net/mlx5: support ICMP identifier matching
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <stdbool.h>
12
13 #include <rte_common.h>
14 #include <rte_ether.h>
15 #include <rte_ethdev_driver.h>
16 #include <rte_flow.h>
17 #include <rte_cycles.h>
18 #include <rte_flow_driver.h>
19 #include <rte_malloc.h>
20 #include <rte_ip.h>
21
22 #include <mlx5_glue.h>
23 #include <mlx5_devx_cmds.h>
24 #include <mlx5_prm.h>
25 #include <mlx5_malloc.h>
26
27 #include "mlx5_defs.h"
28 #include "mlx5.h"
29 #include "mlx5_flow.h"
30 #include "mlx5_flow_os.h"
31 #include "mlx5_rxtx.h"
32
33 /** Device flow drivers. */
34 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
35
36 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
37
38 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
39         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
40 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
41         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
42 #endif
43         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
44         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
45 };
46
47 /** Helper macro to build input graph for mlx5_flow_expand_rss(). */
48 #define MLX5_FLOW_EXPAND_RSS_NEXT(...) \
49         (const int []){ \
50                 __VA_ARGS__, 0, \
51         }
52
53 /** Node object of input graph for mlx5_flow_expand_rss(). */
54 struct mlx5_flow_expand_node {
55         const int *const next;
56         /**<
57          * List of next node indexes. Index 0 is interpreted as a terminator.
58          */
59         const enum rte_flow_item_type type;
60         /**< Pattern item type of current node. */
61         uint64_t rss_types;
62         /**<
63          * RSS types bit-field associated with this node
64          * (see ETH_RSS_* definitions).
65          */
66 };
67
68 /** Object returned by mlx5_flow_expand_rss(). */
69 struct mlx5_flow_expand_rss {
70         uint32_t entries;
71         /**< Number of entries @p patterns and @p priorities. */
72         struct {
73                 struct rte_flow_item *pattern; /**< Expanded pattern array. */
74                 uint32_t priority; /**< Priority offset for each expansion. */
75         } entry[];
76 };
77
78 static enum rte_flow_item_type
79 mlx5_flow_expand_rss_item_complete(const struct rte_flow_item *item)
80 {
81         enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID;
82         uint16_t ether_type = 0;
83         uint16_t ether_type_m;
84         uint8_t ip_next_proto = 0;
85         uint8_t ip_next_proto_m;
86
87         if (item == NULL || item->spec == NULL)
88                 return ret;
89         switch (item->type) {
90         case RTE_FLOW_ITEM_TYPE_ETH:
91                 if (item->mask)
92                         ether_type_m = ((const struct rte_flow_item_eth *)
93                                                 (item->mask))->type;
94                 else
95                         ether_type_m = rte_flow_item_eth_mask.type;
96                 if (ether_type_m != RTE_BE16(0xFFFF))
97                         break;
98                 ether_type = ((const struct rte_flow_item_eth *)
99                                 (item->spec))->type;
100                 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
101                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
102                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
103                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
104                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
105                         ret = RTE_FLOW_ITEM_TYPE_VLAN;
106                 else
107                         ret = RTE_FLOW_ITEM_TYPE_END;
108                 break;
109         case RTE_FLOW_ITEM_TYPE_VLAN:
110                 if (item->mask)
111                         ether_type_m = ((const struct rte_flow_item_vlan *)
112                                                 (item->mask))->inner_type;
113                 else
114                         ether_type_m = rte_flow_item_vlan_mask.inner_type;
115                 if (ether_type_m != RTE_BE16(0xFFFF))
116                         break;
117                 ether_type = ((const struct rte_flow_item_vlan *)
118                                 (item->spec))->inner_type;
119                 if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
120                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
121                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
122                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
123                 else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
124                         ret = RTE_FLOW_ITEM_TYPE_VLAN;
125                 else
126                         ret = RTE_FLOW_ITEM_TYPE_END;
127                 break;
128         case RTE_FLOW_ITEM_TYPE_IPV4:
129                 if (item->mask)
130                         ip_next_proto_m = ((const struct rte_flow_item_ipv4 *)
131                                         (item->mask))->hdr.next_proto_id;
132                 else
133                         ip_next_proto_m =
134                                 rte_flow_item_ipv4_mask.hdr.next_proto_id;
135                 if (ip_next_proto_m != 0xFF)
136                         break;
137                 ip_next_proto = ((const struct rte_flow_item_ipv4 *)
138                                 (item->spec))->hdr.next_proto_id;
139                 if (ip_next_proto == IPPROTO_UDP)
140                         ret = RTE_FLOW_ITEM_TYPE_UDP;
141                 else if (ip_next_proto == IPPROTO_TCP)
142                         ret = RTE_FLOW_ITEM_TYPE_TCP;
143                 else if (ip_next_proto == IPPROTO_IP)
144                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
145                 else if (ip_next_proto == IPPROTO_IPV6)
146                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
147                 else
148                         ret = RTE_FLOW_ITEM_TYPE_END;
149                 break;
150         case RTE_FLOW_ITEM_TYPE_IPV6:
151                 if (item->mask)
152                         ip_next_proto_m = ((const struct rte_flow_item_ipv6 *)
153                                                 (item->mask))->hdr.proto;
154                 else
155                         ip_next_proto_m =
156                                 rte_flow_item_ipv6_mask.hdr.proto;
157                 if (ip_next_proto_m != 0xFF)
158                         break;
159                 ip_next_proto = ((const struct rte_flow_item_ipv6 *)
160                                 (item->spec))->hdr.proto;
161                 if (ip_next_proto == IPPROTO_UDP)
162                         ret = RTE_FLOW_ITEM_TYPE_UDP;
163                 else if (ip_next_proto == IPPROTO_TCP)
164                         ret = RTE_FLOW_ITEM_TYPE_TCP;
165                 else if (ip_next_proto == IPPROTO_IP)
166                         ret = RTE_FLOW_ITEM_TYPE_IPV4;
167                 else if (ip_next_proto == IPPROTO_IPV6)
168                         ret = RTE_FLOW_ITEM_TYPE_IPV6;
169                 else
170                         ret = RTE_FLOW_ITEM_TYPE_END;
171                 break;
172         default:
173                 ret = RTE_FLOW_ITEM_TYPE_VOID;
174                 break;
175         }
176         return ret;
177 }
178
179 /**
180  * Expand RSS flows into several possible flows according to the RSS hash
181  * fields requested and the driver capabilities.
182  *
183  * @param[out] buf
184  *   Buffer to store the result expansion.
185  * @param[in] size
186  *   Buffer size in bytes. If 0, @p buf can be NULL.
187  * @param[in] pattern
188  *   User flow pattern.
189  * @param[in] types
190  *   RSS types to expand (see ETH_RSS_* definitions).
191  * @param[in] graph
192  *   Input graph to expand @p pattern according to @p types.
193  * @param[in] graph_root_index
194  *   Index of root node in @p graph, typically 0.
195  *
196  * @return
197  *   A positive value representing the size of @p buf in bytes regardless of
198  *   @p size on success, a negative errno value otherwise and rte_errno is
199  *   set, the following errors are defined:
200  *
201  *   -E2BIG: graph-depth @p graph is too deep.
202  */
203 static int
204 mlx5_flow_expand_rss(struct mlx5_flow_expand_rss *buf, size_t size,
205                      const struct rte_flow_item *pattern, uint64_t types,
206                      const struct mlx5_flow_expand_node graph[],
207                      int graph_root_index)
208 {
209         const int elt_n = 8;
210         const struct rte_flow_item *item;
211         const struct mlx5_flow_expand_node *node = &graph[graph_root_index];
212         const int *next_node;
213         const int *stack[elt_n];
214         int stack_pos = 0;
215         struct rte_flow_item flow_items[elt_n];
216         unsigned int i;
217         size_t lsize;
218         size_t user_pattern_size = 0;
219         void *addr = NULL;
220         const struct mlx5_flow_expand_node *next = NULL;
221         struct rte_flow_item missed_item;
222         int missed = 0;
223         int elt = 0;
224         const struct rte_flow_item *last_item = NULL;
225
226         memset(&missed_item, 0, sizeof(missed_item));
227         lsize = offsetof(struct mlx5_flow_expand_rss, entry) +
228                 elt_n * sizeof(buf->entry[0]);
229         if (lsize <= size) {
230                 buf->entry[0].priority = 0;
231                 buf->entry[0].pattern = (void *)&buf->entry[elt_n];
232                 buf->entries = 0;
233                 addr = buf->entry[0].pattern;
234         }
235         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
236                 if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
237                         last_item = item;
238                 for (i = 0; node->next && node->next[i]; ++i) {
239                         next = &graph[node->next[i]];
240                         if (next->type == item->type)
241                                 break;
242                 }
243                 if (next)
244                         node = next;
245                 user_pattern_size += sizeof(*item);
246         }
247         user_pattern_size += sizeof(*item); /* Handle END item. */
248         lsize += user_pattern_size;
249         /* Copy the user pattern in the first entry of the buffer. */
250         if (lsize <= size) {
251                 rte_memcpy(addr, pattern, user_pattern_size);
252                 addr = (void *)(((uintptr_t)addr) + user_pattern_size);
253                 buf->entries = 1;
254         }
255         /* Start expanding. */
256         memset(flow_items, 0, sizeof(flow_items));
257         user_pattern_size -= sizeof(*item);
258         /*
259          * Check if the last valid item has spec set, need complete pattern,
260          * and the pattern can be used for expansion.
261          */
262         missed_item.type = mlx5_flow_expand_rss_item_complete(last_item);
263         if (missed_item.type == RTE_FLOW_ITEM_TYPE_END) {
264                 /* Item type END indicates expansion is not required. */
265                 return lsize;
266         }
267         if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
268                 next = NULL;
269                 missed = 1;
270                 for (i = 0; node->next && node->next[i]; ++i) {
271                         next = &graph[node->next[i]];
272                         if (next->type == missed_item.type) {
273                                 flow_items[0].type = missed_item.type;
274                                 flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
275                                 break;
276                         }
277                         next = NULL;
278                 }
279         }
280         if (next && missed) {
281                 elt = 2; /* missed item + item end. */
282                 node = next;
283                 lsize += elt * sizeof(*item) + user_pattern_size;
284                 if ((node->rss_types & types) && lsize <= size) {
285                         buf->entry[buf->entries].priority = 1;
286                         buf->entry[buf->entries].pattern = addr;
287                         buf->entries++;
288                         rte_memcpy(addr, buf->entry[0].pattern,
289                                    user_pattern_size);
290                         addr = (void *)(((uintptr_t)addr) + user_pattern_size);
291                         rte_memcpy(addr, flow_items, elt * sizeof(*item));
292                         addr = (void *)(((uintptr_t)addr) +
293                                         elt * sizeof(*item));
294                 }
295         }
296         memset(flow_items, 0, sizeof(flow_items));
297         next_node = node->next;
298         stack[stack_pos] = next_node;
299         node = next_node ? &graph[*next_node] : NULL;
300         while (node) {
301                 flow_items[stack_pos].type = node->type;
302                 if (node->rss_types & types) {
303                         /*
304                          * compute the number of items to copy from the
305                          * expansion and copy it.
306                          * When the stack_pos is 0, there are 1 element in it,
307                          * plus the addition END item.
308                          */
309                         elt = stack_pos + 2;
310                         flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
311                         lsize += elt * sizeof(*item) + user_pattern_size;
312                         if (lsize <= size) {
313                                 size_t n = elt * sizeof(*item);
314
315                                 buf->entry[buf->entries].priority =
316                                         stack_pos + 1 + missed;
317                                 buf->entry[buf->entries].pattern = addr;
318                                 buf->entries++;
319                                 rte_memcpy(addr, buf->entry[0].pattern,
320                                            user_pattern_size);
321                                 addr = (void *)(((uintptr_t)addr) +
322                                                 user_pattern_size);
323                                 rte_memcpy(addr, &missed_item,
324                                            missed * sizeof(*item));
325                                 addr = (void *)(((uintptr_t)addr) +
326                                         missed * sizeof(*item));
327                                 rte_memcpy(addr, flow_items, n);
328                                 addr = (void *)(((uintptr_t)addr) + n);
329                         }
330                 }
331                 /* Go deeper. */
332                 if (node->next) {
333                         next_node = node->next;
334                         if (stack_pos++ == elt_n) {
335                                 rte_errno = E2BIG;
336                                 return -rte_errno;
337                         }
338                         stack[stack_pos] = next_node;
339                 } else if (*(next_node + 1)) {
340                         /* Follow up with the next possibility. */
341                         ++next_node;
342                 } else {
343                         /* Move to the next path. */
344                         if (stack_pos)
345                                 next_node = stack[--stack_pos];
346                         next_node++;
347                         stack[stack_pos] = next_node;
348                 }
349                 node = *next_node ? &graph[*next_node] : NULL;
350         };
351         /* no expanded flows but we have missed item, create one rule for it */
352         if (buf->entries == 1 && missed != 0) {
353                 elt = 2;
354                 lsize += elt * sizeof(*item) + user_pattern_size;
355                 if (lsize <= size) {
356                         buf->entry[buf->entries].priority = 1;
357                         buf->entry[buf->entries].pattern = addr;
358                         buf->entries++;
359                         flow_items[0].type = missed_item.type;
360                         flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
361                         rte_memcpy(addr, buf->entry[0].pattern,
362                                    user_pattern_size);
363                         addr = (void *)(((uintptr_t)addr) + user_pattern_size);
364                         rte_memcpy(addr, flow_items, elt * sizeof(*item));
365                         addr = (void *)(((uintptr_t)addr) +
366                                         elt * sizeof(*item));
367                 }
368         }
369         return lsize;
370 }
371
372 enum mlx5_expansion {
373         MLX5_EXPANSION_ROOT,
374         MLX5_EXPANSION_ROOT_OUTER,
375         MLX5_EXPANSION_ROOT_ETH_VLAN,
376         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
377         MLX5_EXPANSION_OUTER_ETH,
378         MLX5_EXPANSION_OUTER_ETH_VLAN,
379         MLX5_EXPANSION_OUTER_VLAN,
380         MLX5_EXPANSION_OUTER_IPV4,
381         MLX5_EXPANSION_OUTER_IPV4_UDP,
382         MLX5_EXPANSION_OUTER_IPV4_TCP,
383         MLX5_EXPANSION_OUTER_IPV6,
384         MLX5_EXPANSION_OUTER_IPV6_UDP,
385         MLX5_EXPANSION_OUTER_IPV6_TCP,
386         MLX5_EXPANSION_VXLAN,
387         MLX5_EXPANSION_VXLAN_GPE,
388         MLX5_EXPANSION_GRE,
389         MLX5_EXPANSION_MPLS,
390         MLX5_EXPANSION_ETH,
391         MLX5_EXPANSION_ETH_VLAN,
392         MLX5_EXPANSION_VLAN,
393         MLX5_EXPANSION_IPV4,
394         MLX5_EXPANSION_IPV4_UDP,
395         MLX5_EXPANSION_IPV4_TCP,
396         MLX5_EXPANSION_IPV6,
397         MLX5_EXPANSION_IPV6_UDP,
398         MLX5_EXPANSION_IPV6_TCP,
399 };
400
401 /** Supported expansion of items. */
402 static const struct mlx5_flow_expand_node mlx5_support_expansion[] = {
403         [MLX5_EXPANSION_ROOT] = {
404                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
405                                                   MLX5_EXPANSION_IPV4,
406                                                   MLX5_EXPANSION_IPV6),
407                 .type = RTE_FLOW_ITEM_TYPE_END,
408         },
409         [MLX5_EXPANSION_ROOT_OUTER] = {
410                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
411                                                   MLX5_EXPANSION_OUTER_IPV4,
412                                                   MLX5_EXPANSION_OUTER_IPV6),
413                 .type = RTE_FLOW_ITEM_TYPE_END,
414         },
415         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
416                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
417                 .type = RTE_FLOW_ITEM_TYPE_END,
418         },
419         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
420                 .next = MLX5_FLOW_EXPAND_RSS_NEXT
421                                                 (MLX5_EXPANSION_OUTER_ETH_VLAN),
422                 .type = RTE_FLOW_ITEM_TYPE_END,
423         },
424         [MLX5_EXPANSION_OUTER_ETH] = {
425                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
426                                                   MLX5_EXPANSION_OUTER_IPV6,
427                                                   MLX5_EXPANSION_MPLS),
428                 .type = RTE_FLOW_ITEM_TYPE_ETH,
429                 .rss_types = 0,
430         },
431         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
432                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
433                 .type = RTE_FLOW_ITEM_TYPE_ETH,
434                 .rss_types = 0,
435         },
436         [MLX5_EXPANSION_OUTER_VLAN] = {
437                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
438                                                   MLX5_EXPANSION_OUTER_IPV6),
439                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
440         },
441         [MLX5_EXPANSION_OUTER_IPV4] = {
442                 .next = MLX5_FLOW_EXPAND_RSS_NEXT
443                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
444                          MLX5_EXPANSION_OUTER_IPV4_TCP,
445                          MLX5_EXPANSION_GRE,
446                          MLX5_EXPANSION_IPV4,
447                          MLX5_EXPANSION_IPV6),
448                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
449                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
450                         ETH_RSS_NONFRAG_IPV4_OTHER,
451         },
452         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
453                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
454                                                   MLX5_EXPANSION_VXLAN_GPE),
455                 .type = RTE_FLOW_ITEM_TYPE_UDP,
456                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
457         },
458         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
459                 .type = RTE_FLOW_ITEM_TYPE_TCP,
460                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
461         },
462         [MLX5_EXPANSION_OUTER_IPV6] = {
463                 .next = MLX5_FLOW_EXPAND_RSS_NEXT
464                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
465                          MLX5_EXPANSION_OUTER_IPV6_TCP,
466                          MLX5_EXPANSION_IPV4,
467                          MLX5_EXPANSION_IPV6),
468                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
469                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
470                         ETH_RSS_NONFRAG_IPV6_OTHER,
471         },
472         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
473                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
474                                                   MLX5_EXPANSION_VXLAN_GPE),
475                 .type = RTE_FLOW_ITEM_TYPE_UDP,
476                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
477         },
478         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
479                 .type = RTE_FLOW_ITEM_TYPE_TCP,
480                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
481         },
482         [MLX5_EXPANSION_VXLAN] = {
483                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
484                                                   MLX5_EXPANSION_IPV4,
485                                                   MLX5_EXPANSION_IPV6),
486                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
487         },
488         [MLX5_EXPANSION_VXLAN_GPE] = {
489                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
490                                                   MLX5_EXPANSION_IPV4,
491                                                   MLX5_EXPANSION_IPV6),
492                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
493         },
494         [MLX5_EXPANSION_GRE] = {
495                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
496                 .type = RTE_FLOW_ITEM_TYPE_GRE,
497         },
498         [MLX5_EXPANSION_MPLS] = {
499                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
500                                                   MLX5_EXPANSION_IPV6),
501                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
502         },
503         [MLX5_EXPANSION_ETH] = {
504                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
505                                                   MLX5_EXPANSION_IPV6),
506                 .type = RTE_FLOW_ITEM_TYPE_ETH,
507         },
508         [MLX5_EXPANSION_ETH_VLAN] = {
509                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
510                 .type = RTE_FLOW_ITEM_TYPE_ETH,
511         },
512         [MLX5_EXPANSION_VLAN] = {
513                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
514                                                   MLX5_EXPANSION_IPV6),
515                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
516         },
517         [MLX5_EXPANSION_IPV4] = {
518                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
519                                                   MLX5_EXPANSION_IPV4_TCP),
520                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
521                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
522                         ETH_RSS_NONFRAG_IPV4_OTHER,
523         },
524         [MLX5_EXPANSION_IPV4_UDP] = {
525                 .type = RTE_FLOW_ITEM_TYPE_UDP,
526                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
527         },
528         [MLX5_EXPANSION_IPV4_TCP] = {
529                 .type = RTE_FLOW_ITEM_TYPE_TCP,
530                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
531         },
532         [MLX5_EXPANSION_IPV6] = {
533                 .next = MLX5_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
534                                                   MLX5_EXPANSION_IPV6_TCP),
535                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
536                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
537                         ETH_RSS_NONFRAG_IPV6_OTHER,
538         },
539         [MLX5_EXPANSION_IPV6_UDP] = {
540                 .type = RTE_FLOW_ITEM_TYPE_UDP,
541                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
542         },
543         [MLX5_EXPANSION_IPV6_TCP] = {
544                 .type = RTE_FLOW_ITEM_TYPE_TCP,
545                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
546         },
547 };
548
549 static const struct rte_flow_ops mlx5_flow_ops = {
550         .validate = mlx5_flow_validate,
551         .create = mlx5_flow_create,
552         .destroy = mlx5_flow_destroy,
553         .flush = mlx5_flow_flush,
554         .isolate = mlx5_flow_isolate,
555         .query = mlx5_flow_query,
556         .dev_dump = mlx5_flow_dev_dump,
557         .get_aged_flows = mlx5_flow_get_aged_flows,
558 };
559
560 /* Convert FDIR request to Generic flow. */
561 struct mlx5_fdir {
562         struct rte_flow_attr attr;
563         struct rte_flow_item items[4];
564         struct rte_flow_item_eth l2;
565         struct rte_flow_item_eth l2_mask;
566         union {
567                 struct rte_flow_item_ipv4 ipv4;
568                 struct rte_flow_item_ipv6 ipv6;
569         } l3;
570         union {
571                 struct rte_flow_item_ipv4 ipv4;
572                 struct rte_flow_item_ipv6 ipv6;
573         } l3_mask;
574         union {
575                 struct rte_flow_item_udp udp;
576                 struct rte_flow_item_tcp tcp;
577         } l4;
578         union {
579                 struct rte_flow_item_udp udp;
580                 struct rte_flow_item_tcp tcp;
581         } l4_mask;
582         struct rte_flow_action actions[2];
583         struct rte_flow_action_queue queue;
584 };
585
586 /* Tunnel information. */
587 struct mlx5_flow_tunnel_info {
588         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
589         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
590 };
591
592 static struct mlx5_flow_tunnel_info tunnels_info[] = {
593         {
594                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
595                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
596         },
597         {
598                 .tunnel = MLX5_FLOW_LAYER_GENEVE,
599                 .ptype = RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP,
600         },
601         {
602                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
603                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
604         },
605         {
606                 .tunnel = MLX5_FLOW_LAYER_GRE,
607                 .ptype = RTE_PTYPE_TUNNEL_GRE,
608         },
609         {
610                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
611                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
612         },
613         {
614                 .tunnel = MLX5_FLOW_LAYER_MPLS,
615                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
616         },
617         {
618                 .tunnel = MLX5_FLOW_LAYER_NVGRE,
619                 .ptype = RTE_PTYPE_TUNNEL_NVGRE,
620         },
621         {
622                 .tunnel = MLX5_FLOW_LAYER_IPIP,
623                 .ptype = RTE_PTYPE_TUNNEL_IP,
624         },
625         {
626                 .tunnel = MLX5_FLOW_LAYER_IPV6_ENCAP,
627                 .ptype = RTE_PTYPE_TUNNEL_IP,
628         },
629         {
630                 .tunnel = MLX5_FLOW_LAYER_GTP,
631                 .ptype = RTE_PTYPE_TUNNEL_GTPU,
632         },
633 };
634
635 /**
636  * Translate tag ID to register.
637  *
638  * @param[in] dev
639  *   Pointer to the Ethernet device structure.
640  * @param[in] feature
641  *   The feature that request the register.
642  * @param[in] id
643  *   The request register ID.
644  * @param[out] error
645  *   Error description in case of any.
646  *
647  * @return
648  *   The request register on success, a negative errno
649  *   value otherwise and rte_errno is set.
650  */
651 int
652 mlx5_flow_get_reg_id(struct rte_eth_dev *dev,
653                      enum mlx5_feature_name feature,
654                      uint32_t id,
655                      struct rte_flow_error *error)
656 {
657         struct mlx5_priv *priv = dev->data->dev_private;
658         struct mlx5_dev_config *config = &priv->config;
659         enum modify_reg start_reg;
660         bool skip_mtr_reg = false;
661
662         switch (feature) {
663         case MLX5_HAIRPIN_RX:
664                 return REG_B;
665         case MLX5_HAIRPIN_TX:
666                 return REG_A;
667         case MLX5_METADATA_RX:
668                 switch (config->dv_xmeta_en) {
669                 case MLX5_XMETA_MODE_LEGACY:
670                         return REG_B;
671                 case MLX5_XMETA_MODE_META16:
672                         return REG_C_0;
673                 case MLX5_XMETA_MODE_META32:
674                         return REG_C_1;
675                 }
676                 break;
677         case MLX5_METADATA_TX:
678                 return REG_A;
679         case MLX5_METADATA_FDB:
680                 switch (config->dv_xmeta_en) {
681                 case MLX5_XMETA_MODE_LEGACY:
682                         return REG_NON;
683                 case MLX5_XMETA_MODE_META16:
684                         return REG_C_0;
685                 case MLX5_XMETA_MODE_META32:
686                         return REG_C_1;
687                 }
688                 break;
689         case MLX5_FLOW_MARK:
690                 switch (config->dv_xmeta_en) {
691                 case MLX5_XMETA_MODE_LEGACY:
692                         return REG_NON;
693                 case MLX5_XMETA_MODE_META16:
694                         return REG_C_1;
695                 case MLX5_XMETA_MODE_META32:
696                         return REG_C_0;
697                 }
698                 break;
699         case MLX5_MTR_SFX:
700                 /*
701                  * If meter color and flow match share one register, flow match
702                  * should use the meter color register for match.
703                  */
704                 if (priv->mtr_reg_share)
705                         return priv->mtr_color_reg;
706                 else
707                         return priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
708                                REG_C_3;
709         case MLX5_MTR_COLOR:
710                 MLX5_ASSERT(priv->mtr_color_reg != REG_NON);
711                 return priv->mtr_color_reg;
712         case MLX5_COPY_MARK:
713                 /*
714                  * Metadata COPY_MARK register using is in meter suffix sub
715                  * flow while with meter. It's safe to share the same register.
716                  */
717                 return priv->mtr_color_reg != REG_C_2 ? REG_C_2 : REG_C_3;
718         case MLX5_APP_TAG:
719                 /*
720                  * If meter is enable, it will engage the register for color
721                  * match and flow match. If meter color match is not using the
722                  * REG_C_2, need to skip the REG_C_x be used by meter color
723                  * match.
724                  * If meter is disable, free to use all available registers.
725                  */
726                 start_reg = priv->mtr_color_reg != REG_C_2 ? REG_C_2 :
727                             (priv->mtr_reg_share ? REG_C_3 : REG_C_4);
728                 skip_mtr_reg = !!(priv->mtr_en && start_reg == REG_C_2);
729                 if (id > (REG_C_7 - start_reg))
730                         return rte_flow_error_set(error, EINVAL,
731                                                   RTE_FLOW_ERROR_TYPE_ITEM,
732                                                   NULL, "invalid tag id");
733                 if (config->flow_mreg_c[id + start_reg - REG_C_0] == REG_NON)
734                         return rte_flow_error_set(error, ENOTSUP,
735                                                   RTE_FLOW_ERROR_TYPE_ITEM,
736                                                   NULL, "unsupported tag id");
737                 /*
738                  * This case means meter is using the REG_C_x great than 2.
739                  * Take care not to conflict with meter color REG_C_x.
740                  * If the available index REG_C_y >= REG_C_x, skip the
741                  * color register.
742                  */
743                 if (skip_mtr_reg && config->flow_mreg_c
744                     [id + start_reg - REG_C_0] >= priv->mtr_color_reg) {
745                         if (id >= (REG_C_7 - start_reg))
746                                 return rte_flow_error_set(error, EINVAL,
747                                                        RTE_FLOW_ERROR_TYPE_ITEM,
748                                                         NULL, "invalid tag id");
749                         if (config->flow_mreg_c
750                             [id + 1 + start_reg - REG_C_0] != REG_NON)
751                                 return config->flow_mreg_c
752                                                [id + 1 + start_reg - REG_C_0];
753                         return rte_flow_error_set(error, ENOTSUP,
754                                                   RTE_FLOW_ERROR_TYPE_ITEM,
755                                                   NULL, "unsupported tag id");
756                 }
757                 return config->flow_mreg_c[id + start_reg - REG_C_0];
758         }
759         MLX5_ASSERT(false);
760         return rte_flow_error_set(error, EINVAL,
761                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
762                                   NULL, "invalid feature name");
763 }
764
765 /**
766  * Check extensive flow metadata register support.
767  *
768  * @param dev
769  *   Pointer to rte_eth_dev structure.
770  *
771  * @return
772  *   True if device supports extensive flow metadata register, otherwise false.
773  */
774 bool
775 mlx5_flow_ext_mreg_supported(struct rte_eth_dev *dev)
776 {
777         struct mlx5_priv *priv = dev->data->dev_private;
778         struct mlx5_dev_config *config = &priv->config;
779
780         /*
781          * Having available reg_c can be regarded inclusively as supporting
782          * extensive flow metadata register, which could mean,
783          * - metadata register copy action by modify header.
784          * - 16 modify header actions is supported.
785          * - reg_c's are preserved across different domain (FDB and NIC) on
786          *   packet loopback by flow lookup miss.
787          */
788         return config->flow_mreg_c[2] != REG_NON;
789 }
790
791 /**
792  * Verify the @p item specifications (spec, last, mask) are compatible with the
793  * NIC capabilities.
794  *
795  * @param[in] item
796  *   Item specification.
797  * @param[in] mask
798  *   @p item->mask or flow default bit-masks.
799  * @param[in] nic_mask
800  *   Bit-masks covering supported fields by the NIC to compare with user mask.
801  * @param[in] size
802  *   Bit-masks size in bytes.
803  * @param[out] error
804  *   Pointer to error structure.
805  *
806  * @return
807  *   0 on success, a negative errno value otherwise and rte_errno is set.
808  */
809 int
810 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
811                           const uint8_t *mask,
812                           const uint8_t *nic_mask,
813                           unsigned int size,
814                           struct rte_flow_error *error)
815 {
816         unsigned int i;
817
818         MLX5_ASSERT(nic_mask);
819         for (i = 0; i < size; ++i)
820                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
821                         return rte_flow_error_set(error, ENOTSUP,
822                                                   RTE_FLOW_ERROR_TYPE_ITEM,
823                                                   item,
824                                                   "mask enables non supported"
825                                                   " bits");
826         if (!item->spec && (item->mask || item->last))
827                 return rte_flow_error_set(error, EINVAL,
828                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
829                                           "mask/last without a spec is not"
830                                           " supported");
831         if (item->spec && item->last) {
832                 uint8_t spec[size];
833                 uint8_t last[size];
834                 unsigned int i;
835                 int ret;
836
837                 for (i = 0; i < size; ++i) {
838                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
839                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
840                 }
841                 ret = memcmp(spec, last, size);
842                 if (ret != 0)
843                         return rte_flow_error_set(error, EINVAL,
844                                                   RTE_FLOW_ERROR_TYPE_ITEM,
845                                                   item,
846                                                   "range is not valid");
847         }
848         return 0;
849 }
850
851 /**
852  * Adjust the hash fields according to the @p flow information.
853  *
854  * @param[in] dev_flow.
855  *   Pointer to the mlx5_flow.
856  * @param[in] tunnel
857  *   1 when the hash field is for a tunnel item.
858  * @param[in] layer_types
859  *   ETH_RSS_* types.
860  * @param[in] hash_fields
861  *   Item hash fields.
862  *
863  * @return
864  *   The hash fields that should be used.
865  */
866 uint64_t
867 mlx5_flow_hashfields_adjust(struct mlx5_flow_rss_desc *rss_desc,
868                             int tunnel __rte_unused, uint64_t layer_types,
869                             uint64_t hash_fields)
870 {
871 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
872         int rss_request_inner = rss_desc->level >= 2;
873
874         /* Check RSS hash level for tunnel. */
875         if (tunnel && rss_request_inner)
876                 hash_fields |= IBV_RX_HASH_INNER;
877         else if (tunnel || rss_request_inner)
878                 return 0;
879 #endif
880         /* Check if requested layer matches RSS hash fields. */
881         if (!(rss_desc->types & layer_types))
882                 return 0;
883         return hash_fields;
884 }
885
886 /**
887  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
888  * if several tunnel rules are used on this queue, the tunnel ptype will be
889  * cleared.
890  *
891  * @param rxq_ctrl
892  *   Rx queue to update.
893  */
894 static void
895 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
896 {
897         unsigned int i;
898         uint32_t tunnel_ptype = 0;
899
900         /* Look up for the ptype to use. */
901         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
902                 if (!rxq_ctrl->flow_tunnels_n[i])
903                         continue;
904                 if (!tunnel_ptype) {
905                         tunnel_ptype = tunnels_info[i].ptype;
906                 } else {
907                         tunnel_ptype = 0;
908                         break;
909                 }
910         }
911         rxq_ctrl->rxq.tunnel = tunnel_ptype;
912 }
913
914 /**
915  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
916  * flow.
917  *
918  * @param[in] dev
919  *   Pointer to the Ethernet device structure.
920  * @param[in] dev_handle
921  *   Pointer to device flow handle structure.
922  */
923 static void
924 flow_drv_rxq_flags_set(struct rte_eth_dev *dev,
925                        struct mlx5_flow_handle *dev_handle)
926 {
927         struct mlx5_priv *priv = dev->data->dev_private;
928         const int mark = dev_handle->mark;
929         const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
930         struct mlx5_hrxq *hrxq;
931         unsigned int i;
932
933         if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE)
934                 return;
935         hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
936                               dev_handle->rix_hrxq);
937         if (!hrxq)
938                 return;
939         for (i = 0; i != hrxq->ind_table->queues_n; ++i) {
940                 int idx = hrxq->ind_table->queues[i];
941                 struct mlx5_rxq_ctrl *rxq_ctrl =
942                         container_of((*priv->rxqs)[idx],
943                                      struct mlx5_rxq_ctrl, rxq);
944
945                 /*
946                  * To support metadata register copy on Tx loopback,
947                  * this must be always enabled (metadata may arive
948                  * from other port - not from local flows only.
949                  */
950                 if (priv->config.dv_flow_en &&
951                     priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
952                     mlx5_flow_ext_mreg_supported(dev)) {
953                         rxq_ctrl->rxq.mark = 1;
954                         rxq_ctrl->flow_mark_n = 1;
955                 } else if (mark) {
956                         rxq_ctrl->rxq.mark = 1;
957                         rxq_ctrl->flow_mark_n++;
958                 }
959                 if (tunnel) {
960                         unsigned int j;
961
962                         /* Increase the counter matching the flow. */
963                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
964                                 if ((tunnels_info[j].tunnel &
965                                      dev_handle->layers) ==
966                                     tunnels_info[j].tunnel) {
967                                         rxq_ctrl->flow_tunnels_n[j]++;
968                                         break;
969                                 }
970                         }
971                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
972                 }
973         }
974 }
975
976 /**
977  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
978  *
979  * @param[in] dev
980  *   Pointer to the Ethernet device structure.
981  * @param[in] flow
982  *   Pointer to flow structure.
983  */
984 static void
985 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
986 {
987         struct mlx5_priv *priv = dev->data->dev_private;
988         uint32_t handle_idx;
989         struct mlx5_flow_handle *dev_handle;
990
991         SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
992                        handle_idx, dev_handle, next)
993                 flow_drv_rxq_flags_set(dev, dev_handle);
994 }
995
996 /**
997  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
998  * device flow if no other flow uses it with the same kind of request.
999  *
1000  * @param dev
1001  *   Pointer to Ethernet device.
1002  * @param[in] dev_handle
1003  *   Pointer to the device flow handle structure.
1004  */
1005 static void
1006 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev,
1007                         struct mlx5_flow_handle *dev_handle)
1008 {
1009         struct mlx5_priv *priv = dev->data->dev_private;
1010         const int mark = dev_handle->mark;
1011         const int tunnel = !!(dev_handle->layers & MLX5_FLOW_LAYER_TUNNEL);
1012         struct mlx5_hrxq *hrxq;
1013         unsigned int i;
1014
1015         if (dev_handle->fate_action != MLX5_FLOW_FATE_QUEUE)
1016                 return;
1017         hrxq = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_HRXQ],
1018                               dev_handle->rix_hrxq);
1019         if (!hrxq)
1020                 return;
1021         MLX5_ASSERT(dev->data->dev_started);
1022         for (i = 0; i != hrxq->ind_table->queues_n; ++i) {
1023                 int idx = hrxq->ind_table->queues[i];
1024                 struct mlx5_rxq_ctrl *rxq_ctrl =
1025                         container_of((*priv->rxqs)[idx],
1026                                      struct mlx5_rxq_ctrl, rxq);
1027
1028                 if (priv->config.dv_flow_en &&
1029                     priv->config.dv_xmeta_en != MLX5_XMETA_MODE_LEGACY &&
1030                     mlx5_flow_ext_mreg_supported(dev)) {
1031                         rxq_ctrl->rxq.mark = 1;
1032                         rxq_ctrl->flow_mark_n = 1;
1033                 } else if (mark) {
1034                         rxq_ctrl->flow_mark_n--;
1035                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
1036                 }
1037                 if (tunnel) {
1038                         unsigned int j;
1039
1040                         /* Decrease the counter matching the flow. */
1041                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
1042                                 if ((tunnels_info[j].tunnel &
1043                                      dev_handle->layers) ==
1044                                     tunnels_info[j].tunnel) {
1045                                         rxq_ctrl->flow_tunnels_n[j]--;
1046                                         break;
1047                                 }
1048                         }
1049                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
1050                 }
1051         }
1052 }
1053
1054 /**
1055  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
1056  * @p flow if no other flow uses it with the same kind of request.
1057  *
1058  * @param dev
1059  *   Pointer to Ethernet device.
1060  * @param[in] flow
1061  *   Pointer to the flow.
1062  */
1063 static void
1064 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
1065 {
1066         struct mlx5_priv *priv = dev->data->dev_private;
1067         uint32_t handle_idx;
1068         struct mlx5_flow_handle *dev_handle;
1069
1070         SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
1071                        handle_idx, dev_handle, next)
1072                 flow_drv_rxq_flags_trim(dev, dev_handle);
1073 }
1074
1075 /**
1076  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
1077  *
1078  * @param dev
1079  *   Pointer to Ethernet device.
1080  */
1081 static void
1082 flow_rxq_flags_clear(struct rte_eth_dev *dev)
1083 {
1084         struct mlx5_priv *priv = dev->data->dev_private;
1085         unsigned int i;
1086
1087         for (i = 0; i != priv->rxqs_n; ++i) {
1088                 struct mlx5_rxq_ctrl *rxq_ctrl;
1089                 unsigned int j;
1090
1091                 if (!(*priv->rxqs)[i])
1092                         continue;
1093                 rxq_ctrl = container_of((*priv->rxqs)[i],
1094                                         struct mlx5_rxq_ctrl, rxq);
1095                 rxq_ctrl->flow_mark_n = 0;
1096                 rxq_ctrl->rxq.mark = 0;
1097                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
1098                         rxq_ctrl->flow_tunnels_n[j] = 0;
1099                 rxq_ctrl->rxq.tunnel = 0;
1100         }
1101 }
1102
1103 /**
1104  * Set the Rx queue dynamic metadata (mask and offset) for a flow
1105  *
1106  * @param[in] dev
1107  *   Pointer to the Ethernet device structure.
1108  */
1109 void
1110 mlx5_flow_rxq_dynf_metadata_set(struct rte_eth_dev *dev)
1111 {
1112         struct mlx5_priv *priv = dev->data->dev_private;
1113         struct mlx5_rxq_data *data;
1114         unsigned int i;
1115
1116         for (i = 0; i != priv->rxqs_n; ++i) {
1117                 if (!(*priv->rxqs)[i])
1118                         continue;
1119                 data = (*priv->rxqs)[i];
1120                 if (!rte_flow_dynf_metadata_avail()) {
1121                         data->dynf_meta = 0;
1122                         data->flow_meta_mask = 0;
1123                         data->flow_meta_offset = -1;
1124                 } else {
1125                         data->dynf_meta = 1;
1126                         data->flow_meta_mask = rte_flow_dynf_metadata_mask;
1127                         data->flow_meta_offset = rte_flow_dynf_metadata_offs;
1128                 }
1129         }
1130 }
1131
1132 /*
1133  * return a pointer to the desired action in the list of actions.
1134  *
1135  * @param[in] actions
1136  *   The list of actions to search the action in.
1137  * @param[in] action
1138  *   The action to find.
1139  *
1140  * @return
1141  *   Pointer to the action in the list, if found. NULL otherwise.
1142  */
1143 const struct rte_flow_action *
1144 mlx5_flow_find_action(const struct rte_flow_action *actions,
1145                       enum rte_flow_action_type action)
1146 {
1147         if (actions == NULL)
1148                 return NULL;
1149         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++)
1150                 if (actions->type == action)
1151                         return actions;
1152         return NULL;
1153 }
1154
1155 /*
1156  * Validate the flag action.
1157  *
1158  * @param[in] action_flags
1159  *   Bit-fields that holds the actions detected until now.
1160  * @param[in] attr
1161  *   Attributes of flow that includes this action.
1162  * @param[out] error
1163  *   Pointer to error structure.
1164  *
1165  * @return
1166  *   0 on success, a negative errno value otherwise and rte_errno is set.
1167  */
1168 int
1169 mlx5_flow_validate_action_flag(uint64_t action_flags,
1170                                const struct rte_flow_attr *attr,
1171                                struct rte_flow_error *error)
1172 {
1173         if (action_flags & MLX5_FLOW_ACTION_MARK)
1174                 return rte_flow_error_set(error, EINVAL,
1175                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1176                                           "can't mark and flag in same flow");
1177         if (action_flags & MLX5_FLOW_ACTION_FLAG)
1178                 return rte_flow_error_set(error, EINVAL,
1179                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1180                                           "can't have 2 flag"
1181                                           " actions in same flow");
1182         if (attr->egress)
1183                 return rte_flow_error_set(error, ENOTSUP,
1184                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1185                                           "flag action not supported for "
1186                                           "egress");
1187         return 0;
1188 }
1189
1190 /*
1191  * Validate the mark action.
1192  *
1193  * @param[in] action
1194  *   Pointer to the queue action.
1195  * @param[in] action_flags
1196  *   Bit-fields that holds the actions detected until now.
1197  * @param[in] attr
1198  *   Attributes of flow that includes this action.
1199  * @param[out] error
1200  *   Pointer to error structure.
1201  *
1202  * @return
1203  *   0 on success, a negative errno value otherwise and rte_errno is set.
1204  */
1205 int
1206 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
1207                                uint64_t action_flags,
1208                                const struct rte_flow_attr *attr,
1209                                struct rte_flow_error *error)
1210 {
1211         const struct rte_flow_action_mark *mark = action->conf;
1212
1213         if (!mark)
1214                 return rte_flow_error_set(error, EINVAL,
1215                                           RTE_FLOW_ERROR_TYPE_ACTION,
1216                                           action,
1217                                           "configuration cannot be null");
1218         if (mark->id >= MLX5_FLOW_MARK_MAX)
1219                 return rte_flow_error_set(error, EINVAL,
1220                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1221                                           &mark->id,
1222                                           "mark id must in 0 <= id < "
1223                                           RTE_STR(MLX5_FLOW_MARK_MAX));
1224         if (action_flags & MLX5_FLOW_ACTION_FLAG)
1225                 return rte_flow_error_set(error, EINVAL,
1226                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1227                                           "can't flag and mark in same flow");
1228         if (action_flags & MLX5_FLOW_ACTION_MARK)
1229                 return rte_flow_error_set(error, EINVAL,
1230                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1231                                           "can't have 2 mark actions in same"
1232                                           " flow");
1233         if (attr->egress)
1234                 return rte_flow_error_set(error, ENOTSUP,
1235                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1236                                           "mark action not supported for "
1237                                           "egress");
1238         return 0;
1239 }
1240
1241 /*
1242  * Validate the drop action.
1243  *
1244  * @param[in] action_flags
1245  *   Bit-fields that holds the actions detected until now.
1246  * @param[in] attr
1247  *   Attributes of flow that includes this action.
1248  * @param[out] error
1249  *   Pointer to error structure.
1250  *
1251  * @return
1252  *   0 on success, a negative errno value otherwise and rte_errno is set.
1253  */
1254 int
1255 mlx5_flow_validate_action_drop(uint64_t action_flags __rte_unused,
1256                                const struct rte_flow_attr *attr,
1257                                struct rte_flow_error *error)
1258 {
1259         if (attr->egress)
1260                 return rte_flow_error_set(error, ENOTSUP,
1261                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1262                                           "drop action not supported for "
1263                                           "egress");
1264         return 0;
1265 }
1266
1267 /*
1268  * Validate the queue action.
1269  *
1270  * @param[in] action
1271  *   Pointer to the queue action.
1272  * @param[in] action_flags
1273  *   Bit-fields that holds the actions detected until now.
1274  * @param[in] dev
1275  *   Pointer to the Ethernet device structure.
1276  * @param[in] attr
1277  *   Attributes of flow that includes this action.
1278  * @param[out] error
1279  *   Pointer to error structure.
1280  *
1281  * @return
1282  *   0 on success, a negative errno value otherwise and rte_errno is set.
1283  */
1284 int
1285 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
1286                                 uint64_t action_flags,
1287                                 struct rte_eth_dev *dev,
1288                                 const struct rte_flow_attr *attr,
1289                                 struct rte_flow_error *error)
1290 {
1291         struct mlx5_priv *priv = dev->data->dev_private;
1292         const struct rte_flow_action_queue *queue = action->conf;
1293
1294         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1295                 return rte_flow_error_set(error, EINVAL,
1296                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1297                                           "can't have 2 fate actions in"
1298                                           " same flow");
1299         if (!priv->rxqs_n)
1300                 return rte_flow_error_set(error, EINVAL,
1301                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1302                                           NULL, "No Rx queues configured");
1303         if (queue->index >= priv->rxqs_n)
1304                 return rte_flow_error_set(error, EINVAL,
1305                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1306                                           &queue->index,
1307                                           "queue index out of range");
1308         if (!(*priv->rxqs)[queue->index])
1309                 return rte_flow_error_set(error, EINVAL,
1310                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1311                                           &queue->index,
1312                                           "queue is not configured");
1313         if (attr->egress)
1314                 return rte_flow_error_set(error, ENOTSUP,
1315                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1316                                           "queue action not supported for "
1317                                           "egress");
1318         return 0;
1319 }
1320
1321 /*
1322  * Validate the rss action.
1323  *
1324  * @param[in] action
1325  *   Pointer to the queue action.
1326  * @param[in] action_flags
1327  *   Bit-fields that holds the actions detected until now.
1328  * @param[in] dev
1329  *   Pointer to the Ethernet device structure.
1330  * @param[in] attr
1331  *   Attributes of flow that includes this action.
1332  * @param[in] item_flags
1333  *   Items that were detected.
1334  * @param[out] error
1335  *   Pointer to error structure.
1336  *
1337  * @return
1338  *   0 on success, a negative errno value otherwise and rte_errno is set.
1339  */
1340 int
1341 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
1342                               uint64_t action_flags,
1343                               struct rte_eth_dev *dev,
1344                               const struct rte_flow_attr *attr,
1345                               uint64_t item_flags,
1346                               struct rte_flow_error *error)
1347 {
1348         struct mlx5_priv *priv = dev->data->dev_private;
1349         const struct rte_flow_action_rss *rss = action->conf;
1350         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1351         unsigned int i;
1352
1353         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1354                 return rte_flow_error_set(error, EINVAL,
1355                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1356                                           "can't have 2 fate actions"
1357                                           " in same flow");
1358         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
1359             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
1360                 return rte_flow_error_set(error, ENOTSUP,
1361                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1362                                           &rss->func,
1363                                           "RSS hash function not supported");
1364 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
1365         if (rss->level > 2)
1366 #else
1367         if (rss->level > 1)
1368 #endif
1369                 return rte_flow_error_set(error, ENOTSUP,
1370                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1371                                           &rss->level,
1372                                           "tunnel RSS is not supported");
1373         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
1374         if (rss->key_len == 0 && rss->key != NULL)
1375                 return rte_flow_error_set(error, ENOTSUP,
1376                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1377                                           &rss->key_len,
1378                                           "RSS hash key length 0");
1379         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
1380                 return rte_flow_error_set(error, ENOTSUP,
1381                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1382                                           &rss->key_len,
1383                                           "RSS hash key too small");
1384         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
1385                 return rte_flow_error_set(error, ENOTSUP,
1386                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1387                                           &rss->key_len,
1388                                           "RSS hash key too large");
1389         if (rss->queue_num > priv->config.ind_table_max_size)
1390                 return rte_flow_error_set(error, ENOTSUP,
1391                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1392                                           &rss->queue_num,
1393                                           "number of queues too large");
1394         if (rss->types & MLX5_RSS_HF_MASK)
1395                 return rte_flow_error_set(error, ENOTSUP,
1396                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1397                                           &rss->types,
1398                                           "some RSS protocols are not"
1399                                           " supported");
1400         if ((rss->types & (ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY)) &&
1401             !(rss->types & ETH_RSS_IP))
1402                 return rte_flow_error_set(error, EINVAL,
1403                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1404                                           "L3 partial RSS requested but L3 RSS"
1405                                           " type not specified");
1406         if ((rss->types & (ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY)) &&
1407             !(rss->types & (ETH_RSS_UDP | ETH_RSS_TCP)))
1408                 return rte_flow_error_set(error, EINVAL,
1409                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1410                                           "L4 partial RSS requested but L4 RSS"
1411                                           " type not specified");
1412         if (!priv->rxqs_n)
1413                 return rte_flow_error_set(error, EINVAL,
1414                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1415                                           NULL, "No Rx queues configured");
1416         if (!rss->queue_num)
1417                 return rte_flow_error_set(error, EINVAL,
1418                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1419                                           NULL, "No queues configured");
1420         for (i = 0; i != rss->queue_num; ++i) {
1421                 if (rss->queue[i] >= priv->rxqs_n)
1422                         return rte_flow_error_set
1423                                 (error, EINVAL,
1424                                  RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1425                                  &rss->queue[i], "queue index out of range");
1426                 if (!(*priv->rxqs)[rss->queue[i]])
1427                         return rte_flow_error_set
1428                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
1429                                  &rss->queue[i], "queue is not configured");
1430         }
1431         if (attr->egress)
1432                 return rte_flow_error_set(error, ENOTSUP,
1433                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1434                                           "rss action not supported for "
1435                                           "egress");
1436         if (rss->level > 1 && !tunnel)
1437                 return rte_flow_error_set(error, EINVAL,
1438                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1439                                           "inner RSS is not supported for "
1440                                           "non-tunnel flows");
1441         if ((item_flags & MLX5_FLOW_LAYER_ECPRI) &&
1442             !(item_flags & MLX5_FLOW_LAYER_INNER_L4_UDP)) {
1443                 return rte_flow_error_set(error, EINVAL,
1444                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
1445                                           "RSS on eCPRI is not supported now");
1446         }
1447         return 0;
1448 }
1449
1450 /*
1451  * Validate the default miss action.
1452  *
1453  * @param[in] action_flags
1454  *   Bit-fields that holds the actions detected until now.
1455  * @param[out] error
1456  *   Pointer to error structure.
1457  *
1458  * @return
1459  *   0 on success, a negative errno value otherwise and rte_errno is set.
1460  */
1461 int
1462 mlx5_flow_validate_action_default_miss(uint64_t action_flags,
1463                                 const struct rte_flow_attr *attr,
1464                                 struct rte_flow_error *error)
1465 {
1466         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
1467                 return rte_flow_error_set(error, EINVAL,
1468                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
1469                                           "can't have 2 fate actions in"
1470                                           " same flow");
1471         if (attr->egress)
1472                 return rte_flow_error_set(error, ENOTSUP,
1473                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1474                                           "default miss action not supported "
1475                                           "for egress");
1476         if (attr->group)
1477                 return rte_flow_error_set(error, ENOTSUP,
1478                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP, NULL,
1479                                           "only group 0 is supported");
1480         if (attr->transfer)
1481                 return rte_flow_error_set(error, ENOTSUP,
1482                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1483                                           NULL, "transfer is not supported");
1484         return 0;
1485 }
1486
1487 /*
1488  * Validate the count action.
1489  *
1490  * @param[in] dev
1491  *   Pointer to the Ethernet device structure.
1492  * @param[in] attr
1493  *   Attributes of flow that includes this action.
1494  * @param[out] error
1495  *   Pointer to error structure.
1496  *
1497  * @return
1498  *   0 on success, a negative errno value otherwise and rte_errno is set.
1499  */
1500 int
1501 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1502                                 const struct rte_flow_attr *attr,
1503                                 struct rte_flow_error *error)
1504 {
1505         if (attr->egress)
1506                 return rte_flow_error_set(error, ENOTSUP,
1507                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1508                                           "count action not supported for "
1509                                           "egress");
1510         return 0;
1511 }
1512
1513 /**
1514  * Verify the @p attributes will be correctly understood by the NIC and store
1515  * them in the @p flow if everything is correct.
1516  *
1517  * @param[in] dev
1518  *   Pointer to the Ethernet device structure.
1519  * @param[in] attributes
1520  *   Pointer to flow attributes
1521  * @param[out] error
1522  *   Pointer to error structure.
1523  *
1524  * @return
1525  *   0 on success, a negative errno value otherwise and rte_errno is set.
1526  */
1527 int
1528 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1529                               const struct rte_flow_attr *attributes,
1530                               struct rte_flow_error *error)
1531 {
1532         struct mlx5_priv *priv = dev->data->dev_private;
1533         uint32_t priority_max = priv->config.flow_prio - 1;
1534
1535         if (attributes->group)
1536                 return rte_flow_error_set(error, ENOTSUP,
1537                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1538                                           NULL, "groups is not supported");
1539         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1540             attributes->priority >= priority_max)
1541                 return rte_flow_error_set(error, ENOTSUP,
1542                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1543                                           NULL, "priority out of range");
1544         if (attributes->egress)
1545                 return rte_flow_error_set(error, ENOTSUP,
1546                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1547                                           "egress is not supported");
1548         if (attributes->transfer && !priv->config.dv_esw_en)
1549                 return rte_flow_error_set(error, ENOTSUP,
1550                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1551                                           NULL, "transfer is not supported");
1552         if (!attributes->ingress)
1553                 return rte_flow_error_set(error, EINVAL,
1554                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1555                                           NULL,
1556                                           "ingress attribute is mandatory");
1557         return 0;
1558 }
1559
1560 /**
1561  * Validate ICMP6 item.
1562  *
1563  * @param[in] item
1564  *   Item specification.
1565  * @param[in] item_flags
1566  *   Bit-fields that holds the items detected until now.
1567  * @param[out] error
1568  *   Pointer to error structure.
1569  *
1570  * @return
1571  *   0 on success, a negative errno value otherwise and rte_errno is set.
1572  */
1573 int
1574 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1575                                uint64_t item_flags,
1576                                uint8_t target_protocol,
1577                                struct rte_flow_error *error)
1578 {
1579         const struct rte_flow_item_icmp6 *mask = item->mask;
1580         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1581         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1582                                       MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1583         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1584                                       MLX5_FLOW_LAYER_OUTER_L4;
1585         int ret;
1586
1587         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1588                 return rte_flow_error_set(error, EINVAL,
1589                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1590                                           "protocol filtering not compatible"
1591                                           " with ICMP6 layer");
1592         if (!(item_flags & l3m))
1593                 return rte_flow_error_set(error, EINVAL,
1594                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1595                                           "IPv6 is mandatory to filter on"
1596                                           " ICMP6");
1597         if (item_flags & l4m)
1598                 return rte_flow_error_set(error, EINVAL,
1599                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1600                                           "multiple L4 layers not supported");
1601         if (!mask)
1602                 mask = &rte_flow_item_icmp6_mask;
1603         ret = mlx5_flow_item_acceptable
1604                 (item, (const uint8_t *)mask,
1605                  (const uint8_t *)&rte_flow_item_icmp6_mask,
1606                  sizeof(struct rte_flow_item_icmp6), error);
1607         if (ret < 0)
1608                 return ret;
1609         return 0;
1610 }
1611
1612 /**
1613  * Validate ICMP item.
1614  *
1615  * @param[in] item
1616  *   Item specification.
1617  * @param[in] item_flags
1618  *   Bit-fields that holds the items detected until now.
1619  * @param[out] error
1620  *   Pointer to error structure.
1621  *
1622  * @return
1623  *   0 on success, a negative errno value otherwise and rte_errno is set.
1624  */
1625 int
1626 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1627                              uint64_t item_flags,
1628                              uint8_t target_protocol,
1629                              struct rte_flow_error *error)
1630 {
1631         const struct rte_flow_item_icmp *mask = item->mask;
1632         const struct rte_flow_item_icmp nic_mask = {
1633                 .hdr.icmp_type = 0xff,
1634                 .hdr.icmp_code = 0xff,
1635                 .hdr.icmp_ident = RTE_BE16(0xffff),
1636                 .hdr.icmp_seq_nb = RTE_BE16(0xffff),
1637         };
1638         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1639         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1640                                       MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1641         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1642                                       MLX5_FLOW_LAYER_OUTER_L4;
1643         int ret;
1644
1645         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1646                 return rte_flow_error_set(error, EINVAL,
1647                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1648                                           "protocol filtering not compatible"
1649                                           " with ICMP layer");
1650         if (!(item_flags & l3m))
1651                 return rte_flow_error_set(error, EINVAL,
1652                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1653                                           "IPv4 is mandatory to filter"
1654                                           " on ICMP");
1655         if (item_flags & l4m)
1656                 return rte_flow_error_set(error, EINVAL,
1657                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1658                                           "multiple L4 layers not supported");
1659         if (!mask)
1660                 mask = &nic_mask;
1661         ret = mlx5_flow_item_acceptable
1662                 (item, (const uint8_t *)mask,
1663                  (const uint8_t *)&nic_mask,
1664                  sizeof(struct rte_flow_item_icmp), error);
1665         if (ret < 0)
1666                 return ret;
1667         return 0;
1668 }
1669
1670 /**
1671  * Validate Ethernet item.
1672  *
1673  * @param[in] item
1674  *   Item specification.
1675  * @param[in] item_flags
1676  *   Bit-fields that holds the items detected until now.
1677  * @param[out] error
1678  *   Pointer to error structure.
1679  *
1680  * @return
1681  *   0 on success, a negative errno value otherwise and rte_errno is set.
1682  */
1683 int
1684 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1685                             uint64_t item_flags,
1686                             struct rte_flow_error *error)
1687 {
1688         const struct rte_flow_item_eth *mask = item->mask;
1689         const struct rte_flow_item_eth nic_mask = {
1690                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1691                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1692                 .type = RTE_BE16(0xffff),
1693         };
1694         int ret;
1695         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1696         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1697                                        MLX5_FLOW_LAYER_OUTER_L2;
1698
1699         if (item_flags & ethm)
1700                 return rte_flow_error_set(error, ENOTSUP,
1701                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1702                                           "multiple L2 layers not supported");
1703         if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_L3)) ||
1704             (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_L3)))
1705                 return rte_flow_error_set(error, EINVAL,
1706                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1707                                           "L2 layer should not follow "
1708                                           "L3 layers");
1709         if ((!tunnel && (item_flags & MLX5_FLOW_LAYER_OUTER_VLAN)) ||
1710             (tunnel && (item_flags & MLX5_FLOW_LAYER_INNER_VLAN)))
1711                 return rte_flow_error_set(error, EINVAL,
1712                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1713                                           "L2 layer should not follow VLAN");
1714         if (!mask)
1715                 mask = &rte_flow_item_eth_mask;
1716         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1717                                         (const uint8_t *)&nic_mask,
1718                                         sizeof(struct rte_flow_item_eth),
1719                                         error);
1720         return ret;
1721 }
1722
1723 /**
1724  * Validate VLAN item.
1725  *
1726  * @param[in] item
1727  *   Item specification.
1728  * @param[in] item_flags
1729  *   Bit-fields that holds the items detected until now.
1730  * @param[in] dev
1731  *   Ethernet device flow is being created on.
1732  * @param[out] error
1733  *   Pointer to error structure.
1734  *
1735  * @return
1736  *   0 on success, a negative errno value otherwise and rte_errno is set.
1737  */
1738 int
1739 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1740                              uint64_t item_flags,
1741                              struct rte_eth_dev *dev,
1742                              struct rte_flow_error *error)
1743 {
1744         const struct rte_flow_item_vlan *spec = item->spec;
1745         const struct rte_flow_item_vlan *mask = item->mask;
1746         const struct rte_flow_item_vlan nic_mask = {
1747                 .tci = RTE_BE16(UINT16_MAX),
1748                 .inner_type = RTE_BE16(UINT16_MAX),
1749         };
1750         uint16_t vlan_tag = 0;
1751         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1752         int ret;
1753         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1754                                         MLX5_FLOW_LAYER_INNER_L4) :
1755                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1756                                         MLX5_FLOW_LAYER_OUTER_L4);
1757         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1758                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1759
1760         if (item_flags & vlanm)
1761                 return rte_flow_error_set(error, EINVAL,
1762                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1763                                           "multiple VLAN layers not supported");
1764         else if ((item_flags & l34m) != 0)
1765                 return rte_flow_error_set(error, EINVAL,
1766                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1767                                           "VLAN cannot follow L3/L4 layer");
1768         if (!mask)
1769                 mask = &rte_flow_item_vlan_mask;
1770         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1771                                         (const uint8_t *)&nic_mask,
1772                                         sizeof(struct rte_flow_item_vlan),
1773                                         error);
1774         if (ret)
1775                 return ret;
1776         if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1777                 struct mlx5_priv *priv = dev->data->dev_private;
1778
1779                 if (priv->vmwa_context) {
1780                         /*
1781                          * Non-NULL context means we have a virtual machine
1782                          * and SR-IOV enabled, we have to create VLAN interface
1783                          * to make hypervisor to setup E-Switch vport
1784                          * context correctly. We avoid creating the multiple
1785                          * VLAN interfaces, so we cannot support VLAN tag mask.
1786                          */
1787                         return rte_flow_error_set(error, EINVAL,
1788                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1789                                                   item,
1790                                                   "VLAN tag mask is not"
1791                                                   " supported in virtual"
1792                                                   " environment");
1793                 }
1794         }
1795         if (spec) {
1796                 vlan_tag = spec->tci;
1797                 vlan_tag &= mask->tci;
1798         }
1799         /*
1800          * From verbs perspective an empty VLAN is equivalent
1801          * to a packet without VLAN layer.
1802          */
1803         if (!vlan_tag)
1804                 return rte_flow_error_set(error, EINVAL,
1805                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1806                                           item->spec,
1807                                           "VLAN cannot be empty");
1808         return 0;
1809 }
1810
1811 /**
1812  * Validate IPV4 item.
1813  *
1814  * @param[in] item
1815  *   Item specification.
1816  * @param[in] item_flags
1817  *   Bit-fields that holds the items detected until now.
1818  * @param[in] last_item
1819  *   Previous validated item in the pattern items.
1820  * @param[in] ether_type
1821  *   Type in the ethernet layer header (including dot1q).
1822  * @param[in] acc_mask
1823  *   Acceptable mask, if NULL default internal default mask
1824  *   will be used to check whether item fields are supported.
1825  * @param[out] error
1826  *   Pointer to error structure.
1827  *
1828  * @return
1829  *   0 on success, a negative errno value otherwise and rte_errno is set.
1830  */
1831 int
1832 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1833                              uint64_t item_flags,
1834                              uint64_t last_item,
1835                              uint16_t ether_type,
1836                              const struct rte_flow_item_ipv4 *acc_mask,
1837                              struct rte_flow_error *error)
1838 {
1839         const struct rte_flow_item_ipv4 *mask = item->mask;
1840         const struct rte_flow_item_ipv4 *spec = item->spec;
1841         const struct rte_flow_item_ipv4 nic_mask = {
1842                 .hdr = {
1843                         .src_addr = RTE_BE32(0xffffffff),
1844                         .dst_addr = RTE_BE32(0xffffffff),
1845                         .type_of_service = 0xff,
1846                         .next_proto_id = 0xff,
1847                 },
1848         };
1849         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1850         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1851                                       MLX5_FLOW_LAYER_OUTER_L3;
1852         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1853                                       MLX5_FLOW_LAYER_OUTER_L4;
1854         int ret;
1855         uint8_t next_proto = 0xFF;
1856         const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
1857                                   MLX5_FLOW_LAYER_OUTER_VLAN |
1858                                   MLX5_FLOW_LAYER_INNER_VLAN);
1859
1860         if ((last_item & l2_vlan) && ether_type &&
1861             ether_type != RTE_ETHER_TYPE_IPV4)
1862                 return rte_flow_error_set(error, EINVAL,
1863                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1864                                           "IPv4 cannot follow L2/VLAN layer "
1865                                           "which ether type is not IPv4");
1866         if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1867                 if (mask && spec)
1868                         next_proto = mask->hdr.next_proto_id &
1869                                      spec->hdr.next_proto_id;
1870                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1871                         return rte_flow_error_set(error, EINVAL,
1872                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1873                                                   item,
1874                                                   "multiple tunnel "
1875                                                   "not supported");
1876         }
1877         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1878                 return rte_flow_error_set(error, EINVAL,
1879                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1880                                           "wrong tunnel type - IPv6 specified "
1881                                           "but IPv4 item provided");
1882         if (item_flags & l3m)
1883                 return rte_flow_error_set(error, ENOTSUP,
1884                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1885                                           "multiple L3 layers not supported");
1886         else if (item_flags & l4m)
1887                 return rte_flow_error_set(error, EINVAL,
1888                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1889                                           "L3 cannot follow an L4 layer.");
1890         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1891                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1892                 return rte_flow_error_set(error, EINVAL,
1893                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1894                                           "L3 cannot follow an NVGRE layer.");
1895         if (!mask)
1896                 mask = &rte_flow_item_ipv4_mask;
1897         else if (mask->hdr.next_proto_id != 0 &&
1898                  mask->hdr.next_proto_id != 0xff)
1899                 return rte_flow_error_set(error, EINVAL,
1900                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1901                                           "partial mask is not supported"
1902                                           " for protocol");
1903         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1904                                         acc_mask ? (const uint8_t *)acc_mask
1905                                                  : (const uint8_t *)&nic_mask,
1906                                         sizeof(struct rte_flow_item_ipv4),
1907                                         error);
1908         if (ret < 0)
1909                 return ret;
1910         return 0;
1911 }
1912
1913 /**
1914  * Validate IPV6 item.
1915  *
1916  * @param[in] item
1917  *   Item specification.
1918  * @param[in] item_flags
1919  *   Bit-fields that holds the items detected until now.
1920  * @param[in] last_item
1921  *   Previous validated item in the pattern items.
1922  * @param[in] ether_type
1923  *   Type in the ethernet layer header (including dot1q).
1924  * @param[in] acc_mask
1925  *   Acceptable mask, if NULL default internal default mask
1926  *   will be used to check whether item fields are supported.
1927  * @param[out] error
1928  *   Pointer to error structure.
1929  *
1930  * @return
1931  *   0 on success, a negative errno value otherwise and rte_errno is set.
1932  */
1933 int
1934 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1935                              uint64_t item_flags,
1936                              uint64_t last_item,
1937                              uint16_t ether_type,
1938                              const struct rte_flow_item_ipv6 *acc_mask,
1939                              struct rte_flow_error *error)
1940 {
1941         const struct rte_flow_item_ipv6 *mask = item->mask;
1942         const struct rte_flow_item_ipv6 *spec = item->spec;
1943         const struct rte_flow_item_ipv6 nic_mask = {
1944                 .hdr = {
1945                         .src_addr =
1946                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1947                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1948                         .dst_addr =
1949                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1950                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1951                         .vtc_flow = RTE_BE32(0xffffffff),
1952                         .proto = 0xff,
1953                 },
1954         };
1955         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1956         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1957                                       MLX5_FLOW_LAYER_OUTER_L3;
1958         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1959                                       MLX5_FLOW_LAYER_OUTER_L4;
1960         int ret;
1961         uint8_t next_proto = 0xFF;
1962         const uint64_t l2_vlan = (MLX5_FLOW_LAYER_L2 |
1963                                   MLX5_FLOW_LAYER_OUTER_VLAN |
1964                                   MLX5_FLOW_LAYER_INNER_VLAN);
1965
1966         if ((last_item & l2_vlan) && ether_type &&
1967             ether_type != RTE_ETHER_TYPE_IPV6)
1968                 return rte_flow_error_set(error, EINVAL,
1969                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1970                                           "IPv6 cannot follow L2/VLAN layer "
1971                                           "which ether type is not IPv6");
1972         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
1973                 if (mask && spec)
1974                         next_proto = mask->hdr.proto & spec->hdr.proto;
1975                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1976                         return rte_flow_error_set(error, EINVAL,
1977                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1978                                                   item,
1979                                                   "multiple tunnel "
1980                                                   "not supported");
1981         }
1982         if (item_flags & MLX5_FLOW_LAYER_IPIP)
1983                 return rte_flow_error_set(error, EINVAL,
1984                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1985                                           "wrong tunnel type - IPv4 specified "
1986                                           "but IPv6 item provided");
1987         if (item_flags & l3m)
1988                 return rte_flow_error_set(error, ENOTSUP,
1989                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1990                                           "multiple L3 layers not supported");
1991         else if (item_flags & l4m)
1992                 return rte_flow_error_set(error, EINVAL,
1993                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1994                                           "L3 cannot follow an L4 layer.");
1995         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1996                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1997                 return rte_flow_error_set(error, EINVAL,
1998                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1999                                           "L3 cannot follow an NVGRE layer.");
2000         if (!mask)
2001                 mask = &rte_flow_item_ipv6_mask;
2002         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2003                                         acc_mask ? (const uint8_t *)acc_mask
2004                                                  : (const uint8_t *)&nic_mask,
2005                                         sizeof(struct rte_flow_item_ipv6),
2006                                         error);
2007         if (ret < 0)
2008                 return ret;
2009         return 0;
2010 }
2011
2012 /**
2013  * Validate UDP item.
2014  *
2015  * @param[in] item
2016  *   Item specification.
2017  * @param[in] item_flags
2018  *   Bit-fields that holds the items detected until now.
2019  * @param[in] target_protocol
2020  *   The next protocol in the previous item.
2021  * @param[in] flow_mask
2022  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
2023  * @param[out] error
2024  *   Pointer to error structure.
2025  *
2026  * @return
2027  *   0 on success, a negative errno value otherwise and rte_errno is set.
2028  */
2029 int
2030 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
2031                             uint64_t item_flags,
2032                             uint8_t target_protocol,
2033                             struct rte_flow_error *error)
2034 {
2035         const struct rte_flow_item_udp *mask = item->mask;
2036         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2037         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2038                                       MLX5_FLOW_LAYER_OUTER_L3;
2039         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2040                                       MLX5_FLOW_LAYER_OUTER_L4;
2041         int ret;
2042
2043         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
2044                 return rte_flow_error_set(error, EINVAL,
2045                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2046                                           "protocol filtering not compatible"
2047                                           " with UDP layer");
2048         if (!(item_flags & l3m))
2049                 return rte_flow_error_set(error, EINVAL,
2050                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2051                                           "L3 is mandatory to filter on L4");
2052         if (item_flags & l4m)
2053                 return rte_flow_error_set(error, EINVAL,
2054                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2055                                           "multiple L4 layers not supported");
2056         if (!mask)
2057                 mask = &rte_flow_item_udp_mask;
2058         ret = mlx5_flow_item_acceptable
2059                 (item, (const uint8_t *)mask,
2060                  (const uint8_t *)&rte_flow_item_udp_mask,
2061                  sizeof(struct rte_flow_item_udp), error);
2062         if (ret < 0)
2063                 return ret;
2064         return 0;
2065 }
2066
2067 /**
2068  * Validate TCP item.
2069  *
2070  * @param[in] item
2071  *   Item specification.
2072  * @param[in] item_flags
2073  *   Bit-fields that holds the items detected until now.
2074  * @param[in] target_protocol
2075  *   The next protocol in the previous item.
2076  * @param[out] error
2077  *   Pointer to error structure.
2078  *
2079  * @return
2080  *   0 on success, a negative errno value otherwise and rte_errno is set.
2081  */
2082 int
2083 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
2084                             uint64_t item_flags,
2085                             uint8_t target_protocol,
2086                             const struct rte_flow_item_tcp *flow_mask,
2087                             struct rte_flow_error *error)
2088 {
2089         const struct rte_flow_item_tcp *mask = item->mask;
2090         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
2091         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
2092                                       MLX5_FLOW_LAYER_OUTER_L3;
2093         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
2094                                       MLX5_FLOW_LAYER_OUTER_L4;
2095         int ret;
2096
2097         MLX5_ASSERT(flow_mask);
2098         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
2099                 return rte_flow_error_set(error, EINVAL,
2100                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2101                                           "protocol filtering not compatible"
2102                                           " with TCP layer");
2103         if (!(item_flags & l3m))
2104                 return rte_flow_error_set(error, EINVAL,
2105                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2106                                           "L3 is mandatory to filter on L4");
2107         if (item_flags & l4m)
2108                 return rte_flow_error_set(error, EINVAL,
2109                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2110                                           "multiple L4 layers not supported");
2111         if (!mask)
2112                 mask = &rte_flow_item_tcp_mask;
2113         ret = mlx5_flow_item_acceptable
2114                 (item, (const uint8_t *)mask,
2115                  (const uint8_t *)flow_mask,
2116                  sizeof(struct rte_flow_item_tcp), error);
2117         if (ret < 0)
2118                 return ret;
2119         return 0;
2120 }
2121
2122 /**
2123  * Validate VXLAN item.
2124  *
2125  * @param[in] item
2126  *   Item specification.
2127  * @param[in] item_flags
2128  *   Bit-fields that holds the items detected until now.
2129  * @param[in] target_protocol
2130  *   The next protocol in the previous item.
2131  * @param[out] error
2132  *   Pointer to error structure.
2133  *
2134  * @return
2135  *   0 on success, a negative errno value otherwise and rte_errno is set.
2136  */
2137 int
2138 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
2139                               uint64_t item_flags,
2140                               struct rte_flow_error *error)
2141 {
2142         const struct rte_flow_item_vxlan *spec = item->spec;
2143         const struct rte_flow_item_vxlan *mask = item->mask;
2144         int ret;
2145         union vni {
2146                 uint32_t vlan_id;
2147                 uint8_t vni[4];
2148         } id = { .vlan_id = 0, };
2149
2150
2151         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2152                 return rte_flow_error_set(error, ENOTSUP,
2153                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2154                                           "multiple tunnel layers not"
2155                                           " supported");
2156         /*
2157          * Verify only UDPv4 is present as defined in
2158          * https://tools.ietf.org/html/rfc7348
2159          */
2160         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2161                 return rte_flow_error_set(error, EINVAL,
2162                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2163                                           "no outer UDP layer found");
2164         if (!mask)
2165                 mask = &rte_flow_item_vxlan_mask;
2166         ret = mlx5_flow_item_acceptable
2167                 (item, (const uint8_t *)mask,
2168                  (const uint8_t *)&rte_flow_item_vxlan_mask,
2169                  sizeof(struct rte_flow_item_vxlan),
2170                  error);
2171         if (ret < 0)
2172                 return ret;
2173         if (spec) {
2174                 memcpy(&id.vni[1], spec->vni, 3);
2175                 memcpy(&id.vni[1], mask->vni, 3);
2176         }
2177         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2178                 return rte_flow_error_set(error, ENOTSUP,
2179                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2180                                           "VXLAN tunnel must be fully defined");
2181         return 0;
2182 }
2183
2184 /**
2185  * Validate VXLAN_GPE item.
2186  *
2187  * @param[in] item
2188  *   Item specification.
2189  * @param[in] item_flags
2190  *   Bit-fields that holds the items detected until now.
2191  * @param[in] priv
2192  *   Pointer to the private data structure.
2193  * @param[in] target_protocol
2194  *   The next protocol in the previous item.
2195  * @param[out] error
2196  *   Pointer to error structure.
2197  *
2198  * @return
2199  *   0 on success, a negative errno value otherwise and rte_errno is set.
2200  */
2201 int
2202 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
2203                                   uint64_t item_flags,
2204                                   struct rte_eth_dev *dev,
2205                                   struct rte_flow_error *error)
2206 {
2207         struct mlx5_priv *priv = dev->data->dev_private;
2208         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
2209         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
2210         int ret;
2211         union vni {
2212                 uint32_t vlan_id;
2213                 uint8_t vni[4];
2214         } id = { .vlan_id = 0, };
2215
2216         if (!priv->config.l3_vxlan_en)
2217                 return rte_flow_error_set(error, ENOTSUP,
2218                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2219                                           "L3 VXLAN is not enabled by device"
2220                                           " parameter and/or not configured in"
2221                                           " firmware");
2222         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2223                 return rte_flow_error_set(error, ENOTSUP,
2224                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2225                                           "multiple tunnel layers not"
2226                                           " supported");
2227         /*
2228          * Verify only UDPv4 is present as defined in
2229          * https://tools.ietf.org/html/rfc7348
2230          */
2231         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2232                 return rte_flow_error_set(error, EINVAL,
2233                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2234                                           "no outer UDP layer found");
2235         if (!mask)
2236                 mask = &rte_flow_item_vxlan_gpe_mask;
2237         ret = mlx5_flow_item_acceptable
2238                 (item, (const uint8_t *)mask,
2239                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
2240                  sizeof(struct rte_flow_item_vxlan_gpe),
2241                  error);
2242         if (ret < 0)
2243                 return ret;
2244         if (spec) {
2245                 if (spec->protocol)
2246                         return rte_flow_error_set(error, ENOTSUP,
2247                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2248                                                   item,
2249                                                   "VxLAN-GPE protocol"
2250                                                   " not supported");
2251                 memcpy(&id.vni[1], spec->vni, 3);
2252                 memcpy(&id.vni[1], mask->vni, 3);
2253         }
2254         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2255                 return rte_flow_error_set(error, ENOTSUP,
2256                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2257                                           "VXLAN-GPE tunnel must be fully"
2258                                           " defined");
2259         return 0;
2260 }
2261 /**
2262  * Validate GRE Key item.
2263  *
2264  * @param[in] item
2265  *   Item specification.
2266  * @param[in] item_flags
2267  *   Bit flags to mark detected items.
2268  * @param[in] gre_item
2269  *   Pointer to gre_item
2270  * @param[out] error
2271  *   Pointer to error structure.
2272  *
2273  * @return
2274  *   0 on success, a negative errno value otherwise and rte_errno is set.
2275  */
2276 int
2277 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
2278                                 uint64_t item_flags,
2279                                 const struct rte_flow_item *gre_item,
2280                                 struct rte_flow_error *error)
2281 {
2282         const rte_be32_t *mask = item->mask;
2283         int ret = 0;
2284         rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
2285         const struct rte_flow_item_gre *gre_spec;
2286         const struct rte_flow_item_gre *gre_mask;
2287
2288         if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
2289                 return rte_flow_error_set(error, ENOTSUP,
2290                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2291                                           "Multiple GRE key not support");
2292         if (!(item_flags & MLX5_FLOW_LAYER_GRE))
2293                 return rte_flow_error_set(error, ENOTSUP,
2294                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2295                                           "No preceding GRE header");
2296         if (item_flags & MLX5_FLOW_LAYER_INNER)
2297                 return rte_flow_error_set(error, ENOTSUP,
2298                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2299                                           "GRE key following a wrong item");
2300         gre_mask = gre_item->mask;
2301         if (!gre_mask)
2302                 gre_mask = &rte_flow_item_gre_mask;
2303         gre_spec = gre_item->spec;
2304         if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
2305                          !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
2306                 return rte_flow_error_set(error, EINVAL,
2307                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2308                                           "Key bit must be on");
2309
2310         if (!mask)
2311                 mask = &gre_key_default_mask;
2312         ret = mlx5_flow_item_acceptable
2313                 (item, (const uint8_t *)mask,
2314                  (const uint8_t *)&gre_key_default_mask,
2315                  sizeof(rte_be32_t), error);
2316         return ret;
2317 }
2318
2319 /**
2320  * Validate GRE item.
2321  *
2322  * @param[in] item
2323  *   Item specification.
2324  * @param[in] item_flags
2325  *   Bit flags to mark detected items.
2326  * @param[in] target_protocol
2327  *   The next protocol in the previous item.
2328  * @param[out] error
2329  *   Pointer to error structure.
2330  *
2331  * @return
2332  *   0 on success, a negative errno value otherwise and rte_errno is set.
2333  */
2334 int
2335 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
2336                             uint64_t item_flags,
2337                             uint8_t target_protocol,
2338                             struct rte_flow_error *error)
2339 {
2340         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
2341         const struct rte_flow_item_gre *mask = item->mask;
2342         int ret;
2343         const struct rte_flow_item_gre nic_mask = {
2344                 .c_rsvd0_ver = RTE_BE16(0xB000),
2345                 .protocol = RTE_BE16(UINT16_MAX),
2346         };
2347
2348         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2349                 return rte_flow_error_set(error, EINVAL,
2350                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2351                                           "protocol filtering not compatible"
2352                                           " with this GRE layer");
2353         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2354                 return rte_flow_error_set(error, ENOTSUP,
2355                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2356                                           "multiple tunnel layers not"
2357                                           " supported");
2358         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2359                 return rte_flow_error_set(error, ENOTSUP,
2360                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2361                                           "L3 Layer is missing");
2362         if (!mask)
2363                 mask = &rte_flow_item_gre_mask;
2364         ret = mlx5_flow_item_acceptable
2365                 (item, (const uint8_t *)mask,
2366                  (const uint8_t *)&nic_mask,
2367                  sizeof(struct rte_flow_item_gre), error);
2368         if (ret < 0)
2369                 return ret;
2370 #ifndef HAVE_MLX5DV_DR
2371 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
2372         if (spec && (spec->protocol & mask->protocol))
2373                 return rte_flow_error_set(error, ENOTSUP,
2374                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2375                                           "without MPLS support the"
2376                                           " specification cannot be used for"
2377                                           " filtering");
2378 #endif
2379 #endif
2380         return 0;
2381 }
2382
2383 /**
2384  * Validate Geneve item.
2385  *
2386  * @param[in] item
2387  *   Item specification.
2388  * @param[in] itemFlags
2389  *   Bit-fields that holds the items detected until now.
2390  * @param[in] enPriv
2391  *   Pointer to the private data structure.
2392  * @param[out] error
2393  *   Pointer to error structure.
2394  *
2395  * @return
2396  *   0 on success, a negative errno value otherwise and rte_errno is set.
2397  */
2398
2399 int
2400 mlx5_flow_validate_item_geneve(const struct rte_flow_item *item,
2401                                uint64_t item_flags,
2402                                struct rte_eth_dev *dev,
2403                                struct rte_flow_error *error)
2404 {
2405         struct mlx5_priv *priv = dev->data->dev_private;
2406         const struct rte_flow_item_geneve *spec = item->spec;
2407         const struct rte_flow_item_geneve *mask = item->mask;
2408         int ret;
2409         uint16_t gbhdr;
2410         uint8_t opt_len = priv->config.hca_attr.geneve_max_opt_len ?
2411                           MLX5_GENEVE_OPT_LEN_1 : MLX5_GENEVE_OPT_LEN_0;
2412         const struct rte_flow_item_geneve nic_mask = {
2413                 .ver_opt_len_o_c_rsvd0 = RTE_BE16(0x3f80),
2414                 .vni = "\xff\xff\xff",
2415                 .protocol = RTE_BE16(UINT16_MAX),
2416         };
2417
2418         if (!priv->config.hca_attr.tunnel_stateless_geneve_rx)
2419                 return rte_flow_error_set(error, ENOTSUP,
2420                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2421                                           "L3 Geneve is not enabled by device"
2422                                           " parameter and/or not configured in"
2423                                           " firmware");
2424         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2425                 return rte_flow_error_set(error, ENOTSUP,
2426                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2427                                           "multiple tunnel layers not"
2428                                           " supported");
2429         /*
2430          * Verify only UDPv4 is present as defined in
2431          * https://tools.ietf.org/html/rfc7348
2432          */
2433         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
2434                 return rte_flow_error_set(error, EINVAL,
2435                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2436                                           "no outer UDP layer found");
2437         if (!mask)
2438                 mask = &rte_flow_item_geneve_mask;
2439         ret = mlx5_flow_item_acceptable
2440                                   (item, (const uint8_t *)mask,
2441                                    (const uint8_t *)&nic_mask,
2442                                    sizeof(struct rte_flow_item_geneve), error);
2443         if (ret)
2444                 return ret;
2445         if (spec) {
2446                 gbhdr = rte_be_to_cpu_16(spec->ver_opt_len_o_c_rsvd0);
2447                 if (MLX5_GENEVE_VER_VAL(gbhdr) ||
2448                      MLX5_GENEVE_CRITO_VAL(gbhdr) ||
2449                      MLX5_GENEVE_RSVD_VAL(gbhdr) || spec->rsvd1)
2450                         return rte_flow_error_set(error, ENOTSUP,
2451                                                   RTE_FLOW_ERROR_TYPE_ITEM,
2452                                                   item,
2453                                                   "Geneve protocol unsupported"
2454                                                   " fields are being used");
2455                 if (MLX5_GENEVE_OPTLEN_VAL(gbhdr) > opt_len)
2456                         return rte_flow_error_set
2457                                         (error, ENOTSUP,
2458                                          RTE_FLOW_ERROR_TYPE_ITEM,
2459                                          item,
2460                                          "Unsupported Geneve options length");
2461         }
2462         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
2463                 return rte_flow_error_set
2464                                     (error, ENOTSUP,
2465                                      RTE_FLOW_ERROR_TYPE_ITEM, item,
2466                                      "Geneve tunnel must be fully defined");
2467         return 0;
2468 }
2469
2470 /**
2471  * Validate MPLS item.
2472  *
2473  * @param[in] dev
2474  *   Pointer to the rte_eth_dev structure.
2475  * @param[in] item
2476  *   Item specification.
2477  * @param[in] item_flags
2478  *   Bit-fields that holds the items detected until now.
2479  * @param[in] prev_layer
2480  *   The protocol layer indicated in previous item.
2481  * @param[out] error
2482  *   Pointer to error structure.
2483  *
2484  * @return
2485  *   0 on success, a negative errno value otherwise and rte_errno is set.
2486  */
2487 int
2488 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
2489                              const struct rte_flow_item *item __rte_unused,
2490                              uint64_t item_flags __rte_unused,
2491                              uint64_t prev_layer __rte_unused,
2492                              struct rte_flow_error *error)
2493 {
2494 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
2495         const struct rte_flow_item_mpls *mask = item->mask;
2496         struct mlx5_priv *priv = dev->data->dev_private;
2497         int ret;
2498
2499         if (!priv->config.mpls_en)
2500                 return rte_flow_error_set(error, ENOTSUP,
2501                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2502                                           "MPLS not supported or"
2503                                           " disabled in firmware"
2504                                           " configuration.");
2505         /* MPLS over IP, UDP, GRE is allowed */
2506         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
2507                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
2508                             MLX5_FLOW_LAYER_GRE)))
2509                 return rte_flow_error_set(error, EINVAL,
2510                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2511                                           "protocol filtering not compatible"
2512                                           " with MPLS layer");
2513         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
2514         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
2515             !(item_flags & MLX5_FLOW_LAYER_GRE))
2516                 return rte_flow_error_set(error, ENOTSUP,
2517                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2518                                           "multiple tunnel layers not"
2519                                           " supported");
2520         if (!mask)
2521                 mask = &rte_flow_item_mpls_mask;
2522         ret = mlx5_flow_item_acceptable
2523                 (item, (const uint8_t *)mask,
2524                  (const uint8_t *)&rte_flow_item_mpls_mask,
2525                  sizeof(struct rte_flow_item_mpls), error);
2526         if (ret < 0)
2527                 return ret;
2528         return 0;
2529 #else
2530         return rte_flow_error_set(error, ENOTSUP,
2531                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
2532                                   "MPLS is not supported by Verbs, please"
2533                                   " update.");
2534 #endif
2535 }
2536
2537 /**
2538  * Validate NVGRE item.
2539  *
2540  * @param[in] item
2541  *   Item specification.
2542  * @param[in] item_flags
2543  *   Bit flags to mark detected items.
2544  * @param[in] target_protocol
2545  *   The next protocol in the previous item.
2546  * @param[out] error
2547  *   Pointer to error structure.
2548  *
2549  * @return
2550  *   0 on success, a negative errno value otherwise and rte_errno is set.
2551  */
2552 int
2553 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
2554                               uint64_t item_flags,
2555                               uint8_t target_protocol,
2556                               struct rte_flow_error *error)
2557 {
2558         const struct rte_flow_item_nvgre *mask = item->mask;
2559         int ret;
2560
2561         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
2562                 return rte_flow_error_set(error, EINVAL,
2563                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2564                                           "protocol filtering not compatible"
2565                                           " with this GRE layer");
2566         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2567                 return rte_flow_error_set(error, ENOTSUP,
2568                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2569                                           "multiple tunnel layers not"
2570                                           " supported");
2571         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
2572                 return rte_flow_error_set(error, ENOTSUP,
2573                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2574                                           "L3 Layer is missing");
2575         if (!mask)
2576                 mask = &rte_flow_item_nvgre_mask;
2577         ret = mlx5_flow_item_acceptable
2578                 (item, (const uint8_t *)mask,
2579                  (const uint8_t *)&rte_flow_item_nvgre_mask,
2580                  sizeof(struct rte_flow_item_nvgre), error);
2581         if (ret < 0)
2582                 return ret;
2583         return 0;
2584 }
2585
2586 /**
2587  * Validate eCPRI item.
2588  *
2589  * @param[in] item
2590  *   Item specification.
2591  * @param[in] item_flags
2592  *   Bit-fields that holds the items detected until now.
2593  * @param[in] last_item
2594  *   Previous validated item in the pattern items.
2595  * @param[in] ether_type
2596  *   Type in the ethernet layer header (including dot1q).
2597  * @param[in] acc_mask
2598  *   Acceptable mask, if NULL default internal default mask
2599  *   will be used to check whether item fields are supported.
2600  * @param[out] error
2601  *   Pointer to error structure.
2602  *
2603  * @return
2604  *   0 on success, a negative errno value otherwise and rte_errno is set.
2605  */
2606 int
2607 mlx5_flow_validate_item_ecpri(const struct rte_flow_item *item,
2608                               uint64_t item_flags,
2609                               uint64_t last_item,
2610                               uint16_t ether_type,
2611                               const struct rte_flow_item_ecpri *acc_mask,
2612                               struct rte_flow_error *error)
2613 {
2614         const struct rte_flow_item_ecpri *mask = item->mask;
2615         const struct rte_flow_item_ecpri nic_mask = {
2616                 .hdr = {
2617                         .common = {
2618                                 .u32 =
2619                                 RTE_BE32(((const struct rte_ecpri_common_hdr) {
2620                                         .type = 0xFF,
2621                                         }).u32),
2622                         },
2623                         .dummy[0] = 0xFFFFFFFF,
2624                 },
2625         };
2626         const uint64_t outer_l2_vlan = (MLX5_FLOW_LAYER_OUTER_L2 |
2627                                         MLX5_FLOW_LAYER_OUTER_VLAN);
2628         struct rte_flow_item_ecpri mask_lo;
2629
2630         if ((last_item & outer_l2_vlan) && ether_type &&
2631             ether_type != RTE_ETHER_TYPE_ECPRI)
2632                 return rte_flow_error_set(error, EINVAL,
2633                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2634                                           "eCPRI cannot follow L2/VLAN layer "
2635                                           "which ether type is not 0xAEFE.");
2636         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
2637                 return rte_flow_error_set(error, EINVAL,
2638                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2639                                           "eCPRI with tunnel is not supported "
2640                                           "right now.");
2641         if (item_flags & MLX5_FLOW_LAYER_OUTER_L3)
2642                 return rte_flow_error_set(error, ENOTSUP,
2643                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2644                                           "multiple L3 layers not supported");
2645         else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_TCP)
2646                 return rte_flow_error_set(error, EINVAL,
2647                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2648                                           "eCPRI cannot follow a TCP layer.");
2649         /* In specification, eCPRI could be over UDP layer. */
2650         else if (item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP)
2651                 return rte_flow_error_set(error, EINVAL,
2652                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
2653                                           "eCPRI over UDP layer is not yet "
2654                                           "supported right now.");
2655         /* Mask for type field in common header could be zero. */
2656         if (!mask)
2657                 mask = &rte_flow_item_ecpri_mask;
2658         mask_lo.hdr.common.u32 = rte_be_to_cpu_32(mask->hdr.common.u32);
2659         /* Input mask is in big-endian format. */
2660         if (mask_lo.hdr.common.type != 0 && mask_lo.hdr.common.type != 0xff)
2661                 return rte_flow_error_set(error, EINVAL,
2662                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2663                                           "partial mask is not supported "
2664                                           "for protocol");
2665         else if (mask_lo.hdr.common.type == 0 && mask->hdr.dummy[0] != 0)
2666                 return rte_flow_error_set(error, EINVAL,
2667                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
2668                                           "message header mask must be after "
2669                                           "a type mask");
2670         return mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
2671                                          acc_mask ? (const uint8_t *)acc_mask
2672                                                   : (const uint8_t *)&nic_mask,
2673                                          sizeof(struct rte_flow_item_ecpri),
2674                                          error);
2675 }
2676
2677 /* Allocate unique ID for the split Q/RSS subflows. */
2678 static uint32_t
2679 flow_qrss_get_id(struct rte_eth_dev *dev)
2680 {
2681         struct mlx5_priv *priv = dev->data->dev_private;
2682         uint32_t qrss_id, ret;
2683
2684         ret = mlx5_flow_id_get(priv->qrss_id_pool, &qrss_id);
2685         if (ret)
2686                 return 0;
2687         MLX5_ASSERT(qrss_id);
2688         return qrss_id;
2689 }
2690
2691 /* Free unique ID for the split Q/RSS subflows. */
2692 static void
2693 flow_qrss_free_id(struct rte_eth_dev *dev,  uint32_t qrss_id)
2694 {
2695         struct mlx5_priv *priv = dev->data->dev_private;
2696
2697         if (qrss_id)
2698                 mlx5_flow_id_release(priv->qrss_id_pool, qrss_id);
2699 }
2700
2701 /**
2702  * Release resource related QUEUE/RSS action split.
2703  *
2704  * @param dev
2705  *   Pointer to Ethernet device.
2706  * @param flow
2707  *   Flow to release id's from.
2708  */
2709 static void
2710 flow_mreg_split_qrss_release(struct rte_eth_dev *dev,
2711                              struct rte_flow *flow)
2712 {
2713         struct mlx5_priv *priv = dev->data->dev_private;
2714         uint32_t handle_idx;
2715         struct mlx5_flow_handle *dev_handle;
2716
2717         SILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_MLX5_FLOW], flow->dev_handles,
2718                        handle_idx, dev_handle, next)
2719                 if (dev_handle->split_flow_id)
2720                         flow_qrss_free_id(dev, dev_handle->split_flow_id);
2721 }
2722
2723 static int
2724 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
2725                    const struct rte_flow_attr *attr __rte_unused,
2726                    const struct rte_flow_item items[] __rte_unused,
2727                    const struct rte_flow_action actions[] __rte_unused,
2728                    bool external __rte_unused,
2729                    int hairpin __rte_unused,
2730                    struct rte_flow_error *error)
2731 {
2732         return rte_flow_error_set(error, ENOTSUP,
2733                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2734 }
2735
2736 static struct mlx5_flow *
2737 flow_null_prepare(struct rte_eth_dev *dev __rte_unused,
2738                   const struct rte_flow_attr *attr __rte_unused,
2739                   const struct rte_flow_item items[] __rte_unused,
2740                   const struct rte_flow_action actions[] __rte_unused,
2741                   struct rte_flow_error *error)
2742 {
2743         rte_flow_error_set(error, ENOTSUP,
2744                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2745         return NULL;
2746 }
2747
2748 static int
2749 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2750                     struct mlx5_flow *dev_flow __rte_unused,
2751                     const struct rte_flow_attr *attr __rte_unused,
2752                     const struct rte_flow_item items[] __rte_unused,
2753                     const struct rte_flow_action actions[] __rte_unused,
2754                     struct rte_flow_error *error)
2755 {
2756         return rte_flow_error_set(error, ENOTSUP,
2757                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2758 }
2759
2760 static int
2761 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2762                 struct rte_flow *flow __rte_unused,
2763                 struct rte_flow_error *error)
2764 {
2765         return rte_flow_error_set(error, ENOTSUP,
2766                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2767 }
2768
2769 static void
2770 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2771                  struct rte_flow *flow __rte_unused)
2772 {
2773 }
2774
2775 static void
2776 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2777                   struct rte_flow *flow __rte_unused)
2778 {
2779 }
2780
2781 static int
2782 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2783                 struct rte_flow *flow __rte_unused,
2784                 const struct rte_flow_action *actions __rte_unused,
2785                 void *data __rte_unused,
2786                 struct rte_flow_error *error)
2787 {
2788         return rte_flow_error_set(error, ENOTSUP,
2789                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2790 }
2791
2792 /* Void driver to protect from null pointer reference. */
2793 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2794         .validate = flow_null_validate,
2795         .prepare = flow_null_prepare,
2796         .translate = flow_null_translate,
2797         .apply = flow_null_apply,
2798         .remove = flow_null_remove,
2799         .destroy = flow_null_destroy,
2800         .query = flow_null_query,
2801 };
2802
2803 /**
2804  * Select flow driver type according to flow attributes and device
2805  * configuration.
2806  *
2807  * @param[in] dev
2808  *   Pointer to the dev structure.
2809  * @param[in] attr
2810  *   Pointer to the flow attributes.
2811  *
2812  * @return
2813  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2814  */
2815 static enum mlx5_flow_drv_type
2816 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2817 {
2818         struct mlx5_priv *priv = dev->data->dev_private;
2819         /* The OS can determine first a specific flow type (DV, VERBS) */
2820         enum mlx5_flow_drv_type type = mlx5_flow_os_get_type();
2821
2822         if (type != MLX5_FLOW_TYPE_MAX)
2823                 return type;
2824         /* If no OS specific type - continue with DV/VERBS selection */
2825         if (attr->transfer && priv->config.dv_esw_en)
2826                 type = MLX5_FLOW_TYPE_DV;
2827         if (!attr->transfer)
2828                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2829                                                  MLX5_FLOW_TYPE_VERBS;
2830         return type;
2831 }
2832
2833 #define flow_get_drv_ops(type) flow_drv_ops[type]
2834
2835 /**
2836  * Flow driver validation API. This abstracts calling driver specific functions.
2837  * The type of flow driver is determined according to flow attributes.
2838  *
2839  * @param[in] dev
2840  *   Pointer to the dev structure.
2841  * @param[in] attr
2842  *   Pointer to the flow attributes.
2843  * @param[in] items
2844  *   Pointer to the list of items.
2845  * @param[in] actions
2846  *   Pointer to the list of actions.
2847  * @param[in] external
2848  *   This flow rule is created by request external to PMD.
2849  * @param[in] hairpin
2850  *   Number of hairpin TX actions, 0 means classic flow.
2851  * @param[out] error
2852  *   Pointer to the error structure.
2853  *
2854  * @return
2855  *   0 on success, a negative errno value otherwise and rte_errno is set.
2856  */
2857 static inline int
2858 flow_drv_validate(struct rte_eth_dev *dev,
2859                   const struct rte_flow_attr *attr,
2860                   const struct rte_flow_item items[],
2861                   const struct rte_flow_action actions[],
2862                   bool external, int hairpin, struct rte_flow_error *error)
2863 {
2864         const struct mlx5_flow_driver_ops *fops;
2865         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2866
2867         fops = flow_get_drv_ops(type);
2868         return fops->validate(dev, attr, items, actions, external,
2869                               hairpin, error);
2870 }
2871
2872 /**
2873  * Flow driver preparation API. This abstracts calling driver specific
2874  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2875  * calculates the size of memory required for device flow, allocates the memory,
2876  * initializes the device flow and returns the pointer.
2877  *
2878  * @note
2879  *   This function initializes device flow structure such as dv or verbs in
2880  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2881  *   rest. For example, adding returning device flow to flow->dev_flow list and
2882  *   setting backward reference to the flow should be done out of this function.
2883  *   layers field is not filled either.
2884  *
2885  * @param[in] dev
2886  *   Pointer to the dev structure.
2887  * @param[in] attr
2888  *   Pointer to the flow attributes.
2889  * @param[in] items
2890  *   Pointer to the list of items.
2891  * @param[in] actions
2892  *   Pointer to the list of actions.
2893  * @param[in] flow_idx
2894  *   This memory pool index to the flow.
2895  * @param[out] error
2896  *   Pointer to the error structure.
2897  *
2898  * @return
2899  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2900  */
2901 static inline struct mlx5_flow *
2902 flow_drv_prepare(struct rte_eth_dev *dev,
2903                  const struct rte_flow *flow,
2904                  const struct rte_flow_attr *attr,
2905                  const struct rte_flow_item items[],
2906                  const struct rte_flow_action actions[],
2907                  uint32_t flow_idx,
2908                  struct rte_flow_error *error)
2909 {
2910         const struct mlx5_flow_driver_ops *fops;
2911         enum mlx5_flow_drv_type type = flow->drv_type;
2912         struct mlx5_flow *mlx5_flow = NULL;
2913
2914         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2915         fops = flow_get_drv_ops(type);
2916         mlx5_flow = fops->prepare(dev, attr, items, actions, error);
2917         if (mlx5_flow)
2918                 mlx5_flow->flow_idx = flow_idx;
2919         return mlx5_flow;
2920 }
2921
2922 /**
2923  * Flow driver translation API. This abstracts calling driver specific
2924  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2925  * translates a generic flow into a driver flow. flow_drv_prepare() must
2926  * precede.
2927  *
2928  * @note
2929  *   dev_flow->layers could be filled as a result of parsing during translation
2930  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
2931  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
2932  *   flow->actions could be overwritten even though all the expanded dev_flows
2933  *   have the same actions.
2934  *
2935  * @param[in] dev
2936  *   Pointer to the rte dev structure.
2937  * @param[in, out] dev_flow
2938  *   Pointer to the mlx5 flow.
2939  * @param[in] attr
2940  *   Pointer to the flow attributes.
2941  * @param[in] items
2942  *   Pointer to the list of items.
2943  * @param[in] actions
2944  *   Pointer to the list of actions.
2945  * @param[out] error
2946  *   Pointer to the error structure.
2947  *
2948  * @return
2949  *   0 on success, a negative errno value otherwise and rte_errno is set.
2950  */
2951 static inline int
2952 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2953                    const struct rte_flow_attr *attr,
2954                    const struct rte_flow_item items[],
2955                    const struct rte_flow_action actions[],
2956                    struct rte_flow_error *error)
2957 {
2958         const struct mlx5_flow_driver_ops *fops;
2959         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2960
2961         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2962         fops = flow_get_drv_ops(type);
2963         return fops->translate(dev, dev_flow, attr, items, actions, error);
2964 }
2965
2966 /**
2967  * Flow driver apply API. This abstracts calling driver specific functions.
2968  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2969  * translated driver flows on to device. flow_drv_translate() must precede.
2970  *
2971  * @param[in] dev
2972  *   Pointer to Ethernet device structure.
2973  * @param[in, out] flow
2974  *   Pointer to flow structure.
2975  * @param[out] error
2976  *   Pointer to error structure.
2977  *
2978  * @return
2979  *   0 on success, a negative errno value otherwise and rte_errno is set.
2980  */
2981 static inline int
2982 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2983                struct rte_flow_error *error)
2984 {
2985         const struct mlx5_flow_driver_ops *fops;
2986         enum mlx5_flow_drv_type type = flow->drv_type;
2987
2988         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2989         fops = flow_get_drv_ops(type);
2990         return fops->apply(dev, flow, error);
2991 }
2992
2993 /**
2994  * Flow driver remove API. This abstracts calling driver specific functions.
2995  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2996  * on device. All the resources of the flow should be freed by calling
2997  * flow_drv_destroy().
2998  *
2999  * @param[in] dev
3000  *   Pointer to Ethernet device.
3001  * @param[in, out] flow
3002  *   Pointer to flow structure.
3003  */
3004 static inline void
3005 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
3006 {
3007         const struct mlx5_flow_driver_ops *fops;
3008         enum mlx5_flow_drv_type type = flow->drv_type;
3009
3010         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3011         fops = flow_get_drv_ops(type);
3012         fops->remove(dev, flow);
3013 }
3014
3015 /**
3016  * Flow driver destroy API. This abstracts calling driver specific functions.
3017  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
3018  * on device and releases resources of the flow.
3019  *
3020  * @param[in] dev
3021  *   Pointer to Ethernet device.
3022  * @param[in, out] flow
3023  *   Pointer to flow structure.
3024  */
3025 static inline void
3026 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
3027 {
3028         const struct mlx5_flow_driver_ops *fops;
3029         enum mlx5_flow_drv_type type = flow->drv_type;
3030
3031         flow_mreg_split_qrss_release(dev, flow);
3032         MLX5_ASSERT(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
3033         fops = flow_get_drv_ops(type);
3034         fops->destroy(dev, flow);
3035 }
3036
3037 /**
3038  * Get RSS action from the action list.
3039  *
3040  * @param[in] actions
3041  *   Pointer to the list of actions.
3042  *
3043  * @return
3044  *   Pointer to the RSS action if exist, else return NULL.
3045  */
3046 static const struct rte_flow_action_rss*
3047 flow_get_rss_action(const struct rte_flow_action actions[])
3048 {
3049         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3050                 switch (actions->type) {
3051                 case RTE_FLOW_ACTION_TYPE_RSS:
3052                         return (const struct rte_flow_action_rss *)
3053                                actions->conf;
3054                 default:
3055                         break;
3056                 }
3057         }
3058         return NULL;
3059 }
3060
3061 static unsigned int
3062 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
3063 {
3064         const struct rte_flow_item *item;
3065         unsigned int has_vlan = 0;
3066
3067         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
3068                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
3069                         has_vlan = 1;
3070                         break;
3071                 }
3072         }
3073         if (has_vlan)
3074                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
3075                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
3076         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
3077                                MLX5_EXPANSION_ROOT_OUTER;
3078 }
3079
3080 /**
3081  *  Get layer flags from the prefix flow.
3082  *
3083  *  Some flows may be split to several subflows, the prefix subflow gets the
3084  *  match items and the suffix sub flow gets the actions.
3085  *  Some actions need the user defined match item flags to get the detail for
3086  *  the action.
3087  *  This function helps the suffix flow to get the item layer flags from prefix
3088  *  subflow.
3089  *
3090  * @param[in] dev_flow
3091  *   Pointer the created preifx subflow.
3092  *
3093  * @return
3094  *   The layers get from prefix subflow.
3095  */
3096 static inline uint64_t
3097 flow_get_prefix_layer_flags(struct mlx5_flow *dev_flow)
3098 {
3099         uint64_t layers = 0;
3100
3101         /*
3102          * Layers bits could be localization, but usually the compiler will
3103          * help to do the optimization work for source code.
3104          * If no decap actions, use the layers directly.
3105          */
3106         if (!(dev_flow->act_flags & MLX5_FLOW_ACTION_DECAP))
3107                 return dev_flow->handle->layers;
3108         /* Convert L3 layers with decap action. */
3109         if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV4)
3110                 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV4;
3111         else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L3_IPV6)
3112                 layers |= MLX5_FLOW_LAYER_OUTER_L3_IPV6;
3113         /* Convert L4 layers with decap action.  */
3114         if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_TCP)
3115                 layers |= MLX5_FLOW_LAYER_OUTER_L4_TCP;
3116         else if (dev_flow->handle->layers & MLX5_FLOW_LAYER_INNER_L4_UDP)
3117                 layers |= MLX5_FLOW_LAYER_OUTER_L4_UDP;
3118         return layers;
3119 }
3120
3121 /**
3122  * Get metadata split action information.
3123  *
3124  * @param[in] actions
3125  *   Pointer to the list of actions.
3126  * @param[out] qrss
3127  *   Pointer to the return pointer.
3128  * @param[out] qrss_type
3129  *   Pointer to the action type to return. RTE_FLOW_ACTION_TYPE_END is returned
3130  *   if no QUEUE/RSS is found.
3131  * @param[out] encap_idx
3132  *   Pointer to the index of the encap action if exists, otherwise the last
3133  *   action index.
3134  *
3135  * @return
3136  *   Total number of actions.
3137  */
3138 static int
3139 flow_parse_metadata_split_actions_info(const struct rte_flow_action actions[],
3140                                        const struct rte_flow_action **qrss,
3141                                        int *encap_idx)
3142 {
3143         const struct rte_flow_action_raw_encap *raw_encap;
3144         int actions_n = 0;
3145         int raw_decap_idx = -1;
3146
3147         *encap_idx = -1;
3148         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3149                 switch (actions->type) {
3150                 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3151                 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3152                         *encap_idx = actions_n;
3153                         break;
3154                 case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3155                         raw_decap_idx = actions_n;
3156                         break;
3157                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3158                         raw_encap = actions->conf;
3159                         if (raw_encap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3160                                 *encap_idx = raw_decap_idx != -1 ?
3161                                                       raw_decap_idx : actions_n;
3162                         break;
3163                 case RTE_FLOW_ACTION_TYPE_QUEUE:
3164                 case RTE_FLOW_ACTION_TYPE_RSS:
3165                         *qrss = actions;
3166                         break;
3167                 default:
3168                         break;
3169                 }
3170                 actions_n++;
3171         }
3172         if (*encap_idx == -1)
3173                 *encap_idx = actions_n;
3174         /* Count RTE_FLOW_ACTION_TYPE_END. */
3175         return actions_n + 1;
3176 }
3177
3178 /**
3179  * Check meter action from the action list.
3180  *
3181  * @param[in] actions
3182  *   Pointer to the list of actions.
3183  * @param[out] mtr
3184  *   Pointer to the meter exist flag.
3185  *
3186  * @return
3187  *   Total number of actions.
3188  */
3189 static int
3190 flow_check_meter_action(const struct rte_flow_action actions[], uint32_t *mtr)
3191 {
3192         int actions_n = 0;
3193
3194         MLX5_ASSERT(mtr);
3195         *mtr = 0;
3196         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3197                 switch (actions->type) {
3198                 case RTE_FLOW_ACTION_TYPE_METER:
3199                         *mtr = 1;
3200                         break;
3201                 default:
3202                         break;
3203                 }
3204                 actions_n++;
3205         }
3206         /* Count RTE_FLOW_ACTION_TYPE_END. */
3207         return actions_n + 1;
3208 }
3209
3210 /**
3211  * Check if the flow should be split due to hairpin.
3212  * The reason for the split is that in current HW we can't
3213  * support encap and push-vlan on Rx, so if a flow contains
3214  * these actions we move it to Tx.
3215  *
3216  * @param dev
3217  *   Pointer to Ethernet device.
3218  * @param[in] attr
3219  *   Flow rule attributes.
3220  * @param[in] actions
3221  *   Associated actions (list terminated by the END action).
3222  *
3223  * @return
3224  *   > 0 the number of actions and the flow should be split,
3225  *   0 when no split required.
3226  */
3227 static int
3228 flow_check_hairpin_split(struct rte_eth_dev *dev,
3229                          const struct rte_flow_attr *attr,
3230                          const struct rte_flow_action actions[])
3231 {
3232         int queue_action = 0;
3233         int action_n = 0;
3234         int split = 0;
3235         const struct rte_flow_action_queue *queue;
3236         const struct rte_flow_action_rss *rss;
3237         const struct rte_flow_action_raw_encap *raw_encap;
3238
3239         if (!attr->ingress)
3240                 return 0;
3241         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3242                 switch (actions->type) {
3243                 case RTE_FLOW_ACTION_TYPE_QUEUE:
3244                         queue = actions->conf;
3245                         if (queue == NULL)
3246                                 return 0;
3247                         if (mlx5_rxq_get_type(dev, queue->index) !=
3248                             MLX5_RXQ_TYPE_HAIRPIN)
3249                                 return 0;
3250                         queue_action = 1;
3251                         action_n++;
3252                         break;
3253                 case RTE_FLOW_ACTION_TYPE_RSS:
3254                         rss = actions->conf;
3255                         if (rss == NULL || rss->queue_num == 0)
3256                                 return 0;
3257                         if (mlx5_rxq_get_type(dev, rss->queue[0]) !=
3258                             MLX5_RXQ_TYPE_HAIRPIN)
3259                                 return 0;
3260                         queue_action = 1;
3261                         action_n++;
3262                         break;
3263                 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3264                 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3265                 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3266                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3267                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3268                         split++;
3269                         action_n++;
3270                         break;
3271                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3272                         raw_encap = actions->conf;
3273                         if (raw_encap->size >
3274                             (sizeof(struct rte_flow_item_eth) +
3275                              sizeof(struct rte_flow_item_ipv4)))
3276                                 split++;
3277                         action_n++;
3278                         break;
3279                 default:
3280                         action_n++;
3281                         break;
3282                 }
3283         }
3284         if (split && queue_action)
3285                 return action_n;
3286         return 0;
3287 }
3288
3289 /* Declare flow create/destroy prototype in advance. */
3290 static uint32_t
3291 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
3292                  const struct rte_flow_attr *attr,
3293                  const struct rte_flow_item items[],
3294                  const struct rte_flow_action actions[],
3295                  bool external, struct rte_flow_error *error);
3296
3297 static void
3298 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
3299                   uint32_t flow_idx);
3300
3301 /**
3302  * Add a flow of copying flow metadata registers in RX_CP_TBL.
3303  *
3304  * As mark_id is unique, if there's already a registered flow for the mark_id,
3305  * return by increasing the reference counter of the resource. Otherwise, create
3306  * the resource (mcp_res) and flow.
3307  *
3308  * Flow looks like,
3309  *   - If ingress port is ANY and reg_c[1] is mark_id,
3310  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3311  *
3312  * For default flow (zero mark_id), flow is like,
3313  *   - If ingress port is ANY,
3314  *     reg_b := reg_c[0] and jump to RX_ACT_TBL.
3315  *
3316  * @param dev
3317  *   Pointer to Ethernet device.
3318  * @param mark_id
3319  *   ID of MARK action, zero means default flow for META.
3320  * @param[out] error
3321  *   Perform verbose error reporting if not NULL.
3322  *
3323  * @return
3324  *   Associated resource on success, NULL otherwise and rte_errno is set.
3325  */
3326 static struct mlx5_flow_mreg_copy_resource *
3327 flow_mreg_add_copy_action(struct rte_eth_dev *dev, uint32_t mark_id,
3328                           struct rte_flow_error *error)
3329 {
3330         struct mlx5_priv *priv = dev->data->dev_private;
3331         struct rte_flow_attr attr = {
3332                 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
3333                 .ingress = 1,
3334         };
3335         struct mlx5_rte_flow_item_tag tag_spec = {
3336                 .data = mark_id,
3337         };
3338         struct rte_flow_item items[] = {
3339                 [1] = { .type = RTE_FLOW_ITEM_TYPE_END, },
3340         };
3341         struct rte_flow_action_mark ftag = {
3342                 .id = mark_id,
3343         };
3344         struct mlx5_flow_action_copy_mreg cp_mreg = {
3345                 .dst = REG_B,
3346                 .src = REG_NON,
3347         };
3348         struct rte_flow_action_jump jump = {
3349                 .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
3350         };
3351         struct rte_flow_action actions[] = {
3352                 [3] = { .type = RTE_FLOW_ACTION_TYPE_END, },
3353         };
3354         struct mlx5_flow_mreg_copy_resource *mcp_res;
3355         uint32_t idx = 0;
3356         int ret;
3357
3358         /* Fill the register fileds in the flow. */
3359         ret = mlx5_flow_get_reg_id(dev, MLX5_FLOW_MARK, 0, error);
3360         if (ret < 0)
3361                 return NULL;
3362         tag_spec.id = ret;
3363         ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
3364         if (ret < 0)
3365                 return NULL;
3366         cp_mreg.src = ret;
3367         /* Check if already registered. */
3368         MLX5_ASSERT(priv->mreg_cp_tbl);
3369         mcp_res = (void *)mlx5_hlist_lookup(priv->mreg_cp_tbl, mark_id);
3370         if (mcp_res) {
3371                 /* For non-default rule. */
3372                 if (mark_id != MLX5_DEFAULT_COPY_ID)
3373                         mcp_res->refcnt++;
3374                 MLX5_ASSERT(mark_id != MLX5_DEFAULT_COPY_ID ||
3375                             mcp_res->refcnt == 1);
3376                 return mcp_res;
3377         }
3378         /* Provide the full width of FLAG specific value. */
3379         if (mark_id == (priv->sh->dv_regc0_mask & MLX5_FLOW_MARK_DEFAULT))
3380                 tag_spec.data = MLX5_FLOW_MARK_DEFAULT;
3381         /* Build a new flow. */
3382         if (mark_id != MLX5_DEFAULT_COPY_ID) {
3383                 items[0] = (struct rte_flow_item){
3384                         .type = (enum rte_flow_item_type)
3385                                 MLX5_RTE_FLOW_ITEM_TYPE_TAG,
3386                         .spec = &tag_spec,
3387                 };
3388                 items[1] = (struct rte_flow_item){
3389                         .type = RTE_FLOW_ITEM_TYPE_END,
3390                 };
3391                 actions[0] = (struct rte_flow_action){
3392                         .type = (enum rte_flow_action_type)
3393                                 MLX5_RTE_FLOW_ACTION_TYPE_MARK,
3394                         .conf = &ftag,
3395                 };
3396                 actions[1] = (struct rte_flow_action){
3397                         .type = (enum rte_flow_action_type)
3398                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
3399                         .conf = &cp_mreg,
3400                 };
3401                 actions[2] = (struct rte_flow_action){
3402                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
3403                         .conf = &jump,
3404                 };
3405                 actions[3] = (struct rte_flow_action){
3406                         .type = RTE_FLOW_ACTION_TYPE_END,
3407                 };
3408         } else {
3409                 /* Default rule, wildcard match. */
3410                 attr.priority = MLX5_FLOW_PRIO_RSVD;
3411                 items[0] = (struct rte_flow_item){
3412                         .type = RTE_FLOW_ITEM_TYPE_END,
3413                 };
3414                 actions[0] = (struct rte_flow_action){
3415                         .type = (enum rte_flow_action_type)
3416                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
3417                         .conf = &cp_mreg,
3418                 };
3419                 actions[1] = (struct rte_flow_action){
3420                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
3421                         .conf = &jump,
3422                 };
3423                 actions[2] = (struct rte_flow_action){
3424                         .type = RTE_FLOW_ACTION_TYPE_END,
3425                 };
3426         }
3427         /* Build a new entry. */
3428         mcp_res = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_MCP], &idx);
3429         if (!mcp_res) {
3430                 rte_errno = ENOMEM;
3431                 return NULL;
3432         }
3433         mcp_res->idx = idx;
3434         /*
3435          * The copy Flows are not included in any list. There
3436          * ones are referenced from other Flows and can not
3437          * be applied, removed, deleted in ardbitrary order
3438          * by list traversing.
3439          */
3440         mcp_res->rix_flow = flow_list_create(dev, NULL, &attr, items,
3441                                          actions, false, error);
3442         if (!mcp_res->rix_flow)
3443                 goto error;
3444         mcp_res->refcnt++;
3445         mcp_res->hlist_ent.key = mark_id;
3446         ret = mlx5_hlist_insert(priv->mreg_cp_tbl,
3447                                 &mcp_res->hlist_ent);
3448         MLX5_ASSERT(!ret);
3449         if (ret)
3450                 goto error;
3451         return mcp_res;
3452 error:
3453         if (mcp_res->rix_flow)
3454                 flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3455         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3456         return NULL;
3457 }
3458
3459 /**
3460  * Release flow in RX_CP_TBL.
3461  *
3462  * @param dev
3463  *   Pointer to Ethernet device.
3464  * @flow
3465  *   Parent flow for wich copying is provided.
3466  */
3467 static void
3468 flow_mreg_del_copy_action(struct rte_eth_dev *dev,
3469                           struct rte_flow *flow)
3470 {
3471         struct mlx5_flow_mreg_copy_resource *mcp_res;
3472         struct mlx5_priv *priv = dev->data->dev_private;
3473
3474         if (!flow->rix_mreg_copy)
3475                 return;
3476         mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3477                                  flow->rix_mreg_copy);
3478         if (!mcp_res || !priv->mreg_cp_tbl)
3479                 return;
3480         if (flow->copy_applied) {
3481                 MLX5_ASSERT(mcp_res->appcnt);
3482                 flow->copy_applied = 0;
3483                 --mcp_res->appcnt;
3484                 if (!mcp_res->appcnt) {
3485                         struct rte_flow *mcp_flow = mlx5_ipool_get
3486                                         (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
3487                                         mcp_res->rix_flow);
3488
3489                         if (mcp_flow)
3490                                 flow_drv_remove(dev, mcp_flow);
3491                 }
3492         }
3493         /*
3494          * We do not check availability of metadata registers here,
3495          * because copy resources are not allocated in this case.
3496          */
3497         if (--mcp_res->refcnt)
3498                 return;
3499         MLX5_ASSERT(mcp_res->rix_flow);
3500         flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3501         mlx5_hlist_remove(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
3502         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3503         flow->rix_mreg_copy = 0;
3504 }
3505
3506 /**
3507  * Start flow in RX_CP_TBL.
3508  *
3509  * @param dev
3510  *   Pointer to Ethernet device.
3511  * @flow
3512  *   Parent flow for wich copying is provided.
3513  *
3514  * @return
3515  *   0 on success, a negative errno value otherwise and rte_errno is set.
3516  */
3517 static int
3518 flow_mreg_start_copy_action(struct rte_eth_dev *dev,
3519                             struct rte_flow *flow)
3520 {
3521         struct mlx5_flow_mreg_copy_resource *mcp_res;
3522         struct mlx5_priv *priv = dev->data->dev_private;
3523         int ret;
3524
3525         if (!flow->rix_mreg_copy || flow->copy_applied)
3526                 return 0;
3527         mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3528                                  flow->rix_mreg_copy);
3529         if (!mcp_res)
3530                 return 0;
3531         if (!mcp_res->appcnt) {
3532                 struct rte_flow *mcp_flow = mlx5_ipool_get
3533                                 (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
3534                                 mcp_res->rix_flow);
3535
3536                 if (mcp_flow) {
3537                         ret = flow_drv_apply(dev, mcp_flow, NULL);
3538                         if (ret)
3539                                 return ret;
3540                 }
3541         }
3542         ++mcp_res->appcnt;
3543         flow->copy_applied = 1;
3544         return 0;
3545 }
3546
3547 /**
3548  * Stop flow in RX_CP_TBL.
3549  *
3550  * @param dev
3551  *   Pointer to Ethernet device.
3552  * @flow
3553  *   Parent flow for wich copying is provided.
3554  */
3555 static void
3556 flow_mreg_stop_copy_action(struct rte_eth_dev *dev,
3557                            struct rte_flow *flow)
3558 {
3559         struct mlx5_flow_mreg_copy_resource *mcp_res;
3560         struct mlx5_priv *priv = dev->data->dev_private;
3561
3562         if (!flow->rix_mreg_copy || !flow->copy_applied)
3563                 return;
3564         mcp_res = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_MCP],
3565                                  flow->rix_mreg_copy);
3566         if (!mcp_res)
3567                 return;
3568         MLX5_ASSERT(mcp_res->appcnt);
3569         --mcp_res->appcnt;
3570         flow->copy_applied = 0;
3571         if (!mcp_res->appcnt) {
3572                 struct rte_flow *mcp_flow = mlx5_ipool_get
3573                                 (priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
3574                                 mcp_res->rix_flow);
3575
3576                 if (mcp_flow)
3577                         flow_drv_remove(dev, mcp_flow);
3578         }
3579 }
3580
3581 /**
3582  * Remove the default copy action from RX_CP_TBL.
3583  *
3584  * @param dev
3585  *   Pointer to Ethernet device.
3586  */
3587 static void
3588 flow_mreg_del_default_copy_action(struct rte_eth_dev *dev)
3589 {
3590         struct mlx5_flow_mreg_copy_resource *mcp_res;
3591         struct mlx5_priv *priv = dev->data->dev_private;
3592
3593         /* Check if default flow is registered. */
3594         if (!priv->mreg_cp_tbl)
3595                 return;
3596         mcp_res = (void *)mlx5_hlist_lookup(priv->mreg_cp_tbl,
3597                                             MLX5_DEFAULT_COPY_ID);
3598         if (!mcp_res)
3599                 return;
3600         MLX5_ASSERT(mcp_res->rix_flow);
3601         flow_list_destroy(dev, NULL, mcp_res->rix_flow);
3602         mlx5_hlist_remove(priv->mreg_cp_tbl, &mcp_res->hlist_ent);
3603         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_MCP], mcp_res->idx);
3604 }
3605
3606 /**
3607  * Add the default copy action in in RX_CP_TBL.
3608  *
3609  * @param dev
3610  *   Pointer to Ethernet device.
3611  * @param[out] error
3612  *   Perform verbose error reporting if not NULL.
3613  *
3614  * @return
3615  *   0 for success, negative value otherwise and rte_errno is set.
3616  */
3617 static int
3618 flow_mreg_add_default_copy_action(struct rte_eth_dev *dev,
3619                                   struct rte_flow_error *error)
3620 {
3621         struct mlx5_priv *priv = dev->data->dev_private;
3622         struct mlx5_flow_mreg_copy_resource *mcp_res;
3623
3624         /* Check whether extensive metadata feature is engaged. */
3625         if (!priv->config.dv_flow_en ||
3626             priv->config.dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
3627             !mlx5_flow_ext_mreg_supported(dev) ||
3628             !priv->sh->dv_regc0_mask)
3629                 return 0;
3630         mcp_res = flow_mreg_add_copy_action(dev, MLX5_DEFAULT_COPY_ID, error);
3631         if (!mcp_res)
3632                 return -rte_errno;
3633         return 0;
3634 }
3635
3636 /**
3637  * Add a flow of copying flow metadata registers in RX_CP_TBL.
3638  *
3639  * All the flow having Q/RSS action should be split by
3640  * flow_mreg_split_qrss_prep() to pass by RX_CP_TBL. A flow in the RX_CP_TBL
3641  * performs the following,
3642  *   - CQE->flow_tag := reg_c[1] (MARK)
3643  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
3644  * As CQE's flow_tag is not a register, it can't be simply copied from reg_c[1]
3645  * but there should be a flow per each MARK ID set by MARK action.
3646  *
3647  * For the aforementioned reason, if there's a MARK action in flow's action
3648  * list, a corresponding flow should be added to the RX_CP_TBL in order to copy
3649  * the MARK ID to CQE's flow_tag like,
3650  *   - If reg_c[1] is mark_id,
3651  *     flow_tag := mark_id, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3652  *
3653  * For SET_META action which stores value in reg_c[0], as the destination is
3654  * also a flow metadata register (reg_b), adding a default flow is enough. Zero
3655  * MARK ID means the default flow. The default flow looks like,
3656  *   - For all flow, reg_b := reg_c[0] and jump to RX_ACT_TBL.
3657  *
3658  * @param dev
3659  *   Pointer to Ethernet device.
3660  * @param flow
3661  *   Pointer to flow structure.
3662  * @param[in] actions
3663  *   Pointer to the list of actions.
3664  * @param[out] error
3665  *   Perform verbose error reporting if not NULL.
3666  *
3667  * @return
3668  *   0 on success, negative value otherwise and rte_errno is set.
3669  */
3670 static int
3671 flow_mreg_update_copy_table(struct rte_eth_dev *dev,
3672                             struct rte_flow *flow,
3673                             const struct rte_flow_action *actions,
3674                             struct rte_flow_error *error)
3675 {
3676         struct mlx5_priv *priv = dev->data->dev_private;
3677         struct mlx5_dev_config *config = &priv->config;
3678         struct mlx5_flow_mreg_copy_resource *mcp_res;
3679         const struct rte_flow_action_mark *mark;
3680
3681         /* Check whether extensive metadata feature is engaged. */
3682         if (!config->dv_flow_en ||
3683             config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
3684             !mlx5_flow_ext_mreg_supported(dev) ||
3685             !priv->sh->dv_regc0_mask)
3686                 return 0;
3687         /* Find MARK action. */
3688         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3689                 switch (actions->type) {
3690                 case RTE_FLOW_ACTION_TYPE_FLAG:
3691                         mcp_res = flow_mreg_add_copy_action
3692                                 (dev, MLX5_FLOW_MARK_DEFAULT, error);
3693                         if (!mcp_res)
3694                                 return -rte_errno;
3695                         flow->rix_mreg_copy = mcp_res->idx;
3696                         if (dev->data->dev_started) {
3697                                 mcp_res->appcnt++;
3698                                 flow->copy_applied = 1;
3699                         }
3700                         return 0;
3701                 case RTE_FLOW_ACTION_TYPE_MARK:
3702                         mark = (const struct rte_flow_action_mark *)
3703                                 actions->conf;
3704                         mcp_res =
3705                                 flow_mreg_add_copy_action(dev, mark->id, error);
3706                         if (!mcp_res)
3707                                 return -rte_errno;
3708                         flow->rix_mreg_copy = mcp_res->idx;
3709                         if (dev->data->dev_started) {
3710                                 mcp_res->appcnt++;
3711                                 flow->copy_applied = 1;
3712                         }
3713                         return 0;
3714                 default:
3715                         break;
3716                 }
3717         }
3718         return 0;
3719 }
3720
3721 #define MLX5_MAX_SPLIT_ACTIONS 24
3722 #define MLX5_MAX_SPLIT_ITEMS 24
3723
3724 /**
3725  * Split the hairpin flow.
3726  * Since HW can't support encap and push-vlan on Rx, we move these
3727  * actions to Tx.
3728  * If the count action is after the encap then we also
3729  * move the count action. in this case the count will also measure
3730  * the outer bytes.
3731  *
3732  * @param dev
3733  *   Pointer to Ethernet device.
3734  * @param[in] actions
3735  *   Associated actions (list terminated by the END action).
3736  * @param[out] actions_rx
3737  *   Rx flow actions.
3738  * @param[out] actions_tx
3739  *   Tx flow actions..
3740  * @param[out] pattern_tx
3741  *   The pattern items for the Tx flow.
3742  * @param[out] flow_id
3743  *   The flow ID connected to this flow.
3744  *
3745  * @return
3746  *   0 on success.
3747  */
3748 static int
3749 flow_hairpin_split(struct rte_eth_dev *dev,
3750                    const struct rte_flow_action actions[],
3751                    struct rte_flow_action actions_rx[],
3752                    struct rte_flow_action actions_tx[],
3753                    struct rte_flow_item pattern_tx[],
3754                    uint32_t *flow_id)
3755 {
3756         struct mlx5_priv *priv = dev->data->dev_private;
3757         const struct rte_flow_action_raw_encap *raw_encap;
3758         const struct rte_flow_action_raw_decap *raw_decap;
3759         struct mlx5_rte_flow_action_set_tag *set_tag;
3760         struct rte_flow_action *tag_action;
3761         struct mlx5_rte_flow_item_tag *tag_item;
3762         struct rte_flow_item *item;
3763         char *addr;
3764         int encap = 0;
3765
3766         mlx5_flow_id_get(priv->sh->flow_id_pool, flow_id);
3767         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3768                 switch (actions->type) {
3769                 case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
3770                 case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
3771                 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3772                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3773                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_PCP:
3774                         rte_memcpy(actions_tx, actions,
3775                                sizeof(struct rte_flow_action));
3776                         actions_tx++;
3777                         break;
3778                 case RTE_FLOW_ACTION_TYPE_COUNT:
3779                         if (encap) {
3780                                 rte_memcpy(actions_tx, actions,
3781                                            sizeof(struct rte_flow_action));
3782                                 actions_tx++;
3783                         } else {
3784                                 rte_memcpy(actions_rx, actions,
3785                                            sizeof(struct rte_flow_action));
3786                                 actions_rx++;
3787                         }
3788                         break;
3789                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3790                         raw_encap = actions->conf;
3791                         if (raw_encap->size >
3792                             (sizeof(struct rte_flow_item_eth) +
3793                              sizeof(struct rte_flow_item_ipv4))) {
3794                                 memcpy(actions_tx, actions,
3795                                        sizeof(struct rte_flow_action));
3796                                 actions_tx++;
3797                                 encap = 1;
3798                         } else {
3799                                 rte_memcpy(actions_rx, actions,
3800                                            sizeof(struct rte_flow_action));
3801                                 actions_rx++;
3802                         }
3803                         break;
3804                 case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3805                         raw_decap = actions->conf;
3806                         if (raw_decap->size <
3807                             (sizeof(struct rte_flow_item_eth) +
3808                              sizeof(struct rte_flow_item_ipv4))) {
3809                                 memcpy(actions_tx, actions,
3810                                        sizeof(struct rte_flow_action));
3811                                 actions_tx++;
3812                         } else {
3813                                 rte_memcpy(actions_rx, actions,
3814                                            sizeof(struct rte_flow_action));
3815                                 actions_rx++;
3816                         }
3817                         break;
3818                 default:
3819                         rte_memcpy(actions_rx, actions,
3820                                    sizeof(struct rte_flow_action));
3821                         actions_rx++;
3822                         break;
3823                 }
3824         }
3825         /* Add set meta action and end action for the Rx flow. */
3826         tag_action = actions_rx;
3827         tag_action->type = (enum rte_flow_action_type)
3828                            MLX5_RTE_FLOW_ACTION_TYPE_TAG;
3829         actions_rx++;
3830         rte_memcpy(actions_rx, actions, sizeof(struct rte_flow_action));
3831         actions_rx++;
3832         set_tag = (void *)actions_rx;
3833         set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_RX, 0, NULL);
3834         MLX5_ASSERT(set_tag->id > REG_NON);
3835         set_tag->data = *flow_id;
3836         tag_action->conf = set_tag;
3837         /* Create Tx item list. */
3838         rte_memcpy(actions_tx, actions, sizeof(struct rte_flow_action));
3839         addr = (void *)&pattern_tx[2];
3840         item = pattern_tx;
3841         item->type = (enum rte_flow_item_type)
3842                      MLX5_RTE_FLOW_ITEM_TYPE_TAG;
3843         tag_item = (void *)addr;
3844         tag_item->data = *flow_id;
3845         tag_item->id = mlx5_flow_get_reg_id(dev, MLX5_HAIRPIN_TX, 0, NULL);
3846         MLX5_ASSERT(set_tag->id > REG_NON);
3847         item->spec = tag_item;
3848         addr += sizeof(struct mlx5_rte_flow_item_tag);
3849         tag_item = (void *)addr;
3850         tag_item->data = UINT32_MAX;
3851         tag_item->id = UINT16_MAX;
3852         item->mask = tag_item;
3853         item->last = NULL;
3854         item++;
3855         item->type = RTE_FLOW_ITEM_TYPE_END;
3856         return 0;
3857 }
3858
3859 /**
3860  * The last stage of splitting chain, just creates the subflow
3861  * without any modification.
3862  *
3863  * @param[in] dev
3864  *   Pointer to Ethernet device.
3865  * @param[in] flow
3866  *   Parent flow structure pointer.
3867  * @param[in, out] sub_flow
3868  *   Pointer to return the created subflow, may be NULL.
3869  * @param[in] prefix_layers
3870  *   Prefix subflow layers, may be 0.
3871  * @param[in] attr
3872  *   Flow rule attributes.
3873  * @param[in] items
3874  *   Pattern specification (list terminated by the END pattern item).
3875  * @param[in] actions
3876  *   Associated actions (list terminated by the END action).
3877  * @param[in] external
3878  *   This flow rule is created by request external to PMD.
3879  * @param[in] flow_idx
3880  *   This memory pool index to the flow.
3881  * @param[out] error
3882  *   Perform verbose error reporting if not NULL.
3883  * @return
3884  *   0 on success, negative value otherwise
3885  */
3886 static int
3887 flow_create_split_inner(struct rte_eth_dev *dev,
3888                         struct rte_flow *flow,
3889                         struct mlx5_flow **sub_flow,
3890                         uint64_t prefix_layers,
3891                         const struct rte_flow_attr *attr,
3892                         const struct rte_flow_item items[],
3893                         const struct rte_flow_action actions[],
3894                         bool external, uint32_t flow_idx,
3895                         struct rte_flow_error *error)
3896 {
3897         struct mlx5_flow *dev_flow;
3898
3899         dev_flow = flow_drv_prepare(dev, flow, attr, items, actions,
3900                 flow_idx, error);
3901         if (!dev_flow)
3902                 return -rte_errno;
3903         dev_flow->flow = flow;
3904         dev_flow->external = external;
3905         /* Subflow object was created, we must include one in the list. */
3906         SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
3907                       dev_flow->handle, next);
3908         /*
3909          * If dev_flow is as one of the suffix flow, some actions in suffix
3910          * flow may need some user defined item layer flags.
3911          */
3912         if (prefix_layers)
3913                 dev_flow->handle->layers = prefix_layers;
3914         if (sub_flow)
3915                 *sub_flow = dev_flow;
3916         return flow_drv_translate(dev, dev_flow, attr, items, actions, error);
3917 }
3918
3919 /**
3920  * Split the meter flow.
3921  *
3922  * As meter flow will split to three sub flow, other than meter
3923  * action, the other actions make sense to only meter accepts
3924  * the packet. If it need to be dropped, no other additional
3925  * actions should be take.
3926  *
3927  * One kind of special action which decapsulates the L3 tunnel
3928  * header will be in the prefix sub flow, as not to take the
3929  * L3 tunnel header into account.
3930  *
3931  * @param dev
3932  *   Pointer to Ethernet device.
3933  * @param[in] items
3934  *   Pattern specification (list terminated by the END pattern item).
3935  * @param[out] sfx_items
3936  *   Suffix flow match items (list terminated by the END pattern item).
3937  * @param[in] actions
3938  *   Associated actions (list terminated by the END action).
3939  * @param[out] actions_sfx
3940  *   Suffix flow actions.
3941  * @param[out] actions_pre
3942  *   Prefix flow actions.
3943  * @param[out] pattern_sfx
3944  *   The pattern items for the suffix flow.
3945  * @param[out] tag_sfx
3946  *   Pointer to suffix flow tag.
3947  *
3948  * @return
3949  *   0 on success.
3950  */
3951 static int
3952 flow_meter_split_prep(struct rte_eth_dev *dev,
3953                  const struct rte_flow_item items[],
3954                  struct rte_flow_item sfx_items[],
3955                  const struct rte_flow_action actions[],
3956                  struct rte_flow_action actions_sfx[],
3957                  struct rte_flow_action actions_pre[])
3958 {
3959         struct rte_flow_action *tag_action = NULL;
3960         struct rte_flow_item *tag_item;
3961         struct mlx5_rte_flow_action_set_tag *set_tag;
3962         struct rte_flow_error error;
3963         const struct rte_flow_action_raw_encap *raw_encap;
3964         const struct rte_flow_action_raw_decap *raw_decap;
3965         struct mlx5_rte_flow_item_tag *tag_spec;
3966         struct mlx5_rte_flow_item_tag *tag_mask;
3967         uint32_t tag_id;
3968         bool copy_vlan = false;
3969
3970         /* Prepare the actions for prefix and suffix flow. */
3971         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
3972                 struct rte_flow_action **action_cur = NULL;
3973
3974                 switch (actions->type) {
3975                 case RTE_FLOW_ACTION_TYPE_METER:
3976                         /* Add the extra tag action first. */
3977                         tag_action = actions_pre;
3978                         tag_action->type = (enum rte_flow_action_type)
3979                                            MLX5_RTE_FLOW_ACTION_TYPE_TAG;
3980                         actions_pre++;
3981                         action_cur = &actions_pre;
3982                         break;
3983                 case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
3984                 case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
3985                         action_cur = &actions_pre;
3986                         break;
3987                 case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
3988                         raw_encap = actions->conf;
3989                         if (raw_encap->size < MLX5_ENCAPSULATION_DECISION_SIZE)
3990                                 action_cur = &actions_pre;
3991                         break;
3992                 case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
3993                         raw_decap = actions->conf;
3994                         if (raw_decap->size > MLX5_ENCAPSULATION_DECISION_SIZE)
3995                                 action_cur = &actions_pre;
3996                         break;
3997                 case RTE_FLOW_ACTION_TYPE_OF_PUSH_VLAN:
3998                 case RTE_FLOW_ACTION_TYPE_OF_SET_VLAN_VID:
3999                         copy_vlan = true;
4000                         break;
4001                 default:
4002                         break;
4003                 }
4004                 if (!action_cur)
4005                         action_cur = &actions_sfx;
4006                 memcpy(*action_cur, actions, sizeof(struct rte_flow_action));
4007                 (*action_cur)++;
4008         }
4009         /* Add end action to the actions. */
4010         actions_sfx->type = RTE_FLOW_ACTION_TYPE_END;
4011         actions_pre->type = RTE_FLOW_ACTION_TYPE_END;
4012         actions_pre++;
4013         /* Set the tag. */
4014         set_tag = (void *)actions_pre;
4015         set_tag->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error);
4016         /*
4017          * Get the id from the qrss_pool to make qrss share the id with meter.
4018          */
4019         tag_id = flow_qrss_get_id(dev);
4020         set_tag->data = tag_id << MLX5_MTR_COLOR_BITS;
4021         assert(tag_action);
4022         tag_action->conf = set_tag;
4023         /* Prepare the suffix subflow items. */
4024         tag_item = sfx_items++;
4025         for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
4026                 int item_type = items->type;
4027
4028                 switch (item_type) {
4029                 case RTE_FLOW_ITEM_TYPE_PORT_ID:
4030                         memcpy(sfx_items, items, sizeof(*sfx_items));
4031                         sfx_items++;
4032                         break;
4033                 case RTE_FLOW_ITEM_TYPE_VLAN:
4034                         if (copy_vlan) {
4035                                 memcpy(sfx_items, items, sizeof(*sfx_items));
4036                                 /*
4037                                  * Convert to internal match item, it is used
4038                                  * for vlan push and set vid.
4039                                  */
4040                                 sfx_items->type = (enum rte_flow_item_type)
4041                                                   MLX5_RTE_FLOW_ITEM_TYPE_VLAN;
4042                                 sfx_items++;
4043                         }
4044                         break;
4045                 default:
4046                         break;
4047                 }
4048         }
4049         sfx_items->type = RTE_FLOW_ITEM_TYPE_END;
4050         sfx_items++;
4051         tag_spec = (struct mlx5_rte_flow_item_tag *)sfx_items;
4052         tag_spec->data = tag_id << MLX5_MTR_COLOR_BITS;
4053         tag_spec->id = mlx5_flow_get_reg_id(dev, MLX5_MTR_SFX, 0, &error);
4054         tag_mask = tag_spec + 1;
4055         tag_mask->data = 0xffffff00;
4056         tag_item->type = (enum rte_flow_item_type)
4057                          MLX5_RTE_FLOW_ITEM_TYPE_TAG;
4058         tag_item->spec = tag_spec;
4059         tag_item->last = NULL;
4060         tag_item->mask = tag_mask;
4061         return tag_id;
4062 }
4063
4064 /**
4065  * Split action list having QUEUE/RSS for metadata register copy.
4066  *
4067  * Once Q/RSS action is detected in user's action list, the flow action
4068  * should be split in order to copy metadata registers, which will happen in
4069  * RX_CP_TBL like,
4070  *   - CQE->flow_tag := reg_c[1] (MARK)
4071  *   - CQE->flow_table_metadata (reg_b) := reg_c[0] (META)
4072  * The Q/RSS action will be performed on RX_ACT_TBL after passing by RX_CP_TBL.
4073  * This is because the last action of each flow must be a terminal action
4074  * (QUEUE, RSS or DROP).
4075  *
4076  * Flow ID must be allocated to identify actions in the RX_ACT_TBL and it is
4077  * stored and kept in the mlx5_flow structure per each sub_flow.
4078  *
4079  * The Q/RSS action is replaced with,
4080  *   - SET_TAG, setting the allocated flow ID to reg_c[2].
4081  * And the following JUMP action is added at the end,
4082  *   - JUMP, to RX_CP_TBL.
4083  *
4084  * A flow to perform remained Q/RSS action will be created in RX_ACT_TBL by
4085  * flow_create_split_metadata() routine. The flow will look like,
4086  *   - If flow ID matches (reg_c[2]), perform Q/RSS.
4087  *
4088  * @param dev
4089  *   Pointer to Ethernet device.
4090  * @param[out] split_actions
4091  *   Pointer to store split actions to jump to CP_TBL.
4092  * @param[in] actions
4093  *   Pointer to the list of original flow actions.
4094  * @param[in] qrss
4095  *   Pointer to the Q/RSS action.
4096  * @param[in] actions_n
4097  *   Number of original actions.
4098  * @param[out] error
4099  *   Perform verbose error reporting if not NULL.
4100  *
4101  * @return
4102  *   non-zero unique flow_id on success, otherwise 0 and
4103  *   error/rte_error are set.
4104  */
4105 static uint32_t
4106 flow_mreg_split_qrss_prep(struct rte_eth_dev *dev,
4107                           struct rte_flow_action *split_actions,
4108                           const struct rte_flow_action *actions,
4109                           const struct rte_flow_action *qrss,
4110                           int actions_n, struct rte_flow_error *error)
4111 {
4112         struct mlx5_rte_flow_action_set_tag *set_tag;
4113         struct rte_flow_action_jump *jump;
4114         const int qrss_idx = qrss - actions;
4115         uint32_t flow_id = 0;
4116         int ret = 0;
4117
4118         /*
4119          * Given actions will be split
4120          * - Replace QUEUE/RSS action with SET_TAG to set flow ID.
4121          * - Add jump to mreg CP_TBL.
4122          * As a result, there will be one more action.
4123          */
4124         ++actions_n;
4125         memcpy(split_actions, actions, sizeof(*split_actions) * actions_n);
4126         set_tag = (void *)(split_actions + actions_n);
4127         /*
4128          * If tag action is not set to void(it means we are not the meter
4129          * suffix flow), add the tag action. Since meter suffix flow already
4130          * has the tag added.
4131          */
4132         if (split_actions[qrss_idx].type != RTE_FLOW_ACTION_TYPE_VOID) {
4133                 /*
4134                  * Allocate the new subflow ID. This one is unique within
4135                  * device and not shared with representors. Otherwise,
4136                  * we would have to resolve multi-thread access synch
4137                  * issue. Each flow on the shared device is appended
4138                  * with source vport identifier, so the resulting
4139                  * flows will be unique in the shared (by master and
4140                  * representors) domain even if they have coinciding
4141                  * IDs.
4142                  */
4143                 flow_id = flow_qrss_get_id(dev);
4144                 if (!flow_id)
4145                         return rte_flow_error_set(error, ENOMEM,
4146                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4147                                                   NULL, "can't allocate id "
4148                                                   "for split Q/RSS subflow");
4149                 /* Internal SET_TAG action to set flow ID. */
4150                 *set_tag = (struct mlx5_rte_flow_action_set_tag){
4151                         .data = flow_id,
4152                 };
4153                 ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0, error);
4154                 if (ret < 0)
4155                         return ret;
4156                 set_tag->id = ret;
4157                 /* Construct new actions array. */
4158                 /* Replace QUEUE/RSS action. */
4159                 split_actions[qrss_idx] = (struct rte_flow_action){
4160                         .type = (enum rte_flow_action_type)
4161                                 MLX5_RTE_FLOW_ACTION_TYPE_TAG,
4162                         .conf = set_tag,
4163                 };
4164         }
4165         /* JUMP action to jump to mreg copy table (CP_TBL). */
4166         jump = (void *)(set_tag + 1);
4167         *jump = (struct rte_flow_action_jump){
4168                 .group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
4169         };
4170         split_actions[actions_n - 2] = (struct rte_flow_action){
4171                 .type = RTE_FLOW_ACTION_TYPE_JUMP,
4172                 .conf = jump,
4173         };
4174         split_actions[actions_n - 1] = (struct rte_flow_action){
4175                 .type = RTE_FLOW_ACTION_TYPE_END,
4176         };
4177         return flow_id;
4178 }
4179
4180 /**
4181  * Extend the given action list for Tx metadata copy.
4182  *
4183  * Copy the given action list to the ext_actions and add flow metadata register
4184  * copy action in order to copy reg_a set by WQE to reg_c[0].
4185  *
4186  * @param[out] ext_actions
4187  *   Pointer to the extended action list.
4188  * @param[in] actions
4189  *   Pointer to the list of actions.
4190  * @param[in] actions_n
4191  *   Number of actions in the list.
4192  * @param[out] error
4193  *   Perform verbose error reporting if not NULL.
4194  * @param[in] encap_idx
4195  *   The encap action inndex.
4196  *
4197  * @return
4198  *   0 on success, negative value otherwise
4199  */
4200 static int
4201 flow_mreg_tx_copy_prep(struct rte_eth_dev *dev,
4202                        struct rte_flow_action *ext_actions,
4203                        const struct rte_flow_action *actions,
4204                        int actions_n, struct rte_flow_error *error,
4205                        int encap_idx)
4206 {
4207         struct mlx5_flow_action_copy_mreg *cp_mreg =
4208                 (struct mlx5_flow_action_copy_mreg *)
4209                         (ext_actions + actions_n + 1);
4210         int ret;
4211
4212         ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_RX, 0, error);
4213         if (ret < 0)
4214                 return ret;
4215         cp_mreg->dst = ret;
4216         ret = mlx5_flow_get_reg_id(dev, MLX5_METADATA_TX, 0, error);
4217         if (ret < 0)
4218                 return ret;
4219         cp_mreg->src = ret;
4220         if (encap_idx != 0)
4221                 memcpy(ext_actions, actions, sizeof(*ext_actions) * encap_idx);
4222         if (encap_idx == actions_n - 1) {
4223                 ext_actions[actions_n - 1] = (struct rte_flow_action){
4224                         .type = (enum rte_flow_action_type)
4225                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4226                         .conf = cp_mreg,
4227                 };
4228                 ext_actions[actions_n] = (struct rte_flow_action){
4229                         .type = RTE_FLOW_ACTION_TYPE_END,
4230                 };
4231         } else {
4232                 ext_actions[encap_idx] = (struct rte_flow_action){
4233                         .type = (enum rte_flow_action_type)
4234                                 MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
4235                         .conf = cp_mreg,
4236                 };
4237                 memcpy(ext_actions + encap_idx + 1, actions + encap_idx,
4238                                 sizeof(*ext_actions) * (actions_n - encap_idx));
4239         }
4240         return 0;
4241 }
4242
4243 /**
4244  * The splitting for metadata feature.
4245  *
4246  * - Q/RSS action on NIC Rx should be split in order to pass by
4247  *   the mreg copy table (RX_CP_TBL) and then it jumps to the
4248  *   action table (RX_ACT_TBL) which has the split Q/RSS action.
4249  *
4250  * - All the actions on NIC Tx should have a mreg copy action to
4251  *   copy reg_a from WQE to reg_c[0].
4252  *
4253  * @param dev
4254  *   Pointer to Ethernet device.
4255  * @param[in] flow
4256  *   Parent flow structure pointer.
4257  * @param[in] prefix_layers
4258  *   Prefix flow layer flags.
4259  * @param[in] attr
4260  *   Flow rule attributes.
4261  * @param[in] items
4262  *   Pattern specification (list terminated by the END pattern item).
4263  * @param[in] actions
4264  *   Associated actions (list terminated by the END action).
4265  * @param[in] external
4266  *   This flow rule is created by request external to PMD.
4267  * @param[in] flow_idx
4268  *   This memory pool index to the flow.
4269  * @param[out] error
4270  *   Perform verbose error reporting if not NULL.
4271  * @return
4272  *   0 on success, negative value otherwise
4273  */
4274 static int
4275 flow_create_split_metadata(struct rte_eth_dev *dev,
4276                            struct rte_flow *flow,
4277                            uint64_t prefix_layers,
4278                            const struct rte_flow_attr *attr,
4279                            const struct rte_flow_item items[],
4280                            const struct rte_flow_action actions[],
4281                            bool external, uint32_t flow_idx,
4282                            struct rte_flow_error *error)
4283 {
4284         struct mlx5_priv *priv = dev->data->dev_private;
4285         struct mlx5_dev_config *config = &priv->config;
4286         const struct rte_flow_action *qrss = NULL;
4287         struct rte_flow_action *ext_actions = NULL;
4288         struct mlx5_flow *dev_flow = NULL;
4289         uint32_t qrss_id = 0;
4290         int mtr_sfx = 0;
4291         size_t act_size;
4292         int actions_n;
4293         int encap_idx;
4294         int ret;
4295
4296         /* Check whether extensive metadata feature is engaged. */
4297         if (!config->dv_flow_en ||
4298             config->dv_xmeta_en == MLX5_XMETA_MODE_LEGACY ||
4299             !mlx5_flow_ext_mreg_supported(dev))
4300                 return flow_create_split_inner(dev, flow, NULL, prefix_layers,
4301                                                attr, items, actions, external,
4302                                                flow_idx, error);
4303         actions_n = flow_parse_metadata_split_actions_info(actions, &qrss,
4304                                                            &encap_idx);
4305         if (qrss) {
4306                 /* Exclude hairpin flows from splitting. */
4307                 if (qrss->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
4308                         const struct rte_flow_action_queue *queue;
4309
4310                         queue = qrss->conf;
4311                         if (mlx5_rxq_get_type(dev, queue->index) ==
4312                             MLX5_RXQ_TYPE_HAIRPIN)
4313                                 qrss = NULL;
4314                 } else if (qrss->type == RTE_FLOW_ACTION_TYPE_RSS) {
4315                         const struct rte_flow_action_rss *rss;
4316
4317                         rss = qrss->conf;
4318                         if (mlx5_rxq_get_type(dev, rss->queue[0]) ==
4319                             MLX5_RXQ_TYPE_HAIRPIN)
4320                                 qrss = NULL;
4321                 }
4322         }
4323         if (qrss) {
4324                 /* Check if it is in meter suffix table. */
4325                 mtr_sfx = attr->group == (attr->transfer ?
4326                           (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) :
4327                           MLX5_FLOW_TABLE_LEVEL_SUFFIX);
4328                 /*
4329                  * Q/RSS action on NIC Rx should be split in order to pass by
4330                  * the mreg copy table (RX_CP_TBL) and then it jumps to the
4331                  * action table (RX_ACT_TBL) which has the split Q/RSS action.
4332                  */
4333                 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
4334                            sizeof(struct rte_flow_action_set_tag) +
4335                            sizeof(struct rte_flow_action_jump);
4336                 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
4337                                           SOCKET_ID_ANY);
4338                 if (!ext_actions)
4339                         return rte_flow_error_set(error, ENOMEM,
4340                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4341                                                   NULL, "no memory to split "
4342                                                   "metadata flow");
4343                 /*
4344                  * If we are the suffix flow of meter, tag already exist.
4345                  * Set the tag action to void.
4346                  */
4347                 if (mtr_sfx)
4348                         ext_actions[qrss - actions].type =
4349                                                 RTE_FLOW_ACTION_TYPE_VOID;
4350                 else
4351                         ext_actions[qrss - actions].type =
4352                                                 (enum rte_flow_action_type)
4353                                                 MLX5_RTE_FLOW_ACTION_TYPE_TAG;
4354                 /*
4355                  * Create the new actions list with removed Q/RSS action
4356                  * and appended set tag and jump to register copy table
4357                  * (RX_CP_TBL). We should preallocate unique tag ID here
4358                  * in advance, because it is needed for set tag action.
4359                  */
4360                 qrss_id = flow_mreg_split_qrss_prep(dev, ext_actions, actions,
4361                                                     qrss, actions_n, error);
4362                 if (!mtr_sfx && !qrss_id) {
4363                         ret = -rte_errno;
4364                         goto exit;
4365                 }
4366         } else if (attr->egress && !attr->transfer) {
4367                 /*
4368                  * All the actions on NIC Tx should have a metadata register
4369                  * copy action to copy reg_a from WQE to reg_c[meta]
4370                  */
4371                 act_size = sizeof(struct rte_flow_action) * (actions_n + 1) +
4372                            sizeof(struct mlx5_flow_action_copy_mreg);
4373                 ext_actions = mlx5_malloc(MLX5_MEM_ZERO, act_size, 0,
4374                                           SOCKET_ID_ANY);
4375                 if (!ext_actions)
4376                         return rte_flow_error_set(error, ENOMEM,
4377                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4378                                                   NULL, "no memory to split "
4379                                                   "metadata flow");
4380                 /* Create the action list appended with copy register. */
4381                 ret = flow_mreg_tx_copy_prep(dev, ext_actions, actions,
4382                                              actions_n, error, encap_idx);
4383                 if (ret < 0)
4384                         goto exit;
4385         }
4386         /* Add the unmodified original or prefix subflow. */
4387         ret = flow_create_split_inner(dev, flow, &dev_flow, prefix_layers, attr,
4388                                       items, ext_actions ? ext_actions :
4389                                       actions, external, flow_idx, error);
4390         if (ret < 0)
4391                 goto exit;
4392         MLX5_ASSERT(dev_flow);
4393         if (qrss) {
4394                 const struct rte_flow_attr q_attr = {
4395                         .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
4396                         .ingress = 1,
4397                 };
4398                 /* Internal PMD action to set register. */
4399                 struct mlx5_rte_flow_item_tag q_tag_spec = {
4400                         .data = qrss_id,
4401                         .id = REG_NON,
4402                 };
4403                 struct rte_flow_item q_items[] = {
4404                         {
4405                                 .type = (enum rte_flow_item_type)
4406                                         MLX5_RTE_FLOW_ITEM_TYPE_TAG,
4407                                 .spec = &q_tag_spec,
4408                                 .last = NULL,
4409                                 .mask = NULL,
4410                         },
4411                         {
4412                                 .type = RTE_FLOW_ITEM_TYPE_END,
4413                         },
4414                 };
4415                 struct rte_flow_action q_actions[] = {
4416                         {
4417                                 .type = qrss->type,
4418                                 .conf = qrss->conf,
4419                         },
4420                         {
4421                                 .type = RTE_FLOW_ACTION_TYPE_END,
4422                         },
4423                 };
4424                 uint64_t layers = flow_get_prefix_layer_flags(dev_flow);
4425
4426                 /*
4427                  * Configure the tag item only if there is no meter subflow.
4428                  * Since tag is already marked in the meter suffix subflow
4429                  * we can just use the meter suffix items as is.
4430                  */
4431                 if (qrss_id) {
4432                         /* Not meter subflow. */
4433                         MLX5_ASSERT(!mtr_sfx);
4434                         /*
4435                          * Put unique id in prefix flow due to it is destroyed
4436                          * after suffix flow and id will be freed after there
4437                          * is no actual flows with this id and identifier
4438                          * reallocation becomes possible (for example, for
4439                          * other flows in other threads).
4440                          */
4441                         dev_flow->handle->split_flow_id = qrss_id;
4442                         ret = mlx5_flow_get_reg_id(dev, MLX5_COPY_MARK, 0,
4443                                                    error);
4444                         if (ret < 0)
4445                                 goto exit;
4446                         q_tag_spec.id = ret;
4447                 }
4448                 dev_flow = NULL;
4449                 /* Add suffix subflow to execute Q/RSS. */
4450                 ret = flow_create_split_inner(dev, flow, &dev_flow, layers,
4451                                               &q_attr, mtr_sfx ? items :
4452                                               q_items, q_actions,
4453                                               external, flow_idx, error);
4454                 if (ret < 0)
4455                         goto exit;
4456                 /* qrss ID should be freed if failed. */
4457                 qrss_id = 0;
4458                 MLX5_ASSERT(dev_flow);
4459         }
4460
4461 exit:
4462         /*
4463          * We do not destroy the partially created sub_flows in case of error.
4464          * These ones are included into parent flow list and will be destroyed
4465          * by flow_drv_destroy.
4466          */
4467         flow_qrss_free_id(dev, qrss_id);
4468         mlx5_free(ext_actions);
4469         return ret;
4470 }
4471
4472 /**
4473  * The splitting for meter feature.
4474  *
4475  * - The meter flow will be split to two flows as prefix and
4476  *   suffix flow. The packets make sense only it pass the prefix
4477  *   meter action.
4478  *
4479  * - Reg_C_5 is used for the packet to match betweend prefix and
4480  *   suffix flow.
4481  *
4482  * @param dev
4483  *   Pointer to Ethernet device.
4484  * @param[in] flow
4485  *   Parent flow structure pointer.
4486  * @param[in] attr
4487  *   Flow rule attributes.
4488  * @param[in] items
4489  *   Pattern specification (list terminated by the END pattern item).
4490  * @param[in] actions
4491  *   Associated actions (list terminated by the END action).
4492  * @param[in] external
4493  *   This flow rule is created by request external to PMD.
4494  * @param[in] flow_idx
4495  *   This memory pool index to the flow.
4496  * @param[out] error
4497  *   Perform verbose error reporting if not NULL.
4498  * @return
4499  *   0 on success, negative value otherwise
4500  */
4501 static int
4502 flow_create_split_meter(struct rte_eth_dev *dev,
4503                            struct rte_flow *flow,
4504                            const struct rte_flow_attr *attr,
4505                            const struct rte_flow_item items[],
4506                            const struct rte_flow_action actions[],
4507                            bool external, uint32_t flow_idx,
4508                            struct rte_flow_error *error)
4509 {
4510         struct mlx5_priv *priv = dev->data->dev_private;
4511         struct rte_flow_action *sfx_actions = NULL;
4512         struct rte_flow_action *pre_actions = NULL;
4513         struct rte_flow_item *sfx_items = NULL;
4514         struct mlx5_flow *dev_flow = NULL;
4515         struct rte_flow_attr sfx_attr = *attr;
4516         uint32_t mtr = 0;
4517         uint32_t mtr_tag_id = 0;
4518         size_t act_size;
4519         size_t item_size;
4520         int actions_n = 0;
4521         int ret;
4522
4523         if (priv->mtr_en)
4524                 actions_n = flow_check_meter_action(actions, &mtr);
4525         if (mtr) {
4526                 /* The five prefix actions: meter, decap, encap, tag, end. */
4527                 act_size = sizeof(struct rte_flow_action) * (actions_n + 5) +
4528                            sizeof(struct mlx5_rte_flow_action_set_tag);
4529                 /* tag, vlan, port id, end. */
4530 #define METER_SUFFIX_ITEM 4
4531                 item_size = sizeof(struct rte_flow_item) * METER_SUFFIX_ITEM +
4532                             sizeof(struct mlx5_rte_flow_item_tag) * 2;
4533                 sfx_actions = mlx5_malloc(MLX5_MEM_ZERO, (act_size + item_size),
4534                                           0, SOCKET_ID_ANY);
4535                 if (!sfx_actions)
4536                         return rte_flow_error_set(error, ENOMEM,
4537                                                   RTE_FLOW_ERROR_TYPE_ACTION,
4538                                                   NULL, "no memory to split "
4539                                                   "meter flow");
4540                 sfx_items = (struct rte_flow_item *)((char *)sfx_actions +
4541                              act_size);
4542                 pre_actions = sfx_actions + actions_n;
4543                 mtr_tag_id = flow_meter_split_prep(dev, items, sfx_items,
4544                                                    actions, sfx_actions,
4545                                                    pre_actions);
4546                 if (!mtr_tag_id) {
4547                         ret = -rte_errno;
4548                         goto exit;
4549                 }
4550                 /* Add the prefix subflow. */
4551                 ret = flow_create_split_inner(dev, flow, &dev_flow, 0, attr,
4552                                               items, pre_actions, external,
4553                                               flow_idx, error);
4554                 if (ret) {
4555                         ret = -rte_errno;
4556                         goto exit;
4557                 }
4558                 dev_flow->handle->split_flow_id = mtr_tag_id;
4559                 /* Setting the sfx group atrr. */
4560                 sfx_attr.group = sfx_attr.transfer ?
4561                                 (MLX5_FLOW_TABLE_LEVEL_SUFFIX - 1) :
4562                                  MLX5_FLOW_TABLE_LEVEL_SUFFIX;
4563         }
4564         /* Add the prefix subflow. */
4565         ret = flow_create_split_metadata(dev, flow, dev_flow ?
4566                                          flow_get_prefix_layer_flags(dev_flow) :
4567                                          0, &sfx_attr,
4568                                          sfx_items ? sfx_items : items,
4569                                          sfx_actions ? sfx_actions : actions,
4570                                          external, flow_idx, error);
4571 exit:
4572         if (sfx_actions)
4573                 mlx5_free(sfx_actions);
4574         return ret;
4575 }
4576
4577 /**
4578  * Split the flow to subflow set. The splitters might be linked
4579  * in the chain, like this:
4580  * flow_create_split_outer() calls:
4581  *   flow_create_split_meter() calls:
4582  *     flow_create_split_metadata(meter_subflow_0) calls:
4583  *       flow_create_split_inner(metadata_subflow_0)
4584  *       flow_create_split_inner(metadata_subflow_1)
4585  *       flow_create_split_inner(metadata_subflow_2)
4586  *     flow_create_split_metadata(meter_subflow_1) calls:
4587  *       flow_create_split_inner(metadata_subflow_0)
4588  *       flow_create_split_inner(metadata_subflow_1)
4589  *       flow_create_split_inner(metadata_subflow_2)
4590  *
4591  * This provide flexible way to add new levels of flow splitting.
4592  * The all of successfully created subflows are included to the
4593  * parent flow dev_flow list.
4594  *
4595  * @param dev
4596  *   Pointer to Ethernet device.
4597  * @param[in] flow
4598  *   Parent flow structure pointer.
4599  * @param[in] attr
4600  *   Flow rule attributes.
4601  * @param[in] items
4602  *   Pattern specification (list terminated by the END pattern item).
4603  * @param[in] actions
4604  *   Associated actions (list terminated by the END action).
4605  * @param[in] external
4606  *   This flow rule is created by request external to PMD.
4607  * @param[in] flow_idx
4608  *   This memory pool index to the flow.
4609  * @param[out] error
4610  *   Perform verbose error reporting if not NULL.
4611  * @return
4612  *   0 on success, negative value otherwise
4613  */
4614 static int
4615 flow_create_split_outer(struct rte_eth_dev *dev,
4616                         struct rte_flow *flow,
4617                         const struct rte_flow_attr *attr,
4618                         const struct rte_flow_item items[],
4619                         const struct rte_flow_action actions[],
4620                         bool external, uint32_t flow_idx,
4621                         struct rte_flow_error *error)
4622 {
4623         int ret;
4624
4625         ret = flow_create_split_meter(dev, flow, attr, items,
4626                                          actions, external, flow_idx, error);
4627         MLX5_ASSERT(ret <= 0);
4628         return ret;
4629 }
4630
4631 /**
4632  * Create a flow and add it to @p list.
4633  *
4634  * @param dev
4635  *   Pointer to Ethernet device.
4636  * @param list
4637  *   Pointer to a TAILQ flow list. If this parameter NULL,
4638  *   no list insertion occurred, flow is just created,
4639  *   this is caller's responsibility to track the
4640  *   created flow.
4641  * @param[in] attr
4642  *   Flow rule attributes.
4643  * @param[in] items
4644  *   Pattern specification (list terminated by the END pattern item).
4645  * @param[in] actions
4646  *   Associated actions (list terminated by the END action).
4647  * @param[in] external
4648  *   This flow rule is created by request external to PMD.
4649  * @param[out] error
4650  *   Perform verbose error reporting if not NULL.
4651  *
4652  * @return
4653  *   A flow index on success, 0 otherwise and rte_errno is set.
4654  */
4655 static uint32_t
4656 flow_list_create(struct rte_eth_dev *dev, uint32_t *list,
4657                  const struct rte_flow_attr *attr,
4658                  const struct rte_flow_item items[],
4659                  const struct rte_flow_action actions[],
4660                  bool external, struct rte_flow_error *error)
4661 {
4662         struct mlx5_priv *priv = dev->data->dev_private;
4663         struct rte_flow *flow = NULL;
4664         struct mlx5_flow *dev_flow;
4665         const struct rte_flow_action_rss *rss;
4666         union {
4667                 struct mlx5_flow_expand_rss buf;
4668                 uint8_t buffer[2048];
4669         } expand_buffer;
4670         union {
4671                 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
4672                 uint8_t buffer[2048];
4673         } actions_rx;
4674         union {
4675                 struct rte_flow_action actions[MLX5_MAX_SPLIT_ACTIONS];
4676                 uint8_t buffer[2048];
4677         } actions_hairpin_tx;
4678         union {
4679                 struct rte_flow_item items[MLX5_MAX_SPLIT_ITEMS];
4680                 uint8_t buffer[2048];
4681         } items_tx;
4682         struct mlx5_flow_expand_rss *buf = &expand_buffer.buf;
4683         struct mlx5_flow_rss_desc *rss_desc = &((struct mlx5_flow_rss_desc *)
4684                                               priv->rss_desc)[!!priv->flow_idx];
4685         const struct rte_flow_action *p_actions_rx = actions;
4686         uint32_t i;
4687         uint32_t idx = 0;
4688         int hairpin_flow;
4689         uint32_t hairpin_id = 0;
4690         struct rte_flow_attr attr_tx = { .priority = 0 };
4691         int ret;
4692
4693         hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
4694         ret = flow_drv_validate(dev, attr, items, p_actions_rx,
4695                                 external, hairpin_flow, error);
4696         if (ret < 0)
4697                 return 0;
4698         if (hairpin_flow > 0) {
4699                 if (hairpin_flow > MLX5_MAX_SPLIT_ACTIONS) {
4700                         rte_errno = EINVAL;
4701                         return 0;
4702                 }
4703                 flow_hairpin_split(dev, actions, actions_rx.actions,
4704                                    actions_hairpin_tx.actions, items_tx.items,
4705                                    &hairpin_id);
4706                 p_actions_rx = actions_rx.actions;
4707         }
4708         flow = mlx5_ipool_zmalloc(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], &idx);
4709         if (!flow) {
4710                 rte_errno = ENOMEM;
4711                 goto error_before_flow;
4712         }
4713         flow->drv_type = flow_get_drv_type(dev, attr);
4714         if (hairpin_id != 0)
4715                 flow->hairpin_flow_id = hairpin_id;
4716         MLX5_ASSERT(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
4717                     flow->drv_type < MLX5_FLOW_TYPE_MAX);
4718         memset(rss_desc, 0, sizeof(*rss_desc));
4719         rss = flow_get_rss_action(p_actions_rx);
4720         if (rss) {
4721                 /*
4722                  * The following information is required by
4723                  * mlx5_flow_hashfields_adjust() in advance.
4724                  */
4725                 rss_desc->level = rss->level;
4726                 /* RSS type 0 indicates default RSS type (ETH_RSS_IP). */
4727                 rss_desc->types = !rss->types ? ETH_RSS_IP : rss->types;
4728         }
4729         flow->dev_handles = 0;
4730         if (rss && rss->types) {
4731                 unsigned int graph_root;
4732
4733                 graph_root = find_graph_root(items, rss->level);
4734                 ret = mlx5_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
4735                                            items, rss->types,
4736                                            mlx5_support_expansion, graph_root);
4737                 MLX5_ASSERT(ret > 0 &&
4738                        (unsigned int)ret < sizeof(expand_buffer.buffer));
4739         } else {
4740                 buf->entries = 1;
4741                 buf->entry[0].pattern = (void *)(uintptr_t)items;
4742         }
4743         /*
4744          * Record the start index when there is a nested call. All sub-flows
4745          * need to be translated before another calling.
4746          * No need to use ping-pong buffer to save memory here.
4747          */
4748         if (priv->flow_idx) {
4749                 MLX5_ASSERT(!priv->flow_nested_idx);
4750                 priv->flow_nested_idx = priv->flow_idx;
4751         }
4752         for (i = 0; i < buf->entries; ++i) {
4753                 /*
4754                  * The splitter may create multiple dev_flows,
4755                  * depending on configuration. In the simplest
4756                  * case it just creates unmodified original flow.
4757                  */
4758                 ret = flow_create_split_outer(dev, flow, attr,
4759                                               buf->entry[i].pattern,
4760                                               p_actions_rx, external, idx,
4761                                               error);
4762                 if (ret < 0)
4763                         goto error;
4764         }
4765         /* Create the tx flow. */
4766         if (hairpin_flow) {
4767                 attr_tx.group = MLX5_HAIRPIN_TX_TABLE;
4768                 attr_tx.ingress = 0;
4769                 attr_tx.egress = 1;
4770                 dev_flow = flow_drv_prepare(dev, flow, &attr_tx, items_tx.items,
4771                                          actions_hairpin_tx.actions,
4772                                          idx, error);
4773                 if (!dev_flow)
4774                         goto error;
4775                 dev_flow->flow = flow;
4776                 dev_flow->external = 0;
4777                 SILIST_INSERT(&flow->dev_handles, dev_flow->handle_idx,
4778                               dev_flow->handle, next);
4779                 ret = flow_drv_translate(dev, dev_flow, &attr_tx,
4780                                          items_tx.items,
4781                                          actions_hairpin_tx.actions, error);
4782                 if (ret < 0)
4783                         goto error;
4784         }
4785         /*
4786          * Update the metadata register copy table. If extensive
4787          * metadata feature is enabled and registers are supported
4788          * we might create the extra rte_flow for each unique
4789          * MARK/FLAG action ID.
4790          *
4791          * The table is updated for ingress Flows only, because
4792          * the egress Flows belong to the different device and
4793          * copy table should be updated in peer NIC Rx domain.
4794          */
4795         if (attr->ingress &&
4796             (external || attr->group != MLX5_FLOW_MREG_CP_TABLE_GROUP)) {
4797                 ret = flow_mreg_update_copy_table(dev, flow, actions, error);
4798                 if (ret)
4799                         goto error;
4800         }
4801         /*
4802          * If the flow is external (from application) OR device is started, then
4803          * the flow will be applied immediately.
4804          */
4805         if (external || dev->data->dev_started) {
4806                 ret = flow_drv_apply(dev, flow, error);
4807                 if (ret < 0)
4808                         goto error;
4809         }
4810         if (list)
4811                 ILIST_INSERT(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list, idx,
4812                              flow, next);
4813         flow_rxq_flags_set(dev, flow);
4814         /* Nested flow creation index recovery. */
4815         priv->flow_idx = priv->flow_nested_idx;
4816         if (priv->flow_nested_idx)
4817                 priv->flow_nested_idx = 0;
4818         return idx;
4819 error:
4820         MLX5_ASSERT(flow);
4821         ret = rte_errno; /* Save rte_errno before cleanup. */
4822         flow_mreg_del_copy_action(dev, flow);
4823         flow_drv_destroy(dev, flow);
4824         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], idx);
4825         rte_errno = ret; /* Restore rte_errno. */
4826 error_before_flow:
4827         ret = rte_errno;
4828         if (hairpin_id)
4829                 mlx5_flow_id_release(priv->sh->flow_id_pool,
4830                                      hairpin_id);
4831         rte_errno = ret;
4832         priv->flow_idx = priv->flow_nested_idx;
4833         if (priv->flow_nested_idx)
4834                 priv->flow_nested_idx = 0;
4835         return 0;
4836 }
4837
4838 /**
4839  * Create a dedicated flow rule on e-switch table 0 (root table), to direct all
4840  * incoming packets to table 1.
4841  *
4842  * Other flow rules, requested for group n, will be created in
4843  * e-switch table n+1.
4844  * Jump action to e-switch group n will be created to group n+1.
4845  *
4846  * Used when working in switchdev mode, to utilise advantages of table 1
4847  * and above.
4848  *
4849  * @param dev
4850  *   Pointer to Ethernet device.
4851  *
4852  * @return
4853  *   Pointer to flow on success, NULL otherwise and rte_errno is set.
4854  */
4855 struct rte_flow *
4856 mlx5_flow_create_esw_table_zero_flow(struct rte_eth_dev *dev)
4857 {
4858         const struct rte_flow_attr attr = {
4859                 .group = 0,
4860                 .priority = 0,
4861                 .ingress = 1,
4862                 .egress = 0,
4863                 .transfer = 1,
4864         };
4865         const struct rte_flow_item pattern = {
4866                 .type = RTE_FLOW_ITEM_TYPE_END,
4867         };
4868         struct rte_flow_action_jump jump = {
4869                 .group = 1,
4870         };
4871         const struct rte_flow_action actions[] = {
4872                 {
4873                         .type = RTE_FLOW_ACTION_TYPE_JUMP,
4874                         .conf = &jump,
4875                 },
4876                 {
4877                         .type = RTE_FLOW_ACTION_TYPE_END,
4878                 },
4879         };
4880         struct mlx5_priv *priv = dev->data->dev_private;
4881         struct rte_flow_error error;
4882
4883         return (void *)(uintptr_t)flow_list_create(dev, &priv->ctrl_flows,
4884                                                    &attr, &pattern,
4885                                                    actions, false, &error);
4886 }
4887
4888 /**
4889  * Validate a flow supported by the NIC.
4890  *
4891  * @see rte_flow_validate()
4892  * @see rte_flow_ops
4893  */
4894 int
4895 mlx5_flow_validate(struct rte_eth_dev *dev,
4896                    const struct rte_flow_attr *attr,
4897                    const struct rte_flow_item items[],
4898                    const struct rte_flow_action actions[],
4899                    struct rte_flow_error *error)
4900 {
4901         int hairpin_flow;
4902
4903         hairpin_flow = flow_check_hairpin_split(dev, attr, actions);
4904         return flow_drv_validate(dev, attr, items, actions,
4905                                 true, hairpin_flow, error);
4906 }
4907
4908 /**
4909  * Create a flow.
4910  *
4911  * @see rte_flow_create()
4912  * @see rte_flow_ops
4913  */
4914 struct rte_flow *
4915 mlx5_flow_create(struct rte_eth_dev *dev,
4916                  const struct rte_flow_attr *attr,
4917                  const struct rte_flow_item items[],
4918                  const struct rte_flow_action actions[],
4919                  struct rte_flow_error *error)
4920 {
4921         struct mlx5_priv *priv = dev->data->dev_private;
4922
4923         /*
4924          * If the device is not started yet, it is not allowed to created a
4925          * flow from application. PMD default flows and traffic control flows
4926          * are not affected.
4927          */
4928         if (unlikely(!dev->data->dev_started)) {
4929                 DRV_LOG(DEBUG, "port %u is not started when "
4930                         "inserting a flow", dev->data->port_id);
4931                 rte_flow_error_set(error, ENODEV,
4932                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
4933                                    NULL,
4934                                    "port not started");
4935                 return NULL;
4936         }
4937         return (void *)(uintptr_t)flow_list_create(dev, &priv->flows,
4938                                   attr, items, actions, true, error);
4939 }
4940
4941 /**
4942  * Destroy a flow in a list.
4943  *
4944  * @param dev
4945  *   Pointer to Ethernet device.
4946  * @param list
4947  *   Pointer to the Indexed flow list. If this parameter NULL,
4948  *   there is no flow removal from the list. Be noted that as
4949  *   flow is add to the indexed list, memory of the indexed
4950  *   list points to maybe changed as flow destroyed.
4951  * @param[in] flow_idx
4952  *   Index of flow to destroy.
4953  */
4954 static void
4955 flow_list_destroy(struct rte_eth_dev *dev, uint32_t *list,
4956                   uint32_t flow_idx)
4957 {
4958         struct mlx5_priv *priv = dev->data->dev_private;
4959         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
4960         struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
4961                                                [MLX5_IPOOL_RTE_FLOW], flow_idx);
4962
4963         if (!flow)
4964                 return;
4965         /*
4966          * Update RX queue flags only if port is started, otherwise it is
4967          * already clean.
4968          */
4969         if (dev->data->dev_started)
4970                 flow_rxq_flags_trim(dev, flow);
4971         if (flow->hairpin_flow_id)
4972                 mlx5_flow_id_release(priv->sh->flow_id_pool,
4973                                      flow->hairpin_flow_id);
4974         flow_drv_destroy(dev, flow);
4975         if (list)
4976                 ILIST_REMOVE(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], list,
4977                              flow_idx, flow, next);
4978         flow_mreg_del_copy_action(dev, flow);
4979         if (flow->fdir) {
4980                 LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) {
4981                         if (priv_fdir_flow->rix_flow == flow_idx)
4982                                 break;
4983                 }
4984                 if (priv_fdir_flow) {
4985                         LIST_REMOVE(priv_fdir_flow, next);
4986                         mlx5_free(priv_fdir_flow->fdir);
4987                         mlx5_free(priv_fdir_flow);
4988                 }
4989         }
4990         mlx5_ipool_free(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx);
4991 }
4992
4993 /**
4994  * Destroy all flows.
4995  *
4996  * @param dev
4997  *   Pointer to Ethernet device.
4998  * @param list
4999  *   Pointer to the Indexed flow list.
5000  * @param active
5001  *   If flushing is called avtively.
5002  */
5003 void
5004 mlx5_flow_list_flush(struct rte_eth_dev *dev, uint32_t *list, bool active)
5005 {
5006         uint32_t num_flushed = 0;
5007
5008         while (*list) {
5009                 flow_list_destroy(dev, list, *list);
5010                 num_flushed++;
5011         }
5012         if (active) {
5013                 DRV_LOG(INFO, "port %u: %u flows flushed before stopping",
5014                         dev->data->port_id, num_flushed);
5015         }
5016 }
5017
5018 /**
5019  * Remove all flows.
5020  *
5021  * @param dev
5022  *   Pointer to Ethernet device.
5023  * @param list
5024  *   Pointer to the Indexed flow list.
5025  */
5026 void
5027 mlx5_flow_stop(struct rte_eth_dev *dev, uint32_t *list)
5028 {
5029         struct mlx5_priv *priv = dev->data->dev_private;
5030         struct rte_flow *flow = NULL;
5031         uint32_t idx;
5032
5033         ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], *list, idx,
5034                       flow, next) {
5035                 flow_drv_remove(dev, flow);
5036                 flow_mreg_stop_copy_action(dev, flow);
5037         }
5038         flow_mreg_del_default_copy_action(dev);
5039         flow_rxq_flags_clear(dev);
5040 }
5041
5042 /**
5043  * Add all flows.
5044  *
5045  * @param dev
5046  *   Pointer to Ethernet device.
5047  * @param list
5048  *   Pointer to the Indexed flow list.
5049  *
5050  * @return
5051  *   0 on success, a negative errno value otherwise and rte_errno is set.
5052  */
5053 int
5054 mlx5_flow_start(struct rte_eth_dev *dev, uint32_t *list)
5055 {
5056         struct mlx5_priv *priv = dev->data->dev_private;
5057         struct rte_flow *flow = NULL;
5058         struct rte_flow_error error;
5059         uint32_t idx;
5060         int ret = 0;
5061
5062         /* Make sure default copy action (reg_c[0] -> reg_b) is created. */
5063         ret = flow_mreg_add_default_copy_action(dev, &error);
5064         if (ret < 0)
5065                 return -rte_errno;
5066         /* Apply Flows created by application. */
5067         ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], *list, idx,
5068                       flow, next) {
5069                 ret = flow_mreg_start_copy_action(dev, flow);
5070                 if (ret < 0)
5071                         goto error;
5072                 ret = flow_drv_apply(dev, flow, &error);
5073                 if (ret < 0)
5074                         goto error;
5075                 flow_rxq_flags_set(dev, flow);
5076         }
5077         return 0;
5078 error:
5079         ret = rte_errno; /* Save rte_errno before cleanup. */
5080         mlx5_flow_stop(dev, list);
5081         rte_errno = ret; /* Restore rte_errno. */
5082         return -rte_errno;
5083 }
5084
5085 /**
5086  * Stop all default actions for flows.
5087  *
5088  * @param dev
5089  *   Pointer to Ethernet device.
5090  */
5091 void
5092 mlx5_flow_stop_default(struct rte_eth_dev *dev)
5093 {
5094         flow_mreg_del_default_copy_action(dev);
5095         flow_rxq_flags_clear(dev);
5096 }
5097
5098 /**
5099  * Start all default actions for flows.
5100  *
5101  * @param dev
5102  *   Pointer to Ethernet device.
5103  * @return
5104  *   0 on success, a negative errno value otherwise and rte_errno is set.
5105  */
5106 int
5107 mlx5_flow_start_default(struct rte_eth_dev *dev)
5108 {
5109         struct rte_flow_error error;
5110
5111         /* Make sure default copy action (reg_c[0] -> reg_b) is created. */
5112         return flow_mreg_add_default_copy_action(dev, &error);
5113 }
5114
5115 /**
5116  * Allocate intermediate resources for flow creation.
5117  *
5118  * @param dev
5119  *   Pointer to Ethernet device.
5120  */
5121 void
5122 mlx5_flow_alloc_intermediate(struct rte_eth_dev *dev)
5123 {
5124         struct mlx5_priv *priv = dev->data->dev_private;
5125
5126         if (!priv->inter_flows) {
5127                 priv->inter_flows = mlx5_malloc(MLX5_MEM_ZERO,
5128                                     MLX5_NUM_MAX_DEV_FLOWS *
5129                                     sizeof(struct mlx5_flow) +
5130                                     (sizeof(struct mlx5_flow_rss_desc) +
5131                                     sizeof(uint16_t) * UINT16_MAX) * 2, 0,
5132                                     SOCKET_ID_ANY);
5133                 if (!priv->inter_flows) {
5134                         DRV_LOG(ERR, "can't allocate intermediate memory.");
5135                         return;
5136                 }
5137         }
5138         priv->rss_desc = &((struct mlx5_flow *)priv->inter_flows)
5139                          [MLX5_NUM_MAX_DEV_FLOWS];
5140         /* Reset the index. */
5141         priv->flow_idx = 0;
5142         priv->flow_nested_idx = 0;
5143 }
5144
5145 /**
5146  * Free intermediate resources for flows.
5147  *
5148  * @param dev
5149  *   Pointer to Ethernet device.
5150  */
5151 void
5152 mlx5_flow_free_intermediate(struct rte_eth_dev *dev)
5153 {
5154         struct mlx5_priv *priv = dev->data->dev_private;
5155
5156         mlx5_free(priv->inter_flows);
5157         priv->inter_flows = NULL;
5158 }
5159
5160 /**
5161  * Verify the flow list is empty
5162  *
5163  * @param dev
5164  *  Pointer to Ethernet device.
5165  *
5166  * @return the number of flows not released.
5167  */
5168 int
5169 mlx5_flow_verify(struct rte_eth_dev *dev)
5170 {
5171         struct mlx5_priv *priv = dev->data->dev_private;
5172         struct rte_flow *flow;
5173         uint32_t idx;
5174         int ret = 0;
5175
5176         ILIST_FOREACH(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], priv->flows, idx,
5177                       flow, next) {
5178                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
5179                         dev->data->port_id, (void *)flow);
5180                 ++ret;
5181         }
5182         return ret;
5183 }
5184
5185 /**
5186  * Enable default hairpin egress flow.
5187  *
5188  * @param dev
5189  *   Pointer to Ethernet device.
5190  * @param queue
5191  *   The queue index.
5192  *
5193  * @return
5194  *   0 on success, a negative errno value otherwise and rte_errno is set.
5195  */
5196 int
5197 mlx5_ctrl_flow_source_queue(struct rte_eth_dev *dev,
5198                             uint32_t queue)
5199 {
5200         struct mlx5_priv *priv = dev->data->dev_private;
5201         const struct rte_flow_attr attr = {
5202                 .egress = 1,
5203                 .priority = 0,
5204         };
5205         struct mlx5_rte_flow_item_tx_queue queue_spec = {
5206                 .queue = queue,
5207         };
5208         struct mlx5_rte_flow_item_tx_queue queue_mask = {
5209                 .queue = UINT32_MAX,
5210         };
5211         struct rte_flow_item items[] = {
5212                 {
5213                         .type = (enum rte_flow_item_type)
5214                                 MLX5_RTE_FLOW_ITEM_TYPE_TX_QUEUE,
5215                         .spec = &queue_spec,
5216                         .last = NULL,
5217                         .mask = &queue_mask,
5218                 },
5219                 {
5220                         .type = RTE_FLOW_ITEM_TYPE_END,
5221                 },
5222         };
5223         struct rte_flow_action_jump jump = {
5224                 .group = MLX5_HAIRPIN_TX_TABLE,
5225         };
5226         struct rte_flow_action actions[2];
5227         uint32_t flow_idx;
5228         struct rte_flow_error error;
5229
5230         actions[0].type = RTE_FLOW_ACTION_TYPE_JUMP;
5231         actions[0].conf = &jump;
5232         actions[1].type = RTE_FLOW_ACTION_TYPE_END;
5233         flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5234                                 &attr, items, actions, false, &error);
5235         if (!flow_idx) {
5236                 DRV_LOG(DEBUG,
5237                         "Failed to create ctrl flow: rte_errno(%d),"
5238                         " type(%d), message(%s)",
5239                         rte_errno, error.type,
5240                         error.message ? error.message : " (no stated reason)");
5241                 return -rte_errno;
5242         }
5243         return 0;
5244 }
5245
5246 /**
5247  * Enable a control flow configured from the control plane.
5248  *
5249  * @param dev
5250  *   Pointer to Ethernet device.
5251  * @param eth_spec
5252  *   An Ethernet flow spec to apply.
5253  * @param eth_mask
5254  *   An Ethernet flow mask to apply.
5255  * @param vlan_spec
5256  *   A VLAN flow spec to apply.
5257  * @param vlan_mask
5258  *   A VLAN flow mask to apply.
5259  *
5260  * @return
5261  *   0 on success, a negative errno value otherwise and rte_errno is set.
5262  */
5263 int
5264 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
5265                     struct rte_flow_item_eth *eth_spec,
5266                     struct rte_flow_item_eth *eth_mask,
5267                     struct rte_flow_item_vlan *vlan_spec,
5268                     struct rte_flow_item_vlan *vlan_mask)
5269 {
5270         struct mlx5_priv *priv = dev->data->dev_private;
5271         const struct rte_flow_attr attr = {
5272                 .ingress = 1,
5273                 .priority = MLX5_FLOW_PRIO_RSVD,
5274         };
5275         struct rte_flow_item items[] = {
5276                 {
5277                         .type = RTE_FLOW_ITEM_TYPE_ETH,
5278                         .spec = eth_spec,
5279                         .last = NULL,
5280                         .mask = eth_mask,
5281                 },
5282                 {
5283                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
5284                                               RTE_FLOW_ITEM_TYPE_END,
5285                         .spec = vlan_spec,
5286                         .last = NULL,
5287                         .mask = vlan_mask,
5288                 },
5289                 {
5290                         .type = RTE_FLOW_ITEM_TYPE_END,
5291                 },
5292         };
5293         uint16_t queue[priv->reta_idx_n];
5294         struct rte_flow_action_rss action_rss = {
5295                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
5296                 .level = 0,
5297                 .types = priv->rss_conf.rss_hf,
5298                 .key_len = priv->rss_conf.rss_key_len,
5299                 .queue_num = priv->reta_idx_n,
5300                 .key = priv->rss_conf.rss_key,
5301                 .queue = queue,
5302         };
5303         struct rte_flow_action actions[] = {
5304                 {
5305                         .type = RTE_FLOW_ACTION_TYPE_RSS,
5306                         .conf = &action_rss,
5307                 },
5308                 {
5309                         .type = RTE_FLOW_ACTION_TYPE_END,
5310                 },
5311         };
5312         uint32_t flow_idx;
5313         struct rte_flow_error error;
5314         unsigned int i;
5315
5316         if (!priv->reta_idx_n || !priv->rxqs_n) {
5317                 return 0;
5318         }
5319         if (!(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG))
5320                 action_rss.types = 0;
5321         for (i = 0; i != priv->reta_idx_n; ++i)
5322                 queue[i] = (*priv->reta_idx)[i];
5323         flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5324                                 &attr, items, actions, false, &error);
5325         if (!flow_idx)
5326                 return -rte_errno;
5327         return 0;
5328 }
5329
5330 /**
5331  * Enable a flow control configured from the control plane.
5332  *
5333  * @param dev
5334  *   Pointer to Ethernet device.
5335  * @param eth_spec
5336  *   An Ethernet flow spec to apply.
5337  * @param eth_mask
5338  *   An Ethernet flow mask to apply.
5339  *
5340  * @return
5341  *   0 on success, a negative errno value otherwise and rte_errno is set.
5342  */
5343 int
5344 mlx5_ctrl_flow(struct rte_eth_dev *dev,
5345                struct rte_flow_item_eth *eth_spec,
5346                struct rte_flow_item_eth *eth_mask)
5347 {
5348         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
5349 }
5350
5351 /**
5352  * Create default miss flow rule matching lacp traffic
5353  *
5354  * @param dev
5355  *   Pointer to Ethernet device.
5356  * @param eth_spec
5357  *   An Ethernet flow spec to apply.
5358  *
5359  * @return
5360  *   0 on success, a negative errno value otherwise and rte_errno is set.
5361  */
5362 int
5363 mlx5_flow_lacp_miss(struct rte_eth_dev *dev)
5364 {
5365         struct mlx5_priv *priv = dev->data->dev_private;
5366         /*
5367          * The LACP matching is done by only using ether type since using
5368          * a multicast dst mac causes kernel to give low priority to this flow.
5369          */
5370         static const struct rte_flow_item_eth lacp_spec = {
5371                 .type = RTE_BE16(0x8809),
5372         };
5373         static const struct rte_flow_item_eth lacp_mask = {
5374                 .type = 0xffff,
5375         };
5376         const struct rte_flow_attr attr = {
5377                 .ingress = 1,
5378         };
5379         struct rte_flow_item items[] = {
5380                 {
5381                         .type = RTE_FLOW_ITEM_TYPE_ETH,
5382                         .spec = &lacp_spec,
5383                         .mask = &lacp_mask,
5384                 },
5385                 {
5386                         .type = RTE_FLOW_ITEM_TYPE_END,
5387                 },
5388         };
5389         struct rte_flow_action actions[] = {
5390                 {
5391                         .type = (enum rte_flow_action_type)
5392                                 MLX5_RTE_FLOW_ACTION_TYPE_DEFAULT_MISS,
5393                 },
5394                 {
5395                         .type = RTE_FLOW_ACTION_TYPE_END,
5396                 },
5397         };
5398         struct rte_flow_error error;
5399         uint32_t flow_idx = flow_list_create(dev, &priv->ctrl_flows,
5400                                 &attr, items, actions, false, &error);
5401
5402         if (!flow_idx)
5403                 return -rte_errno;
5404         return 0;
5405 }
5406
5407 /**
5408  * Destroy a flow.
5409  *
5410  * @see rte_flow_destroy()
5411  * @see rte_flow_ops
5412  */
5413 int
5414 mlx5_flow_destroy(struct rte_eth_dev *dev,
5415                   struct rte_flow *flow,
5416                   struct rte_flow_error *error __rte_unused)
5417 {
5418         struct mlx5_priv *priv = dev->data->dev_private;
5419
5420         flow_list_destroy(dev, &priv->flows, (uintptr_t)(void *)flow);
5421         return 0;
5422 }
5423
5424 /**
5425  * Destroy all flows.
5426  *
5427  * @see rte_flow_flush()
5428  * @see rte_flow_ops
5429  */
5430 int
5431 mlx5_flow_flush(struct rte_eth_dev *dev,
5432                 struct rte_flow_error *error __rte_unused)
5433 {
5434         struct mlx5_priv *priv = dev->data->dev_private;
5435
5436         mlx5_flow_list_flush(dev, &priv->flows, false);
5437         return 0;
5438 }
5439
5440 /**
5441  * Isolated mode.
5442  *
5443  * @see rte_flow_isolate()
5444  * @see rte_flow_ops
5445  */
5446 int
5447 mlx5_flow_isolate(struct rte_eth_dev *dev,
5448                   int enable,
5449                   struct rte_flow_error *error)
5450 {
5451         struct mlx5_priv *priv = dev->data->dev_private;
5452
5453         if (dev->data->dev_started) {
5454                 rte_flow_error_set(error, EBUSY,
5455                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5456                                    NULL,
5457                                    "port must be stopped first");
5458                 return -rte_errno;
5459         }
5460         priv->isolated = !!enable;
5461         if (enable)
5462                 dev->dev_ops = &mlx5_os_dev_ops_isolate;
5463         else
5464                 dev->dev_ops = &mlx5_os_dev_ops;
5465
5466         dev->rx_descriptor_status = mlx5_rx_descriptor_status;
5467         dev->tx_descriptor_status = mlx5_tx_descriptor_status;
5468
5469         return 0;
5470 }
5471
5472 /**
5473  * Query a flow.
5474  *
5475  * @see rte_flow_query()
5476  * @see rte_flow_ops
5477  */
5478 static int
5479 flow_drv_query(struct rte_eth_dev *dev,
5480                uint32_t flow_idx,
5481                const struct rte_flow_action *actions,
5482                void *data,
5483                struct rte_flow_error *error)
5484 {
5485         struct mlx5_priv *priv = dev->data->dev_private;
5486         const struct mlx5_flow_driver_ops *fops;
5487         struct rte_flow *flow = mlx5_ipool_get(priv->sh->ipool
5488                                                [MLX5_IPOOL_RTE_FLOW],
5489                                                flow_idx);
5490         enum mlx5_flow_drv_type ftype;
5491
5492         if (!flow) {
5493                 return rte_flow_error_set(error, ENOENT,
5494                           RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
5495                           NULL,
5496                           "invalid flow handle");
5497         }
5498         ftype = flow->drv_type;
5499         MLX5_ASSERT(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
5500         fops = flow_get_drv_ops(ftype);
5501
5502         return fops->query(dev, flow, actions, data, error);
5503 }
5504
5505 /**
5506  * Query a flow.
5507  *
5508  * @see rte_flow_query()
5509  * @see rte_flow_ops
5510  */
5511 int
5512 mlx5_flow_query(struct rte_eth_dev *dev,
5513                 struct rte_flow *flow,
5514                 const struct rte_flow_action *actions,
5515                 void *data,
5516                 struct rte_flow_error *error)
5517 {
5518         int ret;
5519
5520         ret = flow_drv_query(dev, (uintptr_t)(void *)flow, actions, data,
5521                              error);
5522         if (ret < 0)
5523                 return ret;
5524         return 0;
5525 }
5526
5527 /**
5528  * Convert a flow director filter to a generic flow.
5529  *
5530  * @param dev
5531  *   Pointer to Ethernet device.
5532  * @param fdir_filter
5533  *   Flow director filter to add.
5534  * @param attributes
5535  *   Generic flow parameters structure.
5536  *
5537  * @return
5538  *   0 on success, a negative errno value otherwise and rte_errno is set.
5539  */
5540 static int
5541 flow_fdir_filter_convert(struct rte_eth_dev *dev,
5542                          const struct rte_eth_fdir_filter *fdir_filter,
5543                          struct mlx5_fdir *attributes)
5544 {
5545         struct mlx5_priv *priv = dev->data->dev_private;
5546         const struct rte_eth_fdir_input *input = &fdir_filter->input;
5547         const struct rte_eth_fdir_masks *mask =
5548                 &dev->data->dev_conf.fdir_conf.mask;
5549
5550         /* Validate queue number. */
5551         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
5552                 DRV_LOG(ERR, "port %u invalid queue number %d",
5553                         dev->data->port_id, fdir_filter->action.rx_queue);
5554                 rte_errno = EINVAL;
5555                 return -rte_errno;
5556         }
5557         attributes->attr.ingress = 1;
5558         attributes->items[0] = (struct rte_flow_item) {
5559                 .type = RTE_FLOW_ITEM_TYPE_ETH,
5560                 .spec = &attributes->l2,
5561                 .mask = &attributes->l2_mask,
5562         };
5563         switch (fdir_filter->action.behavior) {
5564         case RTE_ETH_FDIR_ACCEPT:
5565                 attributes->actions[0] = (struct rte_flow_action){
5566                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
5567                         .conf = &attributes->queue,
5568                 };
5569                 break;
5570         case RTE_ETH_FDIR_REJECT:
5571                 attributes->actions[0] = (struct rte_flow_action){
5572                         .type = RTE_FLOW_ACTION_TYPE_DROP,
5573                 };
5574                 break;
5575         default:
5576                 DRV_LOG(ERR, "port %u invalid behavior %d",
5577                         dev->data->port_id,
5578                         fdir_filter->action.behavior);
5579                 rte_errno = ENOTSUP;
5580                 return -rte_errno;
5581         }
5582         attributes->queue.index = fdir_filter->action.rx_queue;
5583         /* Handle L3. */
5584         switch (fdir_filter->input.flow_type) {
5585         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
5586         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
5587         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
5588                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
5589                         .src_addr = input->flow.ip4_flow.src_ip,
5590                         .dst_addr = input->flow.ip4_flow.dst_ip,
5591                         .time_to_live = input->flow.ip4_flow.ttl,
5592                         .type_of_service = input->flow.ip4_flow.tos,
5593                 };
5594                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
5595                         .src_addr = mask->ipv4_mask.src_ip,
5596                         .dst_addr = mask->ipv4_mask.dst_ip,
5597                         .time_to_live = mask->ipv4_mask.ttl,
5598                         .type_of_service = mask->ipv4_mask.tos,
5599                         .next_proto_id = mask->ipv4_mask.proto,
5600                 };
5601                 attributes->items[1] = (struct rte_flow_item){
5602                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
5603                         .spec = &attributes->l3,
5604                         .mask = &attributes->l3_mask,
5605                 };
5606                 break;
5607         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
5608         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
5609         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
5610                 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
5611                         .hop_limits = input->flow.ipv6_flow.hop_limits,
5612                         .proto = input->flow.ipv6_flow.proto,
5613                 };
5614
5615                 memcpy(attributes->l3.ipv6.hdr.src_addr,
5616                        input->flow.ipv6_flow.src_ip,
5617                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
5618                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
5619                        input->flow.ipv6_flow.dst_ip,
5620                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
5621                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
5622                        mask->ipv6_mask.src_ip,
5623                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
5624                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
5625                        mask->ipv6_mask.dst_ip,
5626                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
5627                 attributes->items[1] = (struct rte_flow_item){
5628                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
5629                         .spec = &attributes->l3,
5630                         .mask = &attributes->l3_mask,
5631                 };
5632                 break;
5633         default:
5634                 DRV_LOG(ERR, "port %u invalid flow type%d",
5635                         dev->data->port_id, fdir_filter->input.flow_type);
5636                 rte_errno = ENOTSUP;
5637                 return -rte_errno;
5638         }
5639         /* Handle L4. */
5640         switch (fdir_filter->input.flow_type) {
5641         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
5642                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
5643                         .src_port = input->flow.udp4_flow.src_port,
5644                         .dst_port = input->flow.udp4_flow.dst_port,
5645                 };
5646                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
5647                         .src_port = mask->src_port_mask,
5648                         .dst_port = mask->dst_port_mask,
5649                 };
5650                 attributes->items[2] = (struct rte_flow_item){
5651                         .type = RTE_FLOW_ITEM_TYPE_UDP,
5652                         .spec = &attributes->l4,
5653                         .mask = &attributes->l4_mask,
5654                 };
5655                 break;
5656         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
5657                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
5658                         .src_port = input->flow.tcp4_flow.src_port,
5659                         .dst_port = input->flow.tcp4_flow.dst_port,
5660                 };
5661                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
5662                         .src_port = mask->src_port_mask,
5663                         .dst_port = mask->dst_port_mask,
5664                 };
5665                 attributes->items[2] = (struct rte_flow_item){
5666                         .type = RTE_FLOW_ITEM_TYPE_TCP,
5667                         .spec = &attributes->l4,
5668                         .mask = &attributes->l4_mask,
5669                 };
5670                 break;
5671         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
5672                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
5673                         .src_port = input->flow.udp6_flow.src_port,
5674                         .dst_port = input->flow.udp6_flow.dst_port,
5675                 };
5676                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
5677                         .src_port = mask->src_port_mask,
5678                         .dst_port = mask->dst_port_mask,
5679                 };
5680                 attributes->items[2] = (struct rte_flow_item){
5681                         .type = RTE_FLOW_ITEM_TYPE_UDP,
5682                         .spec = &attributes->l4,
5683                         .mask = &attributes->l4_mask,
5684                 };
5685                 break;
5686         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
5687                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
5688                         .src_port = input->flow.tcp6_flow.src_port,
5689                         .dst_port = input->flow.tcp6_flow.dst_port,
5690                 };
5691                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
5692                         .src_port = mask->src_port_mask,
5693                         .dst_port = mask->dst_port_mask,
5694                 };
5695                 attributes->items[2] = (struct rte_flow_item){
5696                         .type = RTE_FLOW_ITEM_TYPE_TCP,
5697                         .spec = &attributes->l4,
5698                         .mask = &attributes->l4_mask,
5699                 };
5700                 break;
5701         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
5702         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
5703                 break;
5704         default:
5705                 DRV_LOG(ERR, "port %u invalid flow type%d",
5706                         dev->data->port_id, fdir_filter->input.flow_type);
5707                 rte_errno = ENOTSUP;
5708                 return -rte_errno;
5709         }
5710         return 0;
5711 }
5712
5713 #define FLOW_FDIR_CMP(f1, f2, fld) \
5714         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
5715
5716 /**
5717  * Compare two FDIR flows. If items and actions are identical, the two flows are
5718  * regarded as same.
5719  *
5720  * @param dev
5721  *   Pointer to Ethernet device.
5722  * @param f1
5723  *   FDIR flow to compare.
5724  * @param f2
5725  *   FDIR flow to compare.
5726  *
5727  * @return
5728  *   Zero on match, 1 otherwise.
5729  */
5730 static int
5731 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
5732 {
5733         if (FLOW_FDIR_CMP(f1, f2, attr) ||
5734             FLOW_FDIR_CMP(f1, f2, l2) ||
5735             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
5736             FLOW_FDIR_CMP(f1, f2, l3) ||
5737             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
5738             FLOW_FDIR_CMP(f1, f2, l4) ||
5739             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
5740             FLOW_FDIR_CMP(f1, f2, actions[0].type))
5741                 return 1;
5742         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
5743             FLOW_FDIR_CMP(f1, f2, queue))
5744                 return 1;
5745         return 0;
5746 }
5747
5748 /**
5749  * Search device flow list to find out a matched FDIR flow.
5750  *
5751  * @param dev
5752  *   Pointer to Ethernet device.
5753  * @param fdir_flow
5754  *   FDIR flow to lookup.
5755  *
5756  * @return
5757  *   Index of flow if found, 0 otherwise.
5758  */
5759 static uint32_t
5760 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
5761 {
5762         struct mlx5_priv *priv = dev->data->dev_private;
5763         uint32_t flow_idx = 0;
5764         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
5765
5766         MLX5_ASSERT(fdir_flow);
5767         LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) {
5768                 if (!flow_fdir_cmp(priv_fdir_flow->fdir, fdir_flow)) {
5769                         DRV_LOG(DEBUG, "port %u found FDIR flow %u",
5770                                 dev->data->port_id, flow_idx);
5771                         flow_idx = priv_fdir_flow->rix_flow;
5772                         break;
5773                 }
5774         }
5775         return flow_idx;
5776 }
5777
5778 /**
5779  * Add new flow director filter and store it in list.
5780  *
5781  * @param dev
5782  *   Pointer to Ethernet device.
5783  * @param fdir_filter
5784  *   Flow director filter to add.
5785  *
5786  * @return
5787  *   0 on success, a negative errno value otherwise and rte_errno is set.
5788  */
5789 static int
5790 flow_fdir_filter_add(struct rte_eth_dev *dev,
5791                      const struct rte_eth_fdir_filter *fdir_filter)
5792 {
5793         struct mlx5_priv *priv = dev->data->dev_private;
5794         struct mlx5_fdir *fdir_flow;
5795         struct rte_flow *flow;
5796         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
5797         uint32_t flow_idx;
5798         int ret;
5799
5800         fdir_flow = mlx5_malloc(MLX5_MEM_ZERO, sizeof(*fdir_flow), 0,
5801                                 SOCKET_ID_ANY);
5802         if (!fdir_flow) {
5803                 rte_errno = ENOMEM;
5804                 return -rte_errno;
5805         }
5806         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
5807         if (ret)
5808                 goto error;
5809         flow_idx = flow_fdir_filter_lookup(dev, fdir_flow);
5810         if (flow_idx) {
5811                 rte_errno = EEXIST;
5812                 goto error;
5813         }
5814         priv_fdir_flow = mlx5_malloc(MLX5_MEM_ZERO,
5815                                      sizeof(struct mlx5_fdir_flow),
5816                                      0, SOCKET_ID_ANY);
5817         if (!priv_fdir_flow) {
5818                 rte_errno = ENOMEM;
5819                 goto error;
5820         }
5821         flow_idx = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
5822                                     fdir_flow->items, fdir_flow->actions, true,
5823                                     NULL);
5824         flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW], flow_idx);
5825         if (!flow)
5826                 goto error;
5827         flow->fdir = 1;
5828         priv_fdir_flow->fdir = fdir_flow;
5829         priv_fdir_flow->rix_flow = flow_idx;
5830         LIST_INSERT_HEAD(&priv->fdir_flows, priv_fdir_flow, next);
5831         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
5832                 dev->data->port_id, (void *)flow);
5833         return 0;
5834 error:
5835         mlx5_free(priv_fdir_flow);
5836         mlx5_free(fdir_flow);
5837         return -rte_errno;
5838 }
5839
5840 /**
5841  * Delete specific filter.
5842  *
5843  * @param dev
5844  *   Pointer to Ethernet device.
5845  * @param fdir_filter
5846  *   Filter to be deleted.
5847  *
5848  * @return
5849  *   0 on success, a negative errno value otherwise and rte_errno is set.
5850  */
5851 static int
5852 flow_fdir_filter_delete(struct rte_eth_dev *dev,
5853                         const struct rte_eth_fdir_filter *fdir_filter)
5854 {
5855         struct mlx5_priv *priv = dev->data->dev_private;
5856         uint32_t flow_idx;
5857         struct mlx5_fdir fdir_flow = {
5858                 .attr.group = 0,
5859         };
5860         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
5861         int ret;
5862
5863         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
5864         if (ret)
5865                 return -rte_errno;
5866         LIST_FOREACH(priv_fdir_flow, &priv->fdir_flows, next) {
5867                 /* Find the fdir in priv list */
5868                 if (!flow_fdir_cmp(priv_fdir_flow->fdir, &fdir_flow))
5869                         break;
5870         }
5871         if (!priv_fdir_flow)
5872                 return 0;
5873         LIST_REMOVE(priv_fdir_flow, next);
5874         flow_idx = priv_fdir_flow->rix_flow;
5875         flow_list_destroy(dev, &priv->flows, flow_idx);
5876         mlx5_free(priv_fdir_flow->fdir);
5877         mlx5_free(priv_fdir_flow);
5878         DRV_LOG(DEBUG, "port %u deleted FDIR flow %u",
5879                 dev->data->port_id, flow_idx);
5880         return 0;
5881 }
5882
5883 /**
5884  * Update queue for specific filter.
5885  *
5886  * @param dev
5887  *   Pointer to Ethernet device.
5888  * @param fdir_filter
5889  *   Filter to be updated.
5890  *
5891  * @return
5892  *   0 on success, a negative errno value otherwise and rte_errno is set.
5893  */
5894 static int
5895 flow_fdir_filter_update(struct rte_eth_dev *dev,
5896                         const struct rte_eth_fdir_filter *fdir_filter)
5897 {
5898         int ret;
5899
5900         ret = flow_fdir_filter_delete(dev, fdir_filter);
5901         if (ret)
5902                 return ret;
5903         return flow_fdir_filter_add(dev, fdir_filter);
5904 }
5905
5906 /**
5907  * Flush all filters.
5908  *
5909  * @param dev
5910  *   Pointer to Ethernet device.
5911  */
5912 static void
5913 flow_fdir_filter_flush(struct rte_eth_dev *dev)
5914 {
5915         struct mlx5_priv *priv = dev->data->dev_private;
5916         struct mlx5_fdir_flow *priv_fdir_flow = NULL;
5917
5918         while (!LIST_EMPTY(&priv->fdir_flows)) {
5919                 priv_fdir_flow = LIST_FIRST(&priv->fdir_flows);
5920                 LIST_REMOVE(priv_fdir_flow, next);
5921                 flow_list_destroy(dev, &priv->flows, priv_fdir_flow->rix_flow);
5922                 mlx5_free(priv_fdir_flow->fdir);
5923                 mlx5_free(priv_fdir_flow);
5924         }
5925 }
5926
5927 /**
5928  * Get flow director information.
5929  *
5930  * @param dev
5931  *   Pointer to Ethernet device.
5932  * @param[out] fdir_info
5933  *   Resulting flow director information.
5934  */
5935 static void
5936 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
5937 {
5938         struct rte_eth_fdir_masks *mask =
5939                 &dev->data->dev_conf.fdir_conf.mask;
5940
5941         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
5942         fdir_info->guarant_spc = 0;
5943         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
5944         fdir_info->max_flexpayload = 0;
5945         fdir_info->flow_types_mask[0] = 0;
5946         fdir_info->flex_payload_unit = 0;
5947         fdir_info->max_flex_payload_segment_num = 0;
5948         fdir_info->flex_payload_limit = 0;
5949         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
5950 }
5951
5952 /**
5953  * Deal with flow director operations.
5954  *
5955  * @param dev
5956  *   Pointer to Ethernet device.
5957  * @param filter_op
5958  *   Operation to perform.
5959  * @param arg
5960  *   Pointer to operation-specific structure.
5961  *
5962  * @return
5963  *   0 on success, a negative errno value otherwise and rte_errno is set.
5964  */
5965 static int
5966 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
5967                     void *arg)
5968 {
5969         enum rte_fdir_mode fdir_mode =
5970                 dev->data->dev_conf.fdir_conf.mode;
5971
5972         if (filter_op == RTE_ETH_FILTER_NOP)
5973                 return 0;
5974         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
5975             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
5976                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
5977                         dev->data->port_id, fdir_mode);
5978                 rte_errno = EINVAL;
5979                 return -rte_errno;
5980         }
5981         switch (filter_op) {
5982         case RTE_ETH_FILTER_ADD:
5983                 return flow_fdir_filter_add(dev, arg);
5984         case RTE_ETH_FILTER_UPDATE:
5985                 return flow_fdir_filter_update(dev, arg);
5986         case RTE_ETH_FILTER_DELETE:
5987                 return flow_fdir_filter_delete(dev, arg);
5988         case RTE_ETH_FILTER_FLUSH:
5989                 flow_fdir_filter_flush(dev);
5990                 break;
5991         case RTE_ETH_FILTER_INFO:
5992                 flow_fdir_info_get(dev, arg);
5993                 break;
5994         default:
5995                 DRV_LOG(DEBUG, "port %u unknown operation %u",
5996                         dev->data->port_id, filter_op);
5997                 rte_errno = EINVAL;
5998                 return -rte_errno;
5999         }
6000         return 0;
6001 }
6002
6003 /**
6004  * Manage filter operations.
6005  *
6006  * @param dev
6007  *   Pointer to Ethernet device structure.
6008  * @param filter_type
6009  *   Filter type.
6010  * @param filter_op
6011  *   Operation to perform.
6012  * @param arg
6013  *   Pointer to operation-specific structure.
6014  *
6015  * @return
6016  *   0 on success, a negative errno value otherwise and rte_errno is set.
6017  */
6018 int
6019 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
6020                      enum rte_filter_type filter_type,
6021                      enum rte_filter_op filter_op,
6022                      void *arg)
6023 {
6024         switch (filter_type) {
6025         case RTE_ETH_FILTER_GENERIC:
6026                 if (filter_op != RTE_ETH_FILTER_GET) {
6027                         rte_errno = EINVAL;
6028                         return -rte_errno;
6029                 }
6030                 *(const void **)arg = &mlx5_flow_ops;
6031                 return 0;
6032         case RTE_ETH_FILTER_FDIR:
6033                 return flow_fdir_ctrl_func(dev, filter_op, arg);
6034         default:
6035                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
6036                         dev->data->port_id, filter_type);
6037                 rte_errno = ENOTSUP;
6038                 return -rte_errno;
6039         }
6040         return 0;
6041 }
6042
6043 /**
6044  * Create the needed meter and suffix tables.
6045  *
6046  * @param[in] dev
6047  *   Pointer to Ethernet device.
6048  * @param[in] fm
6049  *   Pointer to the flow meter.
6050  *
6051  * @return
6052  *   Pointer to table set on success, NULL otherwise.
6053  */
6054 struct mlx5_meter_domains_infos *
6055 mlx5_flow_create_mtr_tbls(struct rte_eth_dev *dev,
6056                           const struct mlx5_flow_meter *fm)
6057 {
6058         const struct mlx5_flow_driver_ops *fops;
6059
6060         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6061         return fops->create_mtr_tbls(dev, fm);
6062 }
6063
6064 /**
6065  * Destroy the meter table set.
6066  *
6067  * @param[in] dev
6068  *   Pointer to Ethernet device.
6069  * @param[in] tbl
6070  *   Pointer to the meter table set.
6071  *
6072  * @return
6073  *   0 on success.
6074  */
6075 int
6076 mlx5_flow_destroy_mtr_tbls(struct rte_eth_dev *dev,
6077                            struct mlx5_meter_domains_infos *tbls)
6078 {
6079         const struct mlx5_flow_driver_ops *fops;
6080
6081         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6082         return fops->destroy_mtr_tbls(dev, tbls);
6083 }
6084
6085 /**
6086  * Create policer rules.
6087  *
6088  * @param[in] dev
6089  *   Pointer to Ethernet device.
6090  * @param[in] fm
6091  *   Pointer to flow meter structure.
6092  * @param[in] attr
6093  *   Pointer to flow attributes.
6094  *
6095  * @return
6096  *   0 on success, -1 otherwise.
6097  */
6098 int
6099 mlx5_flow_create_policer_rules(struct rte_eth_dev *dev,
6100                                struct mlx5_flow_meter *fm,
6101                                const struct rte_flow_attr *attr)
6102 {
6103         const struct mlx5_flow_driver_ops *fops;
6104
6105         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6106         return fops->create_policer_rules(dev, fm, attr);
6107 }
6108
6109 /**
6110  * Destroy policer rules.
6111  *
6112  * @param[in] fm
6113  *   Pointer to flow meter structure.
6114  * @param[in] attr
6115  *   Pointer to flow attributes.
6116  *
6117  * @return
6118  *   0 on success, -1 otherwise.
6119  */
6120 int
6121 mlx5_flow_destroy_policer_rules(struct rte_eth_dev *dev,
6122                                 struct mlx5_flow_meter *fm,
6123                                 const struct rte_flow_attr *attr)
6124 {
6125         const struct mlx5_flow_driver_ops *fops;
6126
6127         fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6128         return fops->destroy_policer_rules(dev, fm, attr);
6129 }
6130
6131 /**
6132  * Allocate a counter.
6133  *
6134  * @param[in] dev
6135  *   Pointer to Ethernet device structure.
6136  *
6137  * @return
6138  *   Index to allocated counter  on success, 0 otherwise.
6139  */
6140 uint32_t
6141 mlx5_counter_alloc(struct rte_eth_dev *dev)
6142 {
6143         const struct mlx5_flow_driver_ops *fops;
6144         struct rte_flow_attr attr = { .transfer = 0 };
6145
6146         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6147                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6148                 return fops->counter_alloc(dev);
6149         }
6150         DRV_LOG(ERR,
6151                 "port %u counter allocate is not supported.",
6152                  dev->data->port_id);
6153         return 0;
6154 }
6155
6156 /**
6157  * Free a counter.
6158  *
6159  * @param[in] dev
6160  *   Pointer to Ethernet device structure.
6161  * @param[in] cnt
6162  *   Index to counter to be free.
6163  */
6164 void
6165 mlx5_counter_free(struct rte_eth_dev *dev, uint32_t cnt)
6166 {
6167         const struct mlx5_flow_driver_ops *fops;
6168         struct rte_flow_attr attr = { .transfer = 0 };
6169
6170         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6171                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6172                 fops->counter_free(dev, cnt);
6173                 return;
6174         }
6175         DRV_LOG(ERR,
6176                 "port %u counter free is not supported.",
6177                  dev->data->port_id);
6178 }
6179
6180 /**
6181  * Query counter statistics.
6182  *
6183  * @param[in] dev
6184  *   Pointer to Ethernet device structure.
6185  * @param[in] cnt
6186  *   Index to counter to query.
6187  * @param[in] clear
6188  *   Set to clear counter statistics.
6189  * @param[out] pkts
6190  *   The counter hits packets number to save.
6191  * @param[out] bytes
6192  *   The counter hits bytes number to save.
6193  *
6194  * @return
6195  *   0 on success, a negative errno value otherwise.
6196  */
6197 int
6198 mlx5_counter_query(struct rte_eth_dev *dev, uint32_t cnt,
6199                    bool clear, uint64_t *pkts, uint64_t *bytes)
6200 {
6201         const struct mlx5_flow_driver_ops *fops;
6202         struct rte_flow_attr attr = { .transfer = 0 };
6203
6204         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6205                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6206                 return fops->counter_query(dev, cnt, clear, pkts, bytes);
6207         }
6208         DRV_LOG(ERR,
6209                 "port %u counter query is not supported.",
6210                  dev->data->port_id);
6211         return -ENOTSUP;
6212 }
6213
6214 #define MLX5_POOL_QUERY_FREQ_US 1000000
6215
6216 /**
6217  * Get number of all validate pools.
6218  *
6219  * @param[in] sh
6220  *   Pointer to mlx5_dev_ctx_shared object.
6221  *
6222  * @return
6223  *   The number of all validate pools.
6224  */
6225 static uint32_t
6226 mlx5_get_all_valid_pool_count(struct mlx5_dev_ctx_shared *sh)
6227 {
6228         int i;
6229         uint32_t pools_n = 0;
6230
6231         for (i = 0; i < MLX5_CCONT_TYPE_MAX; ++i)
6232                 pools_n += rte_atomic16_read(&sh->cmng.ccont[i].n_valid);
6233         return pools_n;
6234 }
6235
6236 /**
6237  * Set the periodic procedure for triggering asynchronous batch queries for all
6238  * the counter pools.
6239  *
6240  * @param[in] sh
6241  *   Pointer to mlx5_dev_ctx_shared object.
6242  */
6243 void
6244 mlx5_set_query_alarm(struct mlx5_dev_ctx_shared *sh)
6245 {
6246         uint32_t pools_n, us;
6247
6248         pools_n = mlx5_get_all_valid_pool_count(sh);
6249         us = MLX5_POOL_QUERY_FREQ_US / pools_n;
6250         DRV_LOG(DEBUG, "Set alarm for %u pools each %u us", pools_n, us);
6251         if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
6252                 sh->cmng.query_thread_on = 0;
6253                 DRV_LOG(ERR, "Cannot reinitialize query alarm");
6254         } else {
6255                 sh->cmng.query_thread_on = 1;
6256         }
6257 }
6258
6259 /**
6260  * The periodic procedure for triggering asynchronous batch queries for all the
6261  * counter pools. This function is probably called by the host thread.
6262  *
6263  * @param[in] arg
6264  *   The parameter for the alarm process.
6265  */
6266 void
6267 mlx5_flow_query_alarm(void *arg)
6268 {
6269         struct mlx5_dev_ctx_shared *sh = arg;
6270         struct mlx5_devx_obj *dcs;
6271         uint16_t offset;
6272         int ret;
6273         uint8_t batch = sh->cmng.batch;
6274         uint8_t age = sh->cmng.age;
6275         uint16_t pool_index = sh->cmng.pool_index;
6276         struct mlx5_pools_container *cont;
6277         struct mlx5_flow_counter_pool *pool;
6278         int cont_loop = MLX5_CCONT_TYPE_MAX;
6279
6280         if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
6281                 goto set_alarm;
6282 next_container:
6283         cont = MLX5_CNT_CONTAINER(sh, batch, age);
6284         rte_spinlock_lock(&cont->resize_sl);
6285         if (!cont->pools) {
6286                 rte_spinlock_unlock(&cont->resize_sl);
6287                 /* Check if all the containers are empty. */
6288                 if (unlikely(--cont_loop == 0))
6289                         goto set_alarm;
6290                 batch ^= 0x1;
6291                 pool_index = 0;
6292                 if (batch == 0 && pool_index == 0) {
6293                         age ^= 0x1;
6294                         sh->cmng.batch = batch;
6295                         sh->cmng.age = age;
6296                 }
6297                 goto next_container;
6298         }
6299         pool = cont->pools[pool_index];
6300         rte_spinlock_unlock(&cont->resize_sl);
6301         if (pool->raw_hw)
6302                 /* There is a pool query in progress. */
6303                 goto set_alarm;
6304         pool->raw_hw =
6305                 LIST_FIRST(&sh->cmng.free_stat_raws);
6306         if (!pool->raw_hw)
6307                 /* No free counter statistics raw memory. */
6308                 goto set_alarm;
6309         dcs = (struct mlx5_devx_obj *)(uintptr_t)rte_atomic64_read
6310                                                               (&pool->a64_dcs);
6311         if (dcs->id & (MLX5_CNT_BATCH_QUERY_ID_ALIGNMENT - 1)) {
6312                 /* Pool without valid counter. */
6313                 pool->raw_hw = NULL;
6314                 goto next_pool;
6315         }
6316         offset = batch ? 0 : dcs->id % MLX5_COUNTERS_PER_POOL;
6317         /*
6318          * Identify the counters released between query trigger and query
6319          * handle more effiecntly. The counter released in this gap period
6320          * should wait for a new round of query as the new arrived packets
6321          * will not be taken into account.
6322          */
6323         pool->query_gen++;
6324         ret = mlx5_devx_cmd_flow_counter_query(dcs, 0, MLX5_COUNTERS_PER_POOL -
6325                                                offset, NULL, NULL,
6326                                                pool->raw_hw->mem_mng->dm->id,
6327                                                (void *)(uintptr_t)
6328                                                (pool->raw_hw->data + offset),
6329                                                sh->devx_comp,
6330                                                (uint64_t)(uintptr_t)pool);
6331         if (ret) {
6332                 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
6333                         " %d", pool->min_dcs->id);
6334                 pool->raw_hw = NULL;
6335                 goto set_alarm;
6336         }
6337         pool->raw_hw->min_dcs_id = dcs->id;
6338         LIST_REMOVE(pool->raw_hw, next);
6339         sh->cmng.pending_queries++;
6340 next_pool:
6341         pool_index++;
6342         if (pool_index >= rte_atomic16_read(&cont->n_valid)) {
6343                 batch ^= 0x1;
6344                 pool_index = 0;
6345                 if (batch == 0 && pool_index == 0)
6346                         age ^= 0x1;
6347         }
6348 set_alarm:
6349         sh->cmng.batch = batch;
6350         sh->cmng.pool_index = pool_index;
6351         sh->cmng.age = age;
6352         mlx5_set_query_alarm(sh);
6353 }
6354
6355 /**
6356  * Check and callback event for new aged flow in the counter pool
6357  *
6358  * @param[in] sh
6359  *   Pointer to mlx5_dev_ctx_shared object.
6360  * @param[in] pool
6361  *   Pointer to Current counter pool.
6362  */
6363 static void
6364 mlx5_flow_aging_check(struct mlx5_dev_ctx_shared *sh,
6365                    struct mlx5_flow_counter_pool *pool)
6366 {
6367         struct mlx5_priv *priv;
6368         struct mlx5_flow_counter *cnt;
6369         struct mlx5_age_info *age_info;
6370         struct mlx5_age_param *age_param;
6371         struct mlx5_counter_stats_raw *cur = pool->raw_hw;
6372         struct mlx5_counter_stats_raw *prev = pool->raw;
6373         uint16_t curr = rte_rdtsc() / (rte_get_tsc_hz() / 10);
6374         uint32_t i;
6375
6376         for (i = 0; i < MLX5_COUNTERS_PER_POOL; ++i) {
6377                 cnt = MLX5_POOL_GET_CNT(pool, i);
6378                 age_param = MLX5_CNT_TO_AGE(cnt);
6379                 if (rte_atomic16_read(&age_param->state) != AGE_CANDIDATE)
6380                         continue;
6381                 if (cur->data[i].hits != prev->data[i].hits) {
6382                         age_param->expire = curr + age_param->timeout;
6383                         continue;
6384                 }
6385                 if ((uint16_t)(curr - age_param->expire) >= (UINT16_MAX / 2))
6386                         continue;
6387                 /**
6388                  * Hold the lock first, or if between the
6389                  * state AGE_TMOUT and tailq operation the
6390                  * release happened, the release procedure
6391                  * may delete a non-existent tailq node.
6392                  */
6393                 priv = rte_eth_devices[age_param->port_id].data->dev_private;
6394                 age_info = GET_PORT_AGE_INFO(priv);
6395                 rte_spinlock_lock(&age_info->aged_sl);
6396                 /* If the cpmset fails, release happens. */
6397                 if (rte_atomic16_cmpset((volatile uint16_t *)
6398                                         &age_param->state,
6399                                         AGE_CANDIDATE,
6400                                         AGE_TMOUT) ==
6401                                         AGE_CANDIDATE) {
6402                         TAILQ_INSERT_TAIL(&age_info->aged_counters, cnt, next);
6403                         MLX5_AGE_SET(age_info, MLX5_AGE_EVENT_NEW);
6404                 }
6405                 rte_spinlock_unlock(&age_info->aged_sl);
6406         }
6407         for (i = 0; i < sh->max_port; i++) {
6408                 age_info = &sh->port[i].age_info;
6409                 if (!MLX5_AGE_GET(age_info, MLX5_AGE_EVENT_NEW))
6410                         continue;
6411                 if (MLX5_AGE_GET(age_info, MLX5_AGE_TRIGGER))
6412                         rte_eth_dev_callback_process
6413                                 (&rte_eth_devices[sh->port[i].devx_ih_port_id],
6414                                 RTE_ETH_EVENT_FLOW_AGED, NULL);
6415                 age_info->flags = 0;
6416         }
6417 }
6418
6419 /**
6420  * Handler for the HW respond about ready values from an asynchronous batch
6421  * query. This function is probably called by the host thread.
6422  *
6423  * @param[in] sh
6424  *   The pointer to the shared device context.
6425  * @param[in] async_id
6426  *   The Devx async ID.
6427  * @param[in] status
6428  *   The status of the completion.
6429  */
6430 void
6431 mlx5_flow_async_pool_query_handle(struct mlx5_dev_ctx_shared *sh,
6432                                   uint64_t async_id, int status)
6433 {
6434         struct mlx5_flow_counter_pool *pool =
6435                 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
6436         struct mlx5_counter_stats_raw *raw_to_free;
6437         uint8_t age = !!IS_AGE_POOL(pool);
6438         uint8_t query_gen = pool->query_gen ^ 1;
6439         struct mlx5_pools_container *cont =
6440                 MLX5_CNT_CONTAINER(sh, !IS_EXT_POOL(pool), age);
6441
6442         if (unlikely(status)) {
6443                 raw_to_free = pool->raw_hw;
6444         } else {
6445                 raw_to_free = pool->raw;
6446                 if (IS_AGE_POOL(pool))
6447                         mlx5_flow_aging_check(sh, pool);
6448                 rte_spinlock_lock(&pool->sl);
6449                 pool->raw = pool->raw_hw;
6450                 rte_spinlock_unlock(&pool->sl);
6451                 /* Be sure the new raw counters data is updated in memory. */
6452                 rte_io_wmb();
6453                 if (!TAILQ_EMPTY(&pool->counters[query_gen])) {
6454                         rte_spinlock_lock(&cont->csl);
6455                         TAILQ_CONCAT(&cont->counters,
6456                                      &pool->counters[query_gen], next);
6457                         rte_spinlock_unlock(&cont->csl);
6458                 }
6459         }
6460         LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
6461         pool->raw_hw = NULL;
6462         sh->cmng.pending_queries--;
6463 }
6464
6465 /**
6466  * Translate the rte_flow group index to HW table value.
6467  *
6468  * @param[in] attributes
6469  *   Pointer to flow attributes
6470  * @param[in] external
6471  *   Value is part of flow rule created by request external to PMD.
6472  * @param[in] group
6473  *   rte_flow group index value.
6474  * @param[out] fdb_def_rule
6475  *   Whether fdb jump to table 1 is configured.
6476  * @param[out] table
6477  *   HW table value.
6478  * @param[out] error
6479  *   Pointer to error structure.
6480  *
6481  * @return
6482  *   0 on success, a negative errno value otherwise and rte_errno is set.
6483  */
6484 int
6485 mlx5_flow_group_to_table(const struct rte_flow_attr *attributes, bool external,
6486                          uint32_t group, bool fdb_def_rule, uint32_t *table,
6487                          struct rte_flow_error *error)
6488 {
6489         if (attributes->transfer && external && fdb_def_rule) {
6490                 if (group == UINT32_MAX)
6491                         return rte_flow_error_set
6492                                                 (error, EINVAL,
6493                                                  RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
6494                                                  NULL,
6495                                                  "group index not supported");
6496                 *table = group + 1;
6497         } else {
6498                 *table = group;
6499         }
6500         return 0;
6501 }
6502
6503 /**
6504  * Discover availability of metadata reg_c's.
6505  *
6506  * Iteratively use test flows to check availability.
6507  *
6508  * @param[in] dev
6509  *   Pointer to the Ethernet device structure.
6510  *
6511  * @return
6512  *   0 on success, a negative errno value otherwise and rte_errno is set.
6513  */
6514 int
6515 mlx5_flow_discover_mreg_c(struct rte_eth_dev *dev)
6516 {
6517         struct mlx5_priv *priv = dev->data->dev_private;
6518         struct mlx5_dev_config *config = &priv->config;
6519         enum modify_reg idx;
6520         int n = 0;
6521
6522         /* reg_c[0] and reg_c[1] are reserved. */
6523         config->flow_mreg_c[n++] = REG_C_0;
6524         config->flow_mreg_c[n++] = REG_C_1;
6525         /* Discover availability of other reg_c's. */
6526         for (idx = REG_C_2; idx <= REG_C_7; ++idx) {
6527                 struct rte_flow_attr attr = {
6528                         .group = MLX5_FLOW_MREG_CP_TABLE_GROUP,
6529                         .priority = MLX5_FLOW_PRIO_RSVD,
6530                         .ingress = 1,
6531                 };
6532                 struct rte_flow_item items[] = {
6533                         [0] = {
6534                                 .type = RTE_FLOW_ITEM_TYPE_END,
6535                         },
6536                 };
6537                 struct rte_flow_action actions[] = {
6538                         [0] = {
6539                                 .type = (enum rte_flow_action_type)
6540                                         MLX5_RTE_FLOW_ACTION_TYPE_COPY_MREG,
6541                                 .conf = &(struct mlx5_flow_action_copy_mreg){
6542                                         .src = REG_C_1,
6543                                         .dst = idx,
6544                                 },
6545                         },
6546                         [1] = {
6547                                 .type = RTE_FLOW_ACTION_TYPE_JUMP,
6548                                 .conf = &(struct rte_flow_action_jump){
6549                                         .group = MLX5_FLOW_MREG_ACT_TABLE_GROUP,
6550                                 },
6551                         },
6552                         [2] = {
6553                                 .type = RTE_FLOW_ACTION_TYPE_END,
6554                         },
6555                 };
6556                 uint32_t flow_idx;
6557                 struct rte_flow *flow;
6558                 struct rte_flow_error error;
6559
6560                 if (!config->dv_flow_en)
6561                         break;
6562                 /* Create internal flow, validation skips copy action. */
6563                 flow_idx = flow_list_create(dev, NULL, &attr, items,
6564                                             actions, false, &error);
6565                 flow = mlx5_ipool_get(priv->sh->ipool[MLX5_IPOOL_RTE_FLOW],
6566                                       flow_idx);
6567                 if (!flow)
6568                         continue;
6569                 if (dev->data->dev_started || !flow_drv_apply(dev, flow, NULL))
6570                         config->flow_mreg_c[n++] = idx;
6571                 flow_list_destroy(dev, NULL, flow_idx);
6572         }
6573         for (; n < MLX5_MREG_C_NUM; ++n)
6574                 config->flow_mreg_c[n] = REG_NON;
6575         return 0;
6576 }
6577
6578 /**
6579  * Dump flow raw hw data to file
6580  *
6581  * @param[in] dev
6582  *    The pointer to Ethernet device.
6583  * @param[in] file
6584  *   A pointer to a file for output.
6585  * @param[out] error
6586  *   Perform verbose error reporting if not NULL. PMDs initialize this
6587  *   structure in case of error only.
6588  * @return
6589  *   0 on success, a nagative value otherwise.
6590  */
6591 int
6592 mlx5_flow_dev_dump(struct rte_eth_dev *dev,
6593                    FILE *file,
6594                    struct rte_flow_error *error __rte_unused)
6595 {
6596         struct mlx5_priv *priv = dev->data->dev_private;
6597         struct mlx5_dev_ctx_shared *sh = priv->sh;
6598
6599         if (!priv->config.dv_flow_en) {
6600                 if (fputs("device dv flow disabled\n", file) <= 0)
6601                         return -errno;
6602                 return -ENOTSUP;
6603         }
6604         return mlx5_devx_cmd_flow_dump(sh->fdb_domain, sh->rx_domain,
6605                                        sh->tx_domain, file);
6606 }
6607
6608 /**
6609  * Get aged-out flows.
6610  *
6611  * @param[in] dev
6612  *   Pointer to the Ethernet device structure.
6613  * @param[in] context
6614  *   The address of an array of pointers to the aged-out flows contexts.
6615  * @param[in] nb_countexts
6616  *   The length of context array pointers.
6617  * @param[out] error
6618  *   Perform verbose error reporting if not NULL. Initialized in case of
6619  *   error only.
6620  *
6621  * @return
6622  *   how many contexts get in success, otherwise negative errno value.
6623  *   if nb_contexts is 0, return the amount of all aged contexts.
6624  *   if nb_contexts is not 0 , return the amount of aged flows reported
6625  *   in the context array.
6626  */
6627 int
6628 mlx5_flow_get_aged_flows(struct rte_eth_dev *dev, void **contexts,
6629                         uint32_t nb_contexts, struct rte_flow_error *error)
6630 {
6631         const struct mlx5_flow_driver_ops *fops;
6632         struct rte_flow_attr attr = { .transfer = 0 };
6633
6634         if (flow_get_drv_type(dev, &attr) == MLX5_FLOW_TYPE_DV) {
6635                 fops = flow_get_drv_ops(MLX5_FLOW_TYPE_DV);
6636                 return fops->get_aged_flows(dev, contexts, nb_contexts,
6637                                                     error);
6638         }
6639         DRV_LOG(ERR,
6640                 "port %u get aged flows is not supported.",
6641                  dev->data->port_id);
6642         return -ENOTSUP;
6643 }