net/mlx5: add flow match on GENEVE item
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57
58 enum mlx5_expansion {
59         MLX5_EXPANSION_ROOT,
60         MLX5_EXPANSION_ROOT_OUTER,
61         MLX5_EXPANSION_ROOT_ETH_VLAN,
62         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63         MLX5_EXPANSION_OUTER_ETH,
64         MLX5_EXPANSION_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_VLAN,
66         MLX5_EXPANSION_OUTER_IPV4,
67         MLX5_EXPANSION_OUTER_IPV4_UDP,
68         MLX5_EXPANSION_OUTER_IPV4_TCP,
69         MLX5_EXPANSION_OUTER_IPV6,
70         MLX5_EXPANSION_OUTER_IPV6_UDP,
71         MLX5_EXPANSION_OUTER_IPV6_TCP,
72         MLX5_EXPANSION_VXLAN,
73         MLX5_EXPANSION_VXLAN_GPE,
74         MLX5_EXPANSION_GRE,
75         MLX5_EXPANSION_MPLS,
76         MLX5_EXPANSION_ETH,
77         MLX5_EXPANSION_ETH_VLAN,
78         MLX5_EXPANSION_VLAN,
79         MLX5_EXPANSION_IPV4,
80         MLX5_EXPANSION_IPV4_UDP,
81         MLX5_EXPANSION_IPV4_TCP,
82         MLX5_EXPANSION_IPV6,
83         MLX5_EXPANSION_IPV6_UDP,
84         MLX5_EXPANSION_IPV6_TCP,
85 };
86
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89         [MLX5_EXPANSION_ROOT] = {
90                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91                                                  MLX5_EXPANSION_IPV4,
92                                                  MLX5_EXPANSION_IPV6),
93                 .type = RTE_FLOW_ITEM_TYPE_END,
94         },
95         [MLX5_EXPANSION_ROOT_OUTER] = {
96                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97                                                  MLX5_EXPANSION_OUTER_IPV4,
98                                                  MLX5_EXPANSION_OUTER_IPV6),
99                 .type = RTE_FLOW_ITEM_TYPE_END,
100         },
101         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103                 .type = RTE_FLOW_ITEM_TYPE_END,
104         },
105         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107                 .type = RTE_FLOW_ITEM_TYPE_END,
108         },
109         [MLX5_EXPANSION_OUTER_ETH] = {
110                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111                                                  MLX5_EXPANSION_OUTER_IPV6,
112                                                  MLX5_EXPANSION_MPLS),
113                 .type = RTE_FLOW_ITEM_TYPE_ETH,
114                 .rss_types = 0,
115         },
116         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118                 .type = RTE_FLOW_ITEM_TYPE_ETH,
119                 .rss_types = 0,
120         },
121         [MLX5_EXPANSION_OUTER_VLAN] = {
122                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123                                                  MLX5_EXPANSION_OUTER_IPV6),
124                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
125         },
126         [MLX5_EXPANSION_OUTER_IPV4] = {
127                 .next = RTE_FLOW_EXPAND_RSS_NEXT
128                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
129                          MLX5_EXPANSION_OUTER_IPV4_TCP,
130                          MLX5_EXPANSION_GRE,
131                          MLX5_EXPANSION_IPV4,
132                          MLX5_EXPANSION_IPV6),
133                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
134                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135                         ETH_RSS_NONFRAG_IPV4_OTHER,
136         },
137         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139                                                  MLX5_EXPANSION_VXLAN_GPE),
140                 .type = RTE_FLOW_ITEM_TYPE_UDP,
141                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142         },
143         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144                 .type = RTE_FLOW_ITEM_TYPE_TCP,
145                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146         },
147         [MLX5_EXPANSION_OUTER_IPV6] = {
148                 .next = RTE_FLOW_EXPAND_RSS_NEXT
149                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
150                          MLX5_EXPANSION_OUTER_IPV6_TCP,
151                          MLX5_EXPANSION_IPV4,
152                          MLX5_EXPANSION_IPV6),
153                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
154                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
155                         ETH_RSS_NONFRAG_IPV6_OTHER,
156         },
157         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
158                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
159                                                  MLX5_EXPANSION_VXLAN_GPE),
160                 .type = RTE_FLOW_ITEM_TYPE_UDP,
161                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
162         },
163         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
164                 .type = RTE_FLOW_ITEM_TYPE_TCP,
165                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
166         },
167         [MLX5_EXPANSION_VXLAN] = {
168                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
169                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
170         },
171         [MLX5_EXPANSION_VXLAN_GPE] = {
172                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
173                                                  MLX5_EXPANSION_IPV4,
174                                                  MLX5_EXPANSION_IPV6),
175                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
176         },
177         [MLX5_EXPANSION_GRE] = {
178                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
179                 .type = RTE_FLOW_ITEM_TYPE_GRE,
180         },
181         [MLX5_EXPANSION_MPLS] = {
182                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
183                                                  MLX5_EXPANSION_IPV6),
184                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
185         },
186         [MLX5_EXPANSION_ETH] = {
187                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
188                                                  MLX5_EXPANSION_IPV6),
189                 .type = RTE_FLOW_ITEM_TYPE_ETH,
190         },
191         [MLX5_EXPANSION_ETH_VLAN] = {
192                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
193                 .type = RTE_FLOW_ITEM_TYPE_ETH,
194         },
195         [MLX5_EXPANSION_VLAN] = {
196                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
197                                                  MLX5_EXPANSION_IPV6),
198                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
199         },
200         [MLX5_EXPANSION_IPV4] = {
201                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
202                                                  MLX5_EXPANSION_IPV4_TCP),
203                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
204                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
205                         ETH_RSS_NONFRAG_IPV4_OTHER,
206         },
207         [MLX5_EXPANSION_IPV4_UDP] = {
208                 .type = RTE_FLOW_ITEM_TYPE_UDP,
209                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
210         },
211         [MLX5_EXPANSION_IPV4_TCP] = {
212                 .type = RTE_FLOW_ITEM_TYPE_TCP,
213                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
214         },
215         [MLX5_EXPANSION_IPV6] = {
216                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
217                                                  MLX5_EXPANSION_IPV6_TCP),
218                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
219                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
220                         ETH_RSS_NONFRAG_IPV6_OTHER,
221         },
222         [MLX5_EXPANSION_IPV6_UDP] = {
223                 .type = RTE_FLOW_ITEM_TYPE_UDP,
224                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
225         },
226         [MLX5_EXPANSION_IPV6_TCP] = {
227                 .type = RTE_FLOW_ITEM_TYPE_TCP,
228                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
229         },
230 };
231
232 static const struct rte_flow_ops mlx5_flow_ops = {
233         .validate = mlx5_flow_validate,
234         .create = mlx5_flow_create,
235         .destroy = mlx5_flow_destroy,
236         .flush = mlx5_flow_flush,
237         .isolate = mlx5_flow_isolate,
238         .query = mlx5_flow_query,
239 };
240
241 /* Convert FDIR request to Generic flow. */
242 struct mlx5_fdir {
243         struct rte_flow_attr attr;
244         struct rte_flow_item items[4];
245         struct rte_flow_item_eth l2;
246         struct rte_flow_item_eth l2_mask;
247         union {
248                 struct rte_flow_item_ipv4 ipv4;
249                 struct rte_flow_item_ipv6 ipv6;
250         } l3;
251         union {
252                 struct rte_flow_item_ipv4 ipv4;
253                 struct rte_flow_item_ipv6 ipv6;
254         } l3_mask;
255         union {
256                 struct rte_flow_item_udp udp;
257                 struct rte_flow_item_tcp tcp;
258         } l4;
259         union {
260                 struct rte_flow_item_udp udp;
261                 struct rte_flow_item_tcp tcp;
262         } l4_mask;
263         struct rte_flow_action actions[2];
264         struct rte_flow_action_queue queue;
265 };
266
267 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
268 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
269         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
270 };
271
272 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
273 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
274         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
275         { 9, 10, 11 }, { 12, 13, 14 },
276 };
277
278 /* Tunnel information. */
279 struct mlx5_flow_tunnel_info {
280         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
281         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
282 };
283
284 static struct mlx5_flow_tunnel_info tunnels_info[] = {
285         {
286                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
287                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
288         },
289         {
290                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
291                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
292         },
293         {
294                 .tunnel = MLX5_FLOW_LAYER_GRE,
295                 .ptype = RTE_PTYPE_TUNNEL_GRE,
296         },
297         {
298                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
299                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
300         },
301         {
302                 .tunnel = MLX5_FLOW_LAYER_MPLS,
303                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
304         },
305         {
306                 .tunnel = MLX5_FLOW_LAYER_NVGRE,
307                 .ptype = RTE_PTYPE_TUNNEL_NVGRE,
308         },
309         {
310                 .tunnel = MLX5_FLOW_LAYER_IPIP,
311                 .ptype = RTE_PTYPE_TUNNEL_IP,
312         },
313         {
314                 .tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
315                 .ptype = RTE_PTYPE_TUNNEL_IP,
316         },
317 };
318
319 /**
320  * Discover the maximum number of priority available.
321  *
322  * @param[in] dev
323  *   Pointer to the Ethernet device structure.
324  *
325  * @return
326  *   number of supported flow priority on success, a negative errno
327  *   value otherwise and rte_errno is set.
328  */
329 int
330 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
331 {
332         struct mlx5_priv *priv = dev->data->dev_private;
333         struct {
334                 struct ibv_flow_attr attr;
335                 struct ibv_flow_spec_eth eth;
336                 struct ibv_flow_spec_action_drop drop;
337         } flow_attr = {
338                 .attr = {
339                         .num_of_specs = 2,
340                         .port = (uint8_t)priv->ibv_port,
341                 },
342                 .eth = {
343                         .type = IBV_FLOW_SPEC_ETH,
344                         .size = sizeof(struct ibv_flow_spec_eth),
345                 },
346                 .drop = {
347                         .size = sizeof(struct ibv_flow_spec_action_drop),
348                         .type = IBV_FLOW_SPEC_ACTION_DROP,
349                 },
350         };
351         struct ibv_flow *flow;
352         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
353         uint16_t vprio[] = { 8, 16 };
354         int i;
355         int priority = 0;
356
357         if (!drop) {
358                 rte_errno = ENOTSUP;
359                 return -rte_errno;
360         }
361         for (i = 0; i != RTE_DIM(vprio); i++) {
362                 flow_attr.attr.priority = vprio[i] - 1;
363                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
364                 if (!flow)
365                         break;
366                 claim_zero(mlx5_glue->destroy_flow(flow));
367                 priority = vprio[i];
368         }
369         mlx5_hrxq_drop_release(dev);
370         switch (priority) {
371         case 8:
372                 priority = RTE_DIM(priority_map_3);
373                 break;
374         case 16:
375                 priority = RTE_DIM(priority_map_5);
376                 break;
377         default:
378                 rte_errno = ENOTSUP;
379                 DRV_LOG(ERR,
380                         "port %u verbs maximum priority: %d expected 8/16",
381                         dev->data->port_id, priority);
382                 return -rte_errno;
383         }
384         DRV_LOG(INFO, "port %u flow maximum priority: %d",
385                 dev->data->port_id, priority);
386         return priority;
387 }
388
389 /**
390  * Adjust flow priority based on the highest layer and the request priority.
391  *
392  * @param[in] dev
393  *   Pointer to the Ethernet device structure.
394  * @param[in] priority
395  *   The rule base priority.
396  * @param[in] subpriority
397  *   The priority based on the items.
398  *
399  * @return
400  *   The new priority.
401  */
402 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
403                                    uint32_t subpriority)
404 {
405         uint32_t res = 0;
406         struct mlx5_priv *priv = dev->data->dev_private;
407
408         switch (priv->config.flow_prio) {
409         case RTE_DIM(priority_map_3):
410                 res = priority_map_3[priority][subpriority];
411                 break;
412         case RTE_DIM(priority_map_5):
413                 res = priority_map_5[priority][subpriority];
414                 break;
415         }
416         return  res;
417 }
418
419 /**
420  * Verify the @p item specifications (spec, last, mask) are compatible with the
421  * NIC capabilities.
422  *
423  * @param[in] item
424  *   Item specification.
425  * @param[in] mask
426  *   @p item->mask or flow default bit-masks.
427  * @param[in] nic_mask
428  *   Bit-masks covering supported fields by the NIC to compare with user mask.
429  * @param[in] size
430  *   Bit-masks size in bytes.
431  * @param[out] error
432  *   Pointer to error structure.
433  *
434  * @return
435  *   0 on success, a negative errno value otherwise and rte_errno is set.
436  */
437 int
438 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
439                           const uint8_t *mask,
440                           const uint8_t *nic_mask,
441                           unsigned int size,
442                           struct rte_flow_error *error)
443 {
444         unsigned int i;
445
446         assert(nic_mask);
447         for (i = 0; i < size; ++i)
448                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
449                         return rte_flow_error_set(error, ENOTSUP,
450                                                   RTE_FLOW_ERROR_TYPE_ITEM,
451                                                   item,
452                                                   "mask enables non supported"
453                                                   " bits");
454         if (!item->spec && (item->mask || item->last))
455                 return rte_flow_error_set(error, EINVAL,
456                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
457                                           "mask/last without a spec is not"
458                                           " supported");
459         if (item->spec && item->last) {
460                 uint8_t spec[size];
461                 uint8_t last[size];
462                 unsigned int i;
463                 int ret;
464
465                 for (i = 0; i < size; ++i) {
466                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
467                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
468                 }
469                 ret = memcmp(spec, last, size);
470                 if (ret != 0)
471                         return rte_flow_error_set(error, EINVAL,
472                                                   RTE_FLOW_ERROR_TYPE_ITEM,
473                                                   item,
474                                                   "range is not valid");
475         }
476         return 0;
477 }
478
479 /**
480  * Adjust the hash fields according to the @p flow information.
481  *
482  * @param[in] dev_flow.
483  *   Pointer to the mlx5_flow.
484  * @param[in] tunnel
485  *   1 when the hash field is for a tunnel item.
486  * @param[in] layer_types
487  *   ETH_RSS_* types.
488  * @param[in] hash_fields
489  *   Item hash fields.
490  *
491  * @return
492  *   The hash fields that should be used.
493  */
494 uint64_t
495 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
496                             int tunnel __rte_unused, uint64_t layer_types,
497                             uint64_t hash_fields)
498 {
499         struct rte_flow *flow = dev_flow->flow;
500 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
501         int rss_request_inner = flow->rss.level >= 2;
502
503         /* Check RSS hash level for tunnel. */
504         if (tunnel && rss_request_inner)
505                 hash_fields |= IBV_RX_HASH_INNER;
506         else if (tunnel || rss_request_inner)
507                 return 0;
508 #endif
509         /* Check if requested layer matches RSS hash fields. */
510         if (!(flow->rss.types & layer_types))
511                 return 0;
512         return hash_fields;
513 }
514
515 /**
516  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
517  * if several tunnel rules are used on this queue, the tunnel ptype will be
518  * cleared.
519  *
520  * @param rxq_ctrl
521  *   Rx queue to update.
522  */
523 static void
524 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
525 {
526         unsigned int i;
527         uint32_t tunnel_ptype = 0;
528
529         /* Look up for the ptype to use. */
530         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
531                 if (!rxq_ctrl->flow_tunnels_n[i])
532                         continue;
533                 if (!tunnel_ptype) {
534                         tunnel_ptype = tunnels_info[i].ptype;
535                 } else {
536                         tunnel_ptype = 0;
537                         break;
538                 }
539         }
540         rxq_ctrl->rxq.tunnel = tunnel_ptype;
541 }
542
543 /**
544  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
545  * flow.
546  *
547  * @param[in] dev
548  *   Pointer to the Ethernet device structure.
549  * @param[in] dev_flow
550  *   Pointer to device flow structure.
551  */
552 static void
553 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
554 {
555         struct mlx5_priv *priv = dev->data->dev_private;
556         struct rte_flow *flow = dev_flow->flow;
557         const int mark = !!(flow->actions &
558                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
559         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
560         unsigned int i;
561
562         for (i = 0; i != flow->rss.queue_num; ++i) {
563                 int idx = (*flow->queue)[i];
564                 struct mlx5_rxq_ctrl *rxq_ctrl =
565                         container_of((*priv->rxqs)[idx],
566                                      struct mlx5_rxq_ctrl, rxq);
567
568                 if (mark) {
569                         rxq_ctrl->rxq.mark = 1;
570                         rxq_ctrl->flow_mark_n++;
571                 }
572                 if (tunnel) {
573                         unsigned int j;
574
575                         /* Increase the counter matching the flow. */
576                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
577                                 if ((tunnels_info[j].tunnel &
578                                      dev_flow->layers) ==
579                                     tunnels_info[j].tunnel) {
580                                         rxq_ctrl->flow_tunnels_n[j]++;
581                                         break;
582                                 }
583                         }
584                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
585                 }
586         }
587 }
588
589 /**
590  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
591  *
592  * @param[in] dev
593  *   Pointer to the Ethernet device structure.
594  * @param[in] flow
595  *   Pointer to flow structure.
596  */
597 static void
598 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
599 {
600         struct mlx5_flow *dev_flow;
601
602         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
603                 flow_drv_rxq_flags_set(dev, dev_flow);
604 }
605
606 /**
607  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
608  * device flow if no other flow uses it with the same kind of request.
609  *
610  * @param dev
611  *   Pointer to Ethernet device.
612  * @param[in] dev_flow
613  *   Pointer to the device flow.
614  */
615 static void
616 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
617 {
618         struct mlx5_priv *priv = dev->data->dev_private;
619         struct rte_flow *flow = dev_flow->flow;
620         const int mark = !!(flow->actions &
621                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
622         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
623         unsigned int i;
624
625         assert(dev->data->dev_started);
626         for (i = 0; i != flow->rss.queue_num; ++i) {
627                 int idx = (*flow->queue)[i];
628                 struct mlx5_rxq_ctrl *rxq_ctrl =
629                         container_of((*priv->rxqs)[idx],
630                                      struct mlx5_rxq_ctrl, rxq);
631
632                 if (mark) {
633                         rxq_ctrl->flow_mark_n--;
634                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
635                 }
636                 if (tunnel) {
637                         unsigned int j;
638
639                         /* Decrease the counter matching the flow. */
640                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
641                                 if ((tunnels_info[j].tunnel &
642                                      dev_flow->layers) ==
643                                     tunnels_info[j].tunnel) {
644                                         rxq_ctrl->flow_tunnels_n[j]--;
645                                         break;
646                                 }
647                         }
648                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
649                 }
650         }
651 }
652
653 /**
654  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
655  * @p flow if no other flow uses it with the same kind of request.
656  *
657  * @param dev
658  *   Pointer to Ethernet device.
659  * @param[in] flow
660  *   Pointer to the flow.
661  */
662 static void
663 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
664 {
665         struct mlx5_flow *dev_flow;
666
667         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
668                 flow_drv_rxq_flags_trim(dev, dev_flow);
669 }
670
671 /**
672  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
673  *
674  * @param dev
675  *   Pointer to Ethernet device.
676  */
677 static void
678 flow_rxq_flags_clear(struct rte_eth_dev *dev)
679 {
680         struct mlx5_priv *priv = dev->data->dev_private;
681         unsigned int i;
682
683         for (i = 0; i != priv->rxqs_n; ++i) {
684                 struct mlx5_rxq_ctrl *rxq_ctrl;
685                 unsigned int j;
686
687                 if (!(*priv->rxqs)[i])
688                         continue;
689                 rxq_ctrl = container_of((*priv->rxqs)[i],
690                                         struct mlx5_rxq_ctrl, rxq);
691                 rxq_ctrl->flow_mark_n = 0;
692                 rxq_ctrl->rxq.mark = 0;
693                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
694                         rxq_ctrl->flow_tunnels_n[j] = 0;
695                 rxq_ctrl->rxq.tunnel = 0;
696         }
697 }
698
699 /*
700  * return a pointer to the desired action in the list of actions.
701  *
702  * @param[in] actions
703  *   The list of actions to search the action in.
704  * @param[in] action
705  *   The action to find.
706  *
707  * @return
708  *   Pointer to the action in the list, if found. NULL otherwise.
709  */
710 const struct rte_flow_action *
711 mlx5_flow_find_action(const struct rte_flow_action *actions,
712                       enum rte_flow_action_type action)
713 {
714         if (actions == NULL)
715                 return NULL;
716         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
717                 if (actions->type == action)
718                         return actions;
719         return NULL;
720 }
721
722 /*
723  * Validate the flag action.
724  *
725  * @param[in] action_flags
726  *   Bit-fields that holds the actions detected until now.
727  * @param[in] attr
728  *   Attributes of flow that includes this action.
729  * @param[out] error
730  *   Pointer to error structure.
731  *
732  * @return
733  *   0 on success, a negative errno value otherwise and rte_errno is set.
734  */
735 int
736 mlx5_flow_validate_action_flag(uint64_t action_flags,
737                                const struct rte_flow_attr *attr,
738                                struct rte_flow_error *error)
739 {
740
741         if (action_flags & MLX5_FLOW_ACTION_DROP)
742                 return rte_flow_error_set(error, EINVAL,
743                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
744                                           "can't drop and flag in same flow");
745         if (action_flags & MLX5_FLOW_ACTION_MARK)
746                 return rte_flow_error_set(error, EINVAL,
747                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
748                                           "can't mark and flag in same flow");
749         if (action_flags & MLX5_FLOW_ACTION_FLAG)
750                 return rte_flow_error_set(error, EINVAL,
751                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
752                                           "can't have 2 flag"
753                                           " actions in same flow");
754         if (attr->egress)
755                 return rte_flow_error_set(error, ENOTSUP,
756                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
757                                           "flag action not supported for "
758                                           "egress");
759         return 0;
760 }
761
762 /*
763  * Validate the mark action.
764  *
765  * @param[in] action
766  *   Pointer to the queue action.
767  * @param[in] action_flags
768  *   Bit-fields that holds the actions detected until now.
769  * @param[in] attr
770  *   Attributes of flow that includes this action.
771  * @param[out] error
772  *   Pointer to error structure.
773  *
774  * @return
775  *   0 on success, a negative errno value otherwise and rte_errno is set.
776  */
777 int
778 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
779                                uint64_t action_flags,
780                                const struct rte_flow_attr *attr,
781                                struct rte_flow_error *error)
782 {
783         const struct rte_flow_action_mark *mark = action->conf;
784
785         if (!mark)
786                 return rte_flow_error_set(error, EINVAL,
787                                           RTE_FLOW_ERROR_TYPE_ACTION,
788                                           action,
789                                           "configuration cannot be null");
790         if (mark->id >= MLX5_FLOW_MARK_MAX)
791                 return rte_flow_error_set(error, EINVAL,
792                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
793                                           &mark->id,
794                                           "mark id must in 0 <= id < "
795                                           RTE_STR(MLX5_FLOW_MARK_MAX));
796         if (action_flags & MLX5_FLOW_ACTION_DROP)
797                 return rte_flow_error_set(error, EINVAL,
798                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799                                           "can't drop and mark in same flow");
800         if (action_flags & MLX5_FLOW_ACTION_FLAG)
801                 return rte_flow_error_set(error, EINVAL,
802                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803                                           "can't flag and mark in same flow");
804         if (action_flags & MLX5_FLOW_ACTION_MARK)
805                 return rte_flow_error_set(error, EINVAL,
806                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807                                           "can't have 2 mark actions in same"
808                                           " flow");
809         if (attr->egress)
810                 return rte_flow_error_set(error, ENOTSUP,
811                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812                                           "mark action not supported for "
813                                           "egress");
814         return 0;
815 }
816
817 /*
818  * Validate the drop action.
819  *
820  * @param[in] action_flags
821  *   Bit-fields that holds the actions detected until now.
822  * @param[in] attr
823  *   Attributes of flow that includes this action.
824  * @param[out] error
825  *   Pointer to error structure.
826  *
827  * @return
828  *   0 on success, a negative errno value otherwise and rte_errno is set.
829  */
830 int
831 mlx5_flow_validate_action_drop(uint64_t action_flags,
832                                const struct rte_flow_attr *attr,
833                                struct rte_flow_error *error)
834 {
835         if (action_flags & MLX5_FLOW_ACTION_FLAG)
836                 return rte_flow_error_set(error, EINVAL,
837                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
838                                           "can't drop and flag in same flow");
839         if (action_flags & MLX5_FLOW_ACTION_MARK)
840                 return rte_flow_error_set(error, EINVAL,
841                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
842                                           "can't drop and mark in same flow");
843         if (action_flags & (MLX5_FLOW_FATE_ACTIONS |
844                             MLX5_FLOW_FATE_ESWITCH_ACTIONS))
845                 return rte_flow_error_set(error, EINVAL,
846                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847                                           "can't have 2 fate actions in"
848                                           " same flow");
849         if (attr->egress)
850                 return rte_flow_error_set(error, ENOTSUP,
851                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
852                                           "drop action not supported for "
853                                           "egress");
854         return 0;
855 }
856
857 /*
858  * Validate the queue action.
859  *
860  * @param[in] action
861  *   Pointer to the queue action.
862  * @param[in] action_flags
863  *   Bit-fields that holds the actions detected until now.
864  * @param[in] dev
865  *   Pointer to the Ethernet device structure.
866  * @param[in] attr
867  *   Attributes of flow that includes this action.
868  * @param[out] error
869  *   Pointer to error structure.
870  *
871  * @return
872  *   0 on success, a negative errno value otherwise and rte_errno is set.
873  */
874 int
875 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
876                                 uint64_t action_flags,
877                                 struct rte_eth_dev *dev,
878                                 const struct rte_flow_attr *attr,
879                                 struct rte_flow_error *error)
880 {
881         struct mlx5_priv *priv = dev->data->dev_private;
882         const struct rte_flow_action_queue *queue = action->conf;
883
884         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
885                 return rte_flow_error_set(error, EINVAL,
886                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
887                                           "can't have 2 fate actions in"
888                                           " same flow");
889         if (!priv->rxqs_n)
890                 return rte_flow_error_set(error, EINVAL,
891                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
892                                           NULL, "No Rx queues configured");
893         if (queue->index >= priv->rxqs_n)
894                 return rte_flow_error_set(error, EINVAL,
895                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
896                                           &queue->index,
897                                           "queue index out of range");
898         if (!(*priv->rxqs)[queue->index])
899                 return rte_flow_error_set(error, EINVAL,
900                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
901                                           &queue->index,
902                                           "queue is not configured");
903         if (attr->egress)
904                 return rte_flow_error_set(error, ENOTSUP,
905                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
906                                           "queue action not supported for "
907                                           "egress");
908         return 0;
909 }
910
911 /*
912  * Validate the rss action.
913  *
914  * @param[in] action
915  *   Pointer to the queue action.
916  * @param[in] action_flags
917  *   Bit-fields that holds the actions detected until now.
918  * @param[in] dev
919  *   Pointer to the Ethernet device structure.
920  * @param[in] attr
921  *   Attributes of flow that includes this action.
922  * @param[in] item_flags
923  *   Items that were detected.
924  * @param[out] error
925  *   Pointer to error structure.
926  *
927  * @return
928  *   0 on success, a negative errno value otherwise and rte_errno is set.
929  */
930 int
931 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
932                               uint64_t action_flags,
933                               struct rte_eth_dev *dev,
934                               const struct rte_flow_attr *attr,
935                               uint64_t item_flags,
936                               struct rte_flow_error *error)
937 {
938         struct mlx5_priv *priv = dev->data->dev_private;
939         const struct rte_flow_action_rss *rss = action->conf;
940         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
941         unsigned int i;
942
943         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
944                 return rte_flow_error_set(error, EINVAL,
945                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
946                                           "can't have 2 fate actions"
947                                           " in same flow");
948         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
949             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
950                 return rte_flow_error_set(error, ENOTSUP,
951                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
952                                           &rss->func,
953                                           "RSS hash function not supported");
954 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
955         if (rss->level > 2)
956 #else
957         if (rss->level > 1)
958 #endif
959                 return rte_flow_error_set(error, ENOTSUP,
960                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
961                                           &rss->level,
962                                           "tunnel RSS is not supported");
963         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
964         if (rss->key_len == 0 && rss->key != NULL)
965                 return rte_flow_error_set(error, ENOTSUP,
966                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
967                                           &rss->key_len,
968                                           "RSS hash key length 0");
969         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
970                 return rte_flow_error_set(error, ENOTSUP,
971                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
972                                           &rss->key_len,
973                                           "RSS hash key too small");
974         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
975                 return rte_flow_error_set(error, ENOTSUP,
976                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
977                                           &rss->key_len,
978                                           "RSS hash key too large");
979         if (rss->queue_num > priv->config.ind_table_max_size)
980                 return rte_flow_error_set(error, ENOTSUP,
981                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
982                                           &rss->queue_num,
983                                           "number of queues too large");
984         if (rss->types & MLX5_RSS_HF_MASK)
985                 return rte_flow_error_set(error, ENOTSUP,
986                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
987                                           &rss->types,
988                                           "some RSS protocols are not"
989                                           " supported");
990         if (!priv->rxqs_n)
991                 return rte_flow_error_set(error, EINVAL,
992                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
993                                           NULL, "No Rx queues configured");
994         if (!rss->queue_num)
995                 return rte_flow_error_set(error, EINVAL,
996                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
997                                           NULL, "No queues configured");
998         for (i = 0; i != rss->queue_num; ++i) {
999                 if (!(*priv->rxqs)[rss->queue[i]])
1000                         return rte_flow_error_set
1001                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1002                                  &rss->queue[i], "queue is not configured");
1003         }
1004         if (attr->egress)
1005                 return rte_flow_error_set(error, ENOTSUP,
1006                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1007                                           "rss action not supported for "
1008                                           "egress");
1009         if (rss->level > 1 &&  !tunnel)
1010                 return rte_flow_error_set(error, EINVAL,
1011                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1012                                           "inner RSS is not supported for "
1013                                           "non-tunnel flows");
1014         return 0;
1015 }
1016
1017 /*
1018  * Validate the count action.
1019  *
1020  * @param[in] dev
1021  *   Pointer to the Ethernet device structure.
1022  * @param[in] attr
1023  *   Attributes of flow that includes this action.
1024  * @param[out] error
1025  *   Pointer to error structure.
1026  *
1027  * @return
1028  *   0 on success, a negative errno value otherwise and rte_errno is set.
1029  */
1030 int
1031 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1032                                 const struct rte_flow_attr *attr,
1033                                 struct rte_flow_error *error)
1034 {
1035         if (attr->egress)
1036                 return rte_flow_error_set(error, ENOTSUP,
1037                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1038                                           "count action not supported for "
1039                                           "egress");
1040         return 0;
1041 }
1042
1043 /**
1044  * Verify the @p attributes will be correctly understood by the NIC and store
1045  * them in the @p flow if everything is correct.
1046  *
1047  * @param[in] dev
1048  *   Pointer to the Ethernet device structure.
1049  * @param[in] attributes
1050  *   Pointer to flow attributes
1051  * @param[out] error
1052  *   Pointer to error structure.
1053  *
1054  * @return
1055  *   0 on success, a negative errno value otherwise and rte_errno is set.
1056  */
1057 int
1058 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1059                               const struct rte_flow_attr *attributes,
1060                               struct rte_flow_error *error)
1061 {
1062         struct mlx5_priv *priv = dev->data->dev_private;
1063         uint32_t priority_max = priv->config.flow_prio - 1;
1064
1065         if (attributes->group)
1066                 return rte_flow_error_set(error, ENOTSUP,
1067                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1068                                           NULL, "groups is not supported");
1069         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1070             attributes->priority >= priority_max)
1071                 return rte_flow_error_set(error, ENOTSUP,
1072                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1073                                           NULL, "priority out of range");
1074         if (attributes->egress)
1075                 return rte_flow_error_set(error, ENOTSUP,
1076                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1077                                           "egress is not supported");
1078         if (attributes->transfer && !priv->config.dv_esw_en)
1079                 return rte_flow_error_set(error, ENOTSUP,
1080                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1081                                           NULL, "transfer is not supported");
1082         if (!attributes->ingress)
1083                 return rte_flow_error_set(error, EINVAL,
1084                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1085                                           NULL,
1086                                           "ingress attribute is mandatory");
1087         return 0;
1088 }
1089
1090 /**
1091  * Validate ICMP6 item.
1092  *
1093  * @param[in] item
1094  *   Item specification.
1095  * @param[in] item_flags
1096  *   Bit-fields that holds the items detected until now.
1097  * @param[out] error
1098  *   Pointer to error structure.
1099  *
1100  * @return
1101  *   0 on success, a negative errno value otherwise and rte_errno is set.
1102  */
1103 int
1104 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1105                                uint64_t item_flags,
1106                                uint8_t target_protocol,
1107                                struct rte_flow_error *error)
1108 {
1109         const struct rte_flow_item_icmp6 *mask = item->mask;
1110         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1111         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1112                                       MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1113         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1114                                       MLX5_FLOW_LAYER_OUTER_L4;
1115         int ret;
1116
1117         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1118                 return rte_flow_error_set(error, EINVAL,
1119                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1120                                           "protocol filtering not compatible"
1121                                           " with ICMP6 layer");
1122         if (!(item_flags & l3m))
1123                 return rte_flow_error_set(error, EINVAL,
1124                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1125                                           "IPv6 is mandatory to filter on"
1126                                           " ICMP6");
1127         if (item_flags & l4m)
1128                 return rte_flow_error_set(error, EINVAL,
1129                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1130                                           "multiple L4 layers not supported");
1131         if (!mask)
1132                 mask = &rte_flow_item_icmp6_mask;
1133         ret = mlx5_flow_item_acceptable
1134                 (item, (const uint8_t *)mask,
1135                  (const uint8_t *)&rte_flow_item_icmp6_mask,
1136                  sizeof(struct rte_flow_item_icmp6), error);
1137         if (ret < 0)
1138                 return ret;
1139         return 0;
1140 }
1141
1142 /**
1143  * Validate ICMP item.
1144  *
1145  * @param[in] item
1146  *   Item specification.
1147  * @param[in] item_flags
1148  *   Bit-fields that holds the items detected until now.
1149  * @param[out] error
1150  *   Pointer to error structure.
1151  *
1152  * @return
1153  *   0 on success, a negative errno value otherwise and rte_errno is set.
1154  */
1155 int
1156 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1157                              uint64_t item_flags,
1158                              uint8_t target_protocol,
1159                              struct rte_flow_error *error)
1160 {
1161         const struct rte_flow_item_icmp *mask = item->mask;
1162         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1163         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1164                                       MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1165         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1166                                       MLX5_FLOW_LAYER_OUTER_L4;
1167         int ret;
1168
1169         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1170                 return rte_flow_error_set(error, EINVAL,
1171                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1172                                           "protocol filtering not compatible"
1173                                           " with ICMP layer");
1174         if (!(item_flags & l3m))
1175                 return rte_flow_error_set(error, EINVAL,
1176                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1177                                           "IPv4 is mandatory to filter"
1178                                           " on ICMP");
1179         if (item_flags & l4m)
1180                 return rte_flow_error_set(error, EINVAL,
1181                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1182                                           "multiple L4 layers not supported");
1183         if (!mask)
1184                 mask = &rte_flow_item_icmp_mask;
1185         ret = mlx5_flow_item_acceptable
1186                 (item, (const uint8_t *)mask,
1187                  (const uint8_t *)&rte_flow_item_icmp_mask,
1188                  sizeof(struct rte_flow_item_icmp), error);
1189         if (ret < 0)
1190                 return ret;
1191         return 0;
1192 }
1193
1194 /**
1195  * Validate Ethernet item.
1196  *
1197  * @param[in] item
1198  *   Item specification.
1199  * @param[in] item_flags
1200  *   Bit-fields that holds the items detected until now.
1201  * @param[out] error
1202  *   Pointer to error structure.
1203  *
1204  * @return
1205  *   0 on success, a negative errno value otherwise and rte_errno is set.
1206  */
1207 int
1208 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1209                             uint64_t item_flags,
1210                             struct rte_flow_error *error)
1211 {
1212         const struct rte_flow_item_eth *mask = item->mask;
1213         const struct rte_flow_item_eth nic_mask = {
1214                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1215                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1216                 .type = RTE_BE16(0xffff),
1217         };
1218         int ret;
1219         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1220         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1221                                        MLX5_FLOW_LAYER_OUTER_L2;
1222
1223         if (item_flags & ethm)
1224                 return rte_flow_error_set(error, ENOTSUP,
1225                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1226                                           "multiple L2 layers not supported");
1227         if (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3))
1228                 return rte_flow_error_set(error, EINVAL,
1229                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1230                                           "inner L2 layer should not "
1231                                           "follow inner L3 layers");
1232         if (!mask)
1233                 mask = &rte_flow_item_eth_mask;
1234         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1235                                         (const uint8_t *)&nic_mask,
1236                                         sizeof(struct rte_flow_item_eth),
1237                                         error);
1238         return ret;
1239 }
1240
1241 /**
1242  * Validate VLAN item.
1243  *
1244  * @param[in] item
1245  *   Item specification.
1246  * @param[in] item_flags
1247  *   Bit-fields that holds the items detected until now.
1248  * @param[in] dev
1249  *   Ethernet device flow is being created on.
1250  * @param[out] error
1251  *   Pointer to error structure.
1252  *
1253  * @return
1254  *   0 on success, a negative errno value otherwise and rte_errno is set.
1255  */
1256 int
1257 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1258                              uint64_t item_flags,
1259                              struct rte_eth_dev *dev,
1260                              struct rte_flow_error *error)
1261 {
1262         const struct rte_flow_item_vlan *spec = item->spec;
1263         const struct rte_flow_item_vlan *mask = item->mask;
1264         const struct rte_flow_item_vlan nic_mask = {
1265                 .tci = RTE_BE16(UINT16_MAX),
1266                 .inner_type = RTE_BE16(UINT16_MAX),
1267         };
1268         uint16_t vlan_tag = 0;
1269         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1270         int ret;
1271         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1272                                         MLX5_FLOW_LAYER_INNER_L4) :
1273                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1274                                         MLX5_FLOW_LAYER_OUTER_L4);
1275         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1276                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1277
1278         const uint64_t l2m = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1279                                       MLX5_FLOW_LAYER_OUTER_L2;
1280         if (item_flags & vlanm)
1281                 return rte_flow_error_set(error, EINVAL,
1282                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1283                                           "multiple VLAN layers not supported");
1284         else if ((item_flags & l34m) != 0)
1285                 return rte_flow_error_set(error, EINVAL,
1286                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1287                                           "L2 layer cannot follow L3/L4 layer");
1288         else if ((item_flags & l2m) == 0)
1289                 return rte_flow_error_set(error, EINVAL,
1290                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1291                                           "no L2 layer before VLAN");
1292         if (!mask)
1293                 mask = &rte_flow_item_vlan_mask;
1294         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1295                                         (const uint8_t *)&nic_mask,
1296                                         sizeof(struct rte_flow_item_vlan),
1297                                         error);
1298         if (ret)
1299                 return ret;
1300         if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1301                 struct mlx5_priv *priv = dev->data->dev_private;
1302
1303                 if (priv->vmwa_context) {
1304                         /*
1305                          * Non-NULL context means we have a virtual machine
1306                          * and SR-IOV enabled, we have to create VLAN interface
1307                          * to make hypervisor to setup E-Switch vport
1308                          * context correctly. We avoid creating the multiple
1309                          * VLAN interfaces, so we cannot support VLAN tag mask.
1310                          */
1311                         return rte_flow_error_set(error, EINVAL,
1312                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1313                                                   item,
1314                                                   "VLAN tag mask is not"
1315                                                   " supported in virtual"
1316                                                   " environment");
1317                 }
1318         }
1319         if (spec) {
1320                 vlan_tag = spec->tci;
1321                 vlan_tag &= mask->tci;
1322         }
1323         /*
1324          * From verbs perspective an empty VLAN is equivalent
1325          * to a packet without VLAN layer.
1326          */
1327         if (!vlan_tag)
1328                 return rte_flow_error_set(error, EINVAL,
1329                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1330                                           item->spec,
1331                                           "VLAN cannot be empty");
1332         return 0;
1333 }
1334
1335 /**
1336  * Validate IPV4 item.
1337  *
1338  * @param[in] item
1339  *   Item specification.
1340  * @param[in] item_flags
1341  *   Bit-fields that holds the items detected until now.
1342  * @param[in] acc_mask
1343  *   Acceptable mask, if NULL default internal default mask
1344  *   will be used to check whether item fields are supported.
1345  * @param[out] error
1346  *   Pointer to error structure.
1347  *
1348  * @return
1349  *   0 on success, a negative errno value otherwise and rte_errno is set.
1350  */
1351 int
1352 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1353                              uint64_t item_flags,
1354                              const struct rte_flow_item_ipv4 *acc_mask,
1355                              struct rte_flow_error *error)
1356 {
1357         const struct rte_flow_item_ipv4 *mask = item->mask;
1358         const struct rte_flow_item_ipv4 *spec = item->spec;
1359         const struct rte_flow_item_ipv4 nic_mask = {
1360                 .hdr = {
1361                         .src_addr = RTE_BE32(0xffffffff),
1362                         .dst_addr = RTE_BE32(0xffffffff),
1363                         .type_of_service = 0xff,
1364                         .next_proto_id = 0xff,
1365                 },
1366         };
1367         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1368         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1369                                       MLX5_FLOW_LAYER_OUTER_L3;
1370         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1371                                       MLX5_FLOW_LAYER_OUTER_L4;
1372         int ret;
1373         uint8_t next_proto = 0xFF;
1374
1375         if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1376                 if (mask && spec)
1377                         next_proto = mask->hdr.next_proto_id &
1378                                      spec->hdr.next_proto_id;
1379                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1380                         return rte_flow_error_set(error, EINVAL,
1381                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1382                                                   item,
1383                                                   "multiple tunnel "
1384                                                   "not supported");
1385         }
1386         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1387                 return rte_flow_error_set(error, EINVAL,
1388                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1389                                           "wrong tunnel type - IPv6 specified "
1390                                           "but IPv4 item provided");
1391         if (item_flags & l3m)
1392                 return rte_flow_error_set(error, ENOTSUP,
1393                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1394                                           "multiple L3 layers not supported");
1395         else if (item_flags & l4m)
1396                 return rte_flow_error_set(error, EINVAL,
1397                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1398                                           "L3 cannot follow an L4 layer.");
1399         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1400                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1401                 return rte_flow_error_set(error, EINVAL,
1402                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1403                                           "L3 cannot follow an NVGRE layer.");
1404         else if (!tunnel && !(item_flags & MLX5_FLOW_LAYER_OUTER_L2))
1405                 return rte_flow_error_set(error, EINVAL,
1406                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1407                                           "no L2 layer before IPV4");
1408         if (!mask)
1409                 mask = &rte_flow_item_ipv4_mask;
1410         else if (mask->hdr.next_proto_id != 0 &&
1411                  mask->hdr.next_proto_id != 0xff)
1412                 return rte_flow_error_set(error, EINVAL,
1413                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1414                                           "partial mask is not supported"
1415                                           " for protocol");
1416         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1417                                         acc_mask ? (const uint8_t *)acc_mask
1418                                                  : (const uint8_t *)&nic_mask,
1419                                         sizeof(struct rte_flow_item_ipv4),
1420                                         error);
1421         if (ret < 0)
1422                 return ret;
1423         return 0;
1424 }
1425
1426 /**
1427  * Validate IPV6 item.
1428  *
1429  * @param[in] item
1430  *   Item specification.
1431  * @param[in] item_flags
1432  *   Bit-fields that holds the items detected until now.
1433  * @param[in] acc_mask
1434  *   Acceptable mask, if NULL default internal default mask
1435  *   will be used to check whether item fields are supported.
1436  * @param[out] error
1437  *   Pointer to error structure.
1438  *
1439  * @return
1440  *   0 on success, a negative errno value otherwise and rte_errno is set.
1441  */
1442 int
1443 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1444                              uint64_t item_flags,
1445                              const struct rte_flow_item_ipv6 *acc_mask,
1446                              struct rte_flow_error *error)
1447 {
1448         const struct rte_flow_item_ipv6 *mask = item->mask;
1449         const struct rte_flow_item_ipv6 *spec = item->spec;
1450         const struct rte_flow_item_ipv6 nic_mask = {
1451                 .hdr = {
1452                         .src_addr =
1453                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1454                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1455                         .dst_addr =
1456                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1457                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1458                         .vtc_flow = RTE_BE32(0xffffffff),
1459                         .proto = 0xff,
1460                         .hop_limits = 0xff,
1461                 },
1462         };
1463         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1464         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1465                                       MLX5_FLOW_LAYER_OUTER_L3;
1466         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1467                                       MLX5_FLOW_LAYER_OUTER_L4;
1468         int ret;
1469         uint8_t next_proto = 0xFF;
1470
1471         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
1472                 if (mask && spec)
1473                         next_proto = mask->hdr.proto & spec->hdr.proto;
1474                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1475                         return rte_flow_error_set(error, EINVAL,
1476                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1477                                                   item,
1478                                                   "multiple tunnel "
1479                                                   "not supported");
1480         }
1481         if (item_flags & MLX5_FLOW_LAYER_IPIP)
1482                 return rte_flow_error_set(error, EINVAL,
1483                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1484                                           "wrong tunnel type - IPv4 specified "
1485                                           "but IPv6 item provided");
1486         if (item_flags & l3m)
1487                 return rte_flow_error_set(error, ENOTSUP,
1488                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1489                                           "multiple L3 layers not supported");
1490         else if (item_flags & l4m)
1491                 return rte_flow_error_set(error, EINVAL,
1492                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1493                                           "L3 cannot follow an L4 layer.");
1494         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1495                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1496                 return rte_flow_error_set(error, EINVAL,
1497                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1498                                           "L3 cannot follow an NVGRE layer.");
1499         else if (!tunnel && !(item_flags & MLX5_FLOW_LAYER_OUTER_L2))
1500                 return rte_flow_error_set(error, EINVAL,
1501                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1502                                           "no L2 layer before IPV6");
1503         if (!mask)
1504                 mask = &rte_flow_item_ipv6_mask;
1505         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1506                                         acc_mask ? (const uint8_t *)acc_mask
1507                                                  : (const uint8_t *)&nic_mask,
1508                                         sizeof(struct rte_flow_item_ipv6),
1509                                         error);
1510         if (ret < 0)
1511                 return ret;
1512         return 0;
1513 }
1514
1515 /**
1516  * Validate UDP item.
1517  *
1518  * @param[in] item
1519  *   Item specification.
1520  * @param[in] item_flags
1521  *   Bit-fields that holds the items detected until now.
1522  * @param[in] target_protocol
1523  *   The next protocol in the previous item.
1524  * @param[in] flow_mask
1525  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1526  * @param[out] error
1527  *   Pointer to error structure.
1528  *
1529  * @return
1530  *   0 on success, a negative errno value otherwise and rte_errno is set.
1531  */
1532 int
1533 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1534                             uint64_t item_flags,
1535                             uint8_t target_protocol,
1536                             struct rte_flow_error *error)
1537 {
1538         const struct rte_flow_item_udp *mask = item->mask;
1539         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1540         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1541                                       MLX5_FLOW_LAYER_OUTER_L3;
1542         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1543                                       MLX5_FLOW_LAYER_OUTER_L4;
1544         int ret;
1545
1546         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1547                 return rte_flow_error_set(error, EINVAL,
1548                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1549                                           "protocol filtering not compatible"
1550                                           " with UDP layer");
1551         if (!(item_flags & l3m))
1552                 return rte_flow_error_set(error, EINVAL,
1553                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1554                                           "L3 is mandatory to filter on L4");
1555         if (item_flags & l4m)
1556                 return rte_flow_error_set(error, EINVAL,
1557                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1558                                           "multiple L4 layers not supported");
1559         if (!mask)
1560                 mask = &rte_flow_item_udp_mask;
1561         ret = mlx5_flow_item_acceptable
1562                 (item, (const uint8_t *)mask,
1563                  (const uint8_t *)&rte_flow_item_udp_mask,
1564                  sizeof(struct rte_flow_item_udp), error);
1565         if (ret < 0)
1566                 return ret;
1567         return 0;
1568 }
1569
1570 /**
1571  * Validate TCP item.
1572  *
1573  * @param[in] item
1574  *   Item specification.
1575  * @param[in] item_flags
1576  *   Bit-fields that holds the items detected until now.
1577  * @param[in] target_protocol
1578  *   The next protocol in the previous item.
1579  * @param[out] error
1580  *   Pointer to error structure.
1581  *
1582  * @return
1583  *   0 on success, a negative errno value otherwise and rte_errno is set.
1584  */
1585 int
1586 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1587                             uint64_t item_flags,
1588                             uint8_t target_protocol,
1589                             const struct rte_flow_item_tcp *flow_mask,
1590                             struct rte_flow_error *error)
1591 {
1592         const struct rte_flow_item_tcp *mask = item->mask;
1593         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1594         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1595                                       MLX5_FLOW_LAYER_OUTER_L3;
1596         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1597                                       MLX5_FLOW_LAYER_OUTER_L4;
1598         int ret;
1599
1600         assert(flow_mask);
1601         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1602                 return rte_flow_error_set(error, EINVAL,
1603                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1604                                           "protocol filtering not compatible"
1605                                           " with TCP layer");
1606         if (!(item_flags & l3m))
1607                 return rte_flow_error_set(error, EINVAL,
1608                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1609                                           "L3 is mandatory to filter on L4");
1610         if (item_flags & l4m)
1611                 return rte_flow_error_set(error, EINVAL,
1612                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1613                                           "multiple L4 layers not supported");
1614         if (!mask)
1615                 mask = &rte_flow_item_tcp_mask;
1616         ret = mlx5_flow_item_acceptable
1617                 (item, (const uint8_t *)mask,
1618                  (const uint8_t *)flow_mask,
1619                  sizeof(struct rte_flow_item_tcp), error);
1620         if (ret < 0)
1621                 return ret;
1622         return 0;
1623 }
1624
1625 /**
1626  * Validate VXLAN item.
1627  *
1628  * @param[in] item
1629  *   Item specification.
1630  * @param[in] item_flags
1631  *   Bit-fields that holds the items detected until now.
1632  * @param[in] target_protocol
1633  *   The next protocol in the previous item.
1634  * @param[out] error
1635  *   Pointer to error structure.
1636  *
1637  * @return
1638  *   0 on success, a negative errno value otherwise and rte_errno is set.
1639  */
1640 int
1641 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1642                               uint64_t item_flags,
1643                               struct rte_flow_error *error)
1644 {
1645         const struct rte_flow_item_vxlan *spec = item->spec;
1646         const struct rte_flow_item_vxlan *mask = item->mask;
1647         int ret;
1648         union vni {
1649                 uint32_t vlan_id;
1650                 uint8_t vni[4];
1651         } id = { .vlan_id = 0, };
1652         uint32_t vlan_id = 0;
1653
1654
1655         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1656                 return rte_flow_error_set(error, ENOTSUP,
1657                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1658                                           "multiple tunnel layers not"
1659                                           " supported");
1660         /*
1661          * Verify only UDPv4 is present as defined in
1662          * https://tools.ietf.org/html/rfc7348
1663          */
1664         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1665                 return rte_flow_error_set(error, EINVAL,
1666                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1667                                           "no outer UDP layer found");
1668         if (!mask)
1669                 mask = &rte_flow_item_vxlan_mask;
1670         ret = mlx5_flow_item_acceptable
1671                 (item, (const uint8_t *)mask,
1672                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1673                  sizeof(struct rte_flow_item_vxlan),
1674                  error);
1675         if (ret < 0)
1676                 return ret;
1677         if (spec) {
1678                 memcpy(&id.vni[1], spec->vni, 3);
1679                 vlan_id = id.vlan_id;
1680                 memcpy(&id.vni[1], mask->vni, 3);
1681                 vlan_id &= id.vlan_id;
1682         }
1683         /*
1684          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1685          * only this layer is defined in the Verbs specification it is
1686          * interpreted as wildcard and all packets will match this
1687          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1688          * udp), all packets matching the layers before will also
1689          * match this rule.  To avoid such situation, VNI 0 is
1690          * currently refused.
1691          */
1692         if (!vlan_id)
1693                 return rte_flow_error_set(error, ENOTSUP,
1694                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1695                                           "VXLAN vni cannot be 0");
1696         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1697                 return rte_flow_error_set(error, ENOTSUP,
1698                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1699                                           "VXLAN tunnel must be fully defined");
1700         return 0;
1701 }
1702
1703 /**
1704  * Validate VXLAN_GPE item.
1705  *
1706  * @param[in] item
1707  *   Item specification.
1708  * @param[in] item_flags
1709  *   Bit-fields that holds the items detected until now.
1710  * @param[in] priv
1711  *   Pointer to the private data structure.
1712  * @param[in] target_protocol
1713  *   The next protocol in the previous item.
1714  * @param[out] error
1715  *   Pointer to error structure.
1716  *
1717  * @return
1718  *   0 on success, a negative errno value otherwise and rte_errno is set.
1719  */
1720 int
1721 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1722                                   uint64_t item_flags,
1723                                   struct rte_eth_dev *dev,
1724                                   struct rte_flow_error *error)
1725 {
1726         struct mlx5_priv *priv = dev->data->dev_private;
1727         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1728         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1729         int ret;
1730         union vni {
1731                 uint32_t vlan_id;
1732                 uint8_t vni[4];
1733         } id = { .vlan_id = 0, };
1734         uint32_t vlan_id = 0;
1735
1736         if (!priv->config.l3_vxlan_en)
1737                 return rte_flow_error_set(error, ENOTSUP,
1738                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1739                                           "L3 VXLAN is not enabled by device"
1740                                           " parameter and/or not configured in"
1741                                           " firmware");
1742         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1743                 return rte_flow_error_set(error, ENOTSUP,
1744                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1745                                           "multiple tunnel layers not"
1746                                           " supported");
1747         /*
1748          * Verify only UDPv4 is present as defined in
1749          * https://tools.ietf.org/html/rfc7348
1750          */
1751         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1752                 return rte_flow_error_set(error, EINVAL,
1753                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1754                                           "no outer UDP layer found");
1755         if (!mask)
1756                 mask = &rte_flow_item_vxlan_gpe_mask;
1757         ret = mlx5_flow_item_acceptable
1758                 (item, (const uint8_t *)mask,
1759                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1760                  sizeof(struct rte_flow_item_vxlan_gpe),
1761                  error);
1762         if (ret < 0)
1763                 return ret;
1764         if (spec) {
1765                 if (spec->protocol)
1766                         return rte_flow_error_set(error, ENOTSUP,
1767                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1768                                                   item,
1769                                                   "VxLAN-GPE protocol"
1770                                                   " not supported");
1771                 memcpy(&id.vni[1], spec->vni, 3);
1772                 vlan_id = id.vlan_id;
1773                 memcpy(&id.vni[1], mask->vni, 3);
1774                 vlan_id &= id.vlan_id;
1775         }
1776         /*
1777          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1778          * layer is defined in the Verbs specification it is interpreted as
1779          * wildcard and all packets will match this rule, if it follows a full
1780          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1781          * before will also match this rule.  To avoid such situation, VNI 0
1782          * is currently refused.
1783          */
1784         if (!vlan_id)
1785                 return rte_flow_error_set(error, ENOTSUP,
1786                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1787                                           "VXLAN-GPE vni cannot be 0");
1788         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1789                 return rte_flow_error_set(error, ENOTSUP,
1790                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1791                                           "VXLAN-GPE tunnel must be fully"
1792                                           " defined");
1793         return 0;
1794 }
1795 /**
1796  * Validate GRE Key item.
1797  *
1798  * @param[in] item
1799  *   Item specification.
1800  * @param[in] item_flags
1801  *   Bit flags to mark detected items.
1802  * @param[in] gre_item
1803  *   Pointer to gre_item
1804  * @param[out] error
1805  *   Pointer to error structure.
1806  *
1807  * @return
1808  *   0 on success, a negative errno value otherwise and rte_errno is set.
1809  */
1810 int
1811 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
1812                                 uint64_t item_flags,
1813                                 const struct rte_flow_item *gre_item,
1814                                 struct rte_flow_error *error)
1815 {
1816         const rte_be32_t *mask = item->mask;
1817         int ret = 0;
1818         rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
1819         const struct rte_flow_item_gre *gre_spec = gre_item->spec;
1820         const struct rte_flow_item_gre *gre_mask = gre_item->mask;
1821
1822         if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
1823                 return rte_flow_error_set(error, ENOTSUP,
1824                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1825                                           "Multiple GRE key not support");
1826         if (!(item_flags & MLX5_FLOW_LAYER_GRE))
1827                 return rte_flow_error_set(error, ENOTSUP,
1828                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1829                                           "No preceding GRE header");
1830         if (item_flags & MLX5_FLOW_LAYER_INNER)
1831                 return rte_flow_error_set(error, ENOTSUP,
1832                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1833                                           "GRE key following a wrong item");
1834         if (!gre_mask)
1835                 gre_mask = &rte_flow_item_gre_mask;
1836         if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
1837                          !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
1838                 return rte_flow_error_set(error, EINVAL,
1839                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1840                                           "Key bit must be on");
1841
1842         if (!mask)
1843                 mask = &gre_key_default_mask;
1844         ret = mlx5_flow_item_acceptable
1845                 (item, (const uint8_t *)mask,
1846                  (const uint8_t *)&gre_key_default_mask,
1847                  sizeof(rte_be32_t), error);
1848         return ret;
1849 }
1850
1851 /**
1852  * Validate GRE item.
1853  *
1854  * @param[in] item
1855  *   Item specification.
1856  * @param[in] item_flags
1857  *   Bit flags to mark detected items.
1858  * @param[in] target_protocol
1859  *   The next protocol in the previous item.
1860  * @param[out] error
1861  *   Pointer to error structure.
1862  *
1863  * @return
1864  *   0 on success, a negative errno value otherwise and rte_errno is set.
1865  */
1866 int
1867 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1868                             uint64_t item_flags,
1869                             uint8_t target_protocol,
1870                             struct rte_flow_error *error)
1871 {
1872         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1873         const struct rte_flow_item_gre *mask = item->mask;
1874         int ret;
1875         const struct rte_flow_item_gre nic_mask = {
1876                 .c_rsvd0_ver = RTE_BE16(0xB000),
1877                 .protocol = RTE_BE16(UINT16_MAX),
1878         };
1879
1880         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1881                 return rte_flow_error_set(error, EINVAL,
1882                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1883                                           "protocol filtering not compatible"
1884                                           " with this GRE layer");
1885         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1886                 return rte_flow_error_set(error, ENOTSUP,
1887                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1888                                           "multiple tunnel layers not"
1889                                           " supported");
1890         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1891                 return rte_flow_error_set(error, ENOTSUP,
1892                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1893                                           "L3 Layer is missing");
1894         if (!mask)
1895                 mask = &rte_flow_item_gre_mask;
1896         ret = mlx5_flow_item_acceptable
1897                 (item, (const uint8_t *)mask,
1898                  (const uint8_t *)&nic_mask,
1899                  sizeof(struct rte_flow_item_gre), error);
1900         if (ret < 0)
1901                 return ret;
1902 #ifndef HAVE_MLX5DV_DR
1903 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1904         if (spec && (spec->protocol & mask->protocol))
1905                 return rte_flow_error_set(error, ENOTSUP,
1906                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1907                                           "without MPLS support the"
1908                                           " specification cannot be used for"
1909                                           " filtering");
1910 #endif
1911 #endif
1912         return 0;
1913 }
1914
1915 /**
1916  * Validate Geneve item.
1917  *
1918  * @param[in] item
1919  *   Item specification.
1920  * @param[in] itemFlags
1921  *   Bit-fields that holds the items detected until now.
1922  * @param[in] enPriv
1923  *   Pointer to the private data structure.
1924  * @param[out] error
1925  *   Pointer to error structure.
1926  *
1927  * @return
1928  *   0 on success, a negative errno value otherwise and rte_errno is set.
1929  */
1930
1931 int
1932 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
1933                                uint64_t item_flags,
1934                                struct rte_eth_dev *dev,
1935                                struct rte_flow_error *error)
1936 {
1937         struct mlx5_priv *priv = dev->data->dev_private;
1938         const struct rte_flow_item_geneve *spec = item->spec;
1939         const struct rte_flow_item_geneve *mask = item->mask;
1940         int ret;
1941         uint16_t gbhdr;
1942         uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
1943                           MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
1944         const struct rte_flow_item_geneve nic_mask = {
1945                 .ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
1946                 .vni = "\xff\xff\xff",
1947                 .protocol = RTE_BE16(UINT16_MAX),
1948         };
1949
1950         if (!(priv->config.hca_attr.flex_parser_protocols &
1951               MLX5_HCA_FLEX_GENEVE_ENABLED) ||
1952             !priv->config.hca_attr.tunnel_stateless_geneve_rx)
1953                 return rte_flow_error_set(error, ENOTSUP,
1954                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1955                                           "L3 Geneve is not enabled by device"
1956                                           " parameter and/or not configured in"
1957                                           " firmware");
1958         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1959                 return rte_flow_error_set(error, ENOTSUP,
1960                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1961                                           "multiple tunnel layers not"
1962                                           " supported");
1963         /*
1964          * Verify only UDPv4 is present as defined in
1965          * https://tools.ietf.org/html/rfc7348
1966          */
1967         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1968                 return rte_flow_error_set(error, EINVAL,
1969                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1970                                           "no outer UDP layer found");
1971         if (!mask)
1972                 mask = &rte_flow_item_geneve_mask;
1973         ret = mlx5_flow_item_acceptable
1974                                   (item, (const uint8_t *)mask,
1975                                    (const uint8_t *)&nic_mask,
1976                                    sizeof(struct rte_flow_item_geneve), error);
1977         if (ret)
1978                 return ret;
1979         if (spec) {
1980                 gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
1981                 if (MLX5_GENEVE_VER_VAL(gbhdr) ||
1982                      MLX5_GENEVE_CRITO_VAL(gbhdr) ||
1983                      MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
1984                         return rte_flow_error_set(error, ENOTSUP,
1985                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1986                                                   item,
1987                                                   "Geneve protocol unsupported"
1988                                                   " fields are being used");
1989                 if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
1990                         return rte_flow_error_set
1991                                         (error, ENOTSUP,
1992                                          RTE_FLOW_ERROR_TYPE_ITEM,
1993                                          item,
1994                                          "Unsupported Geneve options length");
1995         }
1996         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1997                 return rte_flow_error_set
1998                                     (error, ENOTSUP,
1999                                      RTE_FLOW_ERROR_TYPE_ITEM, item,
2000                                      "Geneve tunnel must be fully defined");
2001         return 0;
2002 }
2003
2004 /**
2005  * Validate MPLS item.
2006  *
2007  * @param[in] dev
2008  *   Pointer to the rte_eth_dev structure.
2009  * @param[in] item
2010  *   Item specification.
2011  * @param[in] item_flags
2012  *   Bit-fields that holds the items detected until now.
2013  * @param[in] prev_layer
2014  *   The protocol layer indicated in previous item.
2015  * @param[out] error
2016  *   Pointer to error structure.
2017  *
2018  * @return
2019  *   0 on success, a negative errno value otherwise and rte_errno is set.
2020  */
2021 int
2022 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2023                              const struct rte_flow_item *item __rte_unused,
2024                              uint64_t item_flags __rte_unused,
2025                              uint64_t prev_layer __rte_unused,
2026                              struct rte_flow_error *error)
2027 {
2028 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2029         const struct rte_flow_item_mpls *mask = item->mask;
2030         struct mlx5_priv *priv = dev->data->dev_private;
2031         int ret;
2032
2033         if (!priv->config.mpls_en)
2034                 return rte_flow_error_set(error, ENOTSUP,
2035                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2036                                           "MPLS not supported or"
2037                                           " disabled in firmware"
2038                                           " configuration.");
2039         /* MPLS over IP, UDP, GRE is allowed */
2040         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2041                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
2042                             MLX5_FLOW_LAYER_GRE)))
2043                 return rte_flow_error_set(error, EINVAL,
2044                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2045                                           "protocol filtering not compatible"
2046                                           " with MPLS layer");
2047         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2048         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2049             !(item_flags & MLX5_FLOW_LAYER_GRE))
2050                 return rte_flow_error_set(error, ENOTSUP,
2051                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2052                                           "multiple tunnel layers not"
2053                                           " supported");
2054         if (!mask)
2055                 mask = &rte_flow_item_mpls_mask;
2056         ret = mlx5_flow_item_acceptable
2057                 (item, (const uint8_t *)mask,
2058                  (const uint8_t *)&rte_flow_item_mpls_mask,
2059                  sizeof(struct rte_flow_item_mpls), error);
2060         if (ret < 0)
2061                 return ret;
2062         return 0;
2063 #endif
2064         return rte_flow_error_set(error, ENOTSUP,
2065                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
2066                                   "MPLS is not supported by Verbs, please"
2067                                   " update.");
2068 }
2069
2070 /**
2071  * Validate NVGRE item.
2072  *
2073  * @param[in] item
2074  *   Item specification.
2075  * @param[in] item_flags
2076  *   Bit flags to mark detected items.
2077  * @param[in] target_protocol
2078  *   The next protocol in the previous item.
2079  * @param[out] error
2080  *   Pointer to error structure.
2081  *
2082  * @return
2083  *   0 on success, a negative errno value otherwise and rte_errno is set.
2084  */
2085 int
2086 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2087                               uint64_t item_flags,
2088                               uint8_t target_protocol,
2089                               struct rte_flow_error *error)
2090 {
2091         const struct rte_flow_item_nvgre *mask = item->mask;
2092         int ret;
2093
2094         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2095                 return rte_flow_error_set(error, EINVAL,
2096                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2097                                           "protocol filtering not compatible"
2098                                           " with this GRE layer");
2099         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2100                 return rte_flow_error_set(error, ENOTSUP,
2101                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2102                                           "multiple tunnel layers not"
2103                                           " supported");
2104         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2105                 return rte_flow_error_set(error, ENOTSUP,
2106                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2107                                           "L3 Layer is missing");
2108         if (!mask)
2109                 mask = &rte_flow_item_nvgre_mask;
2110         ret = mlx5_flow_item_acceptable
2111                 (item, (const uint8_t *)mask,
2112                  (const uint8_t *)&rte_flow_item_nvgre_mask,
2113                  sizeof(struct rte_flow_item_nvgre), error);
2114         if (ret < 0)
2115                 return ret;
2116         return 0;
2117 }
2118
2119 static int
2120 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
2121                    const struct rte_flow_attr *attr __rte_unused,
2122                    const struct rte_flow_item items[] __rte_unused,
2123                    const struct rte_flow_action actions[] __rte_unused,
2124                    bool external __rte_unused,
2125                    struct rte_flow_error *error)
2126 {
2127         return rte_flow_error_set(error, ENOTSUP,
2128                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2129 }
2130
2131 static struct mlx5_flow *
2132 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
2133                   const struct rte_flow_item items[] __rte_unused,
2134                   const struct rte_flow_action actions[] __rte_unused,
2135                   struct rte_flow_error *error)
2136 {
2137         rte_flow_error_set(error, ENOTSUP,
2138                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2139         return NULL;
2140 }
2141
2142 static int
2143 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2144                     struct mlx5_flow *dev_flow __rte_unused,
2145                     const struct rte_flow_attr *attr __rte_unused,
2146                     const struct rte_flow_item items[] __rte_unused,
2147                     const struct rte_flow_action actions[] __rte_unused,
2148                     struct rte_flow_error *error)
2149 {
2150         return rte_flow_error_set(error, ENOTSUP,
2151                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2152 }
2153
2154 static int
2155 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2156                 struct rte_flow *flow __rte_unused,
2157                 struct rte_flow_error *error)
2158 {
2159         return rte_flow_error_set(error, ENOTSUP,
2160                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2161 }
2162
2163 static void
2164 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2165                  struct rte_flow *flow __rte_unused)
2166 {
2167 }
2168
2169 static void
2170 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2171                   struct rte_flow *flow __rte_unused)
2172 {
2173 }
2174
2175 static int
2176 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2177                 struct rte_flow *flow __rte_unused,
2178                 const struct rte_flow_action *actions __rte_unused,
2179                 void *data __rte_unused,
2180                 struct rte_flow_error *error)
2181 {
2182         return rte_flow_error_set(error, ENOTSUP,
2183                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2184 }
2185
2186 /* Void driver to protect from null pointer reference. */
2187 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2188         .validate = flow_null_validate,
2189         .prepare = flow_null_prepare,
2190         .translate = flow_null_translate,
2191         .apply = flow_null_apply,
2192         .remove = flow_null_remove,
2193         .destroy = flow_null_destroy,
2194         .query = flow_null_query,
2195 };
2196
2197 /**
2198  * Select flow driver type according to flow attributes and device
2199  * configuration.
2200  *
2201  * @param[in] dev
2202  *   Pointer to the dev structure.
2203  * @param[in] attr
2204  *   Pointer to the flow attributes.
2205  *
2206  * @return
2207  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2208  */
2209 static enum mlx5_flow_drv_type
2210 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2211 {
2212         struct mlx5_priv *priv = dev->data->dev_private;
2213         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
2214
2215         if (attr->transfer && priv->config.dv_esw_en)
2216                 type = MLX5_FLOW_TYPE_DV;
2217         if (!attr->transfer)
2218                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2219                                                  MLX5_FLOW_TYPE_VERBS;
2220         return type;
2221 }
2222
2223 #define flow_get_drv_ops(type) flow_drv_ops[type]
2224
2225 /**
2226  * Flow driver validation API. This abstracts calling driver specific functions.
2227  * The type of flow driver is determined according to flow attributes.
2228  *
2229  * @param[in] dev
2230  *   Pointer to the dev structure.
2231  * @param[in] attr
2232  *   Pointer to the flow attributes.
2233  * @param[in] items
2234  *   Pointer to the list of items.
2235  * @param[in] actions
2236  *   Pointer to the list of actions.
2237  * @param[in] external
2238  *   This flow rule is created by request external to PMD.
2239  * @param[out] error
2240  *   Pointer to the error structure.
2241  *
2242  * @return
2243  *   0 on success, a negative errno value otherwise and rte_errno is set.
2244  */
2245 static inline int
2246 flow_drv_validate(struct rte_eth_dev *dev,
2247                   const struct rte_flow_attr *attr,
2248                   const struct rte_flow_item items[],
2249                   const struct rte_flow_action actions[],
2250                   bool external, struct rte_flow_error *error)
2251 {
2252         const struct mlx5_flow_driver_ops *fops;
2253         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2254
2255         fops = flow_get_drv_ops(type);
2256         return fops->validate(dev, attr, items, actions, external, error);
2257 }
2258
2259 /**
2260  * Flow driver preparation API. This abstracts calling driver specific
2261  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2262  * calculates the size of memory required for device flow, allocates the memory,
2263  * initializes the device flow and returns the pointer.
2264  *
2265  * @note
2266  *   This function initializes device flow structure such as dv or verbs in
2267  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2268  *   rest. For example, adding returning device flow to flow->dev_flow list and
2269  *   setting backward reference to the flow should be done out of this function.
2270  *   layers field is not filled either.
2271  *
2272  * @param[in] attr
2273  *   Pointer to the flow attributes.
2274  * @param[in] items
2275  *   Pointer to the list of items.
2276  * @param[in] actions
2277  *   Pointer to the list of actions.
2278  * @param[out] error
2279  *   Pointer to the error structure.
2280  *
2281  * @return
2282  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2283  */
2284 static inline struct mlx5_flow *
2285 flow_drv_prepare(const struct rte_flow *flow,
2286                  const struct rte_flow_attr *attr,
2287                  const struct rte_flow_item items[],
2288                  const struct rte_flow_action actions[],
2289                  struct rte_flow_error *error)
2290 {
2291         const struct mlx5_flow_driver_ops *fops;
2292         enum mlx5_flow_drv_type type = flow->drv_type;
2293
2294         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2295         fops = flow_get_drv_ops(type);
2296         return fops->prepare(attr, items, actions, error);
2297 }
2298
2299 /**
2300  * Flow driver translation API. This abstracts calling driver specific
2301  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2302  * translates a generic flow into a driver flow. flow_drv_prepare() must
2303  * precede.
2304  *
2305  * @note
2306  *   dev_flow->layers could be filled as a result of parsing during translation
2307  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
2308  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
2309  *   flow->actions could be overwritten even though all the expanded dev_flows
2310  *   have the same actions.
2311  *
2312  * @param[in] dev
2313  *   Pointer to the rte dev structure.
2314  * @param[in, out] dev_flow
2315  *   Pointer to the mlx5 flow.
2316  * @param[in] attr
2317  *   Pointer to the flow attributes.
2318  * @param[in] items
2319  *   Pointer to the list of items.
2320  * @param[in] actions
2321  *   Pointer to the list of actions.
2322  * @param[out] error
2323  *   Pointer to the error structure.
2324  *
2325  * @return
2326  *   0 on success, a negative errno value otherwise and rte_errno is set.
2327  */
2328 static inline int
2329 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2330                    const struct rte_flow_attr *attr,
2331                    const struct rte_flow_item items[],
2332                    const struct rte_flow_action actions[],
2333                    struct rte_flow_error *error)
2334 {
2335         const struct mlx5_flow_driver_ops *fops;
2336         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2337
2338         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2339         fops = flow_get_drv_ops(type);
2340         return fops->translate(dev, dev_flow, attr, items, actions, error);
2341 }
2342
2343 /**
2344  * Flow driver apply API. This abstracts calling driver specific functions.
2345  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2346  * translated driver flows on to device. flow_drv_translate() must precede.
2347  *
2348  * @param[in] dev
2349  *   Pointer to Ethernet device structure.
2350  * @param[in, out] flow
2351  *   Pointer to flow structure.
2352  * @param[out] error
2353  *   Pointer to error structure.
2354  *
2355  * @return
2356  *   0 on success, a negative errno value otherwise and rte_errno is set.
2357  */
2358 static inline int
2359 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2360                struct rte_flow_error *error)
2361 {
2362         const struct mlx5_flow_driver_ops *fops;
2363         enum mlx5_flow_drv_type type = flow->drv_type;
2364
2365         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2366         fops = flow_get_drv_ops(type);
2367         return fops->apply(dev, flow, error);
2368 }
2369
2370 /**
2371  * Flow driver remove API. This abstracts calling driver specific functions.
2372  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2373  * on device. All the resources of the flow should be freed by calling
2374  * flow_drv_destroy().
2375  *
2376  * @param[in] dev
2377  *   Pointer to Ethernet device.
2378  * @param[in, out] flow
2379  *   Pointer to flow structure.
2380  */
2381 static inline void
2382 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2383 {
2384         const struct mlx5_flow_driver_ops *fops;
2385         enum mlx5_flow_drv_type type = flow->drv_type;
2386
2387         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2388         fops = flow_get_drv_ops(type);
2389         fops->remove(dev, flow);
2390 }
2391
2392 /**
2393  * Flow driver destroy API. This abstracts calling driver specific functions.
2394  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2395  * on device and releases resources of the flow.
2396  *
2397  * @param[in] dev
2398  *   Pointer to Ethernet device.
2399  * @param[in, out] flow
2400  *   Pointer to flow structure.
2401  */
2402 static inline void
2403 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
2404 {
2405         const struct mlx5_flow_driver_ops *fops;
2406         enum mlx5_flow_drv_type type = flow->drv_type;
2407
2408         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2409         fops = flow_get_drv_ops(type);
2410         fops->destroy(dev, flow);
2411 }
2412
2413 /**
2414  * Validate a flow supported by the NIC.
2415  *
2416  * @see rte_flow_validate()
2417  * @see rte_flow_ops
2418  */
2419 int
2420 mlx5_flow_validate(struct rte_eth_dev *dev,
2421                    const struct rte_flow_attr *attr,
2422                    const struct rte_flow_item items[],
2423                    const struct rte_flow_action actions[],
2424                    struct rte_flow_error *error)
2425 {
2426         int ret;
2427
2428         ret = flow_drv_validate(dev, attr, items, actions, true, error);
2429         if (ret < 0)
2430                 return ret;
2431         return 0;
2432 }
2433
2434 /**
2435  * Get RSS action from the action list.
2436  *
2437  * @param[in] actions
2438  *   Pointer to the list of actions.
2439  *
2440  * @return
2441  *   Pointer to the RSS action if exist, else return NULL.
2442  */
2443 static const struct rte_flow_action_rss*
2444 flow_get_rss_action(const struct rte_flow_action actions[])
2445 {
2446         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2447                 switch (actions->type) {
2448                 case RTE_FLOW_ACTION_TYPE_RSS:
2449                         return (const struct rte_flow_action_rss *)
2450                                actions->conf;
2451                 default:
2452                         break;
2453                 }
2454         }
2455         return NULL;
2456 }
2457
2458 static unsigned int
2459 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2460 {
2461         const struct rte_flow_item *item;
2462         unsigned int has_vlan = 0;
2463
2464         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2465                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2466                         has_vlan = 1;
2467                         break;
2468                 }
2469         }
2470         if (has_vlan)
2471                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2472                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2473         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2474                                MLX5_EXPANSION_ROOT_OUTER;
2475 }
2476
2477 /**
2478  * Create a flow and add it to @p list.
2479  *
2480  * @param dev
2481  *   Pointer to Ethernet device.
2482  * @param list
2483  *   Pointer to a TAILQ flow list.
2484  * @param[in] attr
2485  *   Flow rule attributes.
2486  * @param[in] items
2487  *   Pattern specification (list terminated by the END pattern item).
2488  * @param[in] actions
2489  *   Associated actions (list terminated by the END action).
2490  * @param[in] external
2491  *   This flow rule is created by request external to PMD.
2492  * @param[out] error
2493  *   Perform verbose error reporting if not NULL.
2494  *
2495  * @return
2496  *   A flow on success, NULL otherwise and rte_errno is set.
2497  */
2498 static struct rte_flow *
2499 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2500                  const struct rte_flow_attr *attr,
2501                  const struct rte_flow_item items[],
2502                  const struct rte_flow_action actions[],
2503                  bool external, struct rte_flow_error *error)
2504 {
2505         struct rte_flow *flow = NULL;
2506         struct mlx5_flow *dev_flow;
2507         const struct rte_flow_action_rss *rss;
2508         union {
2509                 struct rte_flow_expand_rss buf;
2510                 uint8_t buffer[2048];
2511         } expand_buffer;
2512         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2513         int ret;
2514         uint32_t i;
2515         uint32_t flow_size;
2516
2517         ret = flow_drv_validate(dev, attr, items, actions, external, error);
2518         if (ret < 0)
2519                 return NULL;
2520         flow_size = sizeof(struct rte_flow);
2521         rss = flow_get_rss_action(actions);
2522         if (rss)
2523                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2524                                             sizeof(void *));
2525         else
2526                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2527         flow = rte_calloc(__func__, 1, flow_size, 0);
2528         if (!flow) {
2529                 rte_errno = ENOMEM;
2530                 return NULL;
2531         }
2532         flow->drv_type = flow_get_drv_type(dev, attr);
2533         flow->ingress = attr->ingress;
2534         flow->transfer = attr->transfer;
2535         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2536                flow->drv_type < MLX5_FLOW_TYPE_MAX);
2537         flow->queue = (void *)(flow + 1);
2538         LIST_INIT(&flow->dev_flows);
2539         if (rss && rss->types) {
2540                 unsigned int graph_root;
2541
2542                 graph_root = find_graph_root(items, rss->level);
2543                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2544                                           items, rss->types,
2545                                           mlx5_support_expansion,
2546                                           graph_root);
2547                 assert(ret > 0 &&
2548                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2549         } else {
2550                 buf->entries = 1;
2551                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2552         }
2553         for (i = 0; i < buf->entries; ++i) {
2554                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2555                                             actions, error);
2556                 if (!dev_flow)
2557                         goto error;
2558                 dev_flow->flow = flow;
2559                 dev_flow->external = external;
2560                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2561                 ret = flow_drv_translate(dev, dev_flow, attr,
2562                                          buf->entry[i].pattern,
2563                                          actions, error);
2564                 if (ret < 0)
2565                         goto error;
2566         }
2567         if (dev->data->dev_started) {
2568                 ret = flow_drv_apply(dev, flow, error);
2569                 if (ret < 0)
2570                         goto error;
2571         }
2572         TAILQ_INSERT_TAIL(list, flow, next);
2573         flow_rxq_flags_set(dev, flow);
2574         return flow;
2575 error:
2576         ret = rte_errno; /* Save rte_errno before cleanup. */
2577         assert(flow);
2578         flow_drv_destroy(dev, flow);
2579         rte_free(flow);
2580         rte_errno = ret; /* Restore rte_errno. */
2581         return NULL;
2582 }
2583
2584 /**
2585  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
2586  * incoming packets to table 1.
2587  *
2588  * Other flow rules, requested for group n, will be created in
2589  * e-switch table n+1.
2590  * Jump action to e-switch group n will be created to group n+1.
2591  *
2592  * Used when working in switchdev mode, to utilise advantages of table 1
2593  * and above.
2594  *
2595  * @param dev
2596  *   Pointer to Ethernet device.
2597  *
2598  * @return
2599  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
2600  */
2601 struct rte_flow *
2602 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
2603 {
2604         const struct rte_flow_attr attr = {
2605                 .group = 0,
2606                 .priority = 0,
2607                 .ingress = 1,
2608                 .egress = 0,
2609                 .transfer = 1,
2610         };
2611         const struct rte_flow_item pattern = {
2612                 .type = RTE_FLOW_ITEM_TYPE_END,
2613         };
2614         struct rte_flow_action_jump jump = {
2615                 .group = 1,
2616         };
2617         const struct rte_flow_action actions[] = {
2618                 {
2619                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
2620                         .conf = &jump,
2621                 },
2622                 {
2623                         .type = RTE_FLOW_ACTION_TYPE_END,
2624                 },
2625         };
2626         struct mlx5_priv *priv = dev->data->dev_private;
2627         struct rte_flow_error error;
2628
2629         return flow_list_create(dev, &priv->ctrl_flows, &attr, &pattern,
2630                                 actions, false, &error);
2631 }
2632
2633 /**
2634  * Create a flow.
2635  *
2636  * @see rte_flow_create()
2637  * @see rte_flow_ops
2638  */
2639 struct rte_flow *
2640 mlx5_flow_create(struct rte_eth_dev *dev,
2641                  const struct rte_flow_attr *attr,
2642                  const struct rte_flow_item items[],
2643                  const struct rte_flow_action actions[],
2644                  struct rte_flow_error *error)
2645 {
2646         struct mlx5_priv *priv = dev->data->dev_private;
2647
2648         return flow_list_create(dev, &priv->flows,
2649                                 attr, items, actions, true, error);
2650 }
2651
2652 /**
2653  * Destroy a flow in a list.
2654  *
2655  * @param dev
2656  *   Pointer to Ethernet device.
2657  * @param list
2658  *   Pointer to a TAILQ flow list.
2659  * @param[in] flow
2660  *   Flow to destroy.
2661  */
2662 static void
2663 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2664                   struct rte_flow *flow)
2665 {
2666         /*
2667          * Update RX queue flags only if port is started, otherwise it is
2668          * already clean.
2669          */
2670         if (dev->data->dev_started)
2671                 flow_rxq_flags_trim(dev, flow);
2672         flow_drv_destroy(dev, flow);
2673         TAILQ_REMOVE(list, flow, next);
2674         rte_free(flow->fdir);
2675         rte_free(flow);
2676 }
2677
2678 /**
2679  * Destroy all flows.
2680  *
2681  * @param dev
2682  *   Pointer to Ethernet device.
2683  * @param list
2684  *   Pointer to a TAILQ flow list.
2685  */
2686 void
2687 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2688 {
2689         while (!TAILQ_EMPTY(list)) {
2690                 struct rte_flow *flow;
2691
2692                 flow = TAILQ_FIRST(list);
2693                 flow_list_destroy(dev, list, flow);
2694         }
2695 }
2696
2697 /**
2698  * Remove all flows.
2699  *
2700  * @param dev
2701  *   Pointer to Ethernet device.
2702  * @param list
2703  *   Pointer to a TAILQ flow list.
2704  */
2705 void
2706 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2707 {
2708         struct rte_flow *flow;
2709
2710         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2711                 flow_drv_remove(dev, flow);
2712         flow_rxq_flags_clear(dev);
2713 }
2714
2715 /**
2716  * Add all flows.
2717  *
2718  * @param dev
2719  *   Pointer to Ethernet device.
2720  * @param list
2721  *   Pointer to a TAILQ flow list.
2722  *
2723  * @return
2724  *   0 on success, a negative errno value otherwise and rte_errno is set.
2725  */
2726 int
2727 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2728 {
2729         struct rte_flow *flow;
2730         struct rte_flow_error error;
2731         int ret = 0;
2732
2733         TAILQ_FOREACH(flow, list, next) {
2734                 ret = flow_drv_apply(dev, flow, &error);
2735                 if (ret < 0)
2736                         goto error;
2737                 flow_rxq_flags_set(dev, flow);
2738         }
2739         return 0;
2740 error:
2741         ret = rte_errno; /* Save rte_errno before cleanup. */
2742         mlx5_flow_stop(dev, list);
2743         rte_errno = ret; /* Restore rte_errno. */
2744         return -rte_errno;
2745 }
2746
2747 /**
2748  * Verify the flow list is empty
2749  *
2750  * @param dev
2751  *  Pointer to Ethernet device.
2752  *
2753  * @return the number of flows not released.
2754  */
2755 int
2756 mlx5_flow_verify(struct rte_eth_dev *dev)
2757 {
2758         struct mlx5_priv *priv = dev->data->dev_private;
2759         struct rte_flow *flow;
2760         int ret = 0;
2761
2762         TAILQ_FOREACH(flow, &priv->flows, next) {
2763                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
2764                         dev->data->port_id, (void *)flow);
2765                 ++ret;
2766         }
2767         return ret;
2768 }
2769
2770 /**
2771  * Enable a control flow configured from the control plane.
2772  *
2773  * @param dev
2774  *   Pointer to Ethernet device.
2775  * @param eth_spec
2776  *   An Ethernet flow spec to apply.
2777  * @param eth_mask
2778  *   An Ethernet flow mask to apply.
2779  * @param vlan_spec
2780  *   A VLAN flow spec to apply.
2781  * @param vlan_mask
2782  *   A VLAN flow mask to apply.
2783  *
2784  * @return
2785  *   0 on success, a negative errno value otherwise and rte_errno is set.
2786  */
2787 int
2788 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2789                     struct rte_flow_item_eth *eth_spec,
2790                     struct rte_flow_item_eth *eth_mask,
2791                     struct rte_flow_item_vlan *vlan_spec,
2792                     struct rte_flow_item_vlan *vlan_mask)
2793 {
2794         struct mlx5_priv *priv = dev->data->dev_private;
2795         const struct rte_flow_attr attr = {
2796                 .ingress = 1,
2797                 .priority = MLX5_FLOW_PRIO_RSVD,
2798         };
2799         struct rte_flow_item items[] = {
2800                 {
2801                         .type = RTE_FLOW_ITEM_TYPE_ETH,
2802                         .spec = eth_spec,
2803                         .last = NULL,
2804                         .mask = eth_mask,
2805                 },
2806                 {
2807                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2808                                               RTE_FLOW_ITEM_TYPE_END,
2809                         .spec = vlan_spec,
2810                         .last = NULL,
2811                         .mask = vlan_mask,
2812                 },
2813                 {
2814                         .type = RTE_FLOW_ITEM_TYPE_END,
2815                 },
2816         };
2817         uint16_t queue[priv->reta_idx_n];
2818         struct rte_flow_action_rss action_rss = {
2819                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2820                 .level = 0,
2821                 .types = priv->rss_conf.rss_hf,
2822                 .key_len = priv->rss_conf.rss_key_len,
2823                 .queue_num = priv->reta_idx_n,
2824                 .key = priv->rss_conf.rss_key,
2825                 .queue = queue,
2826         };
2827         struct rte_flow_action actions[] = {
2828                 {
2829                         .type = RTE_FLOW_ACTION_TYPE_RSS,
2830                         .conf = &action_rss,
2831                 },
2832                 {
2833                         .type = RTE_FLOW_ACTION_TYPE_END,
2834                 },
2835         };
2836         struct rte_flow *flow;
2837         struct rte_flow_error error;
2838         unsigned int i;
2839
2840         if (!priv->reta_idx_n || !priv->rxqs_n) {
2841                 return 0;
2842         }
2843         for (i = 0; i != priv->reta_idx_n; ++i)
2844                 queue[i] = (*priv->reta_idx)[i];
2845         flow = flow_list_create(dev, &priv->ctrl_flows,
2846                                 &attr, items, actions, false, &error);
2847         if (!flow)
2848                 return -rte_errno;
2849         return 0;
2850 }
2851
2852 /**
2853  * Enable a flow control configured from the control plane.
2854  *
2855  * @param dev
2856  *   Pointer to Ethernet device.
2857  * @param eth_spec
2858  *   An Ethernet flow spec to apply.
2859  * @param eth_mask
2860  *   An Ethernet flow mask to apply.
2861  *
2862  * @return
2863  *   0 on success, a negative errno value otherwise and rte_errno is set.
2864  */
2865 int
2866 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2867                struct rte_flow_item_eth *eth_spec,
2868                struct rte_flow_item_eth *eth_mask)
2869 {
2870         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2871 }
2872
2873 /**
2874  * Destroy a flow.
2875  *
2876  * @see rte_flow_destroy()
2877  * @see rte_flow_ops
2878  */
2879 int
2880 mlx5_flow_destroy(struct rte_eth_dev *dev,
2881                   struct rte_flow *flow,
2882                   struct rte_flow_error *error __rte_unused)
2883 {
2884         struct mlx5_priv *priv = dev->data->dev_private;
2885
2886         flow_list_destroy(dev, &priv->flows, flow);
2887         return 0;
2888 }
2889
2890 /**
2891  * Destroy all flows.
2892  *
2893  * @see rte_flow_flush()
2894  * @see rte_flow_ops
2895  */
2896 int
2897 mlx5_flow_flush(struct rte_eth_dev *dev,
2898                 struct rte_flow_error *error __rte_unused)
2899 {
2900         struct mlx5_priv *priv = dev->data->dev_private;
2901
2902         mlx5_flow_list_flush(dev, &priv->flows);
2903         return 0;
2904 }
2905
2906 /**
2907  * Isolated mode.
2908  *
2909  * @see rte_flow_isolate()
2910  * @see rte_flow_ops
2911  */
2912 int
2913 mlx5_flow_isolate(struct rte_eth_dev *dev,
2914                   int enable,
2915                   struct rte_flow_error *error)
2916 {
2917         struct mlx5_priv *priv = dev->data->dev_private;
2918
2919         if (dev->data->dev_started) {
2920                 rte_flow_error_set(error, EBUSY,
2921                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2922                                    NULL,
2923                                    "port must be stopped first");
2924                 return -rte_errno;
2925         }
2926         priv->isolated = !!enable;
2927         if (enable)
2928                 dev->dev_ops = &mlx5_dev_ops_isolate;
2929         else
2930                 dev->dev_ops = &mlx5_dev_ops;
2931         return 0;
2932 }
2933
2934 /**
2935  * Query a flow.
2936  *
2937  * @see rte_flow_query()
2938  * @see rte_flow_ops
2939  */
2940 static int
2941 flow_drv_query(struct rte_eth_dev *dev,
2942                struct rte_flow *flow,
2943                const struct rte_flow_action *actions,
2944                void *data,
2945                struct rte_flow_error *error)
2946 {
2947         const struct mlx5_flow_driver_ops *fops;
2948         enum mlx5_flow_drv_type ftype = flow->drv_type;
2949
2950         assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2951         fops = flow_get_drv_ops(ftype);
2952
2953         return fops->query(dev, flow, actions, data, error);
2954 }
2955
2956 /**
2957  * Query a flow.
2958  *
2959  * @see rte_flow_query()
2960  * @see rte_flow_ops
2961  */
2962 int
2963 mlx5_flow_query(struct rte_eth_dev *dev,
2964                 struct rte_flow *flow,
2965                 const struct rte_flow_action *actions,
2966                 void *data,
2967                 struct rte_flow_error *error)
2968 {
2969         int ret;
2970
2971         ret = flow_drv_query(dev, flow, actions, data, error);
2972         if (ret < 0)
2973                 return ret;
2974         return 0;
2975 }
2976
2977 /**
2978  * Convert a flow director filter to a generic flow.
2979  *
2980  * @param dev
2981  *   Pointer to Ethernet device.
2982  * @param fdir_filter
2983  *   Flow director filter to add.
2984  * @param attributes
2985  *   Generic flow parameters structure.
2986  *
2987  * @return
2988  *   0 on success, a negative errno value otherwise and rte_errno is set.
2989  */
2990 static int
2991 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2992                          const struct rte_eth_fdir_filter *fdir_filter,
2993                          struct mlx5_fdir *attributes)
2994 {
2995         struct mlx5_priv *priv = dev->data->dev_private;
2996         const struct rte_eth_fdir_input *input = &fdir_filter->input;
2997         const struct rte_eth_fdir_masks *mask =
2998                 &dev->data->dev_conf.fdir_conf.mask;
2999
3000         /* Validate queue number. */
3001         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
3002                 DRV_LOG(ERR, "port %u invalid queue number %d",
3003                         dev->data->port_id, fdir_filter->action.rx_queue);
3004                 rte_errno = EINVAL;
3005                 return -rte_errno;
3006         }
3007         attributes->attr.ingress = 1;
3008         attributes->items[0] = (struct rte_flow_item) {
3009                 .type = RTE_FLOW_ITEM_TYPE_ETH,
3010                 .spec = &attributes->l2,
3011                 .mask = &attributes->l2_mask,
3012         };
3013         switch (fdir_filter->action.behavior) {
3014         case RTE_ETH_FDIR_ACCEPT:
3015                 attributes->actions[0] = (struct rte_flow_action){
3016                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
3017                         .conf = &attributes->queue,
3018                 };
3019                 break;
3020         case RTE_ETH_FDIR_REJECT:
3021                 attributes->actions[0] = (struct rte_flow_action){
3022                         .type = RTE_FLOW_ACTION_TYPE_DROP,
3023                 };
3024                 break;
3025         default:
3026                 DRV_LOG(ERR, "port %u invalid behavior %d",
3027                         dev->data->port_id,
3028                         fdir_filter->action.behavior);
3029                 rte_errno = ENOTSUP;
3030                 return -rte_errno;
3031         }
3032         attributes->queue.index = fdir_filter->action.rx_queue;
3033         /* Handle L3. */
3034         switch (fdir_filter->input.flow_type) {
3035         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3036         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3037         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3038                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
3039                         .src_addr = input->flow.ip4_flow.src_ip,
3040                         .dst_addr = input->flow.ip4_flow.dst_ip,
3041                         .time_to_live = input->flow.ip4_flow.ttl,
3042                         .type_of_service = input->flow.ip4_flow.tos,
3043                 };
3044                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
3045                         .src_addr = mask->ipv4_mask.src_ip,
3046                         .dst_addr = mask->ipv4_mask.dst_ip,
3047                         .time_to_live = mask->ipv4_mask.ttl,
3048                         .type_of_service = mask->ipv4_mask.tos,
3049                         .next_proto_id = mask->ipv4_mask.proto,
3050                 };
3051                 attributes->items[1] = (struct rte_flow_item){
3052                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
3053                         .spec = &attributes->l3,
3054                         .mask = &attributes->l3_mask,
3055                 };
3056                 break;
3057         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3058         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3059         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3060                 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
3061                         .hop_limits = input->flow.ipv6_flow.hop_limits,
3062                         .proto = input->flow.ipv6_flow.proto,
3063                 };
3064
3065                 memcpy(attributes->l3.ipv6.hdr.src_addr,
3066                        input->flow.ipv6_flow.src_ip,
3067                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3068                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
3069                        input->flow.ipv6_flow.dst_ip,
3070                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
3071                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
3072                        mask->ipv6_mask.src_ip,
3073                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3074                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
3075                        mask->ipv6_mask.dst_ip,
3076                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
3077                 attributes->items[1] = (struct rte_flow_item){
3078                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
3079                         .spec = &attributes->l3,
3080                         .mask = &attributes->l3_mask,
3081                 };
3082                 break;
3083         default:
3084                 DRV_LOG(ERR, "port %u invalid flow type%d",
3085                         dev->data->port_id, fdir_filter->input.flow_type);
3086                 rte_errno = ENOTSUP;
3087                 return -rte_errno;
3088         }
3089         /* Handle L4. */
3090         switch (fdir_filter->input.flow_type) {
3091         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3092                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
3093                         .src_port = input->flow.udp4_flow.src_port,
3094                         .dst_port = input->flow.udp4_flow.dst_port,
3095                 };
3096                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
3097                         .src_port = mask->src_port_mask,
3098                         .dst_port = mask->dst_port_mask,
3099                 };
3100                 attributes->items[2] = (struct rte_flow_item){
3101                         .type = RTE_FLOW_ITEM_TYPE_UDP,
3102                         .spec = &attributes->l4,
3103                         .mask = &attributes->l4_mask,
3104                 };
3105                 break;
3106         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3107                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
3108                         .src_port = input->flow.tcp4_flow.src_port,
3109                         .dst_port = input->flow.tcp4_flow.dst_port,
3110                 };
3111                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
3112                         .src_port = mask->src_port_mask,
3113                         .dst_port = mask->dst_port_mask,
3114                 };
3115                 attributes->items[2] = (struct rte_flow_item){
3116                         .type = RTE_FLOW_ITEM_TYPE_TCP,
3117                         .spec = &attributes->l4,
3118                         .mask = &attributes->l4_mask,
3119                 };
3120                 break;
3121         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3122                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
3123                         .src_port = input->flow.udp6_flow.src_port,
3124                         .dst_port = input->flow.udp6_flow.dst_port,
3125                 };
3126                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
3127                         .src_port = mask->src_port_mask,
3128                         .dst_port = mask->dst_port_mask,
3129                 };
3130                 attributes->items[2] = (struct rte_flow_item){
3131                         .type = RTE_FLOW_ITEM_TYPE_UDP,
3132                         .spec = &attributes->l4,
3133                         .mask = &attributes->l4_mask,
3134                 };
3135                 break;
3136         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3137                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
3138                         .src_port = input->flow.tcp6_flow.src_port,
3139                         .dst_port = input->flow.tcp6_flow.dst_port,
3140                 };
3141                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
3142                         .src_port = mask->src_port_mask,
3143                         .dst_port = mask->dst_port_mask,
3144                 };
3145                 attributes->items[2] = (struct rte_flow_item){
3146                         .type = RTE_FLOW_ITEM_TYPE_TCP,
3147                         .spec = &attributes->l4,
3148                         .mask = &attributes->l4_mask,
3149                 };
3150                 break;
3151         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3152         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3153                 break;
3154         default:
3155                 DRV_LOG(ERR, "port %u invalid flow type%d",
3156                         dev->data->port_id, fdir_filter->input.flow_type);
3157                 rte_errno = ENOTSUP;
3158                 return -rte_errno;
3159         }
3160         return 0;
3161 }
3162
3163 #define FLOW_FDIR_CMP(f1, f2, fld) \
3164         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
3165
3166 /**
3167  * Compare two FDIR flows. If items and actions are identical, the two flows are
3168  * regarded as same.
3169  *
3170  * @param dev
3171  *   Pointer to Ethernet device.
3172  * @param f1
3173  *   FDIR flow to compare.
3174  * @param f2
3175  *   FDIR flow to compare.
3176  *
3177  * @return
3178  *   Zero on match, 1 otherwise.
3179  */
3180 static int
3181 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
3182 {
3183         if (FLOW_FDIR_CMP(f1, f2, attr) ||
3184             FLOW_FDIR_CMP(f1, f2, l2) ||
3185             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
3186             FLOW_FDIR_CMP(f1, f2, l3) ||
3187             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
3188             FLOW_FDIR_CMP(f1, f2, l4) ||
3189             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
3190             FLOW_FDIR_CMP(f1, f2, actions[0].type))
3191                 return 1;
3192         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
3193             FLOW_FDIR_CMP(f1, f2, queue))
3194                 return 1;
3195         return 0;
3196 }
3197
3198 /**
3199  * Search device flow list to find out a matched FDIR flow.
3200  *
3201  * @param dev
3202  *   Pointer to Ethernet device.
3203  * @param fdir_flow
3204  *   FDIR flow to lookup.
3205  *
3206  * @return
3207  *   Pointer of flow if found, NULL otherwise.
3208  */
3209 static struct rte_flow *
3210 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
3211 {
3212         struct mlx5_priv *priv = dev->data->dev_private;
3213         struct rte_flow *flow = NULL;
3214
3215         assert(fdir_flow);
3216         TAILQ_FOREACH(flow, &priv->flows, next) {
3217                 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
3218                         DRV_LOG(DEBUG, "port %u found FDIR flow %p",
3219                                 dev->data->port_id, (void *)flow);
3220                         break;
3221                 }
3222         }
3223         return flow;
3224 }
3225
3226 /**
3227  * Add new flow director filter and store it in list.
3228  *
3229  * @param dev
3230  *   Pointer to Ethernet device.
3231  * @param fdir_filter
3232  *   Flow director filter to add.
3233  *
3234  * @return
3235  *   0 on success, a negative errno value otherwise and rte_errno is set.
3236  */
3237 static int
3238 flow_fdir_filter_add(struct rte_eth_dev *dev,
3239                      const struct rte_eth_fdir_filter *fdir_filter)
3240 {
3241         struct mlx5_priv *priv = dev->data->dev_private;
3242         struct mlx5_fdir *fdir_flow;
3243         struct rte_flow *flow;
3244         int ret;
3245
3246         fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
3247         if (!fdir_flow) {
3248                 rte_errno = ENOMEM;
3249                 return -rte_errno;
3250         }
3251         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
3252         if (ret)
3253                 goto error;
3254         flow = flow_fdir_filter_lookup(dev, fdir_flow);
3255         if (flow) {
3256                 rte_errno = EEXIST;
3257                 goto error;
3258         }
3259         flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
3260                                 fdir_flow->items, fdir_flow->actions, true,
3261                                 NULL);
3262         if (!flow)
3263                 goto error;
3264         assert(!flow->fdir);
3265         flow->fdir = fdir_flow;
3266         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
3267                 dev->data->port_id, (void *)flow);
3268         return 0;
3269 error:
3270         rte_free(fdir_flow);
3271         return -rte_errno;
3272 }
3273
3274 /**
3275  * Delete specific filter.
3276  *
3277  * @param dev
3278  *   Pointer to Ethernet device.
3279  * @param fdir_filter
3280  *   Filter to be deleted.
3281  *
3282  * @return
3283  *   0 on success, a negative errno value otherwise and rte_errno is set.
3284  */
3285 static int
3286 flow_fdir_filter_delete(struct rte_eth_dev *dev,
3287                         const struct rte_eth_fdir_filter *fdir_filter)
3288 {
3289         struct mlx5_priv *priv = dev->data->dev_private;
3290         struct rte_flow *flow;
3291         struct mlx5_fdir fdir_flow = {
3292                 .attr.group = 0,
3293         };
3294         int ret;
3295
3296         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
3297         if (ret)
3298                 return -rte_errno;
3299         flow = flow_fdir_filter_lookup(dev, &fdir_flow);
3300         if (!flow) {
3301                 rte_errno = ENOENT;
3302                 return -rte_errno;
3303         }
3304         flow_list_destroy(dev, &priv->flows, flow);
3305         DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
3306                 dev->data->port_id, (void *)flow);
3307         return 0;
3308 }
3309
3310 /**
3311  * Update queue for specific filter.
3312  *
3313  * @param dev
3314  *   Pointer to Ethernet device.
3315  * @param fdir_filter
3316  *   Filter to be updated.
3317  *
3318  * @return
3319  *   0 on success, a negative errno value otherwise and rte_errno is set.
3320  */
3321 static int
3322 flow_fdir_filter_update(struct rte_eth_dev *dev,
3323                         const struct rte_eth_fdir_filter *fdir_filter)
3324 {
3325         int ret;
3326
3327         ret = flow_fdir_filter_delete(dev, fdir_filter);
3328         if (ret)
3329                 return ret;
3330         return flow_fdir_filter_add(dev, fdir_filter);
3331 }
3332
3333 /**
3334  * Flush all filters.
3335  *
3336  * @param dev
3337  *   Pointer to Ethernet device.
3338  */
3339 static void
3340 flow_fdir_filter_flush(struct rte_eth_dev *dev)
3341 {
3342         struct mlx5_priv *priv = dev->data->dev_private;
3343
3344         mlx5_flow_list_flush(dev, &priv->flows);
3345 }
3346
3347 /**
3348  * Get flow director information.
3349  *
3350  * @param dev
3351  *   Pointer to Ethernet device.
3352  * @param[out] fdir_info
3353  *   Resulting flow director information.
3354  */
3355 static void
3356 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
3357 {
3358         struct rte_eth_fdir_masks *mask =
3359                 &dev->data->dev_conf.fdir_conf.mask;
3360
3361         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
3362         fdir_info->guarant_spc = 0;
3363         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
3364         fdir_info->max_flexpayload = 0;
3365         fdir_info->flow_types_mask[0] = 0;
3366         fdir_info->flex_payload_unit = 0;
3367         fdir_info->max_flex_payload_segment_num = 0;
3368         fdir_info->flex_payload_limit = 0;
3369         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
3370 }
3371
3372 /**
3373  * Deal with flow director operations.
3374  *
3375  * @param dev
3376  *   Pointer to Ethernet device.
3377  * @param filter_op
3378  *   Operation to perform.
3379  * @param arg
3380  *   Pointer to operation-specific structure.
3381  *
3382  * @return
3383  *   0 on success, a negative errno value otherwise and rte_errno is set.
3384  */
3385 static int
3386 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3387                     void *arg)
3388 {
3389         enum rte_fdir_mode fdir_mode =
3390                 dev->data->dev_conf.fdir_conf.mode;
3391
3392         if (filter_op == RTE_ETH_FILTER_NOP)
3393                 return 0;
3394         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3395             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3396                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
3397                         dev->data->port_id, fdir_mode);
3398                 rte_errno = EINVAL;
3399                 return -rte_errno;
3400         }
3401         switch (filter_op) {
3402         case RTE_ETH_FILTER_ADD:
3403                 return flow_fdir_filter_add(dev, arg);
3404         case RTE_ETH_FILTER_UPDATE:
3405                 return flow_fdir_filter_update(dev, arg);
3406         case RTE_ETH_FILTER_DELETE:
3407                 return flow_fdir_filter_delete(dev, arg);
3408         case RTE_ETH_FILTER_FLUSH:
3409                 flow_fdir_filter_flush(dev);
3410                 break;
3411         case RTE_ETH_FILTER_INFO:
3412                 flow_fdir_info_get(dev, arg);
3413                 break;
3414         default:
3415                 DRV_LOG(DEBUG, "port %u unknown operation %u",
3416                         dev->data->port_id, filter_op);
3417                 rte_errno = EINVAL;
3418                 return -rte_errno;
3419         }
3420         return 0;
3421 }
3422
3423 /**
3424  * Manage filter operations.
3425  *
3426  * @param dev
3427  *   Pointer to Ethernet device structure.
3428  * @param filter_type
3429  *   Filter type.
3430  * @param filter_op
3431  *   Operation to perform.
3432  * @param arg
3433  *   Pointer to operation-specific structure.
3434  *
3435  * @return
3436  *   0 on success, a negative errno value otherwise and rte_errno is set.
3437  */
3438 int
3439 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3440                      enum rte_filter_type filter_type,
3441                      enum rte_filter_op filter_op,
3442                      void *arg)
3443 {
3444         switch (filter_type) {
3445         case RTE_ETH_FILTER_GENERIC:
3446                 if (filter_op != RTE_ETH_FILTER_GET) {
3447                         rte_errno = EINVAL;
3448                         return -rte_errno;
3449                 }
3450                 *(const void **)arg = &mlx5_flow_ops;
3451                 return 0;
3452         case RTE_ETH_FILTER_FDIR:
3453                 return flow_fdir_ctrl_func(dev, filter_op, arg);
3454         default:
3455                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
3456                         dev->data->port_id, filter_type);
3457                 rte_errno = ENOTSUP;
3458                 return -rte_errno;
3459         }
3460         return 0;
3461 }
3462
3463 #define MLX5_POOL_QUERY_FREQ_US 1000000
3464
3465 /**
3466  * Set the periodic procedure for triggering asynchronous batch queries for all
3467  * the counter pools.
3468  *
3469  * @param[in] sh
3470  *   Pointer to mlx5_ibv_shared object.
3471  */
3472 void
3473 mlx5_set_query_alarm(struct mlx5_ibv_shared *sh)
3474 {
3475         struct mlx5_pools_container *cont = MLX5_CNT_CONTAINER(sh, 0, 0);
3476         uint32_t pools_n = rte_atomic16_read(&cont->n_valid);
3477         uint32_t us;
3478
3479         cont = MLX5_CNT_CONTAINER(sh, 1, 0);
3480         pools_n += rte_atomic16_read(&cont->n_valid);
3481         us = MLX5_POOL_QUERY_FREQ_US / pools_n;
3482         DRV_LOG(DEBUG, "Set alarm for %u pools each %u us\n", pools_n, us);
3483         if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
3484                 sh->cmng.query_thread_on = 0;
3485                 DRV_LOG(ERR, "Cannot reinitialize query alarm\n");
3486         } else {
3487                 sh->cmng.query_thread_on = 1;
3488         }
3489 }
3490
3491 /**
3492  * The periodic procedure for triggering asynchronous batch queries for all the
3493  * counter pools. This function is probably called by the host thread.
3494  *
3495  * @param[in] arg
3496  *   The parameter for the alarm process.
3497  */
3498 void
3499 mlx5_flow_query_alarm(void *arg)
3500 {
3501         struct mlx5_ibv_shared *sh = arg;
3502         struct mlx5_devx_obj *dcs;
3503         uint16_t offset;
3504         int ret;
3505         uint8_t batch = sh->cmng.batch;
3506         uint16_t pool_index = sh->cmng.pool_index;
3507         struct mlx5_pools_container *cont;
3508         struct mlx5_pools_container *mcont;
3509         struct mlx5_flow_counter_pool *pool;
3510
3511         if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
3512                 goto set_alarm;
3513 next_container:
3514         cont = MLX5_CNT_CONTAINER(sh, batch, 1);
3515         mcont = MLX5_CNT_CONTAINER(sh, batch, 0);
3516         /* Check if resize was done and need to flip a container. */
3517         if (cont != mcont) {
3518                 if (cont->pools) {
3519                         /* Clean the old container. */
3520                         rte_free(cont->pools);
3521                         memset(cont, 0, sizeof(*cont));
3522                 }
3523                 rte_cio_wmb();
3524                  /* Flip the host container. */
3525                 sh->cmng.mhi[batch] ^= (uint8_t)2;
3526                 cont = mcont;
3527         }
3528         if (!cont->pools) {
3529                 /* 2 empty containers case is unexpected. */
3530                 if (unlikely(batch != sh->cmng.batch))
3531                         goto set_alarm;
3532                 batch ^= 0x1;
3533                 pool_index = 0;
3534                 goto next_container;
3535         }
3536         pool = cont->pools[pool_index];
3537         if (pool->raw_hw)
3538                 /* There is a pool query in progress. */
3539                 goto set_alarm;
3540         pool->raw_hw =
3541                 LIST_FIRST(&sh->cmng.free_stat_raws);
3542         if (!pool->raw_hw)
3543                 /* No free counter statistics raw memory. */
3544                 goto set_alarm;
3545         dcs = (struct mlx5_devx_obj *)(uintptr_t)rte_atomic64_read
3546                                                               (&pool->a64_dcs);
3547         offset = batch ? 0 : dcs->id % MLX5_COUNTERS_PER_POOL;
3548         ret = mlx5_devx_cmd_flow_counter_query(dcs, 0, MLX5_COUNTERS_PER_POOL -
3549                                                offset, NULL, NULL,
3550                                                pool->raw_hw->mem_mng->dm->id,
3551                                                (void *)(uintptr_t)
3552                                                (pool->raw_hw->data + offset),
3553                                                sh->devx_comp,
3554                                                (uint64_t)(uintptr_t)pool);
3555         if (ret) {
3556                 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
3557                         " %d\n", pool->min_dcs->id);
3558                 pool->raw_hw = NULL;
3559                 goto set_alarm;
3560         }
3561         pool->raw_hw->min_dcs_id = dcs->id;
3562         LIST_REMOVE(pool->raw_hw, next);
3563         sh->cmng.pending_queries++;
3564         pool_index++;
3565         if (pool_index >= rte_atomic16_read(&cont->n_valid)) {
3566                 batch ^= 0x1;
3567                 pool_index = 0;
3568         }
3569 set_alarm:
3570         sh->cmng.batch = batch;
3571         sh->cmng.pool_index = pool_index;
3572         mlx5_set_query_alarm(sh);
3573 }
3574
3575 /**
3576  * Handler for the HW respond about ready values from an asynchronous batch
3577  * query. This function is probably called by the host thread.
3578  *
3579  * @param[in] sh
3580  *   The pointer to the shared IB device context.
3581  * @param[in] async_id
3582  *   The Devx async ID.
3583  * @param[in] status
3584  *   The status of the completion.
3585  */
3586 void
3587 mlx5_flow_async_pool_query_handle(struct mlx5_ibv_shared *sh,
3588                                   uint64_t async_id, int status)
3589 {
3590         struct mlx5_flow_counter_pool *pool =
3591                 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
3592         struct mlx5_counter_stats_raw *raw_to_free;
3593
3594         if (unlikely(status)) {
3595                 raw_to_free = pool->raw_hw;
3596         } else {
3597                 raw_to_free = pool->raw;
3598                 rte_spinlock_lock(&pool->sl);
3599                 pool->raw = pool->raw_hw;
3600                 rte_spinlock_unlock(&pool->sl);
3601                 rte_atomic64_add(&pool->query_gen, 1);
3602                 /* Be sure the new raw counters data is updated in memory. */
3603                 rte_cio_wmb();
3604         }
3605         LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
3606         pool->raw_hw = NULL;
3607         sh->cmng.pending_queries--;
3608 }
3609
3610 /**
3611  * Translate the rte_flow group index to HW table value.
3612  *
3613  * @param[in] attributes
3614  *   Pointer to flow attributes
3615  * @param[in] external
3616  *   Value is part of flow rule created by request external to PMD.
3617  * @param[in] group
3618  *   rte_flow group index value.
3619  * @param[out] table
3620  *   HW table value.
3621  * @param[out] error
3622  *   Pointer to error structure.
3623  *
3624  * @return
3625  *   0 on success, a negative errno value otherwise and rte_errno is set.
3626  */
3627 int
3628 mlx5_flow_group_to_table(const struct rte_flow_attr *attributes, bool external,
3629                          uint32_t group, uint32_t *table,
3630                          struct rte_flow_error *error)
3631 {
3632         if (attributes->transfer && external) {
3633                 if (group == UINT32_MAX)
3634                         return rte_flow_error_set
3635                                                 (error, EINVAL,
3636                                                  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
3637                                                  NULL,
3638                                                  "group index not supported");
3639                 *table = group + 1;
3640         } else {
3641                 *table = group;
3642         }
3643         return 0;
3644 }