net/mlx5: validate flow rule item order
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57
58 enum mlx5_expansion {
59         MLX5_EXPANSION_ROOT,
60         MLX5_EXPANSION_ROOT_OUTER,
61         MLX5_EXPANSION_ROOT_ETH_VLAN,
62         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63         MLX5_EXPANSION_OUTER_ETH,
64         MLX5_EXPANSION_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_VLAN,
66         MLX5_EXPANSION_OUTER_IPV4,
67         MLX5_EXPANSION_OUTER_IPV4_UDP,
68         MLX5_EXPANSION_OUTER_IPV4_TCP,
69         MLX5_EXPANSION_OUTER_IPV6,
70         MLX5_EXPANSION_OUTER_IPV6_UDP,
71         MLX5_EXPANSION_OUTER_IPV6_TCP,
72         MLX5_EXPANSION_VXLAN,
73         MLX5_EXPANSION_VXLAN_GPE,
74         MLX5_EXPANSION_GRE,
75         MLX5_EXPANSION_MPLS,
76         MLX5_EXPANSION_ETH,
77         MLX5_EXPANSION_ETH_VLAN,
78         MLX5_EXPANSION_VLAN,
79         MLX5_EXPANSION_IPV4,
80         MLX5_EXPANSION_IPV4_UDP,
81         MLX5_EXPANSION_IPV4_TCP,
82         MLX5_EXPANSION_IPV6,
83         MLX5_EXPANSION_IPV6_UDP,
84         MLX5_EXPANSION_IPV6_TCP,
85 };
86
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89         [MLX5_EXPANSION_ROOT] = {
90                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91                                                  MLX5_EXPANSION_IPV4,
92                                                  MLX5_EXPANSION_IPV6),
93                 .type = RTE_FLOW_ITEM_TYPE_END,
94         },
95         [MLX5_EXPANSION_ROOT_OUTER] = {
96                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97                                                  MLX5_EXPANSION_OUTER_IPV4,
98                                                  MLX5_EXPANSION_OUTER_IPV6),
99                 .type = RTE_FLOW_ITEM_TYPE_END,
100         },
101         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103                 .type = RTE_FLOW_ITEM_TYPE_END,
104         },
105         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107                 .type = RTE_FLOW_ITEM_TYPE_END,
108         },
109         [MLX5_EXPANSION_OUTER_ETH] = {
110                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111                                                  MLX5_EXPANSION_OUTER_IPV6,
112                                                  MLX5_EXPANSION_MPLS),
113                 .type = RTE_FLOW_ITEM_TYPE_ETH,
114                 .rss_types = 0,
115         },
116         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118                 .type = RTE_FLOW_ITEM_TYPE_ETH,
119                 .rss_types = 0,
120         },
121         [MLX5_EXPANSION_OUTER_VLAN] = {
122                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123                                                  MLX5_EXPANSION_OUTER_IPV6),
124                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
125         },
126         [MLX5_EXPANSION_OUTER_IPV4] = {
127                 .next = RTE_FLOW_EXPAND_RSS_NEXT
128                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
129                          MLX5_EXPANSION_OUTER_IPV4_TCP,
130                          MLX5_EXPANSION_GRE,
131                          MLX5_EXPANSION_IPV4,
132                          MLX5_EXPANSION_IPV6),
133                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
134                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135                         ETH_RSS_NONFRAG_IPV4_OTHER,
136         },
137         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139                                                  MLX5_EXPANSION_VXLAN_GPE),
140                 .type = RTE_FLOW_ITEM_TYPE_UDP,
141                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142         },
143         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144                 .type = RTE_FLOW_ITEM_TYPE_TCP,
145                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146         },
147         [MLX5_EXPANSION_OUTER_IPV6] = {
148                 .next = RTE_FLOW_EXPAND_RSS_NEXT
149                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
150                          MLX5_EXPANSION_OUTER_IPV6_TCP,
151                          MLX5_EXPANSION_IPV4,
152                          MLX5_EXPANSION_IPV6),
153                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
154                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
155                         ETH_RSS_NONFRAG_IPV6_OTHER,
156         },
157         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
158                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
159                                                  MLX5_EXPANSION_VXLAN_GPE),
160                 .type = RTE_FLOW_ITEM_TYPE_UDP,
161                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
162         },
163         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
164                 .type = RTE_FLOW_ITEM_TYPE_TCP,
165                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
166         },
167         [MLX5_EXPANSION_VXLAN] = {
168                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
169                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
170         },
171         [MLX5_EXPANSION_VXLAN_GPE] = {
172                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
173                                                  MLX5_EXPANSION_IPV4,
174                                                  MLX5_EXPANSION_IPV6),
175                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
176         },
177         [MLX5_EXPANSION_GRE] = {
178                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
179                 .type = RTE_FLOW_ITEM_TYPE_GRE,
180         },
181         [MLX5_EXPANSION_MPLS] = {
182                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
183                                                  MLX5_EXPANSION_IPV6),
184                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
185         },
186         [MLX5_EXPANSION_ETH] = {
187                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
188                                                  MLX5_EXPANSION_IPV6),
189                 .type = RTE_FLOW_ITEM_TYPE_ETH,
190         },
191         [MLX5_EXPANSION_ETH_VLAN] = {
192                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
193                 .type = RTE_FLOW_ITEM_TYPE_ETH,
194         },
195         [MLX5_EXPANSION_VLAN] = {
196                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
197                                                  MLX5_EXPANSION_IPV6),
198                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
199         },
200         [MLX5_EXPANSION_IPV4] = {
201                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
202                                                  MLX5_EXPANSION_IPV4_TCP),
203                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
204                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
205                         ETH_RSS_NONFRAG_IPV4_OTHER,
206         },
207         [MLX5_EXPANSION_IPV4_UDP] = {
208                 .type = RTE_FLOW_ITEM_TYPE_UDP,
209                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
210         },
211         [MLX5_EXPANSION_IPV4_TCP] = {
212                 .type = RTE_FLOW_ITEM_TYPE_TCP,
213                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
214         },
215         [MLX5_EXPANSION_IPV6] = {
216                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
217                                                  MLX5_EXPANSION_IPV6_TCP),
218                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
219                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
220                         ETH_RSS_NONFRAG_IPV6_OTHER,
221         },
222         [MLX5_EXPANSION_IPV6_UDP] = {
223                 .type = RTE_FLOW_ITEM_TYPE_UDP,
224                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
225         },
226         [MLX5_EXPANSION_IPV6_TCP] = {
227                 .type = RTE_FLOW_ITEM_TYPE_TCP,
228                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
229         },
230 };
231
232 static const struct rte_flow_ops mlx5_flow_ops = {
233         .validate = mlx5_flow_validate,
234         .create = mlx5_flow_create,
235         .destroy = mlx5_flow_destroy,
236         .flush = mlx5_flow_flush,
237         .isolate = mlx5_flow_isolate,
238         .query = mlx5_flow_query,
239 };
240
241 /* Convert FDIR request to Generic flow. */
242 struct mlx5_fdir {
243         struct rte_flow_attr attr;
244         struct rte_flow_item items[4];
245         struct rte_flow_item_eth l2;
246         struct rte_flow_item_eth l2_mask;
247         union {
248                 struct rte_flow_item_ipv4 ipv4;
249                 struct rte_flow_item_ipv6 ipv6;
250         } l3;
251         union {
252                 struct rte_flow_item_ipv4 ipv4;
253                 struct rte_flow_item_ipv6 ipv6;
254         } l3_mask;
255         union {
256                 struct rte_flow_item_udp udp;
257                 struct rte_flow_item_tcp tcp;
258         } l4;
259         union {
260                 struct rte_flow_item_udp udp;
261                 struct rte_flow_item_tcp tcp;
262         } l4_mask;
263         struct rte_flow_action actions[2];
264         struct rte_flow_action_queue queue;
265 };
266
267 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
268 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
269         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
270 };
271
272 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
273 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
274         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
275         { 9, 10, 11 }, { 12, 13, 14 },
276 };
277
278 /* Tunnel information. */
279 struct mlx5_flow_tunnel_info {
280         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
281         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
282 };
283
284 static struct mlx5_flow_tunnel_info tunnels_info[] = {
285         {
286                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
287                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
288         },
289         {
290                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
291                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
292         },
293         {
294                 .tunnel = MLX5_FLOW_LAYER_GRE,
295                 .ptype = RTE_PTYPE_TUNNEL_GRE,
296         },
297         {
298                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
299                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
300         },
301         {
302                 .tunnel = MLX5_FLOW_LAYER_MPLS,
303                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
304         },
305         {
306                 .tunnel = MLX5_FLOW_LAYER_NVGRE,
307                 .ptype = RTE_PTYPE_TUNNEL_NVGRE,
308         },
309         {
310                 .tunnel = MLX5_FLOW_LAYER_IPIP,
311                 .ptype = RTE_PTYPE_TUNNEL_IP,
312         },
313         {
314                 .tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
315                 .ptype = RTE_PTYPE_TUNNEL_IP,
316         },
317 };
318
319 /**
320  * Discover the maximum number of priority available.
321  *
322  * @param[in] dev
323  *   Pointer to the Ethernet device structure.
324  *
325  * @return
326  *   number of supported flow priority on success, a negative errno
327  *   value otherwise and rte_errno is set.
328  */
329 int
330 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
331 {
332         struct mlx5_priv *priv = dev->data->dev_private;
333         struct {
334                 struct ibv_flow_attr attr;
335                 struct ibv_flow_spec_eth eth;
336                 struct ibv_flow_spec_action_drop drop;
337         } flow_attr = {
338                 .attr = {
339                         .num_of_specs = 2,
340                         .port = (uint8_t)priv->ibv_port,
341                 },
342                 .eth = {
343                         .type = IBV_FLOW_SPEC_ETH,
344                         .size = sizeof(struct ibv_flow_spec_eth),
345                 },
346                 .drop = {
347                         .size = sizeof(struct ibv_flow_spec_action_drop),
348                         .type = IBV_FLOW_SPEC_ACTION_DROP,
349                 },
350         };
351         struct ibv_flow *flow;
352         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
353         uint16_t vprio[] = { 8, 16 };
354         int i;
355         int priority = 0;
356
357         if (!drop) {
358                 rte_errno = ENOTSUP;
359                 return -rte_errno;
360         }
361         for (i = 0; i != RTE_DIM(vprio); i++) {
362                 flow_attr.attr.priority = vprio[i] - 1;
363                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
364                 if (!flow)
365                         break;
366                 claim_zero(mlx5_glue->destroy_flow(flow));
367                 priority = vprio[i];
368         }
369         mlx5_hrxq_drop_release(dev);
370         switch (priority) {
371         case 8:
372                 priority = RTE_DIM(priority_map_3);
373                 break;
374         case 16:
375                 priority = RTE_DIM(priority_map_5);
376                 break;
377         default:
378                 rte_errno = ENOTSUP;
379                 DRV_LOG(ERR,
380                         "port %u verbs maximum priority: %d expected 8/16",
381                         dev->data->port_id, priority);
382                 return -rte_errno;
383         }
384         DRV_LOG(INFO, "port %u flow maximum priority: %d",
385                 dev->data->port_id, priority);
386         return priority;
387 }
388
389 /**
390  * Adjust flow priority based on the highest layer and the request priority.
391  *
392  * @param[in] dev
393  *   Pointer to the Ethernet device structure.
394  * @param[in] priority
395  *   The rule base priority.
396  * @param[in] subpriority
397  *   The priority based on the items.
398  *
399  * @return
400  *   The new priority.
401  */
402 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
403                                    uint32_t subpriority)
404 {
405         uint32_t res = 0;
406         struct mlx5_priv *priv = dev->data->dev_private;
407
408         switch (priv->config.flow_prio) {
409         case RTE_DIM(priority_map_3):
410                 res = priority_map_3[priority][subpriority];
411                 break;
412         case RTE_DIM(priority_map_5):
413                 res = priority_map_5[priority][subpriority];
414                 break;
415         }
416         return  res;
417 }
418
419 /**
420  * Verify the @p item specifications (spec, last, mask) are compatible with the
421  * NIC capabilities.
422  *
423  * @param[in] item
424  *   Item specification.
425  * @param[in] mask
426  *   @p item->mask or flow default bit-masks.
427  * @param[in] nic_mask
428  *   Bit-masks covering supported fields by the NIC to compare with user mask.
429  * @param[in] size
430  *   Bit-masks size in bytes.
431  * @param[out] error
432  *   Pointer to error structure.
433  *
434  * @return
435  *   0 on success, a negative errno value otherwise and rte_errno is set.
436  */
437 int
438 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
439                           const uint8_t *mask,
440                           const uint8_t *nic_mask,
441                           unsigned int size,
442                           struct rte_flow_error *error)
443 {
444         unsigned int i;
445
446         assert(nic_mask);
447         for (i = 0; i < size; ++i)
448                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
449                         return rte_flow_error_set(error, ENOTSUP,
450                                                   RTE_FLOW_ERROR_TYPE_ITEM,
451                                                   item,
452                                                   "mask enables non supported"
453                                                   " bits");
454         if (!item->spec && (item->mask || item->last))
455                 return rte_flow_error_set(error, EINVAL,
456                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
457                                           "mask/last without a spec is not"
458                                           " supported");
459         if (item->spec && item->last) {
460                 uint8_t spec[size];
461                 uint8_t last[size];
462                 unsigned int i;
463                 int ret;
464
465                 for (i = 0; i < size; ++i) {
466                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
467                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
468                 }
469                 ret = memcmp(spec, last, size);
470                 if (ret != 0)
471                         return rte_flow_error_set(error, EINVAL,
472                                                   RTE_FLOW_ERROR_TYPE_ITEM,
473                                                   item,
474                                                   "range is not valid");
475         }
476         return 0;
477 }
478
479 /**
480  * Adjust the hash fields according to the @p flow information.
481  *
482  * @param[in] dev_flow.
483  *   Pointer to the mlx5_flow.
484  * @param[in] tunnel
485  *   1 when the hash field is for a tunnel item.
486  * @param[in] layer_types
487  *   ETH_RSS_* types.
488  * @param[in] hash_fields
489  *   Item hash fields.
490  *
491  * @return
492  *   The hash fields that should be used.
493  */
494 uint64_t
495 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
496                             int tunnel __rte_unused, uint64_t layer_types,
497                             uint64_t hash_fields)
498 {
499         struct rte_flow *flow = dev_flow->flow;
500 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
501         int rss_request_inner = flow->rss.level >= 2;
502
503         /* Check RSS hash level for tunnel. */
504         if (tunnel && rss_request_inner)
505                 hash_fields |= IBV_RX_HASH_INNER;
506         else if (tunnel || rss_request_inner)
507                 return 0;
508 #endif
509         /* Check if requested layer matches RSS hash fields. */
510         if (!(flow->rss.types & layer_types))
511                 return 0;
512         return hash_fields;
513 }
514
515 /**
516  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
517  * if several tunnel rules are used on this queue, the tunnel ptype will be
518  * cleared.
519  *
520  * @param rxq_ctrl
521  *   Rx queue to update.
522  */
523 static void
524 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
525 {
526         unsigned int i;
527         uint32_t tunnel_ptype = 0;
528
529         /* Look up for the ptype to use. */
530         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
531                 if (!rxq_ctrl->flow_tunnels_n[i])
532                         continue;
533                 if (!tunnel_ptype) {
534                         tunnel_ptype = tunnels_info[i].ptype;
535                 } else {
536                         tunnel_ptype = 0;
537                         break;
538                 }
539         }
540         rxq_ctrl->rxq.tunnel = tunnel_ptype;
541 }
542
543 /**
544  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
545  * flow.
546  *
547  * @param[in] dev
548  *   Pointer to the Ethernet device structure.
549  * @param[in] dev_flow
550  *   Pointer to device flow structure.
551  */
552 static void
553 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
554 {
555         struct mlx5_priv *priv = dev->data->dev_private;
556         struct rte_flow *flow = dev_flow->flow;
557         const int mark = !!(flow->actions &
558                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
559         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
560         unsigned int i;
561
562         for (i = 0; i != flow->rss.queue_num; ++i) {
563                 int idx = (*flow->queue)[i];
564                 struct mlx5_rxq_ctrl *rxq_ctrl =
565                         container_of((*priv->rxqs)[idx],
566                                      struct mlx5_rxq_ctrl, rxq);
567
568                 if (mark) {
569                         rxq_ctrl->rxq.mark = 1;
570                         rxq_ctrl->flow_mark_n++;
571                 }
572                 if (tunnel) {
573                         unsigned int j;
574
575                         /* Increase the counter matching the flow. */
576                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
577                                 if ((tunnels_info[j].tunnel &
578                                      dev_flow->layers) ==
579                                     tunnels_info[j].tunnel) {
580                                         rxq_ctrl->flow_tunnels_n[j]++;
581                                         break;
582                                 }
583                         }
584                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
585                 }
586         }
587 }
588
589 /**
590  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
591  *
592  * @param[in] dev
593  *   Pointer to the Ethernet device structure.
594  * @param[in] flow
595  *   Pointer to flow structure.
596  */
597 static void
598 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
599 {
600         struct mlx5_flow *dev_flow;
601
602         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
603                 flow_drv_rxq_flags_set(dev, dev_flow);
604 }
605
606 /**
607  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
608  * device flow if no other flow uses it with the same kind of request.
609  *
610  * @param dev
611  *   Pointer to Ethernet device.
612  * @param[in] dev_flow
613  *   Pointer to the device flow.
614  */
615 static void
616 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
617 {
618         struct mlx5_priv *priv = dev->data->dev_private;
619         struct rte_flow *flow = dev_flow->flow;
620         const int mark = !!(flow->actions &
621                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
622         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
623         unsigned int i;
624
625         assert(dev->data->dev_started);
626         for (i = 0; i != flow->rss.queue_num; ++i) {
627                 int idx = (*flow->queue)[i];
628                 struct mlx5_rxq_ctrl *rxq_ctrl =
629                         container_of((*priv->rxqs)[idx],
630                                      struct mlx5_rxq_ctrl, rxq);
631
632                 if (mark) {
633                         rxq_ctrl->flow_mark_n--;
634                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
635                 }
636                 if (tunnel) {
637                         unsigned int j;
638
639                         /* Decrease the counter matching the flow. */
640                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
641                                 if ((tunnels_info[j].tunnel &
642                                      dev_flow->layers) ==
643                                     tunnels_info[j].tunnel) {
644                                         rxq_ctrl->flow_tunnels_n[j]--;
645                                         break;
646                                 }
647                         }
648                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
649                 }
650         }
651 }
652
653 /**
654  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
655  * @p flow if no other flow uses it with the same kind of request.
656  *
657  * @param dev
658  *   Pointer to Ethernet device.
659  * @param[in] flow
660  *   Pointer to the flow.
661  */
662 static void
663 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
664 {
665         struct mlx5_flow *dev_flow;
666
667         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
668                 flow_drv_rxq_flags_trim(dev, dev_flow);
669 }
670
671 /**
672  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
673  *
674  * @param dev
675  *   Pointer to Ethernet device.
676  */
677 static void
678 flow_rxq_flags_clear(struct rte_eth_dev *dev)
679 {
680         struct mlx5_priv *priv = dev->data->dev_private;
681         unsigned int i;
682
683         for (i = 0; i != priv->rxqs_n; ++i) {
684                 struct mlx5_rxq_ctrl *rxq_ctrl;
685                 unsigned int j;
686
687                 if (!(*priv->rxqs)[i])
688                         continue;
689                 rxq_ctrl = container_of((*priv->rxqs)[i],
690                                         struct mlx5_rxq_ctrl, rxq);
691                 rxq_ctrl->flow_mark_n = 0;
692                 rxq_ctrl->rxq.mark = 0;
693                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
694                         rxq_ctrl->flow_tunnels_n[j] = 0;
695                 rxq_ctrl->rxq.tunnel = 0;
696         }
697 }
698
699 /*
700  * return a pointer to the desired action in the list of actions.
701  *
702  * @param[in] actions
703  *   The list of actions to search the action in.
704  * @param[in] action
705  *   The action to find.
706  *
707  * @return
708  *   Pointer to the action in the list, if found. NULL otherwise.
709  */
710 const struct rte_flow_action *
711 mlx5_flow_find_action(const struct rte_flow_action *actions,
712                       enum rte_flow_action_type action)
713 {
714         if (actions == NULL)
715                 return NULL;
716         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
717                 if (actions->type == action)
718                         return actions;
719         return NULL;
720 }
721
722 /*
723  * Validate the flag action.
724  *
725  * @param[in] action_flags
726  *   Bit-fields that holds the actions detected until now.
727  * @param[in] attr
728  *   Attributes of flow that includes this action.
729  * @param[out] error
730  *   Pointer to error structure.
731  *
732  * @return
733  *   0 on success, a negative errno value otherwise and rte_errno is set.
734  */
735 int
736 mlx5_flow_validate_action_flag(uint64_t action_flags,
737                                const struct rte_flow_attr *attr,
738                                struct rte_flow_error *error)
739 {
740
741         if (action_flags & MLX5_FLOW_ACTION_DROP)
742                 return rte_flow_error_set(error, EINVAL,
743                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
744                                           "can't drop and flag in same flow");
745         if (action_flags & MLX5_FLOW_ACTION_MARK)
746                 return rte_flow_error_set(error, EINVAL,
747                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
748                                           "can't mark and flag in same flow");
749         if (action_flags & MLX5_FLOW_ACTION_FLAG)
750                 return rte_flow_error_set(error, EINVAL,
751                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
752                                           "can't have 2 flag"
753                                           " actions in same flow");
754         if (attr->egress)
755                 return rte_flow_error_set(error, ENOTSUP,
756                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
757                                           "flag action not supported for "
758                                           "egress");
759         return 0;
760 }
761
762 /*
763  * Validate the mark action.
764  *
765  * @param[in] action
766  *   Pointer to the queue action.
767  * @param[in] action_flags
768  *   Bit-fields that holds the actions detected until now.
769  * @param[in] attr
770  *   Attributes of flow that includes this action.
771  * @param[out] error
772  *   Pointer to error structure.
773  *
774  * @return
775  *   0 on success, a negative errno value otherwise and rte_errno is set.
776  */
777 int
778 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
779                                uint64_t action_flags,
780                                const struct rte_flow_attr *attr,
781                                struct rte_flow_error *error)
782 {
783         const struct rte_flow_action_mark *mark = action->conf;
784
785         if (!mark)
786                 return rte_flow_error_set(error, EINVAL,
787                                           RTE_FLOW_ERROR_TYPE_ACTION,
788                                           action,
789                                           "configuration cannot be null");
790         if (mark->id >= MLX5_FLOW_MARK_MAX)
791                 return rte_flow_error_set(error, EINVAL,
792                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
793                                           &mark->id,
794                                           "mark id must in 0 <= id < "
795                                           RTE_STR(MLX5_FLOW_MARK_MAX));
796         if (action_flags & MLX5_FLOW_ACTION_DROP)
797                 return rte_flow_error_set(error, EINVAL,
798                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
799                                           "can't drop and mark in same flow");
800         if (action_flags & MLX5_FLOW_ACTION_FLAG)
801                 return rte_flow_error_set(error, EINVAL,
802                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
803                                           "can't flag and mark in same flow");
804         if (action_flags & MLX5_FLOW_ACTION_MARK)
805                 return rte_flow_error_set(error, EINVAL,
806                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807                                           "can't have 2 mark actions in same"
808                                           " flow");
809         if (attr->egress)
810                 return rte_flow_error_set(error, ENOTSUP,
811                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
812                                           "mark action not supported for "
813                                           "egress");
814         return 0;
815 }
816
817 /*
818  * Validate the drop action.
819  *
820  * @param[in] action_flags
821  *   Bit-fields that holds the actions detected until now.
822  * @param[in] attr
823  *   Attributes of flow that includes this action.
824  * @param[out] error
825  *   Pointer to error structure.
826  *
827  * @return
828  *   0 on success, a negative errno value otherwise and rte_errno is set.
829  */
830 int
831 mlx5_flow_validate_action_drop(uint64_t action_flags,
832                                const struct rte_flow_attr *attr,
833                                struct rte_flow_error *error)
834 {
835         if (action_flags & MLX5_FLOW_ACTION_FLAG)
836                 return rte_flow_error_set(error, EINVAL,
837                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
838                                           "can't drop and flag in same flow");
839         if (action_flags & MLX5_FLOW_ACTION_MARK)
840                 return rte_flow_error_set(error, EINVAL,
841                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
842                                           "can't drop and mark in same flow");
843         if (action_flags & (MLX5_FLOW_FATE_ACTIONS |
844                             MLX5_FLOW_FATE_ESWITCH_ACTIONS))
845                 return rte_flow_error_set(error, EINVAL,
846                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
847                                           "can't have 2 fate actions in"
848                                           " same flow");
849         if (attr->egress)
850                 return rte_flow_error_set(error, ENOTSUP,
851                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
852                                           "drop action not supported for "
853                                           "egress");
854         return 0;
855 }
856
857 /*
858  * Validate the queue action.
859  *
860  * @param[in] action
861  *   Pointer to the queue action.
862  * @param[in] action_flags
863  *   Bit-fields that holds the actions detected until now.
864  * @param[in] dev
865  *   Pointer to the Ethernet device structure.
866  * @param[in] attr
867  *   Attributes of flow that includes this action.
868  * @param[out] error
869  *   Pointer to error structure.
870  *
871  * @return
872  *   0 on success, a negative errno value otherwise and rte_errno is set.
873  */
874 int
875 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
876                                 uint64_t action_flags,
877                                 struct rte_eth_dev *dev,
878                                 const struct rte_flow_attr *attr,
879                                 struct rte_flow_error *error)
880 {
881         struct mlx5_priv *priv = dev->data->dev_private;
882         const struct rte_flow_action_queue *queue = action->conf;
883
884         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
885                 return rte_flow_error_set(error, EINVAL,
886                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
887                                           "can't have 2 fate actions in"
888                                           " same flow");
889         if (!priv->rxqs_n)
890                 return rte_flow_error_set(error, EINVAL,
891                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
892                                           NULL, "No Rx queues configured");
893         if (queue->index >= priv->rxqs_n)
894                 return rte_flow_error_set(error, EINVAL,
895                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
896                                           &queue->index,
897                                           "queue index out of range");
898         if (!(*priv->rxqs)[queue->index])
899                 return rte_flow_error_set(error, EINVAL,
900                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
901                                           &queue->index,
902                                           "queue is not configured");
903         if (attr->egress)
904                 return rte_flow_error_set(error, ENOTSUP,
905                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
906                                           "queue action not supported for "
907                                           "egress");
908         return 0;
909 }
910
911 /*
912  * Validate the rss action.
913  *
914  * @param[in] action
915  *   Pointer to the queue action.
916  * @param[in] action_flags
917  *   Bit-fields that holds the actions detected until now.
918  * @param[in] dev
919  *   Pointer to the Ethernet device structure.
920  * @param[in] attr
921  *   Attributes of flow that includes this action.
922  * @param[in] item_flags
923  *   Items that were detected.
924  * @param[out] error
925  *   Pointer to error structure.
926  *
927  * @return
928  *   0 on success, a negative errno value otherwise and rte_errno is set.
929  */
930 int
931 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
932                               uint64_t action_flags,
933                               struct rte_eth_dev *dev,
934                               const struct rte_flow_attr *attr,
935                               uint64_t item_flags,
936                               struct rte_flow_error *error)
937 {
938         struct mlx5_priv *priv = dev->data->dev_private;
939         const struct rte_flow_action_rss *rss = action->conf;
940         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
941         unsigned int i;
942
943         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
944                 return rte_flow_error_set(error, EINVAL,
945                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
946                                           "can't have 2 fate actions"
947                                           " in same flow");
948         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
949             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
950                 return rte_flow_error_set(error, ENOTSUP,
951                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
952                                           &rss->func,
953                                           "RSS hash function not supported");
954 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
955         if (rss->level > 2)
956 #else
957         if (rss->level > 1)
958 #endif
959                 return rte_flow_error_set(error, ENOTSUP,
960                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
961                                           &rss->level,
962                                           "tunnel RSS is not supported");
963         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
964         if (rss->key_len == 0 && rss->key != NULL)
965                 return rte_flow_error_set(error, ENOTSUP,
966                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
967                                           &rss->key_len,
968                                           "RSS hash key length 0");
969         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
970                 return rte_flow_error_set(error, ENOTSUP,
971                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
972                                           &rss->key_len,
973                                           "RSS hash key too small");
974         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
975                 return rte_flow_error_set(error, ENOTSUP,
976                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
977                                           &rss->key_len,
978                                           "RSS hash key too large");
979         if (rss->queue_num > priv->config.ind_table_max_size)
980                 return rte_flow_error_set(error, ENOTSUP,
981                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
982                                           &rss->queue_num,
983                                           "number of queues too large");
984         if (rss->types & MLX5_RSS_HF_MASK)
985                 return rte_flow_error_set(error, ENOTSUP,
986                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
987                                           &rss->types,
988                                           "some RSS protocols are not"
989                                           " supported");
990         if (!priv->rxqs_n)
991                 return rte_flow_error_set(error, EINVAL,
992                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
993                                           NULL, "No Rx queues configured");
994         if (!rss->queue_num)
995                 return rte_flow_error_set(error, EINVAL,
996                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
997                                           NULL, "No queues configured");
998         for (i = 0; i != rss->queue_num; ++i) {
999                 if (!(*priv->rxqs)[rss->queue[i]])
1000                         return rte_flow_error_set
1001                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1002                                  &rss->queue[i], "queue is not configured");
1003         }
1004         if (attr->egress)
1005                 return rte_flow_error_set(error, ENOTSUP,
1006                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1007                                           "rss action not supported for "
1008                                           "egress");
1009         if (rss->level > 1 &&  !tunnel)
1010                 return rte_flow_error_set(error, EINVAL,
1011                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1012                                           "inner RSS is not supported for "
1013                                           "non-tunnel flows");
1014         return 0;
1015 }
1016
1017 /*
1018  * Validate the count action.
1019  *
1020  * @param[in] dev
1021  *   Pointer to the Ethernet device structure.
1022  * @param[in] attr
1023  *   Attributes of flow that includes this action.
1024  * @param[out] error
1025  *   Pointer to error structure.
1026  *
1027  * @return
1028  *   0 on success, a negative errno value otherwise and rte_errno is set.
1029  */
1030 int
1031 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1032                                 const struct rte_flow_attr *attr,
1033                                 struct rte_flow_error *error)
1034 {
1035         if (attr->egress)
1036                 return rte_flow_error_set(error, ENOTSUP,
1037                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1038                                           "count action not supported for "
1039                                           "egress");
1040         return 0;
1041 }
1042
1043 /**
1044  * Verify the @p attributes will be correctly understood by the NIC and store
1045  * them in the @p flow if everything is correct.
1046  *
1047  * @param[in] dev
1048  *   Pointer to the Ethernet device structure.
1049  * @param[in] attributes
1050  *   Pointer to flow attributes
1051  * @param[out] error
1052  *   Pointer to error structure.
1053  *
1054  * @return
1055  *   0 on success, a negative errno value otherwise and rte_errno is set.
1056  */
1057 int
1058 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1059                               const struct rte_flow_attr *attributes,
1060                               struct rte_flow_error *error)
1061 {
1062         struct mlx5_priv *priv = dev->data->dev_private;
1063         uint32_t priority_max = priv->config.flow_prio - 1;
1064
1065         if (attributes->group)
1066                 return rte_flow_error_set(error, ENOTSUP,
1067                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1068                                           NULL, "groups is not supported");
1069         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1070             attributes->priority >= priority_max)
1071                 return rte_flow_error_set(error, ENOTSUP,
1072                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1073                                           NULL, "priority out of range");
1074         if (attributes->egress)
1075                 return rte_flow_error_set(error, ENOTSUP,
1076                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1077                                           "egress is not supported");
1078         if (attributes->transfer && !priv->config.dv_esw_en)
1079                 return rte_flow_error_set(error, ENOTSUP,
1080                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1081                                           NULL, "transfer is not supported");
1082         if (!attributes->ingress)
1083                 return rte_flow_error_set(error, EINVAL,
1084                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1085                                           NULL,
1086                                           "ingress attribute is mandatory");
1087         return 0;
1088 }
1089
1090 /**
1091  * Validate ICMP6 item.
1092  *
1093  * @param[in] item
1094  *   Item specification.
1095  * @param[in] item_flags
1096  *   Bit-fields that holds the items detected until now.
1097  * @param[out] error
1098  *   Pointer to error structure.
1099  *
1100  * @return
1101  *   0 on success, a negative errno value otherwise and rte_errno is set.
1102  */
1103 int
1104 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1105                                uint64_t item_flags,
1106                                uint8_t target_protocol,
1107                                struct rte_flow_error *error)
1108 {
1109         const struct rte_flow_item_icmp6 *mask = item->mask;
1110         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1111         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1112                                       MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1113         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1114                                       MLX5_FLOW_LAYER_OUTER_L4;
1115         int ret;
1116
1117         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1118                 return rte_flow_error_set(error, EINVAL,
1119                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1120                                           "protocol filtering not compatible"
1121                                           " with ICMP6 layer");
1122         if (!(item_flags & l3m))
1123                 return rte_flow_error_set(error, EINVAL,
1124                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1125                                           "IPv6 is mandatory to filter on"
1126                                           " ICMP6");
1127         if (item_flags & l4m)
1128                 return rte_flow_error_set(error, EINVAL,
1129                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1130                                           "multiple L4 layers not supported");
1131         if (!mask)
1132                 mask = &rte_flow_item_icmp6_mask;
1133         ret = mlx5_flow_item_acceptable
1134                 (item, (const uint8_t *)mask,
1135                  (const uint8_t *)&rte_flow_item_icmp6_mask,
1136                  sizeof(struct rte_flow_item_icmp6), error);
1137         if (ret < 0)
1138                 return ret;
1139         return 0;
1140 }
1141
1142 /**
1143  * Validate ICMP item.
1144  *
1145  * @param[in] item
1146  *   Item specification.
1147  * @param[in] item_flags
1148  *   Bit-fields that holds the items detected until now.
1149  * @param[out] error
1150  *   Pointer to error structure.
1151  *
1152  * @return
1153  *   0 on success, a negative errno value otherwise and rte_errno is set.
1154  */
1155 int
1156 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1157                              uint64_t item_flags,
1158                              uint8_t target_protocol,
1159                              struct rte_flow_error *error)
1160 {
1161         const struct rte_flow_item_icmp *mask = item->mask;
1162         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1163         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1164                                       MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1165         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1166                                       MLX5_FLOW_LAYER_OUTER_L4;
1167         int ret;
1168
1169         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1170                 return rte_flow_error_set(error, EINVAL,
1171                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1172                                           "protocol filtering not compatible"
1173                                           " with ICMP layer");
1174         if (!(item_flags & l3m))
1175                 return rte_flow_error_set(error, EINVAL,
1176                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1177                                           "IPv4 is mandatory to filter"
1178                                           " on ICMP");
1179         if (item_flags & l4m)
1180                 return rte_flow_error_set(error, EINVAL,
1181                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1182                                           "multiple L4 layers not supported");
1183         if (!mask)
1184                 mask = &rte_flow_item_icmp_mask;
1185         ret = mlx5_flow_item_acceptable
1186                 (item, (const uint8_t *)mask,
1187                  (const uint8_t *)&rte_flow_item_icmp_mask,
1188                  sizeof(struct rte_flow_item_icmp), error);
1189         if (ret < 0)
1190                 return ret;
1191         return 0;
1192 }
1193
1194 /**
1195  * Validate Ethernet item.
1196  *
1197  * @param[in] item
1198  *   Item specification.
1199  * @param[in] item_flags
1200  *   Bit-fields that holds the items detected until now.
1201  * @param[out] error
1202  *   Pointer to error structure.
1203  *
1204  * @return
1205  *   0 on success, a negative errno value otherwise and rte_errno is set.
1206  */
1207 int
1208 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1209                             uint64_t item_flags,
1210                             struct rte_flow_error *error)
1211 {
1212         const struct rte_flow_item_eth *mask = item->mask;
1213         const struct rte_flow_item_eth nic_mask = {
1214                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1215                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1216                 .type = RTE_BE16(0xffff),
1217         };
1218         int ret;
1219         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1220         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1221                                        MLX5_FLOW_LAYER_OUTER_L2;
1222
1223         if (item_flags & ethm)
1224                 return rte_flow_error_set(error, ENOTSUP,
1225                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1226                                           "multiple L2 layers not supported");
1227         if (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3))
1228                 return rte_flow_error_set(error, EINVAL,
1229                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1230                                           "inner L2 layer should not "
1231                                           "follow inner L3 layers");
1232         if (!mask)
1233                 mask = &rte_flow_item_eth_mask;
1234         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1235                                         (const uint8_t *)&nic_mask,
1236                                         sizeof(struct rte_flow_item_eth),
1237                                         error);
1238         return ret;
1239 }
1240
1241 /**
1242  * Validate VLAN item.
1243  *
1244  * @param[in] item
1245  *   Item specification.
1246  * @param[in] item_flags
1247  *   Bit-fields that holds the items detected until now.
1248  * @param[in] dev
1249  *   Ethernet device flow is being created on.
1250  * @param[out] error
1251  *   Pointer to error structure.
1252  *
1253  * @return
1254  *   0 on success, a negative errno value otherwise and rte_errno is set.
1255  */
1256 int
1257 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1258                              uint64_t item_flags,
1259                              struct rte_eth_dev *dev,
1260                              struct rte_flow_error *error)
1261 {
1262         const struct rte_flow_item_vlan *spec = item->spec;
1263         const struct rte_flow_item_vlan *mask = item->mask;
1264         const struct rte_flow_item_vlan nic_mask = {
1265                 .tci = RTE_BE16(UINT16_MAX),
1266                 .inner_type = RTE_BE16(UINT16_MAX),
1267         };
1268         uint16_t vlan_tag = 0;
1269         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1270         int ret;
1271         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1272                                         MLX5_FLOW_LAYER_INNER_L4) :
1273                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1274                                         MLX5_FLOW_LAYER_OUTER_L4);
1275         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1276                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1277
1278         const uint64_t l2m = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1279                                       MLX5_FLOW_LAYER_OUTER_L2;
1280         if (item_flags & vlanm)
1281                 return rte_flow_error_set(error, EINVAL,
1282                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1283                                           "multiple VLAN layers not supported");
1284         else if ((item_flags & l34m) != 0)
1285                 return rte_flow_error_set(error, EINVAL,
1286                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1287                                           "L2 layer cannot follow L3/L4 layer");
1288         else if ((item_flags & l2m) == 0)
1289                 return rte_flow_error_set(error, EINVAL,
1290                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1291                                           "no L2 layer before VLAN");
1292         if (!mask)
1293                 mask = &rte_flow_item_vlan_mask;
1294         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1295                                         (const uint8_t *)&nic_mask,
1296                                         sizeof(struct rte_flow_item_vlan),
1297                                         error);
1298         if (ret)
1299                 return ret;
1300         if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1301                 struct mlx5_priv *priv = dev->data->dev_private;
1302
1303                 if (priv->vmwa_context) {
1304                         /*
1305                          * Non-NULL context means we have a virtual machine
1306                          * and SR-IOV enabled, we have to create VLAN interface
1307                          * to make hypervisor to setup E-Switch vport
1308                          * context correctly. We avoid creating the multiple
1309                          * VLAN interfaces, so we cannot support VLAN tag mask.
1310                          */
1311                         return rte_flow_error_set(error, EINVAL,
1312                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1313                                                   item,
1314                                                   "VLAN tag mask is not"
1315                                                   " supported in virtual"
1316                                                   " environment");
1317                 }
1318         }
1319         if (spec) {
1320                 vlan_tag = spec->tci;
1321                 vlan_tag &= mask->tci;
1322         }
1323         /*
1324          * From verbs perspective an empty VLAN is equivalent
1325          * to a packet without VLAN layer.
1326          */
1327         if (!vlan_tag)
1328                 return rte_flow_error_set(error, EINVAL,
1329                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1330                                           item->spec,
1331                                           "VLAN cannot be empty");
1332         return 0;
1333 }
1334
1335 /**
1336  * Validate IPV4 item.
1337  *
1338  * @param[in] item
1339  *   Item specification.
1340  * @param[in] item_flags
1341  *   Bit-fields that holds the items detected until now.
1342  * @param[in] acc_mask
1343  *   Acceptable mask, if NULL default internal default mask
1344  *   will be used to check whether item fields are supported.
1345  * @param[out] error
1346  *   Pointer to error structure.
1347  *
1348  * @return
1349  *   0 on success, a negative errno value otherwise and rte_errno is set.
1350  */
1351 int
1352 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1353                              uint64_t item_flags,
1354                              const struct rte_flow_item_ipv4 *acc_mask,
1355                              struct rte_flow_error *error)
1356 {
1357         const struct rte_flow_item_ipv4 *mask = item->mask;
1358         const struct rte_flow_item_ipv4 *spec = item->spec;
1359         const struct rte_flow_item_ipv4 nic_mask = {
1360                 .hdr = {
1361                         .src_addr = RTE_BE32(0xffffffff),
1362                         .dst_addr = RTE_BE32(0xffffffff),
1363                         .type_of_service = 0xff,
1364                         .next_proto_id = 0xff,
1365                 },
1366         };
1367         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1368         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1369                                       MLX5_FLOW_LAYER_OUTER_L3;
1370         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1371                                       MLX5_FLOW_LAYER_OUTER_L4;
1372         int ret;
1373         uint8_t next_proto = 0xFF;
1374
1375         if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1376                 if (mask && spec)
1377                         next_proto = mask->hdr.next_proto_id &
1378                                      spec->hdr.next_proto_id;
1379                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1380                         return rte_flow_error_set(error, EINVAL,
1381                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1382                                                   item,
1383                                                   "multiple tunnel "
1384                                                   "not supported");
1385         }
1386         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1387                 return rte_flow_error_set(error, EINVAL,
1388                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1389                                           "wrong tunnel type - IPv6 specified "
1390                                           "but IPv4 item provided");
1391         if (item_flags & l3m)
1392                 return rte_flow_error_set(error, ENOTSUP,
1393                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1394                                           "multiple L3 layers not supported");
1395         else if (item_flags & l4m)
1396                 return rte_flow_error_set(error, EINVAL,
1397                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1398                                           "L3 cannot follow an L4 layer.");
1399         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1400                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1401                 return rte_flow_error_set(error, EINVAL,
1402                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1403                                           "L3 cannot follow an NVGRE layer.");
1404         else if (!tunnel && !(item_flags & MLX5_FLOW_LAYER_OUTER_L2))
1405                 return rte_flow_error_set(error, EINVAL,
1406                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1407                                           "no L2 layer before IPV4");
1408         if (!mask)
1409                 mask = &rte_flow_item_ipv4_mask;
1410         else if (mask->hdr.next_proto_id != 0 &&
1411                  mask->hdr.next_proto_id != 0xff)
1412                 return rte_flow_error_set(error, EINVAL,
1413                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1414                                           "partial mask is not supported"
1415                                           " for protocol");
1416         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1417                                         acc_mask ? (const uint8_t *)acc_mask
1418                                                  : (const uint8_t *)&nic_mask,
1419                                         sizeof(struct rte_flow_item_ipv4),
1420                                         error);
1421         if (ret < 0)
1422                 return ret;
1423         return 0;
1424 }
1425
1426 /**
1427  * Validate IPV6 item.
1428  *
1429  * @param[in] item
1430  *   Item specification.
1431  * @param[in] item_flags
1432  *   Bit-fields that holds the items detected until now.
1433  * @param[in] acc_mask
1434  *   Acceptable mask, if NULL default internal default mask
1435  *   will be used to check whether item fields are supported.
1436  * @param[out] error
1437  *   Pointer to error structure.
1438  *
1439  * @return
1440  *   0 on success, a negative errno value otherwise and rte_errno is set.
1441  */
1442 int
1443 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1444                              uint64_t item_flags,
1445                              const struct rte_flow_item_ipv6 *acc_mask,
1446                              struct rte_flow_error *error)
1447 {
1448         const struct rte_flow_item_ipv6 *mask = item->mask;
1449         const struct rte_flow_item_ipv6 *spec = item->spec;
1450         const struct rte_flow_item_ipv6 nic_mask = {
1451                 .hdr = {
1452                         .src_addr =
1453                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1454                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1455                         .dst_addr =
1456                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1457                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1458                         .vtc_flow = RTE_BE32(0xffffffff),
1459                         .proto = 0xff,
1460                         .hop_limits = 0xff,
1461                 },
1462         };
1463         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1464         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1465                                       MLX5_FLOW_LAYER_OUTER_L3;
1466         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1467                                       MLX5_FLOW_LAYER_OUTER_L4;
1468         int ret;
1469         uint8_t next_proto = 0xFF;
1470
1471         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
1472                 if (mask && spec)
1473                         next_proto = mask->hdr.proto & spec->hdr.proto;
1474                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1475                         return rte_flow_error_set(error, EINVAL,
1476                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1477                                                   item,
1478                                                   "multiple tunnel "
1479                                                   "not supported");
1480         }
1481         if (item_flags & MLX5_FLOW_LAYER_IPIP)
1482                 return rte_flow_error_set(error, EINVAL,
1483                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1484                                           "wrong tunnel type - IPv4 specified "
1485                                           "but IPv6 item provided");
1486         if (item_flags & l3m)
1487                 return rte_flow_error_set(error, ENOTSUP,
1488                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1489                                           "multiple L3 layers not supported");
1490         else if (item_flags & l4m)
1491                 return rte_flow_error_set(error, EINVAL,
1492                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1493                                           "L3 cannot follow an L4 layer.");
1494         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1495                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1496                 return rte_flow_error_set(error, EINVAL,
1497                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1498                                           "L3 cannot follow an NVGRE layer.");
1499         else if (!tunnel && !(item_flags & MLX5_FLOW_LAYER_OUTER_L2))
1500                 return rte_flow_error_set(error, EINVAL,
1501                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1502                                           "no L2 layer before IPV6");
1503         if (!mask)
1504                 mask = &rte_flow_item_ipv6_mask;
1505         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1506                                         acc_mask ? (const uint8_t *)acc_mask
1507                                                  : (const uint8_t *)&nic_mask,
1508                                         sizeof(struct rte_flow_item_ipv6),
1509                                         error);
1510         if (ret < 0)
1511                 return ret;
1512         return 0;
1513 }
1514
1515 /**
1516  * Validate UDP item.
1517  *
1518  * @param[in] item
1519  *   Item specification.
1520  * @param[in] item_flags
1521  *   Bit-fields that holds the items detected until now.
1522  * @param[in] target_protocol
1523  *   The next protocol in the previous item.
1524  * @param[in] flow_mask
1525  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1526  * @param[out] error
1527  *   Pointer to error structure.
1528  *
1529  * @return
1530  *   0 on success, a negative errno value otherwise and rte_errno is set.
1531  */
1532 int
1533 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1534                             uint64_t item_flags,
1535                             uint8_t target_protocol,
1536                             struct rte_flow_error *error)
1537 {
1538         const struct rte_flow_item_udp *mask = item->mask;
1539         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1540         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1541                                       MLX5_FLOW_LAYER_OUTER_L3;
1542         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1543                                       MLX5_FLOW_LAYER_OUTER_L4;
1544         int ret;
1545
1546         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1547                 return rte_flow_error_set(error, EINVAL,
1548                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1549                                           "protocol filtering not compatible"
1550                                           " with UDP layer");
1551         if (!(item_flags & l3m))
1552                 return rte_flow_error_set(error, EINVAL,
1553                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1554                                           "L3 is mandatory to filter on L4");
1555         if (item_flags & l4m)
1556                 return rte_flow_error_set(error, EINVAL,
1557                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1558                                           "multiple L4 layers not supported");
1559         if (!mask)
1560                 mask = &rte_flow_item_udp_mask;
1561         ret = mlx5_flow_item_acceptable
1562                 (item, (const uint8_t *)mask,
1563                  (const uint8_t *)&rte_flow_item_udp_mask,
1564                  sizeof(struct rte_flow_item_udp), error);
1565         if (ret < 0)
1566                 return ret;
1567         return 0;
1568 }
1569
1570 /**
1571  * Validate TCP item.
1572  *
1573  * @param[in] item
1574  *   Item specification.
1575  * @param[in] item_flags
1576  *   Bit-fields that holds the items detected until now.
1577  * @param[in] target_protocol
1578  *   The next protocol in the previous item.
1579  * @param[out] error
1580  *   Pointer to error structure.
1581  *
1582  * @return
1583  *   0 on success, a negative errno value otherwise and rte_errno is set.
1584  */
1585 int
1586 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1587                             uint64_t item_flags,
1588                             uint8_t target_protocol,
1589                             const struct rte_flow_item_tcp *flow_mask,
1590                             struct rte_flow_error *error)
1591 {
1592         const struct rte_flow_item_tcp *mask = item->mask;
1593         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1594         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1595                                       MLX5_FLOW_LAYER_OUTER_L3;
1596         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1597                                       MLX5_FLOW_LAYER_OUTER_L4;
1598         int ret;
1599
1600         assert(flow_mask);
1601         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1602                 return rte_flow_error_set(error, EINVAL,
1603                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1604                                           "protocol filtering not compatible"
1605                                           " with TCP layer");
1606         if (!(item_flags & l3m))
1607                 return rte_flow_error_set(error, EINVAL,
1608                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1609                                           "L3 is mandatory to filter on L4");
1610         if (item_flags & l4m)
1611                 return rte_flow_error_set(error, EINVAL,
1612                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1613                                           "multiple L4 layers not supported");
1614         if (!mask)
1615                 mask = &rte_flow_item_tcp_mask;
1616         ret = mlx5_flow_item_acceptable
1617                 (item, (const uint8_t *)mask,
1618                  (const uint8_t *)flow_mask,
1619                  sizeof(struct rte_flow_item_tcp), error);
1620         if (ret < 0)
1621                 return ret;
1622         return 0;
1623 }
1624
1625 /**
1626  * Validate VXLAN item.
1627  *
1628  * @param[in] item
1629  *   Item specification.
1630  * @param[in] item_flags
1631  *   Bit-fields that holds the items detected until now.
1632  * @param[in] target_protocol
1633  *   The next protocol in the previous item.
1634  * @param[out] error
1635  *   Pointer to error structure.
1636  *
1637  * @return
1638  *   0 on success, a negative errno value otherwise and rte_errno is set.
1639  */
1640 int
1641 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1642                               uint64_t item_flags,
1643                               struct rte_flow_error *error)
1644 {
1645         const struct rte_flow_item_vxlan *spec = item->spec;
1646         const struct rte_flow_item_vxlan *mask = item->mask;
1647         int ret;
1648         union vni {
1649                 uint32_t vlan_id;
1650                 uint8_t vni[4];
1651         } id = { .vlan_id = 0, };
1652         uint32_t vlan_id = 0;
1653
1654
1655         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1656                 return rte_flow_error_set(error, ENOTSUP,
1657                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1658                                           "multiple tunnel layers not"
1659                                           " supported");
1660         /*
1661          * Verify only UDPv4 is present as defined in
1662          * https://tools.ietf.org/html/rfc7348
1663          */
1664         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1665                 return rte_flow_error_set(error, EINVAL,
1666                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1667                                           "no outer UDP layer found");
1668         if (!mask)
1669                 mask = &rte_flow_item_vxlan_mask;
1670         ret = mlx5_flow_item_acceptable
1671                 (item, (const uint8_t *)mask,
1672                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1673                  sizeof(struct rte_flow_item_vxlan),
1674                  error);
1675         if (ret < 0)
1676                 return ret;
1677         if (spec) {
1678                 memcpy(&id.vni[1], spec->vni, 3);
1679                 vlan_id = id.vlan_id;
1680                 memcpy(&id.vni[1], mask->vni, 3);
1681                 vlan_id &= id.vlan_id;
1682         }
1683         /*
1684          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1685          * only this layer is defined in the Verbs specification it is
1686          * interpreted as wildcard and all packets will match this
1687          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1688          * udp), all packets matching the layers before will also
1689          * match this rule.  To avoid such situation, VNI 0 is
1690          * currently refused.
1691          */
1692         if (!vlan_id)
1693                 return rte_flow_error_set(error, ENOTSUP,
1694                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1695                                           "VXLAN vni cannot be 0");
1696         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1697                 return rte_flow_error_set(error, ENOTSUP,
1698                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1699                                           "VXLAN tunnel must be fully defined");
1700         return 0;
1701 }
1702
1703 /**
1704  * Validate VXLAN_GPE item.
1705  *
1706  * @param[in] item
1707  *   Item specification.
1708  * @param[in] item_flags
1709  *   Bit-fields that holds the items detected until now.
1710  * @param[in] priv
1711  *   Pointer to the private data structure.
1712  * @param[in] target_protocol
1713  *   The next protocol in the previous item.
1714  * @param[out] error
1715  *   Pointer to error structure.
1716  *
1717  * @return
1718  *   0 on success, a negative errno value otherwise and rte_errno is set.
1719  */
1720 int
1721 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1722                                   uint64_t item_flags,
1723                                   struct rte_eth_dev *dev,
1724                                   struct rte_flow_error *error)
1725 {
1726         struct mlx5_priv *priv = dev->data->dev_private;
1727         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1728         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1729         int ret;
1730         union vni {
1731                 uint32_t vlan_id;
1732                 uint8_t vni[4];
1733         } id = { .vlan_id = 0, };
1734         uint32_t vlan_id = 0;
1735
1736         if (!priv->config.l3_vxlan_en)
1737                 return rte_flow_error_set(error, ENOTSUP,
1738                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1739                                           "L3 VXLAN is not enabled by device"
1740                                           " parameter and/or not configured in"
1741                                           " firmware");
1742         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1743                 return rte_flow_error_set(error, ENOTSUP,
1744                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1745                                           "multiple tunnel layers not"
1746                                           " supported");
1747         /*
1748          * Verify only UDPv4 is present as defined in
1749          * https://tools.ietf.org/html/rfc7348
1750          */
1751         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1752                 return rte_flow_error_set(error, EINVAL,
1753                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1754                                           "no outer UDP layer found");
1755         if (!mask)
1756                 mask = &rte_flow_item_vxlan_gpe_mask;
1757         ret = mlx5_flow_item_acceptable
1758                 (item, (const uint8_t *)mask,
1759                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1760                  sizeof(struct rte_flow_item_vxlan_gpe),
1761                  error);
1762         if (ret < 0)
1763                 return ret;
1764         if (spec) {
1765                 if (spec->protocol)
1766                         return rte_flow_error_set(error, ENOTSUP,
1767                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1768                                                   item,
1769                                                   "VxLAN-GPE protocol"
1770                                                   " not supported");
1771                 memcpy(&id.vni[1], spec->vni, 3);
1772                 vlan_id = id.vlan_id;
1773                 memcpy(&id.vni[1], mask->vni, 3);
1774                 vlan_id &= id.vlan_id;
1775         }
1776         /*
1777          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1778          * layer is defined in the Verbs specification it is interpreted as
1779          * wildcard and all packets will match this rule, if it follows a full
1780          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1781          * before will also match this rule.  To avoid such situation, VNI 0
1782          * is currently refused.
1783          */
1784         if (!vlan_id)
1785                 return rte_flow_error_set(error, ENOTSUP,
1786                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1787                                           "VXLAN-GPE vni cannot be 0");
1788         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1789                 return rte_flow_error_set(error, ENOTSUP,
1790                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1791                                           "VXLAN-GPE tunnel must be fully"
1792                                           " defined");
1793         return 0;
1794 }
1795 /**
1796  * Validate GRE Key item.
1797  *
1798  * @param[in] item
1799  *   Item specification.
1800  * @param[in] item_flags
1801  *   Bit flags to mark detected items.
1802  * @param[in] gre_item
1803  *   Pointer to gre_item
1804  * @param[out] error
1805  *   Pointer to error structure.
1806  *
1807  * @return
1808  *   0 on success, a negative errno value otherwise and rte_errno is set.
1809  */
1810 int
1811 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
1812                                 uint64_t item_flags,
1813                                 const struct rte_flow_item *gre_item,
1814                                 struct rte_flow_error *error)
1815 {
1816         const rte_be32_t *mask = item->mask;
1817         int ret = 0;
1818         rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
1819         const struct rte_flow_item_gre *gre_spec = gre_item->spec;
1820         const struct rte_flow_item_gre *gre_mask = gre_item->mask;
1821
1822         if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
1823                 return rte_flow_error_set(error, ENOTSUP,
1824                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1825                                           "Multiple GRE key not support");
1826         if (!(item_flags & MLX5_FLOW_LAYER_GRE))
1827                 return rte_flow_error_set(error, ENOTSUP,
1828                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1829                                           "No preceding GRE header");
1830         if (item_flags & MLX5_FLOW_LAYER_INNER)
1831                 return rte_flow_error_set(error, ENOTSUP,
1832                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1833                                           "GRE key following a wrong item");
1834         if (!gre_mask)
1835                 gre_mask = &rte_flow_item_gre_mask;
1836         if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
1837                          !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
1838                 return rte_flow_error_set(error, EINVAL,
1839                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1840                                           "Key bit must be on");
1841
1842         if (!mask)
1843                 mask = &gre_key_default_mask;
1844         ret = mlx5_flow_item_acceptable
1845                 (item, (const uint8_t *)mask,
1846                  (const uint8_t *)&gre_key_default_mask,
1847                  sizeof(rte_be32_t), error);
1848         return ret;
1849 }
1850
1851 /**
1852  * Validate GRE item.
1853  *
1854  * @param[in] item
1855  *   Item specification.
1856  * @param[in] item_flags
1857  *   Bit flags to mark detected items.
1858  * @param[in] target_protocol
1859  *   The next protocol in the previous item.
1860  * @param[out] error
1861  *   Pointer to error structure.
1862  *
1863  * @return
1864  *   0 on success, a negative errno value otherwise and rte_errno is set.
1865  */
1866 int
1867 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1868                             uint64_t item_flags,
1869                             uint8_t target_protocol,
1870                             struct rte_flow_error *error)
1871 {
1872         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1873         const struct rte_flow_item_gre *mask = item->mask;
1874         int ret;
1875         const struct rte_flow_item_gre nic_mask = {
1876                 .c_rsvd0_ver = RTE_BE16(0xB000),
1877                 .protocol = RTE_BE16(UINT16_MAX),
1878         };
1879
1880         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1881                 return rte_flow_error_set(error, EINVAL,
1882                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1883                                           "protocol filtering not compatible"
1884                                           " with this GRE layer");
1885         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1886                 return rte_flow_error_set(error, ENOTSUP,
1887                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1888                                           "multiple tunnel layers not"
1889                                           " supported");
1890         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1891                 return rte_flow_error_set(error, ENOTSUP,
1892                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1893                                           "L3 Layer is missing");
1894         if (!mask)
1895                 mask = &rte_flow_item_gre_mask;
1896         ret = mlx5_flow_item_acceptable
1897                 (item, (const uint8_t *)mask,
1898                  (const uint8_t *)&nic_mask,
1899                  sizeof(struct rte_flow_item_gre), error);
1900         if (ret < 0)
1901                 return ret;
1902 #ifndef HAVE_MLX5DV_DR
1903 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1904         if (spec && (spec->protocol & mask->protocol))
1905                 return rte_flow_error_set(error, ENOTSUP,
1906                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1907                                           "without MPLS support the"
1908                                           " specification cannot be used for"
1909                                           " filtering");
1910 #endif
1911 #endif
1912         return 0;
1913 }
1914
1915 /**
1916  * Validate MPLS item.
1917  *
1918  * @param[in] dev
1919  *   Pointer to the rte_eth_dev structure.
1920  * @param[in] item
1921  *   Item specification.
1922  * @param[in] item_flags
1923  *   Bit-fields that holds the items detected until now.
1924  * @param[in] prev_layer
1925  *   The protocol layer indicated in previous item.
1926  * @param[out] error
1927  *   Pointer to error structure.
1928  *
1929  * @return
1930  *   0 on success, a negative errno value otherwise and rte_errno is set.
1931  */
1932 int
1933 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1934                              const struct rte_flow_item *item __rte_unused,
1935                              uint64_t item_flags __rte_unused,
1936                              uint64_t prev_layer __rte_unused,
1937                              struct rte_flow_error *error)
1938 {
1939 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1940         const struct rte_flow_item_mpls *mask = item->mask;
1941         struct mlx5_priv *priv = dev->data->dev_private;
1942         int ret;
1943
1944         if (!priv->config.mpls_en)
1945                 return rte_flow_error_set(error, ENOTSUP,
1946                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1947                                           "MPLS not supported or"
1948                                           " disabled in firmware"
1949                                           " configuration.");
1950         /* MPLS over IP, UDP, GRE is allowed */
1951         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1952                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
1953                             MLX5_FLOW_LAYER_GRE)))
1954                 return rte_flow_error_set(error, EINVAL,
1955                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1956                                           "protocol filtering not compatible"
1957                                           " with MPLS layer");
1958         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1959         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1960             !(item_flags & MLX5_FLOW_LAYER_GRE))
1961                 return rte_flow_error_set(error, ENOTSUP,
1962                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1963                                           "multiple tunnel layers not"
1964                                           " supported");
1965         if (!mask)
1966                 mask = &rte_flow_item_mpls_mask;
1967         ret = mlx5_flow_item_acceptable
1968                 (item, (const uint8_t *)mask,
1969                  (const uint8_t *)&rte_flow_item_mpls_mask,
1970                  sizeof(struct rte_flow_item_mpls), error);
1971         if (ret < 0)
1972                 return ret;
1973         return 0;
1974 #endif
1975         return rte_flow_error_set(error, ENOTSUP,
1976                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
1977                                   "MPLS is not supported by Verbs, please"
1978                                   " update.");
1979 }
1980
1981 /**
1982  * Validate NVGRE item.
1983  *
1984  * @param[in] item
1985  *   Item specification.
1986  * @param[in] item_flags
1987  *   Bit flags to mark detected items.
1988  * @param[in] target_protocol
1989  *   The next protocol in the previous item.
1990  * @param[out] error
1991  *   Pointer to error structure.
1992  *
1993  * @return
1994  *   0 on success, a negative errno value otherwise and rte_errno is set.
1995  */
1996 int
1997 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
1998                               uint64_t item_flags,
1999                               uint8_t target_protocol,
2000                               struct rte_flow_error *error)
2001 {
2002         const struct rte_flow_item_nvgre *mask = item->mask;
2003         int ret;
2004
2005         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2006                 return rte_flow_error_set(error, EINVAL,
2007                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2008                                           "protocol filtering not compatible"
2009                                           " with this GRE layer");
2010         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2011                 return rte_flow_error_set(error, ENOTSUP,
2012                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2013                                           "multiple tunnel layers not"
2014                                           " supported");
2015         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2016                 return rte_flow_error_set(error, ENOTSUP,
2017                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2018                                           "L3 Layer is missing");
2019         if (!mask)
2020                 mask = &rte_flow_item_nvgre_mask;
2021         ret = mlx5_flow_item_acceptable
2022                 (item, (const uint8_t *)mask,
2023                  (const uint8_t *)&rte_flow_item_nvgre_mask,
2024                  sizeof(struct rte_flow_item_nvgre), error);
2025         if (ret < 0)
2026                 return ret;
2027         return 0;
2028 }
2029
2030 static int
2031 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
2032                    const struct rte_flow_attr *attr __rte_unused,
2033                    const struct rte_flow_item items[] __rte_unused,
2034                    const struct rte_flow_action actions[] __rte_unused,
2035                    bool external __rte_unused,
2036                    struct rte_flow_error *error)
2037 {
2038         return rte_flow_error_set(error, ENOTSUP,
2039                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2040 }
2041
2042 static struct mlx5_flow *
2043 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
2044                   const struct rte_flow_item items[] __rte_unused,
2045                   const struct rte_flow_action actions[] __rte_unused,
2046                   struct rte_flow_error *error)
2047 {
2048         rte_flow_error_set(error, ENOTSUP,
2049                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2050         return NULL;
2051 }
2052
2053 static int
2054 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2055                     struct mlx5_flow *dev_flow __rte_unused,
2056                     const struct rte_flow_attr *attr __rte_unused,
2057                     const struct rte_flow_item items[] __rte_unused,
2058                     const struct rte_flow_action actions[] __rte_unused,
2059                     struct rte_flow_error *error)
2060 {
2061         return rte_flow_error_set(error, ENOTSUP,
2062                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2063 }
2064
2065 static int
2066 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2067                 struct rte_flow *flow __rte_unused,
2068                 struct rte_flow_error *error)
2069 {
2070         return rte_flow_error_set(error, ENOTSUP,
2071                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2072 }
2073
2074 static void
2075 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2076                  struct rte_flow *flow __rte_unused)
2077 {
2078 }
2079
2080 static void
2081 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2082                   struct rte_flow *flow __rte_unused)
2083 {
2084 }
2085
2086 static int
2087 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2088                 struct rte_flow *flow __rte_unused,
2089                 const struct rte_flow_action *actions __rte_unused,
2090                 void *data __rte_unused,
2091                 struct rte_flow_error *error)
2092 {
2093         return rte_flow_error_set(error, ENOTSUP,
2094                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2095 }
2096
2097 /* Void driver to protect from null pointer reference. */
2098 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2099         .validate = flow_null_validate,
2100         .prepare = flow_null_prepare,
2101         .translate = flow_null_translate,
2102         .apply = flow_null_apply,
2103         .remove = flow_null_remove,
2104         .destroy = flow_null_destroy,
2105         .query = flow_null_query,
2106 };
2107
2108 /**
2109  * Select flow driver type according to flow attributes and device
2110  * configuration.
2111  *
2112  * @param[in] dev
2113  *   Pointer to the dev structure.
2114  * @param[in] attr
2115  *   Pointer to the flow attributes.
2116  *
2117  * @return
2118  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2119  */
2120 static enum mlx5_flow_drv_type
2121 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2122 {
2123         struct mlx5_priv *priv = dev->data->dev_private;
2124         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
2125
2126         if (attr->transfer && priv->config.dv_esw_en)
2127                 type = MLX5_FLOW_TYPE_DV;
2128         if (!attr->transfer)
2129                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2130                                                  MLX5_FLOW_TYPE_VERBS;
2131         return type;
2132 }
2133
2134 #define flow_get_drv_ops(type) flow_drv_ops[type]
2135
2136 /**
2137  * Flow driver validation API. This abstracts calling driver specific functions.
2138  * The type of flow driver is determined according to flow attributes.
2139  *
2140  * @param[in] dev
2141  *   Pointer to the dev structure.
2142  * @param[in] attr
2143  *   Pointer to the flow attributes.
2144  * @param[in] items
2145  *   Pointer to the list of items.
2146  * @param[in] actions
2147  *   Pointer to the list of actions.
2148  * @param[in] external
2149  *   This flow rule is created by request external to PMD.
2150  * @param[out] error
2151  *   Pointer to the error structure.
2152  *
2153  * @return
2154  *   0 on success, a negative errno value otherwise and rte_errno is set.
2155  */
2156 static inline int
2157 flow_drv_validate(struct rte_eth_dev *dev,
2158                   const struct rte_flow_attr *attr,
2159                   const struct rte_flow_item items[],
2160                   const struct rte_flow_action actions[],
2161                   bool external, struct rte_flow_error *error)
2162 {
2163         const struct mlx5_flow_driver_ops *fops;
2164         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2165
2166         fops = flow_get_drv_ops(type);
2167         return fops->validate(dev, attr, items, actions, external, error);
2168 }
2169
2170 /**
2171  * Flow driver preparation API. This abstracts calling driver specific
2172  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2173  * calculates the size of memory required for device flow, allocates the memory,
2174  * initializes the device flow and returns the pointer.
2175  *
2176  * @note
2177  *   This function initializes device flow structure such as dv or verbs in
2178  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2179  *   rest. For example, adding returning device flow to flow->dev_flow list and
2180  *   setting backward reference to the flow should be done out of this function.
2181  *   layers field is not filled either.
2182  *
2183  * @param[in] attr
2184  *   Pointer to the flow attributes.
2185  * @param[in] items
2186  *   Pointer to the list of items.
2187  * @param[in] actions
2188  *   Pointer to the list of actions.
2189  * @param[out] error
2190  *   Pointer to the error structure.
2191  *
2192  * @return
2193  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2194  */
2195 static inline struct mlx5_flow *
2196 flow_drv_prepare(const struct rte_flow *flow,
2197                  const struct rte_flow_attr *attr,
2198                  const struct rte_flow_item items[],
2199                  const struct rte_flow_action actions[],
2200                  struct rte_flow_error *error)
2201 {
2202         const struct mlx5_flow_driver_ops *fops;
2203         enum mlx5_flow_drv_type type = flow->drv_type;
2204
2205         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2206         fops = flow_get_drv_ops(type);
2207         return fops->prepare(attr, items, actions, error);
2208 }
2209
2210 /**
2211  * Flow driver translation API. This abstracts calling driver specific
2212  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2213  * translates a generic flow into a driver flow. flow_drv_prepare() must
2214  * precede.
2215  *
2216  * @note
2217  *   dev_flow->layers could be filled as a result of parsing during translation
2218  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
2219  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
2220  *   flow->actions could be overwritten even though all the expanded dev_flows
2221  *   have the same actions.
2222  *
2223  * @param[in] dev
2224  *   Pointer to the rte dev structure.
2225  * @param[in, out] dev_flow
2226  *   Pointer to the mlx5 flow.
2227  * @param[in] attr
2228  *   Pointer to the flow attributes.
2229  * @param[in] items
2230  *   Pointer to the list of items.
2231  * @param[in] actions
2232  *   Pointer to the list of actions.
2233  * @param[out] error
2234  *   Pointer to the error structure.
2235  *
2236  * @return
2237  *   0 on success, a negative errno value otherwise and rte_errno is set.
2238  */
2239 static inline int
2240 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2241                    const struct rte_flow_attr *attr,
2242                    const struct rte_flow_item items[],
2243                    const struct rte_flow_action actions[],
2244                    struct rte_flow_error *error)
2245 {
2246         const struct mlx5_flow_driver_ops *fops;
2247         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2248
2249         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2250         fops = flow_get_drv_ops(type);
2251         return fops->translate(dev, dev_flow, attr, items, actions, error);
2252 }
2253
2254 /**
2255  * Flow driver apply API. This abstracts calling driver specific functions.
2256  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2257  * translated driver flows on to device. flow_drv_translate() must precede.
2258  *
2259  * @param[in] dev
2260  *   Pointer to Ethernet device structure.
2261  * @param[in, out] flow
2262  *   Pointer to flow structure.
2263  * @param[out] error
2264  *   Pointer to error structure.
2265  *
2266  * @return
2267  *   0 on success, a negative errno value otherwise and rte_errno is set.
2268  */
2269 static inline int
2270 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2271                struct rte_flow_error *error)
2272 {
2273         const struct mlx5_flow_driver_ops *fops;
2274         enum mlx5_flow_drv_type type = flow->drv_type;
2275
2276         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2277         fops = flow_get_drv_ops(type);
2278         return fops->apply(dev, flow, error);
2279 }
2280
2281 /**
2282  * Flow driver remove API. This abstracts calling driver specific functions.
2283  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2284  * on device. All the resources of the flow should be freed by calling
2285  * flow_drv_destroy().
2286  *
2287  * @param[in] dev
2288  *   Pointer to Ethernet device.
2289  * @param[in, out] flow
2290  *   Pointer to flow structure.
2291  */
2292 static inline void
2293 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2294 {
2295         const struct mlx5_flow_driver_ops *fops;
2296         enum mlx5_flow_drv_type type = flow->drv_type;
2297
2298         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2299         fops = flow_get_drv_ops(type);
2300         fops->remove(dev, flow);
2301 }
2302
2303 /**
2304  * Flow driver destroy API. This abstracts calling driver specific functions.
2305  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2306  * on device and releases resources of the flow.
2307  *
2308  * @param[in] dev
2309  *   Pointer to Ethernet device.
2310  * @param[in, out] flow
2311  *   Pointer to flow structure.
2312  */
2313 static inline void
2314 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
2315 {
2316         const struct mlx5_flow_driver_ops *fops;
2317         enum mlx5_flow_drv_type type = flow->drv_type;
2318
2319         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2320         fops = flow_get_drv_ops(type);
2321         fops->destroy(dev, flow);
2322 }
2323
2324 /**
2325  * Validate a flow supported by the NIC.
2326  *
2327  * @see rte_flow_validate()
2328  * @see rte_flow_ops
2329  */
2330 int
2331 mlx5_flow_validate(struct rte_eth_dev *dev,
2332                    const struct rte_flow_attr *attr,
2333                    const struct rte_flow_item items[],
2334                    const struct rte_flow_action actions[],
2335                    struct rte_flow_error *error)
2336 {
2337         int ret;
2338
2339         ret = flow_drv_validate(dev, attr, items, actions, true, error);
2340         if (ret < 0)
2341                 return ret;
2342         return 0;
2343 }
2344
2345 /**
2346  * Get RSS action from the action list.
2347  *
2348  * @param[in] actions
2349  *   Pointer to the list of actions.
2350  *
2351  * @return
2352  *   Pointer to the RSS action if exist, else return NULL.
2353  */
2354 static const struct rte_flow_action_rss*
2355 flow_get_rss_action(const struct rte_flow_action actions[])
2356 {
2357         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2358                 switch (actions->type) {
2359                 case RTE_FLOW_ACTION_TYPE_RSS:
2360                         return (const struct rte_flow_action_rss *)
2361                                actions->conf;
2362                 default:
2363                         break;
2364                 }
2365         }
2366         return NULL;
2367 }
2368
2369 static unsigned int
2370 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2371 {
2372         const struct rte_flow_item *item;
2373         unsigned int has_vlan = 0;
2374
2375         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2376                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2377                         has_vlan = 1;
2378                         break;
2379                 }
2380         }
2381         if (has_vlan)
2382                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2383                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2384         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2385                                MLX5_EXPANSION_ROOT_OUTER;
2386 }
2387
2388 /**
2389  * Create a flow and add it to @p list.
2390  *
2391  * @param dev
2392  *   Pointer to Ethernet device.
2393  * @param list
2394  *   Pointer to a TAILQ flow list.
2395  * @param[in] attr
2396  *   Flow rule attributes.
2397  * @param[in] items
2398  *   Pattern specification (list terminated by the END pattern item).
2399  * @param[in] actions
2400  *   Associated actions (list terminated by the END action).
2401  * @param[in] external
2402  *   This flow rule is created by request external to PMD.
2403  * @param[out] error
2404  *   Perform verbose error reporting if not NULL.
2405  *
2406  * @return
2407  *   A flow on success, NULL otherwise and rte_errno is set.
2408  */
2409 static struct rte_flow *
2410 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2411                  const struct rte_flow_attr *attr,
2412                  const struct rte_flow_item items[],
2413                  const struct rte_flow_action actions[],
2414                  bool external, struct rte_flow_error *error)
2415 {
2416         struct rte_flow *flow = NULL;
2417         struct mlx5_flow *dev_flow;
2418         const struct rte_flow_action_rss *rss;
2419         union {
2420                 struct rte_flow_expand_rss buf;
2421                 uint8_t buffer[2048];
2422         } expand_buffer;
2423         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2424         int ret;
2425         uint32_t i;
2426         uint32_t flow_size;
2427
2428         ret = flow_drv_validate(dev, attr, items, actions, external, error);
2429         if (ret < 0)
2430                 return NULL;
2431         flow_size = sizeof(struct rte_flow);
2432         rss = flow_get_rss_action(actions);
2433         if (rss)
2434                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2435                                             sizeof(void *));
2436         else
2437                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2438         flow = rte_calloc(__func__, 1, flow_size, 0);
2439         if (!flow) {
2440                 rte_errno = ENOMEM;
2441                 return NULL;
2442         }
2443         flow->drv_type = flow_get_drv_type(dev, attr);
2444         flow->ingress = attr->ingress;
2445         flow->transfer = attr->transfer;
2446         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2447                flow->drv_type < MLX5_FLOW_TYPE_MAX);
2448         flow->queue = (void *)(flow + 1);
2449         LIST_INIT(&flow->dev_flows);
2450         if (rss && rss->types) {
2451                 unsigned int graph_root;
2452
2453                 graph_root = find_graph_root(items, rss->level);
2454                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2455                                           items, rss->types,
2456                                           mlx5_support_expansion,
2457                                           graph_root);
2458                 assert(ret > 0 &&
2459                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2460         } else {
2461                 buf->entries = 1;
2462                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2463         }
2464         for (i = 0; i < buf->entries; ++i) {
2465                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2466                                             actions, error);
2467                 if (!dev_flow)
2468                         goto error;
2469                 dev_flow->flow = flow;
2470                 dev_flow->external = external;
2471                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2472                 ret = flow_drv_translate(dev, dev_flow, attr,
2473                                          buf->entry[i].pattern,
2474                                          actions, error);
2475                 if (ret < 0)
2476                         goto error;
2477         }
2478         if (dev->data->dev_started) {
2479                 ret = flow_drv_apply(dev, flow, error);
2480                 if (ret < 0)
2481                         goto error;
2482         }
2483         TAILQ_INSERT_TAIL(list, flow, next);
2484         flow_rxq_flags_set(dev, flow);
2485         return flow;
2486 error:
2487         ret = rte_errno; /* Save rte_errno before cleanup. */
2488         assert(flow);
2489         flow_drv_destroy(dev, flow);
2490         rte_free(flow);
2491         rte_errno = ret; /* Restore rte_errno. */
2492         return NULL;
2493 }
2494
2495 /**
2496  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
2497  * incoming packets to table 1.
2498  *
2499  * Other flow rules, requested for group n, will be created in
2500  * e-switch table n+1.
2501  * Jump action to e-switch group n will be created to group n+1.
2502  *
2503  * Used when working in switchdev mode, to utilise advantages of table 1
2504  * and above.
2505  *
2506  * @param dev
2507  *   Pointer to Ethernet device.
2508  *
2509  * @return
2510  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
2511  */
2512 struct rte_flow *
2513 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
2514 {
2515         const struct rte_flow_attr attr = {
2516                 .group = 0,
2517                 .priority = 0,
2518                 .ingress = 1,
2519                 .egress = 0,
2520                 .transfer = 1,
2521         };
2522         const struct rte_flow_item pattern = {
2523                 .type = RTE_FLOW_ITEM_TYPE_END,
2524         };
2525         struct rte_flow_action_jump jump = {
2526                 .group = 1,
2527         };
2528         const struct rte_flow_action actions[] = {
2529                 {
2530                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
2531                         .conf = &jump,
2532                 },
2533                 {
2534                         .type = RTE_FLOW_ACTION_TYPE_END,
2535                 },
2536         };
2537         struct mlx5_priv *priv = dev->data->dev_private;
2538         struct rte_flow_error error;
2539
2540         return flow_list_create(dev, &priv->ctrl_flows, &attr, &pattern,
2541                                 actions, false, &error);
2542 }
2543
2544 /**
2545  * Create a flow.
2546  *
2547  * @see rte_flow_create()
2548  * @see rte_flow_ops
2549  */
2550 struct rte_flow *
2551 mlx5_flow_create(struct rte_eth_dev *dev,
2552                  const struct rte_flow_attr *attr,
2553                  const struct rte_flow_item items[],
2554                  const struct rte_flow_action actions[],
2555                  struct rte_flow_error *error)
2556 {
2557         struct mlx5_priv *priv = dev->data->dev_private;
2558
2559         return flow_list_create(dev, &priv->flows,
2560                                 attr, items, actions, true, error);
2561 }
2562
2563 /**
2564  * Destroy a flow in a list.
2565  *
2566  * @param dev
2567  *   Pointer to Ethernet device.
2568  * @param list
2569  *   Pointer to a TAILQ flow list.
2570  * @param[in] flow
2571  *   Flow to destroy.
2572  */
2573 static void
2574 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2575                   struct rte_flow *flow)
2576 {
2577         /*
2578          * Update RX queue flags only if port is started, otherwise it is
2579          * already clean.
2580          */
2581         if (dev->data->dev_started)
2582                 flow_rxq_flags_trim(dev, flow);
2583         flow_drv_destroy(dev, flow);
2584         TAILQ_REMOVE(list, flow, next);
2585         rte_free(flow->fdir);
2586         rte_free(flow);
2587 }
2588
2589 /**
2590  * Destroy all flows.
2591  *
2592  * @param dev
2593  *   Pointer to Ethernet device.
2594  * @param list
2595  *   Pointer to a TAILQ flow list.
2596  */
2597 void
2598 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2599 {
2600         while (!TAILQ_EMPTY(list)) {
2601                 struct rte_flow *flow;
2602
2603                 flow = TAILQ_FIRST(list);
2604                 flow_list_destroy(dev, list, flow);
2605         }
2606 }
2607
2608 /**
2609  * Remove all flows.
2610  *
2611  * @param dev
2612  *   Pointer to Ethernet device.
2613  * @param list
2614  *   Pointer to a TAILQ flow list.
2615  */
2616 void
2617 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2618 {
2619         struct rte_flow *flow;
2620
2621         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2622                 flow_drv_remove(dev, flow);
2623         flow_rxq_flags_clear(dev);
2624 }
2625
2626 /**
2627  * Add all flows.
2628  *
2629  * @param dev
2630  *   Pointer to Ethernet device.
2631  * @param list
2632  *   Pointer to a TAILQ flow list.
2633  *
2634  * @return
2635  *   0 on success, a negative errno value otherwise and rte_errno is set.
2636  */
2637 int
2638 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2639 {
2640         struct rte_flow *flow;
2641         struct rte_flow_error error;
2642         int ret = 0;
2643
2644         TAILQ_FOREACH(flow, list, next) {
2645                 ret = flow_drv_apply(dev, flow, &error);
2646                 if (ret < 0)
2647                         goto error;
2648                 flow_rxq_flags_set(dev, flow);
2649         }
2650         return 0;
2651 error:
2652         ret = rte_errno; /* Save rte_errno before cleanup. */
2653         mlx5_flow_stop(dev, list);
2654         rte_errno = ret; /* Restore rte_errno. */
2655         return -rte_errno;
2656 }
2657
2658 /**
2659  * Verify the flow list is empty
2660  *
2661  * @param dev
2662  *  Pointer to Ethernet device.
2663  *
2664  * @return the number of flows not released.
2665  */
2666 int
2667 mlx5_flow_verify(struct rte_eth_dev *dev)
2668 {
2669         struct mlx5_priv *priv = dev->data->dev_private;
2670         struct rte_flow *flow;
2671         int ret = 0;
2672
2673         TAILQ_FOREACH(flow, &priv->flows, next) {
2674                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
2675                         dev->data->port_id, (void *)flow);
2676                 ++ret;
2677         }
2678         return ret;
2679 }
2680
2681 /**
2682  * Enable a control flow configured from the control plane.
2683  *
2684  * @param dev
2685  *   Pointer to Ethernet device.
2686  * @param eth_spec
2687  *   An Ethernet flow spec to apply.
2688  * @param eth_mask
2689  *   An Ethernet flow mask to apply.
2690  * @param vlan_spec
2691  *   A VLAN flow spec to apply.
2692  * @param vlan_mask
2693  *   A VLAN flow mask to apply.
2694  *
2695  * @return
2696  *   0 on success, a negative errno value otherwise and rte_errno is set.
2697  */
2698 int
2699 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2700                     struct rte_flow_item_eth *eth_spec,
2701                     struct rte_flow_item_eth *eth_mask,
2702                     struct rte_flow_item_vlan *vlan_spec,
2703                     struct rte_flow_item_vlan *vlan_mask)
2704 {
2705         struct mlx5_priv *priv = dev->data->dev_private;
2706         const struct rte_flow_attr attr = {
2707                 .ingress = 1,
2708                 .priority = MLX5_FLOW_PRIO_RSVD,
2709         };
2710         struct rte_flow_item items[] = {
2711                 {
2712                         .type = RTE_FLOW_ITEM_TYPE_ETH,
2713                         .spec = eth_spec,
2714                         .last = NULL,
2715                         .mask = eth_mask,
2716                 },
2717                 {
2718                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2719                                               RTE_FLOW_ITEM_TYPE_END,
2720                         .spec = vlan_spec,
2721                         .last = NULL,
2722                         .mask = vlan_mask,
2723                 },
2724                 {
2725                         .type = RTE_FLOW_ITEM_TYPE_END,
2726                 },
2727         };
2728         uint16_t queue[priv->reta_idx_n];
2729         struct rte_flow_action_rss action_rss = {
2730                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2731                 .level = 0,
2732                 .types = priv->rss_conf.rss_hf,
2733                 .key_len = priv->rss_conf.rss_key_len,
2734                 .queue_num = priv->reta_idx_n,
2735                 .key = priv->rss_conf.rss_key,
2736                 .queue = queue,
2737         };
2738         struct rte_flow_action actions[] = {
2739                 {
2740                         .type = RTE_FLOW_ACTION_TYPE_RSS,
2741                         .conf = &action_rss,
2742                 },
2743                 {
2744                         .type = RTE_FLOW_ACTION_TYPE_END,
2745                 },
2746         };
2747         struct rte_flow *flow;
2748         struct rte_flow_error error;
2749         unsigned int i;
2750
2751         if (!priv->reta_idx_n || !priv->rxqs_n) {
2752                 return 0;
2753         }
2754         for (i = 0; i != priv->reta_idx_n; ++i)
2755                 queue[i] = (*priv->reta_idx)[i];
2756         flow = flow_list_create(dev, &priv->ctrl_flows,
2757                                 &attr, items, actions, false, &error);
2758         if (!flow)
2759                 return -rte_errno;
2760         return 0;
2761 }
2762
2763 /**
2764  * Enable a flow control configured from the control plane.
2765  *
2766  * @param dev
2767  *   Pointer to Ethernet device.
2768  * @param eth_spec
2769  *   An Ethernet flow spec to apply.
2770  * @param eth_mask
2771  *   An Ethernet flow mask to apply.
2772  *
2773  * @return
2774  *   0 on success, a negative errno value otherwise and rte_errno is set.
2775  */
2776 int
2777 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2778                struct rte_flow_item_eth *eth_spec,
2779                struct rte_flow_item_eth *eth_mask)
2780 {
2781         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2782 }
2783
2784 /**
2785  * Destroy a flow.
2786  *
2787  * @see rte_flow_destroy()
2788  * @see rte_flow_ops
2789  */
2790 int
2791 mlx5_flow_destroy(struct rte_eth_dev *dev,
2792                   struct rte_flow *flow,
2793                   struct rte_flow_error *error __rte_unused)
2794 {
2795         struct mlx5_priv *priv = dev->data->dev_private;
2796
2797         flow_list_destroy(dev, &priv->flows, flow);
2798         return 0;
2799 }
2800
2801 /**
2802  * Destroy all flows.
2803  *
2804  * @see rte_flow_flush()
2805  * @see rte_flow_ops
2806  */
2807 int
2808 mlx5_flow_flush(struct rte_eth_dev *dev,
2809                 struct rte_flow_error *error __rte_unused)
2810 {
2811         struct mlx5_priv *priv = dev->data->dev_private;
2812
2813         mlx5_flow_list_flush(dev, &priv->flows);
2814         return 0;
2815 }
2816
2817 /**
2818  * Isolated mode.
2819  *
2820  * @see rte_flow_isolate()
2821  * @see rte_flow_ops
2822  */
2823 int
2824 mlx5_flow_isolate(struct rte_eth_dev *dev,
2825                   int enable,
2826                   struct rte_flow_error *error)
2827 {
2828         struct mlx5_priv *priv = dev->data->dev_private;
2829
2830         if (dev->data->dev_started) {
2831                 rte_flow_error_set(error, EBUSY,
2832                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2833                                    NULL,
2834                                    "port must be stopped first");
2835                 return -rte_errno;
2836         }
2837         priv->isolated = !!enable;
2838         if (enable)
2839                 dev->dev_ops = &mlx5_dev_ops_isolate;
2840         else
2841                 dev->dev_ops = &mlx5_dev_ops;
2842         return 0;
2843 }
2844
2845 /**
2846  * Query a flow.
2847  *
2848  * @see rte_flow_query()
2849  * @see rte_flow_ops
2850  */
2851 static int
2852 flow_drv_query(struct rte_eth_dev *dev,
2853                struct rte_flow *flow,
2854                const struct rte_flow_action *actions,
2855                void *data,
2856                struct rte_flow_error *error)
2857 {
2858         const struct mlx5_flow_driver_ops *fops;
2859         enum mlx5_flow_drv_type ftype = flow->drv_type;
2860
2861         assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2862         fops = flow_get_drv_ops(ftype);
2863
2864         return fops->query(dev, flow, actions, data, error);
2865 }
2866
2867 /**
2868  * Query a flow.
2869  *
2870  * @see rte_flow_query()
2871  * @see rte_flow_ops
2872  */
2873 int
2874 mlx5_flow_query(struct rte_eth_dev *dev,
2875                 struct rte_flow *flow,
2876                 const struct rte_flow_action *actions,
2877                 void *data,
2878                 struct rte_flow_error *error)
2879 {
2880         int ret;
2881
2882         ret = flow_drv_query(dev, flow, actions, data, error);
2883         if (ret < 0)
2884                 return ret;
2885         return 0;
2886 }
2887
2888 /**
2889  * Convert a flow director filter to a generic flow.
2890  *
2891  * @param dev
2892  *   Pointer to Ethernet device.
2893  * @param fdir_filter
2894  *   Flow director filter to add.
2895  * @param attributes
2896  *   Generic flow parameters structure.
2897  *
2898  * @return
2899  *   0 on success, a negative errno value otherwise and rte_errno is set.
2900  */
2901 static int
2902 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2903                          const struct rte_eth_fdir_filter *fdir_filter,
2904                          struct mlx5_fdir *attributes)
2905 {
2906         struct mlx5_priv *priv = dev->data->dev_private;
2907         const struct rte_eth_fdir_input *input = &fdir_filter->input;
2908         const struct rte_eth_fdir_masks *mask =
2909                 &dev->data->dev_conf.fdir_conf.mask;
2910
2911         /* Validate queue number. */
2912         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2913                 DRV_LOG(ERR, "port %u invalid queue number %d",
2914                         dev->data->port_id, fdir_filter->action.rx_queue);
2915                 rte_errno = EINVAL;
2916                 return -rte_errno;
2917         }
2918         attributes->attr.ingress = 1;
2919         attributes->items[0] = (struct rte_flow_item) {
2920                 .type = RTE_FLOW_ITEM_TYPE_ETH,
2921                 .spec = &attributes->l2,
2922                 .mask = &attributes->l2_mask,
2923         };
2924         switch (fdir_filter->action.behavior) {
2925         case RTE_ETH_FDIR_ACCEPT:
2926                 attributes->actions[0] = (struct rte_flow_action){
2927                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
2928                         .conf = &attributes->queue,
2929                 };
2930                 break;
2931         case RTE_ETH_FDIR_REJECT:
2932                 attributes->actions[0] = (struct rte_flow_action){
2933                         .type = RTE_FLOW_ACTION_TYPE_DROP,
2934                 };
2935                 break;
2936         default:
2937                 DRV_LOG(ERR, "port %u invalid behavior %d",
2938                         dev->data->port_id,
2939                         fdir_filter->action.behavior);
2940                 rte_errno = ENOTSUP;
2941                 return -rte_errno;
2942         }
2943         attributes->queue.index = fdir_filter->action.rx_queue;
2944         /* Handle L3. */
2945         switch (fdir_filter->input.flow_type) {
2946         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2947         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2948         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2949                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
2950                         .src_addr = input->flow.ip4_flow.src_ip,
2951                         .dst_addr = input->flow.ip4_flow.dst_ip,
2952                         .time_to_live = input->flow.ip4_flow.ttl,
2953                         .type_of_service = input->flow.ip4_flow.tos,
2954                 };
2955                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
2956                         .src_addr = mask->ipv4_mask.src_ip,
2957                         .dst_addr = mask->ipv4_mask.dst_ip,
2958                         .time_to_live = mask->ipv4_mask.ttl,
2959                         .type_of_service = mask->ipv4_mask.tos,
2960                         .next_proto_id = mask->ipv4_mask.proto,
2961                 };
2962                 attributes->items[1] = (struct rte_flow_item){
2963                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
2964                         .spec = &attributes->l3,
2965                         .mask = &attributes->l3_mask,
2966                 };
2967                 break;
2968         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2969         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2970         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2971                 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
2972                         .hop_limits = input->flow.ipv6_flow.hop_limits,
2973                         .proto = input->flow.ipv6_flow.proto,
2974                 };
2975
2976                 memcpy(attributes->l3.ipv6.hdr.src_addr,
2977                        input->flow.ipv6_flow.src_ip,
2978                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2979                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
2980                        input->flow.ipv6_flow.dst_ip,
2981                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2982                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2983                        mask->ipv6_mask.src_ip,
2984                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2985                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2986                        mask->ipv6_mask.dst_ip,
2987                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2988                 attributes->items[1] = (struct rte_flow_item){
2989                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
2990                         .spec = &attributes->l3,
2991                         .mask = &attributes->l3_mask,
2992                 };
2993                 break;
2994         default:
2995                 DRV_LOG(ERR, "port %u invalid flow type%d",
2996                         dev->data->port_id, fdir_filter->input.flow_type);
2997                 rte_errno = ENOTSUP;
2998                 return -rte_errno;
2999         }
3000         /* Handle L4. */
3001         switch (fdir_filter->input.flow_type) {
3002         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
3003                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
3004                         .src_port = input->flow.udp4_flow.src_port,
3005                         .dst_port = input->flow.udp4_flow.dst_port,
3006                 };
3007                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
3008                         .src_port = mask->src_port_mask,
3009                         .dst_port = mask->dst_port_mask,
3010                 };
3011                 attributes->items[2] = (struct rte_flow_item){
3012                         .type = RTE_FLOW_ITEM_TYPE_UDP,
3013                         .spec = &attributes->l4,
3014                         .mask = &attributes->l4_mask,
3015                 };
3016                 break;
3017         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
3018                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
3019                         .src_port = input->flow.tcp4_flow.src_port,
3020                         .dst_port = input->flow.tcp4_flow.dst_port,
3021                 };
3022                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
3023                         .src_port = mask->src_port_mask,
3024                         .dst_port = mask->dst_port_mask,
3025                 };
3026                 attributes->items[2] = (struct rte_flow_item){
3027                         .type = RTE_FLOW_ITEM_TYPE_TCP,
3028                         .spec = &attributes->l4,
3029                         .mask = &attributes->l4_mask,
3030                 };
3031                 break;
3032         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
3033                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
3034                         .src_port = input->flow.udp6_flow.src_port,
3035                         .dst_port = input->flow.udp6_flow.dst_port,
3036                 };
3037                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
3038                         .src_port = mask->src_port_mask,
3039                         .dst_port = mask->dst_port_mask,
3040                 };
3041                 attributes->items[2] = (struct rte_flow_item){
3042                         .type = RTE_FLOW_ITEM_TYPE_UDP,
3043                         .spec = &attributes->l4,
3044                         .mask = &attributes->l4_mask,
3045                 };
3046                 break;
3047         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
3048                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
3049                         .src_port = input->flow.tcp6_flow.src_port,
3050                         .dst_port = input->flow.tcp6_flow.dst_port,
3051                 };
3052                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
3053                         .src_port = mask->src_port_mask,
3054                         .dst_port = mask->dst_port_mask,
3055                 };
3056                 attributes->items[2] = (struct rte_flow_item){
3057                         .type = RTE_FLOW_ITEM_TYPE_TCP,
3058                         .spec = &attributes->l4,
3059                         .mask = &attributes->l4_mask,
3060                 };
3061                 break;
3062         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
3063         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
3064                 break;
3065         default:
3066                 DRV_LOG(ERR, "port %u invalid flow type%d",
3067                         dev->data->port_id, fdir_filter->input.flow_type);
3068                 rte_errno = ENOTSUP;
3069                 return -rte_errno;
3070         }
3071         return 0;
3072 }
3073
3074 #define FLOW_FDIR_CMP(f1, f2, fld) \
3075         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
3076
3077 /**
3078  * Compare two FDIR flows. If items and actions are identical, the two flows are
3079  * regarded as same.
3080  *
3081  * @param dev
3082  *   Pointer to Ethernet device.
3083  * @param f1
3084  *   FDIR flow to compare.
3085  * @param f2
3086  *   FDIR flow to compare.
3087  *
3088  * @return
3089  *   Zero on match, 1 otherwise.
3090  */
3091 static int
3092 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
3093 {
3094         if (FLOW_FDIR_CMP(f1, f2, attr) ||
3095             FLOW_FDIR_CMP(f1, f2, l2) ||
3096             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
3097             FLOW_FDIR_CMP(f1, f2, l3) ||
3098             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
3099             FLOW_FDIR_CMP(f1, f2, l4) ||
3100             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
3101             FLOW_FDIR_CMP(f1, f2, actions[0].type))
3102                 return 1;
3103         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
3104             FLOW_FDIR_CMP(f1, f2, queue))
3105                 return 1;
3106         return 0;
3107 }
3108
3109 /**
3110  * Search device flow list to find out a matched FDIR flow.
3111  *
3112  * @param dev
3113  *   Pointer to Ethernet device.
3114  * @param fdir_flow
3115  *   FDIR flow to lookup.
3116  *
3117  * @return
3118  *   Pointer of flow if found, NULL otherwise.
3119  */
3120 static struct rte_flow *
3121 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
3122 {
3123         struct mlx5_priv *priv = dev->data->dev_private;
3124         struct rte_flow *flow = NULL;
3125
3126         assert(fdir_flow);
3127         TAILQ_FOREACH(flow, &priv->flows, next) {
3128                 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
3129                         DRV_LOG(DEBUG, "port %u found FDIR flow %p",
3130                                 dev->data->port_id, (void *)flow);
3131                         break;
3132                 }
3133         }
3134         return flow;
3135 }
3136
3137 /**
3138  * Add new flow director filter and store it in list.
3139  *
3140  * @param dev
3141  *   Pointer to Ethernet device.
3142  * @param fdir_filter
3143  *   Flow director filter to add.
3144  *
3145  * @return
3146  *   0 on success, a negative errno value otherwise and rte_errno is set.
3147  */
3148 static int
3149 flow_fdir_filter_add(struct rte_eth_dev *dev,
3150                      const struct rte_eth_fdir_filter *fdir_filter)
3151 {
3152         struct mlx5_priv *priv = dev->data->dev_private;
3153         struct mlx5_fdir *fdir_flow;
3154         struct rte_flow *flow;
3155         int ret;
3156
3157         fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
3158         if (!fdir_flow) {
3159                 rte_errno = ENOMEM;
3160                 return -rte_errno;
3161         }
3162         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
3163         if (ret)
3164                 goto error;
3165         flow = flow_fdir_filter_lookup(dev, fdir_flow);
3166         if (flow) {
3167                 rte_errno = EEXIST;
3168                 goto error;
3169         }
3170         flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
3171                                 fdir_flow->items, fdir_flow->actions, true,
3172                                 NULL);
3173         if (!flow)
3174                 goto error;
3175         assert(!flow->fdir);
3176         flow->fdir = fdir_flow;
3177         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
3178                 dev->data->port_id, (void *)flow);
3179         return 0;
3180 error:
3181         rte_free(fdir_flow);
3182         return -rte_errno;
3183 }
3184
3185 /**
3186  * Delete specific filter.
3187  *
3188  * @param dev
3189  *   Pointer to Ethernet device.
3190  * @param fdir_filter
3191  *   Filter to be deleted.
3192  *
3193  * @return
3194  *   0 on success, a negative errno value otherwise and rte_errno is set.
3195  */
3196 static int
3197 flow_fdir_filter_delete(struct rte_eth_dev *dev,
3198                         const struct rte_eth_fdir_filter *fdir_filter)
3199 {
3200         struct mlx5_priv *priv = dev->data->dev_private;
3201         struct rte_flow *flow;
3202         struct mlx5_fdir fdir_flow = {
3203                 .attr.group = 0,
3204         };
3205         int ret;
3206
3207         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
3208         if (ret)
3209                 return -rte_errno;
3210         flow = flow_fdir_filter_lookup(dev, &fdir_flow);
3211         if (!flow) {
3212                 rte_errno = ENOENT;
3213                 return -rte_errno;
3214         }
3215         flow_list_destroy(dev, &priv->flows, flow);
3216         DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
3217                 dev->data->port_id, (void *)flow);
3218         return 0;
3219 }
3220
3221 /**
3222  * Update queue for specific filter.
3223  *
3224  * @param dev
3225  *   Pointer to Ethernet device.
3226  * @param fdir_filter
3227  *   Filter to be updated.
3228  *
3229  * @return
3230  *   0 on success, a negative errno value otherwise and rte_errno is set.
3231  */
3232 static int
3233 flow_fdir_filter_update(struct rte_eth_dev *dev,
3234                         const struct rte_eth_fdir_filter *fdir_filter)
3235 {
3236         int ret;
3237
3238         ret = flow_fdir_filter_delete(dev, fdir_filter);
3239         if (ret)
3240                 return ret;
3241         return flow_fdir_filter_add(dev, fdir_filter);
3242 }
3243
3244 /**
3245  * Flush all filters.
3246  *
3247  * @param dev
3248  *   Pointer to Ethernet device.
3249  */
3250 static void
3251 flow_fdir_filter_flush(struct rte_eth_dev *dev)
3252 {
3253         struct mlx5_priv *priv = dev->data->dev_private;
3254
3255         mlx5_flow_list_flush(dev, &priv->flows);
3256 }
3257
3258 /**
3259  * Get flow director information.
3260  *
3261  * @param dev
3262  *   Pointer to Ethernet device.
3263  * @param[out] fdir_info
3264  *   Resulting flow director information.
3265  */
3266 static void
3267 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
3268 {
3269         struct rte_eth_fdir_masks *mask =
3270                 &dev->data->dev_conf.fdir_conf.mask;
3271
3272         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
3273         fdir_info->guarant_spc = 0;
3274         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
3275         fdir_info->max_flexpayload = 0;
3276         fdir_info->flow_types_mask[0] = 0;
3277         fdir_info->flex_payload_unit = 0;
3278         fdir_info->max_flex_payload_segment_num = 0;
3279         fdir_info->flex_payload_limit = 0;
3280         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
3281 }
3282
3283 /**
3284  * Deal with flow director operations.
3285  *
3286  * @param dev
3287  *   Pointer to Ethernet device.
3288  * @param filter_op
3289  *   Operation to perform.
3290  * @param arg
3291  *   Pointer to operation-specific structure.
3292  *
3293  * @return
3294  *   0 on success, a negative errno value otherwise and rte_errno is set.
3295  */
3296 static int
3297 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3298                     void *arg)
3299 {
3300         enum rte_fdir_mode fdir_mode =
3301                 dev->data->dev_conf.fdir_conf.mode;
3302
3303         if (filter_op == RTE_ETH_FILTER_NOP)
3304                 return 0;
3305         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3306             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3307                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
3308                         dev->data->port_id, fdir_mode);
3309                 rte_errno = EINVAL;
3310                 return -rte_errno;
3311         }
3312         switch (filter_op) {
3313         case RTE_ETH_FILTER_ADD:
3314                 return flow_fdir_filter_add(dev, arg);
3315         case RTE_ETH_FILTER_UPDATE:
3316                 return flow_fdir_filter_update(dev, arg);
3317         case RTE_ETH_FILTER_DELETE:
3318                 return flow_fdir_filter_delete(dev, arg);
3319         case RTE_ETH_FILTER_FLUSH:
3320                 flow_fdir_filter_flush(dev);
3321                 break;
3322         case RTE_ETH_FILTER_INFO:
3323                 flow_fdir_info_get(dev, arg);
3324                 break;
3325         default:
3326                 DRV_LOG(DEBUG, "port %u unknown operation %u",
3327                         dev->data->port_id, filter_op);
3328                 rte_errno = EINVAL;
3329                 return -rte_errno;
3330         }
3331         return 0;
3332 }
3333
3334 /**
3335  * Manage filter operations.
3336  *
3337  * @param dev
3338  *   Pointer to Ethernet device structure.
3339  * @param filter_type
3340  *   Filter type.
3341  * @param filter_op
3342  *   Operation to perform.
3343  * @param arg
3344  *   Pointer to operation-specific structure.
3345  *
3346  * @return
3347  *   0 on success, a negative errno value otherwise and rte_errno is set.
3348  */
3349 int
3350 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3351                      enum rte_filter_type filter_type,
3352                      enum rte_filter_op filter_op,
3353                      void *arg)
3354 {
3355         switch (filter_type) {
3356         case RTE_ETH_FILTER_GENERIC:
3357                 if (filter_op != RTE_ETH_FILTER_GET) {
3358                         rte_errno = EINVAL;
3359                         return -rte_errno;
3360                 }
3361                 *(const void **)arg = &mlx5_flow_ops;
3362                 return 0;
3363         case RTE_ETH_FILTER_FDIR:
3364                 return flow_fdir_ctrl_func(dev, filter_op, arg);
3365         default:
3366                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
3367                         dev->data->port_id, filter_type);
3368                 rte_errno = ENOTSUP;
3369                 return -rte_errno;
3370         }
3371         return 0;
3372 }
3373
3374 #define MLX5_POOL_QUERY_FREQ_US 1000000
3375
3376 /**
3377  * Set the periodic procedure for triggering asynchronous batch queries for all
3378  * the counter pools.
3379  *
3380  * @param[in] sh
3381  *   Pointer to mlx5_ibv_shared object.
3382  */
3383 void
3384 mlx5_set_query_alarm(struct mlx5_ibv_shared *sh)
3385 {
3386         struct mlx5_pools_container *cont = MLX5_CNT_CONTAINER(sh, 0, 0);
3387         uint32_t pools_n = rte_atomic16_read(&cont->n_valid);
3388         uint32_t us;
3389
3390         cont = MLX5_CNT_CONTAINER(sh, 1, 0);
3391         pools_n += rte_atomic16_read(&cont->n_valid);
3392         us = MLX5_POOL_QUERY_FREQ_US / pools_n;
3393         DRV_LOG(DEBUG, "Set alarm for %u pools each %u us\n", pools_n, us);
3394         if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
3395                 sh->cmng.query_thread_on = 0;
3396                 DRV_LOG(ERR, "Cannot reinitialize query alarm\n");
3397         } else {
3398                 sh->cmng.query_thread_on = 1;
3399         }
3400 }
3401
3402 /**
3403  * The periodic procedure for triggering asynchronous batch queries for all the
3404  * counter pools. This function is probably called by the host thread.
3405  *
3406  * @param[in] arg
3407  *   The parameter for the alarm process.
3408  */
3409 void
3410 mlx5_flow_query_alarm(void *arg)
3411 {
3412         struct mlx5_ibv_shared *sh = arg;
3413         struct mlx5_devx_obj *dcs;
3414         uint16_t offset;
3415         int ret;
3416         uint8_t batch = sh->cmng.batch;
3417         uint16_t pool_index = sh->cmng.pool_index;
3418         struct mlx5_pools_container *cont;
3419         struct mlx5_pools_container *mcont;
3420         struct mlx5_flow_counter_pool *pool;
3421
3422         if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
3423                 goto set_alarm;
3424 next_container:
3425         cont = MLX5_CNT_CONTAINER(sh, batch, 1);
3426         mcont = MLX5_CNT_CONTAINER(sh, batch, 0);
3427         /* Check if resize was done and need to flip a container. */
3428         if (cont != mcont) {
3429                 if (cont->pools) {
3430                         /* Clean the old container. */
3431                         rte_free(cont->pools);
3432                         memset(cont, 0, sizeof(*cont));
3433                 }
3434                 rte_cio_wmb();
3435                  /* Flip the host container. */
3436                 sh->cmng.mhi[batch] ^= (uint8_t)2;
3437                 cont = mcont;
3438         }
3439         if (!cont->pools) {
3440                 /* 2 empty containers case is unexpected. */
3441                 if (unlikely(batch != sh->cmng.batch))
3442                         goto set_alarm;
3443                 batch ^= 0x1;
3444                 pool_index = 0;
3445                 goto next_container;
3446         }
3447         pool = cont->pools[pool_index];
3448         if (pool->raw_hw)
3449                 /* There is a pool query in progress. */
3450                 goto set_alarm;
3451         pool->raw_hw =
3452                 LIST_FIRST(&sh->cmng.free_stat_raws);
3453         if (!pool->raw_hw)
3454                 /* No free counter statistics raw memory. */
3455                 goto set_alarm;
3456         dcs = (struct mlx5_devx_obj *)(uintptr_t)rte_atomic64_read
3457                                                               (&pool->a64_dcs);
3458         offset = batch ? 0 : dcs->id % MLX5_COUNTERS_PER_POOL;
3459         ret = mlx5_devx_cmd_flow_counter_query(dcs, 0, MLX5_COUNTERS_PER_POOL -
3460                                                offset, NULL, NULL,
3461                                                pool->raw_hw->mem_mng->dm->id,
3462                                                (void *)(uintptr_t)
3463                                                (pool->raw_hw->data + offset),
3464                                                sh->devx_comp,
3465                                                (uint64_t)(uintptr_t)pool);
3466         if (ret) {
3467                 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
3468                         " %d\n", pool->min_dcs->id);
3469                 pool->raw_hw = NULL;
3470                 goto set_alarm;
3471         }
3472         pool->raw_hw->min_dcs_id = dcs->id;
3473         LIST_REMOVE(pool->raw_hw, next);
3474         sh->cmng.pending_queries++;
3475         pool_index++;
3476         if (pool_index >= rte_atomic16_read(&cont->n_valid)) {
3477                 batch ^= 0x1;
3478                 pool_index = 0;
3479         }
3480 set_alarm:
3481         sh->cmng.batch = batch;
3482         sh->cmng.pool_index = pool_index;
3483         mlx5_set_query_alarm(sh);
3484 }
3485
3486 /**
3487  * Handler for the HW respond about ready values from an asynchronous batch
3488  * query. This function is probably called by the host thread.
3489  *
3490  * @param[in] sh
3491  *   The pointer to the shared IB device context.
3492  * @param[in] async_id
3493  *   The Devx async ID.
3494  * @param[in] status
3495  *   The status of the completion.
3496  */
3497 void
3498 mlx5_flow_async_pool_query_handle(struct mlx5_ibv_shared *sh,
3499                                   uint64_t async_id, int status)
3500 {
3501         struct mlx5_flow_counter_pool *pool =
3502                 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
3503         struct mlx5_counter_stats_raw *raw_to_free;
3504
3505         if (unlikely(status)) {
3506                 raw_to_free = pool->raw_hw;
3507         } else {
3508                 raw_to_free = pool->raw;
3509                 rte_spinlock_lock(&pool->sl);
3510                 pool->raw = pool->raw_hw;
3511                 rte_spinlock_unlock(&pool->sl);
3512                 rte_atomic64_add(&pool->query_gen, 1);
3513                 /* Be sure the new raw counters data is updated in memory. */
3514                 rte_cio_wmb();
3515         }
3516         LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
3517         pool->raw_hw = NULL;
3518         sh->cmng.pending_queries--;
3519 }
3520
3521 /**
3522  * Translate the rte_flow group index to HW table value.
3523  *
3524  * @param[in] attributes
3525  *   Pointer to flow attributes
3526  * @param[in] external
3527  *   Value is part of flow rule created by request external to PMD.
3528  * @param[in] group
3529  *   rte_flow group index value.
3530  * @param[out] table
3531  *   HW table value.
3532  * @param[out] error
3533  *   Pointer to error structure.
3534  *
3535  * @return
3536  *   0 on success, a negative errno value otherwise and rte_errno is set.
3537  */
3538 int
3539 mlx5_flow_group_to_table(const struct rte_flow_attr *attributes, bool external,
3540                          uint32_t group, uint32_t *table,
3541                          struct rte_flow_error *error)
3542 {
3543         if (attributes->transfer && external) {
3544                 if (group == UINT32_MAX)
3545                         return rte_flow_error_set
3546                                                 (error, EINVAL,
3547                                                  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
3548                                                  NULL,
3549                                                  "group index not supported");
3550                 *table = group + 1;
3551         } else {
3552                 *table = group;
3553         }
3554         return 0;
3555 }