2644                         /*
2645                          * Next iteration means the pattern has already been
2646                          * converted and an expansion is necessary to match
2647                          * the user RSS request.  For that only the expanded
2648                          * items will be converted, the common part with the
2649                          * user pattern are just copied into the next buffer
2650                          * zone.
2651                          */
2652                         size += original_verbs_size;
2653                         if (size < flow_size) {
2654                                 rte_memcpy(flow->cur_verbs->attr,
2655                                            original_verbs->attr,
2656                                            original_verbs_size +
2657                                            sizeof(struct ibv_flow_attr));
2658                                 flow->cur_verbs->size = original_verbs_size;
2659                         }
2660                 }
2661                 ret = mlx5_flow_items
2662                         (dev,
2663                          (const struct rte_flow_item *)
2664                          &buf->entry[i].pattern[expanded_pattern_idx],
2665                          flow,
2666                          (size < flow_size) ? flow_size - size : 0, error);
2667                 if (ret < 0)
2668                         return ret;
2669                 size += ret;
2670                 if (size <= flow_size) {
2671                         mlx5_flow_adjust_priority(dev, flow);
2672                         LIST_INSERT_HEAD(&flow->verbs, flow->cur_verbs, next);
2673                 }
2674                 /*
2675                  * Keep a pointer of the first verbs conversion and the layers
2676                  * it has encountered.
2677                  */
2678                 if (i == 0) {
2679                         original_verbs = flow->cur_verbs;
2680                         original_verbs_size = size - off2;
2681                         original_layers = flow->layers;
2682                         /*
2683                          * move the index of the expanded pattern to the
2684                          * first item not addressed yet.
2685                          */
2686                         if (pattern->type == RTE_FLOW_ITEM_TYPE_END) {
2687                                 expanded_pattern_idx++;
2688                         } else {
2689                                 const struct rte_flow_item *item = pattern;
2690
2691                                 for (item = pattern;
2692                                      item->type != RTE_FLOW_ITEM_TYPE_END;
2693                                      ++item)
2694                                         expanded_pattern_idx++;
2695                         }
2696                 }
2697         }
2698         /* Restore the origin layers in the flow. */
2699         flow->layers = original_layers;
2700         return size;
2701 }
2702
2703 /**
2704  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
2705  * if several tunnel rules are used on this queue, the tunnel ptype will be
2706  * cleared.
2707  *
2708  * @param rxq_ctrl
2709  *   Rx queue to update.
2710  */
2711 static void
2712 mlx5_flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
2713 {
2714         unsigned int i;
2715         uint32_t tunnel_ptype = 0;
2716
2717         /* Look up for the ptype to use. */
2718         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
2719                 if (!rxq_ctrl->flow_tunnels_n[i])
2720                         continue;
2721                 if (!tunnel_ptype) {
2722                         tunnel_ptype = tunnels_info[i].ptype;
2723                 } else {
2724                         tunnel_ptype = 0;
2725                         break;
2726                 }
2727         }
2728         rxq_ctrl->rxq.tunnel = tunnel_ptype;
2729 }
2730
2731 /**
2732  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the flow.
2733  *
2734  * @param[in] dev
2735  *   Pointer to Ethernet device.
2736  * @param[in] flow
2737  *   Pointer to flow structure.
2738  */
2739 static void
2740 mlx5_flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
2741 {
2742         struct priv *priv = dev->data->dev_private;
2743         const int mark = !!(flow->modifier &
2744                             (MLX5_FLOW_MOD_FLAG | MLX5_FLOW_MOD_MARK));
2745         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
2746         unsigned int i;
2747
2748         for (i = 0; i != flow->rss.queue_num; ++i) {
2749                 int idx = (*flow->queue)[i];
2750                 struct mlx5_rxq_ctrl *rxq_ctrl =
2751                         container_of((*priv->rxqs)[idx],
2752                                      struct mlx5_rxq_ctrl, rxq);
2753
2754                 if (mark) {
2755                         rxq_ctrl->rxq.mark = 1;
2756                         rxq_ctrl->flow_mark_n++;
2757                 }
2758                 if (tunnel) {
2759                         unsigned int j;
2760
2761                         /* Increase the counter matching the flow. */
2762                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
2763                                 if ((tunnels_info[j].tunnel & flow->layers) ==
2764                                     tunnels_info[j].tunnel) {
2765                                         rxq_ctrl->flow_tunnels_n[j]++;
2766                                         break;
2767                                 }
2768                         }
2769                         mlx5_flow_rxq_tunnel_ptype_update(rxq_ctrl);
2770                 }
2771         }
2772 }
2773
2774 /**
2775  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
2776  * @p flow if no other flow uses it with the same kind of request.
2777  *
2778  * @param dev
2779  *   Pointer to Ethernet device.
2780  * @param[in] flow
2781  *   Pointer to the flow.
2782  */
2783 static void
2784 mlx5_flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
2785 {
2786         struct priv *priv = dev->data->dev_private;
2787         const int mark = !!(flow->modifier &
2788                             (MLX5_FLOW_MOD_FLAG | MLX5_FLOW_MOD_MARK));
2789         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
2790         unsigned int i;
2791
2792         assert(dev->data->dev_started);
2793         for (i = 0; i != flow->rss.queue_num; ++i) {
2794                 int idx = (*flow->queue)[i];
2795                 struct mlx5_rxq_ctrl *rxq_ctrl =
2796                         container_of((*priv->rxqs)[idx],
2797                                      struct mlx5_rxq_ctrl, rxq);
2798
2799                 if (mark) {
2800                         rxq_ctrl->flow_mark_n--;
2801                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
2802                 }
2803                 if (tunnel) {
2804                         unsigned int j;
2805
2806                         /* Decrease the counter matching the flow. */
2807                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
2808                                 if ((tunnels_info[j].tunnel & flow->layers) ==
2809                                     tunnels_info[j].tunnel) {
2810                                         rxq_ctrl->flow_tunnels_n[j]--;
2811                                         break;
2812                                 }
2813                         }
2814                         mlx5_flow_rxq_tunnel_ptype_update(rxq_ctrl);
2815                 }
2816         }
2817 }
2818
2819 /**
2820  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
2821  *
2822  * @param dev
2823  *   Pointer to Ethernet device.
2824  */
2825 static void
2826 mlx5_flow_rxq_flags_clear(struct rte_eth_dev *dev)
2827 {
2828         struct priv *priv = dev->data->dev_private;
2829         unsigned int i;
2830
2831         for (i = 0; i != priv->rxqs_n; ++i) {
2832                 struct mlx5_rxq_ctrl *rxq_ctrl;
2833                 unsigned int j;
2834
2835                 if (!(*priv->rxqs)[i])
2836                         continue;
2837                 rxq_ctrl = container_of((*priv->rxqs)[i],
2838                                         struct mlx5_rxq_ctrl, rxq);
2839                 rxq_ctrl->flow_mark_n = 0;
2840                 rxq_ctrl->rxq.mark = 0;
2841                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
2842                         rxq_ctrl->flow_tunnels_n[j] = 0;
2843                 rxq_ctrl->rxq.tunnel = 0;
2844         }
2845 }
2846
2847 /**
2848  * Validate a flow supported by the NIC.
2849  *
2850  * @see rte_flow_validate()
2851  * @see rte_flow_ops
2852  */
2853 int
2854 mlx5_flow_validate(struct rte_eth_dev *dev,
2855                    const struct rte_flow_attr *attr,
2856                    const struct rte_flow_item items[],
2857                    const struct rte_flow_action actions[],
2858                    struct rte_flow_error *error)
2859 {
2860         int ret = mlx5_flow_merge(dev, NULL, 0, attr, items, actions, error);
2861
2862         if (ret < 0)
2863                 return ret;
2864         return 0;
2865 }
2866
2867 /**
2868  * Remove the flow.
2869  *
2870  * @param[in] dev
2871  *   Pointer to Ethernet device.
2872  * @param[in, out] flow
2873  *   Pointer to flow structure.
2874  */
2875 static void
2876 mlx5_flow_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2877 {
2878         struct priv *priv = dev->data->dev_private;
2879         struct mlx5_flow_verbs *verbs;
2880
2881         if (flow->nl_flow && priv->mnl_socket)
2882                 mlx5_nl_flow_destroy(priv->mnl_socket, flow->nl_flow, NULL);
2883         LIST_FOREACH(verbs, &flow->verbs, next) {
2884                 if (verbs->flow) {
2885                         claim_zero(mlx5_glue->destroy_flow(verbs->flow));
2886                         verbs->flow = NULL;
2887                 }
2888                 if (verbs->hrxq) {
2889                         if (flow->fate & MLX5_FLOW_FATE_DROP)
2890                                 mlx5_hrxq_drop_release(dev);
2891                         else
2892                                 mlx5_hrxq_release(dev, verbs->hrxq);
2893                         verbs->hrxq = NULL;
2894                 }
2895         }
2896         if (flow->counter) {
2897                 mlx5_flow_counter_release(flow->counter);
2898                 flow->counter = NULL;
2899         }
2900 }
2901
2902 /**
2903  * Apply the flow.
2904  *
2905  * @param[in] dev
2906  *   Pointer to Ethernet device structure.
2907  * @param[in, out] flow
2908  *   Pointer to flow structure.
2909  * @param[out] error
2910  *   Pointer to error structure.
2911  *
2912  * @return
2913  *   0 on success, a negative errno value otherwise and rte_errno is set.
2914  */
2915 static int
2916 mlx5_flow_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2917                 struct rte_flow_error *error)
2918 {
2919         struct priv *priv = dev->data->dev_private;
2920         struct mlx5_flow_verbs *verbs;
2921         int err;
2922
2923         LIST_FOREACH(verbs, &flow->verbs, next) {
2924                 if (flow->fate & MLX5_FLOW_FATE_DROP) {
2925                         verbs->hrxq = mlx5_hrxq_drop_new(dev);
2926                         if (!verbs->hrxq) {
2927                                 rte_flow_error_set
2928                                         (error, errno,
2929                                          RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2930                                          NULL,
2931                                          "cannot get drop hash queue");
2932                                 goto error;
2933                         }
2934                 } else {
2935                         struct mlx5_hrxq *hrxq;
2936
2937                         hrxq = mlx5_hrxq_get(dev, flow->key,
2938                                              MLX5_RSS_HASH_KEY_LEN,
2939                                              verbs->hash_fields,
2940                                              (*flow->queue),
2941                                              flow->rss.queue_num);
2942                         if (!hrxq)
2943                                 hrxq = mlx5_hrxq_new(dev, flow->key,
2944                                                      MLX5_RSS_HASH_KEY_LEN,
2945                                                      verbs->hash_fields,
2946                                                      (*flow->queue),
2947                                                      flow->rss.queue_num,
2948                                                      !!(flow->layers &
2949                                                       MLX5_FLOW_LAYER_TUNNEL));
2950                         if (!hrxq) {
2951                                 rte_flow_error_set
2952                                         (error, rte_errno,
2953                                          RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2954                                          NULL,
2955                                          "cannot get hash queue");
2956                                 goto error;
2957                         }
2958                         verbs->hrxq = hrxq;
2959                 }
2960                 verbs->flow =
2961                         mlx5_glue->create_flow(verbs->hrxq->qp, verbs->attr);
2962                 if (!verbs->flow) {
2963                         rte_flow_error_set(error, errno,
2964                                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2965                                            NULL,
2966                                            "hardware refuses to create flow");
2967                         goto error;
2968                 }
2969         }
2970         if (flow->nl_flow &&
2971             priv->mnl_socket &&
2972             mlx5_nl_flow_create(priv->mnl_socket, flow->nl_flow, error))
2973                 goto error;
2974         return 0;
2975 error:
2976         err = rte_errno; /* Save rte_errno before cleanup. */
2977         LIST_FOREACH(verbs, &flow->verbs, next) {
2978                 if (verbs->hrxq) {
2979                         if (flow->fate & MLX5_FLOW_FATE_DROP)
2980                                 mlx5_hrxq_drop_release(dev);
2981                         else
2982                                 mlx5_hrxq_release(dev, verbs->hrxq);
2983                         verbs->hrxq = NULL;
2984                 }
2985         }
2986         rte_errno = err; /* Restore rte_errno. */
2987         return -rte_errno;
2988 }
2989
2990 /**
2991  * Create a flow and add it to @p list.
2992  *
2993  * @param dev
2994  *   Pointer to Ethernet device.
2995  * @param list
2996  *   Pointer to a TAILQ flow list.
2997  * @param[in] attr
2998  *   Flow rule attributes.
2999  * @param[in] items
3000  *   Pattern specification (list terminated by the END pattern item).
3001  * @param[in] actions
3002  *   Associated actions (list terminated by the END action).
3003  * @param[out] error
3004  *   Perform verbose error reporting if not NULL.
3005  *
3006  * @return
3007  *   A flow on success, NULL otherwise and rte_errno is set.
3008  */
3009 static struct rte_flow *
3010 mlx5_flow_list_create(struct rte_eth_dev *dev,
3011                       struct mlx5_flows *list,
3012                       const struct rte_flow_attr *attr,
3013                       const struct rte_flow_item items[],
3014                       const struct rte_flow_action actions[],
3015                       struct rte_flow_error *error)
3016 {
3017         struct rte_flow *flow = NULL;
3018         size_t size = 0;
3019         int ret;
3020
3021         ret = mlx5_flow_merge(dev, flow, size, attr, items, actions, error);
3022         if (ret < 0)
3023                 return NULL;
3024         size = ret;
3025         flow = rte_calloc(__func__, 1, size, 0);
3026         if (!flow) {
3027                 rte_flow_error_set(error, ENOMEM,
3028                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3029                                    NULL,
3030                                    "not enough memory to create flow");
3031                 return NULL;
3032         }
3033         ret = mlx5_flow_merge(dev, flow, size, attr, items, actions, error);
3034         if (ret < 0) {
3035                 rte_free(flow);
3036                 return NULL;
3037         }
3038         assert((size_t)ret == size);
3039         if (dev->data->dev_started) {
3040                 ret = mlx5_flow_apply(dev, flow, error);
3041                 if (ret < 0) {
3042                         ret = rte_errno; /* Save rte_errno before cleanup. */
3043                         if (flow) {
3044                                 mlx5_flow_remove(dev, flow);
3045                                 rte_free(flow);
3046                         }
3047                         rte_errno = ret; /* Restore rte_errno. */
3048                         return NULL;
3049                 }
3050         }
3051         TAILQ_INSERT_TAIL(list, flow, next);
3052         mlx5_flow_rxq_flags_set(dev, flow);
3053         return flow;
3054 }
3055
3056 /**
3057  * Create a flow.
3058  *
3059  * @see rte_flow_create()
3060  * @see rte_flow_ops
3061  */
3062 struct rte_flow *
3063 mlx5_flow_create(struct rte_eth_dev *dev,
3064                  const struct rte_flow_attr *attr,
3065                  const struct rte_flow_item items[],
3066                  const struct rte_flow_action actions[],
3067                  struct rte_flow_error *error)
3068 {
3069         return mlx5_flow_list_create
3070                 (dev, &((struct priv *)dev->data->dev_private)->flows,
3071                  attr, items, actions, error);
3072 }
3073
3074 /**
3075  * Destroy a flow in a list.
3076  *
3077  * @param dev
3078  *   Pointer to Ethernet device.
3079  * @param list
3080  *   Pointer to a TAILQ flow list.
3081  * @param[in] flow
3082  *   Flow to destroy.
3083  */
3084 static void
3085 mlx5_flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
3086                        struct rte_flow *flow)
3087 {
3088         mlx5_flow_remove(dev, flow);
3089         TAILQ_REMOVE(list, flow, next);
3090         /*
3091          * Update RX queue flags only if port is started, otherwise it is
3092          * already clean.
3093          */
3094         if (dev->data->dev_started)
3095                 mlx5_flow_rxq_flags_trim(dev, flow);
3096         rte_free(flow);
3097 }
3098
3099 /**
3100  * Destroy all flows.
3101  *
3102  * @param dev
3103  *   Pointer to Ethernet device.
3104  * @param list
3105  *   Pointer to a TAILQ flow list.
3106  */
3107 void
3108 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
3109 {
3110         while (!TAILQ_EMPTY(list)) {
3111                 struct rte_flow *flow;
3112
3113                 flow = TAILQ_FIRST(list);
3114                 mlx5_flow_list_destroy(dev, list, flow);
3115         }
3116 }
3117
3118 /**
3119  * Remove all flows.
3120  *
3121  * @param dev
3122  *   Pointer to Ethernet device.
3123  * @param list
3124  *   Pointer to a TAILQ flow list.
3125  */
3126 void
3127 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
3128 {
3129         struct rte_flow *flow;
3130
3131         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
3132                 mlx5_flow_remove(dev, flow);
3133         mlx5_flow_rxq_flags_clear(dev);
3134 }
3135
3136 /**
3137  * Add all flows.
3138  *
3139  * @param dev
3140  *   Pointer to Ethernet device.
3141  * @param list
3142  *   Pointer to a TAILQ flow list.
3143  *
3144  * @return
3145  *   0 on success, a negative errno value otherwise and rte_errno is set.
3146  */
3147 int
3148 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
3149 {
3150         struct rte_flow *flow;
3151         struct rte_flow_error error;
3152         int ret = 0;
3153
3154         TAILQ_FOREACH(flow, list, next) {
3155                 ret = mlx5_flow_apply(dev, flow, &error);
3156                 if (ret < 0)
3157                         goto error;
3158                 mlx5_flow_rxq_flags_set(dev, flow);
3159         }
3160         return 0;
3161 error:
3162         ret = rte_errno; /* Save rte_errno before cleanup. */
3163         mlx5_flow_stop(dev, list);
3164         rte_errno = ret; /* Restore rte_errno. */
3165         return -rte_errno;
3166 }
3167
3168 /**
3169  * Verify the flow list is empty
3170  *
3171  * @param dev
3172  *  Pointer to Ethernet device.
3173  *
3174  * @return the number of flows not released.
3175  */
3176 int
3177 mlx5_flow_verify(struct rte_eth_dev *dev)
3178 {
3179         struct priv *priv = dev->data->dev_private;
3180         struct rte_flow *flow;
3181         int ret = 0;
3182
3183         TAILQ_FOREACH(flow, &priv->flows, next) {
3184                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
3185                         dev->data->port_id, (void *)flow);
3186                 ++ret;
3187         }
3188         return ret;
3189 }
3190
3191 /**
3192  * Enable a control flow configured from the control plane.
3193  *
3194  * @param dev
3195  *   Pointer to Ethernet device.
3196  * @param eth_spec
3197  *   An Ethernet flow spec to apply.
3198  * @param eth_mask
3199  *   An Ethernet flow mask to apply.
3200  * @param vlan_spec
3201  *   A VLAN flow spec to apply.
3202  * @param vlan_mask
3203  *   A VLAN flow mask to apply.
3204  *
3205  * @return
3206  *   0 on success, a negative errno value otherwise and rte_errno is set.
3207  */
3208 int
3209 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
3210                     struct rte_flow_item_eth *eth_spec,
3211                     struct rte_flow_item_eth *eth_mask,
3212                     struct rte_flow_item_vlan *vlan_spec,
3213                     struct rte_flow_item_vlan *vlan_mask)
3214 {
3215         struct priv *priv = dev->data->dev_private;
3216         const struct rte_flow_attr attr = {
3217                 .ingress = 1,
3218                 .priority = MLX5_FLOW_PRIO_RSVD,
3219         };
3220         struct rte_flow_item items[] = {
3221                 {
3222                         .type = RTE_FLOW_ITEM_TYPE_ETH,
3223                         .spec = eth_spec,
3224                         .last = NULL,
3225                         .mask = eth_mask,
3226                 },
3227                 {
3228                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
3229                                 RTE_FLOW_ITEM_TYPE_END,
3230                         .spec = vlan_spec,
3231                         .last = NULL,
3232                         .mask = vlan_mask,
3233                 },
3234                 {
3235                         .type = RTE_FLOW_ITEM_TYPE_END,
3236                 },
3237         };
3238         uint16_t queue[priv->reta_idx_n];
3239         struct rte_flow_action_rss action_rss = {
3240                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3241                 .level = 0,
3242                 .types = priv->rss_conf.rss_hf,
3243                 .key_len = priv->rss_conf.rss_key_len,
3244                 .queue_num = priv->reta_idx_n,
3245                 .key = priv->rss_conf.rss_key,
3246                 .queue = queue,
3247         };
3248         struct rte_flow_action actions[] = {
3249                 {
3250                         .type = RTE_FLOW_ACTION_TYPE_RSS,
3251                         .conf = &action_rss,
3252                 },
3253                 {
3254                         .type = RTE_FLOW_ACTION_TYPE_END,
3255                 },
3256         };
3257         struct rte_flow *flow;
3258         struct rte_flow_error error;
3259         unsigned int i;
3260
3261         if (!priv->reta_idx_n) {
3262                 rte_errno = EINVAL;
3263                 return -rte_errno;
3264         }
3265         for (i = 0; i != priv->reta_idx_n; ++i)
3266                 queue[i] = (*priv->reta_idx)[i];
3267         flow = mlx5_flow_list_create(dev, &priv->ctrl_flows, &attr, items,
3268                                      actions, &error);
3269         if (!flow)
3270                 return -rte_errno;
3271         return 0;
3272 }
3273
3274 /**
3275  * Enable a flow control configured from the control plane.
3276  *
3277  * @param dev
3278  *   Pointer to Ethernet device.
3279  * @param eth_spec
3280  *   An Ethernet flow spec to apply.
3281  * @param eth_mask
3282  *   An Ethernet flow mask to apply.
3283  *
3284  * @return
3285  *   0 on success, a negative errno value otherwise and rte_errno is set.
3286  */
3287 int
3288 mlx5_ctrl_flow(struct rte_eth_dev *dev,
3289                struct rte_flow_item_eth *eth_spec,
3290                struct rte_flow_item_eth *eth_mask)
3291 {
3292         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
3293 }
3294
3295 /**
3296  * Destroy a flow.
3297  *
3298  * @see rte_flow_destroy()
3299  * @see rte_flow_ops
3300  */
3301 int
3302 mlx5_flow_destroy(struct rte_eth_dev *dev,
3303                   struct rte_flow *flow,
3304                   struct rte_flow_error *error __rte_unused)
3305 {
3306         struct priv *priv = dev->data->dev_private;
3307
3308         mlx5_flow_list_destroy(dev, &priv->flows, flow);
3309         return 0;
3310 }
3311
3312 /**
3313  * Destroy all flows.
3314  *
3315  * @see rte_flow_flush()
3316  * @see rte_flow_ops
3317  */
3318 int
3319 mlx5_flow_flush(struct rte_eth_dev *dev,
3320                 struct rte_flow_error *error __rte_unused)
3321 {
3322         struct priv *priv = dev->data->dev_private;
3323
3324         mlx5_flow_list_flush(dev, &priv->flows);
3325         return 0;
3326 }
3327
3328 /**
3329  * Isolated mode.
3330  *
3331  * @see rte_flow_isolate()
3332  * @see rte_flow_ops
3333  */
3334 int
3335 mlx5_flow_isolate(struct rte_eth_dev *dev,
3336                   int enable,
3337                   struct rte_flow_error *error)
3338 {
3339         struct priv *priv = dev->data->dev_private;
3340
3341         if (dev->data->dev_started) {
3342                 rte_flow_error_set(error, EBUSY,
3343                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3344                                    NULL,
3345                                    "port must be stopped first");
3346                 return -rte_errno;
3347         }
3348         priv->isolated = !!enable;
3349         if (enable)
3350                 dev->dev_ops = &mlx5_dev_ops_isolate;
3351         else
3352                 dev->dev_ops = &mlx5_dev_ops;
3353         return 0;
3354 }
3355
3356 /**
3357  * Query flow counter.
3358  *
3359  * @param flow
3360  *   Pointer to the flow.
3361  *
3362  * @return
3363  *   0 on success, a negative errno value otherwise and rte_errno is set.
3364  */
3365 static int
3366 mlx5_flow_query_count(struct rte_flow *flow __rte_unused,
3367                       void *data __rte_unused,
3368                       struct rte_flow_error *error)
3369 {
3370 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT
3371         if (flow->modifier & MLX5_FLOW_MOD_COUNT) {
3372                 struct rte_flow_query_count *qc = data;
3373                 uint64_t counters[2] = {0, 0};
3374                 struct ibv_query_counter_set_attr query_cs_attr = {
3375                         .cs = flow->counter->cs,
3376                         .query_flags = IBV_COUNTER_SET_FORCE_UPDATE,
3377                 };
3378                 struct ibv_counter_set_data query_out = {
3379                         .out = counters,
3380                         .outlen = 2 * sizeof(uint64_t),
3381                 };
3382                 int err = mlx5_glue->query_counter_set(&query_cs_attr,
3383                                                        &query_out);
3384
3385                 if (err)
3386                         return rte_flow_error_set
3387                                 (error, err,
3388                                  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3389                                  NULL,
3390                                  "cannot read counter");
3391                 qc->hits_set = 1;
3392                 qc->bytes_set = 1;
3393                 qc->hits = counters[0] - flow->counter->hits;
3394                 qc->bytes = counters[1] - flow->counter->bytes;
3395                 if (qc->reset) {
3396                         flow->counter->hits = counters[0];
3397                         flow->counter->bytes = counters[1];
3398                 }
3399                 return 0;
3400         }
3401         return rte_flow_error_set(error, ENOTSUP,
3402                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3403                                   NULL,
3404                                   "flow does not have counter");
3405 #endif
3406         return rte_flow_error_set(error, ENOTSUP,
3407                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
3408                                   NULL,
3409                                   "counters are not available");
3410 }
3411
3412 /**
3413  * Query a flows.
3414  *
3415  * @see rte_flow_query()
3416  * @see rte_flow_ops
3417  */
3418 int
3419 mlx5_flow_query(struct rte_eth_dev *dev __rte_unused,
3420                 struct rte_flow *flow,
3421                 const struct rte_flow_action *actions,
3422                 void *data,
3423                 struct rte_flow_error *error)
3424 {
3425         int ret = 0;
3426
3427         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3428                 switch (actions->type) {
3429                 case RTE_FLOW_ACTION_TYPE_VOID:
3430                         break;
3431                 case RTE_FLOW_ACTION_TYPE_COUNT:
3432                         ret = mlx5_flow_query_count(flow, data, error);
3433                         break;
3434                 default:
3435                         return rte_flow_error_set(error, ENOTSUP,
3436                                                   RTE_FLOW_ERROR_TYPE_ACTION,
3437                                                   actions,
3438                                                   "action not supported");
3439                 }
3440                 if (ret < 0)
3441                         return ret;
3442         }
3443         return 0;
3444 }
3445
3446 /**
3447  * Convert a flow director filter to a generic flow.
3448  *
3449  * @param dev
3450  *   Pointer to Ethernet device.
3451  * @param fdir_filter
3452  *   Flow director filter to add.
3453  * @param attributes
3454  *   Generic flow parameters structure.
3455  *
3456  * @return
3457  *   0 on success, a negative errno value otherwise and rte_errno is set.
3458  */
3459 static int
3460 mlx5_fdir_filter_convert(struct rte_eth_dev *dev,
3461                          const struct rte_eth_fdir_filter *fdir_filter,
3462                          struct mlx5_fdir *attributes)
3463 {
3464         struct priv *priv = dev->data->dev_private;
3465         const struct rte_eth_fdir_input *input = &fdir_filter->input;
3466         const struct rte_eth_fdir_masks *mask =
3467                 &dev->data->dev_conf.fdir_conf.mask;
3468
3469         /* Validate queue number. */
3470         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
3471                 DRV_LOG(ERR, "port %u invalid queue number %d",
3472                         dev->data->port_id, fdir_filter->action.rx_queue);
3473                 rte_errno = EINVAL;
3474                 return -rte_errno;
3475         }
3476         attributes->attr.ingress = 1;
3477         attributes->items[0] = (struct rte_flow_item) {
3478                 .type = RTE_FLOW_ITEM_TYPE_ETH,
3479                 .spec = &attributes->l2,
3480                 .mask = &attributes->l2_mask,
3481         };
3482         switch (fdir_filter->action.behavior) {
3483         case RTE_ETH_FDIR_ACCEPT:
3484                 attributes->actions[0] = (struct rte_flow_action){
3485                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
3486                         .conf = &attributes->queue,
3487                 };
3488                 break;
3489         case RTE_ETH_FDIR_REJECT:
3490                 attributes->actions[0] = (struct rte_flow_action){
3491                         .type = RTE_FLOW_ACTION_TYPE_DROP,
3492                 };
3493                 break;
3494         default:
3495                 DRV_LOG(ERR, "port %u invalid behavior %d",
3496                         dev->data->port_id,
3497                         fdir_filter->action.behavior);
3498                 rte_errno = ENOTSUP;
3499                 return -rte_errno;
3500         }
3501         attributes->queue.index = fdir_filter->action.rx_queue;
3502         /* Handle L3. */
3503         switch (fdir_filter->input.flow_type) {
3504         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3505         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3506         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3507                 attributes->l3.ipv4.hdr = (struct ipv4_hdr){
3508                         .src_addr = input->flow.ip4_flow.src_ip,
3509                         .dst_addr = input->flow.ip4_flow.dst_ip,
3510                         .time_to_live = input->flow.ip4_flow.ttl,
3511                         .type_of_service = input->flow.ip4_flow.tos,
3512                         .next_proto_id = input->flow.ip4_flow.proto,
3513                 };
3514                 attributes->l3_mask.ipv4.hdr = (struct ipv4_hdr){
3515                         .src_addr = mask->ipv4_mask.src_ip,
3516                         .dst_addr = mask->ipv4_mask.dst_ip,
3517                         .time_to_live = mask->ipv4_mask.ttl,
3518                         .type_of_service = mask->ipv4_mask.tos,
3519                         .next_proto_id = mask->ipv4_mask.proto,
3520                 };
3521                 attributes->items[1] = (struct rte_flow_item){
3522                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
3523                         .spec = &attributes->l3,
3524                         .mask = &attributes->l3_mask,
3525                 };
3526                 break;
3527         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3528         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3529         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3530                 attributes->l3.ipv6.hdr = (struct ipv6_hdr){
3531                         .hop_limits = input->flow.ipv6_flow.hop_limits,
3532                         .proto = input->flow.ipv6_flow.proto,
3533                 };
3534
3535                 memcpy(attributes->l3.ipv6.hdr.src_addr,
3536                        input->flow.ipv6_flow.src_ip,
3537                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3538                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
3539                        input->flow.ipv6_flow.dst_ip,
3540                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3541                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
3542                        mask->ipv6_mask.src_ip,
3543                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3544                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
3545                        mask->ipv6_mask.dst_ip,
3546                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3547                 attributes->items[1] = (struct rte_flow_item){
3548                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
3549                         .spec = &attributes->l3,
3550                         .mask = &attributes->l3_mask,
3551                 };
3552                 break;
3553         default:
3554                 DRV_LOG(ERR, "port %u invalid flow type%d",
3555                         dev->data->port_id, fdir_filter->input.flow_type);
3556                 rte_errno = ENOTSUP;
3557                 return -rte_errno;
3558         }
3559         /* Handle L4. */
3560         switch (fdir_filter->input.flow_type) {
3561         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3562                 attributes->l4.udp.hdr = (struct udp_hdr){
3563                         .src_port = input->flow.udp4_flow.src_port,
3564                         .dst_port = input->flow.udp4_flow.dst_port,
3565                 };
3566                 attributes->l4_mask.udp.hdr = (struct udp_hdr){
3567                         .src_port = mask->src_port_mask,
3568                         .dst_port = mask->dst_port_mask,
3569                 };
3570                 attributes->items[2] = (struct rte_flow_item){
3571                         .type = RTE_FLOW_ITEM_TYPE_UDP,
3572                         .spec = &attributes->l4,
3573                         .mask = &attributes->l4_mask,
3574                 };
3575                 break;
3576         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3577                 attributes->l4.tcp.hdr = (struct tcp_hdr){
3578                         .src_port = input->flow.tcp4_flow.src_port,
3579                         .dst_port = input->flow.tcp4_flow.dst_port,
3580                 };
3581                 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
3582                         .src_port = mask->src_port_mask,
3583                         .dst_port = mask->dst_port_mask,
3584                 };
3585                 attributes->items[2] = (struct rte_flow_item){
3586                         .type = RTE_FLOW_ITEM_TYPE_TCP,
3587                         .spec = &attributes->l4,
3588                         .mask = &attributes->l4_mask,
3589                 };
3590                 break;
3591         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3592                 attributes->l4.udp.hdr = (struct udp_hdr){
3593                         .src_port = input->flow.udp6_flow.src_port,
3594                         .dst_port = input->flow.udp6_flow.dst_port,
3595                 };
3596                 attributes->l4_mask.udp.hdr = (struct udp_hdr){
3597                         .src_port = mask->src_port_mask,
3598                         .dst_port = mask->dst_port_mask,
3599                 };
3600                 attributes->items[2] = (struct rte_flow_item){
3601                         .type = RTE_FLOW_ITEM_TYPE_UDP,
3602                         .spec = &attributes->l4,
3603                         .mask = &attributes->l4_mask,
3604                 };
3605                 break;
3606         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3607                 attributes->l4.tcp.hdr = (struct tcp_hdr){
3608                         .src_port = input->flow.tcp6_flow.src_port,
3609                         .dst_port = input->flow.tcp6_flow.dst_port,
3610                 };
3611                 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
3612                         .src_port = mask->src_port_mask,
3613                         .dst_port = mask->dst_port_mask,
3614                 };
3615                 attributes->items[2] = (struct rte_flow_item){
3616                         .type = RTE_FLOW_ITEM_TYPE_TCP,
3617                         .spec = &attributes->l4,
3618                         .mask = &attributes->l4_mask,
3619                 };
3620                 break;
3621         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3622         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3623                 break;
3624         default:
3625                 DRV_LOG(ERR, "port %u invalid flow type%d",
3626                         dev->data->port_id, fdir_filter->input.flow_type);
3627                 rte_errno = ENOTSUP;
3628                 return -rte_errno;
3629         }
3630         return 0;
3631 }
3632
3633 /**
3634  * Add new flow director filter and store it in list.
3635  *
3636  * @param dev
3637  *   Pointer to Ethernet device.
3638  * @param fdir_filter
3639  *   Flow director filter to add.
3640  *
3641  * @return
3642  *   0 on success, a negative errno value otherwise and rte_errno is set.
3643  */
3644 static int
3645 mlx5_fdir_filter_add(struct rte_eth_dev *dev,
3646                      const struct rte_eth_fdir_filter *fdir_filter)
3647 {
3648         struct priv *priv = dev->data->dev_private;
3649         struct mlx5_fdir attributes = {
3650                 .attr.group = 0,
3651                 .l2_mask = {
3652                         .dst.addr_bytes = "\x00\x00\x00\x00\x00\x00",
3653                         .src.addr_bytes = "\x00\x00\x00\x00\x00\x00",
3654                         .type = 0,
3655                 },
3656         };
3657         struct rte_flow_error error;
3658         struct rte_flow *flow;
3659         int ret;
3660
3661         ret = mlx5_fdir_filter_convert(dev, fdir_filter, &attributes);
3662         if (ret)
3663                 return ret;
3664         flow = mlx5_flow_list_create(dev, &priv->flows, &attributes.attr,
3665                                      attributes.items, attributes.actions,
3666                                      &error);
3667         if (flow) {
3668                 DRV_LOG(DEBUG, "port %u FDIR created %p", dev->data->port_id,
3669                         (void *)flow);
3670                 return 0;
3671         }
3672         return -rte_errno;
3673 }
3674
3675 /**
3676  * Delete specific filter.
3677  *
3678  * @param dev
3679  *   Pointer to Ethernet device.
3680  * @param fdir_filter
3681  *   Filter to be deleted.
3682  *
3683  * @return
3684  *   0 on success, a negative errno value otherwise and rte_errno is set.
3685  */
3686 static int
3687 mlx5_fdir_filter_delete(struct rte_eth_dev *dev __rte_unused,
3688                         const struct rte_eth_fdir_filter *fdir_filter
3689                         __rte_unused)
3690 {
3691         rte_errno = ENOTSUP;
3692         return -rte_errno;
3693 }
3694
3695 /**
3696  * Update queue for specific filter.
3697  *
3698  * @param dev
3699  *   Pointer to Ethernet device.
3700  * @param fdir_filter
3701  *   Filter to be updated.
3702  *
3703  * @return
3704  *   0 on success, a negative errno value otherwise and rte_errno is set.
3705  */
3706 static int
3707 mlx5_fdir_filter_update(struct rte_eth_dev *dev,
3708                         const struct rte_eth_fdir_filter *fdir_filter)
3709 {
3710         int ret;
3711
3712         ret = mlx5_fdir_filter_delete(dev, fdir_filter);
3713         if (ret)
3714                 return ret;
3715         return mlx5_fdir_filter_add(dev, fdir_filter);
3716 }
3717
3718 /**
3719  * Flush all filters.
3720  *
3721  * @param dev
3722  *   Pointer to Ethernet device.
3723  */
3724 static void
3725 mlx5_fdir_filter_flush(struct rte_eth_dev *dev)
3726 {
3727         struct priv *priv = dev->data->dev_private;
3728
3729         mlx5_flow_list_flush(dev, &priv->flows);
3730 }
3731
3732 /**
3733  * Get flow director information.
3734  *
3735  * @param dev
3736  *   Pointer to Ethernet device.
3737  * @param[out] fdir_info
3738  *   Resulting flow director information.
3739  */
3740 static void
3741 mlx5_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
3742 {
3743         struct rte_eth_fdir_masks *mask =
3744                 &dev->data->dev_conf.fdir_conf.mask;
3745
3746         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
3747         fdir_info->guarant_spc = 0;
3748         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
3749         fdir_info->max_flexpayload = 0;
3750         fdir_info->flow_types_mask[0] = 0;
3751         fdir_info->flex_payload_unit = 0;
3752         fdir_info->max_flex_payload_segment_num = 0;
3753         fdir_info->flex_payload_limit = 0;
3754         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
3755 }
3756
3757 /**
3758  * Deal with flow director operations.
3759  *
3760  * @param dev
3761  *   Pointer to Ethernet device.
3762  * @param filter_op
3763  *   Operation to perform.
3764  * @param arg
3765  *   Pointer to operation-specific structure.
3766  *
3767  * @return
3768  *   0 on success, a negative errno value otherwise and rte_errno is set.
3769  */
3770 static int
3771 mlx5_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3772                     void *arg)
3773 {
3774         enum rte_fdir_mode fdir_mode =
3775                 dev->data->dev_conf.fdir_conf.mode;
3776
3777         if (filter_op == RTE_ETH_FILTER_NOP)
3778                 return 0;
3779         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3780             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3781                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
3782                         dev->data->port_id, fdir_mode);
3783                 rte_errno = EINVAL;
3784                 return -rte_errno;
3785         }
3786         switch (filter_op) {
3787         case RTE_ETH_FILTER_ADD:
3788                 return mlx5_fdir_filter_add(dev, arg);
3789         case RTE_ETH_FILTER_UPDATE:
3790                 return mlx5_fdir_filter_update(dev, arg);
3791         case RTE_ETH_FILTER_DELETE:
3792                 return mlx5_fdir_filter_delete(dev, arg);
3793         case RTE_ETH_FILTER_FLUSH:
3794                 mlx5_fdir_filter_flush(dev);
3795                 break;
3796         case RTE_ETH_FILTER_INFO:
3797                 mlx5_fdir_info_get(dev, arg);
3798                 break;
3799         default:
3800                 DRV_LOG(DEBUG, "port %u unknown operation %u",
3801                         dev->data->port_id, filter_op);
3802                 rte_errno = EINVAL;
3803                 return -rte_errno;
3804         }
3805         return 0;
3806 }
3807
3808 /**
3809  * Manage filter operations.
3810  *
3811  * @param dev
3812  *   Pointer to Ethernet device structure.
3813  * @param filter_type
3814  *   Filter type.
3815  * @param filter_op
3816  *   Operation to perform.
3817  * @param arg
3818  *   Pointer to operation-specific structure.
3819  *
3820  * @return
3821  *   0 on success, a negative errno value otherwise and rte_errno is set.
3822  */
3823 int
3824 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3825                      enum rte_filter_type filter_type,
3826                      enum rte_filter_op filter_op,
3827                      void *arg)
3828 {
3829         switch (filter_type) {
3830         case RTE_ETH_FILTER_GENERIC:
3831                 if (filter_op != RTE_ETH_FILTER_GET) {
3832                         rte_errno = EINVAL;
3833                         return -rte_errno;
3834                 }
3835                 *(const void **)arg = &mlx5_flow_ops;
3836                 return 0;
3837         case RTE_ETH_FILTER_FDIR:
3838                 return mlx5_fdir_ctrl_func(dev, filter_op, arg);
3839         default:
3840                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
3841                         dev->data->port_id, filter_type);
3842                 rte_errno = ENOTSUP;
3843                 return -rte_errno;
3844         }
3845         return 0;
3846 }