net: add rte prefix to ip structure
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_eth_ctrl.h>
25 #include <rte_ethdev_driver.h>
26 #include <rte_flow.h>
27 #include <rte_flow_driver.h>
28 #include <rte_malloc.h>
29 #include <rte_ip.h>
30
31 #include "mlx5.h"
32 #include "mlx5_defs.h"
33 #include "mlx5_prm.h"
34 #include "mlx5_glue.h"
35 #include "mlx5_flow.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_tcf_drv_ops;
46 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
47
48 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
49
50 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
51         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
52 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
53         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
54 #endif
55         [MLX5_FLOW_TYPE_TCF] = &mlx5_flow_tcf_drv_ops,
56         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
57         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
58 };
59
60 enum mlx5_expansion {
61         MLX5_EXPANSION_ROOT,
62         MLX5_EXPANSION_ROOT_OUTER,
63         MLX5_EXPANSION_ROOT_ETH_VLAN,
64         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_ETH,
66         MLX5_EXPANSION_OUTER_ETH_VLAN,
67         MLX5_EXPANSION_OUTER_VLAN,
68         MLX5_EXPANSION_OUTER_IPV4,
69         MLX5_EXPANSION_OUTER_IPV4_UDP,
70         MLX5_EXPANSION_OUTER_IPV4_TCP,
71         MLX5_EXPANSION_OUTER_IPV6,
72         MLX5_EXPANSION_OUTER_IPV6_UDP,
73         MLX5_EXPANSION_OUTER_IPV6_TCP,
74         MLX5_EXPANSION_VXLAN,
75         MLX5_EXPANSION_VXLAN_GPE,
76         MLX5_EXPANSION_GRE,
77         MLX5_EXPANSION_MPLS,
78         MLX5_EXPANSION_ETH,
79         MLX5_EXPANSION_ETH_VLAN,
80         MLX5_EXPANSION_VLAN,
81         MLX5_EXPANSION_IPV4,
82         MLX5_EXPANSION_IPV4_UDP,
83         MLX5_EXPANSION_IPV4_TCP,
84         MLX5_EXPANSION_IPV6,
85         MLX5_EXPANSION_IPV6_UDP,
86         MLX5_EXPANSION_IPV6_TCP,
87 };
88
89 /** Supported expansion of items. */
90 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
91         [MLX5_EXPANSION_ROOT] = {
92                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
93                                                  MLX5_EXPANSION_IPV4,
94                                                  MLX5_EXPANSION_IPV6),
95                 .type = RTE_FLOW_ITEM_TYPE_END,
96         },
97         [MLX5_EXPANSION_ROOT_OUTER] = {
98                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
99                                                  MLX5_EXPANSION_OUTER_IPV4,
100                                                  MLX5_EXPANSION_OUTER_IPV6),
101                 .type = RTE_FLOW_ITEM_TYPE_END,
102         },
103         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
104                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
105                 .type = RTE_FLOW_ITEM_TYPE_END,
106         },
107         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
108                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
109                 .type = RTE_FLOW_ITEM_TYPE_END,
110         },
111         [MLX5_EXPANSION_OUTER_ETH] = {
112                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
113                                                  MLX5_EXPANSION_OUTER_IPV6,
114                                                  MLX5_EXPANSION_MPLS),
115                 .type = RTE_FLOW_ITEM_TYPE_ETH,
116                 .rss_types = 0,
117         },
118         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
119                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
120                 .type = RTE_FLOW_ITEM_TYPE_ETH,
121                 .rss_types = 0,
122         },
123         [MLX5_EXPANSION_OUTER_VLAN] = {
124                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
125                                                  MLX5_EXPANSION_OUTER_IPV6),
126                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
127         },
128         [MLX5_EXPANSION_OUTER_IPV4] = {
129                 .next = RTE_FLOW_EXPAND_RSS_NEXT
130                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
131                          MLX5_EXPANSION_OUTER_IPV4_TCP,
132                          MLX5_EXPANSION_GRE),
133                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
134                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135                         ETH_RSS_NONFRAG_IPV4_OTHER,
136         },
137         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139                                                  MLX5_EXPANSION_VXLAN_GPE),
140                 .type = RTE_FLOW_ITEM_TYPE_UDP,
141                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142         },
143         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144                 .type = RTE_FLOW_ITEM_TYPE_TCP,
145                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146         },
147         [MLX5_EXPANSION_OUTER_IPV6] = {
148                 .next = RTE_FLOW_EXPAND_RSS_NEXT
149                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
150                          MLX5_EXPANSION_OUTER_IPV6_TCP),
151                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
152                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
153                         ETH_RSS_NONFRAG_IPV6_OTHER,
154         },
155         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
156                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
157                                                  MLX5_EXPANSION_VXLAN_GPE),
158                 .type = RTE_FLOW_ITEM_TYPE_UDP,
159                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
160         },
161         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
162                 .type = RTE_FLOW_ITEM_TYPE_TCP,
163                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
164         },
165         [MLX5_EXPANSION_VXLAN] = {
166                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
167                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
168         },
169         [MLX5_EXPANSION_VXLAN_GPE] = {
170                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
171                                                  MLX5_EXPANSION_IPV4,
172                                                  MLX5_EXPANSION_IPV6),
173                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
174         },
175         [MLX5_EXPANSION_GRE] = {
176                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
177                 .type = RTE_FLOW_ITEM_TYPE_GRE,
178         },
179         [MLX5_EXPANSION_MPLS] = {
180                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
181                                                  MLX5_EXPANSION_IPV6),
182                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
183         },
184         [MLX5_EXPANSION_ETH] = {
185                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
186                                                  MLX5_EXPANSION_IPV6),
187                 .type = RTE_FLOW_ITEM_TYPE_ETH,
188         },
189         [MLX5_EXPANSION_ETH_VLAN] = {
190                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
191                 .type = RTE_FLOW_ITEM_TYPE_ETH,
192         },
193         [MLX5_EXPANSION_VLAN] = {
194                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
195                                                  MLX5_EXPANSION_IPV6),
196                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
197         },
198         [MLX5_EXPANSION_IPV4] = {
199                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
200                                                  MLX5_EXPANSION_IPV4_TCP),
201                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
202                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
203                         ETH_RSS_NONFRAG_IPV4_OTHER,
204         },
205         [MLX5_EXPANSION_IPV4_UDP] = {
206                 .type = RTE_FLOW_ITEM_TYPE_UDP,
207                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
208         },
209         [MLX5_EXPANSION_IPV4_TCP] = {
210                 .type = RTE_FLOW_ITEM_TYPE_TCP,
211                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
212         },
213         [MLX5_EXPANSION_IPV6] = {
214                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
215                                                  MLX5_EXPANSION_IPV6_TCP),
216                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
217                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
218                         ETH_RSS_NONFRAG_IPV6_OTHER,
219         },
220         [MLX5_EXPANSION_IPV6_UDP] = {
221                 .type = RTE_FLOW_ITEM_TYPE_UDP,
222                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
223         },
224         [MLX5_EXPANSION_IPV6_TCP] = {
225                 .type = RTE_FLOW_ITEM_TYPE_TCP,
226                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
227         },
228 };
229
230 static const struct rte_flow_ops mlx5_flow_ops = {
231         .validate = mlx5_flow_validate,
232         .create = mlx5_flow_create,
233         .destroy = mlx5_flow_destroy,
234         .flush = mlx5_flow_flush,
235         .isolate = mlx5_flow_isolate,
236         .query = mlx5_flow_query,
237 };
238
239 /* Convert FDIR request to Generic flow. */
240 struct mlx5_fdir {
241         struct rte_flow_attr attr;
242         struct rte_flow_action actions[2];
243         struct rte_flow_item items[4];
244         struct rte_flow_item_eth l2;
245         struct rte_flow_item_eth l2_mask;
246         union {
247                 struct rte_flow_item_ipv4 ipv4;
248                 struct rte_flow_item_ipv6 ipv6;
249         } l3;
250         union {
251                 struct rte_flow_item_ipv4 ipv4;
252                 struct rte_flow_item_ipv6 ipv6;
253         } l3_mask;
254         union {
255                 struct rte_flow_item_udp udp;
256                 struct rte_flow_item_tcp tcp;
257         } l4;
258         union {
259                 struct rte_flow_item_udp udp;
260                 struct rte_flow_item_tcp tcp;
261         } l4_mask;
262         struct rte_flow_action_queue queue;
263 };
264
265 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
266 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
267         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
268 };
269
270 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
271 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
272         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
273         { 9, 10, 11 }, { 12, 13, 14 },
274 };
275
276 /* Tunnel information. */
277 struct mlx5_flow_tunnel_info {
278         uint32_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
279         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
280 };
281
282 static struct mlx5_flow_tunnel_info tunnels_info[] = {
283         {
284                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
285                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
286         },
287         {
288                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
289                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
290         },
291         {
292                 .tunnel = MLX5_FLOW_LAYER_GRE,
293                 .ptype = RTE_PTYPE_TUNNEL_GRE,
294         },
295         {
296                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
297                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE | RTE_PTYPE_L4_UDP,
298         },
299         {
300                 .tunnel = MLX5_FLOW_LAYER_MPLS,
301                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
302         },
303 };
304
305 /**
306  * Discover the maximum number of priority available.
307  *
308  * @param[in] dev
309  *   Pointer to the Ethernet device structure.
310  *
311  * @return
312  *   number of supported flow priority on success, a negative errno
313  *   value otherwise and rte_errno is set.
314  */
315 int
316 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
317 {
318         struct {
319                 struct ibv_flow_attr attr;
320                 struct ibv_flow_spec_eth eth;
321                 struct ibv_flow_spec_action_drop drop;
322         } flow_attr = {
323                 .attr = {
324                         .num_of_specs = 2,
325                 },
326                 .eth = {
327                         .type = IBV_FLOW_SPEC_ETH,
328                         .size = sizeof(struct ibv_flow_spec_eth),
329                 },
330                 .drop = {
331                         .size = sizeof(struct ibv_flow_spec_action_drop),
332                         .type = IBV_FLOW_SPEC_ACTION_DROP,
333                 },
334         };
335         struct ibv_flow *flow;
336         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
337         uint16_t vprio[] = { 8, 16 };
338         int i;
339         int priority = 0;
340
341         if (!drop) {
342                 rte_errno = ENOTSUP;
343                 return -rte_errno;
344         }
345         for (i = 0; i != RTE_DIM(vprio); i++) {
346                 flow_attr.attr.priority = vprio[i] - 1;
347                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
348                 if (!flow)
349                         break;
350                 claim_zero(mlx5_glue->destroy_flow(flow));
351                 priority = vprio[i];
352         }
353         switch (priority) {
354         case 8:
355                 priority = RTE_DIM(priority_map_3);
356                 break;
357         case 16:
358                 priority = RTE_DIM(priority_map_5);
359                 break;
360         default:
361                 rte_errno = ENOTSUP;
362                 DRV_LOG(ERR,
363                         "port %u verbs maximum priority: %d expected 8/16",
364                         dev->data->port_id, vprio[i]);
365                 return -rte_errno;
366         }
367         mlx5_hrxq_drop_release(dev);
368         DRV_LOG(INFO, "port %u flow maximum priority: %d",
369                 dev->data->port_id, priority);
370         return priority;
371 }
372
373 /**
374  * Adjust flow priority based on the highest layer and the request priority.
375  *
376  * @param[in] dev
377  *   Pointer to the Ethernet device structure.
378  * @param[in] priority
379  *   The rule base priority.
380  * @param[in] subpriority
381  *   The priority based on the items.
382  *
383  * @return
384  *   The new priority.
385  */
386 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
387                                    uint32_t subpriority)
388 {
389         uint32_t res = 0;
390         struct priv *priv = dev->data->dev_private;
391
392         switch (priv->config.flow_prio) {
393         case RTE_DIM(priority_map_3):
394                 res = priority_map_3[priority][subpriority];
395                 break;
396         case RTE_DIM(priority_map_5):
397                 res = priority_map_5[priority][subpriority];
398                 break;
399         }
400         return  res;
401 }
402
403 /**
404  * Verify the @p item specifications (spec, last, mask) are compatible with the
405  * NIC capabilities.
406  *
407  * @param[in] item
408  *   Item specification.
409  * @param[in] mask
410  *   @p item->mask or flow default bit-masks.
411  * @param[in] nic_mask
412  *   Bit-masks covering supported fields by the NIC to compare with user mask.
413  * @param[in] size
414  *   Bit-masks size in bytes.
415  * @param[out] error
416  *   Pointer to error structure.
417  *
418  * @return
419  *   0 on success, a negative errno value otherwise and rte_errno is set.
420  */
421 static int
422 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
423                           const uint8_t *mask,
424                           const uint8_t *nic_mask,
425                           unsigned int size,
426                           struct rte_flow_error *error)
427 {
428         unsigned int i;
429
430         assert(nic_mask);
431         for (i = 0; i < size; ++i)
432                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
433                         return rte_flow_error_set(error, ENOTSUP,
434                                                   RTE_FLOW_ERROR_TYPE_ITEM,
435                                                   item,
436                                                   "mask enables non supported"
437                                                   " bits");
438         if (!item->spec && (item->mask || item->last))
439                 return rte_flow_error_set(error, EINVAL,
440                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
441                                           "mask/last without a spec is not"
442                                           " supported");
443         if (item->spec && item->last) {
444                 uint8_t spec[size];
445                 uint8_t last[size];
446                 unsigned int i;
447                 int ret;
448
449                 for (i = 0; i < size; ++i) {
450                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
451                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
452                 }
453                 ret = memcmp(spec, last, size);
454                 if (ret != 0)
455                         return rte_flow_error_set(error, EINVAL,
456                                                   RTE_FLOW_ERROR_TYPE_ITEM,
457                                                   item,
458                                                   "range is not valid");
459         }
460         return 0;
461 }
462
463 /**
464  * Adjust the hash fields according to the @p flow information.
465  *
466  * @param[in] dev_flow.
467  *   Pointer to the mlx5_flow.
468  * @param[in] tunnel
469  *   1 when the hash field is for a tunnel item.
470  * @param[in] layer_types
471  *   ETH_RSS_* types.
472  * @param[in] hash_fields
473  *   Item hash fields.
474  *
475  * @return
476  *   The hash fileds that should be used.
477  */
478 uint64_t
479 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
480                             int tunnel __rte_unused, uint32_t layer_types,
481                             uint64_t hash_fields)
482 {
483         struct rte_flow *flow = dev_flow->flow;
484 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
485         int rss_request_inner = flow->rss.level >= 2;
486
487         /* Check RSS hash level for tunnel. */
488         if (tunnel && rss_request_inner)
489                 hash_fields |= IBV_RX_HASH_INNER;
490         else if (tunnel || rss_request_inner)
491                 return 0;
492 #endif
493         /* Check if requested layer matches RSS hash fields. */
494         if (!(flow->rss.types & layer_types))
495                 return 0;
496         return hash_fields;
497 }
498
499 /**
500  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
501  * if several tunnel rules are used on this queue, the tunnel ptype will be
502  * cleared.
503  *
504  * @param rxq_ctrl
505  *   Rx queue to update.
506  */
507 static void
508 mlx5_flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
509 {
510         unsigned int i;
511         uint32_t tunnel_ptype = 0;
512
513         /* Look up for the ptype to use. */
514         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
515                 if (!rxq_ctrl->flow_tunnels_n[i])
516                         continue;
517                 if (!tunnel_ptype) {
518                         tunnel_ptype = tunnels_info[i].ptype;
519                 } else {
520                         tunnel_ptype = 0;
521                         break;
522                 }
523         }
524         rxq_ctrl->rxq.tunnel = tunnel_ptype;
525 }
526
527 /**
528  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the flow.
529  *
530  * @param[in] dev
531  *   Pointer to the Ethernet device structure.
532  * @param[in] flow
533  *   Pointer to flow structure.
534  */
535 static void
536 mlx5_flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
537 {
538         struct priv *priv = dev->data->dev_private;
539         const int mark = !!(flow->actions &
540                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
541         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
542         unsigned int i;
543
544         for (i = 0; i != flow->rss.queue_num; ++i) {
545                 int idx = (*flow->queue)[i];
546                 struct mlx5_rxq_ctrl *rxq_ctrl =
547                         container_of((*priv->rxqs)[idx],
548                                      struct mlx5_rxq_ctrl, rxq);
549
550                 if (mark) {
551                         rxq_ctrl->rxq.mark = 1;
552                         rxq_ctrl->flow_mark_n++;
553                 }
554                 if (tunnel) {
555                         unsigned int j;
556
557                         /* Increase the counter matching the flow. */
558                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
559                                 if ((tunnels_info[j].tunnel & flow->layers) ==
560                                     tunnels_info[j].tunnel) {
561                                         rxq_ctrl->flow_tunnels_n[j]++;
562                                         break;
563                                 }
564                         }
565                         mlx5_flow_rxq_tunnel_ptype_update(rxq_ctrl);
566                 }
567         }
568 }
569
570 /**
571  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
572  * @p flow if no other flow uses it with the same kind of request.
573  *
574  * @param dev
575  *   Pointer to Ethernet device.
576  * @param[in] flow
577  *   Pointer to the flow.
578  */
579 static void
580 mlx5_flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
581 {
582         struct priv *priv = dev->data->dev_private;
583         const int mark = !!(flow->actions &
584                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
585         const int tunnel = !!(flow->layers & MLX5_FLOW_LAYER_TUNNEL);
586         unsigned int i;
587
588         assert(dev->data->dev_started);
589         for (i = 0; i != flow->rss.queue_num; ++i) {
590                 int idx = (*flow->queue)[i];
591                 struct mlx5_rxq_ctrl *rxq_ctrl =
592                         container_of((*priv->rxqs)[idx],
593                                      struct mlx5_rxq_ctrl, rxq);
594
595                 if (mark) {
596                         rxq_ctrl->flow_mark_n--;
597                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
598                 }
599                 if (tunnel) {
600                         unsigned int j;
601
602                         /* Decrease the counter matching the flow. */
603                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
604                                 if ((tunnels_info[j].tunnel & flow->layers) ==
605                                     tunnels_info[j].tunnel) {
606                                         rxq_ctrl->flow_tunnels_n[j]--;
607                                         break;
608                                 }
609                         }
610                         mlx5_flow_rxq_tunnel_ptype_update(rxq_ctrl);
611                 }
612         }
613 }
614
615 /**
616  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
617  *
618  * @param dev
619  *   Pointer to Ethernet device.
620  */
621 static void
622 mlx5_flow_rxq_flags_clear(struct rte_eth_dev *dev)
623 {
624         struct priv *priv = dev->data->dev_private;
625         unsigned int i;
626
627         for (i = 0; i != priv->rxqs_n; ++i) {
628                 struct mlx5_rxq_ctrl *rxq_ctrl;
629                 unsigned int j;
630
631                 if (!(*priv->rxqs)[i])
632                         continue;
633                 rxq_ctrl = container_of((*priv->rxqs)[i],
634                                         struct mlx5_rxq_ctrl, rxq);
635                 rxq_ctrl->flow_mark_n = 0;
636                 rxq_ctrl->rxq.mark = 0;
637                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
638                         rxq_ctrl->flow_tunnels_n[j] = 0;
639                 rxq_ctrl->rxq.tunnel = 0;
640         }
641 }
642
643 /*
644  * Validate the flag action.
645  *
646  * @param[in] action_flags
647  *   Bit-fields that holds the actions detected until now.
648  * @param[in] attr
649  *   Attributes of flow that includes this action.
650  * @param[out] error
651  *   Pointer to error structure.
652  *
653  * @return
654  *   0 on success, a negative errno value otherwise and rte_errno is set.
655  */
656 int
657 mlx5_flow_validate_action_flag(uint64_t action_flags,
658                                const struct rte_flow_attr *attr,
659                                struct rte_flow_error *error)
660 {
661
662         if (action_flags & MLX5_FLOW_ACTION_DROP)
663                 return rte_flow_error_set(error, EINVAL,
664                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
665                                           "can't drop and flag in same flow");
666         if (action_flags & MLX5_FLOW_ACTION_MARK)
667                 return rte_flow_error_set(error, EINVAL,
668                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
669                                           "can't mark and flag in same flow");
670         if (action_flags & MLX5_FLOW_ACTION_FLAG)
671                 return rte_flow_error_set(error, EINVAL,
672                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
673                                           "can't have 2 flag"
674                                           " actions in same flow");
675         if (attr->egress)
676                 return rte_flow_error_set(error, ENOTSUP,
677                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
678                                           "flag action not supported for "
679                                           "egress");
680         return 0;
681 }
682
683 /*
684  * Validate the mark action.
685  *
686  * @param[in] action
687  *   Pointer to the queue action.
688  * @param[in] action_flags
689  *   Bit-fields that holds the actions detected until now.
690  * @param[in] attr
691  *   Attributes of flow that includes this action.
692  * @param[out] error
693  *   Pointer to error structure.
694  *
695  * @return
696  *   0 on success, a negative errno value otherwise and rte_errno is set.
697  */
698 int
699 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
700                                uint64_t action_flags,
701                                const struct rte_flow_attr *attr,
702                                struct rte_flow_error *error)
703 {
704         const struct rte_flow_action_mark *mark = action->conf;
705
706         if (!mark)
707                 return rte_flow_error_set(error, EINVAL,
708                                           RTE_FLOW_ERROR_TYPE_ACTION,
709                                           action,
710                                           "configuration cannot be null");
711         if (mark->id >= MLX5_FLOW_MARK_MAX)
712                 return rte_flow_error_set(error, EINVAL,
713                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
714                                           &mark->id,
715                                           "mark id must in 0 <= id < "
716                                           RTE_STR(MLX5_FLOW_MARK_MAX));
717         if (action_flags & MLX5_FLOW_ACTION_DROP)
718                 return rte_flow_error_set(error, EINVAL,
719                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
720                                           "can't drop and mark in same flow");
721         if (action_flags & MLX5_FLOW_ACTION_FLAG)
722                 return rte_flow_error_set(error, EINVAL,
723                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
724                                           "can't flag and mark in same flow");
725         if (action_flags & MLX5_FLOW_ACTION_MARK)
726                 return rte_flow_error_set(error, EINVAL,
727                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
728                                           "can't have 2 mark actions in same"
729                                           " flow");
730         if (attr->egress)
731                 return rte_flow_error_set(error, ENOTSUP,
732                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
733                                           "mark action not supported for "
734                                           "egress");
735         return 0;
736 }
737
738 /*
739  * Validate the drop action.
740  *
741  * @param[in] action_flags
742  *   Bit-fields that holds the actions detected until now.
743  * @param[in] attr
744  *   Attributes of flow that includes this action.
745  * @param[out] error
746  *   Pointer to error structure.
747  *
748  * @return
749  *   0 on success, a negative errno value otherwise and rte_ernno is set.
750  */
751 int
752 mlx5_flow_validate_action_drop(uint64_t action_flags,
753                                const struct rte_flow_attr *attr,
754                                struct rte_flow_error *error)
755 {
756         if (action_flags & MLX5_FLOW_ACTION_FLAG)
757                 return rte_flow_error_set(error, EINVAL,
758                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
759                                           "can't drop and flag in same flow");
760         if (action_flags & MLX5_FLOW_ACTION_MARK)
761                 return rte_flow_error_set(error, EINVAL,
762                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
763                                           "can't drop and mark in same flow");
764         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
765                 return rte_flow_error_set(error, EINVAL,
766                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
767                                           "can't have 2 fate actions in"
768                                           " same flow");
769         if (attr->egress)
770                 return rte_flow_error_set(error, ENOTSUP,
771                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
772                                           "drop action not supported for "
773                                           "egress");
774         return 0;
775 }
776
777 /*
778  * Validate the queue action.
779  *
780  * @param[in] action
781  *   Pointer to the queue action.
782  * @param[in] action_flags
783  *   Bit-fields that holds the actions detected until now.
784  * @param[in] dev
785  *   Pointer to the Ethernet device structure.
786  * @param[in] attr
787  *   Attributes of flow that includes this action.
788  * @param[out] error
789  *   Pointer to error structure.
790  *
791  * @return
792  *   0 on success, a negative errno value otherwise and rte_ernno is set.
793  */
794 int
795 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
796                                 uint64_t action_flags,
797                                 struct rte_eth_dev *dev,
798                                 const struct rte_flow_attr *attr,
799                                 struct rte_flow_error *error)
800 {
801         struct priv *priv = dev->data->dev_private;
802         const struct rte_flow_action_queue *queue = action->conf;
803
804         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
805                 return rte_flow_error_set(error, EINVAL,
806                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807                                           "can't have 2 fate actions in"
808                                           " same flow");
809         if (queue->index >= priv->rxqs_n)
810                 return rte_flow_error_set(error, EINVAL,
811                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
812                                           &queue->index,
813                                           "queue index out of range");
814         if (!(*priv->rxqs)[queue->index])
815                 return rte_flow_error_set(error, EINVAL,
816                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
817                                           &queue->index,
818                                           "queue is not configured");
819         if (attr->egress)
820                 return rte_flow_error_set(error, ENOTSUP,
821                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
822                                           "queue action not supported for "
823                                           "egress");
824         return 0;
825 }
826
827 /*
828  * Validate the rss action.
829  *
830  * @param[in] action
831  *   Pointer to the queue action.
832  * @param[in] action_flags
833  *   Bit-fields that holds the actions detected until now.
834  * @param[in] dev
835  *   Pointer to the Ethernet device structure.
836  * @param[in] attr
837  *   Attributes of flow that includes this action.
838  * @param[out] error
839  *   Pointer to error structure.
840  *
841  * @return
842  *   0 on success, a negative errno value otherwise and rte_ernno is set.
843  */
844 int
845 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
846                               uint64_t action_flags,
847                               struct rte_eth_dev *dev,
848                               const struct rte_flow_attr *attr,
849                               struct rte_flow_error *error)
850 {
851         struct priv *priv = dev->data->dev_private;
852         const struct rte_flow_action_rss *rss = action->conf;
853         unsigned int i;
854
855         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
856                 return rte_flow_error_set(error, EINVAL,
857                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
858                                           "can't have 2 fate actions"
859                                           " in same flow");
860         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
861             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
862                 return rte_flow_error_set(error, ENOTSUP,
863                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
864                                           &rss->func,
865                                           "RSS hash function not supported");
866 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
867         if (rss->level > 2)
868 #else
869         if (rss->level > 1)
870 #endif
871                 return rte_flow_error_set(error, ENOTSUP,
872                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
873                                           &rss->level,
874                                           "tunnel RSS is not supported");
875         if (rss->key_len < MLX5_RSS_HASH_KEY_LEN)
876                 return rte_flow_error_set(error, ENOTSUP,
877                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
878                                           &rss->key_len,
879                                           "RSS hash key too small");
880         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
881                 return rte_flow_error_set(error, ENOTSUP,
882                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
883                                           &rss->key_len,
884                                           "RSS hash key too large");
885         if (rss->queue_num > priv->config.ind_table_max_size)
886                 return rte_flow_error_set(error, ENOTSUP,
887                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
888                                           &rss->queue_num,
889                                           "number of queues too large");
890         if (rss->types & MLX5_RSS_HF_MASK)
891                 return rte_flow_error_set(error, ENOTSUP,
892                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
893                                           &rss->types,
894                                           "some RSS protocols are not"
895                                           " supported");
896         for (i = 0; i != rss->queue_num; ++i) {
897                 if (!(*priv->rxqs)[rss->queue[i]])
898                         return rte_flow_error_set
899                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
900                                  &rss->queue[i], "queue is not configured");
901         }
902         if (attr->egress)
903                 return rte_flow_error_set(error, ENOTSUP,
904                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
905                                           "rss action not supported for "
906                                           "egress");
907         return 0;
908 }
909
910 /*
911  * Validate the count action.
912  *
913  * @param[in] dev
914  *   Pointer to the Ethernet device structure.
915  * @param[in] attr
916  *   Attributes of flow that includes this action.
917  * @param[out] error
918  *   Pointer to error structure.
919  *
920  * @return
921  *   0 on success, a negative errno value otherwise and rte_ernno is set.
922  */
923 int
924 mlx5_flow_validate_action_count(struct rte_eth_dev *dev,
925                                 const struct rte_flow_attr *attr,
926                                 struct rte_flow_error *error)
927 {
928         struct priv *priv = dev->data->dev_private;
929
930         if (!priv->config.flow_counter_en)
931                 return rte_flow_error_set(error, ENOTSUP,
932                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
933                                           "flow counters are not supported.");
934         if (attr->egress)
935                 return rte_flow_error_set(error, ENOTSUP,
936                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
937                                           "count action not supported for "
938                                           "egress");
939         return 0;
940 }
941
942 /**
943  * Verify the @p attributes will be correctly understood by the NIC and store
944  * them in the @p flow if everything is correct.
945  *
946  * @param[in] dev
947  *   Pointer to the Ethernet device structure.
948  * @param[in] attributes
949  *   Pointer to flow attributes
950  * @param[out] error
951  *   Pointer to error structure.
952  *
953  * @return
954  *   0 on success, a negative errno value otherwise and rte_errno is set.
955  */
956 int
957 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
958                               const struct rte_flow_attr *attributes,
959                               struct rte_flow_error *error)
960 {
961         struct priv *priv = dev->data->dev_private;
962         uint32_t priority_max = priv->config.flow_prio - 1;
963
964         if (attributes->group)
965                 return rte_flow_error_set(error, ENOTSUP,
966                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
967                                           NULL, "groups is not supported");
968         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
969             attributes->priority >= priority_max)
970                 return rte_flow_error_set(error, ENOTSUP,
971                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
972                                           NULL, "priority out of range");
973         if (attributes->egress)
974                 return rte_flow_error_set(error, ENOTSUP,
975                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
976                                           "egress is not supported");
977         if (attributes->transfer)
978                 return rte_flow_error_set(error, ENOTSUP,
979                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
980                                           NULL, "transfer is not supported");
981         if (!attributes->ingress)
982                 return rte_flow_error_set(error, EINVAL,
983                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
984                                           NULL,
985                                           "ingress attribute is mandatory");
986         return 0;
987 }
988
989 /**
990  * Validate Ethernet item.
991  *
992  * @param[in] item
993  *   Item specification.
994  * @param[in] item_flags
995  *   Bit-fields that holds the items detected until now.
996  * @param[out] error
997  *   Pointer to error structure.
998  *
999  * @return
1000  *   0 on success, a negative errno value otherwise and rte_errno is set.
1001  */
1002 int
1003 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1004                             uint64_t item_flags,
1005                             struct rte_flow_error *error)
1006 {
1007         const struct rte_flow_item_eth *mask = item->mask;
1008         const struct rte_flow_item_eth nic_mask = {
1009                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1010                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1011                 .type = RTE_BE16(0xffff),
1012         };
1013         int ret;
1014         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1015
1016         if (item_flags & MLX5_FLOW_LAYER_OUTER_L2)
1017                 return rte_flow_error_set(error, ENOTSUP,
1018                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1019                                           "3 levels of l2 are not supported");
1020         if ((item_flags & MLX5_FLOW_LAYER_INNER_L2) && !tunnel)
1021                 return rte_flow_error_set(error, ENOTSUP,
1022                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1023                                           "2 L2 without tunnel are not supported");
1024         if (!mask)
1025                 mask = &rte_flow_item_eth_mask;
1026         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1027                                         (const uint8_t *)&nic_mask,
1028                                         sizeof(struct rte_flow_item_eth),
1029                                         error);
1030         return ret;
1031 }
1032
1033 /**
1034  * Validate VLAN item.
1035  *
1036  * @param[in] item
1037  *   Item specification.
1038  * @param[in] item_flags
1039  *   Bit-fields that holds the items detected until now.
1040  * @param[out] error
1041  *   Pointer to error structure.
1042  *
1043  * @return
1044  *   0 on success, a negative errno value otherwise and rte_errno is set.
1045  */
1046 int
1047 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1048                              int64_t item_flags,
1049                              struct rte_flow_error *error)
1050 {
1051         const struct rte_flow_item_vlan *spec = item->spec;
1052         const struct rte_flow_item_vlan *mask = item->mask;
1053         const struct rte_flow_item_vlan nic_mask = {
1054                 .tci = RTE_BE16(0x0fff),
1055                 .inner_type = RTE_BE16(0xffff),
1056         };
1057         uint16_t vlan_tag = 0;
1058         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1059         int ret;
1060         const uint32_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1061                                         MLX5_FLOW_LAYER_INNER_L4) :
1062                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1063                                         MLX5_FLOW_LAYER_OUTER_L4);
1064         const uint32_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1065                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1066
1067         if (item_flags & vlanm)
1068                 return rte_flow_error_set(error, EINVAL,
1069                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1070                                           "VLAN layer already configured");
1071         else if ((item_flags & l34m) != 0)
1072                 return rte_flow_error_set(error, EINVAL,
1073                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1074                                           "L2 layer cannot follow L3/L4 layer");
1075         if (!mask)
1076                 mask = &rte_flow_item_vlan_mask;
1077         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1078                                         (const uint8_t *)&nic_mask,
1079                                         sizeof(struct rte_flow_item_vlan),
1080                                         error);
1081         if (ret)
1082                 return ret;
1083         if (spec) {
1084                 vlan_tag = spec->tci;
1085                 vlan_tag &= mask->tci;
1086         }
1087         /*
1088          * From verbs perspective an empty VLAN is equivalent
1089          * to a packet without VLAN layer.
1090          */
1091         if (!vlan_tag)
1092                 return rte_flow_error_set(error, EINVAL,
1093                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1094                                           item->spec,
1095                                           "VLAN cannot be empty");
1096         return 0;
1097 }
1098
1099 /**
1100  * Validate IPV4 item.
1101  *
1102  * @param[in] item
1103  *   Item specification.
1104  * @param[in] item_flags
1105  *   Bit-fields that holds the items detected until now.
1106  * @param[out] error
1107  *   Pointer to error structure.
1108  *
1109  * @return
1110  *   0 on success, a negative errno value otherwise and rte_errno is set.
1111  */
1112 int
1113 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1114                              int64_t item_flags,
1115                              struct rte_flow_error *error)
1116 {
1117         const struct rte_flow_item_ipv4 *mask = item->mask;
1118         const struct rte_flow_item_ipv4 nic_mask = {
1119                 .hdr = {
1120                         .src_addr = RTE_BE32(0xffffffff),
1121                         .dst_addr = RTE_BE32(0xffffffff),
1122                         .type_of_service = 0xff,
1123                         .next_proto_id = 0xff,
1124                 },
1125         };
1126         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1127         int ret;
1128
1129         if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1130                                    MLX5_FLOW_LAYER_OUTER_L3))
1131                 return rte_flow_error_set(error, ENOTSUP,
1132                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1133                                           "multiple L3 layers not supported");
1134         else if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1135                                         MLX5_FLOW_LAYER_OUTER_L4))
1136                 return rte_flow_error_set(error, EINVAL,
1137                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1138                                           "L3 cannot follow an L4 layer.");
1139         if (!mask)
1140                 mask = &rte_flow_item_ipv4_mask;
1141         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1142                                         (const uint8_t *)&nic_mask,
1143                                         sizeof(struct rte_flow_item_ipv4),
1144                                         error);
1145         if (ret < 0)
1146                 return ret;
1147         return 0;
1148 }
1149
1150 /**
1151  * Validate IPV6 item.
1152  *
1153  * @param[in] item
1154  *   Item specification.
1155  * @param[in] item_flags
1156  *   Bit-fields that holds the items detected until now.
1157  * @param[out] error
1158  *   Pointer to error structure.
1159  *
1160  * @return
1161  *   0 on success, a negative errno value otherwise and rte_errno is set.
1162  */
1163 int
1164 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1165                              uint64_t item_flags,
1166                              struct rte_flow_error *error)
1167 {
1168         const struct rte_flow_item_ipv6 *mask = item->mask;
1169         const struct rte_flow_item_ipv6 nic_mask = {
1170                 .hdr = {
1171                         .src_addr =
1172                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1173                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1174                         .dst_addr =
1175                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1176                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1177                         .vtc_flow = RTE_BE32(0xffffffff),
1178                         .proto = 0xff,
1179                         .hop_limits = 0xff,
1180                 },
1181         };
1182         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1183         int ret;
1184
1185         if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1186                                    MLX5_FLOW_LAYER_OUTER_L3))
1187                 return rte_flow_error_set(error, ENOTSUP,
1188                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1189                                           "multiple L3 layers not supported");
1190         else if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1191                                         MLX5_FLOW_LAYER_OUTER_L4))
1192                 return rte_flow_error_set(error, EINVAL,
1193                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1194                                           "L3 cannot follow an L4 layer.");
1195         /*
1196          * IPv6 is not recognised by the NIC inside a GRE tunnel.
1197          * Such support has to be disabled as the rule will be
1198          * accepted.  Issue reproduced with Mellanox OFED 4.3-3.0.2.1 and
1199          * Mellanox OFED 4.4-1.0.0.0.
1200          */
1201         if (tunnel && item_flags & MLX5_FLOW_LAYER_GRE)
1202                 return rte_flow_error_set(error, ENOTSUP,
1203                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1204                                           "IPv6 inside a GRE tunnel is"
1205                                           " not recognised.");
1206         if (!mask)
1207                 mask = &rte_flow_item_ipv6_mask;
1208         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1209                                         (const uint8_t *)&nic_mask,
1210                                         sizeof(struct rte_flow_item_ipv6),
1211                                         error);
1212         if (ret < 0)
1213                 return ret;
1214         return 0;
1215 }
1216
1217 /**
1218  * Validate UDP item.
1219  *
1220  * @param[in] item
1221  *   Item specification.
1222  * @param[in] item_flags
1223  *   Bit-fields that holds the items detected until now.
1224  * @param[in] target_protocol
1225  *   The next protocol in the previous item.
1226  * @param[in] flow_mask
1227  *   mlx5 flow-specific (TCF, DV, verbs, etc.) supported header fields mask.
1228  * @param[out] error
1229  *   Pointer to error structure.
1230  *
1231  * @return
1232  *   0 on success, a negative errno value otherwise and rte_errno is set.
1233  */
1234 int
1235 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1236                             uint64_t item_flags,
1237                             uint8_t target_protocol,
1238                             struct rte_flow_error *error)
1239 {
1240         const struct rte_flow_item_udp *mask = item->mask;
1241         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1242         int ret;
1243
1244         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1245                 return rte_flow_error_set(error, EINVAL,
1246                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1247                                           "protocol filtering not compatible"
1248                                           " with UDP layer");
1249         if (!(item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1250                                      MLX5_FLOW_LAYER_OUTER_L3)))
1251                 return rte_flow_error_set(error, EINVAL,
1252                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1253                                           "L3 is mandatory to filter on L4");
1254         if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1255                                    MLX5_FLOW_LAYER_OUTER_L4))
1256                 return rte_flow_error_set(error, EINVAL,
1257                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1258                                           "L4 layer is already present");
1259         if (!mask)
1260                 mask = &rte_flow_item_udp_mask;
1261         ret = mlx5_flow_item_acceptable
1262                 (item, (const uint8_t *)mask,
1263                  (const uint8_t *)&rte_flow_item_udp_mask,
1264                  sizeof(struct rte_flow_item_udp), error);
1265         if (ret < 0)
1266                 return ret;
1267         return 0;
1268 }
1269
1270 /**
1271  * Validate TCP item.
1272  *
1273  * @param[in] item
1274  *   Item specification.
1275  * @param[in] item_flags
1276  *   Bit-fields that holds the items detected until now.
1277  * @param[in] target_protocol
1278  *   The next protocol in the previous item.
1279  * @param[out] error
1280  *   Pointer to error structure.
1281  *
1282  * @return
1283  *   0 on success, a negative errno value otherwise and rte_errno is set.
1284  */
1285 int
1286 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1287                             uint64_t item_flags,
1288                             uint8_t target_protocol,
1289                             const struct rte_flow_item_tcp *flow_mask,
1290                             struct rte_flow_error *error)
1291 {
1292         const struct rte_flow_item_tcp *mask = item->mask;
1293         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1294         int ret;
1295
1296         assert(flow_mask);
1297         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1298                 return rte_flow_error_set(error, EINVAL,
1299                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1300                                           "protocol filtering not compatible"
1301                                           " with TCP layer");
1302         if (!(item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1303                                      MLX5_FLOW_LAYER_OUTER_L3)))
1304                 return rte_flow_error_set(error, EINVAL,
1305                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1306                                           "L3 is mandatory to filter on L4");
1307         if (item_flags & (tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1308                                    MLX5_FLOW_LAYER_OUTER_L4))
1309                 return rte_flow_error_set(error, EINVAL,
1310                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1311                                           "L4 layer is already present");
1312         if (!mask)
1313                 mask = &rte_flow_item_tcp_mask;
1314         ret = mlx5_flow_item_acceptable
1315                 (item, (const uint8_t *)mask,
1316                  (const uint8_t *)flow_mask,
1317                  sizeof(struct rte_flow_item_tcp), error);
1318         if (ret < 0)
1319                 return ret;
1320         return 0;
1321 }
1322
1323 /**
1324  * Validate VXLAN item.
1325  *
1326  * @param[in] item
1327  *   Item specification.
1328  * @param[in] item_flags
1329  *   Bit-fields that holds the items detected until now.
1330  * @param[in] target_protocol
1331  *   The next protocol in the previous item.
1332  * @param[out] error
1333  *   Pointer to error structure.
1334  *
1335  * @return
1336  *   0 on success, a negative errno value otherwise and rte_errno is set.
1337  */
1338 int
1339 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1340                               uint64_t item_flags,
1341                               struct rte_flow_error *error)
1342 {
1343         const struct rte_flow_item_vxlan *spec = item->spec;
1344         const struct rte_flow_item_vxlan *mask = item->mask;
1345         int ret;
1346         union vni {
1347                 uint32_t vlan_id;
1348                 uint8_t vni[4];
1349         } id = { .vlan_id = 0, };
1350         uint32_t vlan_id = 0;
1351
1352
1353         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1354                 return rte_flow_error_set(error, ENOTSUP,
1355                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1356                                           "a tunnel is already present");
1357         /*
1358          * Verify only UDPv4 is present as defined in
1359          * https://tools.ietf.org/html/rfc7348
1360          */
1361         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1362                 return rte_flow_error_set(error, EINVAL,
1363                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1364                                           "no outer UDP layer found");
1365         if (!mask)
1366                 mask = &rte_flow_item_vxlan_mask;
1367         ret = mlx5_flow_item_acceptable
1368                 (item, (const uint8_t *)mask,
1369                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1370                  sizeof(struct rte_flow_item_vxlan),
1371                  error);
1372         if (ret < 0)
1373                 return ret;
1374         if (spec) {
1375                 memcpy(&id.vni[1], spec->vni, 3);
1376                 vlan_id = id.vlan_id;
1377                 memcpy(&id.vni[1], mask->vni, 3);
1378                 vlan_id &= id.vlan_id;
1379         }
1380         /*
1381          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1382          * only this layer is defined in the Verbs specification it is
1383          * interpreted as wildcard and all packets will match this
1384          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1385          * udp), all packets matching the layers before will also
1386          * match this rule.  To avoid such situation, VNI 0 is
1387          * currently refused.
1388          */
1389         if (!vlan_id)
1390                 return rte_flow_error_set(error, ENOTSUP,
1391                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1392                                           "VXLAN vni cannot be 0");
1393         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1394                 return rte_flow_error_set(error, ENOTSUP,
1395                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1396                                           "VXLAN tunnel must be fully defined");
1397         return 0;
1398 }
1399
1400 /**
1401  * Validate VXLAN_GPE item.
1402  *
1403  * @param[in] item
1404  *   Item specification.
1405  * @param[in] item_flags
1406  *   Bit-fields that holds the items detected until now.
1407  * @param[in] priv
1408  *   Pointer to the private data structure.
1409  * @param[in] target_protocol
1410  *   The next protocol in the previous item.
1411  * @param[out] error
1412  *   Pointer to error structure.
1413  *
1414  * @return
1415  *   0 on success, a negative errno value otherwise and rte_errno is set.
1416  */
1417 int
1418 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1419                                   uint64_t item_flags,
1420                                   struct rte_eth_dev *dev,
1421                                   struct rte_flow_error *error)
1422 {
1423         struct priv *priv = dev->data->dev_private;
1424         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1425         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1426         int ret;
1427         union vni {
1428                 uint32_t vlan_id;
1429                 uint8_t vni[4];
1430         } id = { .vlan_id = 0, };
1431         uint32_t vlan_id = 0;
1432
1433         if (!priv->config.l3_vxlan_en)
1434                 return rte_flow_error_set(error, ENOTSUP,
1435                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1436                                           "L3 VXLAN is not enabled by device"
1437                                           " parameter and/or not configured in"
1438                                           " firmware");
1439         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1440                 return rte_flow_error_set(error, ENOTSUP,
1441                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1442                                           "a tunnel is already present");
1443         /*
1444          * Verify only UDPv4 is present as defined in
1445          * https://tools.ietf.org/html/rfc7348
1446          */
1447         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1448                 return rte_flow_error_set(error, EINVAL,
1449                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1450                                           "no outer UDP layer found");
1451         if (!mask)
1452                 mask = &rte_flow_item_vxlan_gpe_mask;
1453         ret = mlx5_flow_item_acceptable
1454                 (item, (const uint8_t *)mask,
1455                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1456                  sizeof(struct rte_flow_item_vxlan_gpe),
1457                  error);
1458         if (ret < 0)
1459                 return ret;
1460         if (spec) {
1461                 if (spec->protocol)
1462                         return rte_flow_error_set(error, ENOTSUP,
1463                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1464                                                   item,
1465                                                   "VxLAN-GPE protocol"
1466                                                   " not supported");
1467                 memcpy(&id.vni[1], spec->vni, 3);
1468                 vlan_id = id.vlan_id;
1469                 memcpy(&id.vni[1], mask->vni, 3);
1470                 vlan_id &= id.vlan_id;
1471         }
1472         /*
1473          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1474          * layer is defined in the Verbs specification it is interpreted as
1475          * wildcard and all packets will match this rule, if it follows a full
1476          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1477          * before will also match this rule.  To avoid such situation, VNI 0
1478          * is currently refused.
1479          */
1480         if (!vlan_id)
1481                 return rte_flow_error_set(error, ENOTSUP,
1482                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1483                                           "VXLAN-GPE vni cannot be 0");
1484         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1485                 return rte_flow_error_set(error, ENOTSUP,
1486                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1487                                           "VXLAN-GPE tunnel must be fully"
1488                                           " defined");
1489         return 0;
1490 }
1491
1492 /**
1493  * Validate GRE item.
1494  *
1495  * @param[in] item
1496  *   Item specification.
1497  * @param[in] item_flags
1498  *   Bit flags to mark detected items.
1499  * @param[in] target_protocol
1500  *   The next protocol in the previous item.
1501  * @param[out] error
1502  *   Pointer to error structure.
1503  *
1504  * @return
1505  *   0 on success, a negative errno value otherwise and rte_errno is set.
1506  */
1507 int
1508 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1509                             uint64_t item_flags,
1510                             uint8_t target_protocol,
1511                             struct rte_flow_error *error)
1512 {
1513         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1514         const struct rte_flow_item_gre *mask = item->mask;
1515         int ret;
1516
1517         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1518                 return rte_flow_error_set(error, EINVAL,
1519                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1520                                           "protocol filtering not compatible"
1521                                           " with this GRE layer");
1522         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1523                 return rte_flow_error_set(error, ENOTSUP,
1524                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1525                                           "a tunnel is already present");
1526         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1527                 return rte_flow_error_set(error, ENOTSUP,
1528                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1529                                           "L3 Layer is missing");
1530         if (!mask)
1531                 mask = &rte_flow_item_gre_mask;
1532         ret = mlx5_flow_item_acceptable
1533                 (item, (const uint8_t *)mask,
1534                  (const uint8_t *)&rte_flow_item_gre_mask,
1535                  sizeof(struct rte_flow_item_gre), error);
1536         if (ret < 0)
1537                 return ret;
1538 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1539         if (spec && (spec->protocol & mask->protocol))
1540                 return rte_flow_error_set(error, ENOTSUP,
1541                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1542                                           "without MPLS support the"
1543                                           " specification cannot be used for"
1544                                           " filtering");
1545 #endif
1546         return 0;
1547 }
1548
1549 /**
1550  * Validate MPLS item.
1551  *
1552  * @param[in] item
1553  *   Item specification.
1554  * @param[in] item_flags
1555  *   Bit-fields that holds the items detected until now.
1556  * @param[in] target_protocol
1557  *   The next protocol in the previous item.
1558  * @param[out] error
1559  *   Pointer to error structure.
1560  *
1561  * @return
1562  *   0 on success, a negative errno value otherwise and rte_errno is set.
1563  */
1564 int
1565 mlx5_flow_validate_item_mpls(const struct rte_flow_item *item __rte_unused,
1566                              uint64_t item_flags __rte_unused,
1567                              uint8_t target_protocol __rte_unused,
1568                              struct rte_flow_error *error)
1569 {
1570 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1571         const struct rte_flow_item_mpls *mask = item->mask;
1572         int ret;
1573
1574         if (target_protocol != 0xff && target_protocol != IPPROTO_MPLS)
1575                 return rte_flow_error_set(error, EINVAL,
1576                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1577                                           "protocol filtering not compatible"
1578                                           " with MPLS layer");
1579         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1580                 return rte_flow_error_set(error, ENOTSUP,
1581                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1582                                           "a tunnel is already"
1583                                           " present");
1584         if (!mask)
1585                 mask = &rte_flow_item_mpls_mask;
1586         ret = mlx5_flow_item_acceptable
1587                 (item, (const uint8_t *)mask,
1588                  (const uint8_t *)&rte_flow_item_mpls_mask,
1589                  sizeof(struct rte_flow_item_mpls), error);
1590         if (ret < 0)
1591                 return ret;
1592         return 0;
1593 #endif
1594         return rte_flow_error_set(error, ENOTSUP,
1595                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
1596                                   "MPLS is not supported by Verbs, please"
1597                                   " update.");
1598 }
1599
1600 static int
1601 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1602                    const struct rte_flow_attr *attr __rte_unused,
1603                    const struct rte_flow_item items[] __rte_unused,
1604                    const struct rte_flow_action actions[] __rte_unused,
1605                    struct rte_flow_error *error __rte_unused)
1606 {
1607         rte_errno = ENOTSUP;
1608         return -rte_errno;
1609 }
1610
1611 static struct mlx5_flow *
1612 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1613                   const struct rte_flow_item items[] __rte_unused,
1614                   const struct rte_flow_action actions[] __rte_unused,
1615                   uint64_t *item_flags __rte_unused,
1616                   uint64_t *action_flags __rte_unused,
1617                   struct rte_flow_error *error __rte_unused)
1618 {
1619         rte_errno = ENOTSUP;
1620         return NULL;
1621 }
1622
1623 static int
1624 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
1625                     struct mlx5_flow *dev_flow __rte_unused,
1626                     const struct rte_flow_attr *attr __rte_unused,
1627                     const struct rte_flow_item items[] __rte_unused,
1628                     const struct rte_flow_action actions[] __rte_unused,
1629                     struct rte_flow_error *error __rte_unused)
1630 {
1631         rte_errno = ENOTSUP;
1632         return -rte_errno;
1633 }
1634
1635 static int
1636 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
1637                 struct rte_flow *flow __rte_unused,
1638                 struct rte_flow_error *error __rte_unused)
1639 {
1640         rte_errno = ENOTSUP;
1641         return -rte_errno;
1642 }
1643
1644 static void
1645 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
1646                  struct rte_flow *flow __rte_unused)
1647 {
1648 }
1649
1650 static void
1651 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
1652                   struct rte_flow *flow __rte_unused)
1653 {
1654 }
1655
1656 /* Void driver to protect from null pointer reference. */
1657 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
1658         .validate = flow_null_validate,
1659         .prepare = flow_null_prepare,
1660         .translate = flow_null_translate,
1661         .apply = flow_null_apply,
1662         .remove = flow_null_remove,
1663         .destroy = flow_null_destroy,
1664 };
1665
1666 /**
1667  * Select flow driver type according to flow attributes and device
1668  * configuration.
1669  *
1670  * @param[in] dev
1671  *   Pointer to the dev structure.
1672  * @param[in] attr
1673  *   Pointer to the flow attributes.
1674  *
1675  * @return
1676  *   flow driver type if supported, MLX5_FLOW_TYPE_MAX otherwise.
1677  */
1678 static enum mlx5_flow_drv_type
1679 flow_get_drv_type(struct rte_eth_dev *dev __rte_unused,
1680                   const struct rte_flow_attr *attr)
1681 {
1682         struct priv *priv __rte_unused = dev->data->dev_private;
1683         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
1684
1685         if (attr->transfer) {
1686                 type = MLX5_FLOW_TYPE_TCF;
1687         } else {
1688 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
1689                 type = priv->config.dv_flow_en ?  MLX5_FLOW_TYPE_DV :
1690                                                   MLX5_FLOW_TYPE_VERBS;
1691 #else
1692                 type = MLX5_FLOW_TYPE_VERBS;
1693 #endif
1694         }
1695         return type;
1696 }
1697
1698 #define flow_get_drv_ops(type) flow_drv_ops[type]
1699
1700 /**
1701  * Flow driver validation API. This abstracts calling driver specific functions.
1702  * The type of flow driver is determined according to flow attributes.
1703  *
1704  * @param[in] dev
1705  *   Pointer to the dev structure.
1706  * @param[in] attr
1707  *   Pointer to the flow attributes.
1708  * @param[in] items
1709  *   Pointer to the list of items.
1710  * @param[in] actions
1711  *   Pointer to the list of actions.
1712  * @param[out] error
1713  *   Pointer to the error structure.
1714  *
1715  * @return
1716  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1717  */
1718 static inline int
1719 flow_drv_validate(struct rte_eth_dev *dev,
1720                   const struct rte_flow_attr *attr,
1721                   const struct rte_flow_item items[],
1722                   const struct rte_flow_action actions[],
1723                   struct rte_flow_error *error)
1724 {
1725         const struct mlx5_flow_driver_ops *fops;
1726         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
1727
1728         fops = flow_get_drv_ops(type);
1729         return fops->validate(dev, attr, items, actions, error);
1730 }
1731
1732 /**
1733  * Flow driver preparation API. This abstracts calling driver specific
1734  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1735  * calculates the size of memory required for device flow, allocates the memory,
1736  * initializes the device flow and returns the pointer.
1737  *
1738  * @param[in] attr
1739  *   Pointer to the flow attributes.
1740  * @param[in] items
1741  *   Pointer to the list of items.
1742  * @param[in] actions
1743  *   Pointer to the list of actions.
1744  * @param[out] item_flags
1745  *   Pointer to bit mask of all items detected.
1746  * @param[out] action_flags
1747  *   Pointer to bit mask of all actions detected.
1748  * @param[out] error
1749  *   Pointer to the error structure.
1750  *
1751  * @return
1752  *   Pointer to device flow on success, otherwise NULL and rte_ernno is set.
1753  */
1754 static inline struct mlx5_flow *
1755 flow_drv_prepare(struct rte_flow *flow,
1756                  const struct rte_flow_attr *attr,
1757                  const struct rte_flow_item items[],
1758                  const struct rte_flow_action actions[],
1759                  uint64_t *item_flags,
1760                  uint64_t *action_flags,
1761                  struct rte_flow_error *error)
1762 {
1763         const struct mlx5_flow_driver_ops *fops;
1764         enum mlx5_flow_drv_type type = flow->drv_type;
1765
1766         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1767         fops = flow_get_drv_ops(type);
1768         return fops->prepare(attr, items, actions, item_flags, action_flags,
1769                              error);
1770 }
1771
1772 /**
1773  * Flow driver translation API. This abstracts calling driver specific
1774  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
1775  * translates a generic flow into a driver flow. flow_drv_prepare() must
1776  * precede.
1777  *
1778  *
1779  * @param[in] dev
1780  *   Pointer to the rte dev structure.
1781  * @param[in, out] dev_flow
1782  *   Pointer to the mlx5 flow.
1783  * @param[in] attr
1784  *   Pointer to the flow attributes.
1785  * @param[in] items
1786  *   Pointer to the list of items.
1787  * @param[in] actions
1788  *   Pointer to the list of actions.
1789  * @param[out] error
1790  *   Pointer to the error structure.
1791  *
1792  * @return
1793  *   0 on success, a negative errno value otherwise and rte_ernno is set.
1794  */
1795 static inline int
1796 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
1797                    const struct rte_flow_attr *attr,
1798                    const struct rte_flow_item items[],
1799                    const struct rte_flow_action actions[],
1800                    struct rte_flow_error *error)
1801 {
1802         const struct mlx5_flow_driver_ops *fops;
1803         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
1804
1805         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1806         fops = flow_get_drv_ops(type);
1807         return fops->translate(dev, dev_flow, attr, items, actions, error);
1808 }
1809
1810 /**
1811  * Flow driver apply API. This abstracts calling driver specific functions.
1812  * Parent flow (rte_flow) should have driver type (drv_type). It applies
1813  * translated driver flows on to device. flow_drv_translate() must precede.
1814  *
1815  * @param[in] dev
1816  *   Pointer to Ethernet device structure.
1817  * @param[in, out] flow
1818  *   Pointer to flow structure.
1819  * @param[out] error
1820  *   Pointer to error structure.
1821  *
1822  * @return
1823  *   0 on success, a negative errno value otherwise and rte_errno is set.
1824  */
1825 static inline int
1826 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
1827                struct rte_flow_error *error)
1828 {
1829         const struct mlx5_flow_driver_ops *fops;
1830         enum mlx5_flow_drv_type type = flow->drv_type;
1831
1832         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1833         fops = flow_get_drv_ops(type);
1834         return fops->apply(dev, flow, error);
1835 }
1836
1837 /**
1838  * Flow driver remove API. This abstracts calling driver specific functions.
1839  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1840  * on device. All the resources of the flow should be freed by calling
1841  * flow_dv_destroy().
1842  *
1843  * @param[in] dev
1844  *   Pointer to Ethernet device.
1845  * @param[in, out] flow
1846  *   Pointer to flow structure.
1847  */
1848 static inline void
1849 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
1850 {
1851         const struct mlx5_flow_driver_ops *fops;
1852         enum mlx5_flow_drv_type type = flow->drv_type;
1853
1854         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1855         fops = flow_get_drv_ops(type);
1856         fops->remove(dev, flow);
1857 }
1858
1859 /**
1860  * Flow driver destroy API. This abstracts calling driver specific functions.
1861  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
1862  * on device and releases resources of the flow.
1863  *
1864  * @param[in] dev
1865  *   Pointer to Ethernet device.
1866  * @param[in, out] flow
1867  *   Pointer to flow structure.
1868  */
1869 static inline void
1870 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
1871 {
1872         const struct mlx5_flow_driver_ops *fops;
1873         enum mlx5_flow_drv_type type = flow->drv_type;
1874
1875         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
1876         fops = flow_get_drv_ops(type);
1877         fops->destroy(dev, flow);
1878 }
1879
1880 /**
1881  * Validate a flow supported by the NIC.
1882  *
1883  * @see rte_flow_validate()
1884  * @see rte_flow_ops
1885  */
1886 int
1887 mlx5_flow_validate(struct rte_eth_dev *dev,
1888                    const struct rte_flow_attr *attr,
1889                    const struct rte_flow_item items[],
1890                    const struct rte_flow_action actions[],
1891                    struct rte_flow_error *error)
1892 {
1893         int ret;
1894
1895         ret = flow_drv_validate(dev, attr, items, actions, error);
1896         if (ret < 0)
1897                 return ret;
1898         return 0;
1899 }
1900
1901 /**
1902  * Get RSS action from the action list.
1903  *
1904  * @param[in] actions
1905  *   Pointer to the list of actions.
1906  *
1907  * @return
1908  *   Pointer to the RSS action if exist, else return NULL.
1909  */
1910 static const struct rte_flow_action_rss*
1911 mlx5_flow_get_rss_action(const struct rte_flow_action actions[])
1912 {
1913         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
1914                 switch (actions->type) {
1915                 case RTE_FLOW_ACTION_TYPE_RSS:
1916                         return (const struct rte_flow_action_rss *)
1917                                actions->conf;
1918                 default:
1919                         break;
1920                 }
1921         }
1922         return NULL;
1923 }
1924
1925 static unsigned int
1926 mlx5_find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
1927 {
1928         const struct rte_flow_item *item;
1929         unsigned int has_vlan = 0;
1930
1931         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
1932                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
1933                         has_vlan = 1;
1934                         break;
1935                 }
1936         }
1937         if (has_vlan)
1938                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
1939                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
1940         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
1941                                MLX5_EXPANSION_ROOT_OUTER;
1942 }
1943
1944 /**
1945  * Create a flow and add it to @p list.
1946  *
1947  * @param dev
1948  *   Pointer to Ethernet device.
1949  * @param list
1950  *   Pointer to a TAILQ flow list.
1951  * @param[in] attr
1952  *   Flow rule attributes.
1953  * @param[in] items
1954  *   Pattern specification (list terminated by the END pattern item).
1955  * @param[in] actions
1956  *   Associated actions (list terminated by the END action).
1957  * @param[out] error
1958  *   Perform verbose error reporting if not NULL.
1959  *
1960  * @return
1961  *   A flow on success, NULL otherwise and rte_errno is set.
1962  */
1963 static struct rte_flow *
1964 mlx5_flow_list_create(struct rte_eth_dev *dev,
1965                       struct mlx5_flows *list,
1966                       const struct rte_flow_attr *attr,
1967                       const struct rte_flow_item items[],
1968                       const struct rte_flow_action actions[],
1969                       struct rte_flow_error *error)
1970 {
1971         struct rte_flow *flow = NULL;
1972         struct mlx5_flow *dev_flow;
1973         uint64_t action_flags = 0;
1974         uint64_t item_flags = 0;
1975         const struct rte_flow_action_rss *rss;
1976         union {
1977                 struct rte_flow_expand_rss buf;
1978                 uint8_t buffer[2048];
1979         } expand_buffer;
1980         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
1981         int ret;
1982         uint32_t i;
1983         uint32_t flow_size;
1984
1985         ret = flow_drv_validate(dev, attr, items, actions, error);
1986         if (ret < 0)
1987                 return NULL;
1988         flow_size = sizeof(struct rte_flow);
1989         rss = mlx5_flow_get_rss_action(actions);
1990         if (rss)
1991                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
1992                                             sizeof(void *));
1993         else
1994                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
1995         flow = rte_calloc(__func__, 1, flow_size, 0);
1996         flow->drv_type = flow_get_drv_type(dev, attr);
1997         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
1998                flow->drv_type < MLX5_FLOW_TYPE_MAX);
1999         flow->queue = (void *)(flow + 1);
2000         LIST_INIT(&flow->dev_flows);
2001         if (rss && rss->types) {
2002                 unsigned int graph_root;
2003
2004                 graph_root = mlx5_find_graph_root(items, rss->level);
2005                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2006                                           items, rss->types,
2007                                           mlx5_support_expansion,
2008                                           graph_root);
2009                 assert(ret > 0 &&
2010                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2011         } else {
2012                 buf->entries = 1;
2013                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2014         }
2015         for (i = 0; i < buf->entries; ++i) {
2016                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2017                                             actions, &item_flags, &action_flags,
2018                                             error);
2019                 if (!dev_flow)
2020                         goto error;
2021                 dev_flow->flow = flow;
2022                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2023                 ret = flow_drv_translate(dev, dev_flow, attr,
2024                                          buf->entry[i].pattern,
2025                                          actions, error);
2026                 if (ret < 0)
2027                         goto error;
2028         }
2029         if (dev->data->dev_started) {
2030                 ret = flow_drv_apply(dev, flow, error);
2031                 if (ret < 0)
2032                         goto error;
2033         }
2034         TAILQ_INSERT_TAIL(list, flow, next);
2035         mlx5_flow_rxq_flags_set(dev, flow);
2036         return flow;
2037 error:
2038         ret = rte_errno; /* Save rte_errno before cleanup. */
2039         assert(flow);
2040         flow_drv_destroy(dev, flow);
2041         rte_free(flow);
2042         rte_errno = ret; /* Restore rte_errno. */
2043         return NULL;
2044 }
2045
2046 /**
2047  * Create a flow.
2048  *
2049  * @see rte_flow_create()
2050  * @see rte_flow_ops
2051  */
2052 struct rte_flow *
2053 mlx5_flow_create(struct rte_eth_dev *dev,
2054                  const struct rte_flow_attr *attr,
2055                  const struct rte_flow_item items[],
2056                  const struct rte_flow_action actions[],
2057                  struct rte_flow_error *error)
2058 {
2059         return mlx5_flow_list_create
2060                 (dev, &((struct priv *)dev->data->dev_private)->flows,
2061                  attr, items, actions, error);
2062 }
2063
2064 /**
2065  * Destroy a flow in a list.
2066  *
2067  * @param dev
2068  *   Pointer to Ethernet device.
2069  * @param list
2070  *   Pointer to a TAILQ flow list.
2071  * @param[in] flow
2072  *   Flow to destroy.
2073  */
2074 static void
2075 mlx5_flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2076                        struct rte_flow *flow)
2077 {
2078         flow_drv_destroy(dev, flow);
2079         TAILQ_REMOVE(list, flow, next);
2080         /*
2081          * Update RX queue flags only if port is started, otherwise it is
2082          * already clean.
2083          */
2084         if (dev->data->dev_started)
2085                 mlx5_flow_rxq_flags_trim(dev, flow);
2086         rte_free(flow);
2087 }
2088
2089 /**
2090  * Destroy all flows.
2091  *
2092  * @param dev
2093  *   Pointer to Ethernet device.
2094  * @param list
2095  *   Pointer to a TAILQ flow list.
2096  */
2097 void
2098 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2099 {
2100         while (!TAILQ_EMPTY(list)) {
2101                 struct rte_flow *flow;
2102
2103                 flow = TAILQ_FIRST(list);
2104                 mlx5_flow_list_destroy(dev, list, flow);
2105         }
2106 }
2107
2108 /**
2109  * Remove all flows.
2110  *
2111  * @param dev
2112  *   Pointer to Ethernet device.
2113  * @param list
2114  *   Pointer to a TAILQ flow list.
2115  */
2116 void
2117 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2118 {
2119         struct rte_flow *flow;
2120
2121         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2122                 flow_drv_remove(dev, flow);
2123         mlx5_flow_rxq_flags_clear(dev);
2124 }
2125
2126 /**
2127  * Add all flows.
2128  *
2129  * @param dev
2130  *   Pointer to Ethernet device.
2131  * @param list
2132  *   Pointer to a TAILQ flow list.
2133  *
2134  * @return
2135  *   0 on success, a negative errno value otherwise and rte_errno is set.
2136  */
2137 int
2138 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2139 {
2140         struct rte_flow *flow;
2141         struct rte_flow_error error;
2142         int ret = 0;
2143
2144         TAILQ_FOREACH(flow, list, next) {
2145                 ret = flow_drv_apply(dev, flow, &error);
2146                 if (ret < 0)
2147                         goto error;
2148                 mlx5_flow_rxq_flags_set(dev, flow);
2149         }
2150         return 0;
2151 error:
2152         ret = rte_errno; /* Save rte_errno before cleanup. */
2153         mlx5_flow_stop(dev, list);
2154         rte_errno = ret; /* Restore rte_errno. */
2155         return -rte_errno;
2156 }
2157
2158 /**
2159  * Verify the flow list is empty
2160  *
2161  * @param dev
2162  *  Pointer to Ethernet device.
2163  *
2164  * @return the number of flows not released.
2165  */
2166 int
2167 mlx5_flow_verify(struct rte_eth_dev *dev)
2168 {
2169         struct priv *priv = dev->data->dev_private;
2170         struct rte_flow *flow;
2171         int ret = 0;
2172
2173         TAILQ_FOREACH(flow, &priv->flows, next) {
2174                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
2175                         dev->data->port_id, (void *)flow);
2176                 ++ret;
2177         }
2178         return ret;
2179 }
2180
2181 /**
2182  * Enable a control flow configured from the control plane.
2183  *
2184  * @param dev
2185  *   Pointer to Ethernet device.
2186  * @param eth_spec
2187  *   An Ethernet flow spec to apply.
2188  * @param eth_mask
2189  *   An Ethernet flow mask to apply.
2190  * @param vlan_spec
2191  *   A VLAN flow spec to apply.
2192  * @param vlan_mask
2193  *   A VLAN flow mask to apply.
2194  *
2195  * @return
2196  *   0 on success, a negative errno value otherwise and rte_errno is set.
2197  */
2198 int
2199 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2200                     struct rte_flow_item_eth *eth_spec,
2201                     struct rte_flow_item_eth *eth_mask,
2202                     struct rte_flow_item_vlan *vlan_spec,
2203                     struct rte_flow_item_vlan *vlan_mask)
2204 {
2205         struct priv *priv = dev->data->dev_private;
2206         const struct rte_flow_attr attr = {
2207                 .ingress = 1,
2208                 .priority = MLX5_FLOW_PRIO_RSVD,
2209         };
2210         struct rte_flow_item items[] = {
2211                 {
2212                         .type = RTE_FLOW_ITEM_TYPE_ETH,
2213                         .spec = eth_spec,
2214                         .last = NULL,
2215                         .mask = eth_mask,
2216                 },
2217                 {
2218                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2219                                               RTE_FLOW_ITEM_TYPE_END,
2220                         .spec = vlan_spec,
2221                         .last = NULL,
2222                         .mask = vlan_mask,
2223                 },
2224                 {
2225                         .type = RTE_FLOW_ITEM_TYPE_END,
2226                 },
2227         };
2228         uint16_t queue[priv->reta_idx_n];
2229         struct rte_flow_action_rss action_rss = {
2230                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2231                 .level = 0,
2232                 .types = priv->rss_conf.rss_hf,
2233                 .key_len = priv->rss_conf.rss_key_len,
2234                 .queue_num = priv->reta_idx_n,
2235                 .key = priv->rss_conf.rss_key,
2236                 .queue = queue,
2237         };
2238         struct rte_flow_action actions[] = {
2239                 {
2240                         .type = RTE_FLOW_ACTION_TYPE_RSS,
2241                         .conf = &action_rss,
2242                 },
2243                 {
2244                         .type = RTE_FLOW_ACTION_TYPE_END,
2245                 },
2246         };
2247         struct rte_flow *flow;
2248         struct rte_flow_error error;
2249         unsigned int i;
2250
2251         if (!priv->reta_idx_n) {
2252                 rte_errno = EINVAL;
2253                 return -rte_errno;
2254         }
2255         for (i = 0; i != priv->reta_idx_n; ++i)
2256                 queue[i] = (*priv->reta_idx)[i];
2257         flow = mlx5_flow_list_create(dev, &priv->ctrl_flows, &attr, items,
2258                                      actions, &error);
2259         if (!flow)
2260                 return -rte_errno;
2261         return 0;
2262 }
2263
2264 /**
2265  * Enable a flow control configured from the control plane.
2266  *
2267  * @param dev
2268  *   Pointer to Ethernet device.
2269  * @param eth_spec
2270  *   An Ethernet flow spec to apply.
2271  * @param eth_mask
2272  *   An Ethernet flow mask to apply.
2273  *
2274  * @return
2275  *   0 on success, a negative errno value otherwise and rte_errno is set.
2276  */
2277 int
2278 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2279                struct rte_flow_item_eth *eth_spec,
2280                struct rte_flow_item_eth *eth_mask)
2281 {
2282         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2283 }
2284
2285 /**
2286  * Destroy a flow.
2287  *
2288  * @see rte_flow_destroy()
2289  * @see rte_flow_ops
2290  */
2291 int
2292 mlx5_flow_destroy(struct rte_eth_dev *dev,
2293                   struct rte_flow *flow,
2294                   struct rte_flow_error *error __rte_unused)
2295 {
2296         struct priv *priv = dev->data->dev_private;
2297
2298         mlx5_flow_list_destroy(dev, &priv->flows, flow);
2299         return 0;
2300 }
2301
2302 /**
2303  * Destroy all flows.
2304  *
2305  * @see rte_flow_flush()
2306  * @see rte_flow_ops
2307  */
2308 int
2309 mlx5_flow_flush(struct rte_eth_dev *dev,
2310                 struct rte_flow_error *error __rte_unused)
2311 {
2312         struct priv *priv = dev->data->dev_private;
2313
2314         mlx5_flow_list_flush(dev, &priv->flows);
2315         return 0;
2316 }
2317
2318 /**
2319  * Isolated mode.
2320  *
2321  * @see rte_flow_isolate()
2322  * @see rte_flow_ops
2323  */
2324 int
2325 mlx5_flow_isolate(struct rte_eth_dev *dev,
2326                   int enable,
2327                   struct rte_flow_error *error)
2328 {
2329         struct priv *priv = dev->data->dev_private;
2330
2331         if (dev->data->dev_started) {
2332                 rte_flow_error_set(error, EBUSY,
2333                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2334                                    NULL,
2335                                    "port must be stopped first");
2336                 return -rte_errno;
2337         }
2338         priv->isolated = !!enable;
2339         if (enable)
2340                 dev->dev_ops = &mlx5_dev_ops_isolate;
2341         else
2342                 dev->dev_ops = &mlx5_dev_ops;
2343         return 0;
2344 }
2345
2346 /**
2347  * Query flow counter.
2348  *
2349  * @param flow
2350  *   Pointer to the flow.
2351  *
2352  * @return
2353  *   0 on success, a negative errno value otherwise and rte_errno is set.
2354  */
2355 static int
2356 mlx5_flow_query_count(struct rte_flow *flow __rte_unused,
2357                       void *data __rte_unused,
2358                       struct rte_flow_error *error)
2359 {
2360 #ifdef HAVE_IBV_DEVICE_COUNTERS_SET_SUPPORT
2361         if (flow->actions & MLX5_FLOW_ACTION_COUNT) {
2362                 struct rte_flow_query_count *qc = data;
2363                 uint64_t counters[2] = {0, 0};
2364                 struct ibv_query_counter_set_attr query_cs_attr = {
2365                         .cs = flow->counter->cs,
2366                         .query_flags = IBV_COUNTER_SET_FORCE_UPDATE,
2367                 };
2368                 struct ibv_counter_set_data query_out = {
2369                         .out = counters,
2370                         .outlen = 2 * sizeof(uint64_t),
2371                 };
2372                 int err = mlx5_glue->query_counter_set(&query_cs_attr,
2373                                                        &query_out);
2374
2375                 if (err)
2376                         return rte_flow_error_set
2377                                 (error, err,
2378                                  RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2379                                  NULL,
2380                                  "cannot read counter");
2381                 qc->hits_set = 1;
2382                 qc->bytes_set = 1;
2383                 qc->hits = counters[0] - flow->counter->hits;
2384                 qc->bytes = counters[1] - flow->counter->bytes;
2385                 if (qc->reset) {
2386                         flow->counter->hits = counters[0];
2387                         flow->counter->bytes = counters[1];
2388                 }
2389                 return 0;
2390         }
2391         return rte_flow_error_set(error, EINVAL,
2392                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2393                                   NULL,
2394                                   "flow does not have counter");
2395 #endif
2396         return rte_flow_error_set(error, ENOTSUP,
2397                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2398                                   NULL,
2399                                   "counters are not available");
2400 }
2401
2402 /**
2403  * Query a flows.
2404  *
2405  * @see rte_flow_query()
2406  * @see rte_flow_ops
2407  */
2408 int
2409 mlx5_flow_query(struct rte_eth_dev *dev __rte_unused,
2410                 struct rte_flow *flow,
2411                 const struct rte_flow_action *actions,
2412                 void *data,
2413                 struct rte_flow_error *error)
2414 {
2415         int ret = 0;
2416
2417         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2418                 switch (actions->type) {
2419                 case RTE_FLOW_ACTION_TYPE_VOID:
2420                         break;
2421                 case RTE_FLOW_ACTION_TYPE_COUNT:
2422                         ret = mlx5_flow_query_count(flow, data, error);
2423                         break;
2424                 default:
2425                         return rte_flow_error_set(error, ENOTSUP,
2426                                                   RTE_FLOW_ERROR_TYPE_ACTION,
2427                                                   actions,
2428                                                   "action not supported");
2429                 }
2430                 if (ret < 0)
2431                         return ret;
2432         }
2433         return 0;
2434 }
2435
2436 /**
2437  * Convert a flow director filter to a generic flow.
2438  *
2439  * @param dev
2440  *   Pointer to Ethernet device.
2441  * @param fdir_filter
2442  *   Flow director filter to add.
2443  * @param attributes
2444  *   Generic flow parameters structure.
2445  *
2446  * @return
2447  *   0 on success, a negative errno value otherwise and rte_errno is set.
2448  */
2449 static int
2450 mlx5_fdir_filter_convert(struct rte_eth_dev *dev,
2451                          const struct rte_eth_fdir_filter *fdir_filter,
2452                          struct mlx5_fdir *attributes)
2453 {
2454         struct priv *priv = dev->data->dev_private;
2455         const struct rte_eth_fdir_input *input = &fdir_filter->input;
2456         const struct rte_eth_fdir_masks *mask =
2457                 &dev->data->dev_conf.fdir_conf.mask;
2458
2459         /* Validate queue number. */
2460         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2461                 DRV_LOG(ERR, "port %u invalid queue number %d",
2462                         dev->data->port_id, fdir_filter->action.rx_queue);
2463                 rte_errno = EINVAL;
2464                 return -rte_errno;
2465         }
2466         attributes->attr.ingress = 1;
2467         attributes->items[0] = (struct rte_flow_item) {
2468                 .type = RTE_FLOW_ITEM_TYPE_ETH,
2469                 .spec = &attributes->l2,
2470                 .mask = &attributes->l2_mask,
2471         };
2472         switch (fdir_filter->action.behavior) {
2473         case RTE_ETH_FDIR_ACCEPT:
2474                 attributes->actions[0] = (struct rte_flow_action){
2475                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
2476                         .conf = &attributes->queue,
2477                 };
2478                 break;
2479         case RTE_ETH_FDIR_REJECT:
2480                 attributes->actions[0] = (struct rte_flow_action){
2481                         .type = RTE_FLOW_ACTION_TYPE_DROP,
2482                 };
2483                 break;
2484         default:
2485                 DRV_LOG(ERR, "port %u invalid behavior %d",
2486                         dev->data->port_id,
2487                         fdir_filter->action.behavior);
2488                 rte_errno = ENOTSUP;
2489                 return -rte_errno;
2490         }
2491         attributes->queue.index = fdir_filter->action.rx_queue;
2492         /* Handle L3. */
2493         switch (fdir_filter->input.flow_type) {
2494         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2495         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2496         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2497                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
2498                         .src_addr = input->flow.ip4_flow.src_ip,
2499                         .dst_addr = input->flow.ip4_flow.dst_ip,
2500                         .time_to_live = input->flow.ip4_flow.ttl,
2501                         .type_of_service = input->flow.ip4_flow.tos,
2502                 };
2503                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
2504                         .src_addr = mask->ipv4_mask.src_ip,
2505                         .dst_addr = mask->ipv4_mask.dst_ip,
2506                         .time_to_live = mask->ipv4_mask.ttl,
2507                         .type_of_service = mask->ipv4_mask.tos,
2508                         .next_proto_id = mask->ipv4_mask.proto,
2509                 };
2510                 attributes->items[1] = (struct rte_flow_item){
2511                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
2512                         .spec = &attributes->l3,
2513                         .mask = &attributes->l3_mask,
2514                 };
2515                 break;
2516         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2517         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2518         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2519                 attributes->l3.ipv6.hdr = (struct ipv6_hdr){
2520                         .hop_limits = input->flow.ipv6_flow.hop_limits,
2521                         .proto = input->flow.ipv6_flow.proto,
2522                 };
2523
2524                 memcpy(attributes->l3.ipv6.hdr.src_addr,
2525                        input->flow.ipv6_flow.src_ip,
2526                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2527                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
2528                        input->flow.ipv6_flow.dst_ip,
2529                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2530                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2531                        mask->ipv6_mask.src_ip,
2532                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2533                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2534                        mask->ipv6_mask.dst_ip,
2535                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2536                 attributes->items[1] = (struct rte_flow_item){
2537                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
2538                         .spec = &attributes->l3,
2539                         .mask = &attributes->l3_mask,
2540                 };
2541                 break;
2542         default:
2543                 DRV_LOG(ERR, "port %u invalid flow type%d",
2544                         dev->data->port_id, fdir_filter->input.flow_type);
2545                 rte_errno = ENOTSUP;
2546                 return -rte_errno;
2547         }
2548         /* Handle L4. */
2549         switch (fdir_filter->input.flow_type) {
2550         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2551                 attributes->l4.udp.hdr = (struct udp_hdr){
2552                         .src_port = input->flow.udp4_flow.src_port,
2553                         .dst_port = input->flow.udp4_flow.dst_port,
2554                 };
2555                 attributes->l4_mask.udp.hdr = (struct udp_hdr){
2556                         .src_port = mask->src_port_mask,
2557                         .dst_port = mask->dst_port_mask,
2558                 };
2559                 attributes->items[2] = (struct rte_flow_item){
2560                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2561                         .spec = &attributes->l4,
2562                         .mask = &attributes->l4_mask,
2563                 };
2564                 break;
2565         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2566                 attributes->l4.tcp.hdr = (struct tcp_hdr){
2567                         .src_port = input->flow.tcp4_flow.src_port,
2568                         .dst_port = input->flow.tcp4_flow.dst_port,
2569                 };
2570                 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2571                         .src_port = mask->src_port_mask,
2572                         .dst_port = mask->dst_port_mask,
2573                 };
2574                 attributes->items[2] = (struct rte_flow_item){
2575                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2576                         .spec = &attributes->l4,
2577                         .mask = &attributes->l4_mask,
2578                 };
2579                 break;
2580         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2581                 attributes->l4.udp.hdr = (struct udp_hdr){
2582                         .src_port = input->flow.udp6_flow.src_port,
2583                         .dst_port = input->flow.udp6_flow.dst_port,
2584                 };
2585                 attributes->l4_mask.udp.hdr = (struct udp_hdr){
2586                         .src_port = mask->src_port_mask,
2587                         .dst_port = mask->dst_port_mask,
2588                 };
2589                 attributes->items[2] = (struct rte_flow_item){
2590                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2591                         .spec = &attributes->l4,
2592                         .mask = &attributes->l4_mask,
2593                 };
2594                 break;
2595         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2596                 attributes->l4.tcp.hdr = (struct tcp_hdr){
2597                         .src_port = input->flow.tcp6_flow.src_port,
2598                         .dst_port = input->flow.tcp6_flow.dst_port,
2599                 };
2600                 attributes->l4_mask.tcp.hdr = (struct tcp_hdr){
2601                         .src_port = mask->src_port_mask,
2602                         .dst_port = mask->dst_port_mask,
2603                 };
2604                 attributes->items[2] = (struct rte_flow_item){
2605                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2606                         .spec = &attributes->l4,
2607                         .mask = &attributes->l4_mask,
2608                 };
2609                 break;
2610         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2611         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2612                 break;
2613         default:
2614                 DRV_LOG(ERR, "port %u invalid flow type%d",
2615                         dev->data->port_id, fdir_filter->input.flow_type);
2616                 rte_errno = ENOTSUP;
2617                 return -rte_errno;
2618         }
2619         return 0;
2620 }
2621
2622 /**
2623  * Add new flow director filter and store it in list.
2624  *
2625  * @param dev
2626  *   Pointer to Ethernet device.
2627  * @param fdir_filter
2628  *   Flow director filter to add.
2629  *
2630  * @return
2631  *   0 on success, a negative errno value otherwise and rte_errno is set.
2632  */
2633 static int
2634 mlx5_fdir_filter_add(struct rte_eth_dev *dev,
2635                      const struct rte_eth_fdir_filter *fdir_filter)
2636 {
2637         struct priv *priv = dev->data->dev_private;
2638         struct mlx5_fdir attributes = {
2639                 .attr.group = 0,
2640                 .l2_mask = {
2641                         .dst.addr_bytes = "\x00\x00\x00\x00\x00\x00",
2642                         .src.addr_bytes = "\x00\x00\x00\x00\x00\x00",
2643                         .type = 0,
2644                 },
2645         };
2646         struct rte_flow_error error;
2647         struct rte_flow *flow;
2648         int ret;
2649
2650         ret = mlx5_fdir_filter_convert(dev, fdir_filter, &attributes);
2651         if (ret)
2652                 return ret;
2653         flow = mlx5_flow_list_create(dev, &priv->flows, &attributes.attr,
2654                                      attributes.items, attributes.actions,
2655                                      &error);
2656         if (flow) {
2657                 DRV_LOG(DEBUG, "port %u FDIR created %p", dev->data->port_id,
2658                         (void *)flow);
2659                 return 0;
2660         }
2661         return -rte_errno;
2662 }
2663
2664 /**
2665  * Delete specific filter.
2666  *
2667  * @param dev
2668  *   Pointer to Ethernet device.
2669  * @param fdir_filter
2670  *   Filter to be deleted.
2671  *
2672  * @return
2673  *   0 on success, a negative errno value otherwise and rte_errno is set.
2674  */
2675 static int
2676 mlx5_fdir_filter_delete(struct rte_eth_dev *dev __rte_unused,
2677                         const struct rte_eth_fdir_filter *fdir_filter
2678                         __rte_unused)
2679 {
2680         rte_errno = ENOTSUP;
2681         return -rte_errno;
2682 }
2683
2684 /**
2685  * Update queue for specific filter.
2686  *
2687  * @param dev
2688  *   Pointer to Ethernet device.
2689  * @param fdir_filter
2690  *   Filter to be updated.
2691  *
2692  * @return
2693  *   0 on success, a negative errno value otherwise and rte_errno is set.
2694  */
2695 static int
2696 mlx5_fdir_filter_update(struct rte_eth_dev *dev,
2697                         const struct rte_eth_fdir_filter *fdir_filter)
2698 {
2699         int ret;
2700
2701         ret = mlx5_fdir_filter_delete(dev, fdir_filter);
2702         if (ret)
2703                 return ret;
2704         return mlx5_fdir_filter_add(dev, fdir_filter);
2705 }
2706
2707 /**
2708  * Flush all filters.
2709  *
2710  * @param dev
2711  *   Pointer to Ethernet device.
2712  */
2713 static void
2714 mlx5_fdir_filter_flush(struct rte_eth_dev *dev)
2715 {
2716         struct priv *priv = dev->data->dev_private;
2717
2718         mlx5_flow_list_flush(dev, &priv->flows);
2719 }
2720
2721 /**
2722  * Get flow director information.
2723  *
2724  * @param dev
2725  *   Pointer to Ethernet device.
2726  * @param[out] fdir_info
2727  *   Resulting flow director information.
2728  */
2729 static void
2730 mlx5_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
2731 {
2732         struct rte_eth_fdir_masks *mask =
2733                 &dev->data->dev_conf.fdir_conf.mask;
2734
2735         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
2736         fdir_info->guarant_spc = 0;
2737         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
2738         fdir_info->max_flexpayload = 0;
2739         fdir_info->flow_types_mask[0] = 0;
2740         fdir_info->flex_payload_unit = 0;
2741         fdir_info->max_flex_payload_segment_num = 0;
2742         fdir_info->flex_payload_limit = 0;
2743         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
2744 }
2745
2746 /**
2747  * Deal with flow director operations.
2748  *
2749  * @param dev
2750  *   Pointer to Ethernet device.
2751  * @param filter_op
2752  *   Operation to perform.
2753  * @param arg
2754  *   Pointer to operation-specific structure.
2755  *
2756  * @return
2757  *   0 on success, a negative errno value otherwise and rte_errno is set.
2758  */
2759 static int
2760 mlx5_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
2761                     void *arg)
2762 {
2763         enum rte_fdir_mode fdir_mode =
2764                 dev->data->dev_conf.fdir_conf.mode;
2765
2766         if (filter_op == RTE_ETH_FILTER_NOP)
2767                 return 0;
2768         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
2769             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2770                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
2771                         dev->data->port_id, fdir_mode);
2772                 rte_errno = EINVAL;
2773                 return -rte_errno;
2774         }
2775         switch (filter_op) {
2776         case RTE_ETH_FILTER_ADD:
2777                 return mlx5_fdir_filter_add(dev, arg);
2778         case RTE_ETH_FILTER_UPDATE:
2779                 return mlx5_fdir_filter_update(dev, arg);
2780         case RTE_ETH_FILTER_DELETE:
2781                 return mlx5_fdir_filter_delete(dev, arg);
2782         case RTE_ETH_FILTER_FLUSH:
2783                 mlx5_fdir_filter_flush(dev);
2784                 break;
2785         case RTE_ETH_FILTER_INFO:
2786                 mlx5_fdir_info_get(dev, arg);
2787                 break;
2788         default:
2789                 DRV_LOG(DEBUG, "port %u unknown operation %u",
2790                         dev->data->port_id, filter_op);
2791                 rte_errno = EINVAL;
2792                 return -rte_errno;
2793         }
2794         return 0;
2795 }
2796
2797 /**
2798  * Manage filter operations.
2799  *
2800  * @param dev
2801  *   Pointer to Ethernet device structure.
2802  * @param filter_type
2803  *   Filter type.
2804  * @param filter_op
2805  *   Operation to perform.
2806  * @param arg
2807  *   Pointer to operation-specific structure.
2808  *
2809  * @return
2810  *   0 on success, a negative errno value otherwise and rte_errno is set.
2811  */
2812 int
2813 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
2814                      enum rte_filter_type filter_type,
2815                      enum rte_filter_op filter_op,
2816                      void *arg)
2817 {
2818         switch (filter_type) {
2819         case RTE_ETH_FILTER_GENERIC:
2820                 if (filter_op != RTE_ETH_FILTER_GET) {
2821                         rte_errno = EINVAL;
2822                         return -rte_errno;
2823                 }
2824                 *(const void **)arg = &mlx5_flow_ops;
2825                 return 0;
2826         case RTE_ETH_FILTER_FDIR:
2827                 return mlx5_fdir_ctrl_func(dev, filter_op, arg);
2828         default:
2829                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
2830                         dev->data->port_id, filter_type);
2831                 rte_errno = ENOTSUP;
2832                 return -rte_errno;
2833         }
2834         return 0;
2835 }