net/mlx5: fix RSS expand for IP-in-IP
[dpdk.git] / drivers / net / mlx5 / mlx5_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <netinet/in.h>
7 #include <sys/queue.h>
8 #include <stdalign.h>
9 #include <stdint.h>
10 #include <string.h>
11
12 /* Verbs header. */
13 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
14 #ifdef PEDANTIC
15 #pragma GCC diagnostic ignored "-Wpedantic"
16 #endif
17 #include <infiniband/verbs.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_common.h>
23 #include <rte_ether.h>
24 #include <rte_ethdev_driver.h>
25 #include <rte_flow.h>
26 #include <rte_flow_driver.h>
27 #include <rte_malloc.h>
28 #include <rte_ip.h>
29
30 #include "mlx5.h"
31 #include "mlx5_defs.h"
32 #include "mlx5_flow.h"
33 #include "mlx5_glue.h"
34 #include "mlx5_prm.h"
35 #include "mlx5_rxtx.h"
36
37 /* Dev ops structure defined in mlx5.c */
38 extern const struct eth_dev_ops mlx5_dev_ops;
39 extern const struct eth_dev_ops mlx5_dev_ops_isolate;
40
41 /** Device flow drivers. */
42 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
43 extern const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops;
44 #endif
45 extern const struct mlx5_flow_driver_ops mlx5_flow_verbs_drv_ops;
46
47 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops;
48
49 const struct mlx5_flow_driver_ops *flow_drv_ops[] = {
50         [MLX5_FLOW_TYPE_MIN] = &mlx5_flow_null_drv_ops,
51 #ifdef HAVE_IBV_FLOW_DV_SUPPORT
52         [MLX5_FLOW_TYPE_DV] = &mlx5_flow_dv_drv_ops,
53 #endif
54         [MLX5_FLOW_TYPE_VERBS] = &mlx5_flow_verbs_drv_ops,
55         [MLX5_FLOW_TYPE_MAX] = &mlx5_flow_null_drv_ops
56 };
57
58 enum mlx5_expansion {
59         MLX5_EXPANSION_ROOT,
60         MLX5_EXPANSION_ROOT_OUTER,
61         MLX5_EXPANSION_ROOT_ETH_VLAN,
62         MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN,
63         MLX5_EXPANSION_OUTER_ETH,
64         MLX5_EXPANSION_OUTER_ETH_VLAN,
65         MLX5_EXPANSION_OUTER_VLAN,
66         MLX5_EXPANSION_OUTER_IPV4,
67         MLX5_EXPANSION_OUTER_IPV4_UDP,
68         MLX5_EXPANSION_OUTER_IPV4_TCP,
69         MLX5_EXPANSION_OUTER_IPV6,
70         MLX5_EXPANSION_OUTER_IPV6_UDP,
71         MLX5_EXPANSION_OUTER_IPV6_TCP,
72         MLX5_EXPANSION_VXLAN,
73         MLX5_EXPANSION_VXLAN_GPE,
74         MLX5_EXPANSION_GRE,
75         MLX5_EXPANSION_MPLS,
76         MLX5_EXPANSION_ETH,
77         MLX5_EXPANSION_ETH_VLAN,
78         MLX5_EXPANSION_VLAN,
79         MLX5_EXPANSION_IPV4,
80         MLX5_EXPANSION_IPV4_UDP,
81         MLX5_EXPANSION_IPV4_TCP,
82         MLX5_EXPANSION_IPV6,
83         MLX5_EXPANSION_IPV6_UDP,
84         MLX5_EXPANSION_IPV6_TCP,
85 };
86
87 /** Supported expansion of items. */
88 static const struct rte_flow_expand_node mlx5_support_expansion[] = {
89         [MLX5_EXPANSION_ROOT] = {
90                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
91                                                  MLX5_EXPANSION_IPV4,
92                                                  MLX5_EXPANSION_IPV6),
93                 .type = RTE_FLOW_ITEM_TYPE_END,
94         },
95         [MLX5_EXPANSION_ROOT_OUTER] = {
96                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH,
97                                                  MLX5_EXPANSION_OUTER_IPV4,
98                                                  MLX5_EXPANSION_OUTER_IPV6),
99                 .type = RTE_FLOW_ITEM_TYPE_END,
100         },
101         [MLX5_EXPANSION_ROOT_ETH_VLAN] = {
102                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH_VLAN),
103                 .type = RTE_FLOW_ITEM_TYPE_END,
104         },
105         [MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN] = {
106                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_ETH_VLAN),
107                 .type = RTE_FLOW_ITEM_TYPE_END,
108         },
109         [MLX5_EXPANSION_OUTER_ETH] = {
110                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
111                                                  MLX5_EXPANSION_OUTER_IPV6,
112                                                  MLX5_EXPANSION_MPLS),
113                 .type = RTE_FLOW_ITEM_TYPE_ETH,
114                 .rss_types = 0,
115         },
116         [MLX5_EXPANSION_OUTER_ETH_VLAN] = {
117                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_VLAN),
118                 .type = RTE_FLOW_ITEM_TYPE_ETH,
119                 .rss_types = 0,
120         },
121         [MLX5_EXPANSION_OUTER_VLAN] = {
122                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_OUTER_IPV4,
123                                                  MLX5_EXPANSION_OUTER_IPV6),
124                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
125         },
126         [MLX5_EXPANSION_OUTER_IPV4] = {
127                 .next = RTE_FLOW_EXPAND_RSS_NEXT
128                         (MLX5_EXPANSION_OUTER_IPV4_UDP,
129                          MLX5_EXPANSION_OUTER_IPV4_TCP,
130                          MLX5_EXPANSION_GRE,
131                          MLX5_EXPANSION_IPV4,
132                          MLX5_EXPANSION_IPV6),
133                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
134                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
135                         ETH_RSS_NONFRAG_IPV4_OTHER,
136         },
137         [MLX5_EXPANSION_OUTER_IPV4_UDP] = {
138                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
139                                                  MLX5_EXPANSION_VXLAN_GPE),
140                 .type = RTE_FLOW_ITEM_TYPE_UDP,
141                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
142         },
143         [MLX5_EXPANSION_OUTER_IPV4_TCP] = {
144                 .type = RTE_FLOW_ITEM_TYPE_TCP,
145                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
146         },
147         [MLX5_EXPANSION_OUTER_IPV6] = {
148                 .next = RTE_FLOW_EXPAND_RSS_NEXT
149                         (MLX5_EXPANSION_OUTER_IPV6_UDP,
150                          MLX5_EXPANSION_OUTER_IPV6_TCP,
151                          MLX5_EXPANSION_IPV4,
152                          MLX5_EXPANSION_IPV6),
153                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
154                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
155                         ETH_RSS_NONFRAG_IPV6_OTHER,
156         },
157         [MLX5_EXPANSION_OUTER_IPV6_UDP] = {
158                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VXLAN,
159                                                  MLX5_EXPANSION_VXLAN_GPE),
160                 .type = RTE_FLOW_ITEM_TYPE_UDP,
161                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
162         },
163         [MLX5_EXPANSION_OUTER_IPV6_TCP] = {
164                 .type = RTE_FLOW_ITEM_TYPE_TCP,
165                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
166         },
167         [MLX5_EXPANSION_VXLAN] = {
168                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH),
169                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
170         },
171         [MLX5_EXPANSION_VXLAN_GPE] = {
172                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_ETH,
173                                                  MLX5_EXPANSION_IPV4,
174                                                  MLX5_EXPANSION_IPV6),
175                 .type = RTE_FLOW_ITEM_TYPE_VXLAN_GPE,
176         },
177         [MLX5_EXPANSION_GRE] = {
178                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4),
179                 .type = RTE_FLOW_ITEM_TYPE_GRE,
180         },
181         [MLX5_EXPANSION_MPLS] = {
182                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
183                                                  MLX5_EXPANSION_IPV6),
184                 .type = RTE_FLOW_ITEM_TYPE_MPLS,
185         },
186         [MLX5_EXPANSION_ETH] = {
187                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
188                                                  MLX5_EXPANSION_IPV6),
189                 .type = RTE_FLOW_ITEM_TYPE_ETH,
190         },
191         [MLX5_EXPANSION_ETH_VLAN] = {
192                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_VLAN),
193                 .type = RTE_FLOW_ITEM_TYPE_ETH,
194         },
195         [MLX5_EXPANSION_VLAN] = {
196                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4,
197                                                  MLX5_EXPANSION_IPV6),
198                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
199         },
200         [MLX5_EXPANSION_IPV4] = {
201                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV4_UDP,
202                                                  MLX5_EXPANSION_IPV4_TCP),
203                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
204                 .rss_types = ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
205                         ETH_RSS_NONFRAG_IPV4_OTHER,
206         },
207         [MLX5_EXPANSION_IPV4_UDP] = {
208                 .type = RTE_FLOW_ITEM_TYPE_UDP,
209                 .rss_types = ETH_RSS_NONFRAG_IPV4_UDP,
210         },
211         [MLX5_EXPANSION_IPV4_TCP] = {
212                 .type = RTE_FLOW_ITEM_TYPE_TCP,
213                 .rss_types = ETH_RSS_NONFRAG_IPV4_TCP,
214         },
215         [MLX5_EXPANSION_IPV6] = {
216                 .next = RTE_FLOW_EXPAND_RSS_NEXT(MLX5_EXPANSION_IPV6_UDP,
217                                                  MLX5_EXPANSION_IPV6_TCP),
218                 .type = RTE_FLOW_ITEM_TYPE_IPV6,
219                 .rss_types = ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
220                         ETH_RSS_NONFRAG_IPV6_OTHER,
221         },
222         [MLX5_EXPANSION_IPV6_UDP] = {
223                 .type = RTE_FLOW_ITEM_TYPE_UDP,
224                 .rss_types = ETH_RSS_NONFRAG_IPV6_UDP,
225         },
226         [MLX5_EXPANSION_IPV6_TCP] = {
227                 .type = RTE_FLOW_ITEM_TYPE_TCP,
228                 .rss_types = ETH_RSS_NONFRAG_IPV6_TCP,
229         },
230 };
231
232 static const struct rte_flow_ops mlx5_flow_ops = {
233         .validate = mlx5_flow_validate,
234         .create = mlx5_flow_create,
235         .destroy = mlx5_flow_destroy,
236         .flush = mlx5_flow_flush,
237         .isolate = mlx5_flow_isolate,
238         .query = mlx5_flow_query,
239 };
240
241 /* Convert FDIR request to Generic flow. */
242 struct mlx5_fdir {
243         struct rte_flow_attr attr;
244         struct rte_flow_item items[4];
245         struct rte_flow_item_eth l2;
246         struct rte_flow_item_eth l2_mask;
247         union {
248                 struct rte_flow_item_ipv4 ipv4;
249                 struct rte_flow_item_ipv6 ipv6;
250         } l3;
251         union {
252                 struct rte_flow_item_ipv4 ipv4;
253                 struct rte_flow_item_ipv6 ipv6;
254         } l3_mask;
255         union {
256                 struct rte_flow_item_udp udp;
257                 struct rte_flow_item_tcp tcp;
258         } l4;
259         union {
260                 struct rte_flow_item_udp udp;
261                 struct rte_flow_item_tcp tcp;
262         } l4_mask;
263         struct rte_flow_action actions[2];
264         struct rte_flow_action_queue queue;
265 };
266
267 /* Map of Verbs to Flow priority with 8 Verbs priorities. */
268 static const uint32_t priority_map_3[][MLX5_PRIORITY_MAP_MAX] = {
269         { 0, 1, 2 }, { 2, 3, 4 }, { 5, 6, 7 },
270 };
271
272 /* Map of Verbs to Flow priority with 16 Verbs priorities. */
273 static const uint32_t priority_map_5[][MLX5_PRIORITY_MAP_MAX] = {
274         { 0, 1, 2 }, { 3, 4, 5 }, { 6, 7, 8 },
275         { 9, 10, 11 }, { 12, 13, 14 },
276 };
277
278 /* Tunnel information. */
279 struct mlx5_flow_tunnel_info {
280         uint64_t tunnel; /**< Tunnel bit (see MLX5_FLOW_*). */
281         uint32_t ptype; /**< Tunnel Ptype (see RTE_PTYPE_*). */
282 };
283
284 static struct mlx5_flow_tunnel_info tunnels_info[] = {
285         {
286                 .tunnel = MLX5_FLOW_LAYER_VXLAN,
287                 .ptype = RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP,
288         },
289         {
290                 .tunnel = MLX5_FLOW_LAYER_VXLAN_GPE,
291                 .ptype = RTE_PTYPE_TUNNEL_VXLAN_GPE | RTE_PTYPE_L4_UDP,
292         },
293         {
294                 .tunnel = MLX5_FLOW_LAYER_GRE,
295                 .ptype = RTE_PTYPE_TUNNEL_GRE,
296         },
297         {
298                 .tunnel = MLX5_FLOW_LAYER_MPLS | MLX5_FLOW_LAYER_OUTER_L4_UDP,
299                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_UDP | RTE_PTYPE_L4_UDP,
300         },
301         {
302                 .tunnel = MLX5_FLOW_LAYER_MPLS,
303                 .ptype = RTE_PTYPE_TUNNEL_MPLS_IN_GRE,
304         },
305         {
306                 .tunnel = MLX5_FLOW_LAYER_NVGRE,
307                 .ptype = RTE_PTYPE_TUNNEL_NVGRE,
308         },
309 };
310
311 /**
312  * Discover the maximum number of priority available.
313  *
314  * @param[in] dev
315  *   Pointer to the Ethernet device structure.
316  *
317  * @return
318  *   number of supported flow priority on success, a negative errno
319  *   value otherwise and rte_errno is set.
320  */
321 int
322 mlx5_flow_discover_priorities(struct rte_eth_dev *dev)
323 {
324         struct mlx5_priv *priv = dev->data->dev_private;
325         struct {
326                 struct ibv_flow_attr attr;
327                 struct ibv_flow_spec_eth eth;
328                 struct ibv_flow_spec_action_drop drop;
329         } flow_attr = {
330                 .attr = {
331                         .num_of_specs = 2,
332                         .port = (uint8_t)priv->ibv_port,
333                 },
334                 .eth = {
335                         .type = IBV_FLOW_SPEC_ETH,
336                         .size = sizeof(struct ibv_flow_spec_eth),
337                 },
338                 .drop = {
339                         .size = sizeof(struct ibv_flow_spec_action_drop),
340                         .type = IBV_FLOW_SPEC_ACTION_DROP,
341                 },
342         };
343         struct ibv_flow *flow;
344         struct mlx5_hrxq *drop = mlx5_hrxq_drop_new(dev);
345         uint16_t vprio[] = { 8, 16 };
346         int i;
347         int priority = 0;
348
349         if (!drop) {
350                 rte_errno = ENOTSUP;
351                 return -rte_errno;
352         }
353         for (i = 0; i != RTE_DIM(vprio); i++) {
354                 flow_attr.attr.priority = vprio[i] - 1;
355                 flow = mlx5_glue->create_flow(drop->qp, &flow_attr.attr);
356                 if (!flow)
357                         break;
358                 claim_zero(mlx5_glue->destroy_flow(flow));
359                 priority = vprio[i];
360         }
361         mlx5_hrxq_drop_release(dev);
362         switch (priority) {
363         case 8:
364                 priority = RTE_DIM(priority_map_3);
365                 break;
366         case 16:
367                 priority = RTE_DIM(priority_map_5);
368                 break;
369         default:
370                 rte_errno = ENOTSUP;
371                 DRV_LOG(ERR,
372                         "port %u verbs maximum priority: %d expected 8/16",
373                         dev->data->port_id, priority);
374                 return -rte_errno;
375         }
376         DRV_LOG(INFO, "port %u flow maximum priority: %d",
377                 dev->data->port_id, priority);
378         return priority;
379 }
380
381 /**
382  * Adjust flow priority based on the highest layer and the request priority.
383  *
384  * @param[in] dev
385  *   Pointer to the Ethernet device structure.
386  * @param[in] priority
387  *   The rule base priority.
388  * @param[in] subpriority
389  *   The priority based on the items.
390  *
391  * @return
392  *   The new priority.
393  */
394 uint32_t mlx5_flow_adjust_priority(struct rte_eth_dev *dev, int32_t priority,
395                                    uint32_t subpriority)
396 {
397         uint32_t res = 0;
398         struct mlx5_priv *priv = dev->data->dev_private;
399
400         switch (priv->config.flow_prio) {
401         case RTE_DIM(priority_map_3):
402                 res = priority_map_3[priority][subpriority];
403                 break;
404         case RTE_DIM(priority_map_5):
405                 res = priority_map_5[priority][subpriority];
406                 break;
407         }
408         return  res;
409 }
410
411 /**
412  * Verify the @p item specifications (spec, last, mask) are compatible with the
413  * NIC capabilities.
414  *
415  * @param[in] item
416  *   Item specification.
417  * @param[in] mask
418  *   @p item->mask or flow default bit-masks.
419  * @param[in] nic_mask
420  *   Bit-masks covering supported fields by the NIC to compare with user mask.
421  * @param[in] size
422  *   Bit-masks size in bytes.
423  * @param[out] error
424  *   Pointer to error structure.
425  *
426  * @return
427  *   0 on success, a negative errno value otherwise and rte_errno is set.
428  */
429 int
430 mlx5_flow_item_acceptable(const struct rte_flow_item *item,
431                           const uint8_t *mask,
432                           const uint8_t *nic_mask,
433                           unsigned int size,
434                           struct rte_flow_error *error)
435 {
436         unsigned int i;
437
438         assert(nic_mask);
439         for (i = 0; i < size; ++i)
440                 if ((nic_mask[i] | mask[i]) != nic_mask[i])
441                         return rte_flow_error_set(error, ENOTSUP,
442                                                   RTE_FLOW_ERROR_TYPE_ITEM,
443                                                   item,
444                                                   "mask enables non supported"
445                                                   " bits");
446         if (!item->spec && (item->mask || item->last))
447                 return rte_flow_error_set(error, EINVAL,
448                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
449                                           "mask/last without a spec is not"
450                                           " supported");
451         if (item->spec && item->last) {
452                 uint8_t spec[size];
453                 uint8_t last[size];
454                 unsigned int i;
455                 int ret;
456
457                 for (i = 0; i < size; ++i) {
458                         spec[i] = ((const uint8_t *)item->spec)[i] & mask[i];
459                         last[i] = ((const uint8_t *)item->last)[i] & mask[i];
460                 }
461                 ret = memcmp(spec, last, size);
462                 if (ret != 0)
463                         return rte_flow_error_set(error, EINVAL,
464                                                   RTE_FLOW_ERROR_TYPE_ITEM,
465                                                   item,
466                                                   "range is not valid");
467         }
468         return 0;
469 }
470
471 /**
472  * Adjust the hash fields according to the @p flow information.
473  *
474  * @param[in] dev_flow.
475  *   Pointer to the mlx5_flow.
476  * @param[in] tunnel
477  *   1 when the hash field is for a tunnel item.
478  * @param[in] layer_types
479  *   ETH_RSS_* types.
480  * @param[in] hash_fields
481  *   Item hash fields.
482  *
483  * @return
484  *   The hash fields that should be used.
485  */
486 uint64_t
487 mlx5_flow_hashfields_adjust(struct mlx5_flow *dev_flow,
488                             int tunnel __rte_unused, uint64_t layer_types,
489                             uint64_t hash_fields)
490 {
491         struct rte_flow *flow = dev_flow->flow;
492 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
493         int rss_request_inner = flow->rss.level >= 2;
494
495         /* Check RSS hash level for tunnel. */
496         if (tunnel && rss_request_inner)
497                 hash_fields |= IBV_RX_HASH_INNER;
498         else if (tunnel || rss_request_inner)
499                 return 0;
500 #endif
501         /* Check if requested layer matches RSS hash fields. */
502         if (!(flow->rss.types & layer_types))
503                 return 0;
504         return hash_fields;
505 }
506
507 /**
508  * Lookup and set the ptype in the data Rx part.  A single Ptype can be used,
509  * if several tunnel rules are used on this queue, the tunnel ptype will be
510  * cleared.
511  *
512  * @param rxq_ctrl
513  *   Rx queue to update.
514  */
515 static void
516 flow_rxq_tunnel_ptype_update(struct mlx5_rxq_ctrl *rxq_ctrl)
517 {
518         unsigned int i;
519         uint32_t tunnel_ptype = 0;
520
521         /* Look up for the ptype to use. */
522         for (i = 0; i != MLX5_FLOW_TUNNEL; ++i) {
523                 if (!rxq_ctrl->flow_tunnels_n[i])
524                         continue;
525                 if (!tunnel_ptype) {
526                         tunnel_ptype = tunnels_info[i].ptype;
527                 } else {
528                         tunnel_ptype = 0;
529                         break;
530                 }
531         }
532         rxq_ctrl->rxq.tunnel = tunnel_ptype;
533 }
534
535 /**
536  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) according to the devive
537  * flow.
538  *
539  * @param[in] dev
540  *   Pointer to the Ethernet device structure.
541  * @param[in] dev_flow
542  *   Pointer to device flow structure.
543  */
544 static void
545 flow_drv_rxq_flags_set(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
546 {
547         struct mlx5_priv *priv = dev->data->dev_private;
548         struct rte_flow *flow = dev_flow->flow;
549         const int mark = !!(flow->actions &
550                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
551         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
552         unsigned int i;
553
554         for (i = 0; i != flow->rss.queue_num; ++i) {
555                 int idx = (*flow->queue)[i];
556                 struct mlx5_rxq_ctrl *rxq_ctrl =
557                         container_of((*priv->rxqs)[idx],
558                                      struct mlx5_rxq_ctrl, rxq);
559
560                 if (mark) {
561                         rxq_ctrl->rxq.mark = 1;
562                         rxq_ctrl->flow_mark_n++;
563                 }
564                 if (tunnel) {
565                         unsigned int j;
566
567                         /* Increase the counter matching the flow. */
568                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
569                                 if ((tunnels_info[j].tunnel &
570                                      dev_flow->layers) ==
571                                     tunnels_info[j].tunnel) {
572                                         rxq_ctrl->flow_tunnels_n[j]++;
573                                         break;
574                                 }
575                         }
576                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
577                 }
578         }
579 }
580
581 /**
582  * Set the Rx queue flags (Mark/Flag and Tunnel Ptypes) for a flow
583  *
584  * @param[in] dev
585  *   Pointer to the Ethernet device structure.
586  * @param[in] flow
587  *   Pointer to flow structure.
588  */
589 static void
590 flow_rxq_flags_set(struct rte_eth_dev *dev, struct rte_flow *flow)
591 {
592         struct mlx5_flow *dev_flow;
593
594         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
595                 flow_drv_rxq_flags_set(dev, dev_flow);
596 }
597
598 /**
599  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
600  * device flow if no other flow uses it with the same kind of request.
601  *
602  * @param dev
603  *   Pointer to Ethernet device.
604  * @param[in] dev_flow
605  *   Pointer to the device flow.
606  */
607 static void
608 flow_drv_rxq_flags_trim(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow)
609 {
610         struct mlx5_priv *priv = dev->data->dev_private;
611         struct rte_flow *flow = dev_flow->flow;
612         const int mark = !!(flow->actions &
613                             (MLX5_FLOW_ACTION_FLAG | MLX5_FLOW_ACTION_MARK));
614         const int tunnel = !!(dev_flow->layers & MLX5_FLOW_LAYER_TUNNEL);
615         unsigned int i;
616
617         assert(dev->data->dev_started);
618         for (i = 0; i != flow->rss.queue_num; ++i) {
619                 int idx = (*flow->queue)[i];
620                 struct mlx5_rxq_ctrl *rxq_ctrl =
621                         container_of((*priv->rxqs)[idx],
622                                      struct mlx5_rxq_ctrl, rxq);
623
624                 if (mark) {
625                         rxq_ctrl->flow_mark_n--;
626                         rxq_ctrl->rxq.mark = !!rxq_ctrl->flow_mark_n;
627                 }
628                 if (tunnel) {
629                         unsigned int j;
630
631                         /* Decrease the counter matching the flow. */
632                         for (j = 0; j != MLX5_FLOW_TUNNEL; ++j) {
633                                 if ((tunnels_info[j].tunnel &
634                                      dev_flow->layers) ==
635                                     tunnels_info[j].tunnel) {
636                                         rxq_ctrl->flow_tunnels_n[j]--;
637                                         break;
638                                 }
639                         }
640                         flow_rxq_tunnel_ptype_update(rxq_ctrl);
641                 }
642         }
643 }
644
645 /**
646  * Clear the Rx queue flags (Mark/Flag and Tunnel Ptype) associated with the
647  * @p flow if no other flow uses it with the same kind of request.
648  *
649  * @param dev
650  *   Pointer to Ethernet device.
651  * @param[in] flow
652  *   Pointer to the flow.
653  */
654 static void
655 flow_rxq_flags_trim(struct rte_eth_dev *dev, struct rte_flow *flow)
656 {
657         struct mlx5_flow *dev_flow;
658
659         LIST_FOREACH(dev_flow, &flow->dev_flows, next)
660                 flow_drv_rxq_flags_trim(dev, dev_flow);
661 }
662
663 /**
664  * Clear the Mark/Flag and Tunnel ptype information in all Rx queues.
665  *
666  * @param dev
667  *   Pointer to Ethernet device.
668  */
669 static void
670 flow_rxq_flags_clear(struct rte_eth_dev *dev)
671 {
672         struct mlx5_priv *priv = dev->data->dev_private;
673         unsigned int i;
674
675         for (i = 0; i != priv->rxqs_n; ++i) {
676                 struct mlx5_rxq_ctrl *rxq_ctrl;
677                 unsigned int j;
678
679                 if (!(*priv->rxqs)[i])
680                         continue;
681                 rxq_ctrl = container_of((*priv->rxqs)[i],
682                                         struct mlx5_rxq_ctrl, rxq);
683                 rxq_ctrl->flow_mark_n = 0;
684                 rxq_ctrl->rxq.mark = 0;
685                 for (j = 0; j != MLX5_FLOW_TUNNEL; ++j)
686                         rxq_ctrl->flow_tunnels_n[j] = 0;
687                 rxq_ctrl->rxq.tunnel = 0;
688         }
689 }
690
691 /*
692  * Validate the flag action.
693  *
694  * @param[in] action_flags
695  *   Bit-fields that holds the actions detected until now.
696  * @param[in] attr
697  *   Attributes of flow that includes this action.
698  * @param[out] error
699  *   Pointer to error structure.
700  *
701  * @return
702  *   0 on success, a negative errno value otherwise and rte_errno is set.
703  */
704 int
705 mlx5_flow_validate_action_flag(uint64_t action_flags,
706                                const struct rte_flow_attr *attr,
707                                struct rte_flow_error *error)
708 {
709
710         if (action_flags & MLX5_FLOW_ACTION_DROP)
711                 return rte_flow_error_set(error, EINVAL,
712                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
713                                           "can't drop and flag in same flow");
714         if (action_flags & MLX5_FLOW_ACTION_MARK)
715                 return rte_flow_error_set(error, EINVAL,
716                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
717                                           "can't mark and flag in same flow");
718         if (action_flags & MLX5_FLOW_ACTION_FLAG)
719                 return rte_flow_error_set(error, EINVAL,
720                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
721                                           "can't have 2 flag"
722                                           " actions in same flow");
723         if (attr->egress)
724                 return rte_flow_error_set(error, ENOTSUP,
725                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
726                                           "flag action not supported for "
727                                           "egress");
728         return 0;
729 }
730
731 /*
732  * Validate the mark action.
733  *
734  * @param[in] action
735  *   Pointer to the queue action.
736  * @param[in] action_flags
737  *   Bit-fields that holds the actions detected until now.
738  * @param[in] attr
739  *   Attributes of flow that includes this action.
740  * @param[out] error
741  *   Pointer to error structure.
742  *
743  * @return
744  *   0 on success, a negative errno value otherwise and rte_errno is set.
745  */
746 int
747 mlx5_flow_validate_action_mark(const struct rte_flow_action *action,
748                                uint64_t action_flags,
749                                const struct rte_flow_attr *attr,
750                                struct rte_flow_error *error)
751 {
752         const struct rte_flow_action_mark *mark = action->conf;
753
754         if (!mark)
755                 return rte_flow_error_set(error, EINVAL,
756                                           RTE_FLOW_ERROR_TYPE_ACTION,
757                                           action,
758                                           "configuration cannot be null");
759         if (mark->id >= MLX5_FLOW_MARK_MAX)
760                 return rte_flow_error_set(error, EINVAL,
761                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
762                                           &mark->id,
763                                           "mark id must in 0 <= id < "
764                                           RTE_STR(MLX5_FLOW_MARK_MAX));
765         if (action_flags & MLX5_FLOW_ACTION_DROP)
766                 return rte_flow_error_set(error, EINVAL,
767                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
768                                           "can't drop and mark in same flow");
769         if (action_flags & MLX5_FLOW_ACTION_FLAG)
770                 return rte_flow_error_set(error, EINVAL,
771                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
772                                           "can't flag and mark in same flow");
773         if (action_flags & MLX5_FLOW_ACTION_MARK)
774                 return rte_flow_error_set(error, EINVAL,
775                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
776                                           "can't have 2 mark actions in same"
777                                           " flow");
778         if (attr->egress)
779                 return rte_flow_error_set(error, ENOTSUP,
780                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
781                                           "mark action not supported for "
782                                           "egress");
783         return 0;
784 }
785
786 /*
787  * Validate the drop action.
788  *
789  * @param[in] action_flags
790  *   Bit-fields that holds the actions detected until now.
791  * @param[in] attr
792  *   Attributes of flow that includes this action.
793  * @param[out] error
794  *   Pointer to error structure.
795  *
796  * @return
797  *   0 on success, a negative errno value otherwise and rte_errno is set.
798  */
799 int
800 mlx5_flow_validate_action_drop(uint64_t action_flags,
801                                const struct rte_flow_attr *attr,
802                                struct rte_flow_error *error)
803 {
804         if (action_flags & MLX5_FLOW_ACTION_FLAG)
805                 return rte_flow_error_set(error, EINVAL,
806                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
807                                           "can't drop and flag in same flow");
808         if (action_flags & MLX5_FLOW_ACTION_MARK)
809                 return rte_flow_error_set(error, EINVAL,
810                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
811                                           "can't drop and mark in same flow");
812         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
813                 return rte_flow_error_set(error, EINVAL,
814                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
815                                           "can't have 2 fate actions in"
816                                           " same flow");
817         if (attr->egress)
818                 return rte_flow_error_set(error, ENOTSUP,
819                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
820                                           "drop action not supported for "
821                                           "egress");
822         return 0;
823 }
824
825 /*
826  * Validate the queue action.
827  *
828  * @param[in] action
829  *   Pointer to the queue action.
830  * @param[in] action_flags
831  *   Bit-fields that holds the actions detected until now.
832  * @param[in] dev
833  *   Pointer to the Ethernet device structure.
834  * @param[in] attr
835  *   Attributes of flow that includes this action.
836  * @param[out] error
837  *   Pointer to error structure.
838  *
839  * @return
840  *   0 on success, a negative errno value otherwise and rte_errno is set.
841  */
842 int
843 mlx5_flow_validate_action_queue(const struct rte_flow_action *action,
844                                 uint64_t action_flags,
845                                 struct rte_eth_dev *dev,
846                                 const struct rte_flow_attr *attr,
847                                 struct rte_flow_error *error)
848 {
849         struct mlx5_priv *priv = dev->data->dev_private;
850         const struct rte_flow_action_queue *queue = action->conf;
851
852         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
853                 return rte_flow_error_set(error, EINVAL,
854                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
855                                           "can't have 2 fate actions in"
856                                           " same flow");
857         if (!priv->rxqs_n)
858                 return rte_flow_error_set(error, EINVAL,
859                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
860                                           NULL, "No Rx queues configured");
861         if (queue->index >= priv->rxqs_n)
862                 return rte_flow_error_set(error, EINVAL,
863                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
864                                           &queue->index,
865                                           "queue index out of range");
866         if (!(*priv->rxqs)[queue->index])
867                 return rte_flow_error_set(error, EINVAL,
868                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
869                                           &queue->index,
870                                           "queue is not configured");
871         if (attr->egress)
872                 return rte_flow_error_set(error, ENOTSUP,
873                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
874                                           "queue action not supported for "
875                                           "egress");
876         return 0;
877 }
878
879 /*
880  * Validate the rss action.
881  *
882  * @param[in] action
883  *   Pointer to the queue action.
884  * @param[in] action_flags
885  *   Bit-fields that holds the actions detected until now.
886  * @param[in] dev
887  *   Pointer to the Ethernet device structure.
888  * @param[in] attr
889  *   Attributes of flow that includes this action.
890  * @param[in] item_flags
891  *   Items that were detected.
892  * @param[out] error
893  *   Pointer to error structure.
894  *
895  * @return
896  *   0 on success, a negative errno value otherwise and rte_errno is set.
897  */
898 int
899 mlx5_flow_validate_action_rss(const struct rte_flow_action *action,
900                               uint64_t action_flags,
901                               struct rte_eth_dev *dev,
902                               const struct rte_flow_attr *attr,
903                               uint64_t item_flags,
904                               struct rte_flow_error *error)
905 {
906         struct mlx5_priv *priv = dev->data->dev_private;
907         const struct rte_flow_action_rss *rss = action->conf;
908         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
909         unsigned int i;
910
911         if (action_flags & MLX5_FLOW_FATE_ACTIONS)
912                 return rte_flow_error_set(error, EINVAL,
913                                           RTE_FLOW_ERROR_TYPE_ACTION, NULL,
914                                           "can't have 2 fate actions"
915                                           " in same flow");
916         if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT &&
917             rss->func != RTE_ETH_HASH_FUNCTION_TOEPLITZ)
918                 return rte_flow_error_set(error, ENOTSUP,
919                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
920                                           &rss->func,
921                                           "RSS hash function not supported");
922 #ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
923         if (rss->level > 2)
924 #else
925         if (rss->level > 1)
926 #endif
927                 return rte_flow_error_set(error, ENOTSUP,
928                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
929                                           &rss->level,
930                                           "tunnel RSS is not supported");
931         /* allow RSS key_len 0 in case of NULL (default) RSS key. */
932         if (rss->key_len == 0 && rss->key != NULL)
933                 return rte_flow_error_set(error, ENOTSUP,
934                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
935                                           &rss->key_len,
936                                           "RSS hash key length 0");
937         if (rss->key_len > 0 && rss->key_len < MLX5_RSS_HASH_KEY_LEN)
938                 return rte_flow_error_set(error, ENOTSUP,
939                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
940                                           &rss->key_len,
941                                           "RSS hash key too small");
942         if (rss->key_len > MLX5_RSS_HASH_KEY_LEN)
943                 return rte_flow_error_set(error, ENOTSUP,
944                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
945                                           &rss->key_len,
946                                           "RSS hash key too large");
947         if (rss->queue_num > priv->config.ind_table_max_size)
948                 return rte_flow_error_set(error, ENOTSUP,
949                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
950                                           &rss->queue_num,
951                                           "number of queues too large");
952         if (rss->types & MLX5_RSS_HF_MASK)
953                 return rte_flow_error_set(error, ENOTSUP,
954                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
955                                           &rss->types,
956                                           "some RSS protocols are not"
957                                           " supported");
958         if (!priv->rxqs_n)
959                 return rte_flow_error_set(error, EINVAL,
960                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
961                                           NULL, "No Rx queues configured");
962         if (!rss->queue_num)
963                 return rte_flow_error_set(error, EINVAL,
964                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF,
965                                           NULL, "No queues configured");
966         for (i = 0; i != rss->queue_num; ++i) {
967                 if (!(*priv->rxqs)[rss->queue[i]])
968                         return rte_flow_error_set
969                                 (error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION_CONF,
970                                  &rss->queue[i], "queue is not configured");
971         }
972         if (attr->egress)
973                 return rte_flow_error_set(error, ENOTSUP,
974                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
975                                           "rss action not supported for "
976                                           "egress");
977         if (rss->level > 1 &&  !tunnel)
978                 return rte_flow_error_set(error, EINVAL,
979                                           RTE_FLOW_ERROR_TYPE_ACTION_CONF, NULL,
980                                           "inner RSS is not supported for "
981                                           "non-tunnel flows");
982         return 0;
983 }
984
985 /*
986  * Validate the count action.
987  *
988  * @param[in] dev
989  *   Pointer to the Ethernet device structure.
990  * @param[in] attr
991  *   Attributes of flow that includes this action.
992  * @param[out] error
993  *   Pointer to error structure.
994  *
995  * @return
996  *   0 on success, a negative errno value otherwise and rte_errno is set.
997  */
998 int
999 mlx5_flow_validate_action_count(struct rte_eth_dev *dev __rte_unused,
1000                                 const struct rte_flow_attr *attr,
1001                                 struct rte_flow_error *error)
1002 {
1003         if (attr->egress)
1004                 return rte_flow_error_set(error, ENOTSUP,
1005                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1006                                           "count action not supported for "
1007                                           "egress");
1008         return 0;
1009 }
1010
1011 /**
1012  * Verify the @p attributes will be correctly understood by the NIC and store
1013  * them in the @p flow if everything is correct.
1014  *
1015  * @param[in] dev
1016  *   Pointer to the Ethernet device structure.
1017  * @param[in] attributes
1018  *   Pointer to flow attributes
1019  * @param[out] error
1020  *   Pointer to error structure.
1021  *
1022  * @return
1023  *   0 on success, a negative errno value otherwise and rte_errno is set.
1024  */
1025 int
1026 mlx5_flow_validate_attributes(struct rte_eth_dev *dev,
1027                               const struct rte_flow_attr *attributes,
1028                               struct rte_flow_error *error)
1029 {
1030         struct mlx5_priv *priv = dev->data->dev_private;
1031         uint32_t priority_max = priv->config.flow_prio - 1;
1032
1033         if (attributes->group)
1034                 return rte_flow_error_set(error, ENOTSUP,
1035                                           RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
1036                                           NULL, "groups is not supported");
1037         if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
1038             attributes->priority >= priority_max)
1039                 return rte_flow_error_set(error, ENOTSUP,
1040                                           RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
1041                                           NULL, "priority out of range");
1042         if (attributes->egress)
1043                 return rte_flow_error_set(error, ENOTSUP,
1044                                           RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, NULL,
1045                                           "egress is not supported");
1046         if (attributes->transfer && !priv->config.dv_esw_en)
1047                 return rte_flow_error_set(error, ENOTSUP,
1048                                           RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
1049                                           NULL, "transfer is not supported");
1050         if (!attributes->ingress)
1051                 return rte_flow_error_set(error, EINVAL,
1052                                           RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
1053                                           NULL,
1054                                           "ingress attribute is mandatory");
1055         return 0;
1056 }
1057
1058 /**
1059  * Validate ICMP6 item.
1060  *
1061  * @param[in] item
1062  *   Item specification.
1063  * @param[in] item_flags
1064  *   Bit-fields that holds the items detected until now.
1065  * @param[out] error
1066  *   Pointer to error structure.
1067  *
1068  * @return
1069  *   0 on success, a negative errno value otherwise and rte_errno is set.
1070  */
1071 int
1072 mlx5_flow_validate_item_icmp6(const struct rte_flow_item *item,
1073                                uint64_t item_flags,
1074                                uint8_t target_protocol,
1075                                struct rte_flow_error *error)
1076 {
1077         const struct rte_flow_item_icmp6 *mask = item->mask;
1078         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1079         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
1080                                       MLX5_FLOW_LAYER_OUTER_L3_IPV6;
1081         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1082                                       MLX5_FLOW_LAYER_OUTER_L4;
1083         int ret;
1084
1085         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMPV6)
1086                 return rte_flow_error_set(error, EINVAL,
1087                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1088                                           "protocol filtering not compatible"
1089                                           " with ICMP6 layer");
1090         if (!(item_flags & l3m))
1091                 return rte_flow_error_set(error, EINVAL,
1092                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1093                                           "IPv6 is mandatory to filter on"
1094                                           " ICMP6");
1095         if (item_flags & l4m)
1096                 return rte_flow_error_set(error, EINVAL,
1097                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1098                                           "multiple L4 layers not supported");
1099         if (!mask)
1100                 mask = &rte_flow_item_icmp6_mask;
1101         ret = mlx5_flow_item_acceptable
1102                 (item, (const uint8_t *)mask,
1103                  (const uint8_t *)&rte_flow_item_icmp6_mask,
1104                  sizeof(struct rte_flow_item_icmp6), error);
1105         if (ret < 0)
1106                 return ret;
1107         return 0;
1108 }
1109
1110 /**
1111  * Validate ICMP item.
1112  *
1113  * @param[in] item
1114  *   Item specification.
1115  * @param[in] item_flags
1116  *   Bit-fields that holds the items detected until now.
1117  * @param[out] error
1118  *   Pointer to error structure.
1119  *
1120  * @return
1121  *   0 on success, a negative errno value otherwise and rte_errno is set.
1122  */
1123 int
1124 mlx5_flow_validate_item_icmp(const struct rte_flow_item *item,
1125                              uint64_t item_flags,
1126                              uint8_t target_protocol,
1127                              struct rte_flow_error *error)
1128 {
1129         const struct rte_flow_item_icmp *mask = item->mask;
1130         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1131         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
1132                                       MLX5_FLOW_LAYER_OUTER_L3_IPV4;
1133         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1134                                       MLX5_FLOW_LAYER_OUTER_L4;
1135         int ret;
1136
1137         if (target_protocol != 0xFF && target_protocol != IPPROTO_ICMP)
1138                 return rte_flow_error_set(error, EINVAL,
1139                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1140                                           "protocol filtering not compatible"
1141                                           " with ICMP layer");
1142         if (!(item_flags & l3m))
1143                 return rte_flow_error_set(error, EINVAL,
1144                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1145                                           "IPv4 is mandatory to filter"
1146                                           " on ICMP");
1147         if (item_flags & l4m)
1148                 return rte_flow_error_set(error, EINVAL,
1149                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1150                                           "multiple L4 layers not supported");
1151         if (!mask)
1152                 mask = &rte_flow_item_icmp_mask;
1153         ret = mlx5_flow_item_acceptable
1154                 (item, (const uint8_t *)mask,
1155                  (const uint8_t *)&rte_flow_item_icmp_mask,
1156                  sizeof(struct rte_flow_item_icmp), error);
1157         if (ret < 0)
1158                 return ret;
1159         return 0;
1160 }
1161
1162 /**
1163  * Validate Ethernet item.
1164  *
1165  * @param[in] item
1166  *   Item specification.
1167  * @param[in] item_flags
1168  *   Bit-fields that holds the items detected until now.
1169  * @param[out] error
1170  *   Pointer to error structure.
1171  *
1172  * @return
1173  *   0 on success, a negative errno value otherwise and rte_errno is set.
1174  */
1175 int
1176 mlx5_flow_validate_item_eth(const struct rte_flow_item *item,
1177                             uint64_t item_flags,
1178                             struct rte_flow_error *error)
1179 {
1180         const struct rte_flow_item_eth *mask = item->mask;
1181         const struct rte_flow_item_eth nic_mask = {
1182                 .dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1183                 .src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
1184                 .type = RTE_BE16(0xffff),
1185         };
1186         int ret;
1187         int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1188         const uint64_t ethm = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
1189                                        MLX5_FLOW_LAYER_OUTER_L2;
1190
1191         if (item_flags & ethm)
1192                 return rte_flow_error_set(error, ENOTSUP,
1193                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1194                                           "multiple L2 layers not supported");
1195         if (!mask)
1196                 mask = &rte_flow_item_eth_mask;
1197         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1198                                         (const uint8_t *)&nic_mask,
1199                                         sizeof(struct rte_flow_item_eth),
1200                                         error);
1201         return ret;
1202 }
1203
1204 /**
1205  * Validate VLAN item.
1206  *
1207  * @param[in] item
1208  *   Item specification.
1209  * @param[in] item_flags
1210  *   Bit-fields that holds the items detected until now.
1211  * @param[in] dev
1212  *   Ethernet device flow is being created on.
1213  * @param[out] error
1214  *   Pointer to error structure.
1215  *
1216  * @return
1217  *   0 on success, a negative errno value otherwise and rte_errno is set.
1218  */
1219 int
1220 mlx5_flow_validate_item_vlan(const struct rte_flow_item *item,
1221                              uint64_t item_flags,
1222                              struct rte_eth_dev *dev,
1223                              struct rte_flow_error *error)
1224 {
1225         const struct rte_flow_item_vlan *spec = item->spec;
1226         const struct rte_flow_item_vlan *mask = item->mask;
1227         const struct rte_flow_item_vlan nic_mask = {
1228                 .tci = RTE_BE16(UINT16_MAX),
1229                 .inner_type = RTE_BE16(UINT16_MAX),
1230         };
1231         uint16_t vlan_tag = 0;
1232         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1233         int ret;
1234         const uint64_t l34m = tunnel ? (MLX5_FLOW_LAYER_INNER_L3 |
1235                                         MLX5_FLOW_LAYER_INNER_L4) :
1236                                        (MLX5_FLOW_LAYER_OUTER_L3 |
1237                                         MLX5_FLOW_LAYER_OUTER_L4);
1238         const uint64_t vlanm = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
1239                                         MLX5_FLOW_LAYER_OUTER_VLAN;
1240
1241         if (item_flags & vlanm)
1242                 return rte_flow_error_set(error, EINVAL,
1243                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1244                                           "multiple VLAN layers not supported");
1245         else if ((item_flags & l34m) != 0)
1246                 return rte_flow_error_set(error, EINVAL,
1247                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1248                                           "L2 layer cannot follow L3/L4 layer");
1249         if (!mask)
1250                 mask = &rte_flow_item_vlan_mask;
1251         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1252                                         (const uint8_t *)&nic_mask,
1253                                         sizeof(struct rte_flow_item_vlan),
1254                                         error);
1255         if (ret)
1256                 return ret;
1257         if (!tunnel && mask->tci != RTE_BE16(0x0fff)) {
1258                 struct mlx5_priv *priv = dev->data->dev_private;
1259
1260                 if (priv->vmwa_context) {
1261                         /*
1262                          * Non-NULL context means we have a virtual machine
1263                          * and SR-IOV enabled, we have to create VLAN interface
1264                          * to make hypervisor to setup E-Switch vport
1265                          * context correctly. We avoid creating the multiple
1266                          * VLAN interfaces, so we cannot support VLAN tag mask.
1267                          */
1268                         return rte_flow_error_set(error, EINVAL,
1269                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1270                                                   item,
1271                                                   "VLAN tag mask is not"
1272                                                   " supported in virtual"
1273                                                   " environment");
1274                 }
1275         }
1276         if (spec) {
1277                 vlan_tag = spec->tci;
1278                 vlan_tag &= mask->tci;
1279         }
1280         /*
1281          * From verbs perspective an empty VLAN is equivalent
1282          * to a packet without VLAN layer.
1283          */
1284         if (!vlan_tag)
1285                 return rte_flow_error_set(error, EINVAL,
1286                                           RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
1287                                           item->spec,
1288                                           "VLAN cannot be empty");
1289         return 0;
1290 }
1291
1292 /**
1293  * Validate IPV4 item.
1294  *
1295  * @param[in] item
1296  *   Item specification.
1297  * @param[in] item_flags
1298  *   Bit-fields that holds the items detected until now.
1299  * @param[in] acc_mask
1300  *   Acceptable mask, if NULL default internal default mask
1301  *   will be used to check whether item fields are supported.
1302  * @param[out] error
1303  *   Pointer to error structure.
1304  *
1305  * @return
1306  *   0 on success, a negative errno value otherwise and rte_errno is set.
1307  */
1308 int
1309 mlx5_flow_validate_item_ipv4(const struct rte_flow_item *item,
1310                              uint64_t item_flags,
1311                              const struct rte_flow_item_ipv4 *acc_mask,
1312                              struct rte_flow_error *error)
1313 {
1314         const struct rte_flow_item_ipv4 *mask = item->mask;
1315         const struct rte_flow_item_ipv4 *spec = item->spec;
1316         const struct rte_flow_item_ipv4 nic_mask = {
1317                 .hdr = {
1318                         .src_addr = RTE_BE32(0xffffffff),
1319                         .dst_addr = RTE_BE32(0xffffffff),
1320                         .type_of_service = 0xff,
1321                         .next_proto_id = 0xff,
1322                 },
1323         };
1324         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1325         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1326                                       MLX5_FLOW_LAYER_OUTER_L3;
1327         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1328                                       MLX5_FLOW_LAYER_OUTER_L4;
1329         int ret;
1330         uint8_t next_proto = 0xFF;
1331
1332         if (item_flags & MLX5_FLOW_LAYER_IPIP) {
1333                 if (mask && spec)
1334                         next_proto = mask->hdr.next_proto_id &
1335                                      spec->hdr.next_proto_id;
1336                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1337                         return rte_flow_error_set(error, EINVAL,
1338                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1339                                                   item,
1340                                                   "multiple tunnel "
1341                                                   "not supported");
1342         }
1343         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP)
1344                 return rte_flow_error_set(error, EINVAL,
1345                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1346                                           "wrong tunnel type - IPv6 specified "
1347                                           "but IPv4 item provided");
1348         if (item_flags & l3m)
1349                 return rte_flow_error_set(error, ENOTSUP,
1350                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1351                                           "multiple L3 layers not supported");
1352         else if (item_flags & l4m)
1353                 return rte_flow_error_set(error, EINVAL,
1354                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1355                                           "L3 cannot follow an L4 layer.");
1356         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1357                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1358                 return rte_flow_error_set(error, EINVAL,
1359                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1360                                           "L3 cannot follow an NVGRE layer.");
1361         if (!mask)
1362                 mask = &rte_flow_item_ipv4_mask;
1363         else if (mask->hdr.next_proto_id != 0 &&
1364                  mask->hdr.next_proto_id != 0xff)
1365                 return rte_flow_error_set(error, EINVAL,
1366                                           RTE_FLOW_ERROR_TYPE_ITEM_MASK, mask,
1367                                           "partial mask is not supported"
1368                                           " for protocol");
1369         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1370                                         acc_mask ? (const uint8_t *)acc_mask
1371                                                  : (const uint8_t *)&nic_mask,
1372                                         sizeof(struct rte_flow_item_ipv4),
1373                                         error);
1374         if (ret < 0)
1375                 return ret;
1376         return 0;
1377 }
1378
1379 /**
1380  * Validate IPV6 item.
1381  *
1382  * @param[in] item
1383  *   Item specification.
1384  * @param[in] item_flags
1385  *   Bit-fields that holds the items detected until now.
1386  * @param[in] acc_mask
1387  *   Acceptable mask, if NULL default internal default mask
1388  *   will be used to check whether item fields are supported.
1389  * @param[out] error
1390  *   Pointer to error structure.
1391  *
1392  * @return
1393  *   0 on success, a negative errno value otherwise and rte_errno is set.
1394  */
1395 int
1396 mlx5_flow_validate_item_ipv6(const struct rte_flow_item *item,
1397                              uint64_t item_flags,
1398                              const struct rte_flow_item_ipv6 *acc_mask,
1399                              struct rte_flow_error *error)
1400 {
1401         const struct rte_flow_item_ipv6 *mask = item->mask;
1402         const struct rte_flow_item_ipv6 *spec = item->spec;
1403         const struct rte_flow_item_ipv6 nic_mask = {
1404                 .hdr = {
1405                         .src_addr =
1406                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1407                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1408                         .dst_addr =
1409                                 "\xff\xff\xff\xff\xff\xff\xff\xff"
1410                                 "\xff\xff\xff\xff\xff\xff\xff\xff",
1411                         .vtc_flow = RTE_BE32(0xffffffff),
1412                         .proto = 0xff,
1413                         .hop_limits = 0xff,
1414                 },
1415         };
1416         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1417         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1418                                       MLX5_FLOW_LAYER_OUTER_L3;
1419         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1420                                       MLX5_FLOW_LAYER_OUTER_L4;
1421         int ret;
1422         uint8_t next_proto = 0xFF;
1423
1424         if (item_flags & MLX5_FLOW_LAYER_IPV6_ENCAP) {
1425                 if (mask && spec)
1426                         next_proto = mask->hdr.proto & spec->hdr.proto;
1427                 if (next_proto == IPPROTO_IPIP || next_proto == IPPROTO_IPV6)
1428                         return rte_flow_error_set(error, EINVAL,
1429                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1430                                                   item,
1431                                                   "multiple tunnel "
1432                                                   "not supported");
1433         }
1434         if (item_flags & MLX5_FLOW_LAYER_IPIP)
1435                 return rte_flow_error_set(error, EINVAL,
1436                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1437                                           "wrong tunnel type - IPv4 specified "
1438                                           "but IPv6 item provided");
1439         if (item_flags & l3m)
1440                 return rte_flow_error_set(error, ENOTSUP,
1441                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1442                                           "multiple L3 layers not supported");
1443         else if (item_flags & l4m)
1444                 return rte_flow_error_set(error, EINVAL,
1445                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1446                                           "L3 cannot follow an L4 layer.");
1447         else if ((item_flags & MLX5_FLOW_LAYER_NVGRE) &&
1448                   !(item_flags & MLX5_FLOW_LAYER_INNER_L2))
1449                 return rte_flow_error_set(error, EINVAL,
1450                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1451                                           "L3 cannot follow an NVGRE layer.");
1452         if (!mask)
1453                 mask = &rte_flow_item_ipv6_mask;
1454         ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
1455                                         acc_mask ? (const uint8_t *)acc_mask
1456                                                  : (const uint8_t *)&nic_mask,
1457                                         sizeof(struct rte_flow_item_ipv6),
1458                                         error);
1459         if (ret < 0)
1460                 return ret;
1461         return 0;
1462 }
1463
1464 /**
1465  * Validate UDP item.
1466  *
1467  * @param[in] item
1468  *   Item specification.
1469  * @param[in] item_flags
1470  *   Bit-fields that holds the items detected until now.
1471  * @param[in] target_protocol
1472  *   The next protocol in the previous item.
1473  * @param[in] flow_mask
1474  *   mlx5 flow-specific (DV, verbs, etc.) supported header fields mask.
1475  * @param[out] error
1476  *   Pointer to error structure.
1477  *
1478  * @return
1479  *   0 on success, a negative errno value otherwise and rte_errno is set.
1480  */
1481 int
1482 mlx5_flow_validate_item_udp(const struct rte_flow_item *item,
1483                             uint64_t item_flags,
1484                             uint8_t target_protocol,
1485                             struct rte_flow_error *error)
1486 {
1487         const struct rte_flow_item_udp *mask = item->mask;
1488         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1489         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1490                                       MLX5_FLOW_LAYER_OUTER_L3;
1491         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1492                                       MLX5_FLOW_LAYER_OUTER_L4;
1493         int ret;
1494
1495         if (target_protocol != 0xff && target_protocol != IPPROTO_UDP)
1496                 return rte_flow_error_set(error, EINVAL,
1497                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1498                                           "protocol filtering not compatible"
1499                                           " with UDP layer");
1500         if (!(item_flags & l3m))
1501                 return rte_flow_error_set(error, EINVAL,
1502                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1503                                           "L3 is mandatory to filter on L4");
1504         if (item_flags & l4m)
1505                 return rte_flow_error_set(error, EINVAL,
1506                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1507                                           "multiple L4 layers not supported");
1508         if (!mask)
1509                 mask = &rte_flow_item_udp_mask;
1510         ret = mlx5_flow_item_acceptable
1511                 (item, (const uint8_t *)mask,
1512                  (const uint8_t *)&rte_flow_item_udp_mask,
1513                  sizeof(struct rte_flow_item_udp), error);
1514         if (ret < 0)
1515                 return ret;
1516         return 0;
1517 }
1518
1519 /**
1520  * Validate TCP item.
1521  *
1522  * @param[in] item
1523  *   Item specification.
1524  * @param[in] item_flags
1525  *   Bit-fields that holds the items detected until now.
1526  * @param[in] target_protocol
1527  *   The next protocol in the previous item.
1528  * @param[out] error
1529  *   Pointer to error structure.
1530  *
1531  * @return
1532  *   0 on success, a negative errno value otherwise and rte_errno is set.
1533  */
1534 int
1535 mlx5_flow_validate_item_tcp(const struct rte_flow_item *item,
1536                             uint64_t item_flags,
1537                             uint8_t target_protocol,
1538                             const struct rte_flow_item_tcp *flow_mask,
1539                             struct rte_flow_error *error)
1540 {
1541         const struct rte_flow_item_tcp *mask = item->mask;
1542         const int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
1543         const uint64_t l3m = tunnel ? MLX5_FLOW_LAYER_INNER_L3 :
1544                                       MLX5_FLOW_LAYER_OUTER_L3;
1545         const uint64_t l4m = tunnel ? MLX5_FLOW_LAYER_INNER_L4 :
1546                                       MLX5_FLOW_LAYER_OUTER_L4;
1547         int ret;
1548
1549         assert(flow_mask);
1550         if (target_protocol != 0xff && target_protocol != IPPROTO_TCP)
1551                 return rte_flow_error_set(error, EINVAL,
1552                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1553                                           "protocol filtering not compatible"
1554                                           " with TCP layer");
1555         if (!(item_flags & l3m))
1556                 return rte_flow_error_set(error, EINVAL,
1557                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1558                                           "L3 is mandatory to filter on L4");
1559         if (item_flags & l4m)
1560                 return rte_flow_error_set(error, EINVAL,
1561                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1562                                           "multiple L4 layers not supported");
1563         if (!mask)
1564                 mask = &rte_flow_item_tcp_mask;
1565         ret = mlx5_flow_item_acceptable
1566                 (item, (const uint8_t *)mask,
1567                  (const uint8_t *)flow_mask,
1568                  sizeof(struct rte_flow_item_tcp), error);
1569         if (ret < 0)
1570                 return ret;
1571         return 0;
1572 }
1573
1574 /**
1575  * Validate VXLAN item.
1576  *
1577  * @param[in] item
1578  *   Item specification.
1579  * @param[in] item_flags
1580  *   Bit-fields that holds the items detected until now.
1581  * @param[in] target_protocol
1582  *   The next protocol in the previous item.
1583  * @param[out] error
1584  *   Pointer to error structure.
1585  *
1586  * @return
1587  *   0 on success, a negative errno value otherwise and rte_errno is set.
1588  */
1589 int
1590 mlx5_flow_validate_item_vxlan(const struct rte_flow_item *item,
1591                               uint64_t item_flags,
1592                               struct rte_flow_error *error)
1593 {
1594         const struct rte_flow_item_vxlan *spec = item->spec;
1595         const struct rte_flow_item_vxlan *mask = item->mask;
1596         int ret;
1597         union vni {
1598                 uint32_t vlan_id;
1599                 uint8_t vni[4];
1600         } id = { .vlan_id = 0, };
1601         uint32_t vlan_id = 0;
1602
1603
1604         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1605                 return rte_flow_error_set(error, ENOTSUP,
1606                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1607                                           "multiple tunnel layers not"
1608                                           " supported");
1609         /*
1610          * Verify only UDPv4 is present as defined in
1611          * https://tools.ietf.org/html/rfc7348
1612          */
1613         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1614                 return rte_flow_error_set(error, EINVAL,
1615                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1616                                           "no outer UDP layer found");
1617         if (!mask)
1618                 mask = &rte_flow_item_vxlan_mask;
1619         ret = mlx5_flow_item_acceptable
1620                 (item, (const uint8_t *)mask,
1621                  (const uint8_t *)&rte_flow_item_vxlan_mask,
1622                  sizeof(struct rte_flow_item_vxlan),
1623                  error);
1624         if (ret < 0)
1625                 return ret;
1626         if (spec) {
1627                 memcpy(&id.vni[1], spec->vni, 3);
1628                 vlan_id = id.vlan_id;
1629                 memcpy(&id.vni[1], mask->vni, 3);
1630                 vlan_id &= id.vlan_id;
1631         }
1632         /*
1633          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if
1634          * only this layer is defined in the Verbs specification it is
1635          * interpreted as wildcard and all packets will match this
1636          * rule, if it follows a full stack layer (ex: eth / ipv4 /
1637          * udp), all packets matching the layers before will also
1638          * match this rule.  To avoid such situation, VNI 0 is
1639          * currently refused.
1640          */
1641         if (!vlan_id)
1642                 return rte_flow_error_set(error, ENOTSUP,
1643                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1644                                           "VXLAN vni cannot be 0");
1645         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1646                 return rte_flow_error_set(error, ENOTSUP,
1647                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1648                                           "VXLAN tunnel must be fully defined");
1649         return 0;
1650 }
1651
1652 /**
1653  * Validate VXLAN_GPE item.
1654  *
1655  * @param[in] item
1656  *   Item specification.
1657  * @param[in] item_flags
1658  *   Bit-fields that holds the items detected until now.
1659  * @param[in] priv
1660  *   Pointer to the private data structure.
1661  * @param[in] target_protocol
1662  *   The next protocol in the previous item.
1663  * @param[out] error
1664  *   Pointer to error structure.
1665  *
1666  * @return
1667  *   0 on success, a negative errno value otherwise and rte_errno is set.
1668  */
1669 int
1670 mlx5_flow_validate_item_vxlan_gpe(const struct rte_flow_item *item,
1671                                   uint64_t item_flags,
1672                                   struct rte_eth_dev *dev,
1673                                   struct rte_flow_error *error)
1674 {
1675         struct mlx5_priv *priv = dev->data->dev_private;
1676         const struct rte_flow_item_vxlan_gpe *spec = item->spec;
1677         const struct rte_flow_item_vxlan_gpe *mask = item->mask;
1678         int ret;
1679         union vni {
1680                 uint32_t vlan_id;
1681                 uint8_t vni[4];
1682         } id = { .vlan_id = 0, };
1683         uint32_t vlan_id = 0;
1684
1685         if (!priv->config.l3_vxlan_en)
1686                 return rte_flow_error_set(error, ENOTSUP,
1687                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1688                                           "L3 VXLAN is not enabled by device"
1689                                           " parameter and/or not configured in"
1690                                           " firmware");
1691         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1692                 return rte_flow_error_set(error, ENOTSUP,
1693                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1694                                           "multiple tunnel layers not"
1695                                           " supported");
1696         /*
1697          * Verify only UDPv4 is present as defined in
1698          * https://tools.ietf.org/html/rfc7348
1699          */
1700         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L4_UDP))
1701                 return rte_flow_error_set(error, EINVAL,
1702                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1703                                           "no outer UDP layer found");
1704         if (!mask)
1705                 mask = &rte_flow_item_vxlan_gpe_mask;
1706         ret = mlx5_flow_item_acceptable
1707                 (item, (const uint8_t *)mask,
1708                  (const uint8_t *)&rte_flow_item_vxlan_gpe_mask,
1709                  sizeof(struct rte_flow_item_vxlan_gpe),
1710                  error);
1711         if (ret < 0)
1712                 return ret;
1713         if (spec) {
1714                 if (spec->protocol)
1715                         return rte_flow_error_set(error, ENOTSUP,
1716                                                   RTE_FLOW_ERROR_TYPE_ITEM,
1717                                                   item,
1718                                                   "VxLAN-GPE protocol"
1719                                                   " not supported");
1720                 memcpy(&id.vni[1], spec->vni, 3);
1721                 vlan_id = id.vlan_id;
1722                 memcpy(&id.vni[1], mask->vni, 3);
1723                 vlan_id &= id.vlan_id;
1724         }
1725         /*
1726          * Tunnel id 0 is equivalent as not adding a VXLAN layer, if only this
1727          * layer is defined in the Verbs specification it is interpreted as
1728          * wildcard and all packets will match this rule, if it follows a full
1729          * stack layer (ex: eth / ipv4 / udp), all packets matching the layers
1730          * before will also match this rule.  To avoid such situation, VNI 0
1731          * is currently refused.
1732          */
1733         if (!vlan_id)
1734                 return rte_flow_error_set(error, ENOTSUP,
1735                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1736                                           "VXLAN-GPE vni cannot be 0");
1737         if (!(item_flags & MLX5_FLOW_LAYER_OUTER))
1738                 return rte_flow_error_set(error, ENOTSUP,
1739                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1740                                           "VXLAN-GPE tunnel must be fully"
1741                                           " defined");
1742         return 0;
1743 }
1744 /**
1745  * Validate GRE Key item.
1746  *
1747  * @param[in] item
1748  *   Item specification.
1749  * @param[in] item_flags
1750  *   Bit flags to mark detected items.
1751  * @param[in] gre_item
1752  *   Pointer to gre_item
1753  * @param[out] error
1754  *   Pointer to error structure.
1755  *
1756  * @return
1757  *   0 on success, a negative errno value otherwise and rte_errno is set.
1758  */
1759 int
1760 mlx5_flow_validate_item_gre_key(const struct rte_flow_item *item,
1761                                 uint64_t item_flags,
1762                                 const struct rte_flow_item *gre_item,
1763                                 struct rte_flow_error *error)
1764 {
1765         const rte_be32_t *mask = item->mask;
1766         int ret = 0;
1767         rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
1768         const struct rte_flow_item_gre *gre_spec = gre_item->spec;
1769         const struct rte_flow_item_gre *gre_mask = gre_item->mask;
1770
1771         if (item_flags & MLX5_FLOW_LAYER_GRE_KEY)
1772                 return rte_flow_error_set(error, ENOTSUP,
1773                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1774                                           "Multiple GRE key not support");
1775         if (!(item_flags & MLX5_FLOW_LAYER_GRE))
1776                 return rte_flow_error_set(error, ENOTSUP,
1777                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1778                                           "No preceding GRE header");
1779         if (item_flags & MLX5_FLOW_LAYER_INNER)
1780                 return rte_flow_error_set(error, ENOTSUP,
1781                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1782                                           "GRE key following a wrong item");
1783         if (!gre_mask)
1784                 gre_mask = &rte_flow_item_gre_mask;
1785         if (gre_spec && (gre_mask->c_rsvd0_ver & RTE_BE16(0x2000)) &&
1786                          !(gre_spec->c_rsvd0_ver & RTE_BE16(0x2000)))
1787                 return rte_flow_error_set(error, EINVAL,
1788                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1789                                           "Key bit must be on");
1790
1791         if (!mask)
1792                 mask = &gre_key_default_mask;
1793         ret = mlx5_flow_item_acceptable
1794                 (item, (const uint8_t *)mask,
1795                  (const uint8_t *)&gre_key_default_mask,
1796                  sizeof(rte_be32_t), error);
1797         return ret;
1798 }
1799
1800 /**
1801  * Validate GRE item.
1802  *
1803  * @param[in] item
1804  *   Item specification.
1805  * @param[in] item_flags
1806  *   Bit flags to mark detected items.
1807  * @param[in] target_protocol
1808  *   The next protocol in the previous item.
1809  * @param[out] error
1810  *   Pointer to error structure.
1811  *
1812  * @return
1813  *   0 on success, a negative errno value otherwise and rte_errno is set.
1814  */
1815 int
1816 mlx5_flow_validate_item_gre(const struct rte_flow_item *item,
1817                             uint64_t item_flags,
1818                             uint8_t target_protocol,
1819                             struct rte_flow_error *error)
1820 {
1821         const struct rte_flow_item_gre *spec __rte_unused = item->spec;
1822         const struct rte_flow_item_gre *mask = item->mask;
1823         int ret;
1824         const struct rte_flow_item_gre nic_mask = {
1825                 .c_rsvd0_ver = RTE_BE16(0xB000),
1826                 .protocol = RTE_BE16(UINT16_MAX),
1827         };
1828
1829         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1830                 return rte_flow_error_set(error, EINVAL,
1831                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1832                                           "protocol filtering not compatible"
1833                                           " with this GRE layer");
1834         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1835                 return rte_flow_error_set(error, ENOTSUP,
1836                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1837                                           "multiple tunnel layers not"
1838                                           " supported");
1839         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1840                 return rte_flow_error_set(error, ENOTSUP,
1841                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1842                                           "L3 Layer is missing");
1843         if (!mask)
1844                 mask = &rte_flow_item_gre_mask;
1845         ret = mlx5_flow_item_acceptable
1846                 (item, (const uint8_t *)mask,
1847                  (const uint8_t *)&nic_mask,
1848                  sizeof(struct rte_flow_item_gre), error);
1849         if (ret < 0)
1850                 return ret;
1851 #ifndef HAVE_MLX5DV_DR
1852 #ifndef HAVE_IBV_DEVICE_MPLS_SUPPORT
1853         if (spec && (spec->protocol & mask->protocol))
1854                 return rte_flow_error_set(error, ENOTSUP,
1855                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1856                                           "without MPLS support the"
1857                                           " specification cannot be used for"
1858                                           " filtering");
1859 #endif
1860 #endif
1861         return 0;
1862 }
1863
1864 /**
1865  * Validate MPLS item.
1866  *
1867  * @param[in] dev
1868  *   Pointer to the rte_eth_dev structure.
1869  * @param[in] item
1870  *   Item specification.
1871  * @param[in] item_flags
1872  *   Bit-fields that holds the items detected until now.
1873  * @param[in] prev_layer
1874  *   The protocol layer indicated in previous item.
1875  * @param[out] error
1876  *   Pointer to error structure.
1877  *
1878  * @return
1879  *   0 on success, a negative errno value otherwise and rte_errno is set.
1880  */
1881 int
1882 mlx5_flow_validate_item_mpls(struct rte_eth_dev *dev __rte_unused,
1883                              const struct rte_flow_item *item __rte_unused,
1884                              uint64_t item_flags __rte_unused,
1885                              uint64_t prev_layer __rte_unused,
1886                              struct rte_flow_error *error)
1887 {
1888 #ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
1889         const struct rte_flow_item_mpls *mask = item->mask;
1890         struct mlx5_priv *priv = dev->data->dev_private;
1891         int ret;
1892
1893         if (!priv->config.mpls_en)
1894                 return rte_flow_error_set(error, ENOTSUP,
1895                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1896                                           "MPLS not supported or"
1897                                           " disabled in firmware"
1898                                           " configuration.");
1899         /* MPLS over IP, UDP, GRE is allowed */
1900         if (!(prev_layer & (MLX5_FLOW_LAYER_OUTER_L3 |
1901                             MLX5_FLOW_LAYER_OUTER_L4_UDP |
1902                             MLX5_FLOW_LAYER_GRE)))
1903                 return rte_flow_error_set(error, EINVAL,
1904                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1905                                           "protocol filtering not compatible"
1906                                           " with MPLS layer");
1907         /* Multi-tunnel isn't allowed but MPLS over GRE is an exception. */
1908         if ((item_flags & MLX5_FLOW_LAYER_TUNNEL) &&
1909             !(item_flags & MLX5_FLOW_LAYER_GRE))
1910                 return rte_flow_error_set(error, ENOTSUP,
1911                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1912                                           "multiple tunnel layers not"
1913                                           " supported");
1914         if (!mask)
1915                 mask = &rte_flow_item_mpls_mask;
1916         ret = mlx5_flow_item_acceptable
1917                 (item, (const uint8_t *)mask,
1918                  (const uint8_t *)&rte_flow_item_mpls_mask,
1919                  sizeof(struct rte_flow_item_mpls), error);
1920         if (ret < 0)
1921                 return ret;
1922         return 0;
1923 #endif
1924         return rte_flow_error_set(error, ENOTSUP,
1925                                   RTE_FLOW_ERROR_TYPE_ITEM, item,
1926                                   "MPLS is not supported by Verbs, please"
1927                                   " update.");
1928 }
1929
1930 /**
1931  * Validate NVGRE item.
1932  *
1933  * @param[in] item
1934  *   Item specification.
1935  * @param[in] item_flags
1936  *   Bit flags to mark detected items.
1937  * @param[in] target_protocol
1938  *   The next protocol in the previous item.
1939  * @param[out] error
1940  *   Pointer to error structure.
1941  *
1942  * @return
1943  *   0 on success, a negative errno value otherwise and rte_errno is set.
1944  */
1945 int
1946 mlx5_flow_validate_item_nvgre(const struct rte_flow_item *item,
1947                               uint64_t item_flags,
1948                               uint8_t target_protocol,
1949                               struct rte_flow_error *error)
1950 {
1951         const struct rte_flow_item_nvgre *mask = item->mask;
1952         int ret;
1953
1954         if (target_protocol != 0xff && target_protocol != IPPROTO_GRE)
1955                 return rte_flow_error_set(error, EINVAL,
1956                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1957                                           "protocol filtering not compatible"
1958                                           " with this GRE layer");
1959         if (item_flags & MLX5_FLOW_LAYER_TUNNEL)
1960                 return rte_flow_error_set(error, ENOTSUP,
1961                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1962                                           "multiple tunnel layers not"
1963                                           " supported");
1964         if (!(item_flags & MLX5_FLOW_LAYER_OUTER_L3))
1965                 return rte_flow_error_set(error, ENOTSUP,
1966                                           RTE_FLOW_ERROR_TYPE_ITEM, item,
1967                                           "L3 Layer is missing");
1968         if (!mask)
1969                 mask = &rte_flow_item_nvgre_mask;
1970         ret = mlx5_flow_item_acceptable
1971                 (item, (const uint8_t *)mask,
1972                  (const uint8_t *)&rte_flow_item_nvgre_mask,
1973                  sizeof(struct rte_flow_item_nvgre), error);
1974         if (ret < 0)
1975                 return ret;
1976         return 0;
1977 }
1978
1979 static int
1980 flow_null_validate(struct rte_eth_dev *dev __rte_unused,
1981                    const struct rte_flow_attr *attr __rte_unused,
1982                    const struct rte_flow_item items[] __rte_unused,
1983                    const struct rte_flow_action actions[] __rte_unused,
1984                    struct rte_flow_error *error)
1985 {
1986         return rte_flow_error_set(error, ENOTSUP,
1987                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1988 }
1989
1990 static struct mlx5_flow *
1991 flow_null_prepare(const struct rte_flow_attr *attr __rte_unused,
1992                   const struct rte_flow_item items[] __rte_unused,
1993                   const struct rte_flow_action actions[] __rte_unused,
1994                   struct rte_flow_error *error)
1995 {
1996         rte_flow_error_set(error, ENOTSUP,
1997                            RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
1998         return NULL;
1999 }
2000
2001 static int
2002 flow_null_translate(struct rte_eth_dev *dev __rte_unused,
2003                     struct mlx5_flow *dev_flow __rte_unused,
2004                     const struct rte_flow_attr *attr __rte_unused,
2005                     const struct rte_flow_item items[] __rte_unused,
2006                     const struct rte_flow_action actions[] __rte_unused,
2007                     struct rte_flow_error *error)
2008 {
2009         return rte_flow_error_set(error, ENOTSUP,
2010                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2011 }
2012
2013 static int
2014 flow_null_apply(struct rte_eth_dev *dev __rte_unused,
2015                 struct rte_flow *flow __rte_unused,
2016                 struct rte_flow_error *error)
2017 {
2018         return rte_flow_error_set(error, ENOTSUP,
2019                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2020 }
2021
2022 static void
2023 flow_null_remove(struct rte_eth_dev *dev __rte_unused,
2024                  struct rte_flow *flow __rte_unused)
2025 {
2026 }
2027
2028 static void
2029 flow_null_destroy(struct rte_eth_dev *dev __rte_unused,
2030                   struct rte_flow *flow __rte_unused)
2031 {
2032 }
2033
2034 static int
2035 flow_null_query(struct rte_eth_dev *dev __rte_unused,
2036                 struct rte_flow *flow __rte_unused,
2037                 const struct rte_flow_action *actions __rte_unused,
2038                 void *data __rte_unused,
2039                 struct rte_flow_error *error)
2040 {
2041         return rte_flow_error_set(error, ENOTSUP,
2042                                   RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL, NULL);
2043 }
2044
2045 /* Void driver to protect from null pointer reference. */
2046 const struct mlx5_flow_driver_ops mlx5_flow_null_drv_ops = {
2047         .validate = flow_null_validate,
2048         .prepare = flow_null_prepare,
2049         .translate = flow_null_translate,
2050         .apply = flow_null_apply,
2051         .remove = flow_null_remove,
2052         .destroy = flow_null_destroy,
2053         .query = flow_null_query,
2054 };
2055
2056 /**
2057  * Select flow driver type according to flow attributes and device
2058  * configuration.
2059  *
2060  * @param[in] dev
2061  *   Pointer to the dev structure.
2062  * @param[in] attr
2063  *   Pointer to the flow attributes.
2064  *
2065  * @return
2066  *   flow driver type, MLX5_FLOW_TYPE_MAX otherwise.
2067  */
2068 static enum mlx5_flow_drv_type
2069 flow_get_drv_type(struct rte_eth_dev *dev, const struct rte_flow_attr *attr)
2070 {
2071         struct mlx5_priv *priv = dev->data->dev_private;
2072         enum mlx5_flow_drv_type type = MLX5_FLOW_TYPE_MAX;
2073
2074         if (attr->transfer && priv->config.dv_esw_en)
2075                 type = MLX5_FLOW_TYPE_DV;
2076         if (!attr->transfer)
2077                 type = priv->config.dv_flow_en ? MLX5_FLOW_TYPE_DV :
2078                                                  MLX5_FLOW_TYPE_VERBS;
2079         return type;
2080 }
2081
2082 #define flow_get_drv_ops(type) flow_drv_ops[type]
2083
2084 /**
2085  * Flow driver validation API. This abstracts calling driver specific functions.
2086  * The type of flow driver is determined according to flow attributes.
2087  *
2088  * @param[in] dev
2089  *   Pointer to the dev structure.
2090  * @param[in] attr
2091  *   Pointer to the flow attributes.
2092  * @param[in] items
2093  *   Pointer to the list of items.
2094  * @param[in] actions
2095  *   Pointer to the list of actions.
2096  * @param[out] error
2097  *   Pointer to the error structure.
2098  *
2099  * @return
2100  *   0 on success, a negative errno value otherwise and rte_errno is set.
2101  */
2102 static inline int
2103 flow_drv_validate(struct rte_eth_dev *dev,
2104                   const struct rte_flow_attr *attr,
2105                   const struct rte_flow_item items[],
2106                   const struct rte_flow_action actions[],
2107                   struct rte_flow_error *error)
2108 {
2109         const struct mlx5_flow_driver_ops *fops;
2110         enum mlx5_flow_drv_type type = flow_get_drv_type(dev, attr);
2111
2112         fops = flow_get_drv_ops(type);
2113         return fops->validate(dev, attr, items, actions, error);
2114 }
2115
2116 /**
2117  * Flow driver preparation API. This abstracts calling driver specific
2118  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2119  * calculates the size of memory required for device flow, allocates the memory,
2120  * initializes the device flow and returns the pointer.
2121  *
2122  * @note
2123  *   This function initializes device flow structure such as dv or verbs in
2124  *   struct mlx5_flow. However, it is caller's responsibility to initialize the
2125  *   rest. For example, adding returning device flow to flow->dev_flow list and
2126  *   setting backward reference to the flow should be done out of this function.
2127  *   layers field is not filled either.
2128  *
2129  * @param[in] attr
2130  *   Pointer to the flow attributes.
2131  * @param[in] items
2132  *   Pointer to the list of items.
2133  * @param[in] actions
2134  *   Pointer to the list of actions.
2135  * @param[out] error
2136  *   Pointer to the error structure.
2137  *
2138  * @return
2139  *   Pointer to device flow on success, otherwise NULL and rte_errno is set.
2140  */
2141 static inline struct mlx5_flow *
2142 flow_drv_prepare(const struct rte_flow *flow,
2143                  const struct rte_flow_attr *attr,
2144                  const struct rte_flow_item items[],
2145                  const struct rte_flow_action actions[],
2146                  struct rte_flow_error *error)
2147 {
2148         const struct mlx5_flow_driver_ops *fops;
2149         enum mlx5_flow_drv_type type = flow->drv_type;
2150
2151         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2152         fops = flow_get_drv_ops(type);
2153         return fops->prepare(attr, items, actions, error);
2154 }
2155
2156 /**
2157  * Flow driver translation API. This abstracts calling driver specific
2158  * functions. Parent flow (rte_flow) should have driver type (drv_type). It
2159  * translates a generic flow into a driver flow. flow_drv_prepare() must
2160  * precede.
2161  *
2162  * @note
2163  *   dev_flow->layers could be filled as a result of parsing during translation
2164  *   if needed by flow_drv_apply(). dev_flow->flow->actions can also be filled
2165  *   if necessary. As a flow can have multiple dev_flows by RSS flow expansion,
2166  *   flow->actions could be overwritten even though all the expanded dev_flows
2167  *   have the same actions.
2168  *
2169  * @param[in] dev
2170  *   Pointer to the rte dev structure.
2171  * @param[in, out] dev_flow
2172  *   Pointer to the mlx5 flow.
2173  * @param[in] attr
2174  *   Pointer to the flow attributes.
2175  * @param[in] items
2176  *   Pointer to the list of items.
2177  * @param[in] actions
2178  *   Pointer to the list of actions.
2179  * @param[out] error
2180  *   Pointer to the error structure.
2181  *
2182  * @return
2183  *   0 on success, a negative errno value otherwise and rte_errno is set.
2184  */
2185 static inline int
2186 flow_drv_translate(struct rte_eth_dev *dev, struct mlx5_flow *dev_flow,
2187                    const struct rte_flow_attr *attr,
2188                    const struct rte_flow_item items[],
2189                    const struct rte_flow_action actions[],
2190                    struct rte_flow_error *error)
2191 {
2192         const struct mlx5_flow_driver_ops *fops;
2193         enum mlx5_flow_drv_type type = dev_flow->flow->drv_type;
2194
2195         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2196         fops = flow_get_drv_ops(type);
2197         return fops->translate(dev, dev_flow, attr, items, actions, error);
2198 }
2199
2200 /**
2201  * Flow driver apply API. This abstracts calling driver specific functions.
2202  * Parent flow (rte_flow) should have driver type (drv_type). It applies
2203  * translated driver flows on to device. flow_drv_translate() must precede.
2204  *
2205  * @param[in] dev
2206  *   Pointer to Ethernet device structure.
2207  * @param[in, out] flow
2208  *   Pointer to flow structure.
2209  * @param[out] error
2210  *   Pointer to error structure.
2211  *
2212  * @return
2213  *   0 on success, a negative errno value otherwise and rte_errno is set.
2214  */
2215 static inline int
2216 flow_drv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
2217                struct rte_flow_error *error)
2218 {
2219         const struct mlx5_flow_driver_ops *fops;
2220         enum mlx5_flow_drv_type type = flow->drv_type;
2221
2222         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2223         fops = flow_get_drv_ops(type);
2224         return fops->apply(dev, flow, error);
2225 }
2226
2227 /**
2228  * Flow driver remove API. This abstracts calling driver specific functions.
2229  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2230  * on device. All the resources of the flow should be freed by calling
2231  * flow_drv_destroy().
2232  *
2233  * @param[in] dev
2234  *   Pointer to Ethernet device.
2235  * @param[in, out] flow
2236  *   Pointer to flow structure.
2237  */
2238 static inline void
2239 flow_drv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
2240 {
2241         const struct mlx5_flow_driver_ops *fops;
2242         enum mlx5_flow_drv_type type = flow->drv_type;
2243
2244         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2245         fops = flow_get_drv_ops(type);
2246         fops->remove(dev, flow);
2247 }
2248
2249 /**
2250  * Flow driver destroy API. This abstracts calling driver specific functions.
2251  * Parent flow (rte_flow) should have driver type (drv_type). It removes a flow
2252  * on device and releases resources of the flow.
2253  *
2254  * @param[in] dev
2255  *   Pointer to Ethernet device.
2256  * @param[in, out] flow
2257  *   Pointer to flow structure.
2258  */
2259 static inline void
2260 flow_drv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
2261 {
2262         const struct mlx5_flow_driver_ops *fops;
2263         enum mlx5_flow_drv_type type = flow->drv_type;
2264
2265         assert(type > MLX5_FLOW_TYPE_MIN && type < MLX5_FLOW_TYPE_MAX);
2266         fops = flow_get_drv_ops(type);
2267         fops->destroy(dev, flow);
2268 }
2269
2270 /**
2271  * Validate a flow supported by the NIC.
2272  *
2273  * @see rte_flow_validate()
2274  * @see rte_flow_ops
2275  */
2276 int
2277 mlx5_flow_validate(struct rte_eth_dev *dev,
2278                    const struct rte_flow_attr *attr,
2279                    const struct rte_flow_item items[],
2280                    const struct rte_flow_action actions[],
2281                    struct rte_flow_error *error)
2282 {
2283         int ret;
2284
2285         ret = flow_drv_validate(dev, attr, items, actions, error);
2286         if (ret < 0)
2287                 return ret;
2288         return 0;
2289 }
2290
2291 /**
2292  * Get RSS action from the action list.
2293  *
2294  * @param[in] actions
2295  *   Pointer to the list of actions.
2296  *
2297  * @return
2298  *   Pointer to the RSS action if exist, else return NULL.
2299  */
2300 static const struct rte_flow_action_rss*
2301 flow_get_rss_action(const struct rte_flow_action actions[])
2302 {
2303         for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
2304                 switch (actions->type) {
2305                 case RTE_FLOW_ACTION_TYPE_RSS:
2306                         return (const struct rte_flow_action_rss *)
2307                                actions->conf;
2308                 default:
2309                         break;
2310                 }
2311         }
2312         return NULL;
2313 }
2314
2315 static unsigned int
2316 find_graph_root(const struct rte_flow_item pattern[], uint32_t rss_level)
2317 {
2318         const struct rte_flow_item *item;
2319         unsigned int has_vlan = 0;
2320
2321         for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
2322                 if (item->type == RTE_FLOW_ITEM_TYPE_VLAN) {
2323                         has_vlan = 1;
2324                         break;
2325                 }
2326         }
2327         if (has_vlan)
2328                 return rss_level < 2 ? MLX5_EXPANSION_ROOT_ETH_VLAN :
2329                                        MLX5_EXPANSION_ROOT_OUTER_ETH_VLAN;
2330         return rss_level < 2 ? MLX5_EXPANSION_ROOT :
2331                                MLX5_EXPANSION_ROOT_OUTER;
2332 }
2333
2334 /**
2335  * Create a flow and add it to @p list.
2336  *
2337  * @param dev
2338  *   Pointer to Ethernet device.
2339  * @param list
2340  *   Pointer to a TAILQ flow list.
2341  * @param[in] attr
2342  *   Flow rule attributes.
2343  * @param[in] items
2344  *   Pattern specification (list terminated by the END pattern item).
2345  * @param[in] actions
2346  *   Associated actions (list terminated by the END action).
2347  * @param[out] error
2348  *   Perform verbose error reporting if not NULL.
2349  *
2350  * @return
2351  *   A flow on success, NULL otherwise and rte_errno is set.
2352  */
2353 static struct rte_flow *
2354 flow_list_create(struct rte_eth_dev *dev, struct mlx5_flows *list,
2355                  const struct rte_flow_attr *attr,
2356                  const struct rte_flow_item items[],
2357                  const struct rte_flow_action actions[],
2358                  struct rte_flow_error *error)
2359 {
2360         struct rte_flow *flow = NULL;
2361         struct mlx5_flow *dev_flow;
2362         const struct rte_flow_action_rss *rss;
2363         union {
2364                 struct rte_flow_expand_rss buf;
2365                 uint8_t buffer[2048];
2366         } expand_buffer;
2367         struct rte_flow_expand_rss *buf = &expand_buffer.buf;
2368         int ret;
2369         uint32_t i;
2370         uint32_t flow_size;
2371
2372         ret = flow_drv_validate(dev, attr, items, actions, error);
2373         if (ret < 0)
2374                 return NULL;
2375         flow_size = sizeof(struct rte_flow);
2376         rss = flow_get_rss_action(actions);
2377         if (rss)
2378                 flow_size += RTE_ALIGN_CEIL(rss->queue_num * sizeof(uint16_t),
2379                                             sizeof(void *));
2380         else
2381                 flow_size += RTE_ALIGN_CEIL(sizeof(uint16_t), sizeof(void *));
2382         flow = rte_calloc(__func__, 1, flow_size, 0);
2383         if (!flow) {
2384                 rte_errno = ENOMEM;
2385                 return NULL;
2386         }
2387         flow->drv_type = flow_get_drv_type(dev, attr);
2388         flow->ingress = attr->ingress;
2389         flow->transfer = attr->transfer;
2390         assert(flow->drv_type > MLX5_FLOW_TYPE_MIN &&
2391                flow->drv_type < MLX5_FLOW_TYPE_MAX);
2392         flow->queue = (void *)(flow + 1);
2393         LIST_INIT(&flow->dev_flows);
2394         if (rss && rss->types) {
2395                 unsigned int graph_root;
2396
2397                 graph_root = find_graph_root(items, rss->level);
2398                 ret = rte_flow_expand_rss(buf, sizeof(expand_buffer.buffer),
2399                                           items, rss->types,
2400                                           mlx5_support_expansion,
2401                                           graph_root);
2402                 assert(ret > 0 &&
2403                        (unsigned int)ret < sizeof(expand_buffer.buffer));
2404         } else {
2405                 buf->entries = 1;
2406                 buf->entry[0].pattern = (void *)(uintptr_t)items;
2407         }
2408         for (i = 0; i < buf->entries; ++i) {
2409                 dev_flow = flow_drv_prepare(flow, attr, buf->entry[i].pattern,
2410                                             actions, error);
2411                 if (!dev_flow)
2412                         goto error;
2413                 dev_flow->flow = flow;
2414                 LIST_INSERT_HEAD(&flow->dev_flows, dev_flow, next);
2415                 ret = flow_drv_translate(dev, dev_flow, attr,
2416                                          buf->entry[i].pattern,
2417                                          actions, error);
2418                 if (ret < 0)
2419                         goto error;
2420         }
2421         if (dev->data->dev_started) {
2422                 ret = flow_drv_apply(dev, flow, error);
2423                 if (ret < 0)
2424                         goto error;
2425         }
2426         TAILQ_INSERT_TAIL(list, flow, next);
2427         flow_rxq_flags_set(dev, flow);
2428         return flow;
2429 error:
2430         ret = rte_errno; /* Save rte_errno before cleanup. */
2431         assert(flow);
2432         flow_drv_destroy(dev, flow);
2433         rte_free(flow);
2434         rte_errno = ret; /* Restore rte_errno. */
2435         return NULL;
2436 }
2437
2438 /**
2439  * Create a flow.
2440  *
2441  * @see rte_flow_create()
2442  * @see rte_flow_ops
2443  */
2444 struct rte_flow *
2445 mlx5_flow_create(struct rte_eth_dev *dev,
2446                  const struct rte_flow_attr *attr,
2447                  const struct rte_flow_item items[],
2448                  const struct rte_flow_action actions[],
2449                  struct rte_flow_error *error)
2450 {
2451         struct mlx5_priv *priv = dev->data->dev_private;
2452
2453         return flow_list_create(dev, &priv->flows,
2454                                 attr, items, actions, error);
2455 }
2456
2457 /**
2458  * Destroy a flow in a list.
2459  *
2460  * @param dev
2461  *   Pointer to Ethernet device.
2462  * @param list
2463  *   Pointer to a TAILQ flow list.
2464  * @param[in] flow
2465  *   Flow to destroy.
2466  */
2467 static void
2468 flow_list_destroy(struct rte_eth_dev *dev, struct mlx5_flows *list,
2469                   struct rte_flow *flow)
2470 {
2471         /*
2472          * Update RX queue flags only if port is started, otherwise it is
2473          * already clean.
2474          */
2475         if (dev->data->dev_started)
2476                 flow_rxq_flags_trim(dev, flow);
2477         flow_drv_destroy(dev, flow);
2478         TAILQ_REMOVE(list, flow, next);
2479         rte_free(flow->fdir);
2480         rte_free(flow);
2481 }
2482
2483 /**
2484  * Destroy all flows.
2485  *
2486  * @param dev
2487  *   Pointer to Ethernet device.
2488  * @param list
2489  *   Pointer to a TAILQ flow list.
2490  */
2491 void
2492 mlx5_flow_list_flush(struct rte_eth_dev *dev, struct mlx5_flows *list)
2493 {
2494         while (!TAILQ_EMPTY(list)) {
2495                 struct rte_flow *flow;
2496
2497                 flow = TAILQ_FIRST(list);
2498                 flow_list_destroy(dev, list, flow);
2499         }
2500 }
2501
2502 /**
2503  * Remove all flows.
2504  *
2505  * @param dev
2506  *   Pointer to Ethernet device.
2507  * @param list
2508  *   Pointer to a TAILQ flow list.
2509  */
2510 void
2511 mlx5_flow_stop(struct rte_eth_dev *dev, struct mlx5_flows *list)
2512 {
2513         struct rte_flow *flow;
2514
2515         TAILQ_FOREACH_REVERSE(flow, list, mlx5_flows, next)
2516                 flow_drv_remove(dev, flow);
2517         flow_rxq_flags_clear(dev);
2518 }
2519
2520 /**
2521  * Add all flows.
2522  *
2523  * @param dev
2524  *   Pointer to Ethernet device.
2525  * @param list
2526  *   Pointer to a TAILQ flow list.
2527  *
2528  * @return
2529  *   0 on success, a negative errno value otherwise and rte_errno is set.
2530  */
2531 int
2532 mlx5_flow_start(struct rte_eth_dev *dev, struct mlx5_flows *list)
2533 {
2534         struct rte_flow *flow;
2535         struct rte_flow_error error;
2536         int ret = 0;
2537
2538         TAILQ_FOREACH(flow, list, next) {
2539                 ret = flow_drv_apply(dev, flow, &error);
2540                 if (ret < 0)
2541                         goto error;
2542                 flow_rxq_flags_set(dev, flow);
2543         }
2544         return 0;
2545 error:
2546         ret = rte_errno; /* Save rte_errno before cleanup. */
2547         mlx5_flow_stop(dev, list);
2548         rte_errno = ret; /* Restore rte_errno. */
2549         return -rte_errno;
2550 }
2551
2552 /**
2553  * Verify the flow list is empty
2554  *
2555  * @param dev
2556  *  Pointer to Ethernet device.
2557  *
2558  * @return the number of flows not released.
2559  */
2560 int
2561 mlx5_flow_verify(struct rte_eth_dev *dev)
2562 {
2563         struct mlx5_priv *priv = dev->data->dev_private;
2564         struct rte_flow *flow;
2565         int ret = 0;
2566
2567         TAILQ_FOREACH(flow, &priv->flows, next) {
2568                 DRV_LOG(DEBUG, "port %u flow %p still referenced",
2569                         dev->data->port_id, (void *)flow);
2570                 ++ret;
2571         }
2572         return ret;
2573 }
2574
2575 /**
2576  * Enable a control flow configured from the control plane.
2577  *
2578  * @param dev
2579  *   Pointer to Ethernet device.
2580  * @param eth_spec
2581  *   An Ethernet flow spec to apply.
2582  * @param eth_mask
2583  *   An Ethernet flow mask to apply.
2584  * @param vlan_spec
2585  *   A VLAN flow spec to apply.
2586  * @param vlan_mask
2587  *   A VLAN flow mask to apply.
2588  *
2589  * @return
2590  *   0 on success, a negative errno value otherwise and rte_errno is set.
2591  */
2592 int
2593 mlx5_ctrl_flow_vlan(struct rte_eth_dev *dev,
2594                     struct rte_flow_item_eth *eth_spec,
2595                     struct rte_flow_item_eth *eth_mask,
2596                     struct rte_flow_item_vlan *vlan_spec,
2597                     struct rte_flow_item_vlan *vlan_mask)
2598 {
2599         struct mlx5_priv *priv = dev->data->dev_private;
2600         const struct rte_flow_attr attr = {
2601                 .ingress = 1,
2602                 .priority = MLX5_FLOW_PRIO_RSVD,
2603         };
2604         struct rte_flow_item items[] = {
2605                 {
2606                         .type = RTE_FLOW_ITEM_TYPE_ETH,
2607                         .spec = eth_spec,
2608                         .last = NULL,
2609                         .mask = eth_mask,
2610                 },
2611                 {
2612                         .type = (vlan_spec) ? RTE_FLOW_ITEM_TYPE_VLAN :
2613                                               RTE_FLOW_ITEM_TYPE_END,
2614                         .spec = vlan_spec,
2615                         .last = NULL,
2616                         .mask = vlan_mask,
2617                 },
2618                 {
2619                         .type = RTE_FLOW_ITEM_TYPE_END,
2620                 },
2621         };
2622         uint16_t queue[priv->reta_idx_n];
2623         struct rte_flow_action_rss action_rss = {
2624                 .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2625                 .level = 0,
2626                 .types = priv->rss_conf.rss_hf,
2627                 .key_len = priv->rss_conf.rss_key_len,
2628                 .queue_num = priv->reta_idx_n,
2629                 .key = priv->rss_conf.rss_key,
2630                 .queue = queue,
2631         };
2632         struct rte_flow_action actions[] = {
2633                 {
2634                         .type = RTE_FLOW_ACTION_TYPE_RSS,
2635                         .conf = &action_rss,
2636                 },
2637                 {
2638                         .type = RTE_FLOW_ACTION_TYPE_END,
2639                 },
2640         };
2641         struct rte_flow *flow;
2642         struct rte_flow_error error;
2643         unsigned int i;
2644
2645         if (!priv->reta_idx_n || !priv->rxqs_n) {
2646                 return 0;
2647         }
2648         for (i = 0; i != priv->reta_idx_n; ++i)
2649                 queue[i] = (*priv->reta_idx)[i];
2650         flow = flow_list_create(dev, &priv->ctrl_flows,
2651                                 &attr, items, actions, &error);
2652         if (!flow)
2653                 return -rte_errno;
2654         return 0;
2655 }
2656
2657 /**
2658  * Enable a flow control configured from the control plane.
2659  *
2660  * @param dev
2661  *   Pointer to Ethernet device.
2662  * @param eth_spec
2663  *   An Ethernet flow spec to apply.
2664  * @param eth_mask
2665  *   An Ethernet flow mask to apply.
2666  *
2667  * @return
2668  *   0 on success, a negative errno value otherwise and rte_errno is set.
2669  */
2670 int
2671 mlx5_ctrl_flow(struct rte_eth_dev *dev,
2672                struct rte_flow_item_eth *eth_spec,
2673                struct rte_flow_item_eth *eth_mask)
2674 {
2675         return mlx5_ctrl_flow_vlan(dev, eth_spec, eth_mask, NULL, NULL);
2676 }
2677
2678 /**
2679  * Destroy a flow.
2680  *
2681  * @see rte_flow_destroy()
2682  * @see rte_flow_ops
2683  */
2684 int
2685 mlx5_flow_destroy(struct rte_eth_dev *dev,
2686                   struct rte_flow *flow,
2687                   struct rte_flow_error *error __rte_unused)
2688 {
2689         struct mlx5_priv *priv = dev->data->dev_private;
2690
2691         flow_list_destroy(dev, &priv->flows, flow);
2692         return 0;
2693 }
2694
2695 /**
2696  * Destroy all flows.
2697  *
2698  * @see rte_flow_flush()
2699  * @see rte_flow_ops
2700  */
2701 int
2702 mlx5_flow_flush(struct rte_eth_dev *dev,
2703                 struct rte_flow_error *error __rte_unused)
2704 {
2705         struct mlx5_priv *priv = dev->data->dev_private;
2706
2707         mlx5_flow_list_flush(dev, &priv->flows);
2708         return 0;
2709 }
2710
2711 /**
2712  * Isolated mode.
2713  *
2714  * @see rte_flow_isolate()
2715  * @see rte_flow_ops
2716  */
2717 int
2718 mlx5_flow_isolate(struct rte_eth_dev *dev,
2719                   int enable,
2720                   struct rte_flow_error *error)
2721 {
2722         struct mlx5_priv *priv = dev->data->dev_private;
2723
2724         if (dev->data->dev_started) {
2725                 rte_flow_error_set(error, EBUSY,
2726                                    RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
2727                                    NULL,
2728                                    "port must be stopped first");
2729                 return -rte_errno;
2730         }
2731         priv->isolated = !!enable;
2732         if (enable)
2733                 dev->dev_ops = &mlx5_dev_ops_isolate;
2734         else
2735                 dev->dev_ops = &mlx5_dev_ops;
2736         return 0;
2737 }
2738
2739 /**
2740  * Query a flow.
2741  *
2742  * @see rte_flow_query()
2743  * @see rte_flow_ops
2744  */
2745 static int
2746 flow_drv_query(struct rte_eth_dev *dev,
2747                struct rte_flow *flow,
2748                const struct rte_flow_action *actions,
2749                void *data,
2750                struct rte_flow_error *error)
2751 {
2752         const struct mlx5_flow_driver_ops *fops;
2753         enum mlx5_flow_drv_type ftype = flow->drv_type;
2754
2755         assert(ftype > MLX5_FLOW_TYPE_MIN && ftype < MLX5_FLOW_TYPE_MAX);
2756         fops = flow_get_drv_ops(ftype);
2757
2758         return fops->query(dev, flow, actions, data, error);
2759 }
2760
2761 /**
2762  * Query a flow.
2763  *
2764  * @see rte_flow_query()
2765  * @see rte_flow_ops
2766  */
2767 int
2768 mlx5_flow_query(struct rte_eth_dev *dev,
2769                 struct rte_flow *flow,
2770                 const struct rte_flow_action *actions,
2771                 void *data,
2772                 struct rte_flow_error *error)
2773 {
2774         int ret;
2775
2776         ret = flow_drv_query(dev, flow, actions, data, error);
2777         if (ret < 0)
2778                 return ret;
2779         return 0;
2780 }
2781
2782 /**
2783  * Convert a flow director filter to a generic flow.
2784  *
2785  * @param dev
2786  *   Pointer to Ethernet device.
2787  * @param fdir_filter
2788  *   Flow director filter to add.
2789  * @param attributes
2790  *   Generic flow parameters structure.
2791  *
2792  * @return
2793  *   0 on success, a negative errno value otherwise and rte_errno is set.
2794  */
2795 static int
2796 flow_fdir_filter_convert(struct rte_eth_dev *dev,
2797                          const struct rte_eth_fdir_filter *fdir_filter,
2798                          struct mlx5_fdir *attributes)
2799 {
2800         struct mlx5_priv *priv = dev->data->dev_private;
2801         const struct rte_eth_fdir_input *input = &fdir_filter->input;
2802         const struct rte_eth_fdir_masks *mask =
2803                 &dev->data->dev_conf.fdir_conf.mask;
2804
2805         /* Validate queue number. */
2806         if (fdir_filter->action.rx_queue >= priv->rxqs_n) {
2807                 DRV_LOG(ERR, "port %u invalid queue number %d",
2808                         dev->data->port_id, fdir_filter->action.rx_queue);
2809                 rte_errno = EINVAL;
2810                 return -rte_errno;
2811         }
2812         attributes->attr.ingress = 1;
2813         attributes->items[0] = (struct rte_flow_item) {
2814                 .type = RTE_FLOW_ITEM_TYPE_ETH,
2815                 .spec = &attributes->l2,
2816                 .mask = &attributes->l2_mask,
2817         };
2818         switch (fdir_filter->action.behavior) {
2819         case RTE_ETH_FDIR_ACCEPT:
2820                 attributes->actions[0] = (struct rte_flow_action){
2821                         .type = RTE_FLOW_ACTION_TYPE_QUEUE,
2822                         .conf = &attributes->queue,
2823                 };
2824                 break;
2825         case RTE_ETH_FDIR_REJECT:
2826                 attributes->actions[0] = (struct rte_flow_action){
2827                         .type = RTE_FLOW_ACTION_TYPE_DROP,
2828                 };
2829                 break;
2830         default:
2831                 DRV_LOG(ERR, "port %u invalid behavior %d",
2832                         dev->data->port_id,
2833                         fdir_filter->action.behavior);
2834                 rte_errno = ENOTSUP;
2835                 return -rte_errno;
2836         }
2837         attributes->queue.index = fdir_filter->action.rx_queue;
2838         /* Handle L3. */
2839         switch (fdir_filter->input.flow_type) {
2840         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2841         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2842         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2843                 attributes->l3.ipv4.hdr = (struct rte_ipv4_hdr){
2844                         .src_addr = input->flow.ip4_flow.src_ip,
2845                         .dst_addr = input->flow.ip4_flow.dst_ip,
2846                         .time_to_live = input->flow.ip4_flow.ttl,
2847                         .type_of_service = input->flow.ip4_flow.tos,
2848                 };
2849                 attributes->l3_mask.ipv4.hdr = (struct rte_ipv4_hdr){
2850                         .src_addr = mask->ipv4_mask.src_ip,
2851                         .dst_addr = mask->ipv4_mask.dst_ip,
2852                         .time_to_live = mask->ipv4_mask.ttl,
2853                         .type_of_service = mask->ipv4_mask.tos,
2854                         .next_proto_id = mask->ipv4_mask.proto,
2855                 };
2856                 attributes->items[1] = (struct rte_flow_item){
2857                         .type = RTE_FLOW_ITEM_TYPE_IPV4,
2858                         .spec = &attributes->l3,
2859                         .mask = &attributes->l3_mask,
2860                 };
2861                 break;
2862         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2863         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2864         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2865                 attributes->l3.ipv6.hdr = (struct rte_ipv6_hdr){
2866                         .hop_limits = input->flow.ipv6_flow.hop_limits,
2867                         .proto = input->flow.ipv6_flow.proto,
2868                 };
2869
2870                 memcpy(attributes->l3.ipv6.hdr.src_addr,
2871                        input->flow.ipv6_flow.src_ip,
2872                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2873                 memcpy(attributes->l3.ipv6.hdr.dst_addr,
2874                        input->flow.ipv6_flow.dst_ip,
2875                        RTE_DIM(attributes->l3.ipv6.hdr.src_addr));
2876                 memcpy(attributes->l3_mask.ipv6.hdr.src_addr,
2877                        mask->ipv6_mask.src_ip,
2878                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2879                 memcpy(attributes->l3_mask.ipv6.hdr.dst_addr,
2880                        mask->ipv6_mask.dst_ip,
2881                        RTE_DIM(attributes->l3_mask.ipv6.hdr.src_addr));
2882                 attributes->items[1] = (struct rte_flow_item){
2883                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
2884                         .spec = &attributes->l3,
2885                         .mask = &attributes->l3_mask,
2886                 };
2887                 break;
2888         default:
2889                 DRV_LOG(ERR, "port %u invalid flow type%d",
2890                         dev->data->port_id, fdir_filter->input.flow_type);
2891                 rte_errno = ENOTSUP;
2892                 return -rte_errno;
2893         }
2894         /* Handle L4. */
2895         switch (fdir_filter->input.flow_type) {
2896         case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
2897                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
2898                         .src_port = input->flow.udp4_flow.src_port,
2899                         .dst_port = input->flow.udp4_flow.dst_port,
2900                 };
2901                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2902                         .src_port = mask->src_port_mask,
2903                         .dst_port = mask->dst_port_mask,
2904                 };
2905                 attributes->items[2] = (struct rte_flow_item){
2906                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2907                         .spec = &attributes->l4,
2908                         .mask = &attributes->l4_mask,
2909                 };
2910                 break;
2911         case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
2912                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2913                         .src_port = input->flow.tcp4_flow.src_port,
2914                         .dst_port = input->flow.tcp4_flow.dst_port,
2915                 };
2916                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2917                         .src_port = mask->src_port_mask,
2918                         .dst_port = mask->dst_port_mask,
2919                 };
2920                 attributes->items[2] = (struct rte_flow_item){
2921                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2922                         .spec = &attributes->l4,
2923                         .mask = &attributes->l4_mask,
2924                 };
2925                 break;
2926         case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
2927                 attributes->l4.udp.hdr = (struct rte_udp_hdr){
2928                         .src_port = input->flow.udp6_flow.src_port,
2929                         .dst_port = input->flow.udp6_flow.dst_port,
2930                 };
2931                 attributes->l4_mask.udp.hdr = (struct rte_udp_hdr){
2932                         .src_port = mask->src_port_mask,
2933                         .dst_port = mask->dst_port_mask,
2934                 };
2935                 attributes->items[2] = (struct rte_flow_item){
2936                         .type = RTE_FLOW_ITEM_TYPE_UDP,
2937                         .spec = &attributes->l4,
2938                         .mask = &attributes->l4_mask,
2939                 };
2940                 break;
2941         case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
2942                 attributes->l4.tcp.hdr = (struct rte_tcp_hdr){
2943                         .src_port = input->flow.tcp6_flow.src_port,
2944                         .dst_port = input->flow.tcp6_flow.dst_port,
2945                 };
2946                 attributes->l4_mask.tcp.hdr = (struct rte_tcp_hdr){
2947                         .src_port = mask->src_port_mask,
2948                         .dst_port = mask->dst_port_mask,
2949                 };
2950                 attributes->items[2] = (struct rte_flow_item){
2951                         .type = RTE_FLOW_ITEM_TYPE_TCP,
2952                         .spec = &attributes->l4,
2953                         .mask = &attributes->l4_mask,
2954                 };
2955                 break;
2956         case RTE_ETH_FLOW_NONFRAG_IPV4_OTHER:
2957         case RTE_ETH_FLOW_NONFRAG_IPV6_OTHER:
2958                 break;
2959         default:
2960                 DRV_LOG(ERR, "port %u invalid flow type%d",
2961                         dev->data->port_id, fdir_filter->input.flow_type);
2962                 rte_errno = ENOTSUP;
2963                 return -rte_errno;
2964         }
2965         return 0;
2966 }
2967
2968 #define FLOW_FDIR_CMP(f1, f2, fld) \
2969         memcmp(&(f1)->fld, &(f2)->fld, sizeof(f1->fld))
2970
2971 /**
2972  * Compare two FDIR flows. If items and actions are identical, the two flows are
2973  * regarded as same.
2974  *
2975  * @param dev
2976  *   Pointer to Ethernet device.
2977  * @param f1
2978  *   FDIR flow to compare.
2979  * @param f2
2980  *   FDIR flow to compare.
2981  *
2982  * @return
2983  *   Zero on match, 1 otherwise.
2984  */
2985 static int
2986 flow_fdir_cmp(const struct mlx5_fdir *f1, const struct mlx5_fdir *f2)
2987 {
2988         if (FLOW_FDIR_CMP(f1, f2, attr) ||
2989             FLOW_FDIR_CMP(f1, f2, l2) ||
2990             FLOW_FDIR_CMP(f1, f2, l2_mask) ||
2991             FLOW_FDIR_CMP(f1, f2, l3) ||
2992             FLOW_FDIR_CMP(f1, f2, l3_mask) ||
2993             FLOW_FDIR_CMP(f1, f2, l4) ||
2994             FLOW_FDIR_CMP(f1, f2, l4_mask) ||
2995             FLOW_FDIR_CMP(f1, f2, actions[0].type))
2996                 return 1;
2997         if (f1->actions[0].type == RTE_FLOW_ACTION_TYPE_QUEUE &&
2998             FLOW_FDIR_CMP(f1, f2, queue))
2999                 return 1;
3000         return 0;
3001 }
3002
3003 /**
3004  * Search device flow list to find out a matched FDIR flow.
3005  *
3006  * @param dev
3007  *   Pointer to Ethernet device.
3008  * @param fdir_flow
3009  *   FDIR flow to lookup.
3010  *
3011  * @return
3012  *   Pointer of flow if found, NULL otherwise.
3013  */
3014 static struct rte_flow *
3015 flow_fdir_filter_lookup(struct rte_eth_dev *dev, struct mlx5_fdir *fdir_flow)
3016 {
3017         struct mlx5_priv *priv = dev->data->dev_private;
3018         struct rte_flow *flow = NULL;
3019
3020         assert(fdir_flow);
3021         TAILQ_FOREACH(flow, &priv->flows, next) {
3022                 if (flow->fdir && !flow_fdir_cmp(flow->fdir, fdir_flow)) {
3023                         DRV_LOG(DEBUG, "port %u found FDIR flow %p",
3024                                 dev->data->port_id, (void *)flow);
3025                         break;
3026                 }
3027         }
3028         return flow;
3029 }
3030
3031 /**
3032  * Add new flow director filter and store it in list.
3033  *
3034  * @param dev
3035  *   Pointer to Ethernet device.
3036  * @param fdir_filter
3037  *   Flow director filter to add.
3038  *
3039  * @return
3040  *   0 on success, a negative errno value otherwise and rte_errno is set.
3041  */
3042 static int
3043 flow_fdir_filter_add(struct rte_eth_dev *dev,
3044                      const struct rte_eth_fdir_filter *fdir_filter)
3045 {
3046         struct mlx5_priv *priv = dev->data->dev_private;
3047         struct mlx5_fdir *fdir_flow;
3048         struct rte_flow *flow;
3049         int ret;
3050
3051         fdir_flow = rte_zmalloc(__func__, sizeof(*fdir_flow), 0);
3052         if (!fdir_flow) {
3053                 rte_errno = ENOMEM;
3054                 return -rte_errno;
3055         }
3056         ret = flow_fdir_filter_convert(dev, fdir_filter, fdir_flow);
3057         if (ret)
3058                 goto error;
3059         flow = flow_fdir_filter_lookup(dev, fdir_flow);
3060         if (flow) {
3061                 rte_errno = EEXIST;
3062                 goto error;
3063         }
3064         flow = flow_list_create(dev, &priv->flows, &fdir_flow->attr,
3065                                 fdir_flow->items, fdir_flow->actions, NULL);
3066         if (!flow)
3067                 goto error;
3068         assert(!flow->fdir);
3069         flow->fdir = fdir_flow;
3070         DRV_LOG(DEBUG, "port %u created FDIR flow %p",
3071                 dev->data->port_id, (void *)flow);
3072         return 0;
3073 error:
3074         rte_free(fdir_flow);
3075         return -rte_errno;
3076 }
3077
3078 /**
3079  * Delete specific filter.
3080  *
3081  * @param dev
3082  *   Pointer to Ethernet device.
3083  * @param fdir_filter
3084  *   Filter to be deleted.
3085  *
3086  * @return
3087  *   0 on success, a negative errno value otherwise and rte_errno is set.
3088  */
3089 static int
3090 flow_fdir_filter_delete(struct rte_eth_dev *dev,
3091                         const struct rte_eth_fdir_filter *fdir_filter)
3092 {
3093         struct mlx5_priv *priv = dev->data->dev_private;
3094         struct rte_flow *flow;
3095         struct mlx5_fdir fdir_flow = {
3096                 .attr.group = 0,
3097         };
3098         int ret;
3099
3100         ret = flow_fdir_filter_convert(dev, fdir_filter, &fdir_flow);
3101         if (ret)
3102                 return -rte_errno;
3103         flow = flow_fdir_filter_lookup(dev, &fdir_flow);
3104         if (!flow) {
3105                 rte_errno = ENOENT;
3106                 return -rte_errno;
3107         }
3108         flow_list_destroy(dev, &priv->flows, flow);
3109         DRV_LOG(DEBUG, "port %u deleted FDIR flow %p",
3110                 dev->data->port_id, (void *)flow);
3111         return 0;
3112 }
3113
3114 /**
3115  * Update queue for specific filter.
3116  *
3117  * @param dev
3118  *   Pointer to Ethernet device.
3119  * @param fdir_filter
3120  *   Filter to be updated.
3121  *
3122  * @return
3123  *   0 on success, a negative errno value otherwise and rte_errno is set.
3124  */
3125 static int
3126 flow_fdir_filter_update(struct rte_eth_dev *dev,
3127                         const struct rte_eth_fdir_filter *fdir_filter)
3128 {
3129         int ret;
3130
3131         ret = flow_fdir_filter_delete(dev, fdir_filter);
3132         if (ret)
3133                 return ret;
3134         return flow_fdir_filter_add(dev, fdir_filter);
3135 }
3136
3137 /**
3138  * Flush all filters.
3139  *
3140  * @param dev
3141  *   Pointer to Ethernet device.
3142  */
3143 static void
3144 flow_fdir_filter_flush(struct rte_eth_dev *dev)
3145 {
3146         struct mlx5_priv *priv = dev->data->dev_private;
3147
3148         mlx5_flow_list_flush(dev, &priv->flows);
3149 }
3150
3151 /**
3152  * Get flow director information.
3153  *
3154  * @param dev
3155  *   Pointer to Ethernet device.
3156  * @param[out] fdir_info
3157  *   Resulting flow director information.
3158  */
3159 static void
3160 flow_fdir_info_get(struct rte_eth_dev *dev, struct rte_eth_fdir_info *fdir_info)
3161 {
3162         struct rte_eth_fdir_masks *mask =
3163                 &dev->data->dev_conf.fdir_conf.mask;
3164
3165         fdir_info->mode = dev->data->dev_conf.fdir_conf.mode;
3166         fdir_info->guarant_spc = 0;
3167         rte_memcpy(&fdir_info->mask, mask, sizeof(fdir_info->mask));
3168         fdir_info->max_flexpayload = 0;
3169         fdir_info->flow_types_mask[0] = 0;
3170         fdir_info->flex_payload_unit = 0;
3171         fdir_info->max_flex_payload_segment_num = 0;
3172         fdir_info->flex_payload_limit = 0;
3173         memset(&fdir_info->flex_conf, 0, sizeof(fdir_info->flex_conf));
3174 }
3175
3176 /**
3177  * Deal with flow director operations.
3178  *
3179  * @param dev
3180  *   Pointer to Ethernet device.
3181  * @param filter_op
3182  *   Operation to perform.
3183  * @param arg
3184  *   Pointer to operation-specific structure.
3185  *
3186  * @return
3187  *   0 on success, a negative errno value otherwise and rte_errno is set.
3188  */
3189 static int
3190 flow_fdir_ctrl_func(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
3191                     void *arg)
3192 {
3193         enum rte_fdir_mode fdir_mode =
3194                 dev->data->dev_conf.fdir_conf.mode;
3195
3196         if (filter_op == RTE_ETH_FILTER_NOP)
3197                 return 0;
3198         if (fdir_mode != RTE_FDIR_MODE_PERFECT &&
3199             fdir_mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
3200                 DRV_LOG(ERR, "port %u flow director mode %d not supported",
3201                         dev->data->port_id, fdir_mode);
3202                 rte_errno = EINVAL;
3203                 return -rte_errno;
3204         }
3205         switch (filter_op) {
3206         case RTE_ETH_FILTER_ADD:
3207                 return flow_fdir_filter_add(dev, arg);
3208         case RTE_ETH_FILTER_UPDATE:
3209                 return flow_fdir_filter_update(dev, arg);
3210         case RTE_ETH_FILTER_DELETE:
3211                 return flow_fdir_filter_delete(dev, arg);
3212         case RTE_ETH_FILTER_FLUSH:
3213                 flow_fdir_filter_flush(dev);
3214                 break;
3215         case RTE_ETH_FILTER_INFO:
3216                 flow_fdir_info_get(dev, arg);
3217                 break;
3218         default:
3219                 DRV_LOG(DEBUG, "port %u unknown operation %u",
3220                         dev->data->port_id, filter_op);
3221                 rte_errno = EINVAL;
3222                 return -rte_errno;
3223         }
3224         return 0;
3225 }
3226
3227 /**
3228  * Manage filter operations.
3229  *
3230  * @param dev
3231  *   Pointer to Ethernet device structure.
3232  * @param filter_type
3233  *   Filter type.
3234  * @param filter_op
3235  *   Operation to perform.
3236  * @param arg
3237  *   Pointer to operation-specific structure.
3238  *
3239  * @return
3240  *   0 on success, a negative errno value otherwise and rte_errno is set.
3241  */
3242 int
3243 mlx5_dev_filter_ctrl(struct rte_eth_dev *dev,
3244                      enum rte_filter_type filter_type,
3245                      enum rte_filter_op filter_op,
3246                      void *arg)
3247 {
3248         switch (filter_type) {
3249         case RTE_ETH_FILTER_GENERIC:
3250                 if (filter_op != RTE_ETH_FILTER_GET) {
3251                         rte_errno = EINVAL;
3252                         return -rte_errno;
3253                 }
3254                 *(const void **)arg = &mlx5_flow_ops;
3255                 return 0;
3256         case RTE_ETH_FILTER_FDIR:
3257                 return flow_fdir_ctrl_func(dev, filter_op, arg);
3258         default:
3259                 DRV_LOG(ERR, "port %u filter type (%d) not supported",
3260                         dev->data->port_id, filter_type);
3261                 rte_errno = ENOTSUP;
3262                 return -rte_errno;
3263         }
3264         return 0;
3265 }
3266
3267 #define MLX5_POOL_QUERY_FREQ_US 1000000
3268
3269 /**
3270  * Set the periodic procedure for triggering asynchronous batch queries for all
3271  * the counter pools.
3272  *
3273  * @param[in] sh
3274  *   Pointer to mlx5_ibv_shared object.
3275  */
3276 void
3277 mlx5_set_query_alarm(struct mlx5_ibv_shared *sh)
3278 {
3279         struct mlx5_pools_container *cont = MLX5_CNT_CONTAINER(sh, 0, 0);
3280         uint32_t pools_n = rte_atomic16_read(&cont->n_valid);
3281         uint32_t us;
3282
3283         cont = MLX5_CNT_CONTAINER(sh, 1, 0);
3284         pools_n += rte_atomic16_read(&cont->n_valid);
3285         us = MLX5_POOL_QUERY_FREQ_US / pools_n;
3286         DRV_LOG(DEBUG, "Set alarm for %u pools each %u us\n", pools_n, us);
3287         if (rte_eal_alarm_set(us, mlx5_flow_query_alarm, sh)) {
3288                 sh->cmng.query_thread_on = 0;
3289                 DRV_LOG(ERR, "Cannot reinitialize query alarm\n");
3290         } else {
3291                 sh->cmng.query_thread_on = 1;
3292         }
3293 }
3294
3295 /**
3296  * The periodic procedure for triggering asynchronous batch queries for all the
3297  * counter pools. This function is probably called by the host thread.
3298  *
3299  * @param[in] arg
3300  *   The parameter for the alarm process.
3301  */
3302 void
3303 mlx5_flow_query_alarm(void *arg)
3304 {
3305         struct mlx5_ibv_shared *sh = arg;
3306         struct mlx5_devx_obj *dcs;
3307         uint16_t offset;
3308         int ret;
3309         uint8_t batch = sh->cmng.batch;
3310         uint16_t pool_index = sh->cmng.pool_index;
3311         struct mlx5_pools_container *cont;
3312         struct mlx5_pools_container *mcont;
3313         struct mlx5_flow_counter_pool *pool;
3314
3315         if (sh->cmng.pending_queries >= MLX5_MAX_PENDING_QUERIES)
3316                 goto set_alarm;
3317 next_container:
3318         cont = MLX5_CNT_CONTAINER(sh, batch, 1);
3319         mcont = MLX5_CNT_CONTAINER(sh, batch, 0);
3320         /* Check if resize was done and need to flip a container. */
3321         if (cont != mcont) {
3322                 if (cont->pools) {
3323                         /* Clean the old container. */
3324                         rte_free(cont->pools);
3325                         memset(cont, 0, sizeof(*cont));
3326                 }
3327                 rte_cio_wmb();
3328                  /* Flip the host container. */
3329                 sh->cmng.mhi[batch] ^= (uint8_t)2;
3330                 cont = mcont;
3331         }
3332         if (!cont->pools) {
3333                 /* 2 empty containers case is unexpected. */
3334                 if (unlikely(batch != sh->cmng.batch))
3335                         goto set_alarm;
3336                 batch ^= 0x1;
3337                 pool_index = 0;
3338                 goto next_container;
3339         }
3340         pool = cont->pools[pool_index];
3341         if (pool->raw_hw)
3342                 /* There is a pool query in progress. */
3343                 goto set_alarm;
3344         pool->raw_hw =
3345                 LIST_FIRST(&sh->cmng.free_stat_raws);
3346         if (!pool->raw_hw)
3347                 /* No free counter statistics raw memory. */
3348                 goto set_alarm;
3349         dcs = (struct mlx5_devx_obj *)(uintptr_t)rte_atomic64_read
3350                                                               (&pool->a64_dcs);
3351         offset = batch ? 0 : dcs->id % MLX5_COUNTERS_PER_POOL;
3352         ret = mlx5_devx_cmd_flow_counter_query(dcs, 0, MLX5_COUNTERS_PER_POOL -
3353                                                offset, NULL, NULL,
3354                                                pool->raw_hw->mem_mng->dm->id,
3355                                                (void *)(uintptr_t)
3356                                                (pool->raw_hw->data + offset),
3357                                                sh->devx_comp,
3358                                                (uint64_t)(uintptr_t)pool);
3359         if (ret) {
3360                 DRV_LOG(ERR, "Failed to trigger asynchronous query for dcs ID"
3361                         " %d\n", pool->min_dcs->id);
3362                 pool->raw_hw = NULL;
3363                 goto set_alarm;
3364         }
3365         pool->raw_hw->min_dcs_id = dcs->id;
3366         LIST_REMOVE(pool->raw_hw, next);
3367         sh->cmng.pending_queries++;
3368         pool_index++;
3369         if (pool_index >= rte_atomic16_read(&cont->n_valid)) {
3370                 batch ^= 0x1;
3371                 pool_index = 0;
3372         }
3373 set_alarm:
3374         sh->cmng.batch = batch;
3375         sh->cmng.pool_index = pool_index;
3376         mlx5_set_query_alarm(sh);
3377 }
3378
3379 /**
3380  * Handler for the HW respond about ready values from an asynchronous batch
3381  * query. This function is probably called by the host thread.
3382  *
3383  * @param[in] sh
3384  *   The pointer to the shared IB device context.
3385  * @param[in] async_id
3386  *   The Devx async ID.
3387  * @param[in] status
3388  *   The status of the completion.
3389  */
3390 void
3391 mlx5_flow_async_pool_query_handle(struct mlx5_ibv_shared *sh,
3392                                   uint64_t async_id, int status)
3393 {
3394         struct mlx5_flow_counter_pool *pool =
3395                 (struct mlx5_flow_counter_pool *)(uintptr_t)async_id;
3396         struct mlx5_counter_stats_raw *raw_to_free;
3397
3398         if (unlikely(status)) {
3399                 raw_to_free = pool->raw_hw;
3400         } else {
3401                 raw_to_free = pool->raw;
3402                 rte_spinlock_lock(&pool->sl);
3403                 pool->raw = pool->raw_hw;
3404                 rte_spinlock_unlock(&pool->sl);
3405                 rte_atomic64_add(&pool->query_gen, 1);
3406                 /* Be sure the new raw counters data is updated in memory. */
3407                 rte_cio_wmb();
3408         }
3409         LIST_INSERT_HEAD(&sh->cmng.free_stat_raws, raw_to_free, next);
3410         pool->raw_hw = NULL;
3411         sh->cmng.pending_queries--;
3412 }