56c243495e52e3eb333b5d64bfd3a7bd1d7696a1
[dpdk.git] / drivers / net / mlx5 / mlx5_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2015 6WIND S.A.
3  * Copyright 2015 Mellanox Technologies, Ltd
4  */
5
6 #include <assert.h>
7 #include <stdint.h>
8 #include <string.h>
9 #include <stdlib.h>
10
11 /* Verbs header. */
12 /* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
13 #ifdef PEDANTIC
14 #pragma GCC diagnostic ignored "-Wpedantic"
15 #endif
16 #include <infiniband/verbs.h>
17 #include <infiniband/mlx5dv.h>
18 #ifdef PEDANTIC
19 #pragma GCC diagnostic error "-Wpedantic"
20 #endif
21
22 #include <rte_mbuf.h>
23 #include <rte_mempool.h>
24 #include <rte_prefetch.h>
25 #include <rte_common.h>
26 #include <rte_branch_prediction.h>
27 #include <rte_ether.h>
28
29 #include "mlx5.h"
30 #include "mlx5_utils.h"
31 #include "mlx5_rxtx.h"
32 #include "mlx5_autoconf.h"
33 #include "mlx5_defs.h"
34 #include "mlx5_prm.h"
35
36 static __rte_always_inline uint32_t
37 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
38
39 static __rte_always_inline int
40 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
41                  uint16_t cqe_cnt, uint32_t *rss_hash);
42
43 static __rte_always_inline uint32_t
44 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
45
46 uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
47         [0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
48 };
49
50 uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
51 uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
52
53 /**
54  * Build a table to translate Rx completion flags to packet type.
55  *
56  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
57  */
58 void
59 mlx5_set_ptype_table(void)
60 {
61         unsigned int i;
62         uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
63
64         /* Last entry must not be overwritten, reserved for errored packet. */
65         for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
66                 (*p)[i] = RTE_PTYPE_UNKNOWN;
67         /*
68          * The index to the array should have:
69          * bit[1:0] = l3_hdr_type
70          * bit[4:2] = l4_hdr_type
71          * bit[5] = ip_frag
72          * bit[6] = tunneled
73          * bit[7] = outer_l3_type
74          */
75         /* L2 */
76         (*p)[0x00] = RTE_PTYPE_L2_ETHER;
77         /* L3 */
78         (*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
79                      RTE_PTYPE_L4_NONFRAG;
80         (*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
81                      RTE_PTYPE_L4_NONFRAG;
82         /* Fragmented */
83         (*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
84                      RTE_PTYPE_L4_FRAG;
85         (*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
86                      RTE_PTYPE_L4_FRAG;
87         /* TCP */
88         (*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
89                      RTE_PTYPE_L4_TCP;
90         (*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
91                      RTE_PTYPE_L4_TCP;
92         (*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
93                      RTE_PTYPE_L4_TCP;
94         (*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
95                      RTE_PTYPE_L4_TCP;
96         (*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
97                      RTE_PTYPE_L4_TCP;
98         (*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
99                      RTE_PTYPE_L4_TCP;
100         /* UDP */
101         (*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
102                      RTE_PTYPE_L4_UDP;
103         (*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
104                      RTE_PTYPE_L4_UDP;
105         /* Repeat with outer_l3_type being set. Just in case. */
106         (*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
107                      RTE_PTYPE_L4_NONFRAG;
108         (*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
109                      RTE_PTYPE_L4_NONFRAG;
110         (*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
111                      RTE_PTYPE_L4_FRAG;
112         (*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
113                      RTE_PTYPE_L4_FRAG;
114         (*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
115                      RTE_PTYPE_L4_TCP;
116         (*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
117                      RTE_PTYPE_L4_TCP;
118         (*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
119                      RTE_PTYPE_L4_TCP;
120         (*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
121                      RTE_PTYPE_L4_TCP;
122         (*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
123                      RTE_PTYPE_L4_TCP;
124         (*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
125                      RTE_PTYPE_L4_TCP;
126         (*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
127                      RTE_PTYPE_L4_UDP;
128         (*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
129                      RTE_PTYPE_L4_UDP;
130         /* Tunneled - L3 */
131         (*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
132         (*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
133                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
134                      RTE_PTYPE_INNER_L4_NONFRAG;
135         (*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
136                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
137                      RTE_PTYPE_INNER_L4_NONFRAG;
138         (*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
139         (*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
140                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
141                      RTE_PTYPE_INNER_L4_NONFRAG;
142         (*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
143                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
144                      RTE_PTYPE_INNER_L4_NONFRAG;
145         /* Tunneled - Fragmented */
146         (*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
147                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
148                      RTE_PTYPE_INNER_L4_FRAG;
149         (*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
150                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
151                      RTE_PTYPE_INNER_L4_FRAG;
152         (*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
153                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
154                      RTE_PTYPE_INNER_L4_FRAG;
155         (*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
156                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
157                      RTE_PTYPE_INNER_L4_FRAG;
158         /* Tunneled - TCP */
159         (*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
160                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
161                      RTE_PTYPE_INNER_L4_TCP;
162         (*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
163                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
164                      RTE_PTYPE_INNER_L4_TCP;
165         (*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
166                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
167                      RTE_PTYPE_INNER_L4_TCP;
168         (*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
169                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
170                      RTE_PTYPE_INNER_L4_TCP;
171         (*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
172                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
173                      RTE_PTYPE_INNER_L4_TCP;
174         (*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
175                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
176                      RTE_PTYPE_INNER_L4_TCP;
177         (*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
178                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
179                      RTE_PTYPE_INNER_L4_TCP;
180         (*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
181                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
182                      RTE_PTYPE_INNER_L4_TCP;
183         (*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
184                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
185                      RTE_PTYPE_INNER_L4_TCP;
186         (*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
187                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
188                      RTE_PTYPE_INNER_L4_TCP;
189         (*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
190                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
191                      RTE_PTYPE_INNER_L4_TCP;
192         (*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
193                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
194                      RTE_PTYPE_INNER_L4_TCP;
195         /* Tunneled - UDP */
196         (*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
197                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
198                      RTE_PTYPE_INNER_L4_UDP;
199         (*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
200                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
201                      RTE_PTYPE_INNER_L4_UDP;
202         (*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
203                      RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
204                      RTE_PTYPE_INNER_L4_UDP;
205         (*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
206                      RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
207                      RTE_PTYPE_INNER_L4_UDP;
208 }
209
210 /**
211  * Build a table to translate packet to checksum type of Verbs.
212  */
213 void
214 mlx5_set_cksum_table(void)
215 {
216         unsigned int i;
217         uint8_t v;
218
219         /*
220          * The index should have:
221          * bit[0] = PKT_TX_TCP_SEG
222          * bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
223          * bit[4] = PKT_TX_IP_CKSUM
224          * bit[8] = PKT_TX_OUTER_IP_CKSUM
225          * bit[9] = tunnel
226          */
227         for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
228                 v = 0;
229                 if (i & (1 << 9)) {
230                         /* Tunneled packet. */
231                         if (i & (1 << 8)) /* Outer IP. */
232                                 v |= MLX5_ETH_WQE_L3_CSUM;
233                         if (i & (1 << 4)) /* Inner IP. */
234                                 v |= MLX5_ETH_WQE_L3_INNER_CSUM;
235                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
236                                 v |= MLX5_ETH_WQE_L4_INNER_CSUM;
237                 } else {
238                         /* No tunnel. */
239                         if (i & (1 << 4)) /* IP. */
240                                 v |= MLX5_ETH_WQE_L3_CSUM;
241                         if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
242                                 v |= MLX5_ETH_WQE_L4_CSUM;
243                 }
244                 mlx5_cksum_table[i] = v;
245         }
246 }
247
248 /**
249  * Build a table to translate packet type of mbuf to SWP type of Verbs.
250  */
251 void
252 mlx5_set_swp_types_table(void)
253 {
254         unsigned int i;
255         uint8_t v;
256
257         /*
258          * The index should have:
259          * bit[0:1] = PKT_TX_L4_MASK
260          * bit[4] = PKT_TX_IPV6
261          * bit[8] = PKT_TX_OUTER_IPV6
262          * bit[9] = PKT_TX_OUTER_UDP
263          */
264         for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
265                 v = 0;
266                 if (i & (1 << 8))
267                         v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
268                 if (i & (1 << 9))
269                         v |= MLX5_ETH_WQE_L4_OUTER_UDP;
270                 if (i & (1 << 4))
271                         v |= MLX5_ETH_WQE_L3_INNER_IPV6;
272                 if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
273                         v |= MLX5_ETH_WQE_L4_INNER_UDP;
274                 mlx5_swp_types_table[i] = v;
275         }
276 }
277
278 /**
279  * Return the size of tailroom of WQ.
280  *
281  * @param txq
282  *   Pointer to TX queue structure.
283  * @param addr
284  *   Pointer to tail of WQ.
285  *
286  * @return
287  *   Size of tailroom.
288  */
289 static inline size_t
290 tx_mlx5_wq_tailroom(struct mlx5_txq_data *txq, void *addr)
291 {
292         size_t tailroom;
293         tailroom = (uintptr_t)(txq->wqes) +
294                    (1 << txq->wqe_n) * MLX5_WQE_SIZE -
295                    (uintptr_t)addr;
296         return tailroom;
297 }
298
299 /**
300  * Copy data to tailroom of circular queue.
301  *
302  * @param dst
303  *   Pointer to destination.
304  * @param src
305  *   Pointer to source.
306  * @param n
307  *   Number of bytes to copy.
308  * @param base
309  *   Pointer to head of queue.
310  * @param tailroom
311  *   Size of tailroom from dst.
312  *
313  * @return
314  *   Pointer after copied data.
315  */
316 static inline void *
317 mlx5_copy_to_wq(void *dst, const void *src, size_t n,
318                 void *base, size_t tailroom)
319 {
320         void *ret;
321
322         if (n > tailroom) {
323                 rte_memcpy(dst, src, tailroom);
324                 rte_memcpy(base, (void *)((uintptr_t)src + tailroom),
325                            n - tailroom);
326                 ret = (uint8_t *)base + n - tailroom;
327         } else {
328                 rte_memcpy(dst, src, n);
329                 ret = (n == tailroom) ? base : (uint8_t *)dst + n;
330         }
331         return ret;
332 }
333
334 /**
335  * Inline TSO headers into WQE.
336  *
337  * @return
338  *   0 on success, negative errno value on failure.
339  */
340 static int
341 inline_tso(struct mlx5_txq_data *txq, struct rte_mbuf *buf,
342            uint32_t *length,
343            uintptr_t *addr,
344            uint16_t *pkt_inline_sz,
345            uint8_t **raw,
346            uint16_t *max_wqe,
347            uint16_t *tso_segsz,
348            uint16_t *tso_header_sz)
349 {
350         uintptr_t end = (uintptr_t)(((uintptr_t)txq->wqes) +
351                                     (1 << txq->wqe_n) * MLX5_WQE_SIZE);
352         unsigned int copy_b;
353         uint8_t vlan_sz = (buf->ol_flags & PKT_TX_VLAN_PKT) ? 4 : 0;
354         const uint8_t tunneled = txq->tunnel_en && (buf->ol_flags &
355                                  PKT_TX_TUNNEL_MASK);
356         uint16_t n_wqe;
357
358         *tso_segsz = buf->tso_segsz;
359         *tso_header_sz = buf->l2_len + vlan_sz + buf->l3_len + buf->l4_len;
360         if (unlikely(*tso_segsz == 0 || *tso_header_sz == 0)) {
361                 txq->stats.oerrors++;
362                 return -EINVAL;
363         }
364         if (tunneled)
365                 *tso_header_sz += buf->outer_l2_len + buf->outer_l3_len;
366         /* First seg must contain all TSO headers. */
367         if (unlikely(*tso_header_sz > MLX5_MAX_TSO_HEADER) ||
368                      *tso_header_sz > DATA_LEN(buf)) {
369                 txq->stats.oerrors++;
370                 return -EINVAL;
371         }
372         copy_b = *tso_header_sz - *pkt_inline_sz;
373         if (!copy_b || ((end - (uintptr_t)*raw) < copy_b))
374                 return -EAGAIN;
375         n_wqe = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
376         if (unlikely(*max_wqe < n_wqe))
377                 return -EINVAL;
378         *max_wqe -= n_wqe;
379         rte_memcpy((void *)*raw, (void *)*addr, copy_b);
380         *length -= copy_b;
381         *addr += copy_b;
382         copy_b = MLX5_WQE_DS(copy_b) * MLX5_WQE_DWORD_SIZE;
383         *pkt_inline_sz += copy_b;
384         *raw += copy_b;
385         return 0;
386 }
387
388 /**
389  * DPDK callback to check the status of a tx descriptor.
390  *
391  * @param tx_queue
392  *   The tx queue.
393  * @param[in] offset
394  *   The index of the descriptor in the ring.
395  *
396  * @return
397  *   The status of the tx descriptor.
398  */
399 int
400 mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
401 {
402         struct mlx5_txq_data *txq = tx_queue;
403         uint16_t used;
404
405         mlx5_tx_complete(txq);
406         used = txq->elts_head - txq->elts_tail;
407         if (offset < used)
408                 return RTE_ETH_TX_DESC_FULL;
409         return RTE_ETH_TX_DESC_DONE;
410 }
411
412 /**
413  * DPDK callback to check the status of a rx descriptor.
414  *
415  * @param rx_queue
416  *   The rx queue.
417  * @param[in] offset
418  *   The index of the descriptor in the ring.
419  *
420  * @return
421  *   The status of the tx descriptor.
422  */
423 int
424 mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
425 {
426         struct mlx5_rxq_data *rxq = rx_queue;
427         struct rxq_zip *zip = &rxq->zip;
428         volatile struct mlx5_cqe *cqe;
429         const unsigned int cqe_n = (1 << rxq->cqe_n);
430         const unsigned int cqe_cnt = cqe_n - 1;
431         unsigned int cq_ci;
432         unsigned int used;
433
434         /* if we are processing a compressed cqe */
435         if (zip->ai) {
436                 used = zip->cqe_cnt - zip->ca;
437                 cq_ci = zip->cq_ci;
438         } else {
439                 used = 0;
440                 cq_ci = rxq->cq_ci;
441         }
442         cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
443         while (check_cqe(cqe, cqe_n, cq_ci) == 0) {
444                 int8_t op_own;
445                 unsigned int n;
446
447                 op_own = cqe->op_own;
448                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
449                         n = rte_be_to_cpu_32(cqe->byte_cnt);
450                 else
451                         n = 1;
452                 cq_ci += n;
453                 used += n;
454                 cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
455         }
456         used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
457         if (offset < used)
458                 return RTE_ETH_RX_DESC_DONE;
459         return RTE_ETH_RX_DESC_AVAIL;
460 }
461
462 /**
463  * DPDK callback for TX.
464  *
465  * @param dpdk_txq
466  *   Generic pointer to TX queue structure.
467  * @param[in] pkts
468  *   Packets to transmit.
469  * @param pkts_n
470  *   Number of packets in array.
471  *
472  * @return
473  *   Number of packets successfully transmitted (<= pkts_n).
474  */
475 uint16_t
476 mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
477 {
478         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
479         uint16_t elts_head = txq->elts_head;
480         const uint16_t elts_n = 1 << txq->elts_n;
481         const uint16_t elts_m = elts_n - 1;
482         unsigned int i = 0;
483         unsigned int j = 0;
484         unsigned int k = 0;
485         uint16_t max_elts;
486         uint16_t max_wqe;
487         unsigned int comp;
488         volatile struct mlx5_wqe_ctrl *last_wqe = NULL;
489         unsigned int segs_n = 0;
490         const unsigned int max_inline = txq->max_inline;
491
492         if (unlikely(!pkts_n))
493                 return 0;
494         /* Prefetch first packet cacheline. */
495         rte_prefetch0(*pkts);
496         /* Start processing. */
497         mlx5_tx_complete(txq);
498         max_elts = (elts_n - (elts_head - txq->elts_tail));
499         /* A CQE slot must always be available. */
500         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
501         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
502         if (unlikely(!max_wqe))
503                 return 0;
504         do {
505                 struct rte_mbuf *buf = *pkts; /* First_seg. */
506                 uint8_t *raw;
507                 volatile struct mlx5_wqe_v *wqe = NULL;
508                 volatile rte_v128u32_t *dseg = NULL;
509                 uint32_t length;
510                 unsigned int ds = 0;
511                 unsigned int sg = 0; /* counter of additional segs attached. */
512                 uintptr_t addr;
513                 uint16_t pkt_inline_sz = MLX5_WQE_DWORD_SIZE + 2;
514                 uint16_t tso_header_sz = 0;
515                 uint16_t ehdr;
516                 uint8_t cs_flags;
517                 uint8_t tso = txq->tso_en && (buf->ol_flags & PKT_TX_TCP_SEG);
518                 uint8_t is_vlan = !!(buf->ol_flags & PKT_TX_VLAN_PKT);
519                 uint32_t swp_offsets = 0;
520                 uint8_t swp_types = 0;
521                 uint16_t tso_segsz = 0;
522 #ifdef MLX5_PMD_SOFT_COUNTERS
523                 uint32_t total_length = 0;
524 #endif
525                 int ret;
526
527                 segs_n = buf->nb_segs;
528                 /*
529                  * Make sure there is enough room to store this packet and
530                  * that one ring entry remains unused.
531                  */
532                 assert(segs_n);
533                 if (max_elts < segs_n)
534                         break;
535                 max_elts -= segs_n;
536                 sg = --segs_n;
537                 if (unlikely(--max_wqe == 0))
538                         break;
539                 wqe = (volatile struct mlx5_wqe_v *)
540                         tx_mlx5_wqe(txq, txq->wqe_ci);
541                 rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
542                 if (pkts_n - i > 1)
543                         rte_prefetch0(*(pkts + 1));
544                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
545                 length = DATA_LEN(buf);
546                 ehdr = (((uint8_t *)addr)[1] << 8) |
547                        ((uint8_t *)addr)[0];
548 #ifdef MLX5_PMD_SOFT_COUNTERS
549                 total_length = length;
550 #endif
551                 if (length < (MLX5_WQE_DWORD_SIZE + 2)) {
552                         txq->stats.oerrors++;
553                         break;
554                 }
555                 /* Update element. */
556                 (*txq->elts)[elts_head & elts_m] = buf;
557                 /* Prefetch next buffer data. */
558                 if (pkts_n - i > 1)
559                         rte_prefetch0(
560                             rte_pktmbuf_mtod(*(pkts + 1), volatile void *));
561                 cs_flags = txq_ol_cksum_to_cs(buf);
562                 txq_mbuf_to_swp(txq, buf, tso, is_vlan,
563                                 (uint8_t *)&swp_offsets, &swp_types);
564                 raw = ((uint8_t *)(uintptr_t)wqe) + 2 * MLX5_WQE_DWORD_SIZE;
565                 /* Replace the Ethernet type by the VLAN if necessary. */
566                 if (is_vlan) {
567                         uint32_t vlan = rte_cpu_to_be_32(0x81000000 |
568                                                          buf->vlan_tci);
569                         unsigned int len = 2 * ETHER_ADDR_LEN - 2;
570
571                         addr += 2;
572                         length -= 2;
573                         /* Copy Destination and source mac address. */
574                         memcpy((uint8_t *)raw, ((uint8_t *)addr), len);
575                         /* Copy VLAN. */
576                         memcpy((uint8_t *)raw + len, &vlan, sizeof(vlan));
577                         /* Copy missing two bytes to end the DSeg. */
578                         memcpy((uint8_t *)raw + len + sizeof(vlan),
579                                ((uint8_t *)addr) + len, 2);
580                         addr += len + 2;
581                         length -= (len + 2);
582                 } else {
583                         memcpy((uint8_t *)raw, ((uint8_t *)addr) + 2,
584                                MLX5_WQE_DWORD_SIZE);
585                         length -= pkt_inline_sz;
586                         addr += pkt_inline_sz;
587                 }
588                 raw += MLX5_WQE_DWORD_SIZE;
589                 if (tso) {
590                         ret = inline_tso(txq, buf, &length,
591                                          &addr, &pkt_inline_sz,
592                                          &raw, &max_wqe,
593                                          &tso_segsz, &tso_header_sz);
594                         if (ret == -EINVAL) {
595                                 break;
596                         } else if (ret == -EAGAIN) {
597                                 /* NOP WQE. */
598                                 wqe->ctrl = (rte_v128u32_t){
599                                         rte_cpu_to_be_32(txq->wqe_ci << 8),
600                                         rte_cpu_to_be_32(txq->qp_num_8s | 1),
601                                         0,
602                                         0,
603                                 };
604                                 ds = 1;
605 #ifdef MLX5_PMD_SOFT_COUNTERS
606                                 total_length = 0;
607 #endif
608                                 k++;
609                                 goto next_wqe;
610                         }
611                 }
612                 /* Inline if enough room. */
613                 if (max_inline || tso) {
614                         uint32_t inl = 0;
615                         uintptr_t end = (uintptr_t)
616                                 (((uintptr_t)txq->wqes) +
617                                  (1 << txq->wqe_n) * MLX5_WQE_SIZE);
618                         unsigned int inline_room = max_inline *
619                                                    RTE_CACHE_LINE_SIZE -
620                                                    (pkt_inline_sz - 2) -
621                                                    !!tso * sizeof(inl);
622                         uintptr_t addr_end;
623                         unsigned int copy_b;
624
625 pkt_inline:
626                         addr_end = RTE_ALIGN_FLOOR(addr + inline_room,
627                                                    RTE_CACHE_LINE_SIZE);
628                         copy_b = (addr_end > addr) ?
629                                  RTE_MIN((addr_end - addr), length) : 0;
630                         if (copy_b && ((end - (uintptr_t)raw) > copy_b)) {
631                                 /*
632                                  * One Dseg remains in the current WQE.  To
633                                  * keep the computation positive, it is
634                                  * removed after the bytes to Dseg conversion.
635                                  */
636                                 uint16_t n = (MLX5_WQE_DS(copy_b) - 1 + 3) / 4;
637
638                                 if (unlikely(max_wqe < n))
639                                         break;
640                                 max_wqe -= n;
641                                 if (tso && !inl) {
642                                         inl = rte_cpu_to_be_32(copy_b |
643                                                                MLX5_INLINE_SEG);
644                                         rte_memcpy((void *)raw,
645                                                    (void *)&inl, sizeof(inl));
646                                         raw += sizeof(inl);
647                                         pkt_inline_sz += sizeof(inl);
648                                 }
649                                 rte_memcpy((void *)raw, (void *)addr, copy_b);
650                                 addr += copy_b;
651                                 length -= copy_b;
652                                 pkt_inline_sz += copy_b;
653                         }
654                         /*
655                          * 2 DWORDs consumed by the WQE header + ETH segment +
656                          * the size of the inline part of the packet.
657                          */
658                         ds = 2 + MLX5_WQE_DS(pkt_inline_sz - 2);
659                         if (length > 0) {
660                                 if (ds % (MLX5_WQE_SIZE /
661                                           MLX5_WQE_DWORD_SIZE) == 0) {
662                                         if (unlikely(--max_wqe == 0))
663                                                 break;
664                                         dseg = (volatile rte_v128u32_t *)
665                                                tx_mlx5_wqe(txq, txq->wqe_ci +
666                                                            ds / 4);
667                                 } else {
668                                         dseg = (volatile rte_v128u32_t *)
669                                                 ((uintptr_t)wqe +
670                                                  (ds * MLX5_WQE_DWORD_SIZE));
671                                 }
672                                 goto use_dseg;
673                         } else if (!segs_n) {
674                                 goto next_pkt;
675                         } else {
676                                 raw += copy_b;
677                                 inline_room -= copy_b;
678                                 --segs_n;
679                                 buf = buf->next;
680                                 assert(buf);
681                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
682                                 length = DATA_LEN(buf);
683 #ifdef MLX5_PMD_SOFT_COUNTERS
684                                 total_length += length;
685 #endif
686                                 (*txq->elts)[++elts_head & elts_m] = buf;
687                                 goto pkt_inline;
688                         }
689                 } else {
690                         /*
691                          * No inline has been done in the packet, only the
692                          * Ethernet Header as been stored.
693                          */
694                         dseg = (volatile rte_v128u32_t *)
695                                 ((uintptr_t)wqe + (3 * MLX5_WQE_DWORD_SIZE));
696                         ds = 3;
697 use_dseg:
698                         /* Add the remaining packet as a simple ds. */
699                         addr = rte_cpu_to_be_64(addr);
700                         *dseg = (rte_v128u32_t){
701                                 rte_cpu_to_be_32(length),
702                                 mlx5_tx_mb2mr(txq, buf),
703                                 addr,
704                                 addr >> 32,
705                         };
706                         ++ds;
707                         if (!segs_n)
708                                 goto next_pkt;
709                 }
710 next_seg:
711                 assert(buf);
712                 assert(ds);
713                 assert(wqe);
714                 /*
715                  * Spill on next WQE when the current one does not have
716                  * enough room left. Size of WQE must a be a multiple
717                  * of data segment size.
718                  */
719                 assert(!(MLX5_WQE_SIZE % MLX5_WQE_DWORD_SIZE));
720                 if (!(ds % (MLX5_WQE_SIZE / MLX5_WQE_DWORD_SIZE))) {
721                         if (unlikely(--max_wqe == 0))
722                                 break;
723                         dseg = (volatile rte_v128u32_t *)
724                                tx_mlx5_wqe(txq, txq->wqe_ci + ds / 4);
725                         rte_prefetch0(tx_mlx5_wqe(txq,
726                                                   txq->wqe_ci + ds / 4 + 1));
727                 } else {
728                         ++dseg;
729                 }
730                 ++ds;
731                 buf = buf->next;
732                 assert(buf);
733                 length = DATA_LEN(buf);
734 #ifdef MLX5_PMD_SOFT_COUNTERS
735                 total_length += length;
736 #endif
737                 /* Store segment information. */
738                 addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf, uintptr_t));
739                 *dseg = (rte_v128u32_t){
740                         rte_cpu_to_be_32(length),
741                         mlx5_tx_mb2mr(txq, buf),
742                         addr,
743                         addr >> 32,
744                 };
745                 (*txq->elts)[++elts_head & elts_m] = buf;
746                 if (--segs_n)
747                         goto next_seg;
748 next_pkt:
749                 if (ds > MLX5_DSEG_MAX) {
750                         txq->stats.oerrors++;
751                         break;
752                 }
753                 ++elts_head;
754                 ++pkts;
755                 ++i;
756                 j += sg;
757                 /* Initialize known and common part of the WQE structure. */
758                 if (tso) {
759                         wqe->ctrl = (rte_v128u32_t){
760                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
761                                                  MLX5_OPCODE_TSO),
762                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
763                                 0,
764                                 0,
765                         };
766                         wqe->eseg = (rte_v128u32_t){
767                                 swp_offsets,
768                                 cs_flags | (swp_types << 8) |
769                                 (rte_cpu_to_be_16(tso_segsz) << 16),
770                                 0,
771                                 (ehdr << 16) | rte_cpu_to_be_16(tso_header_sz),
772                         };
773                 } else {
774                         wqe->ctrl = (rte_v128u32_t){
775                                 rte_cpu_to_be_32((txq->wqe_ci << 8) |
776                                                  MLX5_OPCODE_SEND),
777                                 rte_cpu_to_be_32(txq->qp_num_8s | ds),
778                                 0,
779                                 0,
780                         };
781                         wqe->eseg = (rte_v128u32_t){
782                                 swp_offsets,
783                                 cs_flags | (swp_types << 8),
784                                 0,
785                                 (ehdr << 16) | rte_cpu_to_be_16(pkt_inline_sz),
786                         };
787                 }
788 next_wqe:
789                 txq->wqe_ci += (ds + 3) / 4;
790                 /* Save the last successful WQE for completion request */
791                 last_wqe = (volatile struct mlx5_wqe_ctrl *)wqe;
792 #ifdef MLX5_PMD_SOFT_COUNTERS
793                 /* Increment sent bytes counter. */
794                 txq->stats.obytes += total_length;
795 #endif
796         } while (i < pkts_n);
797         /* Take a shortcut if nothing must be sent. */
798         if (unlikely((i + k) == 0))
799                 return 0;
800         txq->elts_head += (i + j);
801         /* Check whether completion threshold has been reached. */
802         comp = txq->elts_comp + i + j + k;
803         if (comp >= MLX5_TX_COMP_THRESH) {
804                 /* Request completion on last WQE. */
805                 last_wqe->ctrl2 = rte_cpu_to_be_32(8);
806                 /* Save elts_head in unused "immediate" field of WQE. */
807                 last_wqe->ctrl3 = txq->elts_head;
808                 txq->elts_comp = 0;
809 #ifndef NDEBUG
810                 ++txq->cq_pi;
811 #endif
812         } else {
813                 txq->elts_comp = comp;
814         }
815 #ifdef MLX5_PMD_SOFT_COUNTERS
816         /* Increment sent packets counter. */
817         txq->stats.opackets += i;
818 #endif
819         /* Ring QP doorbell. */
820         mlx5_tx_dbrec(txq, (volatile struct mlx5_wqe *)last_wqe);
821         return i;
822 }
823
824 /**
825  * Open a MPW session.
826  *
827  * @param txq
828  *   Pointer to TX queue structure.
829  * @param mpw
830  *   Pointer to MPW session structure.
831  * @param length
832  *   Packet length.
833  */
834 static inline void
835 mlx5_mpw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, uint32_t length)
836 {
837         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
838         volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
839                 (volatile struct mlx5_wqe_data_seg (*)[])
840                 tx_mlx5_wqe(txq, idx + 1);
841
842         mpw->state = MLX5_MPW_STATE_OPENED;
843         mpw->pkts_n = 0;
844         mpw->len = length;
845         mpw->total_len = 0;
846         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
847         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
848         mpw->wqe->eseg.inline_hdr_sz = 0;
849         mpw->wqe->eseg.rsvd0 = 0;
850         mpw->wqe->eseg.rsvd1 = 0;
851         mpw->wqe->eseg.rsvd2 = 0;
852         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
853                                              (txq->wqe_ci << 8) |
854                                              MLX5_OPCODE_TSO);
855         mpw->wqe->ctrl[2] = 0;
856         mpw->wqe->ctrl[3] = 0;
857         mpw->data.dseg[0] = (volatile struct mlx5_wqe_data_seg *)
858                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
859         mpw->data.dseg[1] = (volatile struct mlx5_wqe_data_seg *)
860                 (((uintptr_t)mpw->wqe) + (3 * MLX5_WQE_DWORD_SIZE));
861         mpw->data.dseg[2] = &(*dseg)[0];
862         mpw->data.dseg[3] = &(*dseg)[1];
863         mpw->data.dseg[4] = &(*dseg)[2];
864 }
865
866 /**
867  * Close a MPW session.
868  *
869  * @param txq
870  *   Pointer to TX queue structure.
871  * @param mpw
872  *   Pointer to MPW session structure.
873  */
874 static inline void
875 mlx5_mpw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
876 {
877         unsigned int num = mpw->pkts_n;
878
879         /*
880          * Store size in multiple of 16 bytes. Control and Ethernet segments
881          * count as 2.
882          */
883         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s | (2 + num));
884         mpw->state = MLX5_MPW_STATE_CLOSED;
885         if (num < 3)
886                 ++txq->wqe_ci;
887         else
888                 txq->wqe_ci += 2;
889         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
890         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
891 }
892
893 /**
894  * DPDK callback for TX with MPW support.
895  *
896  * @param dpdk_txq
897  *   Generic pointer to TX queue structure.
898  * @param[in] pkts
899  *   Packets to transmit.
900  * @param pkts_n
901  *   Number of packets in array.
902  *
903  * @return
904  *   Number of packets successfully transmitted (<= pkts_n).
905  */
906 uint16_t
907 mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
908 {
909         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
910         uint16_t elts_head = txq->elts_head;
911         const uint16_t elts_n = 1 << txq->elts_n;
912         const uint16_t elts_m = elts_n - 1;
913         unsigned int i = 0;
914         unsigned int j = 0;
915         uint16_t max_elts;
916         uint16_t max_wqe;
917         unsigned int comp;
918         struct mlx5_mpw mpw = {
919                 .state = MLX5_MPW_STATE_CLOSED,
920         };
921
922         if (unlikely(!pkts_n))
923                 return 0;
924         /* Prefetch first packet cacheline. */
925         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
926         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
927         /* Start processing. */
928         mlx5_tx_complete(txq);
929         max_elts = (elts_n - (elts_head - txq->elts_tail));
930         /* A CQE slot must always be available. */
931         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
932         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
933         if (unlikely(!max_wqe))
934                 return 0;
935         do {
936                 struct rte_mbuf *buf = *(pkts++);
937                 uint32_t length;
938                 unsigned int segs_n = buf->nb_segs;
939                 uint32_t cs_flags;
940
941                 /*
942                  * Make sure there is enough room to store this packet and
943                  * that one ring entry remains unused.
944                  */
945                 assert(segs_n);
946                 if (max_elts < segs_n)
947                         break;
948                 /* Do not bother with large packets MPW cannot handle. */
949                 if (segs_n > MLX5_MPW_DSEG_MAX) {
950                         txq->stats.oerrors++;
951                         break;
952                 }
953                 max_elts -= segs_n;
954                 --pkts_n;
955                 cs_flags = txq_ol_cksum_to_cs(buf);
956                 /* Retrieve packet information. */
957                 length = PKT_LEN(buf);
958                 assert(length);
959                 /* Start new session if packet differs. */
960                 if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
961                     ((mpw.len != length) ||
962                      (segs_n != 1) ||
963                      (mpw.wqe->eseg.cs_flags != cs_flags)))
964                         mlx5_mpw_close(txq, &mpw);
965                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
966                         /*
967                          * Multi-Packet WQE consumes at most two WQE.
968                          * mlx5_mpw_new() expects to be able to use such
969                          * resources.
970                          */
971                         if (unlikely(max_wqe < 2))
972                                 break;
973                         max_wqe -= 2;
974                         mlx5_mpw_new(txq, &mpw, length);
975                         mpw.wqe->eseg.cs_flags = cs_flags;
976                 }
977                 /* Multi-segment packets must be alone in their MPW. */
978                 assert((segs_n == 1) || (mpw.pkts_n == 0));
979 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
980                 length = 0;
981 #endif
982                 do {
983                         volatile struct mlx5_wqe_data_seg *dseg;
984                         uintptr_t addr;
985
986                         assert(buf);
987                         (*txq->elts)[elts_head++ & elts_m] = buf;
988                         dseg = mpw.data.dseg[mpw.pkts_n];
989                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
990                         *dseg = (struct mlx5_wqe_data_seg){
991                                 .byte_count = rte_cpu_to_be_32(DATA_LEN(buf)),
992                                 .lkey = mlx5_tx_mb2mr(txq, buf),
993                                 .addr = rte_cpu_to_be_64(addr),
994                         };
995 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
996                         length += DATA_LEN(buf);
997 #endif
998                         buf = buf->next;
999                         ++mpw.pkts_n;
1000                         ++j;
1001                 } while (--segs_n);
1002                 assert(length == mpw.len);
1003                 if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1004                         mlx5_mpw_close(txq, &mpw);
1005 #ifdef MLX5_PMD_SOFT_COUNTERS
1006                 /* Increment sent bytes counter. */
1007                 txq->stats.obytes += length;
1008 #endif
1009                 ++i;
1010         } while (pkts_n);
1011         /* Take a shortcut if nothing must be sent. */
1012         if (unlikely(i == 0))
1013                 return 0;
1014         /* Check whether completion threshold has been reached. */
1015         /* "j" includes both packets and segments. */
1016         comp = txq->elts_comp + j;
1017         if (comp >= MLX5_TX_COMP_THRESH) {
1018                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1019
1020                 /* Request completion on last WQE. */
1021                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1022                 /* Save elts_head in unused "immediate" field of WQE. */
1023                 wqe->ctrl[3] = elts_head;
1024                 txq->elts_comp = 0;
1025 #ifndef NDEBUG
1026                 ++txq->cq_pi;
1027 #endif
1028         } else {
1029                 txq->elts_comp = comp;
1030         }
1031 #ifdef MLX5_PMD_SOFT_COUNTERS
1032         /* Increment sent packets counter. */
1033         txq->stats.opackets += i;
1034 #endif
1035         /* Ring QP doorbell. */
1036         if (mpw.state == MLX5_MPW_STATE_OPENED)
1037                 mlx5_mpw_close(txq, &mpw);
1038         mlx5_tx_dbrec(txq, mpw.wqe);
1039         txq->elts_head = elts_head;
1040         return i;
1041 }
1042
1043 /**
1044  * Open a MPW inline session.
1045  *
1046  * @param txq
1047  *   Pointer to TX queue structure.
1048  * @param mpw
1049  *   Pointer to MPW session structure.
1050  * @param length
1051  *   Packet length.
1052  */
1053 static inline void
1054 mlx5_mpw_inline_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw,
1055                     uint32_t length)
1056 {
1057         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1058         struct mlx5_wqe_inl_small *inl;
1059
1060         mpw->state = MLX5_MPW_INL_STATE_OPENED;
1061         mpw->pkts_n = 0;
1062         mpw->len = length;
1063         mpw->total_len = 0;
1064         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1065         mpw->wqe->ctrl[0] = rte_cpu_to_be_32((MLX5_OPC_MOD_MPW << 24) |
1066                                              (txq->wqe_ci << 8) |
1067                                              MLX5_OPCODE_TSO);
1068         mpw->wqe->ctrl[2] = 0;
1069         mpw->wqe->ctrl[3] = 0;
1070         mpw->wqe->eseg.mss = rte_cpu_to_be_16(length);
1071         mpw->wqe->eseg.inline_hdr_sz = 0;
1072         mpw->wqe->eseg.cs_flags = 0;
1073         mpw->wqe->eseg.rsvd0 = 0;
1074         mpw->wqe->eseg.rsvd1 = 0;
1075         mpw->wqe->eseg.rsvd2 = 0;
1076         inl = (struct mlx5_wqe_inl_small *)
1077                 (((uintptr_t)mpw->wqe) + 2 * MLX5_WQE_DWORD_SIZE);
1078         mpw->data.raw = (uint8_t *)&inl->raw;
1079 }
1080
1081 /**
1082  * Close a MPW inline session.
1083  *
1084  * @param txq
1085  *   Pointer to TX queue structure.
1086  * @param mpw
1087  *   Pointer to MPW session structure.
1088  */
1089 static inline void
1090 mlx5_mpw_inline_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1091 {
1092         unsigned int size;
1093         struct mlx5_wqe_inl_small *inl = (struct mlx5_wqe_inl_small *)
1094                 (((uintptr_t)mpw->wqe) + (2 * MLX5_WQE_DWORD_SIZE));
1095
1096         size = MLX5_WQE_SIZE - MLX5_MWQE64_INL_DATA + mpw->total_len;
1097         /*
1098          * Store size in multiple of 16 bytes. Control and Ethernet segments
1099          * count as 2.
1100          */
1101         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1102                                              MLX5_WQE_DS(size));
1103         mpw->state = MLX5_MPW_STATE_CLOSED;
1104         inl->byte_cnt = rte_cpu_to_be_32(mpw->total_len | MLX5_INLINE_SEG);
1105         txq->wqe_ci += (size + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1106 }
1107
1108 /**
1109  * DPDK callback for TX with MPW inline support.
1110  *
1111  * @param dpdk_txq
1112  *   Generic pointer to TX queue structure.
1113  * @param[in] pkts
1114  *   Packets to transmit.
1115  * @param pkts_n
1116  *   Number of packets in array.
1117  *
1118  * @return
1119  *   Number of packets successfully transmitted (<= pkts_n).
1120  */
1121 uint16_t
1122 mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
1123                          uint16_t pkts_n)
1124 {
1125         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1126         uint16_t elts_head = txq->elts_head;
1127         const uint16_t elts_n = 1 << txq->elts_n;
1128         const uint16_t elts_m = elts_n - 1;
1129         unsigned int i = 0;
1130         unsigned int j = 0;
1131         uint16_t max_elts;
1132         uint16_t max_wqe;
1133         unsigned int comp;
1134         unsigned int inline_room = txq->max_inline * RTE_CACHE_LINE_SIZE;
1135         struct mlx5_mpw mpw = {
1136                 .state = MLX5_MPW_STATE_CLOSED,
1137         };
1138         /*
1139          * Compute the maximum number of WQE which can be consumed by inline
1140          * code.
1141          * - 2 DSEG for:
1142          *   - 1 control segment,
1143          *   - 1 Ethernet segment,
1144          * - N Dseg from the inline request.
1145          */
1146         const unsigned int wqe_inl_n =
1147                 ((2 * MLX5_WQE_DWORD_SIZE +
1148                   txq->max_inline * RTE_CACHE_LINE_SIZE) +
1149                  RTE_CACHE_LINE_SIZE - 1) / RTE_CACHE_LINE_SIZE;
1150
1151         if (unlikely(!pkts_n))
1152                 return 0;
1153         /* Prefetch first packet cacheline. */
1154         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci));
1155         rte_prefetch0(tx_mlx5_wqe(txq, txq->wqe_ci + 1));
1156         /* Start processing. */
1157         mlx5_tx_complete(txq);
1158         max_elts = (elts_n - (elts_head - txq->elts_tail));
1159         /* A CQE slot must always be available. */
1160         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1161         do {
1162                 struct rte_mbuf *buf = *(pkts++);
1163                 uintptr_t addr;
1164                 uint32_t length;
1165                 unsigned int segs_n = buf->nb_segs;
1166                 uint8_t cs_flags;
1167
1168                 /*
1169                  * Make sure there is enough room to store this packet and
1170                  * that one ring entry remains unused.
1171                  */
1172                 assert(segs_n);
1173                 if (max_elts < segs_n)
1174                         break;
1175                 /* Do not bother with large packets MPW cannot handle. */
1176                 if (segs_n > MLX5_MPW_DSEG_MAX) {
1177                         txq->stats.oerrors++;
1178                         break;
1179                 }
1180                 max_elts -= segs_n;
1181                 --pkts_n;
1182                 /*
1183                  * Compute max_wqe in case less WQE were consumed in previous
1184                  * iteration.
1185                  */
1186                 max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1187                 cs_flags = txq_ol_cksum_to_cs(buf);
1188                 /* Retrieve packet information. */
1189                 length = PKT_LEN(buf);
1190                 /* Start new session if packet differs. */
1191                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1192                         if ((mpw.len != length) ||
1193                             (segs_n != 1) ||
1194                             (mpw.wqe->eseg.cs_flags != cs_flags))
1195                                 mlx5_mpw_close(txq, &mpw);
1196                 } else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
1197                         if ((mpw.len != length) ||
1198                             (segs_n != 1) ||
1199                             (length > inline_room) ||
1200                             (mpw.wqe->eseg.cs_flags != cs_flags)) {
1201                                 mlx5_mpw_inline_close(txq, &mpw);
1202                                 inline_room =
1203                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1204                         }
1205                 }
1206                 if (mpw.state == MLX5_MPW_STATE_CLOSED) {
1207                         if ((segs_n != 1) ||
1208                             (length > inline_room)) {
1209                                 /*
1210                                  * Multi-Packet WQE consumes at most two WQE.
1211                                  * mlx5_mpw_new() expects to be able to use
1212                                  * such resources.
1213                                  */
1214                                 if (unlikely(max_wqe < 2))
1215                                         break;
1216                                 max_wqe -= 2;
1217                                 mlx5_mpw_new(txq, &mpw, length);
1218                                 mpw.wqe->eseg.cs_flags = cs_flags;
1219                         } else {
1220                                 if (unlikely(max_wqe < wqe_inl_n))
1221                                         break;
1222                                 max_wqe -= wqe_inl_n;
1223                                 mlx5_mpw_inline_new(txq, &mpw, length);
1224                                 mpw.wqe->eseg.cs_flags = cs_flags;
1225                         }
1226                 }
1227                 /* Multi-segment packets must be alone in their MPW. */
1228                 assert((segs_n == 1) || (mpw.pkts_n == 0));
1229                 if (mpw.state == MLX5_MPW_STATE_OPENED) {
1230                         assert(inline_room ==
1231                                txq->max_inline * RTE_CACHE_LINE_SIZE);
1232 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1233                         length = 0;
1234 #endif
1235                         do {
1236                                 volatile struct mlx5_wqe_data_seg *dseg;
1237
1238                                 assert(buf);
1239                                 (*txq->elts)[elts_head++ & elts_m] = buf;
1240                                 dseg = mpw.data.dseg[mpw.pkts_n];
1241                                 addr = rte_pktmbuf_mtod(buf, uintptr_t);
1242                                 *dseg = (struct mlx5_wqe_data_seg){
1243                                         .byte_count =
1244                                                rte_cpu_to_be_32(DATA_LEN(buf)),
1245                                         .lkey = mlx5_tx_mb2mr(txq, buf),
1246                                         .addr = rte_cpu_to_be_64(addr),
1247                                 };
1248 #if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
1249                                 length += DATA_LEN(buf);
1250 #endif
1251                                 buf = buf->next;
1252                                 ++mpw.pkts_n;
1253                                 ++j;
1254                         } while (--segs_n);
1255                         assert(length == mpw.len);
1256                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
1257                                 mlx5_mpw_close(txq, &mpw);
1258                 } else {
1259                         unsigned int max;
1260
1261                         assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
1262                         assert(length <= inline_room);
1263                         assert(length == DATA_LEN(buf));
1264                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1265                         (*txq->elts)[elts_head++ & elts_m] = buf;
1266                         /* Maximum number of bytes before wrapping. */
1267                         max = ((((uintptr_t)(txq->wqes)) +
1268                                 (1 << txq->wqe_n) *
1269                                 MLX5_WQE_SIZE) -
1270                                (uintptr_t)mpw.data.raw);
1271                         if (length > max) {
1272                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1273                                            (void *)addr,
1274                                            max);
1275                                 mpw.data.raw = (volatile void *)txq->wqes;
1276                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1277                                            (void *)(addr + max),
1278                                            length - max);
1279                                 mpw.data.raw += length - max;
1280                         } else {
1281                                 rte_memcpy((void *)(uintptr_t)mpw.data.raw,
1282                                            (void *)addr,
1283                                            length);
1284
1285                                 if (length == max)
1286                                         mpw.data.raw =
1287                                                 (volatile void *)txq->wqes;
1288                                 else
1289                                         mpw.data.raw += length;
1290                         }
1291                         ++mpw.pkts_n;
1292                         mpw.total_len += length;
1293                         ++j;
1294                         if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
1295                                 mlx5_mpw_inline_close(txq, &mpw);
1296                                 inline_room =
1297                                         txq->max_inline * RTE_CACHE_LINE_SIZE;
1298                         } else {
1299                                 inline_room -= length;
1300                         }
1301                 }
1302 #ifdef MLX5_PMD_SOFT_COUNTERS
1303                 /* Increment sent bytes counter. */
1304                 txq->stats.obytes += length;
1305 #endif
1306                 ++i;
1307         } while (pkts_n);
1308         /* Take a shortcut if nothing must be sent. */
1309         if (unlikely(i == 0))
1310                 return 0;
1311         /* Check whether completion threshold has been reached. */
1312         /* "j" includes both packets and segments. */
1313         comp = txq->elts_comp + j;
1314         if (comp >= MLX5_TX_COMP_THRESH) {
1315                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1316
1317                 /* Request completion on last WQE. */
1318                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1319                 /* Save elts_head in unused "immediate" field of WQE. */
1320                 wqe->ctrl[3] = elts_head;
1321                 txq->elts_comp = 0;
1322 #ifndef NDEBUG
1323                 ++txq->cq_pi;
1324 #endif
1325         } else {
1326                 txq->elts_comp = comp;
1327         }
1328 #ifdef MLX5_PMD_SOFT_COUNTERS
1329         /* Increment sent packets counter. */
1330         txq->stats.opackets += i;
1331 #endif
1332         /* Ring QP doorbell. */
1333         if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
1334                 mlx5_mpw_inline_close(txq, &mpw);
1335         else if (mpw.state == MLX5_MPW_STATE_OPENED)
1336                 mlx5_mpw_close(txq, &mpw);
1337         mlx5_tx_dbrec(txq, mpw.wqe);
1338         txq->elts_head = elts_head;
1339         return i;
1340 }
1341
1342 /**
1343  * Open an Enhanced MPW session.
1344  *
1345  * @param txq
1346  *   Pointer to TX queue structure.
1347  * @param mpw
1348  *   Pointer to MPW session structure.
1349  * @param length
1350  *   Packet length.
1351  */
1352 static inline void
1353 mlx5_empw_new(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw, int padding)
1354 {
1355         uint16_t idx = txq->wqe_ci & ((1 << txq->wqe_n) - 1);
1356
1357         mpw->state = MLX5_MPW_ENHANCED_STATE_OPENED;
1358         mpw->pkts_n = 0;
1359         mpw->total_len = sizeof(struct mlx5_wqe);
1360         mpw->wqe = (volatile struct mlx5_wqe *)tx_mlx5_wqe(txq, idx);
1361         mpw->wqe->ctrl[0] =
1362                 rte_cpu_to_be_32((MLX5_OPC_MOD_ENHANCED_MPSW << 24) |
1363                                  (txq->wqe_ci << 8) |
1364                                  MLX5_OPCODE_ENHANCED_MPSW);
1365         mpw->wqe->ctrl[2] = 0;
1366         mpw->wqe->ctrl[3] = 0;
1367         memset((void *)(uintptr_t)&mpw->wqe->eseg, 0, MLX5_WQE_DWORD_SIZE);
1368         if (unlikely(padding)) {
1369                 uintptr_t addr = (uintptr_t)(mpw->wqe + 1);
1370
1371                 /* Pad the first 2 DWORDs with zero-length inline header. */
1372                 *(volatile uint32_t *)addr = rte_cpu_to_be_32(MLX5_INLINE_SEG);
1373                 *(volatile uint32_t *)(addr + MLX5_WQE_DWORD_SIZE) =
1374                         rte_cpu_to_be_32(MLX5_INLINE_SEG);
1375                 mpw->total_len += 2 * MLX5_WQE_DWORD_SIZE;
1376                 /* Start from the next WQEBB. */
1377                 mpw->data.raw = (volatile void *)(tx_mlx5_wqe(txq, idx + 1));
1378         } else {
1379                 mpw->data.raw = (volatile void *)(mpw->wqe + 1);
1380         }
1381 }
1382
1383 /**
1384  * Close an Enhanced MPW session.
1385  *
1386  * @param txq
1387  *   Pointer to TX queue structure.
1388  * @param mpw
1389  *   Pointer to MPW session structure.
1390  *
1391  * @return
1392  *   Number of consumed WQEs.
1393  */
1394 static inline uint16_t
1395 mlx5_empw_close(struct mlx5_txq_data *txq, struct mlx5_mpw *mpw)
1396 {
1397         uint16_t ret;
1398
1399         /* Store size in multiple of 16 bytes. Control and Ethernet segments
1400          * count as 2.
1401          */
1402         mpw->wqe->ctrl[1] = rte_cpu_to_be_32(txq->qp_num_8s |
1403                                              MLX5_WQE_DS(mpw->total_len));
1404         mpw->state = MLX5_MPW_STATE_CLOSED;
1405         ret = (mpw->total_len + (MLX5_WQE_SIZE - 1)) / MLX5_WQE_SIZE;
1406         txq->wqe_ci += ret;
1407         return ret;
1408 }
1409
1410 /**
1411  * TX with Enhanced MPW support.
1412  *
1413  * @param txq
1414  *   Pointer to TX queue structure.
1415  * @param[in] pkts
1416  *   Packets to transmit.
1417  * @param pkts_n
1418  *   Number of packets in array.
1419  *
1420  * @return
1421  *   Number of packets successfully transmitted (<= pkts_n).
1422  */
1423 static inline uint16_t
1424 txq_burst_empw(struct mlx5_txq_data *txq, struct rte_mbuf **pkts,
1425                uint16_t pkts_n)
1426 {
1427         uint16_t elts_head = txq->elts_head;
1428         const uint16_t elts_n = 1 << txq->elts_n;
1429         const uint16_t elts_m = elts_n - 1;
1430         unsigned int i = 0;
1431         unsigned int j = 0;
1432         uint16_t max_elts;
1433         uint16_t max_wqe;
1434         unsigned int max_inline = txq->max_inline * RTE_CACHE_LINE_SIZE;
1435         unsigned int mpw_room = 0;
1436         unsigned int inl_pad = 0;
1437         uint32_t inl_hdr;
1438         struct mlx5_mpw mpw = {
1439                 .state = MLX5_MPW_STATE_CLOSED,
1440         };
1441
1442         if (unlikely(!pkts_n))
1443                 return 0;
1444         /* Start processing. */
1445         mlx5_tx_complete(txq);
1446         max_elts = (elts_n - (elts_head - txq->elts_tail));
1447         /* A CQE slot must always be available. */
1448         assert((1u << txq->cqe_n) - (txq->cq_pi - txq->cq_ci));
1449         max_wqe = (1u << txq->wqe_n) - (txq->wqe_ci - txq->wqe_pi);
1450         if (unlikely(!max_wqe))
1451                 return 0;
1452         do {
1453                 struct rte_mbuf *buf = *(pkts++);
1454                 uintptr_t addr;
1455                 unsigned int do_inline = 0; /* Whether inline is possible. */
1456                 uint32_t length;
1457                 uint8_t cs_flags;
1458
1459                 /* Multi-segmented packet is handled in slow-path outside. */
1460                 assert(NB_SEGS(buf) == 1);
1461                 /* Make sure there is enough room to store this packet. */
1462                 if (max_elts - j == 0)
1463                         break;
1464                 cs_flags = txq_ol_cksum_to_cs(buf);
1465                 /* Retrieve packet information. */
1466                 length = PKT_LEN(buf);
1467                 /* Start new session if:
1468                  * - multi-segment packet
1469                  * - no space left even for a dseg
1470                  * - next packet can be inlined with a new WQE
1471                  * - cs_flag differs
1472                  */
1473                 if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED) {
1474                         if ((inl_pad + sizeof(struct mlx5_wqe_data_seg) >
1475                              mpw_room) ||
1476                             (length <= txq->inline_max_packet_sz &&
1477                              inl_pad + sizeof(inl_hdr) + length >
1478                              mpw_room) ||
1479                             (mpw.wqe->eseg.cs_flags != cs_flags))
1480                                 max_wqe -= mlx5_empw_close(txq, &mpw);
1481                 }
1482                 if (unlikely(mpw.state == MLX5_MPW_STATE_CLOSED)) {
1483                         /* In Enhanced MPW, inline as much as the budget is
1484                          * allowed. The remaining space is to be filled with
1485                          * dsegs. If the title WQEBB isn't padded, it will have
1486                          * 2 dsegs there.
1487                          */
1488                         mpw_room = RTE_MIN(MLX5_WQE_SIZE_MAX,
1489                                            (max_inline ? max_inline :
1490                                             pkts_n * MLX5_WQE_DWORD_SIZE) +
1491                                            MLX5_WQE_SIZE);
1492                         if (unlikely(max_wqe * MLX5_WQE_SIZE < mpw_room))
1493                                 break;
1494                         /* Don't pad the title WQEBB to not waste WQ. */
1495                         mlx5_empw_new(txq, &mpw, 0);
1496                         mpw_room -= mpw.total_len;
1497                         inl_pad = 0;
1498                         do_inline = length <= txq->inline_max_packet_sz &&
1499                                     sizeof(inl_hdr) + length <= mpw_room &&
1500                                     !txq->mpw_hdr_dseg;
1501                         mpw.wqe->eseg.cs_flags = cs_flags;
1502                 } else {
1503                         /* Evaluate whether the next packet can be inlined.
1504                          * Inlininig is possible when:
1505                          * - length is less than configured value
1506                          * - length fits for remaining space
1507                          * - not required to fill the title WQEBB with dsegs
1508                          */
1509                         do_inline =
1510                                 length <= txq->inline_max_packet_sz &&
1511                                 inl_pad + sizeof(inl_hdr) + length <=
1512                                  mpw_room &&
1513                                 (!txq->mpw_hdr_dseg ||
1514                                  mpw.total_len >= MLX5_WQE_SIZE);
1515                 }
1516                 if (max_inline && do_inline) {
1517                         /* Inline packet into WQE. */
1518                         unsigned int max;
1519
1520                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1521                         assert(length == DATA_LEN(buf));
1522                         inl_hdr = rte_cpu_to_be_32(length | MLX5_INLINE_SEG);
1523                         addr = rte_pktmbuf_mtod(buf, uintptr_t);
1524                         mpw.data.raw = (volatile void *)
1525                                 ((uintptr_t)mpw.data.raw + inl_pad);
1526                         max = tx_mlx5_wq_tailroom(txq,
1527                                         (void *)(uintptr_t)mpw.data.raw);
1528                         /* Copy inline header. */
1529                         mpw.data.raw = (volatile void *)
1530                                 mlx5_copy_to_wq(
1531                                           (void *)(uintptr_t)mpw.data.raw,
1532                                           &inl_hdr,
1533                                           sizeof(inl_hdr),
1534                                           (void *)(uintptr_t)txq->wqes,
1535                                           max);
1536                         max = tx_mlx5_wq_tailroom(txq,
1537                                         (void *)(uintptr_t)mpw.data.raw);
1538                         /* Copy packet data. */
1539                         mpw.data.raw = (volatile void *)
1540                                 mlx5_copy_to_wq(
1541                                           (void *)(uintptr_t)mpw.data.raw,
1542                                           (void *)addr,
1543                                           length,
1544                                           (void *)(uintptr_t)txq->wqes,
1545                                           max);
1546                         ++mpw.pkts_n;
1547                         mpw.total_len += (inl_pad + sizeof(inl_hdr) + length);
1548                         /* No need to get completion as the entire packet is
1549                          * copied to WQ. Free the buf right away.
1550                          */
1551                         rte_pktmbuf_free_seg(buf);
1552                         mpw_room -= (inl_pad + sizeof(inl_hdr) + length);
1553                         /* Add pad in the next packet if any. */
1554                         inl_pad = (((uintptr_t)mpw.data.raw +
1555                                         (MLX5_WQE_DWORD_SIZE - 1)) &
1556                                         ~(MLX5_WQE_DWORD_SIZE - 1)) -
1557                                   (uintptr_t)mpw.data.raw;
1558                 } else {
1559                         /* No inline. Load a dseg of packet pointer. */
1560                         volatile rte_v128u32_t *dseg;
1561
1562                         assert(mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED);
1563                         assert((inl_pad + sizeof(*dseg)) <= mpw_room);
1564                         assert(length == DATA_LEN(buf));
1565                         if (!tx_mlx5_wq_tailroom(txq,
1566                                         (void *)((uintptr_t)mpw.data.raw
1567                                                 + inl_pad)))
1568                                 dseg = (volatile void *)txq->wqes;
1569                         else
1570                                 dseg = (volatile void *)
1571                                         ((uintptr_t)mpw.data.raw +
1572                                          inl_pad);
1573                         (*txq->elts)[elts_head++ & elts_m] = buf;
1574                         addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(buf,
1575                                                                  uintptr_t));
1576                         *dseg = (rte_v128u32_t) {
1577                                 rte_cpu_to_be_32(length),
1578                                 mlx5_tx_mb2mr(txq, buf),
1579                                 addr,
1580                                 addr >> 32,
1581                         };
1582                         mpw.data.raw = (volatile void *)(dseg + 1);
1583                         mpw.total_len += (inl_pad + sizeof(*dseg));
1584                         ++j;
1585                         ++mpw.pkts_n;
1586                         mpw_room -= (inl_pad + sizeof(*dseg));
1587                         inl_pad = 0;
1588                 }
1589 #ifdef MLX5_PMD_SOFT_COUNTERS
1590                 /* Increment sent bytes counter. */
1591                 txq->stats.obytes += length;
1592 #endif
1593                 ++i;
1594         } while (i < pkts_n);
1595         /* Take a shortcut if nothing must be sent. */
1596         if (unlikely(i == 0))
1597                 return 0;
1598         /* Check whether completion threshold has been reached. */
1599         if (txq->elts_comp + j >= MLX5_TX_COMP_THRESH ||
1600                         (uint16_t)(txq->wqe_ci - txq->mpw_comp) >=
1601                          (1 << txq->wqe_n) / MLX5_TX_COMP_THRESH_INLINE_DIV) {
1602                 volatile struct mlx5_wqe *wqe = mpw.wqe;
1603
1604                 /* Request completion on last WQE. */
1605                 wqe->ctrl[2] = rte_cpu_to_be_32(8);
1606                 /* Save elts_head in unused "immediate" field of WQE. */
1607                 wqe->ctrl[3] = elts_head;
1608                 txq->elts_comp = 0;
1609                 txq->mpw_comp = txq->wqe_ci;
1610 #ifndef NDEBUG
1611                 ++txq->cq_pi;
1612 #endif
1613         } else {
1614                 txq->elts_comp += j;
1615         }
1616 #ifdef MLX5_PMD_SOFT_COUNTERS
1617         /* Increment sent packets counter. */
1618         txq->stats.opackets += i;
1619 #endif
1620         if (mpw.state == MLX5_MPW_ENHANCED_STATE_OPENED)
1621                 mlx5_empw_close(txq, &mpw);
1622         /* Ring QP doorbell. */
1623         mlx5_tx_dbrec(txq, mpw.wqe);
1624         txq->elts_head = elts_head;
1625         return i;
1626 }
1627
1628 /**
1629  * DPDK callback for TX with Enhanced MPW support.
1630  *
1631  * @param dpdk_txq
1632  *   Generic pointer to TX queue structure.
1633  * @param[in] pkts
1634  *   Packets to transmit.
1635  * @param pkts_n
1636  *   Number of packets in array.
1637  *
1638  * @return
1639  *   Number of packets successfully transmitted (<= pkts_n).
1640  */
1641 uint16_t
1642 mlx5_tx_burst_empw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
1643 {
1644         struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
1645         uint16_t nb_tx = 0;
1646
1647         while (pkts_n > nb_tx) {
1648                 uint16_t n;
1649                 uint16_t ret;
1650
1651                 n = txq_count_contig_multi_seg(&pkts[nb_tx], pkts_n - nb_tx);
1652                 if (n) {
1653                         ret = mlx5_tx_burst(dpdk_txq, &pkts[nb_tx], n);
1654                         if (!ret)
1655                                 break;
1656                         nb_tx += ret;
1657                 }
1658                 n = txq_count_contig_single_seg(&pkts[nb_tx], pkts_n - nb_tx);
1659                 if (n) {
1660                         ret = txq_burst_empw(txq, &pkts[nb_tx], n);
1661                         if (!ret)
1662                                 break;
1663                         nb_tx += ret;
1664                 }
1665         }
1666         return nb_tx;
1667 }
1668
1669 /**
1670  * Translate RX completion flags to packet type.
1671  *
1672  * @param[in] rxq
1673  *   Pointer to RX queue structure.
1674  * @param[in] cqe
1675  *   Pointer to CQE.
1676  *
1677  * @note: fix mlx5_dev_supported_ptypes_get() if any change here.
1678  *
1679  * @return
1680  *   Packet type for struct rte_mbuf.
1681  */
1682 static inline uint32_t
1683 rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
1684 {
1685         uint8_t idx;
1686         uint8_t pinfo = cqe->pkt_info;
1687         uint16_t ptype = cqe->hdr_type_etc;
1688
1689         /*
1690          * The index to the array should have:
1691          * bit[1:0] = l3_hdr_type
1692          * bit[4:2] = l4_hdr_type
1693          * bit[5] = ip_frag
1694          * bit[6] = tunneled
1695          * bit[7] = outer_l3_type
1696          */
1697         idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
1698         return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
1699 }
1700
1701 /**
1702  * Get size of the next packet for a given CQE. For compressed CQEs, the
1703  * consumer index is updated only once all packets of the current one have
1704  * been processed.
1705  *
1706  * @param rxq
1707  *   Pointer to RX queue.
1708  * @param cqe
1709  *   CQE to process.
1710  * @param[out] rss_hash
1711  *   Packet RSS Hash result.
1712  *
1713  * @return
1714  *   Packet size in bytes (0 if there is none), -1 in case of completion
1715  *   with error.
1716  */
1717 static inline int
1718 mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
1719                  uint16_t cqe_cnt, uint32_t *rss_hash)
1720 {
1721         struct rxq_zip *zip = &rxq->zip;
1722         uint16_t cqe_n = cqe_cnt + 1;
1723         int len = 0;
1724         uint16_t idx, end;
1725
1726         /* Process compressed data in the CQE and mini arrays. */
1727         if (zip->ai) {
1728                 volatile struct mlx5_mini_cqe8 (*mc)[8] =
1729                         (volatile struct mlx5_mini_cqe8 (*)[8])
1730                         (uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].pkt_info);
1731
1732                 len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
1733                 *rss_hash = rte_be_to_cpu_32((*mc)[zip->ai & 7].rx_hash_result);
1734                 if ((++zip->ai & 7) == 0) {
1735                         /* Invalidate consumed CQEs */
1736                         idx = zip->ca;
1737                         end = zip->na;
1738                         while (idx != end) {
1739                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1740                                         MLX5_CQE_INVALIDATE;
1741                                 ++idx;
1742                         }
1743                         /*
1744                          * Increment consumer index to skip the number of
1745                          * CQEs consumed. Hardware leaves holes in the CQ
1746                          * ring for software use.
1747                          */
1748                         zip->ca = zip->na;
1749                         zip->na += 8;
1750                 }
1751                 if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
1752                         /* Invalidate the rest */
1753                         idx = zip->ca;
1754                         end = zip->cq_ci;
1755
1756                         while (idx != end) {
1757                                 (*rxq->cqes)[idx & cqe_cnt].op_own =
1758                                         MLX5_CQE_INVALIDATE;
1759                                 ++idx;
1760                         }
1761                         rxq->cq_ci = zip->cq_ci;
1762                         zip->ai = 0;
1763                 }
1764         /* No compressed data, get next CQE and verify if it is compressed. */
1765         } else {
1766                 int ret;
1767                 int8_t op_own;
1768
1769                 ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
1770                 if (unlikely(ret == 1))
1771                         return 0;
1772                 ++rxq->cq_ci;
1773                 op_own = cqe->op_own;
1774                 rte_cio_rmb();
1775                 if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
1776                         volatile struct mlx5_mini_cqe8 (*mc)[8] =
1777                                 (volatile struct mlx5_mini_cqe8 (*)[8])
1778                                 (uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
1779                                                           cqe_cnt].pkt_info);
1780
1781                         /* Fix endianness. */
1782                         zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
1783                         /*
1784                          * Current mini array position is the one returned by
1785                          * check_cqe64().
1786                          *
1787                          * If completion comprises several mini arrays, as a
1788                          * special case the second one is located 7 CQEs after
1789                          * the initial CQE instead of 8 for subsequent ones.
1790                          */
1791                         zip->ca = rxq->cq_ci;
1792                         zip->na = zip->ca + 7;
1793                         /* Compute the next non compressed CQE. */
1794                         --rxq->cq_ci;
1795                         zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
1796                         /* Get packet size to return. */
1797                         len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
1798                         *rss_hash = rte_be_to_cpu_32((*mc)[0].rx_hash_result);
1799                         zip->ai = 1;
1800                         /* Prefetch all the entries to be invalidated */
1801                         idx = zip->ca;
1802                         end = zip->cq_ci;
1803                         while (idx != end) {
1804                                 rte_prefetch0(&(*rxq->cqes)[(idx) & cqe_cnt]);
1805                                 ++idx;
1806                         }
1807                 } else {
1808                         len = rte_be_to_cpu_32(cqe->byte_cnt);
1809                         *rss_hash = rte_be_to_cpu_32(cqe->rx_hash_res);
1810                 }
1811                 /* Error while receiving packet. */
1812                 if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
1813                         return -1;
1814         }
1815         return len;
1816 }
1817
1818 /**
1819  * Translate RX completion flags to offload flags.
1820  *
1821  * @param[in] cqe
1822  *   Pointer to CQE.
1823  *
1824  * @return
1825  *   Offload flags (ol_flags) for struct rte_mbuf.
1826  */
1827 static inline uint32_t
1828 rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
1829 {
1830         uint32_t ol_flags = 0;
1831         uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
1832
1833         ol_flags =
1834                 TRANSPOSE(flags,
1835                           MLX5_CQE_RX_L3_HDR_VALID,
1836                           PKT_RX_IP_CKSUM_GOOD) |
1837                 TRANSPOSE(flags,
1838                           MLX5_CQE_RX_L4_HDR_VALID,
1839                           PKT_RX_L4_CKSUM_GOOD);
1840         return ol_flags;
1841 }
1842
1843 /**
1844  * DPDK callback for RX.
1845  *
1846  * @param dpdk_rxq
1847  *   Generic pointer to RX queue structure.
1848  * @param[out] pkts
1849  *   Array to store received packets.
1850  * @param pkts_n
1851  *   Maximum number of packets in array.
1852  *
1853  * @return
1854  *   Number of packets successfully received (<= pkts_n).
1855  */
1856 uint16_t
1857 mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
1858 {
1859         struct mlx5_rxq_data *rxq = dpdk_rxq;
1860         const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
1861         const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
1862         const unsigned int sges_n = rxq->sges_n;
1863         struct rte_mbuf *pkt = NULL;
1864         struct rte_mbuf *seg = NULL;
1865         volatile struct mlx5_cqe *cqe =
1866                 &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1867         unsigned int i = 0;
1868         unsigned int rq_ci = rxq->rq_ci << sges_n;
1869         int len = 0; /* keep its value across iterations. */
1870
1871         while (pkts_n) {
1872                 unsigned int idx = rq_ci & wqe_cnt;
1873                 volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
1874                 struct rte_mbuf *rep = (*rxq->elts)[idx];
1875                 uint32_t rss_hash_res = 0;
1876
1877                 if (pkt)
1878                         NEXT(seg) = rep;
1879                 seg = rep;
1880                 rte_prefetch0(seg);
1881                 rte_prefetch0(cqe);
1882                 rte_prefetch0(wqe);
1883                 rep = rte_mbuf_raw_alloc(rxq->mp);
1884                 if (unlikely(rep == NULL)) {
1885                         ++rxq->stats.rx_nombuf;
1886                         if (!pkt) {
1887                                 /*
1888                                  * no buffers before we even started,
1889                                  * bail out silently.
1890                                  */
1891                                 break;
1892                         }
1893                         while (pkt != seg) {
1894                                 assert(pkt != (*rxq->elts)[idx]);
1895                                 rep = NEXT(pkt);
1896                                 NEXT(pkt) = NULL;
1897                                 NB_SEGS(pkt) = 1;
1898                                 rte_mbuf_raw_free(pkt);
1899                                 pkt = rep;
1900                         }
1901                         break;
1902                 }
1903                 if (!pkt) {
1904                         cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
1905                         len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt,
1906                                                &rss_hash_res);
1907                         if (!len) {
1908                                 rte_mbuf_raw_free(rep);
1909                                 break;
1910                         }
1911                         if (unlikely(len == -1)) {
1912                                 /* RX error, packet is likely too large. */
1913                                 rte_mbuf_raw_free(rep);
1914                                 ++rxq->stats.idropped;
1915                                 goto skip;
1916                         }
1917                         pkt = seg;
1918                         assert(len >= (rxq->crc_present << 2));
1919                         /* Update packet information. */
1920                         pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
1921                         pkt->ol_flags = 0;
1922                         if (rss_hash_res && rxq->rss_hash) {
1923                                 pkt->hash.rss = rss_hash_res;
1924                                 pkt->ol_flags = PKT_RX_RSS_HASH;
1925                         }
1926                         if (rxq->mark &&
1927                             MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
1928                                 pkt->ol_flags |= PKT_RX_FDIR;
1929                                 if (cqe->sop_drop_qpn !=
1930                                     rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
1931                                         uint32_t mark = cqe->sop_drop_qpn;
1932
1933                                         pkt->ol_flags |= PKT_RX_FDIR_ID;
1934                                         pkt->hash.fdir.hi =
1935                                                 mlx5_flow_mark_get(mark);
1936                                 }
1937                         }
1938                         if (rxq->csum)
1939                                 pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
1940                         if (rxq->vlan_strip &&
1941                             (cqe->hdr_type_etc &
1942                              rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
1943                                 pkt->ol_flags |= PKT_RX_VLAN |
1944                                         PKT_RX_VLAN_STRIPPED;
1945                                 pkt->vlan_tci =
1946                                         rte_be_to_cpu_16(cqe->vlan_info);
1947                         }
1948                         if (rxq->hw_timestamp) {
1949                                 pkt->timestamp =
1950                                         rte_be_to_cpu_64(cqe->timestamp);
1951                                 pkt->ol_flags |= PKT_RX_TIMESTAMP;
1952                         }
1953                         if (rxq->crc_present)
1954                                 len -= ETHER_CRC_LEN;
1955                         PKT_LEN(pkt) = len;
1956                 }
1957                 DATA_LEN(rep) = DATA_LEN(seg);
1958                 PKT_LEN(rep) = PKT_LEN(seg);
1959                 SET_DATA_OFF(rep, DATA_OFF(seg));
1960                 PORT(rep) = PORT(seg);
1961                 (*rxq->elts)[idx] = rep;
1962                 /*
1963                  * Fill NIC descriptor with the new buffer.  The lkey and size
1964                  * of the buffers are already known, only the buffer address
1965                  * changes.
1966                  */
1967                 wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
1968                 if (len > DATA_LEN(seg)) {
1969                         len -= DATA_LEN(seg);
1970                         ++NB_SEGS(pkt);
1971                         ++rq_ci;
1972                         continue;
1973                 }
1974                 DATA_LEN(seg) = len;
1975 #ifdef MLX5_PMD_SOFT_COUNTERS
1976                 /* Increment bytes counter. */
1977                 rxq->stats.ibytes += PKT_LEN(pkt);
1978 #endif
1979                 /* Return packet. */
1980                 *(pkts++) = pkt;
1981                 pkt = NULL;
1982                 --pkts_n;
1983                 ++i;
1984 skip:
1985                 /* Align consumer index to the next stride. */
1986                 rq_ci >>= sges_n;
1987                 ++rq_ci;
1988                 rq_ci <<= sges_n;
1989         }
1990         if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
1991                 return 0;
1992         /* Update the consumer index. */
1993         rxq->rq_ci = rq_ci >> sges_n;
1994         rte_cio_wmb();
1995         *rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
1996         rte_cio_wmb();
1997         *rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
1998 #ifdef MLX5_PMD_SOFT_COUNTERS
1999         /* Increment packets counter. */
2000         rxq->stats.ipackets += i;
2001 #endif
2002         return i;
2003 }
2004
2005 /**
2006  * Dummy DPDK callback for TX.
2007  *
2008  * This function is used to temporarily replace the real callback during
2009  * unsafe control operations on the queue, or in case of error.
2010  *
2011  * @param dpdk_txq
2012  *   Generic pointer to TX queue structure.
2013  * @param[in] pkts
2014  *   Packets to transmit.
2015  * @param pkts_n
2016  *   Number of packets in array.
2017  *
2018  * @return
2019  *   Number of packets successfully transmitted (<= pkts_n).
2020  */
2021 uint16_t
2022 removed_tx_burst(void *dpdk_txq __rte_unused,
2023                  struct rte_mbuf **pkts __rte_unused,
2024                  uint16_t pkts_n __rte_unused)
2025 {
2026         return 0;
2027 }
2028
2029 /**
2030  * Dummy DPDK callback for RX.
2031  *
2032  * This function is used to temporarily replace the real callback during
2033  * unsafe control operations on the queue, or in case of error.
2034  *
2035  * @param dpdk_rxq
2036  *   Generic pointer to RX queue structure.
2037  * @param[out] pkts
2038  *   Array to store received packets.
2039  * @param pkts_n
2040  *   Maximum number of packets in array.
2041  *
2042  * @return
2043  *   Number of packets successfully received (<= pkts_n).
2044  */
2045 uint16_t
2046 removed_rx_burst(void *dpdk_txq __rte_unused,
2047                  struct rte_mbuf **pkts __rte_unused,
2048                  uint16_t pkts_n __rte_unused)
2049 {
2050         return 0;
2051 }
2052
2053 /*
2054  * Vectorized Rx/Tx routines are not compiled in when required vector
2055  * instructions are not supported on a target architecture. The following null
2056  * stubs are needed for linkage when those are not included outside of this file
2057  * (e.g.  mlx5_rxtx_vec_sse.c for x86).
2058  */
2059
2060 uint16_t __attribute__((weak))
2061 mlx5_tx_burst_raw_vec(void *dpdk_txq __rte_unused,
2062                       struct rte_mbuf **pkts __rte_unused,
2063                       uint16_t pkts_n __rte_unused)
2064 {
2065         return 0;
2066 }
2067
2068 uint16_t __attribute__((weak))
2069 mlx5_tx_burst_vec(void *dpdk_txq __rte_unused,
2070                   struct rte_mbuf **pkts __rte_unused,
2071                   uint16_t pkts_n __rte_unused)
2072 {
2073         return 0;
2074 }
2075
2076 uint16_t __attribute__((weak))
2077 mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
2078                   struct rte_mbuf **pkts __rte_unused,
2079                   uint16_t pkts_n __rte_unused)
2080 {
2081         return 0;
2082 }
2083
2084 int __attribute__((weak))
2085 mlx5_check_raw_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2086 {
2087         return -ENOTSUP;
2088 }
2089
2090 int __attribute__((weak))
2091 mlx5_check_vec_tx_support(struct rte_eth_dev *dev __rte_unused)
2092 {
2093         return -ENOTSUP;
2094 }
2095
2096 int __attribute__((weak))
2097 mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
2098 {
2099         return -ENOTSUP;
2100 }
2101
2102 int __attribute__((weak))
2103 mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
2104 {
2105         return -ENOTSUP;
2106 }